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Abstract

Inference in classical logic is monotonic: if a conclusion can be derived from a set
of premises, then no additional premises will ever invalidate this conclusion. However,
commonsense reasoning has a nonmonotonic component. Human beings draw sensible
conclusions from what they know, making default assumptions where needed. And if
there is new information, we might reconsider previous conclusions. Depending on how
one deals with statements as “typically it holds that” and “in the absence of information to
the contrary”, different nonmonotonic logics can be considered, which have been studied
since the 1970s. Two important formalisms for nonmonotonic reasoning are autoepistemic
logic and negation-as-failure in logic programming.
Answer set programming (ASP) is a declarative programming language based on the

stable model semantics that is used to model complex combinatorial problems. Its strength
lies in the use of the negation-as-failure operator which allows retracting previously made
conclusions when new information is available. Moreover, there is a clear connection
between ASP and autoepistemic logic: ASP programs can be translated to a set of formulas
in autoepistemic logic such that the answer sets are in one-to-one correspondence with
the so-called stable expansions in autoepistemic logic.
Although ASP has been successfully applied to model combinatorial problems in a concise

and declarative manner, it is not directly suitable for expressing problems in continuous
domains. Fuzzy answer set programming (FASP) is a generalisation of ASP based on
fuzzy logic that is capable of modelling continuous systems by using an infinite number
of truth degrees corresponding to intensities of properties. Since it is a relatively new
concept, little is known about the computational complexity of FASP and almost no
techniques are available to compute answer sets of FASP programs. Furthermore, the
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Abstract

connections of FASP to other paradigms for nonmonotonic reasoning with continuous
values are largely unexplored. In our dissertation, we contribute to the ongoing research
on FASP on several levels.
First, we will pin down the complexity of the direct syntactical generalisation of classical

ASP to FASP, and we will develop an implementation based on bilevel linear programming
for this type of programs. We will also extensively discuss the complexity for a more
general form of FASP.
Second, we will combine the paradigms of fuzzy logic and autoepistemic logic into fuzzy

autoepistemic logic, and show that the latter generalises FASP. Since the language of
(fuzzy) autoepistemic logic is much more expressive than the theories we need to rep-
resent (fuzzy) answer set programs, this could serve as a useful basis for defining or
comparing extensions to the basic language of (F)ASP. Moreover, we show that many
important properties from classical autoepistemic logic remain valid when generalising to
fuzzy autoepistemic logic.
Finally, we will investigate relationships between fuzzy autoepistemic logic and fuzzy

modal logics, generalising well-known links beween autoepistemic logic and several classical
modal logic systems. In particular we will generalise Levesque’s logic of only knowing
to the many-valued case, and show that the correspondence with autoepistemic logic is
preserved under this generalisation; stable expansions (and hence answer sets) correspond
to a particular type of valid sentences in this logic. Moreover we will provide a sound and
complete axiomatisation for this many-valued logic of only knowing.
To summarise, in this thesis we will introduce several systems of nonmonotonic reasoning

when properties may be graded and investigate their properties, complexity of appropriate
decision problems and relations among them.
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1 | Introduction

1.1 Logic
The term “logic” comes from the Greek word logos, originally meaning “speech”, “reason”,
“plea”, “opinion”, “ground”, . . . It first became a technical term in philosophy due to
Heraclitus (ca. 535-475 BC). Heraclitus argued that there was an objective truth about
everything which he called Logos [Audi 1995]. Ancient philosophers used the term in
different ways; e.g. the sophists (5th century BC) used it as “discourse” and Aristotle
(384-322 BC) used it to refer to “reasoned discourse” [Audi 1995]. The earliest study of
formal logic is accredited to Aristotle. The so-called Aristotelian logic was the dominant
form of Western logic until the 19th century advances in mathematical logic [Corcoran
2009]. One of the important contributions Aristotle made to the study of logic is the idea
of deductive reasoning, e.g. suppose we know that

All men are mortal and Socrates is a man.

By simple syllogistic reasoning it then follows that

Socrates is mortal.

In the 19th century, Boole presented his work An Investigation of the Laws of Thought on
Which are Founded the Mathematical Theories of Logic and Probabilities. He proposed to
express logical propositions as algebraic expressions, providing a fail-safe method of logical
deduction. This work can be seen as the starting point of mathematical logic [Corcoran
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CHAPTER 1. INTRODUCTION

2003]. From then onwards, logic also became a mathematical study rather than a purely
philosophical one.
Until the first half of the 20th century, logic was primarily a “tool” to understand the

foundations of mathematics. After Boole, great advances in mathematical logic were made
by Frege. He was the first to propose an axiomatisation of propositional and first-order
logic, where he “invented” the last one himself. He was the first important proponent of
logicism; the theory that mathematics is reducible to logic. In his work Grundgesetze der
Arithmetik he attempted to derive the laws of arithmetic from logic. After publication
of the first part in 1893, Russell proved that the laws (Grundgesetze) of Frege led to a
contradiction which is now known as Russell’s paradox. An important method to solve
this paradox was proposed by Zermelo and this led to the first axiomatic set theory which
later developed into the well-known Zermelo-Fraenkel set theory (ZF). An important work
on the foundations of mathematics is Principia Mathematica (published in three volumes
during 1910-1913). In this work, Russell and Whitehead attempted to define a set of
axioms and inference rules in a symbolic, propositional logic from which all mathematical
truths could be proven. However, in 1931, Gödel’s incompleteness theorem proved that
this goal could never be achieved. Also during this period, first-order logic was being
further developed. In 1929, Gödel proved a correspondence between semantics and proof
theory in first-order logic, known as Gödel’s completeness theorem.
From the 1930s onwards, computability theory became an important part of logic. Com-

putability theory as we know it now is mostly influenced by the work in the 1930s and
40s of Turing, Church, Kleene and Post. Church is best known for his proof that the
“Entscheidungsproblem” is undecidable [Church 1936]. This is a problem that asks for
an algorithm that given a statement of a first-order logic answers yes or no depending
on whether the statement is a tautology. As part of this research in computability theory
he also introduced lambda calculus. Independently from Church, Turing also showed in
[Turing 1936] that a general solution to the Entscheidungsproblem does not exist. In his
original proof, Turing formalised the concept of algorithm by introducing Turing machines
which became the standard model for computing devices. Post and Kleene then extended
the scope of computability theory and introduced the concept of degrees of unsolvability
[Post 1944, Kleene and Post 1954].
The development of digital computers, the interest in machine simulation of human

intelligence and the development of mathematical linguistics led to many new applications
of classical logic. In particular, new problems suggested by computer science and artificial
intelligence led to the requirement of non-traditional logics. Some of the resulting logics
are extensions of classical logics with new operators. One example is the development
of modal logics, which are extensions of formal logic with modal operators to include
e.g. possibility, necessity, belief and knowledge. Modal logic had already been studied
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1.2. NONMONOTONIC REASONING

by e.g. Aristotle in his Prior Analytics, but modal logic as we know it today was first
studied (syntactically) by Lewis in [Lewis 1918, Lewis and Langford 1932]. In [Lewis and
Langford 1932], five axiomatic systems were formulated; “S1”, “S2”, “S3”, “S4” and
“S5”. Gödel [Gödel 1933] then suggested a new way to axiomatise the systems of modal
logic, the first step in obtaining the well-known systems K, T, S4 and S5. The use of
semantics started later [Carnap 1947] and became increasingly noticeable at the beginning
of the 1960s [Hintikka 1962] and was greatly influenced by Kripke when he introduced the
Kripke Semantics in 1959 [Kripke 1959]. Besides extensions, also restrictions of classical
logic have been investigated. One example is intuitionistic logic which was introduced and
axiomatised by Heyting (1930). It is based on the idea of Brouwer (1907) that you should
not count a proof of the form “there exists x such that Q(x) holds” valid unless the proof
gives a method for constructing such an x, and similar for a proof of the form “R or S
holds”. Hence you cannot assert the statement “R or not R” (law of the excluded middle)
unless you have a proof for R or for not R.
One property of classical logics and many of their extensions and restrictions is that they

are monotonic: if a formula can be inferred from a set Γ of premises, then it can also be
inferred from any set of premises Λ with Γ ⊆ Λ. However, in daily life, we do not use
this kind of inference. One usually draws conclusions tentatively and when obtaining more
information one might change the conclusions. Such inferences are called nonmonotonic
since, as opposed to monotonic reasoning, the set of conclusions does not necessarily
increase as the set of premises increases.

1.2 Nonmonotonic reasoning
Historically, the need for nonmonotonic reasoning was inspired by knowledge representation
problems in several areas of artificial intelligence [Brewka et al. 1997]. A typical motivating
example is the development of a database about airline flights. One usually just stores
only positive facts in a database, like “there is a flight from Brussels to Barcelona at 10am,
August 19, 2014”. Obviously it is not possible to store all the negative facts, e.g. “there is
no flight from Brussels to Barcelona at 11am, August 20, 2014” in the database. Hence the
unstated assumption is that if a flight is not listed in the database, it does not exist. Reiter
[Reiter 1978] formalised the assumption that what is not currently known to be true is false:
the closed world assumption (CWA). Intuitively, the CWA means that any information not
mentioned in (or that cannot be inferred from) a database DB is taken to be false.
A second knowledge representation problem introduced by McCarthy [McCarthy 1980]

consists of formalising puzzles such as the Missionaries and Cannibals problem:
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CHAPTER 1. INTRODUCTION

Three missionaries and three cannibals come to a river. A row boat that seats two is
available. If the cannibals ever outnumber the missionaries on either bank of the river, the
missionaries will be eaten. How shall they cross the river?

As was the case with databases, it is easy to state all required positive facts but more
difficult to state negative assumptions that are implicit, e.g. “the only way to cross the river
is by boat”. McCarthy proposed a formal solution to deal with such unstated assumptions
called circumscription. The idea of circumscription is that things are as expected unless
otherwise specified. For instance in the example, one assumes there is no bridge that can
be used to cross the river since its existence is not explicitly written down in the statement
of the problem. Since its first formulation in [McCarthy 1980], circumscription has taken
several forms. The most popular and useful form is parallel predicate circumscription
[McCarthy 1980, McCarthy 1986, Lifschitz 1985].
CWA and circumscription have a lot in common. Both work on the principle of preferring

interpretations in which positive facts are minimised. CWA also has a strong correspond-
ence with logic programming semantics, which will be discussed in Section 1.2.1.
We will now discuss several nonmonotonic logics that differ from the previous logics, in

the sense that they explicitly use the notion of consistency or (dis-)belief. A common
property of consistency-based logics is that they sometimes generate multiple “solutions”.
In these logics, solutions are sets of formulas representing beliefs a reasoner can adopt
based on premises and defaults. Consider for instance the following premises and defaults.

Quakers (typically) are pacifists. Republicans (typically) are not pacifists. Nixon was
quaker and republican.

From the first default rule one might conclude that Nixon was a pacifist. On the other
hand, there are also reasons to believe that Nixon was not a pacifist since he was a
republican. A consistency-based logic would generate two so-called extensions. There
does not seem to be a specific correct way of using these extensions, e.g. considering
intersections or introducing a preference relation. Consistency-based logics just define the
extensions and leave open what to do with them.
Reiter’s default logic (DL) [Reiter 1980] is probably the most prominent consistency-

based logic and has been used to formalise a number of different reasoning taks, e.g.
diagnosis from first principles [Reiter 1987] and inheritance [Etherington 1987]. As well
as the closely related autoepistemic logic, which we will discuss in detail in Section 2.1, it
has a greater expressive power than for instance circumscription.
DL assumes that knowledge is represented in terms of a default theory, i.e. a pair (D,W )

withW a set of first-order formulas representing facts that are true and D a set of defaults
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1.2. NONMONOTONIC REASONING

of the form

A : B1, . . . , Bn/C.

This default means that if A is provable then C should be derived if for all i, ∼Bi (i.e.
the negation of Bi) is not provable. For example, consider W = {Bird(Tweety)} and
D a single default

Bird(Tweety) : Flies(Tweety)/F lies(Tweety).

Hence if Tweety is a bird and it is not provable that Tweety does not fly, then we should
derive that Tweety flies. Reiter defines the extensions of a pair (D,W ) as fixpoints.
DL’s expressive power is mainly due to the representation of defaults as inference rules.

Unfortunately this also has problems and many researchers have considered this as a serious
drawback [Brewka et al. 1997]. For instance, the existence of extensions is not guaranteed
and sometimes DL does not give the results one would intuitively expect. These difficulties
have led to a number of modifications of DL, e.g. [Łukaszewicz 1988], [Brewka 1991],
[Schaub 1991], [Delgrande and Jackson 1991]. Another variant of DL defined in [Baral
and Subrahmanian 1991] can be viewed as a generalisation of the well-founded semantics
for logic programs, which will be discussed in Section 1.2.1.
Modal nonmonotonic logics [McDermott and Doyle 1980], [Moore 1985], [Marek et al.

1991] use a modal operator to express explicitly that a formula is consistent (or believed).
The most widely studied logic of this class is Moore’s autoepistemic logic [Moore 1985]. It
has interesting links with DL and logic programming. Moore introduced a modal operator
B in the logical language where Bα stands for “α is believed”. The idea of autoepistemic
logic is to model the reasoning of an ideally rational agent about his own beliefs. Ideally
rational means that the agent knows completely what he believes as well as what he does
not believe. Hence if a formula α belongs to the set S of beliefs of the agent, then Bα
should also be an element of S. And if α does not belong to S, then ∼Bα must be in S.
Stalnaker [Stalnaker 1993]1 describes the state of belief characterised by such a theory as
stable: no further conclusions can be drawn by an ideally rational agent in such a state.
Theories satisfying these conditions are called stable autoepistemic theories. As will be
discussed in Section 2.1, Moore introduced the so-called stable expansions for a set of
premises. These are stable autoepistemic theories defined as particular fixpoints.
Moore’s work about autoepistemic logic was originally based on ideas from McDermott

and Doyle ([McDermott 1982], [McDermott and Doyle 1980]). In [McDermott and Doyle
1980] an operator M was introduced which has to be read as “it is consistent to believe
that” and where we have the inference rule that “MP is derivable if ∼P is not derivable.”

1Article based on the unpublished manuscript (1980) to which Moore referred in [Moore 1985].
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However, as pointed out in [McDermott and Doyle 1980], MP is not inconsistent with
∼P . In [McDermott 1982] the standard modal logics T, S4 and S5 were extended to
nonmonotonic logics, although in the case of S5 it was shown that introducing nonmono-
tonicity is redundant: the theories of nonmonotonic S5 are exactly those of the standard
version of S5. Moore [Moore 1985] showed why some of the problems McDermott and
Doyle encountered arised and how they can be avoided. The language Moore defined
is much like McDermott and Doyle’s, a propositional logical language augmented by an
epistemic modal operator B interpreted as “is believed”.
In [Moore 1984], Moore proposed an alternative possible world semantics. In this sense,

autoepistemic logic is closely related to the work of Halpern and Moses [Halpern and Moses
1984]. The major difference is that in [Halpern and Moses 1984] a logic of knowledge
rather than belief is considered. It then follows that Bp → p (with B here interpreted as
“is known”) is an axiom. It was obtained independently by Moore and by Halpern and
Moses that the sets of formulas that are true in every world of some S5 structure are
exactly the stable autoepistemic theories.
Although the intuitions underlying default and autoepistemic logic seem very different,

they are much more related then one might expect. In [Konolige 1988], Konolige proposed
the following translation from default logic to autoepistemic logic:

A : B1, . . . , Bn/C is translated to BA ∧ ∼BB1 ∧ . . . ∧ ∼BBn → C.

Konolige showed that extensions of a default theory (D,W ) correspond exactly to the sets
of formulas in the stable expansions not containing the operator B.
There are also nonmonotonic systems using two independent modal operators ([Lin and

Shoham 1990],[Lifschitz 1991], [Lifschitz 1994]). Lin and Shoham showed that DL and
autoepistemic logic, as well as the minimal belief logic of [Halpern and Moses 1984] can
be embedded in their system. Lifschitz’s logic uses an epistemic operator B representing
minimal belief and an operator “not” to represent the notion of negation-as-failure. The
difference between (strong) negation “∼” and “not” is that ∼a is true if we can derive ∼a,
whereas not a is true if we fail to derive a. Lifschitz showed that DL and autoepistemic
logic can be embedded in his logic as well. As we will discuss later in this section, there
are also interesting links with logic programming.
Finally, another modal approach to default reasoning has been introduced and invest-

igated in [Levesque 1990]. Levesque defined a logic containing a modal operator O,
where Oα stands for “α is all that is known”. Hence there are no other relevant beliefs
about α. As will be discussed in Section 2.1.3, the operator O has an intuitive possible
world semantics and the stable expansions of a formula α correspond to those worlds
that satisfy Oα.
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1.2. NONMONOTONIC REASONING

In [Kraus et al. 1990], general patterns of nonmonotonic reasoning have been studied.
The approach is based on the work of Gabbay [Gabbay 1985] who suggested to focus the
study of nonmonotonic logics on their consequence relation, although some of the systems
mentioned earlier were not meant to define a consequence relation. He proposed that such
a consequence operator |∼ should have the following properties:

• Reflexivity: α |∼ α
• Cut: from α ∧ β |∼ γ and α |∼ β, infer α |∼ γ
• Cautious (or weak) monotonicity: from α |∼ β and α |∼ γ infer α ∧ β |∼ γ

In [Makinson 1988], Makinson proposed a semantics for Gabbay’s logic, but only for a
rather limited syntax. Independently, Shoham [Shoham 1987], [Shoham 1988], proposed
a general framework for nonmonotonic reasoning. He suggested models that are described
as a set of worlds with a preference relation. He assumed a more expressive language,
containing all classical connectives. This idea also appears in [Halpern and Moses 1984]
in relation with epistemic logic. In [Kraus et al. 1990], system P was introduced as
a variation on the semantics proposed in [Shoham 1987]. The key aspect is that the
consequence relation |∼ satisfies cautious monotonicity. It expresses that a new conclusion
should not invalidate previous conclusions. Intuitively, you add only what you expect.
This system does not cover everything in the area of nonmonotonic reasoning. It can be
shown that there cannot be such a consequence relation for e.g. DL [Makinson 1988] and
autoepistemic logic [Makinson 2005].

1.2.1 Nonmonotonicity in logic programming
In general, most of the programming languages that are used are imperative programming
languages2. The programmer has to describe what the program should do and also how
the program should do this. On the other hand, using declarative programming languages
the programmer should describe what the program should do but not how this should be
done. Most programming languages based on logic are declarative. Historically, semantics
for logic programs have been considered since the 1970s with [Colmerauer et al. 1973],
[Kowalski 1974], [Van Emden and Kowalski 1976]. This work led to the logic programming
language PROLOG. Originally, PROLOG was restricted to horn clauses but it was quickly
extended to include negation-as-failure. As mentioned previously, negation-as-failure is a
special construct “not” where not a is true if we cannot prove that a is true. For example,
consider the following program P .

r1 : beach ← sunny ∧ not raining
r2 : sunny ←

2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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Rule r1 informally means that we will go to the beach if there is no reason to think that it
is raining and if we are sure that it is sunny. A rule such as r2 is called a fact; it encodes
that it is unconditionally true that it is sunny.
Defining the semantics for logic programs containing negation-as-failure turned out to

be a challenge. The most well-known ideas are Clark’s completion [Clark 1978], the
stable model semantics [Gelfond and Lifschitz 1988] and the well-founded semantics [van
Gelder et al. 1988]. Clark’s completion has various drawbacks, see [Apt and Bol 1994],
[Stepherdson 1991] for more details. The stable model semantics refine the conclusions of
the Clark completion and in [Baral and Subrahmanian 1993] it has been shown that the
well-founded semantics is an approximation of the stable model semantics. Over the last
two decades, many other definitions of the stable model semantics have been formulated,
with each of them giving new insights [Lifschitz 2008].
The close relation between these semantics and circumscription, DL and autoepistemic

logic has been shown by translating programs into these logics and proving that the se-
mantics of the program corresponds to the meaning of the translation in the logic. Marek
and Truszczyński [Marek and Truszczyński 1989] and Bidoit and Froidevaux [Bidoit and
Froidevaux 1991b] considered translations from a logic program P into default logic. They
proved that the stable models of P correspond to Reiter’s extensions of the corresponding
default theory. In [Marek and Truzsczyński 1993] a summary of similar results is given.
In combination with the relation between stable expansions in autoepistemic logic and
extensions in default logic it is then obtained that stable models of a program corres-
pond to the stable expansions of a corresponding autoepistemic theory. In [Gelfond et al.
1989], translations from circumscriptive theories into logic programs were considered but
the conditions under which these translations work well are very strong.
In this thesis we will focus on the relationship between answer set programming – logic

programming based on the stable model semantics – and autoepistemic logic. The research
oriented towards the relationship between answer set programming and autoepistemic logic
has its roots in the problem of defining semantics for programs with negation-as-failure.
Consider for instance the rule

a← b ∧ not c.

Gelfond [Gelfond 1987] observed that in autoepistemic logic, this rule can be expressed
naturally as the formula

b ∧ ∼(Bc)→ a.

Gelfond and Lifschitz [Gelfond and Lifschitz 1988] showed that the answer sets (the “solu-
tions”) of programs P without strong negation and only one atom in the head of a rule
correspond to the models of the autoepistemic logic theory λ(P ) obtained from P by
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interpreting rules as material implication and replacing all expressions of the form not a
by ∼(Ba). Unfortunately this translation does not work for programs with more than one
atom in the head of rules. For instance the program consisting of the single rule

a ∨ b←

would correspond to the autoepistemic formula a ∨ b which has exactly one model; the
set of all propositional consequences of a ∨ b and all formulas Bα that can be derived by
particular stability conditions on the beliefs of the agent. The program itself however has
two answer sets {a} and {b}. If strong negation is allowed and disjunction in the head is
not allowed, problems arise since material implication is contrapositive and rules in answer
set programming are not. This observation led Gelfond and Lifschitz [Gelfond and Lifschitz
1991] to reject autoepistemic logic as a tool for the study of logical programming, using a
semantics based on default logic instead. In [Lifschitz and Schwarz 1993] however, Lifschitz
and Schwarz showed that programs with strong negation and disjunction in the head can
easily be represented by autoepistemic theories. In this translation, a rule of the form

a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck

is transformed into the autoepistemic formula

(b1 ∧Bb1)∧ . . .∧ (bm ∧Bbm)∧∼(Bc1)∧ . . .∧∼(Bck)→ (a1 ∧Ba1)∨ . . .∨ (an ∧Ban).

The results in [Lifschitz and Schwarz 1993] are based on the logic of minimal belief and
negation as failure (MNBF). This correspondence was independently found by Chen [Chen
1993], also using MBNF as a starting point. The negation-as-failure modality in MBNF
exactly corresponds to negative introspection in autoepistemic logic. MBNF is thus an
extension of autoepistemic logic with the “minimal knowledge operator” due to Halpern
and Moses [Halpern and Moses 1984]. A simplified version of MBNF (from [Lifschitz
1994]), which will also be used in this thesis, can be used to simulate some forms of
default logic and circumscription, as well as some logic programming languages.

1.3 Many-valued logic
Besides monotonicity, other aspects of classical logic have been questioned throughout
history. In particular, classical logic is not suitable to deal with situations in which properties
are gradual, such as temperature and size. One of the most radical and fruitful attempts for
augmenting the representational capabilities of classical logic was made by Zadeh in 1965
[Zadeh 1965] by introducing fuzzy sets. Fuzzy set theory is a generalisation of classical
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set theory with many-valued membership functions; an element belongs to a fuzzy set to
a certain degree. Therefore, fuzzy sets are seen as functions. Fuzzy set theory is closely
related to the many-valued logics that appeared in the 1930s; many-valued logic is to
fuzzy set theory what classical logic is to set theory. The idea is that one could extend
the usual notions of derivability and entailment from (usual) sets of premises to fuzzy sets
of premises. These extensions work most naturally in these many-valued logics, hence
also called fuzzy logics. Fuzzy or many-valued logics are extensions and generalisations of
classical logic. They can have k ∈ N\{0, 1} or even infinitely many truth degrees in [0, 1].
The only assumptions are that each sentence in such a logic has exactly one truth degree
and that there exist always at least two truth degrees, 0 and 1, which behave exactly like
“true” and “false” in classical (two-valued) logic. Compared to classical logic, a large set
of truth degrees then allows more operations with truth degrees.
Historically, the era of many-valued logic started in the 1920s with Łukasiewicz [Łu-

kasiewicz 1920] and Post [Post 1921] although many-valued logic may be traced back
to Aristotle who discussed the problem of contingent statements about the future. This
problem of future contingents is closely tied with the philosophical problems of determinism
and the understanding of modalities. Indeed, a future event may be seen as “possible” or
“undetermined”. This problem inspired Łukasiewicz to consider a three-valued logic, where
there is – besides true and false – a not determined third truth degree. Independently, Post
introduced the idea of additional truth degrees and applied it to problems of representability
of functions and he proved that every sentence of an m-valued logic can be interpreted as
an ordered set of m − 1 sentences of classical logic. In 1922, Łukasiewicz [Łukasiewicz
1922] generalised his previous work to an infinite number of truth degrees.
This initial phase of many-valued logic was followed by basic theoretical results for sys-

tems of many-valued logic. Wajsberg [Wajsberg 1931] proposed an axiomatisation for the
three-valued system of Łukasiewicz. The latter system was extended to a functionally
complete one and an axiomatisation was given in [Słupecki 1936]. Gödel [Gödel 1932]
used multiple truth degrees to understand intuitionistic logic, leading to the well-known
family of Gödel systems. These systems were extended to infinitely many truth degrees
in [Jaskowski 1936]. The work of Gödel and Jaskowski clarified mutual relations of intu-
itionistic and many-valued logic: it was shown that there does not exist a many-valued
system whose set of logically valid formulas coincides with the set of logically valid formu-
las of intuitionistic logic. Furthermore, besides Łukasiewicz’ 1930s papers, the monograph
[Rosser and Turquette 1952] was the standard reference for years. It is a collection of
papers from the 1940s in which they generalise basic approaches and proved essential res-
ults. They emphasise on the development of Hilbert style axiomatic calculi for systems
of many-valued logic.
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In the 1950s, McNaughton [McNaughton 1951] showed that every piecewise linear func-
tion [0, 1]n → [0, 1] can be represented by a sentence in the infinitely-valued calculus of
Łukasiewicz logic. A completeness proof for the system was given by Chang introducing
the notion of an MV-algebra and showing that they form the algebraic semantics for this
logic ([Chang 1958],[Chang 1959]). In the same period, Dummet [Dummet 1959] gave a
completeness proof for the infinitely-valued Gödel logic by showing that the corresponding
algebraic structure is the class of all Heyting algebras.
The 1970s was a period of rather restricted activity in pure many-valued logics. However,

there was a lot of work in the closely related area of applications of fuzzy sets, defined by
Zadeh. Fuzzy logic – where derivability and entailment are extended from sets to fuzzy set
of premises – was first studied by Pavelka [Pavelka 1979]. He was concerned with fuzzy
propositional logic with sets of truth degrees that are as general as possible. He presented
an axiomatisation but his proof of completeness is only valid for the case where the set
of truth degrees is (isomorphic to) the set of truth degrees from one of the Łukasiewicz
systems. An important special case of fuzzy logic was to consider only truth degrees taken
in [0, 1]∩Q. Simplifications of the axiomatisation and other interesting results on this fuzzy
logic where given more recently by Hájek, e.g. [Hájek 1995, Hájek 1998]. In particular, it
turns out that the main results hold without forcing the language to be uncountable.
A family of infinitely-valued logics with truth degrees from the whole unit interval [0, 1] is

the class of t-norm based fuzzy logics. A systematic study of these particular logics started
with [Hájek 1998]. Hájek presents the notion of the logic of a continuous t-norm which is a
continuous function [0, 1]× [0, 1]→ [0, 1] that can be seen as a generalisation of the truth
table of the classical conjunction. He presents the logics of the three basic continuous t-
norms: Łukasiewicz, Gödel and product logic, and the ‘basic” fuzzy logic of all continuous
t-norms. As mentioned before, Łukasiewicz and Gödel logic have been introduced and
investigated long before the family of t-norm based logics was recognised. Since then
many other t-norm fuzzy logics have been introduced and investigated, e.g. monodical
t-norm based logic (MTL) [Esteva and Godo 2001] which is the logic of left-continuous
t-norms. An overview can be found in [Gottwald and Hájek 2005].
An important remark that should be made is the fact that fuzzy logic deals with many-

valuedness in a logical format and not with uncertainty or probability. De Finetti [De
Finetti 1936] pointed out that uncertainty is a meta concept: it is related to agents not
being totally sure whether a proposition is true or false, without questioning the fact that
this proposition can only be true or false. Carnap [Carnap 1945] points out the difference
between truth values and probability values in the sense that “true” is not the same as
“verified”. We may have a probability that a sentence is true but it is not a degree of
truth and a sentence is often neither verified or falsified but it is either true or false,
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whether anybody knows it or not. See also [Dubois and Prade 2001] for a discussion on
the difference between uncertainty, probability and truth degrees.

1.4 Outline of the thesis
In this thesis we will combine the ideas of nonmonotonic reasoning and many-valued logic
to obtain a framework which is useful to deal with situations for nonmonotonic reasoning
when propositions are graded. One of the existing tools for nonmonotonic reasoning in
such a context is fuzzy answer set programming (FASP), which is a combination of answer
set programming (which we will recall in Section 3.1) and fuzzy logic (which we will
discuss in Section 2.2). FASP inherits the declarative nonmonotonic reasoning capabilities
from answer set programming (ASP), while fuzzy logic adds the power to model continuous
problems. FASP can be tailored towards different applications since fuzzy logic gives a great
flexibility, e.g. by the possibility to use different generalisations of the classical connectives.
In recent years a variety of approaches to FASP have been proposed (e.g. [Damásio and
Pereira 2001], [Janssen et al. 2009], [Lukasiewicz and Straccia 2007], [Van Nieuwenborgh
et al. 2007]). Although it has been studied by several authors, FASP is by far not as
developed as ASP. For example, very little is known about its computational complexity
and, besides [Alviano and Peñaloza 2013] and [Mushtofa et al. 2014], few techniques are
known to compute the answer sets of FASP programs. Also, many extensions proposed
for ASP have not yet been considered in FASP. With the exceptions of [Lukasiewicz and
Straccia 2007], [Schockaert et al. 2012], [Straccia et al. 2009] and this thesis, most
work is even restricted to FASP programs with exactly one atom in the head. We will
introduce the FASP framework we want to study in Section 3.2 and provide motivating
examples in Section 3.3.
The main purpose of this thesis is to study fundamental properties of FASP and introduce

other systems for nonmonotonic reasoning when propositions are graded. We will investig-
ate their properties and computational complexity, and study relationships between these
systems for graded nonmonotonic reasoning. Even though this work is theoretical in nature,
it is motivated by the prospect of finding more efficient or more general implementations.
In the case of classical ASP, for instance, the theoretical study of various characterisations
of the semantics of stable models has had important practical consequences [Lifschitz
2008]. The answer set tool DLV [Leone et al. 2006] exploits unfounded sets as an approx-
imation technique [Leone et al. 1997]. Another technique – ASSAT [Lin and Zhao 2004] –
is based on a translation for normal answer set programs to propositional logic. The study
of different notions of program equivalence such as strong equivalence [Lifschitz et al.
2001] have also led to improvements. In particular, strong equivalence can be reduced to
equivalence in the logic of “here-and-there” [Lifschitz et al. 2001]. As a consequence it is
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easier to show that two programs are strong equivalent. Since programs that are strong
equivalent have the same answer sets this leads to code improvement.
The main contributions in the thesis are the following.

• In Chapter 4 we will study the computational complexity of FASP under Łukasiewicz
semantics. Łukasiewicz logic (Section 2.2.3) is often used in applications because
it preserves many desirable properties from classical logic and it is closely related
to mixed integer programming. An overview of the complexity results that we can
establish is provided in Tables 4.1 and 4.2. Moreover we will provide a reduction from
reasoning with such FASP programs to bilevel linear programming. This reduction
has been used in [Alviano and Peñaloza 2013] to provide a prototype for a FASP
solver.

• In Chapter 5 we will combine autoepistemic logic (Section 2.1) and fuzzy logic
(Section 2.2) and show that the classical results about the equivalence of answer
sets and stable expansions (Theorems 3.1 and 3.2) remain valid in the resulting
fuzzy autoepistemic logic. This logic is useful to reason about one’s beliefs about
the degrees to which properties are satisfied and we show that important properties
from classical autoepistemic logic remain valid in this generalisation. As in the
classical case, the language of fuzzy autoepistemic logic is much more expressive
than the theories we need to represent the FASP programs. This could serve as a
useful basis to define extensions for FASP.

• In Chapter 6 we will study relationships between fuzzy autoepistemic logic based on
finitely-valued Łukasiewicz logic and fuzzy modal logics of belief. We will provide
sound and complete axiomatisations for these fuzzy modal logics of belief and show
interesting links with fuzzy autoepistemic logic. In particular we will generalise
Levesque’s logic of only knowing (Section 2.1.3), provide a sound and complete
axiomatisation and show that the stable expansions correspond to valid sentences in
this fuzzy logic of only knowing, generalising Theorem 2.1.

A summarising diagram of embeddings and generalisations with references can be found
in Figure 1.1.
The results in this thesis have been published, or submitted for publication, in in-

ternational journals and the proceedings of international conferences with peer review.
Specifically, fuzzy autoepistemic logic was first introduced in [Blondeel et al. 2011b] and
the relations with FASP were investigated. This was extended to more general FASP
programs in [Blondeel et al. 2014b]. First results on the complexity of FASP under
Łukasiewicz logic were presented in [Blondeel et al. 2011a]. These results were extended
to more subclasses of FASP in [Blondeel et al. 2012] and [Blondeel et al. 2014c] where
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the latter also contains an overview of all results. In [Blondeel et al. 2013a] a first at-
tempt was given to study the relation between fuzzy autoepistemic logic and fuzzy modal
logics of belief. These results were bundled and studied in more detail in a paper that
is submitted to an international journal [Blondeel et al. 2014a]. Finally, an introductory
book chapter on FASP can be found in [Blondeel et al. 2013c] and an article [Blondeel
et al. 2013b] containing the highlights of this thesis was presented at the International
Joint Conference on Artificial Intelligence (IJCAI).
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Answer Set 
Programming

Fuzzy Answer Set 
Programming

Autoepistemic Logic Fuzzy Autoepistemic 
Logic

Logic of Only 
Knowing

Fuzzy Logic of Only 
Knowing

(a)

(b) (c)

(d)

(e) (f)

(g)

Figure 1.1: (a): e.g. [Van Nieuwenborgh et al. 2007], (b): [Gelfond and Lifschitz 1988],
(c)-(d): Chapter 5, (e): [Levesque 1990], (f)-(g): Chapter 6
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2 | Reasoning about beliefs

In this chapter we introduce some preliminary notions on autoepistemic logic, fuzzy logic
and the minimal modal logic over finitely-valued Łukasiewicz logic with a finite set of
truth constants.

2.1 Autoepistemic logic
In this section we will introduce autoepistemic logic, a logic that was originally intended
to model the beliefs of an ideally rational agent [Moore 1985]. Moreover it is well-known
to generalise the stable model semantics of answer set programming which we will recall
in Section 3.1. In Section 2.2 we will discuss fuzzy logic and we will use this to propose
a generalisation of autoepistemic logic in Chapter 5 and we will show that many prop-
erties from classical autoepistemic logic remain valid under this generalisation. We will
also show that the relation between fuzzy answer set programming – a combination of
answer set programming and fuzzy logic – which will be recalled in Section 3.2 and fuzzy
autoepistemic logic remains valid as well. In this section we will also recall logic of only
knowing, a logic in which autoepistemic logic can be embedded. The so-called stable
expansions from autoepistemic logic then occur in this logic as valid sentences. In Chapter
6 we will generalise this result when considering the particular semantics of finitely-valued
Łukasiewicz logic with a finite set of truth constants (see Section 2.3).
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2.1.1 Formalizing autoepistemic reasoning
Autoepistemic logic was originally intended to model the beliefs of an ideally rational
agent reflecting upon his own beliefs [Moore 1985]. Formulas in this logic are used to
represent the beliefs of such agents. In particular, the formulas of autoepistemic logic are
built from a countable set of variables or atoms A , the constants true (1) and false (0),
the usual classical connectives (∧, ∨, →, ↔, ∼1) and a modal operator B, interpreted
as “is believed”. For example, if ϕ is a formula, then Bϕ indicates that ϕ is believed.
Note that B(∼ϕ) indicates that ∼ϕ is believed and ∼Bϕ that ϕ is not believed. Recall
that in propositional logic, the set {0,→} is a minimal functionally complete set. This
means that these operators are sufficient to express all possible propositional formulas. For
autoepistemic formulas α and β we have the following equalities

∼α = α→ 0 α ∨ β = ∼α→ β

α ∧ β = ∼(∼α ∨ ∼β) α↔ β = (α→ β) ∧ (β → α)

We write Lc for the language of all propositional formulas over A and LcB for the extension
of Lc with the operator B.

Definition 2.1

The language LcB is recursively defined as follows.

• a ∈ A is a formula.
• 0 is a formula.
• If α is a formula, then Bα is a formula.
• If α, β are formulas, then α→ β is a formula.

A set of formulas in LcB is called an autoepistemic theory and formulas not containing
the operator B are called objective .

We define

A′ = A ∪ {Bϕ | ϕ ∈ LcB} ,

which is an infinite set, even if A is finite. For technical reasons, we sometimes treat A′
as a set of atoms, and consider evaluations I ′ ∈ P(A′) = {B | B ⊆ A′}. In such a case,
expressions of the form B(a∧Bb) and B(Ba) are atoms but a∧Bb is not. This trick allows

1We do not use the usual notation “¬” to make a clear distinction with the strong negation ¬ we will
use in ASP.
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us to deal with autoepistemic theories in a purely propositional fashion and soundness and
completeness theorems from propositional logic are inherited, i.e. a formula α is true in all
propositional models of an autoepistemic theory T iff it is a tautological consequence of
T iff it is derivable from T by the usual rules of propositional logic.
Moore [Moore 1985] originally defined the semantics for autoepistemic logic by consider-

ing autoepistemic interpretations I ∈ P(A′). He defined an autoepistemic interpretation I
of an autoepistemic theory T as a subset of A′ that is a propositional evaluation of T such
that a formula Bα is true (in I) iff α ∈ T . Note that the theory T completely determines
the truth of formulas of the form Bα, independently of the truth assignments of the propos-
itional atoms in T . Finally, an autoepistemic model of T is an autoepistemic interpretation
of T in which all formulas in T are true. Hence the autoepistemic models of T are the
propositional models that correspond to the intended meaning of the operator B. Indeed,
suppose that the beliefs of an agent are represented by some autoepistemic theory T , then
an autoepistemic interpretation I is an autoepistemic model of T if it is a propositional
model of T and all the beliefs of the agents are true in I, i.e. Bα is true in I iff α ∈ T .
Given this formal semantics we also want a notion of inference: which set of beliefs T ′

should an agent adopt on the basis of a set of initial premises T? First of all, since we
are dealing with rational agents, the beliefs should be true provided that the premises
are true. Moreover we want these beliefs to contain everything that the agent could
semantically conclude from his/her beliefs and from the knowledge that these are his/her
beliefs. Formally, we want T ′ to be sound w.r.t. T and semantically complete:

Definition 2.2

An autoepistemic theory T ′ is sound w.r.t. to an initial set of premises T iff every
autoepistemic interpretation of T ′ that is an autoepistemic model of T is an au-
toepistemic model of T ′ as well. T ′ is called semantically complete iff it contains
all of its logical consequences, i.e. T ′ contains every formula that is true in every
autoepistemic model of T ′.

To give a more intuitive definition of the set of beliefs T ′ an agent should adopt based on
a set of initial premises T , we will now discuss a syntactical characterisation. To do so, let
us specify the closure conditions we would expect the beliefs of an ideally rational agent to
possess. Intuitively, they should include whatever the agent can infer by classical logic and
by reflecting on what he/she believes. Formally, an autoepistemic theory T representing
the beliefs of an ideally rational agent should satisfy the following conditions:

(1) If α1, . . . , αn are in T and β is a propositional logical consequence of α1, . . . , αn,
then β is also in T .

27



CHAPTER 2. REASONING ABOUT BELIEFS

(2) If α is in T , then Bα is in T .

(3) If α is not in T , then ∼Bα is in T .

Stalnaker [Stalnaker 1993]2 describes the state of belief characterised by such a theory as
stable: no further conclusions can be drawn by an ideally rational agent in such a state.
Theories satisfying these conditions are called stable autoepistemic theories. For such
theories T that are also consistent, i.e. there exists no formula α such that α and ∼α are
elements of T , one can show that two additional intuitive conditions are satisfied:

(4) If Bα is in T , then α is in T .

(5) If ∼Bα is in T , then α is not in T .

For a consistent stable theory T we then have that α ∈ T iff Bα ∈ T and α /∈ T iff
∼Bα ∈ T .
In [Moore 1985] it is shown that the stable autoepistemic theories are exactly those

that are semantically complete. Stability alone does not tell us what an agent should not
believe. It is still possible that the agent believes propositions that are not sound w.r.t. his
initial premises. However, by imposing syntactical constraints on the theory, the notion
of soundness can be captured. In particular, we need constraints imposing that the agent
only believes his initial premises T and those required by the stability conditions (1)-(3).
In [Moore 1985], it is shown that T ′ is sound w.r.t. T iff every formula of T ′ is included
in the propositional consequences of

T ∪ {Bϕ | ϕ ∈ T ′} ∪ {∼Bϕ | ϕ /∈ T ′}.

Hence, given a set of premises T the sets of beliefs T ′ ⊇ T a rational agent may have
should be such that

1. T ′ is semantically complete, i.e. T ′ is a stable autoepistemic theory, and

2. T ′ is sound w.r.t. T , i.e. every formula of T ′ is included in the propositional con-
sequences of T ∪ {Bϕ | ϕ ∈ T ′} ∪ {∼Bϕ | ϕ /∈ T ′}.

We will call such sets T ′ stable expansions of T . They can be equivalently defined as
follows.

Definition 2.3: [Moore 1985]

Consider autoepistemic theories T and E. Then E is a stable expansion of T iff

E = Cn(T ∪ {Bϕ | ϕ ∈ E} ∪ {∼Bϕ | ϕ /∈ E}),
2Article based on the unpublished manuscript (1980) to which Moore referred in [Moore 1985].
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where Cn(X) denotes the set of propositional consequences of X.

Example 2.1

Consider an initial set of premises

T = {∼Ba→ b,∼Bb→ a}.

The first formula has to be read as “if a is not believed, then b is true” and the
second as “if b is not believed, then a is true”. Suppose E is a stable expansion of
T . If a /∈ E then we have ∼Ba ∈ E. Since (∼Ba → b) ∈ T it follows that b ∈ E.
Similarly, b /∈ E implies a ∈ E. On the other hand, if a ∈ E there is no basis to have
b ∈ E as well, and vice versa. Hence if T has a stable expansion E it will contain
either a or b, but not both. It follows that there are two stable expansions E1 and E2,
where E1 (resp. E2) contains a (resp. b) and all formulas an ideally rational agent
can derive from the set {a} (resp. {b}) using the reasoning provided by conditions
(1)-(3).

Using Definition 2.3, the following proposition can be shown.

Proposition 2.1: [Marek 1989]

If all formulas in an autoepistemic theory T are objective, then T has exactly one
stable expansion.

Example 2.2

Consider the autoepistemic theory Q = {a}. Since Q is a set of objective formulas,
by Proposition 2.1 it has exactly one stable expansion E :

E = Cn(Q ∪ C)

with
C = {Bϕ | ϕ ∈ E} ∪ {∼Bϕ | ϕ /∈ E}.

We will show that E is also a stable expansion of T = {∼Ba → b,∼Bb → a} by
proving that

Cn(T ∪ C) = Cn(Q ∪ C).
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First, we prove that a ∈ Cn(T ∪C); it then follows that Cn(Q ∪C) ⊆ Cn(T ∪C).
Because b /∈ Q, it must hold that b /∈ E and hence we have ∼Bb ∈ C. Since
(∼Bb→ a) ∈ T it then follows that a ∈ Cn(T ∪ C).
Conversely, since a ∈ E, we have Ba ∈ C and thus (∼Ba→ b) ∈ Cn(Q ∪ C). We

also have (∼Bb→ a) ∈ Cn(Q ∪ C), which implies that Cn(T ∪ C) ⊆ Cn(Q ∪ C).
By symmetry, it follows that the unique stable expansion of {b} is also a stable

expansion of T .

2.1.2 Possible world semantics and syntactical characterisation
In [Moore 1984], Moore proposes to characterise stable autoepistemic theories by a Kripke-
style possible world semantics. Truth is now defined relative to a structure (I, S) with
I ∈ P(A) = {B | B ⊆ A} representing the actual world and S ⊆ P(A) representing all
worlds considered possible i.e. the possible beliefs of an agent. An atom a is true in (I, S),
written as (I, S) |= a, iff a ∈ I. This can be extended to formulas as follows:

• (I, S) 2 0,
• (I, S) |= (α→ β) iff (I, S) 2 α or (I, S) |= β,
• (I, S) |= Bα iff for every J ∈ S it holds that (J, S) |= α.

with α and β autoepistemic formulas. Intuitively, a formula α is believed, i.e. Bα is true,
if α is true in every interpretation which is considered possible.

Definition 2.4

A set S ⊆ P(A) is a possible world autoepistemic model of an autoepistemic theory
T iff

S = {I ∈ P(A) | ∀ϕ ∈ T : (I, S) |= ϕ} .

In other words, the set of possible worlds w.r.t. the beliefs of the agent is a possible world
autoepistemic model of T if it is exactly the set of worlds in which all formulas of T are true.

Definition 2.5

An autoepistemic theory T is called the belief set of S ⊆ P(A) iff

T = {ϕ ∈ LcB | ∀I ∈ S : (I, S) |= ϕ} = {ϕ ∈ LcB | ∀I ∈ P(A) : (I, S) |= Bϕ},

We will write Th(S) to denote this set of formulas.
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The set Th(S) thus contains exactly those formulas that are true in every world that
is considered possible w.r.t. the beliefs of an agent and hence this set contains exactly
the beliefs of the agent.
The following proposition describes the relation between stable expansions and possible

world autoepistemic models.

Proposition 2.2: [Moore 1984], [Halpern and Moses 1984]

An autoepistemic theory E is a stable expansion of an autoepistemic theory T iff
E = Th(S) for some possible world autoepistemic model S of T .

Example 2.3

Let us explicitely compute the stable expansions of the autoepistemic theoryQ = {a}.
By Proposition 2.1 it follows that there is exactly one stable expansion E. Thus by
Proposition 2.2 there is also exactly one possible world autoepistemic model S such
that E = Th(S):

S = {I ∈ P(A) | (I, S) |= a} = {I ∈ P(A) | a ∈ I} .

Hence, the unique possible world autoepistemic model of Q = {a} is the set of all
propositional interpretations that contain a and it follows that

E = Th(S) = {ϕ ∈ LcB | ∀I ∈ P(A) : a ∈ I ⇒ (I, S) |= ϕ} .

Finally, we recall a syntactical characterisation in terms of stable theories (see Section
2.1.1) for stable expansions.

Proposition 2.3: [Levesque 1990]

Consider an autoepistemic theory T . There exists S ⊆ P(A) such that T = Th(S)
iff T is a stable autoepistemic theory.

2.1.3 Embedding autoepistemic logic into logic of only knowing

In [Levesque 1990], the language of LcB is augmented with an operator O3. A formula of
the form Oϕ is read as “ϕ is all that is believed” or “only ϕ is believed”, i.e. there are no

3In [Levesque 1990], the language considered is more expressive. There a first-order language is
augmented with operators B and O.
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other (relevant) beliefs. The semantics for O is defined as follows

(I, S) |= Oφ iff ∀J ∈ P(A) : J ∈ S ⇔ (J, S) |= φ.

Notice the difference with the modal operator B which can be stated as

(I, S) |= Bφ iff ∀J ∈ P(A) : J ∈ S ⇒ (J, S) |= φ.

Informally the only difference is that for “believing” every possible world, i.e. the worlds in
S, must satisfy φ and for “only believing” all possible worlds satisfy φ but no other world
satisfies φ. The resulting logic is called logic of only knowing .
An important result is that stable expansions occur in this logic as valid sentences. Intuit-

ively, knowing a sentence means that what is believed is a stable expansion of that sentence.

Theorem 2.1: [Levesque 1990]

Suppose α is a formula in LcB, I ∈ P(A) is an arbitrary interpretation and S ⊆ P(A)
is a set of evaluations. Then (I, S) |= Oα iff Th(S) is a stable expansion of {α}.

One can easily prove Theorem 2.1 using the definitions of possible world autoepistemic
models and the semantics of the operator O. The result, although slightly adapted, remains
valid when considering a first-order language, see [Levesque 1990] for details.
In [Levesque 1990] a sound and complete axiomatisation for logic of only knowing is

provided. This is done by noticing that only knowing can be broken up into two parts.
On the one hand we have that α is believed. This can be expressed by Bα. On the other
hand we have that at most α is believed. We will express this using a new operator N,
where Nϕ means that at most ϕ is believed to be false. We obtain that Oα can be stated
as Bα∧N(∼α). Hence α is believed and at most α is believed; exactly α is believed. The
precise definition of the semantics for N is as follows:

(I, S) |= Nα iff ∀J ∈ P(A) : (J, S) 2 α⇒ J ∈ S.

Notice that we could rewrite this definition as follows.

(I, S) |= Nα iff ∀J ∈ P(A) : J ∈ P(A) \ S ⇒ (J, S) |= α.

So N is like a belief operator but the complement of S is used as the set of possible
worlds. It can be shown that both B and N are K45 operators (see e.g. [Halpern and
Moses 1992] for basic notions about modal logics). By adding K45 axioms for both B and
N to an axiomatisation for propositional logic and the following cross-axioms, a sound and
complete axiomatisation for logic of only knowing is obtained in [Levesque 1990].
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• φ→ Bφ, where all variables in φ occur in the scope of an operator N or B,
• φ→ Nφ, where all variables in φ occur in the scope of an operator N or B,
• ∼Bφ ∨ ∼Nφ, if ∼φ is satisfiable and does not contain any modal operators,
• Oφ ≡ Bφ ∧N(∼φ).

2.2 Fuzzy logic

Fuzzy logics (e.g. [Hájek 1998]) form a class of logics whose semantics are based on
truth degrees taken from the unit interval [0, 1]. In this section we will present common
operators of fuzzy logic (see e.g. [Klement et al. 2000]), i.e. generalisations of the classical
logical operators, and we will discuss formal fuzzy logics. We will conclude with a detailed
discussion on a particular type of fuzzy logic, Łukasiewicz logic. This is a logic which is
often used in applications because it preserves many desirable properties from classical logic
and because inference in this logic can naturally be reduced to mixed integer programming,
for which efficient solvers are available. In Chapter 4 we will thoroughly discuss the
complexity of fuzzy answer set programming under Łukasiewicz semantics.

2.2.1 Logical operators
Conjunction and disjunction are usually generalised by triangular norms and triangular
conorms respectively .

Definition 2.6

• A triangular norm (short t-norm) is an increasing, associative and commutative
mapping T : [0, 1]× [0, 1]→ [0, 1] satisfying T (x, 1) = x for each x ∈ [0, 1].

• A triangular conorm (short t-conorm) is an increasing, associative and com-
mutative mapping S : [0, 1] × [0, 1] → [0, 1] satisfying S(x, 0) = x for each
x ∈ [0, 1].

Since triangular norms and conorms are associative and commutative, they can be extended
to n ∈ N arguments.
Note that a function S : [0, 1] × [0, 1] → [0, 1] is a t-conorm iff there exists a t-norm
T such that for all x, y ∈ [0, 1]:

S(x, y) = 1− T (1− x, 1− y).

The t-conorm S is then called the dual t-conorm of T and T is called the dual t-norm of S.
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There exist infinitely many t-norms [Klement et al. 2000]. The most well-known are the
minimum TM , the product TP and the Łukasiewicz t-norm TL:

• TM (x, y) = min(x, y)
• TP (x, y) = x · y
• TL(x, y) = max(x+ y − 1, 0)

for x, y ∈ [0, 1].
For the t-norms described above we get the following dual t-conorms: the maximum SM ,

the probabilistic sum SP and the Łukasiewicz t-conorm SL:

• SM (x, y) = max(x, y),
• SP (x, y) = x+ y − x · y,
• SL(x, y) = min(x+ y, 1)

for x, y ∈ [0, 1].

Example 2.4

It is easy to show that every t-norm generalises the truth table of the classical con-
junction. Indeed, using the fact that a t-norm is commutative and has to satisfy
T (x, 1) = x for each x ∈ [0, 1] it follows that 0 = T (0, 1) = T (1, 0) and T (1, 1) = 1.
Since T is increasing we also have 0 ≤ T (0, 0) ≤ T (0, 1) = 0 and hence T (0, 0) = 0.
Similarly, one can show that every t-conorm generalises the truth table of the classical
disjunction.
For intermediate truth values we obtain different results depending on the particular

t-(co)norm that is used, e.g.

TM (0.5, 0.5) = 0.5 SM (0.5, 0.5) = 0.5
TP (0.5, 0.5) = 0.25 SP (0.5, 0.5) = 0.75
TL(0.5, 0.5) = 0 SL(0.5, 0.5) = 1

Logical implication can be generalised by an implicator .

Definition 2.7

An implicator is a mapping I : [0, 1] × [0, 1] → [0, 1] such that I(0, 0) = I(0, 1) =
I(1, 1) = 1 and I(1, 0) = 0 and I is decreasing in the first component and increasing
in the second.

For a continuous t-norm, the following proposition can be shown.
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Proposition 2.4: [Hájek 1998]

Given a continuous t-norm T , there is a unique function I∗ : [0, 1] × [0, 1] → [0, 1]
such that

T (z, x) ≤ y iff z ≤ I∗(x, y)

for x, y, z ∈ [0, 1]. This function is defined as

I∗(x, y) = max{z ∈ [0, 1] | T (x, z) ≤ y}.

Example 2.5

For the Łukasiewicz t-norm TL the corresponding function I∗ coincides with

IL : [0, 1]× [0, 1]→ [0, 1] : (x, y) 7→ min(1− x+ y, 1).

Indeed, if x ≤ y, then

I∗(x, y) = max{z ∈ [0, 1] | TL(x, z) ≤ y} = 1.

Otherwise, if x > y then the maximal value z such that max(x + z − 1, 0) ≤ y is
z = 1− x+ y. Hence

I∗(x, y) = max{z ∈ [0, 1] | TL(x, z) ≤ y} = 1− x+ y.

Notice that all such functions I∗ are implicators and they generalise classical modus
ponens in the sense that T (x, z) ≤ y iff z ≤ I∗(x, y): from a (lower bound of) the truth
degree x of a formula φ and a (lower bound of) the truth degree I∗(x, y) of a formula
φ→ ψ one can derive the (lower bound of) the truth degree y of ψ. For this reason and
also because of other nice properties such as Proposition 2.5 we will often consider such
implicators and call them residual implicators.

Definition 2.8

Given a continuous t-norm T , the residual implicator IT is defined as

IT (x, y) = max{z ∈ [0, 1] | T (x, z) ≤ y}

for x, y ∈ [0, 1].
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This residual implicator has a nice property:

Proposition 2.5: [Hájek 1998]

If T is a continuous t-norm, then for all x, y ∈ [0, 1] it holds that

x ≤ y iff IT (x, y) = 1.

Example 2.6

Consider the mapping

I : [0, 1]× [0, 1]→ [0, 1] : (x, y) 7→ max(1− x, y).

It is easy to see that I is an implicator. Moreover it generalises the classical tautology
p→ q ↔ ∼p ∨ q using the t-conorm SM and the negator NL (see Definition 2.10):

I(x, y) = SM (NL(x), y).

However Proposition 2.5 does not hold since e.g. I(0.1, 0.8) = 0.9 6= 1. Hence it is
not a residual implicator.

For the continuous t-norms minimum, product and Łukasiewicz t-norm, we obtain the
following residual implicators:

• IM (x, y) =
{

1 if x ≤ y
y otherwise

• IP (x, y) =
{

1 if x ≤ y
y
x otherwise

• IL(x, y) = min(1− x+ y, 1)

for x, y ∈ [0, 1]. Note that IL is a continuous function, but IM and IP are not.
Logical equivalence can be generalised by defining a biresiduum.

Definition 2.9

Given a t-norm T and an implicator I, the biresiduum of T and I is a mapping
ET,I : [0, 1]× [0, 1]→ [0, 1] defined as

ET,I(x, y) = T (I(x, y), I(y, x))
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for x, y ∈ [0, 1].

Finally, negation can be generalised by a negator .

Definition 2.10

A negator is a decreasing mapping N : [0, 1] → [0, 1] such that N(1) = 0 and
N(0) = 1.

Every implicator I induces a negator NI as follows

NI : [0, 1]→ [0, 1] : x 7→ I(x, 0).

For the minimum, product and Łukasiewicz t-norms, we obtain the following negators

• NIM
(x) = NIP

(x) =
{

1 if x = 0
0 otherwise

• NIL
(x) = 1− x

for x ∈ [0, 1]. Notice that the function NIL
is involutive, i.e. NL(NL(x)) = x for all

x ∈ [0, 1] and NIM
= NIP

are not.

2.2.2 The basic many-valued logic

We will now introduce the propositional fuzzy logic LK , the logic corresponding to a
set of continuous t-norms K. Its language is built from a countable set of atoms A, the
connectives ⊗ and→ and the truth constant 0. Further connectives are defined as follows.

φ ∧ ψ = φ⊗ (φ→ ψ) φ ∨ ψ = ((φ→ ψ)→ ψ) ∧ ((ψ → φ)→ φ)
∼φ = φ→ 0 φ↔ ψ = (φ→ ψ)⊗ (ψ → φ)

1 = ∼0

A T -evaluation for some T ∈ K, is a mapping e : A → [0, 1] such that

e(0) = 0
e(φ→ ψ) = IT (e(φ), e(ψ))
e(φ⊗ ψ) = T (e(φ), e(ψ))

This evaluation e can be uniquely extended to the evaluation of all formulas:

e(φ ∧ ψ) = min(e(φ), e(ψ)) e(φ ∨ ψ) = max(e(φ), e(ψ))
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e(∼φ) = NIT
(e(φ)) e(φ↔ ψ) = ET,IT

(e(φ), e(ψ))
e(1) = 1

A formula φ is called a T - tautology if e(φ) = 1 for each T - evaluation e. Formulas that
are T -tautologies for every T ∈ K are called tautologies of the logic LK . A T -evaluation
e is called a T -model of a set of formulas Γ if e(ϕ) = 1 for every ϕ ∈ Γ. A formula
ϕ is a semantic consequence of Γ in LK if for each T ∈ K we have that all T -models
of Γ are T -models of {ϕ}.
The logic of all continuous t-norms is called basic logic and is denoted by BL. The logics

of {TM}, {TP } and {TL} are respectively called Gödel, product and Łukasiewicz logic.
Note that in Łukasiewicz logic we can also define disjunction ⊕ which corresponds to the t-
conorm SL: φ⊕ψ = ∼(∼φ⊗∼ψ) : e(φ⊕ψ) = SL(e(φ), e(ψ)). This can only be done for
Łukasiewicz logic because of the particular definition of the negator based on TL. Indeed,

e(φ⊕ ψ) = e(∼(∼φ⊗∼ψ))
= NIL

(e(∼φ⊗∼ψ))
= 1− e(∼φ⊗∼ψ)
= 1− TL(e(∼φ), e(∼ψ))
= 1− TL(1− e(φ), 1− e(ψ))
= SL(e(φ), e(ψ))

Example 2.7

Consider the formula
φ = a→ a⊗ a.

Seen as a classical formula a→ a∧ a, this formula is always satisfied. In Gödel logic
we have a similar result. For an evaluation e : A→ [0, 1] we have

e(a) = min(e(a), e(a)) = e(a⊗ a)

and thus we obtain

e(φ) = IM (e(a), e(a⊗ a))
= 1.
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In Łukasiewicz logic this is not the case. For an evaluation e : A→ [0, 1] such that
e(a) ≤ 1

2 we obtain

e(φ) = IL(e(a), e(a⊗ a))
= min(1− e(a) + max(2e(a)− 1, 0), 1)
= min(1− e(a), 1)
= 1− e(a).

For an evaluation e : A→ [0, 1] such that e(a) ≥ 1
2 we obtain

e(φ) = IL(e(a), e(a⊗ a))
= min(1− e(a) + max(2e(a)− 1, 0), 1)
= min(1− e(a) + 2e(a)− 1, 1)
= e(a).

In product logic, the truth degree of φ varies as well. For evaluations e : A→ [0, 1]
such that e(a) /∈ {0, 1} we have e(a) > e(a) · e(a) = e(a⊗ a) and thus

e(φ) = IP (e(a), e(a⊗ a))

= e(a) · e(a)
e(a)

= e(a).

For evaluations e : A→ [0, 1] such that e(a) ∈ {0, 1} we obtain

e(φ) = 1.

The following set of axioms together with the deduction rule modus ponens (from φ and
φ → ψ, infer ψ) is a sound and complete axiomatisation of the logic BL. In [Chvalovský
2012] it is shown that these axioms form a minimal independent set.

(BL1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(BL4) ϕ⊗ (ϕ→ ψ)→ ψ ⊗ (ψ → ϕ)

(BL5a) (ϕ⊗ ψ → χ)→ (ϕ→ (ψ → χ))

(BL5b) (ϕ→ (ψ → χ))→ (ϕ⊗ ψ → χ)

(BL6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
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(BL7) 0→ ϕ

The numbering of the axioms is inherited from the original numbering in [Hájek 1998]
which included two more axioms which later proved to be redundant [Chvalovský 2012].
By adding axioms to the axiomatic system of BL we then obtain sound and complete

axiomatisations for Gödel, product and Łukasiewicz logic.

Proposition 2.6: [Hájek 1998]

• BL and ϕ→ ϕ⊗ ϕ is a sound and complete axiomatisation for Gödel logic
• BL and ∼ϕ∨ ((ϕ→ ϕ⊗ ψ)→ ψ) is a sound and complete axiomatisation for
product logic

• BL and ∼∼ϕ → ϕ is a sound and complete axiomatisation for Łukasiewicz
logic

For any axiomatic extension L of BL, not restricted to Gödel, product or Łukasiewicz
logic, we have the following deduction theorem. For a set of formulas Γ∪ {ϕ,ψ} we have

Γ, ϕ `L ψ iff there exists a natural number n such that Γ `L ϕn → ψ

where ϕn is a short notation for the conjunction of ϕ⊗ . . .⊗ ϕ (n times) and where `L
denotes the notion of proof in L. In particular it holds that Υ `L α if there exists a finite
sequence of formulas whose last member is α and for which every element in the sequence
is (i) an axiom in L (ii) an element in Υ or (iii) is derived from previous elements in the
sequence by modus ponens. Gödel logic is the only case for which the classical deduction
theorem, i.e. where n = 1, holds.

Example 2.8

One can show that in Łukasiewicz logic we have the following theorems:

• ∼(ϕ⊗ ψ)↔ (∼ϕ⊕∼ψ)
• ∼(ϕ⊕ ψ)↔ (∼ϕ⊗∼ψ)
• ∼(ϕ ∧ ψ)↔ (∼ϕ ∨ ∼ψ)
• ∼(ϕ ∨ ψ)↔ (∼ϕ ∧ ∼ψ)

Notice that these are the de Morgan laws. The last two are also theorems in Gödel
and product logic. On the other hand
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• ∼∼ϕ ↔ ϕ is a theorem in Łukasiewicz logic but not in Gödel nor product
logic.

Finally we remark that classical (Boolean) logic is an extension of BL by adding the
single axiom

ϕ ∨ ∼ϕ

2.2.3 Łukasiewicz logic
Since in this thesis we will often use Łukasiewicz logic, we will explicitly write down its
connectives and corresponding semantics. Its formulas are built from a countable set
of atoms A and the connectives conjunction ⊗, disjunction ⊗, minimum ∧, maximum
∨, implication →, equivalence ↔ and negation ∼. Then for an evaluation e : A →
[0, 1] we have

e(φ⊗ ψ) = max(e(φ) + e(ψ)− 1, 0) e(φ⊕ ψ) = min(e(φ) + e(ψ), 1)
e(φ ∧ ψ) = min(e(φ), e(ψ)) e(φ ∨ ψ) = max(e(φ), e(ψ))
e(φ→ ψ) = min(1− e(φ) + e(ψ), 1) e(φ↔ ψ) = e((φ→ ψ)⊗ (ψ → φ))

e(∼φ) = 1− e(φ)

with φ and ψ formulas. Note that we also have e(φ↔ ψ) = min((e(φ→ ψ), e(ψ → φ))
and for formulas φ1, . . . , φn we define

e(
n⊗
i=1

φi) = e(φ1 ⊗ . . .⊗ φn) = max(
n∑
i=1

e(φi)− (n− 1), 0),

e(
n⊕
i=1

φi) = e(φ1 ⊕ . . .⊕ φn) = min(
n∑
i=1

e(φi), 1)

An important logic is the addition of truth constants for all rational numbers in [0, 1] to
Łukasiewicz logic. The idea of using truth constants denoting truth degrees from [0, 1] goes
back to Pavelka [Pavelka 1979]. He used truth constants for all reals in [0, 1] but later (e.g.
[Hájek 1998]) it turned out that for the main results to hold without forcing the language
to be uncountable, it is sufficient to introduce only truth constants for the rationals.

Definition 2.11: [Hájek 1998]
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The Rational Pavelka logic is the expansion of Łukasiewicz logic with truth constants
c for each c ∈ [0, 1] ∩Q and the “bookkeeping axioms" for all c, d ∈ [0, 1] ∩Q

c⊗ d↔ TL(c, d) (c→ d)↔ ITL
(c, d)

Semantically, we obtain that e(c) = c for an evaluation e : A→ [0, 1] and c ∈ [0, 1] ∩Q.
Important properties of this logic are that it maintains the same deduction theorem as

Łukasiewicz logic and a property that is called Pavelka-style completeness [Hájek 1998].
Let T ∪ {ϕ} be a (possibly infinite) set of formulas then

inf{e(ϕ) | ∀ψ ∈ T : e(ψ) = 1} = sup{c | T `RPL c→ ϕ}

where we write `RPL to denote the provability relation in Rational Pavelka logic.

2.2.4 Finitely-valued Łukasiewicz logic
Finally, we will formally introduce a variant of Rational Pavelka logic, i.e. the addition of
a finite set of truth constants to Łukasiewicz logic.
Consider the propositional language Lck whose formulas are built from a countable set of

propositional variables or atoms A, the connective → (implication) and truth constants
c for each c ∈ Sk = {0, 1

k , . . . ,
k−1
k , 1} for some fixed k ∈ N. Further connectives are

defined as follows:

∼φ = φ→ 0 φ ∧ ψ = φ⊗ (φ→ ψ)
φ⊗ ψ = ∼(φ→ ∼ψ) φ⊕ ψ = ∼(∼φ⊗∼ψ)
φ ∨ ψ = ((φ→ ψ)→ ψ) φ↔ ψ = (φ→ ψ)⊗ (ψ → φ)

with φ and ψ arbitrary formulas. A propositional evaluation is a mapping e : A→ Sk that
is extended to formulas as follows. If φ and ψ are formulas and c is an element in Sk, then

e(φ→ ψ) = IL(e(φ), e(ψ)) e(c) = c.

The set of all such evaluations will be denoted by Ωk. Notice that, in particular, for every
formula φ and ψ and for every e ∈ Ωk, we obtain

e(∼φ) = 1− e(φ) e(φ ∧ ψ) = min(e(φ), e(ψ))
e(φ⊗ ψ) = max(e(φ) + e(ψ)− 1, 0) e(φ⊕ ψ) = min(1, e(φ) + e(ψ))
e(φ ∨ ψ) = max(e(φ), e(ψ)) e(φ↔ ψ) = 1− |(e(φ)− e(ψ)|

A formula φ is said to be satisfiable if there exists e ∈ Ωk such that e(φ) = 1. In such
a case we say that e is a model of φ. A tautology is a formula φ such that e(φ) = 1 for

42



2.3. MINIMAL MODAL LOGIC OVER FINITELY-VALUED ŁUKASIEWICZ LOGIC

each propositional evaluation e ∈ Ωk. A formula φ is a semantic consequence of a set
of formulas Γ, written as Γ |= φ iff it holds that if e ∈ Ωk is a model of each formula
in Γ, then e is also a model of φ.
This logic based on the language Lck, which we will denote by Łck, has a sound and a

strongly complete axiomatisation, see e.g. [Cignoli et al. 2000] for details. In particular,
the axioms of Łck are

(Ł1) ϕ→ (ψ → ϕ),

(Ł2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)),

(Ł3) ((ϕ→ 0)→ (ψ → 0))→ (ψ → ϕ),

(Ł4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ),

(Ł5) (k − 1)ϕ↔ kϕ,

(Ł6) (lϕl−1)k ↔ kϕl for each natural number l ∈ {2, . . . , k − 2} that does not divide
k − 1

(Q1) (c1 → c2)↔ min{1, 1− c1 + c2}

and the only deduction rule is modus ponens (from ϕ and ϕ→ ψ infer ψ). Axioms (Ł1)-
(Ł4) form an alternative axiomatisation for (infinitely-valued) Łukasiewicz logic without
truth-constants, and in axioms (Ł5) and (Ł6), nϕ is an abbreviation for ϕ⊕ . . .⊕ϕ (n ∈ N
times) and ϕl for ϕ ⊗ . . . ⊗ ϕ (l ∈ N times). Axiom (Q1) is a bookkeeping axiom for
truth-constants. So if ` denotes the notion of proof defined from the set of axioms of Łck
and modus ponens, then for any (possibly infinite) set of formulas T ∪ {ψ}, it holds that
T ` ψ iff T |= ψ. A formula ψ that can be proven using only axioms and modus ponens
is called a theorem and we will write this as ` ψ.

2.3 Minimal modal logic over finitely-valued Łukasiewicz
logic

In this section we formally introduce the minimal modal logic over Łukasiewicz logic with
a finite set of truth constants. In Chapter 6 we will extend this logic to fuzzy modal logics
of belief and investigate the relationships with the fuzzy autoepistemic logic which will be
introduced in Chapter 5. Moreover, we will use these results to provide an axiomatisation
for fuzzy logic of only knowing.
The modal language LkB which we will consider is the expansion of Lck by the modal

operator B denoting “belief”.
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Definition 2.12

The language LkB is recursively defined as follows

• a ∈ A is a formula.
• c with c ∈ Sk is a formula.
• If α is a formula, then Bα is a formula.
• If α and β are formulas, then α→ β with → the Łukasiewicz implication is a
formula.

In [Bou et al. 2011b], where fuzzy modal logics with truth-values forming a finite residuated
lattice are discussed, the authors introduce the minimal modal logic over Łck (see Section
2.2.4). Its axioms are all the axioms of Łck and

(B2) (Bϕ ∧ Bψ)→ B(ϕ ∧ ψ),

(B3) B(c→ ϕ)↔ (c→ Bϕ), for each c ∈ Sk,

(B4) (Bϕ⊕ Bϕ)↔ B(ϕ⊕ ϕ).

The rules are modus ponens (from φ and φ → ψ infer ψ) and monotonicity for B (if
φ → ψ is a theorem then Bφ → Bψ is a theorem as well).
In [Bou et al. 2011b], the authors show that this is a sound and complete axiomatisation

with respect to the class of Kripke models 4 M = (W, e,R) where W is a set of possible
worlds, e : W × A → Sk is a mapping giving an evaluation e(w, ·) : A → Sk for each
possible world w and R : W ×W → Sk is a Sk-valued binary relation on possible worlds.
Given a Kripke model M = (W, e,R) and a world w ∈ W , the truth value of a formula
in LkB is inductively defined as follows:

• ‖p‖M,w = e(w, p),
• ‖c‖M,w = c,
• ‖Bα‖M,w = inf{IL(R(w,w′), ‖α‖M,w′) | w′ ∈W},
• ‖α→ β‖M,w = IL(‖α‖M,w, ‖β‖M,w).

for an atom p, a truth constant c and formulas α and β.
The definition of ‖Bα‖M,w intuitively expresses that α is believed in a world w ∈ W to

the degree that α is “at least” true in all worlds w′ that are accessible (related to) from w

taking into account the degree of the accessibility. A formula φ is said to be satisfiable if
4In modal logics it is a convention to use the term models for such structures even if there is no

“evaluation to truth value 1”.
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there exists a Kripke model M = (W, e,R) and a w ∈W such that ‖φ‖M,w = 1. In such
a case we say that M is a model of φ. A set of formulas T is satisfied by a Kripke model
M if every formula in T is satisfied by M . It is called a tautology if for each Kripke model
M = (W, e,R) and for each w ∈ W we have ‖φ‖M,w = 1. A formula φ is a semantic
consequence of a set of formulas Γ, written as Γ |=B φ, if ‖ψ‖M,w = 1 for all ψ ∈ Γ, for
all Kripke models M = (W, e,R) and for all w ∈ W implies ‖φ‖M,w = 1 for all Kripke
models M = (W, e,R) and for all w ∈ W .
As was shown in [Bou et al. 2011b], the well-known (classical) axiom

(K) B(φ→ ψ)→ (Bφ→ Bψ)

is not generally sound in the above Kripke models. Axiom (K) is only sound in Kripke
models M = (W, e,R) where R is a crisp relation on M (i.e. when R(w,w′) ∈ {0, 1}
for all w,w′ ∈ W ). Notice that in such Kripke models, the truth evaluation of Bα in
a world w ∈ W reduces to

‖Bα‖M,w = inf{‖α‖M,w′ | R(w,w′) = 1}.

In the remainder of the thesis we will be interested in this class of Kripke models with crisp
accessibility relations. We will denote this class by M. Moreover we will denote by BŁck
the axiomatic extension of the minimal modal logic over Łck with axiom (K). Due to the
presence of axiom (K), the monotonicity rule can be replaced by the usual necessitation
rule: if φ is a theorem then Bφ is a theorem as well. Indeed, if φ→ ψ is a theorem then by
necessitation it follows that B(φ→ ψ) is a theorem as well. Using axiom (K) and modus
ponens we then obtain that Bφ → Bψ is a theorem as well.
For each formula φ we define a formula ∆φ = φ⊗ . . .⊗φ (k times). Since we only have
k + 1 truth values this formula is Boolean. Indeed, it is easy to show that

‖∆φ‖M,w =
{

1 if ‖φ‖M,w = 1
0 if ‖φ‖M,w < 1

Notice that in this way ∆ corresponds to the well-known Baaz-Monteiro projection op-
erator, which was introduced independently by Monteiro [Monteiro 1980] and Baaz [Baaz
1996].
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3 | Fuzzy answer set
programming

In this chapter we introduce some preliminary notions on answer set programming (ASP)
in Section 3.1 and present relationships with autoepistemic logic. We will then discuss a
combination of ASP and fuzzy logic: fuzzy answer set programming (FASP) in Section
3.2. Finally, in Section 3.3, we will introduce some motivating examples for FASP.

3.1 Answer set programming (ASP)

In this section we will introduce answer set programming (ASP) [Gelfond and Lifschitz
1988]. We will define the syntax and semantics and discuss complexity results for various
classes of ASP. In Chapter 4 we will then study the complexity of fuzzy answer set pro-
gramming (FASP) under Łukasiewicz semantics (Section 2.2.3). We will also recall that
answer set programming can be embedded in autoepistemic logic (Section 2.1). Indeed,
each ASP program can be seen as a set of formulas in autoepistemic logic and the an-
swer sets of the program correspond to the stable expansions of this set of formulas. In
Chapter 5 we will propose a generalisation of autoepistemic logic based on fuzzy logic (see
Section 2.2) and we will show that the relation between autoepistemic logic and answer
set programming remains valid when generalising both using fuzzy logic.
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3.1.1 Syntax and semantics
Suppose A is a countable set of propositional atoms. A literal is an atom a ∈ A or its
strong negation ¬a. Such a literal ¬a is essentially seen as a new literal, which has no
connection to a, except for the fact that sets of literals L such that a ∈ L and ¬a ∈ L
will be called inconsistent. (Strongly) negated literals are defined as follows: ¬l := ¬a if
l = a and ¬l := a if l = ¬a (with a ∈ A). An expression of the form not l with l a literal
will be called a negation-as-failure literal where “not” is the negation-as-failure operator .
Intuitively, the expression not l is true if there is no proof that supports l. On the other
hand an expression ¬l is true if it can be established that ¬l is true. An ASP program
(e.g. [Baral 2003]) is then syntactically defined as follows.

Definition 3.1

A disjunctive ASP program is a finite set of rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj , cl literals and/or the constants 1 (true) or 0 (false) with i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}.

The expression

a1 ∨ . . . ∨ an

is called the head rh of r and

b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck

is the body rb of r. In a constraint, i.e. a rule of the form “0← α”, the body is uncondi-
tionally false. In a fact, i.e. a rule of the form “α← 1”, the head is unconditionally true.
Different classes of ASP programs are often considered, depending on the type of rules

they contain.

Definition 3.2

• If each rule in a disjunctive ASP program has one literal or one constant in the
head, it is called a normal ASP program.

• A normal ASP program not containing negation-as-failure is called a definite
ASP program.
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• A definite ASP program not containing strong negation with exactly one atom
in the head of each rule is called a simple ASP program.

We will now define the semantics for ASP. Intuitively, we want to derive information from
the program by using forward chaining. For example, the program

r1 : sunny ← 1
r2 : raining ← 1
r3 : rainbow ← sunny ∧ raining

has to interpreted as follows. In rules r1 and r2 the body “1” is unconditionally true, hence
from rule r1 we can derive “sunny” and from rule r2 we can derive “raining”. Now in rule
r3 the body becomes “true” and hence we can also derive “rainbow”.
We will start by defining so-called interpretations of ASP programs.

Definition 3.3

The set of all atoms appearing in a program P is called the Herbrand base BP . An
interpretation I of P is any consistent set of literals I ⊆ LP with

LP = {a | a ∈ BP } ∪ {¬a | a ∈ BP }

and where we say that I is consistent if there does not exist an l ∈ LP such that
l ∈ I and ¬l ∈ I. The set of all consistent interpretations I ⊆ LP will be denoted
by P(LP ) and the set of all (consistent) interpretations I ⊆ BP will be denoted by
P(BP ).

Example 3.1

Consider the following ASP program P .

a ← ¬b ∧ c
¬c ← not a ∧ not¬d

Then BP = {a, b, c, d} and LP = {a, b, c, d,¬a,¬b,¬c,¬d}.

A literal l is true in I, written as I |= l, iff l ∈ I. An interpretation I ∈ P(LP ) can
be extended to rules as follows:

• I |= 1, I 2 0,
• I |= not l iff I 2 l,
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• I |= (α ∧ β) iff I |= α and I |= β,
• I |= (α ∨ β) iff I |= α or I |= β,
• I |= (α← β) iff I |= α or I 2 β,

with l a literal and α and β relevant expressions.
Intuitively, we want to derive the minimal knowledge from an ASP program, i.e. we are

looking for minimal (consistent) sets of literals in the program that should be true in order
to model the rules. Hence we are interested in the so-called minimal models of the program.

Definition 3.4

An interpretation I ∈ P(LP ) is called a model of a disjunctive ASP program P if
I |= r for each rule r ∈ P . A model I of P is minimal if there exists no model J of
P such that J ⊂ I, i.e. J ⊆ I and J 6= I.
An interpretation I ∈ P(LP ) is called an answer set of a disjunctive ASP program
P without negation-as-failure if it is a minimal model of P .

Example 3.2

Consider the disjunctive ASP program consisting of the rules

beach ∨ park ∨ forest ← sunny
sunny ← 1

0 ← forest

This first rule states that if it is sunny then we will either go to the beach, the park
or the forest. The second rule is a fact implying that it is sunny and the last rule is
a constraint implying that we cannot go to the forest.
This program is a negation-as-failure free disjunctive ASP program that has two min-

imal models, and hence two answer sets, I1 = {sunny, beach} and I2 = {sunny, park}.

It can be shown that a simple ASP program always has exactly one answer set. It equals
the least fixpoint of the immediate consequence operator ΠP [Van Emden and Kowalski
1976] which maps interpretations to interpretations and is defined as

ΠP (I) = {a | (a← β) ∈ P and I |= β}

for an interpretation I ∈ P(LP ). From results in [Tarski 1955] it follows that this fixpoint
can be computed by iteratively applying ΠP starting from the empty interpretation I0 = ∅
until a fixpoint is found.
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Example 3.3

Consider the following simple ASP program P :

r1 : a ← 1
r2 : c ← a

r3 : b ← c ∧ b

• We start from the empty interpretation I0 = ∅.
• After one application of ΠP we obtain the interpretation I1 = ΠP (I0) = {a}.
• A second application of ΠP gives us I2 = ΠP (I1) = {a, c}.
• A third application of ΠP gives us I3 = ΠP (I2) = {a, c} = I2. This is the

least fixpoint of ΠP .

As Example 3.4 shows, for programs containing negation-as-failure, some minimal models
may not correspond to the intuition of negation-as-failure.

Example 3.4

Consider the normal ASP program consisting of the rules

beach ← sunny ∧ not rainy
sunny ← 1

This first rule states that if it is sunny and there is no indication that it is raining,
then we will go to the beach. The second rule implies that it is sunny.
This program has two minimal models I1 = {sunny, rainy} and I2 = {sunny, beach}.

Both models contain knowledge that is not explicitly present in the program. Model
I1 assumes that “rainy” is true and model I2 assumes that there is no evidence to
support that “rainy” is true. Since intuitively, “not rainy” is true if there is no proof
that “rainy” is true we are only interested in I2.

To define the semantics for disjunctive ASP programs P that contain negation-as-failure,
one starts from a candidate answer set I ∈ P(LP ) and computes the Gelfond-Lifschitz
reduct P I [Gelfond and Lifschitz 1988]. The intuition behind this reduct is to guess an
interpretation I such that negation-as-failure is removed from the original program and
then to check if I is indeed a minimal model of the reduct. The reduct of P w.r.t. I
is defined as follows. All rules in P that are trivially satisfied by the guess I, i.e. the
rules containing negation-as-failure literals “not l” such that l ∈ I, are discarded. In the
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remaining rules, all negation-as-failure literals “not l” are removed, i.e. replaced by the
constant 1, since in these cases I does not provide any proof that l is true.

Definition 3.5

An interpretation I ∈ P(LP ) is called an answer set of a disjunctive ASP program
P if it is a minimal model of P I where

P I = {a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm | {c1, . . . , ck} ∩ I = ∅,

(a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck) ∈ P} .

An answer set of a disjunctive ASP program P is always a minimal model of P [Baral
2003]. The converse does not necessarily hold as Example 3.4 shows. Also note that,
as Examples 3.5 and 3.6 show, a disjunctive ASP can have multiple answer sets or even
no answer sets at all.

Example 3.5

Consider the following normal ASP program P .

a ← not b
b ← not a

For the interpretation I1 = {a}, we have that P I1 is equal to

a ← 1

Since I1 is a minimal model of P I1 , we conclude that I1 is an answer set of P .
Similarly, I2 = {b} is also an answer set of P . One can easily check that I1 and I2
are the only answer sets of P .

Example 3.6

Consider the following normal ASP program P .

a← not a

The only interpretation that models P is I = {a}. But P I = ∅ which has ∅ as its
unique minimal model. Hence P has no answer sets.
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The following example shows how the graph colouring problem can be translated to an
ASP program such that the answer sets of the program correspond to the solutions of the
original problem. In Section 3.3 we will show how fuzzy answer set programming which
will be defined in Section 3.2 can be used to model a continuous variant of this problem.

Example 3.7

Consider the problem of colouring the vertices of a graph in either red, green or
blue such that adjacent nodes are coloured differently. This search problem can be
modeled by a normal ASP program P consisting of a generating part

red(a) ← not green(a) ∧ not blue(a)
green(a) ← not red(a) ∧ not blue(a)
blue(a) ← not red(a) ∧ not green(a)

for each node a. These rules express that each node should be either red, green or
blue (cfr. Example 3.5). The following constraints, which we add for each pair of
nodes a and b, then express that two nodes connected by an edge should have a
different colour.

0 ← edge(a, b) ∧ red(a) ∧ red(b)
0 ← edge(a, b) ∧ green(a) ∧ green(b)
0 ← edge(a, b) ∧ blue(a) ∧ blue(b)

Finally a number of facts, a defining part, is added to the program. If there is an
edge between nodes a and b, then we have a rule

edge(a, b)← 1.

The answer set semantics then define the solutions to the program. For instance,
if there are three nodes a, b and c such that there is an edge between a and b and
one between b and c, then one of the answer sets is

{edge(a, b), edge(b, c), red(a), green(b), red(c)}.

Finally, we remark that for each disjunctive ASP program there always exists a disjunctive
ASP program not containing strong negation or constraints such that answer sets of these
programs are in one-to-one correspondence with each other. This implies that without
loss of generality we may assume that a disjunctive ASP program does not contain strong
negation or constraints.
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Remark 3.1

A disjunctive ASP program P with strong negation can be translated to a disjunctive
ASP program P ′ without strong negation, by replacing each literal of the form ¬a with
a new atom a′ and adding the constraint 0← a∧a′. An interpretation I ∈ P(LP ) is
an answer set of P iff there exists an answer set I ′ ∈ P(LP ′) of P ′ such that b ∈ I
iff b ∈ I ′ and ¬b ∈ I iff b′ ∈ I ′ for each atom b ∈ BP .
Moreover, constraints can be removed by replacing every constraint 0 ← rh by a

rule p← rh ∧ not p with p a new atom.

3.1.2 Complexity of ASP
When investigating the computational complexity of answer set programming, we are
mainly interested in the following reasoning tasks.

Definition 3.6

Given a disjunctive ASP program P and a literal l, we define the following decision
problems.

1. Existence: Does P have an answer set?

2. Set-membership: Does there exist an answer set I of P such that l ∈ I?

3. Set-entailment: Does l ∈ I hold for each answer set I of P?

The complexity class P is defined as the set of decision problems, i.e. those problems
for which the answer is either “yes” or “no”, that can be solved in polynomial time on a
deterministic Turing machine [Papadimitriou 1994], where the polynomial time bound is
a function of the input size. The complexity class NP is defined as the class of decision
problems that can be solved in polynomial time on a non-deterministic Turing machine
or equivalently the set of the decision problems for which the proof that the answer is
“yes” can be verified in polynomial time by a deterministic Turing machine [Papadimitriou
1994]. From these classes, other classes can be defined as follows [Papadimitriou 1994]:

ΣP
0 = ΠP

0 = P

ΣP
i+1 = NPΣPi

ΠP
i+1 = co(ΣP

i+1)
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where NPΣPi is the class of decision problems that can be solved in polynomial time
on a non-deterministic Turing machine with a ΣP

i -oracle. This means that one assumes
that the Turing machine can call an oracle that is able to solve decision problems that
are in ΣP

i in constant time. Finally, the class co(ΣP
i+1) is the class of problems for which

the complement, i.e. the problem resulting from reversing the “yes” and “no” answers,
is in ΣP

i+1.
For a complexity class C, a decision problem is called C-hard , if every problem in C can

be reduced to this problem in polynomial time, i.e. each problem in C can be “translated”
to this problem in polynomial time such that the solutions correspond to each other. A
problem is said to be C-complete if the problem is in C and it is C-hard.

Example 3.8

1. The Boolean satisfiability problem (SAT) is the decision problem of determining
for some Boolean formula φ whether an assignment of true or false to the
variables exists that makes φ true. For instance consider

φ = (a1 ∨ a2) ∧ (∼a1 ∨ ∼a2)

where ∨, ∧ and ∼ denote classical disjunction, conjunction and negation, re-
spectively. An assignment that makes φ true is for example a1 false and a2
true. On the other hand, the formula

ψ = (∼a1 ∨ ∼a2 ∨ a3) ∧ a1 ∧ a2 ∧ ∼a3

is not satisfiable, i.e. there does not exist an assignment of truth values to make
ψ true.
SAT is a NP-complete decision problem [Cook 1971]. The unSAT problem is
the complementary problem of SAT. This is the problem of verifying, given a
Boolean formula φ, whether φ has no assignment that makes the expression
true. This problem is coNP-complete [Cook 1971]. A variant of the SAT
problem that remains NP-complete is the 3SAT problem. The instances of this
problem are Boolean formulas in conjunctive normal form with three variables
in each clause:

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3),

where each aij is a (negated) variable.
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2. A generalisation of SAT is the Quantified Boolean Formula (QBF) problem.
Here existential and universal quantifiers can be applied to each variable. Let
p(x1, . . . , xn) be a propositional formula defined over the variables x1, . . . , xn.
For instance

φ = ∃x1∀x2((x1 ∨ x2) ∧ (∼x1 ∨ ∼x2))

is not satisfiable. Indeed, if x1 is true, then (x1 ∨ x2) ∧ (∼x1 ∨ ∼x2) is not
satisfiable when x2 is true. On the other hand, if x1 is false, then (x1 ∨ x2) ∧
(∼x1 ∨ ∼x2) is not satisfiable when x2 is false. The QBF

ψ = ∃x1∀x2∃x3((x1 ∨ x2 ∨ x3) ∧ (∼x1 ∨ ∼x2))

is satisfiable since, when x1 is false and x3 is true, then (x1∨x2∨x3)∧ (∼x1∨
∼x2) is true regardless of the assignment of x2.
Deciding the satisfiability of a QBF

∃x1∀x2 . . .♣xnp(x1, . . . , xn)

with ♣ = ∃ if n is odd and ♣ = ∀ if n is even is a ΣP
n -complete problem.

Deciding the satisfiability of a QBF

∀x1∃x2 . . .♣xnp(x1, . . . , xn)

with ♣ = ∀ if n is odd and ♣ = ∃ if n is even is a ΠP
n -complete problem.

Depending on the type of ASP program one considers (see Definition 3.2), the compu-
tational complexity of the reasoning tasks varies:

Proposition 3.1: [Baral 2003, Eiter and Gottlob 1993]

Existence is

• ΣP
2 -complete for the class of disjunctive ASP programs.

• NP-complete for the class of negation-as-failure free disjunctive ASP programs.
• NP-complete for the class of normal ASP programs.
• P-complete for the class of simple ASP programs.
• P-complete for the class of definite ASP programs.

Proposition 3.2: [Baral 2003, Eiter and Gottlob 1993]
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Set-membership is

• ΣP
2 -complete for the class of disjunctive ASP programs.

• ΣP
2 -complete for the class of negation-as-failure free disjunctive ASP programs.

• NP-complete for the class of normal ASP programs.
• P-complete for the class of simple ASP programs.
• P-complete for the class of definite ASP programs.

Proposition 3.3: [Baral 2003, Eiter and Gottlob 1993]

Set-entailment is

• ΠP
2 -complete for the class of disjunctive ASP programs.

• coNP-complete for the class of negation-as-failure free disjunctive ASP pro-
grams.

• coNP-complete for the class of normal ASP programs.
• P-complete for the class of simple ASP programs.
• P-complete for the class of definite ASP programs.

A summary of the computational complexity for ASP is given in Table 3.1.

Table 3.1: Complexity of inference in ASP [Baral 2003, Eiter and Gottlob 1993]

existence set-membership set-entailment
disjunctive ΣP

2 -complete ΣP
2 -complete ΠP

2 -complete
normal NP-complete NP-complete coNP-complete
definite P-complete P-complete P-complete

In Chapter 4 we will investigate whether these complexity results still hold when gener-
alising to fuzzy answer set programming.

3.1.3 Embedding answer set programming into autoepistemic logic
We will now discuss the relationship between answer set programming and autoepistemic
logic (Section 2.1). Gelfond and Lifschitz [Gelfond and Lifschitz 1988] proposed the follow-
ing transformation from a normal ASP program P without constraints or strong negation
to an autoepistemic theory λ(P ). For each rule

r : a← b1 ∧ . . . , bm ∧ not c1 ∧ . . . ∧ not ck
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in P , the autoepistemic formula λ(r)

b1 ∧ . . . ∧ bm ∧ ∼Bc1 ∧ . . . ∧ ∼Bck → a

is added to λ(P ). The following result clarifies the relationship between the answer sets
of P and the stable expansions of λ(P ).

Theorem 3.1: [Gelfond and Lifschitz 1988]

Consider a normal ASP program P without constraints or strong negation. M is an
answer set of P iff λ(P ) has a stable expansion E such that M = E ∩ BP .

By Remark 3.1 and Theorem 3.1 it follows that for each normal ASP program P , even if
it contains strong negation and/or constraints, that there exists some autoepistemic theory
T such thatM is an answer set of P iff T has a stable expansion E such thatM = E∩BP .

Example 3.9

Consider the normal ASP program P from Example 3.5 with BP = {a, b}:

b ← not a
a ← not b

This program has two answer sets M1 = {a} and M2 = {b}. By Examples 2.2 and
2.3, we know that the sets

E1 = {ϕ ∈ LcB | ∀I ∈ P(A) : a ∈ I ⇒ (I, S) |= ϕ}

and
E2 = {ϕ ∈ LcB | ∀I ∈ P(A) : b ∈ I ⇒ (I, S) |= ϕ}

are the two stable expansions of λ(P ). We find E1 ∩BP = M1 and E2 ∩BP = M2.

As Example 3.10 shows, Theorem 3.1 is not valid for more general programs.

Example 3.10

Consider the following disjunctive ASP program P .

a ∨ b ← 1
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One can easily show that P has two answer sets {a} and {b}. Now consider the
autoepistemic theory λ(P ) = {1 → a ∨ b}. By Proposition 2.1 it follows that
λ(P ) has exactly one stable expansion. Hence the stable expansions of λ(P ) do not
coincide with the answer sets of P .
Now consider the following normal ASP programs. The program P ′

a ← 1
b ← a

has a unique answer set {a, b} and is mapped to the autoepistemic theory λ(P ′) =
{a, a→ b}. On the other hand, suppose we would translate the program P ′′

a ← 1
¬a ← ¬b

directly, without using Remark 3.1 to translate it to a normal ASP program without
constraints or strong negation, to an autoepistemic theory {a,∼b → ∼a}. The
program P ′′ has a unique answer set {a} which is different from the answer set of
P ′. However the corresponding autoepistemic theory is also λ(P ′) = {a, a → b}
since ∼b→ ∼a and a→ b are equivalent formulas in autoepistemic logic. Hence for
the latter program the answer sets do not coincide with the stable expansions of the
corresponding autoepistemic theory.

Lifschitz and Schwarz [Lifschitz and Schwarz 1993], showed that disjunctive ASP pro-
grams (even with strong negation) can also be modelled in autoepistemic logic: For each
rule

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

in a disjunctive ASP program P , the formula σ(r)

(b1 ∧ Bb1) ∧ . . . ∧ (bm ∧ Bbm) ∧ ∼Bc1 ∧ . . . ∧ ∼Bck → (a1 ∧ Ba1) ∨ . . . ∨ (an ∧ Ban)

is added to the autoepistemic theory σ(P ).

Theorem 3.2: [Lifschitz and Schwarz 1993]

Consider a disjunctive ASP program P . M is an answer set of P iff Th(Mod(M)) is
a stable expansion of σ(P ) where Mod(M) = {I ∈ P(A) | M ⊆ I}. Equivalently,
M is an answer set of P iff Mod(M) is a possible world autoepistemic model of
σ(P ).
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Example 3.11

Consider the disjunctive ASP program P from Example 3.10:

a ∨ b ← 1

The corresponding autoepistemic theory σ(P ) is the singleton

{1→ (a ∧ Ba) ∨ (b ∧ Bb)}.

One can show that M = {a} is an answer set of P by showing that

S = Mod(M) = {I ∈ P(A) | a ∈ I}

is a possible world autoepistemic model of σ(P ). To do this, we have to prove that

S = {I ∈ P(A) | (I, S) |= (1→ (a ∧ Ba) ∨ (b ∧ Bb))}.

To do so consider I ∈ P(A) and observe the following equivalences.

(I, S) |= (1→ (a ∧ Ba) ∨ (b ∧ Bb))
⇔ (I, S) |= (a ∧ Ba) or (I, S) |= (b ∧ Bb))
⇔ ((I, S) |= a and (I, S) |= Ba) or ((I, S) |= b and (I, S) |= Bb)
⇔ (a ∈ I and for all J ∈ S : a ∈ J) or (b ∈ I and for all J ∈ S : b ∈ J)

Since S = {I ∈ P(A) | a ∈ I}, it follows that

(a ∈ I and for all J ∈ S : a ∈ J) or (b ∈ I and for all J ∈ S : b ∈ J)
⇔ a ∈ I
⇔ I ∈ S

Similar, one can show that {b} is an answer set of P as well.
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3.2 Fuzzy answer set programming (FASP)

In this section we will define a generalisation of ASP based on [Janssen et al. 2009] which
is obtained by combining ASP (Section 3.1) and fuzzy logics (Section 2.2). The resulting
framework is more general than discussed in [Janssen et al. 2009].
Suppose A is a countable set of propositional atoms. A literal is an atom a ∈ A or

its strong negation ¬a. Such a literal ¬a is essentially seen as a new literal, which has
no connection to a, except for the fact that answer sets containing both a and ¬a “to a
sufficiently high degree" will be designated as inconsistent. As for ASP, (strongly) negated
literals are defined as follows: ¬l := ¬a if l = a and ¬l := a if l = ¬a (with a ∈ A).
An expression of the form not l (with l a literal) will be called a negation-as-failure literal
where “not” is the negation-as-failure operator . A FASP program is then syntactically
defined as follows.

Definition 3.7

A regular FASP program is a finite set of rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck),

with ai, bj , cl literals and/or truth constants corresponding to truth values in [0, 1]∩Q
with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The function g is a
prefixnotation for an n-ary connective and f represents an (m + k)-ary connective
corresponding to increasing functions g : [0, 1]n → [0, 1] and f : [0, 1]m+k → [0, 1].
The negation-as-failure operators notl correspond to negators NL and← corresponds
to some residual implicator IT .

The expression g(a1, . . . , an) is called the head rh of r and f(b1, . . . , bm,not1 c1, . . . ,

notk ck) is the body rb of r. A rule of the form c ← rb with c a truth constant is called
a constraint and a rule of the form rh ← c a fact. As will become clear when defining
the semantics, in a constraint c ← rb the truth value of rb cannot be greater than c and
in a fact rh ← c, the truth value of rh has to be greater than or equal to c. Typically, in
FASP rules, we will use connectives from a given fuzzy logic (see Section 2.2), but other
choices e.g. averaging operators can be useful as well. The only requirement is that f
and g correspond to increasing functions.
As for ASP, different classes of regular FASP programs are often considered, depending

on the type of rules they contain.
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Definition 3.8

• If each rule in a regular FASP program has one literal or one constant in the
head, it is called a regular normal FASP program.

• A regular normal FASP program not containing negation-as-failure is called a
regular definite FASP program.

• A regular definite FASP program not containing strong negation with exactly
one atom in the head of each rule is called a regular simple FASP program.

In Chapter 4 we will consider a special subclass of regular FASP. As Definition 3.9
shows, these programs have the same syntax as ASP programs but use the Łukasiewicz
connectives. For this reason we will call these types of FASP programs “strict” FASP
programs. When, as in Definition 3.7, more syntactical freedom is allowed we call them
“regular” FASP programs.

Definition 3.9

A strict disjunctive FASP program is a finite set of rules of the form

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj , cl literals and/or truth constants corresponding to truth values in [0, 1]∩Q
with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k} where ⊗ is the Łukasiewicz
conjunction, ⊕ the Łukasiewicz disjunction and not corresponds to the Łukasiewicz
negation.

• If each rule in a strict disjunctive FASP program has one literal or one constant
in the head, it is called a strict normal FASP program.

• A strict normal FASP program not containing negation-as-failure is called a
strict definite FASP program.

• A strict definite FASP program not containing strong negation with exactly one
atom in the head of each rule is called a strict simple FASP program.

We will now define the semantics for FASP. We will start by defining so-called fuzzy
interpretations of FASP programs.

Definition 3.10
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The set of all atoms appearing in a regular FASP program P is called the Herbrand
base BP . A fuzzy interpretation I of P is an element of F(LP ), where F(LP ) is the
set of all mappings I : LP → [0, 1] ∩Q such that I(l) + I(¬l) ≤ 1 for each l ∈ LP
with

LP = {a | a ∈ BP } ∪ {¬a | a ∈ BP }.

The set F(BP ) contains all fuzzy interpretations I : BP → [0, 1] ∩Q.

Note that this definition of consistency (I(l) + I(¬l) ≤ 1 for all l ∈ LP ) generalises
the classical definition from Section 3.1 and coincides with the approach in [Madrid and
Ojeda-Aciego 2011]. Moreover, for the Łukasiewicz t-norm it holds that TL(x, y) = 0
iff x + y ≤ 1.
A fuzzy interpretation I ∈ F(LP ) can be extended to rules as follows:

• [c]I = c,
• [notj l]I = Nj(l) for the corresponding negator Nj ,
• [f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I) where f is a prefixnotation for some n-ary
connective and f : [0, 1]n → [0, 1] is the corresponding increasing function (see e.g.
Section 2.2),

• [α← β]I = IT ([β]I , [α]I) for the corresponding residual implicator IT ,

with l a literal, c ∈ [0, 1] ∩ Q and α, α1, . . . , αn and β relevant expressions.

Definition 3.11

A fuzzy interpretation I ∈ F(LP ) is called a fuzzy model of a regular FASP program
P if [r]I = 1 for each rule r ∈ P . A fuzzy model I of P is minimal if there exists no
fuzzy model J of P such that J < I, i.e. J(l) ≤ I(l) for all l ∈ LP and J 6= I.

Note that if I is a fuzzy model of a regular FASP program P , then by Proposition 2.5 for
each rule rh ← rb in P it holds that [rh]I ≥ [rb]I .

Example 3.12

Consider the following strict normal FASP program P .

r1 : open ← not closed
r2 : closed ← not open

where “←” and “not” correspond to resp. the Łukasiewicz implicator and the Łuka-
siewicz negator. The properties “open” and “closed” can be given a value in [0, 1]∩Q
depending on the extent, e.g. the angle, to which a door is opened resp. closed. Each
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combination of degrees of “open” and “closed”, also those which are not meaningful,
is represented by a fuzzy interpretation. The rule r1 intuitively means that the door is
open to a degree greater than or equal to the extent to which the door is not closed.
Rule r2 implies the opposite property. Specifically, a fuzzy interpretation I models P
iff

I(open) ≥ 1− I(closed)
I(closed) ≥ 1− I(open).

By considering for example the rule

r3 : open ← 0.6

we add the information that the door must be open to at least degree 0.6. The
minimal fuzzy model of the program only containing rule r3 is the fuzzy interpretation
I such that I(open) = 0.6. A minimal fuzzy model for the program consisting of
rules r1, r2 and r3 is for instance I(open) = 0.7 and I(closed) = 0.3. Another
possibility is J(open) = 0.6 and J(closed) = 0.4.

We will now introduce the semantics for regular FASP programs. Similar as for ASP, we
want to implement the intuition of forward chaining. Hence we want to assign minimal
truth values to the literals in a program and not include any more information than what
is needed to satisfy the rules. For negation-as-failure free programs this means we are
looking for minimal fuzzy models.

Definition 3.12

A fuzzy interpretation I ∈ F(LP ) is called an answer set of a regular FASP program
P without negation-as-failure if it is a minimal fuzzy model of P .

Using a result in [Tarski 1955] and the fact that the function that interprets the con-
nectives in the body of a rule is increasing, it can be shown that a regular simple FASP
program P always has a minimal fuzzy model. Moreover this answer set is unique.

Proposition 3.4: [Damásio and Pereira 2001]

The unique answer set of a regular simple FASP program P equals the least fixpoint
of the immediate consequence operator ΠP which is defined as

ΠP (I)(a) = sup{[rb]I | (a← rb) ∈ P},

for an atom a ∈ BP and I ∈ F(BP ).
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Due to results in [Tarski 1955], this least fixpoint can be computed using an iterated
fixpoint computation which is illustrated in the following example.

Example 3.13

Consider the following regular simple FASP program P .

r1 : a ← 0.1
r2 : b ← 0.8
r3 : c ← a⊕ b
r4 : a ← b⊗P c

where ⊕ is the Łukasiewicz disjunction and ⊗P is the conjunction from product logic.

• We start from the fuzzy interpretation I0 : BP → [0, 1] : a 7→ 0.
• After one application of ΠP we obtain the fuzzy interpretation I1 = ΠP (I0)
defined as I1(a) = 0.1, I1(b) = 0.8 and I1(c) = 0.

• A second application gives us I2 = ΠP (I1) defined as I2(a) = 0.1, I2(b) = 0.8
and I2(c) = 0.9.

• A third application gives us I3 = ΠP (I2) defined as I3(a) = 0.72, I3(b) = 0.8
and I3(c) = 0.9.

• A fourth application gives us I4 = ΠP (I3) defined as I4(a) = 0.72, I4(b) = 0.8
and I4(c) = 1.

• A final application gives us the least fixpoint I5 = ΠP (I4) of P defined as
I5(a) = 0.8, I5(b) = 0.8 and I5(c) = 1.

Note that, unlike ASP, it is not always possible to compute this fixpoint in a finite number
of steps. Consider for instance the program containing the single rule

a← f(a),

where f is interpreted by the function f(x) = x+1
2 . It will take infinitely many steps

taken by the immediate consequence operator to find the least fixpoint I which is such
that I(a) = 1 [Straccia 2006]. However, from [Tarski 1955] it follows that the number
of iterations needed will always be countable.
For regular definite FASP programs it can be shown that the least fixpoint of the im-

mediate consequence exists, but there exist programs which have no answer set or even
no fuzzy model.
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Example 3.14

Consider the normal FASP program P :

a ← 1
0 ← a

The least fixpoint of ΠP is the fuzzy interpretation I with I(a) = 1. However, P has
no fuzzy model since there cannot exist a fuzzy interpretation J such that J(a) ≥ 1
and 0 ≥ J(a).

For a negation-as-failure free regular FASP program which is not a regular normal FASP
program, there can be several minimal fuzzy models or none at all. In any case, the answer
sets represent the minimal knowledge that can be derived from the program.

Example 3.15

Consider the following strict disjunctive program P .

a⊕ b ← 0.3
a ← b

b ← 0.1

A minimal fuzzy model of P is the fuzzy interpretation I with I(a) = 0.2 and
I(b) = 0.1. However, for instance I ′ with I ′(a) = 0.15 and I ′(b) = 0.15 is a minimal
fuzzy model as well. On the other hand, the program

a ∧ 0.5 ← b

b ← 0.1⊕ a

has no (minimal) fuzzy models. Indeed, for a fuzzy interpretation I to model this
program it must hold that min(0.1 + I(a), 1) ≤ min(I(a), 0.5). If 0.1 + I(a) ≤ 1,
this would imply that 0.1 + I(a) ≤ I(a) and if 0.1 + I(a) ≥ 1, then it would follow
that 1 ≤ 0.5. In both cases, we have a contradiction.

As Example 3.16 shows, for programs containing negation-as-failure, the minimal fuzzy
models do not necessarily correspond to the intuition of forward chaining.

Example 3.16
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Consider the strict FASP program consisting of the rules

a ← a

0 ← not a

The only minimal fuzzy model is I such that I(a) = 1. However, the justification
for deriving a truth value for a only depends on a itself, so this fuzzy model does not
correspond to the intuition of forward chaining.

For programs with negation-as-failure, a generalisation of the Gelfond-Lifschitz reduct
[Janssen et al. 2009] is used. In particular, for a program P and a fuzzy interpretation
I ∈ F(LP ) the reduct P I of P w.r.t. I is obtained by replacing in each rule r ∈ P all
expressions of the form not l by the interpretation [not l]I 1. For a literal l, we write lI = l

and (not l)I = [not l]I and we write αI for a head or a body α of a rule and rI for a rule r
in which all expressions of the form not l have been replaced by the interpretation [not l]I .
This new program P I = {rI | r ∈ P} is a regular negation-as-failure free FASP program.
I is called an answer set of P if I is an answer set of P I .
We will assume that for each l ∈ LP in some regular FASP program P , we have that l is

in the head of some rule in P . This a reasonable assumption since literals only appearing
in the body of rules will have truth value 0 or 1 in each answer set. We can now formulate
the following definition.

Definition 3.13

A fuzzy interpretation I ∈ F(LP ) is called an answer set of a regular FASP program
P if it is a minimal fuzzy model of P I = {rI | r ∈ P}.

Example 3.17

Intuitively, we “guess” an answer set I and replace all negation-as-failure literals not l
by the truth constant [not l]I representing their fuzzy interpretation. For the program
from Example 3.12

open ← not closed
closed ← not open

a suitable guess would be I with I(open) = 0.6 and I(closed) = 0.4; a door is
closed to the degree 0.4 if it is opened to the degree 1 − 0.4 = 0.6. Let us now
consider the same program, but we replace “not closed” and “not open” by their

1Expressions corresponding to truth values c ∈ [0, 1] ∩ Q will always be written as c
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fuzzy interpretations under I:

open ← 0.6
closed ← 0.4

The minimal fuzzy model of this program is exactly I. Hence, I was a “stable” guess
and we say that it is an answer set of the program.
Note that Ix with Ix(open) = x and Ix(closed) = 1 − x is a stable guess for any
x ∈ [0, 1] ∩Q.

A regular FASP program can have several answer sets as in Example 3.17, or none at
all, as in Example 3.18.

Example 3.18

Consider the regular FASP program P consisting of the one rule

p← notM p

where “notM” is interpreted by the Gödel negatorNIM
: [0, 1]→ [0, 1] withNIM

(x) =
0 if x > 0 and NIM

(0) = 1. For each fuzzy interpretation I with I(p) > 0 we have
that P I is the negation-as-failure free program consisting of the rule

p← 0.

The unique minimal fuzzy model of P I is J with J(p) = 0, hence our original guess
I is clearly not a minimal fuzzy model of P I . If, on the other hand, we start with
the fuzzy interpretation J(p) = 0, then we obtain for P J the rule

p← 1.

J is not a fuzzy model of P J , let alone a minimal fuzzy model. We conclude that P
has no answer sets.
However, whether or not this program has an answer set depends on the choice of

the negator. For example, if “notM” is interpreted by the Łukasiewicz negator, then
P has an answer set. Indeed, for a guess M(p) = x with x ∈ [0, 1] ∩ Q, we now
obtain for PM the rule

p← 1− x.

Hence, M is the minimal fuzzy model of PM if x = 1− x or x = 0.5.
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By Definition 3.13 it follows that an answer set of a regular FASP program P is also a
fuzzy model of P . One can even prove that it must be a minimal fuzzy model of P :

Proposition 3.5

Let P be a regular FASP program and I ∈ F(LP). If I is an answer set of P , then
I is a minimal fuzzy model of P .

Proof. Suppose I is an answer set of P . By Definition 3.13, it follows that I is a fuzzy
model of P I and hence of P . Now suppose there exists a fuzzy model J of P such that
J ≤ I. We show that J is a fuzzy model of P I . Let

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck)

be a rule in P . It holds that J models rI since f is an increasing function and for
j ∈ {1, . . . , k} it holds that [notj cj ]I = Nj(I(cj)) ≤ Nj(J(cj)) = [notj cj ]J since Nj is
a decreasing function. Indeed:

[f(b1, . . . , bm, [not1 c1]I , . . . , [notk ck]I)]J ≤

[f(b1, . . . , bm, [not1 c1]J , . . . , [notk ck]J)]J ≤ [g(a1, . . . , an)]J
where the last inequality follows from the fact that J is a fuzzy model of P and hence of
P J . Since I is a minimal fuzzy model of P I , it then follows that I = J .

As the following example shows, the converse of Proposition 3.5 does not hold. A minimal
fuzzy model does not necessarily correspond to an answer set.

Example 3.19

Recall the strict normal FASP program from Example 3.16.

a ← a

0 ← not a

with “not” interpreted by the Łukasiewicz negator. The only minimal fuzzy model
of the program is the fuzzy interpretation I such that I(a) = 1. However it is not
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an answer set since I is not a minimal fuzzy model of

a ← a

0 ← 0

3.3 Motivating examples
In this section we present some motivating and illustrating examples for FASP. The first
example shows how strict disjunctive FASP can be used to model sensor networks. This is
followed by an example showing how strict simple FASP can be used to compute transitive
closures of proximity relations. We will also define a regular normal FASP program to
tackle a version of the ATM location selection problem followed by a regular normal
FASP program that can be used to solve the fuzzy graph colouring problem. In all these
examples we will use Łukasiewicz logic.

3.3.1 Sensor networks
Forest fires cause massive loss of vegetation and animal life. If a fire is detected on
time, suppression units are able to reach the fire in its initial stages which is important
to avoid huge losses. Moreover suppression costs will be considerably reduced in such a
case. Wireless sensor networks can be effectively used for this purpose [Yu et al. 2005].
These networks consist of a number of devices that can sense their environment and
communicate wirelessly. Consider such a wireless sensor network consisting of sensors
measuring temperature. Since there could be sensors that are defective, one should not
blindly draw conclusions based on the measurements of a single sensor. We will tackle
this as follows. Sensors located near to each other should measure similar temperatures.
Hence, if a pair of nearby sensors displays significantly different temperatures, we can
assume there must be something wrong with at least one of these sensors. We will use
FASP to determine whether there are sensors which are not working optimally and if so,
within what range we can assume the real temperature to be.
Suppose we have n sensors. By assuming an appropriate linear rescaling, we can see

temperature as a value in [0, 1] ∩ Q. Although we might not be able to derive an exact
temperature, we will try to find a subinterval of [0, 1] in which we could assume the
temperature to be. More specifically, for each sensor i ∈ {1, . . . , n}, we denote the exact
temperature as the variable ti. The temperature measured by sensor i is a fixed value
t′i ∈ [0, 1] ∩ Q. If ei is the variable representing the minimal error on the measured
temperature then the actual temperature ti must be in the interval [t′i− ei, t′i+ ei]. In our
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setting, the fixed value t′i corresponds to a truth constant t′i in the FASP program and ei
is a variable for which we will infer a value, i.e. the measured temperature is considered
given, and we learn a value for the measurement error that is potentially caused by a
sensor that is not functioning as it should.
The sensor network defines a weighted graph G as follows. The vertices are the sensors

and there is an edge with weight wij ∈ [0, 1] ∩ Q between the vertices corresponding to
sensor i and sensor j, indicating how near these sensors are to each other. The fixed
value wij ∈ [0, 1] ∩ Q is such that we can reasonably assume, based on the locations
of sensors i and j that the difference of the exact temperature between these locations
should be less than wij . So the degree to which we can assume that there is something
wrong with sensors i and/or j is equal to the degree to which d(t′i, t′j) = |t′i − t′j | is
greater than or equal to wij .
We can now write the following program P for given (fixed) values t′i, wij ∈ [0, 1] ∩ Q

and variables ti, ei (i, j ∈ {1, . . . , n}, i 6= j). For i, j ∈ {1, . . . , n} we have the rules

r1 : ¬ti ⊕ t′i ← not ei
r2 : 1− t′i ⊕ ti ← not ei
r3 : ti ← not¬ti
r4 : ¬ti ← not ti
r5 : ei ⊕ ej ← d(t′i, t′j)⊗ 1− wij
r6 : tj ← ti ⊗ 1− wij

By rules r3 and r4 truth values for ti and ¬ti are guessed. Since for each answer set
I it must hold that I(ti) + I(¬ti) ≤ 1, by these rules we obtain I(ti) + I(¬ti) = 1 for
each answer set I.
We want to model that the lower and the upper bound on the actual temperature ti and

the measured temperature t′i are similar to the degree that we do not know that there is
something wrong with sensor i. Hence we want to model the formula (ti ↔ t′i)← not ei,
where t′i is the constant representing the measured temperature in the program. Note
that this “rule” does not adhere to the syntax of (strict) disjunctive FASP. However it can
be easily rewritten as the two syntactically correct FASP rules r1 and r2. Indeed, notice
that in Łukasiewicz logic we have

ti ↔ t′i = min(∼ti ⊕ t′i, 1− t′i ⊕ ti).

Hence for a fuzzy interpretation I such that I(¬ti) = 1 − I(ti), we have that I models
(ti ↔ t′i)← not ei iff [min(¬ti⊕ t′i, 1− t′i⊕ ti)]I ≥ [not ei]I iff [¬ti⊕ t′i]I ≥ [not ei]I and
[1− t′i ⊕ ti]I ≥ [not ei]I and hence iff I models r1, r2, r3 and r4.
Rule r5 is justified by the fact that for a fuzzy interpretation I it holds that

[d(t′i, t′j)⊗ 1− wij ]I = max(d(t′i, t′j)− wij , 0).
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If d(t′i, t′j) ≤ wij and no other rules imply I(ei) > 0 or I(ej) > 0, then for an answer
set I we obtain [ei ⊕ ej ]I = 0, i.e. there is nothing wrong with the sensors. Otherwise, if
d(t′i, t′j) > wij , then [ei ⊕ ej ]I ≥ d(t′i, t′j) − wij , i.e. there is something wrong with the
sensors at least to the degree to which d(t′i, t′j) is greater than or equal to wij . Finally,
rule r6 is needed to obtain that in each answer set that temperatures ti and tj should
differ by at most wij .
Consider as a concrete example a network with three sensors as depicted in Figure 3.1.

Suppose we have the measurements t′1 = 0.4, t′2 = 0.9 and t′3 = 0.5 and we have
w1,2 = w1,3 = w2,3 = 0.2, i.e. all the sensors are fairly far apart from each other.

t′2 = 0.9 t′3 = 0.5

t′1 = 0.4

0.2

0.2

0.2

Figure 3.1: Example of a sensor network

The three rules of type r3 are the following:

e1 ⊕ e2 ← 0.3
e2 ⊕ e3 ← 0.2
e1 ⊕ e3 ← 0

These rules impose lower bounds on ei ⊕ ej and by computing reducts P I w.r.t. fuzzy
interpretations I meeting these conditions and verifying that I is a minimal fuzzy model
of P I , we obtain for instance the following answer set I.

I(e1) = 0.3 I(e2) = 0 I(e3) = 0.2
I(t1) = 0.7 I(t2) = 0.9 I(t3) = 0.7

I(¬t1) = 0.3 I(¬t2) = 0.1 I(¬t3) = 0.3
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In particular, in this example, P I is the program containing the following rules.

¬t1 ⊕ 0.4 ← 0.7 0.6⊕ t1 ← 0.7
¬t2 ⊕ 0.9 ← 1 0.1⊕ t2 ← 1
¬t3 ⊕ 0.5 ← 0.8 0.5⊕ t3 ← 0.8

t1 ← 0.7 ¬t1 ← 0.3
t2 ← 0.9 ¬t2 ← 0.1
t3 ← 0.7 ¬t3 ← 0.3

e1 ⊕ e2 ← 0.3 e1 ⊕ e3 ← 0
e2 ⊕ e3 ← 0.2

t2 ← t1 ⊗ 0.8 t3 ← t1 ⊗ 0.8
t1 ← t2 ⊗ 0.8 t3 ← t2 ⊗ 0.8
t1 ← t3 ⊗ 0.8 t2 ← t3 ⊗ 0.8

One can easily check that I is indeed a minimal fuzzy model of P I .
Another answer set J is defined as follows.

J(e1) = 0.1 J(e2) = 0.2 J(e3) = 0
J(t1) = 0.5 J(t2) = 0.7 J(t3) = 0.5

J(¬t1) = 0.5 J(¬t2) = 0.3 J(¬t3) = 0.5

Notice that there are several answer sets, providing values for the exact temperatures,
each corresponding to a possible explanation. To obtain better results one can use the
decision problem set-entailment for each sensor i. For instance for each i and λ = k

10 for
each k ∈ {0, . . . , 10} we check if for each answer set I it holds that I(ti) ≥ λ. In the
following chapter we will investigate the complexity of this decision problem.

3.3.2 Transitive closure
A proximity relation on a universe X is a mapping R : X×X → [0, 1]∩Q that is reflexive
(R(x, x) = 1 for each x ∈ X) and symmetric (R(x, y) = R(y, x) for all x, y ∈ X). A
proximity relation R is not necessarily transitive (TL(R(x, y), R(y, z) ≤ R(x, z)) for all
x, y, z ∈ X where TL is the Łukasiewicz t-norm). A strict simple FASP program can be
used to find the transitive closure of R. This is the minimal mapping R̂ : X × X →
[0, 1] ∩ Q that is reflexive, symmetric and transitive such that R(x, y) ≤ R̂(x, y) for all
(x, y) ∈ X × X. Finding such “transitive approximations" is useful in many artificial
intelligence areas, e.g. in fuzzy clustering [Castro et al. 1998] and analogous problems
need to be solved in fuzzy spatial reasoning [Schockaert et al. 2009].
The corresponding FASP program simply consists of the rules

R̂(x, z)← R̂(x, y)⊗ R̂(y, z)
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for all x, y, z ∈ X and facts of the form

R̂(x, y)← R(x, y),

where R(x, y) is the symbol representing the fixed value R(x, y).
The answer set of this program can be found by iteratively applying the immediate

consequence operator. However, as will be discussed in Chapter 4, it is not clear whether
the answer set of a regular simple FASP program can always be found in polynomial time
using this method. In [Naessens et al. 2002] imperative algorithms are given that compute
the transitive closure in polynomial time for any t-norm. These algorithms might be used
as an inspiration to improve the immediate consequence operator for regular simple FASP
programs. For strict simple FASP programs such as the one in this example, we will provide
an alternative implementation using linear programming in Section 4.3.

3.3.3 ATM location selection problem
The FASP program presented below is based on the ATM location selection problem for
which a corresponding FASP program is given and discussed in [Janssen 2011]. Here, the
problem is slightly modified and the resulting program is more concise. This problem is
often referred to as the k-center problem and it is shown to be NP-hard [Megiddo and
Tamir 1983].
Suppose we want to place k ATM machines {a1, . . . , ak} on roads connecting m towns

such that the distance between each town and the closest ATM machine is less than
a particular distance. Schematically, this can be seen as an undirected weighted graph
G = (Towns,Edges) where Towns = {t1, . . . , tm} is the set of towns and etitj is an edge
if there is a road connecting towns ti and tj . Note that etitj ∈ Edges iff etjti ∈ Edges.
A weight is given to an edge etitj in function of the distance between towns ti and tj .
To obtain a weight that is an element in [0, 1] ∩ Q, one can use a normalised distance
d : Towns × Towns → [0, 1] ∩ Q, e.g. the actual distance between two towns divided by
the sum of all distances between all possible pairs of towns2. Suppose such a normalised
distance function d is given, then we can define a normalised nearness function n = 1− d.
By using the Łukasiewicz conjunction we can perform summations of degrees of nearness.
Indeed, suppose n1 = 1 − d1 ∈ [0, 1] ∩ Q and n2 = 1 − d2 ∈ [0, 1] ∩ Q, then for a fuzzy

2 If two cities are not connected directly, the distance of the shortest path is taken.
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interpretation I we have

[n1 ⊗ n2]I = max(n1 + n2 − 1, 0)
= max(1− d1 + 1− d2 − 1, 0)
= max(1− (d1 + d2), 0)
= 1−min(d1 + d2, 1)
= 1− [d1 ⊕ d2]I

where n1, n2, d1, d2 are the symbols representing the values n1, n2, d1, d2 ∈ [0, 1] ∩Q.
We can now specify a program whose answer sets correspond to those configurations of

ATMs such that the distance from each town to the nearest ATM is at most a particular
degree d′ ∈ [0, 1] ∩ Q.
The first part of the program consists of the facts that define the graph. Specifically,

we have a set of rules denoting which towns are connected by a single road and how near
they are to each other:

edge(etitj )← n(ti, tj)

for each edge etitj ∈ Edges. Secondly, for each edge one can (arbitrarily) designate one of
the towns to be the starting point and the other one to be the ending point. This choice
has no influence on the outcome of the program:

start(ti, etitj ) ← 1
end(tj , etitj ) ← 1

for each edge etitj ∈ Edges.
The second part of the program consists of rules generating eligible solutions. For each
a ∈ {a1, . . . , ak} and each edge e ∈ Edges we add the following rules

r1 : loc(a, e) ← loc(a, e)⊕ loc(a, e)
r2 : loc(a, e) ← ⊗{not loc(a, e′) | e′ ∈ Edges, e′ 6= e}
r3 : locnearend(a, e) ← (edge(e)⊕ not locnearstart(a, e))⊗ loc(a, e)
r4 : locnearstart(a, e) ← (edge(e)⊕ not locnearend(a, e))⊗ loc(a, e)

Rule r1 is used to ensure that the truth degree of loc(a, e) is in {0, 1}, i.e. an ATM a

is located on an edge e or not. Indeed, a fuzzy interpretation I models this rule if and
only if min(2I(loc(a, e)), 1) ≤ I(loc(a, e)), i.e. I(loc(a, e)) ≤ 0 or I(loc(a, e)) ≥ 1. By
using negation-as-failure, rule r2 then generates all possible configurations (cfr. Example
3.17). If an ATM a is located on an edge e, then rules r3 and r4 determine how near to
the start and the end of e it is located. Indeed, in terms of distances we want to model
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the following. Suppose e is the edge between ti and tj on which an ATM a is located,
then it should hold that

d(ti, a) + d(a, tj) = d(ti, tj).

Hence in terms of nearness we want

1− n(ti, a) + 1− n(a, tj) = 1− n(ti, tj)

or
n(ti, a) + n(a, tj)− 1 = n(ti, tj).

Thus for a fuzzy interpretation I we want

I(locnearend(a, e)) + I(locnearstart(a, e))− 1 = I(edge(e)).

This can be modelled by rules r3 and r4 since, assuming that loc(a, e) has truth value
1, a fuzzy interpretation I models r3 if

I(locnearend(a, e)) ≥ min(I(edge(e)) + 1− I(locnearstart(a, e)), 1).

Analogously for rule r4 we obtain

I(locnearstart(a, e)) ≥ min(I(edge(e)) + 1− I(locnearend(a, e)), 1).

Hence for an answer set I we obtain by the minimality condition that

I(locnearend(a, e)) + I(locnearstart(a, e))− 1 = I(edge(e)).

Note that if min(I(edge(e)) + 1− I(locnearstart(a, e)), 1) = 1, then by rule r3 we would
have I(locnearend(a, e)) = 1 and hence by rule r4 that I(locnearstart(a, e)) = I(edge(e))
and we obtain the same result.
The following rules define the maximal nearness and hence the shortest distance to an

ATM for a town t ∈ Towns. In particular, r7 and r8 define the shortest distance to an
ATM if the town is not the start or end point of an edge that contains an ATM.

r5 : ATMnear(t) ← start(t, e)⊗ locnearstart(a, e)⊗ loc(a, e)
r6 : ATMnear(t) ← end(t, e)⊗ locnearend(a, e)⊗ loc(a, e)
r7 : ATMnear(t) ← edge(e)⊗ ATMnear(t′)⊗ start(t, e)⊗ end(t′, e)
r8 : ATMnear(t) ← edge(e)⊗ ATMnear(t′)⊗ end(t, e)⊗ start(t′, e)

for each t, t′ ∈ Towns, e ∈ Edges and a ∈ {a1, . . . , ak}.
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Finally constraints are needed to indicate the minimal nearness n′ = 1 − d′ allowed in
a valid configuration of ATMs.

r9 : 0← notATMnear(t)⊗ n′

for each t ∈ Towns. Indeed, a fuzzy interpretation I models r9 if

I(ATMnear(t)) ≥ n′.

The explanations above show that each answer set has the properties that the solutions of
the original search problem must have. On the other hand, we also have that each solution,
seen as a fuzzy interpretation I, corresponds to an answer set. It has to be checked that
I is a minimal fuzzy model of P I . Rules rI1 and rI2 in P I are modelled by I since these
rules generate all possible placements of the ATMs on the roads and I corresponds to
one particular configuration of ATMs. Rules rI3 and rI4 are also modelled since these rules
compute the exact location on the edge of each ATM. An explanation similar as above
ensures that I is minimal such that these rules are modelled. Rules rI5 − rI8 compute
the shortest distance to an ATM for each town, hence these rules must be modelled in
a minimal way by I. Since I corresponds to a configuration such that for each town the
distance to the closest ATM is less then d′ = 1 − n′, rule rI9 is also modelled.
Consider as a concrete example the following setting. Suppose there are two ATMs
a1 and a2 and three towns t1, t2 and t3 such that n(t1, t2) = 0.8, n(t1, t3) = 0.3 and
n(t2, t3) = 0.1. Suppose we are interested in placing these ATMs such that the minimal
nearness n′ is equal to 0.3. One of the answer sets is given in Figure 3.2. ATM a1 is
placed in t3 and hence a1 is near t1 with degree 0.3 and near t3 with degree 1. ATM a2 is
placed on the road between t2 and t3 with nearness degree 0.8 to t2 and nearness degree
0.3 to t3. Indeed the answer set I corresponding to this setting is a minimal model of P I .

t2 t3=a1

t1

a2

Figure 3.2: Configuration of ATMs

Another possible solution (Figure 3.3) would be to place a1 in town t3 and a2 on the road
connecting towns t1 and t2, for instance such that a2 is near t1 and near t2 with degree 0.9.
Note that we can also impose different degrees of nearness for different towns.
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t2 t3=a1

t1

a2

Figure 3.3: Configuration of ATMs

3.3.4 Fuzzy graph colouring problem
Using FASP, a continuous variant of the graph colouring problem can easily be defined.
Recall that the classical graph colouring problem (Example 3.7) consists of colouring the
nodes of a graph using a finite number of colors such that two nodes which are connected
by an edge have a different color.
Now assume a weighted graph is given, specified by rules

edge(a, b)← c

with c ∈ [0, 1] ∩Q and where edge(a, b) represents the weight of the edge between nodes
a and b. The problem consists of assigning grey values to each node in the graph such
that the difference between the grey values is at least as large as the corresponding edge
weight. Besides the above facts, we also need a generating part: in each answer set we
want to have that a node is black to the degree that is not white (cfr. Example 3.17).
Hence for each node a we add the rules.

r1 : black(a) ← notwhite(a)
r2 : white(a) ← not black(a)

We also need a connective that denotes how similar the color of two nodes is. An obvious
choice would be ↔. Moreover note that for a fuzzy interpretation I we have

[α↔ β]I = 1− |[α]I − [β]I |.

By the definitions of the Łukasiewicz connectives, we have that

α↔ β = (∼α⊕ β)⊗ (∼β ⊕ α).

By rules r1 and r2 we have that for each answer set I it must hold that I(white(a)) =
1 − I(black(a)) for each node a. Hence we can write the following rules for each pair
of nodes a and b

r3 : sim(a, b) ← (white(a)⊕ black(b))⊗ (white(b)⊕ black(a))
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Finally, we need constraints to filter out the unwanted assignments:

r4 : 0← edge(a, b)⊗ sim(a, b)

for each pair of nodes a and b. Indeed, for a fuzzy interpretation I we have that I models
r4 iff I(edge(a, b)) + I(sim(a, b)) − 1 ≤ 0 iff I(edge(a, b)) ≤ 1 − I(sim(a, b)).
Consider as an example the graph consisting of four nodes a, b, c and d with edge weights

as depicted in Figure 3.4. Edges with weight 0 have been omitted. One possible colouring,
as shown in the picture, is an answer set I such that

I(black(a)) = 0 I(black(b)) = 0.1 I(black(c)) = 0.5 I(black(d)) = 0.8
I(white(a)) = 1 I(white(b)) = 0.9 I(white(c)) = 0.5 I(white(d)) = 0.2

b c d

a

0.1
0.5

0.8

0.4 0.3

Figure 3.4: Fuzzy graph colouring
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4 | Complexity of fuzzy
answer set programming

under Łukasiewicz
semantics

4.1 Introduction
In Section 3.2 we have recalled a general framework for fuzzy answer set programming
(FASP), a generalisation of ASP (Section 3.1) in which propositions are allowed to be
graded. Little is known about the computational complexity of FASP and, with the excep-
tions of [Alviano and Peñaloza 2013] and [Mushtofa et al. 2014], almost no techniques are
available to compute the answer sets of a FASP program. In this chapter we will introduce
results on the computational complexity of FASP under Łukasiewicz semantics (Section
2.2.3) and show a reduction from reasoning with such FASP programs to bilevel linear
programming, thus opening the door to practical applications. Łukasiewicz logic is often
used in applications because it preserves many desirable properties from classical logic.
It is closely related to mixed integer programming, as was first shown by McNaughton
[McNaughton 1951] in a non-constructive way. Later, Hähnle [Hähnle 1997] gave a con-
crete, semantics-preserving, translation from a set of formulas in Łukasiewicz logic into
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a mixed integer program. Checking the satisfiability of a Łukasiewicz logic formula thus
essentially corresponds to checking the feasibility of a mixed integer program. In particular,
given a regular FASP program P , a literal l and a value λl ∈ [0, 1] ∩Q, we are interested
in the following decision problems.

1. Existence: Does there exist an answer set I of P?

2. Set-membership: Does there exist an answer set I of P such that I(l) ≥ λl?

3. Set-entailment: Does I(l) ≥ λl hold for each answer set I of P?

Note that these are generalisations of the decision problems for ASP for which the com-
plexity is given in Table 3.1.
Recall that, under Łukasiewicz semantics, a strict disjunctive FASP program is a set of

rules of the form

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj , cl literals and/or truth constants corresponding to truth values in [0, 1]∩Q with
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}, “not” the negation-as-failure operator
corresponding to the Łukasiewicz negator, ⊕ and ⊗ resp. the Łukasiewicz disjunction
and conjunction and ← the Łukasiewicz implicator (see Section 2.2.3). By our particular
choice of semantics, strict FASP relates to Łukasiewicz logic as ASP does to classical
logic. For Łukasiewicz logic, satisfiability is an NP-complete problem [Mundici 1987].
Since satisfiability checking has the same complexity for classical logic, one would perhaps
expect ASP and FASP to have the same complexity as well. This expectation is reinforced
by the fact that in the case of probabilistic ASP, the complexity of the existence problem
has been shown to be ΣP

2 -complete [Lukasiewicz 1999], i.e. the same as the complexity of
the existence problem in classical ASP. On the other hand, there are fuzzy description logics
that, unlike the classical case, do not have the finite model property under Łukasiewicz logic
or under product logic [Bobillo et al. 2011] and there are description logics whose classical
counterparts are decidable but that are undecidable under Łukasiewicz logic [Cerami and
Straccia 2013].
Although existence and set-membership are ΣP

2 -complete for disjunctive ASP, in this
chapter we will show NP-completeness for strict disjunctive and strict normal FASP. We
will also show that the existence of an answer set for a strict normal FASP program
without constraints and without strong negation is always guaranteed and hence that
the complexity of the existence problem for this class of FASP programs is “constant”.
However, for strict disjunctive FASP without constraints and without strong negation we
are only able to show membership in NP for the existence problem.
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An overview of the complexity results that we can establish for strict FASP under
Łukasiewicz semantics is provided in Table 4.1.

Table 4.1: Complexity of inference in strict FASP

strict FASP existence set-membership set-entailment
no restrictions disjunctive NP-complete NP-complete coNP-complete

normal NP-complete NP-complete coNP-complete
definite in P in P in P

no constraints, no strong negation disjunctive in NP NP-complete in coNP
normal in P NP-complete in coNP
definite in P in P in P

Besides strict FASP programs (under Łukasiewicz semantics), we will also discuss the
computational complexity for regular FASP programs (under Łukasiewicz semantics), i.e.
sets of rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm,not c1, . . . ,not ck),

with ai, bj , cl literals and/or truth constants corresponding to truth values in [0, 1] ∩ Q
with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The connectives f and g are
compositions of the Łukasiewicz connectives ⊗, ⊕, ∨ and ∧. The negation-as-failure
operator not and the implication ← correspond resp. to the Łukasiewicz negator and
implicator. In this sense, fuzzy equilibrium logic is a proper generalisation of regular FASP
[Schockaert et al. 2012]. By using its complexity results we can derive that existence
and set-membership for regular FASP are in ΣP

2 and that set-entailment is in ΠP
2 . By

reducing the decision problems for disjunctive ASP to regular FASP we will also derive
resp. ΣP

2 -hardness and ΠP
2 -hardness. Hence for regular FASP without any restrictions,

we obtain ΣP
2 -completeness for existence and set-membership and ΠP

2 -completeness for
set-entailment (see Proposition 4.10). However, if we restrict ourselves to programs with
at most one literal in the head of each rule, then we can only show ΣP

2 -membership and
NP-hardness for set-membership and existence and ΠP

2 -membership and coNP-hardness
for set-entailment. If, in addition, we do not allow “not” in the rules we can only find
a pseudo-polynomial time algorithm to compute answer sets based on computing least
fixpoints. Although in general we can only show membership in NP ∩ coNP, for several
subclasses of regular definite FASP programs we can show P-membership. In particular,
for regular definite FASP programs with only conjunction and maximum or only disjunction
in the body of rules, we can provide a polynomial time algorithm to compute answer sets.
This is also the case for regular definite FASP programs with a cycle free dependency
graph or with only polynomially bounded constants.
An overview of the complexity results that we can establish for regular FASP under

Łukasiewicz semantics is provided in Table 4.2.
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Table 4.2: Complexity of inference in regular FASP

regular FASP existence set-membership set-entailment
no restrictions ΣP

2 -complete ΣP
2 -complete ΠP

2 -complete
normal NP-hard, in ΣP

2 NP-hard, in ΣP
2 coNP-hard, in ΠP

2
definite in NP ∩ coNP in NP ∩ coNP in NP ∩ coNP

only ⊗ and ∨ in body definite in P in P in P
only ⊕ in body definite in P in P in P

cycle free definite in P in P in P
polynomially bounded

constants definite in P in P in P

As mentioned before, we will also provide an implementation into bilevel linear program-
ming for strict disjunctive FASP. Intuitively, in a bilevel linear programming problem there
are two agents: the leader and the follower. The leader goes first and attempts to optim-
ize his/her objective function. The follower observes this and subsequently makes his/her
decision. Since it caught the attention in the 1970s, there have been many algorithms
proposed for solving bilevel linear programming problems (e.g. [Bard and Falk 1982, Cand-
ler and Townsley 1982, Shi et al. 2006]). A popular way to solve such a problem, e.g. in
[Bard and Falk 1982], is to translate the bilevel linear programming problem into a nonlin-
ear programming problem using Kuhn-Tucker constraints. This new program is a standard
mathematical program and relatively easy to solve because all but one constraint is linear.
In a later study [Bard and Moore 1990], an implicit approach to satisfying the nonlinear
complementary constraint was proposed, which proved to be more efficient than the other
strategies that were known at the time. By showing a reduction of strict disjunctive FASP
into bilevel programming we thus provide a basis to build solvers for FASP. For example,
this result has been used in [Alviano and Peñaloza 2013] as a prototype for a FASP solver.
This chapter is structured as follows. In Section 4.3 resp. Section 4.4 we will present

complexity results for strict FASP, resp. regular FASP using propositions and lemmas
introduced in Section 4.2. In Section 4.5 we will show that there is a reduction from
reasoning with strict disjunctive FASP to bilevel linear programming followed by some
concluding remarks in 4.6.

4.2 Preliminaries
In the remainder of this chapter, we will study the complexity of the decision problems
discussed in the introduction for regular and strict FASP under Łukasiewicz logic1. In this

1In this chapter we will omit “under Łukasiewicz logic ” since we are only dealing with these types of
FASP programs.
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section we present some results that will be often applied to show other results throughout
the chapter.
First of all, using the fact that I(a) + I(¬a) ≤ 1 iff [0 ← a ⊗ ¬a]I = 1, we will show

in Lemma 4.1 that a regular FASP program can be rewritten as a regular FASP program
without strong negation, hence generalising Remark 3.1.

Lemma 4.1

Let P be a regular FASP program. There exists a regular FASP program P ′ without
strong negation such that a fuzzy interpretation I ∈ F(LP ) is an answer set of P
iff there exists an answer set I ′ ∈ F(LP ′) of P ′ such that for each atom a ∈ BP we
have I(a) = I ′(a) and I(¬a) = I ′(a′) for a fresh atom a′ ∈ BP ′ .

Proof. For each atom a in P , introduce a fresh atom a′. The program P ′ is then obtained
by replacing all negated atoms ¬a in P by their corresponding atom a′ and for each pair
of atoms (a, a′) adding the constraint 0← a⊗ a′. The program P ′ then has the required
properties since [0← a⊗ a′]I = 1 iff I(a) + I(a′) ≤ 1 for each pair of atoms (a, a′).

Secondly, we present a lemma that combined with Lemma 4.1 implies that a regular FASP
program P can be rewritten as the union of a regular FASP program without constraints
and without strong negation P ′ and a set of constraints C without strong negation such
that the answer sets of P correspond to the answer sets of P ′. Without loss of generality,
in this lemma we will assume that all literals in C are also literals in P ′, and hence that
LP = LP ′ . We may assume this since if there exists a literal l in C such that l /∈ LP ′ ,
then for each answer set I of P we must have that I(l) = 0 or I(l) = 1, depending on the
fact whether l is part of a negation-as-failure literal not l or not. Further, in this lemma
we will denote by g|B the restriction of a function g : C → D to the domain B ⊆ C,
i.e. the function g|B : B → D : x 7→ g(x).

Lemma 4.2

Let P be a regular FASP program such that P = P ′ ∪ C where C is a set of
constraints in P , LP = LP ′ and I ∈ F(LP ). It holds that I is an answer set of P
iff I is an answer set of P ′ and a fuzzy model of C.

Proof. (⇒) Suppose I is an answer set of P . By assumption, I is a fuzzy model of C. It
remains to be shown that I is an answer set of P ′. I is a fuzzy model of (P ′)I since
it is a fuzzy model of P I . Now suppose there exists a fuzzy model J ∈ F(LP ′) of
(P ′)I such that J ≤ I. We show that J = I, from which it then follows that I is a
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minimal fuzzy model of (P ′)I and hence an answer set of P ′. Note that J is a fuzzy
model of P I . Indeed, let r be an arbitrary rule in P = P ′ ∪ C. If r ∈ P ′, then J
models rI by assumption. If r : c← α is a constraint in C, then [αI ]J ≤ [αI ]I since
J ≤ I and [αI ]I ≤ c since I is a fuzzy model of CI ⊆ P I . Hence [αI ]J ≤ c, i.e.
J models rI . We obtain that J is a fuzzy model of P I such that J ≤ I. Together
with the fact that I is a minimal fuzzy model of P I , this implies that J = I.

(⇐) Suppose I is an answer set of P ′ and a fuzzy model of C. Then I is a fuzzy model
of P I = (P ′ ∪ C)I as well. Now suppose there exists a fuzzy model J of P I such
that J ≤ I, then it follows that J is a model of (P ′)I ⊆ P I . Hence, since I is an
answer set of P ′ and thus by definition a minimal fuzzy model of (P ′)I , it follows
that J = I.

Remark 4.1

Recall that a regular simple FASP program, i.e. a regular definite FASP program with
exactly one atom in the head of each rule and no strong negation, has a unique
answer set (Proposition 3.4). Hence the complexity of the set-membership problem
and the set-entailment problem are equal and the complexity of the existence problem
is “constant” for regular simple FASP. Moreover, note that by Lemmas 4.1 and 4.2, it
follows that if the answer set of a certain type of regular simple FASP programs can
be determined in polynomial time, then the complexity of the decision problems for
the corresponding types of regular definite FASP is polynomial as well. Indeed, each
regular definite FASP program P can be rewritten as P ′ ∪ C where P ′ is a regular
simple FASP program and C is a set of constraints such that I is a answer set of P
iff I is an answer set of P ′ and a fuzzy model of C. To check if P has an answer
set, we can compute the answer set of P ′ and check if it is a fuzzy model of C.

Without loss of generality, we may assume that in each rule of a general FASP program,
the body has exactly two arguments. Indeed, from the lemmas below it follows that a
program can be rewritten as a program with only rules of the form α ← f(a, b) with a
and b (negation-as-failure) literals and/or truth constants, f(a, b) equal to either a ⊗ b,
a⊕ b, a ∨ b or a ∧ b and α an arbitrary head. The idea is to substitute expressions in the
body by adding new rules with fresh atoms in the head of these rules. This can be done
since an answer set is a minimal fuzzy model of the program (Proposition 3.5) and the
functions representing the connectives allowed in the bodies of rules are increasing.
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Lemma 4.3

Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(l1, . . . , ln)

with li (negation-as-failure) literals and/or constants, β an arbitrary head and
f(l1, . . . , ln) denotes either ⊗ni=1li, ⊕ni=1li,

∨n
i=1 li or

∧n
i=1 li.

For a fuzzy interpretation I ∈ F(LP ), it holds that I is an answer set of P iff there
exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP

= I and I ′ is an answer set
of P ′ where P ′ = P1 ∪ P2 and P2 is the program consisting of the rules

b1 ← f(l1, l2)
b2 ← f(b1, l3)

...
bn−2 ← f(bn−3, ln−1)

β ← f(bn−2, ln)

with b1, . . . , bn−2 atoms which are not used in P .

Proof. (⇒) Suppose I is an answer set of P . We expand I to a fuzzy interpretation I ′
on LP ′ as follows. Define I ′(b1) = [f(l1, l2)]I′ and I ′(bi) = [f(bi−1, li+1)]I′ for
i 6= 1. It is easy to see that I ′ is a fuzzy model of (P ′)I′ . Next, we show that I ′ is
a minimal fuzzy model of (P ′)I′ . Suppose that J ′ ≤ I ′ is a fuzzy model of (P ′)I′ .
One can show that J = J ′|LP

is a fuzzy model of P I , hence it follows that J = I.
We prove by induction on i = 1, . . . , n− 2 that J ′ = I ′:

I ′(b1) = [f(l1, l2)]I′ (definition I ′)

= [f(lI
′

1 , l
I′

2 )]I′ (definition reduct)

= [f(lI
′

1 , l
I′

2 )]J′ (J ′|LP
= J = I = I ′|LP

)

≤ J ′(b1) (J ′ fuzzy model of (P ′)I
′
)

≤ I ′(b1) (J ′ ≤ I ′)

Suppose I ′(bi−1) = J ′(bi−1).

I ′(bi) = [f(bi−1, li+1)]I′ (definition I ′)
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= [f(bi−1, l
I′

i+1)]I′ (definition reduct)

= [f(bi−1, l
I′

i+1)]J′ (induction hypothesis and J ′|LP
= I ′|LP

)

≤ J ′(bi) (J ′ fuzzy model of (P ′)I
′
)

≤ I ′(bi) (J ′ ≤ I ′)

(⇐) Suppose there is a fuzzy interpretation I ′ ∈ LP ′ such that I ′ is an answer set of P ′
and I ′|LP

= I. We show that I is an answer set of P .

First note that since I ′ is a minimal fuzzy model of (P ′)I′ , it must hold that I ′(b1) =
[f(l1, l2)]I′ and I ′(bi) = [f(bi−1, li+1)]I′ for i 6= 1. A straightforward proof then
shows that I is a fuzzy model of P I . Now suppose there exists a fuzzy model J ≤ I
of P I . We show that there exists J ′ ∈ LP ′ which is a fuzzy model of (P ′)I′ such
that J ′ ≤ I ′ and J ′|LP

= J . Since I ′ is a minimal fuzzy model of (P ′)I′ , it then
follows that J ′ = I ′ and hence J = I. Define J ′ as follows: for l ∈ LP define
J ′(l) = J(l) and J ′(b1) = [f(lI′1 , lI

′

2 )]J′ and J ′(bi) = [f(bi−1, l
I′

i+1)]J′ for i 6= 1.
We prove by induction on i = 1, . . . , n− 2 that J ′ ≤ I ′:

J ′(b1) = [f(lI
′

1 , l
I′

2 )]J′ (definition J ′)
= [f(lI1, lI2)]J (I = I ′|LP

, J = J ′|LP
)

≤ [f(lI1, lI2)]I (J ≤ I)

= [f(lI
′

1 , l
I′

2 )]I′ (I = I ′|LP
)

= I ′(b1)

If J ′(bi−1) ≤ I ′(bi−1), then

J ′(bi) = [f(bi−1, l
I′

i+1)]J′ (definition J ′)

= f(J ′(bi−1), J ′(lI
′

i+1))

= f(J ′(bi−1), I ′(lI
′

i+1)) (I ′|LP
= J ′|LP

)

≤ f(I ′(bi−1), I ′(lI
′

i+1)) (induction and f increasing)
= I ′(bi)

It is easy to show that J ′ is a fuzzy model of (P ′)I′ .
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Lemma 4.4

Let P = P1 ∪ {r} be a regular FASP program where

r : β ← f(α1, . . . , αn)

with αi formulas built from (negation-as-failure) literals and/or constants, ⊗, ⊕,
∨, ∧ and β an arbitrary head and f(α1, . . . , αn) denotes either ⊗ni=1αi, ⊕ni=1αi,∨n
i=1 αi or

∧n
i=1 αi.

For a fuzzy interpretation I ∈ F(LP ), it holds that I is an answer set of P iff there
exists a fuzzy interpretation I ′ ∈ F(LP ′) such that I ′|LP

= I and I ′ is an answer set
of P ′ where P ′ = P1 ∪ P2 and P2 is the program consisting of the rules

a1 ← α1
a2 ← α2

...
an ← αn
β ← f(a1, . . . , an)

with a1, . . . , an atoms which are not used in P .

Proof. (⇒) Suppose that I is an answer set of P . We expand I to a fuzzy interpretation
I ′ ∈ F(LP ′) as follows: I ′(ai) = [αi]I′ = [αi]I for i ∈ {1, . . . , n}. It is easy to
show that I ′ is a fuzzy model of (P ′)I′ . Next, we show that I ′ is a minimal fuzzy
model of (P ′)I′ . Suppose there exists a fuzzy model J ′ ≤ I ′ of (P ′)I′ . We show
that J ′ = I ′. First remark that J = J ′|LP

is a fuzzy model of P I . Since I is a
minimal fuzzy model of P I , it follows that J ′|LP

= J = I = I ′|LP
. It remains to be

shown that J ′(ai) = I ′(ai) for i ∈ {1, . . . , n}. But this follows easily:

J ′(ai) ≤ I ′(ai) (J ′ ≤ I ′)
= [αi]I′

= [αI
′

i ]I′

= [αI
′

i ]J′ (J ′|LP
= I ′|LP

)

≤ J ′(ai) (J ′ fuzzy model of (P ′)I
′
)
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(⇐) Suppose that I ′ is a minimal fuzzy model of (P ′)I′ . We show that I = I ′|LP
is

a minimal fuzzy model of P I . Remark that, since I ′ is a minimal fuzzy model of
(P ′)I′ , it must hold that I ′(ai) = [αi]I′ = [αi]I . It follows easily that I is a fuzzy
model of P I . Now suppose there exists a fuzzy model J ≤ I of P I . We expand J
to a fuzzy interpretation J ′ ∈ LP ′ as follows: J ′(ai) = [αIi ]J . It can be shown that
J ′ is a fuzzy model of (P ′)I′ . Moreover, for each i ∈ {1, . . . , n}, we have that

J ′(ai) = [αIi ]J
≤ [αIi ]I (J ≤ I)
= [αi]I
= I ′(ai)

Hence J ′ ≤ I ′ and since I ′ is a minimal fuzzy model of (P ′)I′ , it follows that J ′ = I ′

and thus J = I.

Combining Lemmas 4.3 and 4.4, one can prove the following proposition; a FASP program
can be rewritten as a set of rules with only two (negation-as- failure) literals or constants
in the body such that the answer sets remain the same.

Proposition 4.1

Let P be a regular FASP program. P can be reduced (in polynomial time) to a
regular FASP program P ′ such that LP ⊆ LP ′ and each rule in P ′ has at most
two arguments in the body and I is an answer set of P iff there exists a fuzzy
interpretation I ′ ∈ F(LP ′) such that I ′|LP

= I and I ′ is an answer set of P ′.

Proof. Suppose there exists a rule r ∈ P with more than 2 arguments. We show by
induction on the number of connectives n, written in prefix notation, that this rule can
be rewritten as a set of rules with at most two arguments and one connective in the body
such that the answer sets remain the same.
If n = 1, then r is of the form

r : β ← f(l1, . . . , lm).

By Lemma 4.3 the assertion holds. Now suppose the assertion holds for n < k. We prove
that it also holds for n = k. Rule r is now of the form

r : β ← f(α1, . . . , αn),
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where the number of connectives in αi is strictly smaller than k. By Lemma 4.4, the
assertion follows.

4.3 Complexity of strict FASP
In this section we will study the complexity for strict disjunctive FASP, i.e. regular FASP
programs with rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj , ck literals and/or truth constants corresponding to truth values in [0, 1] ∩ Q.
A summary of the results in this section can be found in Table 4.1.
We will first show that set-membership for strict disjunctive FASP is NP-complete. We

will do this by showing NP-membership in Proposition 4.2 and by showing in Proposition
4.3 that it is already NP-hard for strict normal FASP. We will use these results to derive
complexity results for the remaining decision problems for strict disjunctive FASP and strict
normal FASP. We will then use these results to show that set-membership remains NP-
complete in strict normal (and disjunctive) FASP even if constraints and strong negation
are not allowed.

Proposition 4.2

Set-membership for strict disjunctive FASP is in NP.

Proof. From the analysis of the geometrical structure underlying fuzzy equilibrium models,
which is a proper generalisation of regular FASP [Schockaert et al. 2012], it follows that
a FASP program P has an answer set I such that I(l) ≥ λl for some l ∈ LP and
λI ∈ [0, 1] ∩ Q iff there is such an answer set that can be encoded using a polynomial
number of bits. Given a strict disjunctive program P and an answer set I, we show that
we can check in polynomial time that I is an answer set of P . Note that checking if
I(l) ≥ λl for a literal l can be done in constant time. By definition, we need to check that
I is a minimal fuzzy model of P I and that for each l ∈ LP we have I(l)+ I(¬l) ≤ 1. The
latter is straightforward. To check whether I is a minimal fuzzy model of P I , we can use
linear programming. Indeed a rule r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm from P I is satisfied
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iff
[a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm]I = 1
⇔ vI((∼b1)⊕ . . .⊕ (∼bm)⊕ a1 ⊕ . . .⊕ an) = 1
⇔ vI(∼b1) + . . .+ vI(∼bm) + vI(a1) + . . .+ vI(an) ≥ 1
⇔ 1− vI(b1) + . . .+ 1− vI(bm) + vI(a1) + . . .+ vI(an) ≥ 1
⇔ 1− I(b1) + . . .+ 1− I(bm) + I(a1) + . . .+ I(an) ≥ 1

with vI : A → [0, 1] the evaluation defined as vI(a) = I(a) if a ∈ LP and vI(a) = 0
otherwise. Hence, to check whether I is a minimal fuzzy model of P I we use the following
linear program M . The function to be minimised is the sum

∑
a∈LP I

a′ where for each
literal a ∈ LP I we introduce a variable a′ and the constraints in M are the following. For
each literal a ∈ LP I we have 0 ≤ a′ ≤ 1 and for each rule

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm

in P I we have
1 ≤ 1− b′1 + . . .+ 1− b′m + a′1 + . . .+ a′n

or equivalently
1−m ≤ −b′1 − . . .− b′m + a′1 + . . .+ a′n.

If a′ = I(a) for each literal a is a solution of M , then I is a minimal fuzzy model of
P I . Indeed, since I(a) = a′ fulfills the constraints of M , it is a fuzzy model of P I .
Now suppose there exists a fuzzy model J such that J < I. Since it is a fuzzy model
of P I , the assignments a′′ = J(a) for each literal a satisfy the constraints of M but∑
a∈LP I

a′′ <
∑
a∈LP I

a′, a contradiction. Hence I is a minimal fuzzy model of P I .

Next, we show that the set-membership problem is also NP-hard by showing a reduction
from 3SAT, which is NP-complete [Cook 1971], to (a subclass of) strict disjunctive FASP.
Recall from Example 3.8 that instances of the 3SAT problem are Boolean expressions
written in conjunctive normal form with 3 variables in each clause:

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3),

where each aij is an atom or a negated atom. The problem consists of deciding whether
there exists a propositional interpretation that makes the Boolean expression true.

Proposition 4.3

Set-membership for strict normal FASP is NP-hard.
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Proof. Consider an arbitrary instance of the 3SAT problem

α = (a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

We translate each clause ai1 ∨ ai2 ∨ ai3 to the rule

0← ¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 (4.1)

where ¬aij = ¬a if aij = a with a an atom and ¬aij = a if aij = ∼a with a an atom.
For each atom x in α we add the rules

¬x← notx (4.2)
x← not(¬x) (4.3)
x′ ← x (4.4)
x′ ← ¬x (4.5)
0← not(x′) (4.6)

where x′ is a fresh atom not used in α. We denote the resulting strict normal FASP
program by P .

1. First suppose that I is an answer set of P . By Lemma 4.2 we know that I is an
answer set of P1 and a fuzzy model of C where P1 is the set of all rules in P of the
form (4.2)-(4.5) and C is the set of all constraints of the form (4.1) and (4.6).
Since I is a minimal fuzzy model of (P1)I we know that for each literal x it holds
that I(x) = 1 − I(¬x) by rules (4.2) and (4.3) and I(x′) = max(I(x), I(¬x))
by rules (4.4) and (4.5). Since I must be a fuzzy model of the constraints in C,
it follows that 1 − I(x′) = 0 by rule (4.6). If I(x′) = I(x), then I(x) = 1 and
I(¬x) = 0. Otherwise, if I(x′) = I(¬x), then I(¬x) = 1 and I(x) = 0.
We can now define the (consistent) propositional interpretation G as follows. For
each atom x in α we have G(x) = “true” if I(x) = 1 and G(x) = “false” if I(x) = 0.
We check that this assignment evaluates α to “true”. This follows easily by (4.1)
and the following equations:

[0← ¬ai1 ⊗ ¬ai2 ⊗ ¬ai3]I = 1
⇔ [¬ai1 ⊗ ¬ai2 ⊗ ¬ai3]I ≤ 0
⇔ max(I(¬ai1) + I(¬ai2) + I(¬ai3)− 2, 0) ≤ 0
⇔ I(¬ai1) + I(¬ai2) + I(¬ai3) ≤ 2
⇔ 1− I(ai1) + 1− I(ai2) + 1− I(ai3) ≤ 2
⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1
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It must hold that I(aij) = 1 for at least one literal aij from each clause. Hence,
G is an assignment that evaluates each clause ai1 ∨ ai2 ∨ ai3, and thus the whole
expression α, to “true”.

2. Consider a propositional interpretation G such that each clause ai1 ∨ ai2 ∨ ai3
evaluates to “true”. We define a fuzzy interpretation in F(LP ) by I(x) = 1 if
G(x) = “true”, I(x) = 0 if G(x) = “false”, I(x′) = max(I(x), I(¬x)). Note that
I(¬x) = 1 − I(x) since G is a propositional interpretation . We show that I is
an answer set of P , or by Lemma 4.2 that it is a minimal fuzzy model of (P1)I
and a fuzzy model of C. It is clear that I is a fuzzy model of (P1)I . Now sup-
pose there exists a fuzzy model J of (P1)I such that J < I. Since I is such that
I(¬x) + I(x) = 1, by rules (4.2) and (4.3) in P1 it follows that

J(¬x) ≥ [notx]I = 1− I(x) = I(¬x) ≥ J(¬x)

and
J(x) ≥ [not(¬x)]I = 1− I(¬x) = I(x) ≥ J(x).

Hence we have for each literal x that J(x) = I(x) and J(¬x) = I(¬x). Since
J < I, there must exist a literal x such that J(x′) < I(x′) which implies by rules
(4.4) and (4.5) in P1 that

I(x′) > J(x′) ≥ J(x) = I(x) and I(x′) > J(x′) ≥ J(¬x) = I(¬x).

This is impossible since either I(x) = 1 or I(¬x) = 1 and then I(x′) > 1.
It remains to be shown that I is a fuzzy model of C. Since

I(x′) = max(I(x), I(¬x)) = 1

we have that I models the rule 0← not(x′) for each literal x. As before, we obtain

[0← ¬ai1 ⊗ ¬ai2 ⊗ ¬ai3]I = 1⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1

Since each clause ai1 ∨ ai2 ∨ ai3 is satisfied by G, we know that for least one aij it
must hold that I(aij) = 1. Hence I(ai1) + I(ai2) + I(ai3) ≥ 1.

The following corollary follows directly from Propositions 4.2 and 4.3.
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Corollary 4.1

1. Set-membership for strict normal FASP is NP-complete.

2. Set-membership for strict disjunctive FASP is NP-complete.

The proofs of Propositions 4.2 and 4.3 do not exploit the fact that we want to find an
answer set I such that I(l) ≥ λl for a particular λl. Hence these proofs can also be used
to show NP-completeness for the existence problem.

Proposition 4.4

1. Existence for strict normal FASP is NP-complete.

2. Existence for strict disjunctive FASP is NP-complete.

Finally, by the proofs of Propositions 4.2 and 4.3 and the results in Proposition 4.4 we
can show the following proposition.

Proposition 4.5

1. Set-entailment for strict normal FASP is coNP-complete.

2. Set-entailment for strict disjunctive FASP is coNP-complete.

Proof. To show coNP-membership for set-entailment in strict normal (disjunctive) FASP,
we show that the complementary decision problem, i.e. “Given a strict normal (disjunctive)
FASP program P , a literal l ∈ LP and a value λl ∈ [0, 1]∩Q; is there an answer set I of P
such that I(l) < λl?” is in NP by a straightforward adaption of the proof of Proposition
4.2.
To show coNP-hardness, we reduce the NP-hard problem “existence” to the complement

of the set-entailment problem. Consider a strict normal (disjunctive) FASP program P .
Define P ′ = P ∪{a← a} with a a fresh atom. We show that P has an answer set iff it is
not the case that all answer sets I ′ of P ′ are such that I ′(a) ≥ 0.5. First suppose that P
has an answer set I. Then there exists an answer set I ′ of P ′ with I ′(a) < 0.5. Indeed,
define I ′(a) = 0 and I ′(x) = I(x) otherwise. Next, suppose that there exists an answer
set I ′ of P ′ such that I ′(a) < 0.5. Then I = I ′|LP

is an answer set of P .

We will now show that set-membership remains NP-complete for strict normal and dis-
junctive FASP even if strong negation and constraints are not allowed. This result is based
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on Proposition 4.6 which uses the following lemma that enables us to simulate constraints
in a regular FASP program. Note that this lemma is valid for more general FASP programs
(under Łukasiewicz semantics) and not only for strict disjunctive FASP programs.

Lemma 4.5

Consider a regular FASP program P = P1 ∪ C where P1 is a regular FASP program
and C is a set of constraints of the form 0← α. Let P ′ = P1∪C ′∪{z ← not y} where
z and y are fresh atoms and C ′ = {y ← α | (0 ← α) ∈ C}. A fuzzy interpretation
I ∈ F(LP ) is an answer set of P iff there exists an answer set I ′ ∈ F(LP ′) of P ′
such that I ′|LP

= I and I ′(z) ≥ 1.

Proof. (⇒) Suppose that I ∈ F(LP ) is an answer set of P . Define I ′ ∈ F(LP ′) as
I ′(a) = I(a) if a ∈ LP , I ′(z) = 1 and I ′(y) = 0. We show that I ′ is an answer set
of P ′.
First, we prove that I ′ is a fuzzy model of P ′ and thus of (P ′)I′ . Clearly, I ′ is a
fuzzy model of P1 and it models the rule z ← not y. If y ← α is a rule in C ′, then
by assumption we have that I = I ′|LP

models the rule 0← α. Thus [0← α]I′ = 1
and [α]I′ = 0 = I ′(y). Hence I ′ models y ← α.
Next, we show that I ′ is a minimal fuzzy model of (P ′)I′ . Suppose there exists a
fuzzy model J ′ ∈ F(LP ′) of (P ′)I′ such that J ′ ≤ I ′. We show that J = J ′|LP

is
a fuzzy model of P I . Clearly, J is a fuzzy model of (P1)I . Since J ′ ≤ I ′ we have
that J(y) = J ′(y) ≤ I ′(y) = 0, thus given a rule r : 0 ← α in C we have that for
the corresponding rule y ← α in C ′ it holds that 0 = J(y) ≥ [αI′ ]J = [αI ]J , with
αI the reduct of the expression α w.r.t. I. Hence [rI ]J = 1 and J is a fuzzy model
of P I . Because I is a minimal fuzzy model of P I and J ≤ I, it follows that I = J .
As mentioned before, we have J ′(y) = I ′(y) and since [z ← [not y]I′ ]J′ = 1, we
also have J ′(z) ≥ 1 − I ′(y) = I ′(z) ≥ J ′(z). Hence I ′ = J ′, which shows that I ′
is a minimal fuzzy model of (P ′)I′ .

(⇐) Suppose that I ′ ∈ F(LP ′) is an answer set of P ′ such that I ′(z) = 1. We show
that I = I ′|LP

is an answer set of P . By Lemma 4.2 it is sufficient to show that I
is an answer set of P1 and a fuzzy model of C.
First, we show that I is a fuzzy model of C. Since I ′ is a minimal fuzzy model of
(P ′)I′ , it must hold that I ′(z) = 1 − I ′(y) and thus that I ′(y) = 0. Given a rule
r : 0 ← α in C we have that for the corresponding rule y ← α in C ′ it holds that
0 = I ′(y) ≥ [α]I′ , and thus [r]I = [r]I′ = 1.
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Next, note that I is a fuzzy model of (P1)I since I ′ is a fuzzy model of (P1)I′ . Now
suppose there exists a fuzzy model J ∈ F(LP1) of (P1)I such that J ≤ I. Define
J ′ ∈ F(LP ′) as follows: J ′(a) = J(a) if a ∈ LP , J ′(y) = 0 and J ′(z) = 1. We
show that J ′ is a fuzzy model of (P ′)I′ . By assumption, J ′ is a fuzzy model of (P1)I′ .
For the rule r : z ← not y in P ′ we have J ′(z) = 1 = I ′(z) ≥ [not y]I′ , hence J ′
models rI′ . Finally, given a rule r : y ← α in C ′ we have for the corresponding rule
0← α in C that J ′(y) = 0 ≥ [αI′ ]I′ ≥ [αI′ ]J′ . Hence J ′ models rI′ . Since J ′ ≤ I ′
and I ′ is a minimal fuzzy model of (P ′)I′ it follows that J ′ = I ′ and thus J = I.

Proposition 4.6

Set-membership for strict normal FASP is NP-hard even if constraints and strong
negation are not allowed.

Proof. Consider an instance of the 3SAT problem

α = (a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

As shown in the proof of Proposition 4.3, α is satisfied by an assigment G iff the proposi-
tional interpretation I, with I(x) = 1 if G(x) = “true” and I(x) = 0 if G(x) = “false”
is an answer set of P with P the program obtained in the proof of Proposition 4.3.
By Lemma 4.1 it follows that P can be rewritten as a strict normal FASP program P ′

without strong negation and in which the head of each rule contains exactly one atom or
the constant 0 such that there is a one-on-one correspondence between the answer sets.
By Lemma 4.5, it follows that we can define a strict normal FASP program P ′′ without
constraints and without strong negation such that the answer sets of P ′ correspond to the
answer sets of P ′′ for which a certain atom has at least truth value 1.

Finally, we can derive the following corollaries:

Corollary 4.2

1. Set-membership for strict normal FASP is NP-complete, even if constraints and
strong negation are not allowed.

2. Set-membership for strict disjunctive FASP is NP-complete, even if constraints
and strong negation are not allowed.
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Proof. Follows by the reduction in the proof of Proposition 4.6 and by Proposition 4.2.

By Theorem 3.1 from [Madrid and Ojeda-Aciego 2012] we can derive that a strict normal
FASP program without constraints and without strong negation always has an answer set.

Proposition 4.7

A strict normal FASP program without constraints and without strong negation al-
ways has an answer set. Hence existence for strict normal FASP program without
constraints and without strong negation is in P.

By Theorem 4.10 in [Lukasiewicz 2008] it follows that stratified fuzzy description logic
programs have at most one answer set. Since strict normal FASP program for which the
dependency graph does not contain cycles (see Section 4.4.1 for the exact definitions) are
programs of this form, it follows from Proposition 4.7 that such programs have exactly
one answer set.
As the following example shows, the result from Proposition 4.7 is not valid for regular

FASP programs in which disjunction is allowed in the body of rules. For these types of
FASP programs, the existence of an answer set is not guaranteed, even if constraints and
strong negation are not allowed.

Example 4.1

Consider the following regular normal FASP program P .

p ← p⊕ p (1)
q ← q ⊕ q (2)
p ← not p⊗ q (3)
q ← c (4)

with c > 0.
Suppose P has an answer set I. Since I must be a fuzzy model of rule (1) we have

that I(p) ≥ min(2I(p), 1) and hence either I(p) ≥ 2I(p), i.e. I(p) = 0, or I(p) = 1.
The same reasoning holds for rule (2) and it follows that I(p), I(q) ∈ {0, 1}. By rule
(4) it follows that I(q) > 0 and thus that I(q) = 1. If I(p) = 0, then P I is the
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regular simple FASP program

p ← p⊕ p
q ← q ⊕ q
p ← q

q ← c

which has as minimal fuzzy model J(p) = J(q) = 1. Thus I 6= J is not an answer
set of P . If I(p) = 1, then P I is the regular simple FASP program

p ← p⊕ p
q ← q ⊕ q
p ← 0
q ← c

which has as minimal fuzzy model J(p) = 0, J(q) = 1. Thus I 6= J is not an answer
set of P .

For the class of strict disjunctive FASP, in which constraints and strong negation are
not allowed we can only show NP-membership for the existence problem (follows from
the proof of Proposition 4.2). For set-entailment we can only show coNP-membership for
both strict normal and disjunctive FASP where constraints and strong negation are not
allowed (see the proof of Proposition 4.5).
Finally, we will discuss the complexity for strict definite FASP. We will show that the

decision problems are in P. To do this, by Remark 4.1 it is sufficient to prove that the
unique answer set of a strict simple FASP program can be determined in polynomial
time. In particular, we will show that for such programs, the unique answer set can be
found in polynomial time using linear programming, which is known to be in P. Moreover,
the complexity remains the same if the connective maximum is allowed in the body of
rules. Indeed, rules of the form a ← b ⊗ c are modelled by a fuzzy interpretation I iff
I(b)+I(c)−1 ≤ I(a). Rules of the form d← e∨f are modelled by a fuzzy interpretation
I iff I(e) ≤ I(d) and I(e) ≤ I(f). Hence such a program can be efficiently translated to
a linear program. Remark that from results in [Schockaert et al. 2012] it follows that a
linear program always has a solution consisting of rational numbers.

Example 4.2
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Consider the following program P .

a ← b⊗ 1
2

b ← c ∨ 1
3

The corresponding linear program contains the following constraints.

a′ ≥ b′ − 1
2

b′ ≥ c′

b′ ≥ 1
3

1 ≥ a′, b′, c′

a′, b′, c′ ≥ 0

and the function to be minimised is f(a′, b′, c′) = a′ + b′ + c′. The solution a′ = 0,
b′ = 1

3 , c
′ = 0 given by the linear program then corresponds to the answer set I of

P : I(a) = a′, I(b) = b′ and I(c) = c′.

Proposition 4.8

The unique answer set of a regular simple FASP program with only the connectives
conjunction and maximum in the body of the rules can be found in polynomial time.

Proof. Consider a regular simple FASP program P with only rules of the form a← b⊗ c
and d← e∨f . The answer set P can be found by solving the following linear program LP .
The function to be minimized is f(a′1, . . . a′n) =

∑n
i=1 a

′
i with BP = {a1, . . . , an} and a′i

is the corresponding variable for ai and for each rule a← b⊗ c we add the constraints

a′ ≥ b′ + c′ − 1
1 ≥ a′, b′, c′

a′, b′, c′ ≥ 0.

and for each rule d← e ∨ f , we add the constraints

d′ ≥ e′

d′ ≥ f ′

1 ≥ d′, e′, f ′

d′, e′, f ′ ≥ 0.

Suppose that I : BP → [0, 1]∩Q is the answer set of P , i.e. I is the unique minimal fuzzy
model of P . We show that if LP has a solution J ′ : {a′1, . . . , a′n} → Q, that J : BP →
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[0, 1] ∩ Q : ai 7→ J ′(a′i) is a minimal fuzzy model of P . Since P has a unique minimal
fuzzy model, we then obtain J = I and J ′ is the unique rational solution of LP . Clearly,
since J ′ satisfies the constraints in LP we obtain that J is a fuzzy model of P . Suppose J
is not a minimal fuzzy model of P , i.e. there exists a fuzzy model M : BP → [0, 1]∩Q of
P such that M < J , then M ′ : {a′1, . . . , a′n} → Q : a′i 7→ M(ai) satisfies the constraints
of LP and it holds that

∑n
i=1M

′(a′i) <
∑n
i=1 J

′(a′i), a contradiction.

Corollary 4.3

The complexity of existence, set-membership and set-entailment for strict simple and
strict definite FASP is polynomial.

Proof. Follows from Remark 4.1 and Proposition 4.8.

4.4 Complexity of regular FASP
In this section, we will investigate the complexity of the decision problems for regular
FASP (under Łukasiewicz semantics). Recall that these FASP programs are sets of rules
of the form

r : g(a1, . . . , an)← f(b1, . . . , bm,not c1, . . . ,not ck),

with ai, bj , cl literals and/or truth constants corresponding to truth values in [0, 1] ∩ Q
with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The connectives f and g are
compositions of the Łukasiewicz connectives ⊗, ⊕, ∨ and ∧ and not and ← correspond
resp. to the Łukasiewicz negator and implicator. A summary of the results in this section
can be found in Table 4.2.
From the complexity results for fuzzy equilibrium logic, which is a proper generalisation of

regular FASP [Schockaert et al. 2012], we can derive that existence and set-membership
for regular FASP are in ΣP

2 and that set-entailment is in ΠP
2 . By reducing the decision

problems for disjunctive ASP to regular FASP (see Proposition 4.9), one can also derive
resp. ΣP

2 -hardness and ΠP
2 -hardness. Hence for regular FASP without any restrictions,

we obtain ΣP
2 -completeness for existence and set-membership and ΠP

2 -completeness for
set-entailment (see Proposition 4.10).
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Proposition 4.9

Let P be a disjunctive ASP program and let I ∈ P(LP ). Define the regular FASP
program P ′ as follows:

P ′ = {a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck |

(a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck) ∈ P}

∪{a← a⊕ a | a ∈ LP }.

Then I is an answer set of P iff I is an answer set of P ′.

Proof. First note that I ∈ F(LP ) models a rule of the form a← a⊕a iff min(2I(a), 1) ≤
I(a). This is only possible if I(a) = 0 or I(a) = 1. The proposition then follows from
the fact that the Łukasiewicz connectives restricted to values in {0, 1} agree with the
corresponding classical connectives, and the semantics of ASP and FASP coincide in such
a case.

We will use Proposition 4.9 to reduce disjunctive ASP to regular FASP and normal ASP
to regular normal FASP.

Proposition 4.10

1. Set-membership and existence for regular FASP are ΣP
2 -complete. Set-entailment

is ΠP
2 -complete.

2. Set-membership and existence for regular normal FASP are NP-hard and in
ΣP

2 . Set-entailment is coNP-hard and in ΠP
2 .

Proof. Since fuzzy equilibrium logic is a proper generalisation of FASP, we can use its
complexity results [Schockaert et al. 2012] to obtain ΣP

2 -membership for set-membership
and existence and ΠP

2 -membership for set-entailment. This result holds for regular FASP
as well as for regular normal FASP. The hardness results are obtained by reducing the
decision problems for normal resp. disjunctive ASP (see Table 3.1) to regular normal resp.
regular FASP which is possible due to Proposition 4.9.

In Section 4.4.1, we will discuss the complexity of regular simple and definite FASP pro-
grams. We show that characterizing the complexity for regular simple FASP programs is
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equivalent to an open problem about integer equations [Gawlitza and Seidle 2007]. How-
ever, we can provide a pseudo-polynomial algorithm and show P-membership for several
subclasses of regular definite FASP. We will then use these results in Section 4.4.2 to
characterize the computational complexity for regular normal FASP in a more fine grained
manner than in Proposition 4.10.

4.4.1 Complexity of regular definite FASP programs
In this section we will discuss the complexity results for programs consisting of rules of
the form

a← f(b1, . . . bm)

with a, b1, . . . bm literals and/or constants corresponding to truth values in [0, 1]∩Q and f
a composition of ⊗, ⊕, ∨ and ∧. By Proposition 4.1, we can restrict ourselves to programs
in which each rule has at most two arguments in the body.
Satisfiability checking in Łukasiewicz logic can be polynomially reduced to checking the

feasibility of a mixed integer program [Hähnle 1994]. As will be shown in Proposition 4.11,
the NP-completeness of the latter decision problem [Hähnle 1994] and the fact that each
rule in a regular definite FASP program can be seen as a formula in Łukasiewicz logic,
it follows that the decision problems for regular simple and thus also for regular definite
FASP are all in NP. Moreover, since the answer set of a regular simple FASP program is
unique, we can also prove coNP-membership for regular definite FASP programs:

Proposition 4.11

Set-membership, existence and set-entailment for regular definite FASP are in NP ∩
coNP.

Proof. Each regular simple FASP program can be seen as a set of formulas in Łukasiewicz
logic. Checking if such a set of formulas has a minimal fuzzy model can be polynomially
reduced to checking the feasibility of a mixed integer program which is an NP-complete
problem. Hence we obtain NP-membership for regular simple FASP for all decision prob-
lems. Moreover, since the answer set of a regular simple FASP program is unique, we
obtain NP-membership for the complementary decision problems. By Remark 4.1, it fol-
lows that it can be checked whether a fuzzy interpretation is an answer set of a regular
definite FASP program by checking if it is the unique answer set of a particular regular
simple FASP program and checking if a set of constraints is satisfied, hence we obtain the
same results for regular definite FASP.
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In general, to find the unique minimal fuzzy model of a regular simple FASP program
P , one could use the immediate consequence operator ΠP (see Proposition 3.4). The
minimal fuzzy model of P then equals the least fixpoint of ΠP . This least fixpoint can be
found by repeatedly applying the immediate consequence operator starting from the fuzzy
interpretation I0 : BP → [0, 1] ∩Q : a 7→ 0. Unfortunately, the number of iterations that
is needed to arrive at the least fixpoint can be exponential in the number of bits needed
to represent the rules. Consider for example the program consisting of the following rule,
where n is equal to the “size” of the problem.

a← a⊕
(

1
2n

)
In that case 2n iterations of the immediate consequence operator are needed to conclude
that a should have truth value 1. Indeed, one starts with the fuzzy interpretation I0 : BP →
[0, 1] ∩ Q such that I0(a) = 0. The next applications give us I1(a) = 1

2n , I2(a) = 2
2n ,

I3(a) = 3
2n , . . . , I2n(a) = 2n

2n = 1. Hence 2n iterations are needed. However, the number
of iterations of the immediate consequence operator is polynomial in the size of the largest
integer occurring in the program. As the following proposition shows, this will always be
the case, i.e. we can find the unique answer set of any regular simple FASP program in
pseudo-polynomial time.

Proposition 4.12

The unique answer set of a regular simple FASP program can be found in pseudo-
polynomial time.

Proof. Suppose m is the largest integer occurring in the program and n is equal to the size
of the program. Then all constants c in the program are such that c ∈ T = {0, 1

k , . . . ,
k
k}

with k polynomial in m. After each application of ΠP , either the least fixpoint is found
and the procedure terminates or the truth value of at least one atom is increased to a new
value in T ; hence there are at most n · k such iterations and the number of iterations is
polynomial in m and n.

Proposition 4.13
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The complexity of the decision problems for regular simple and regular definite FASP
is polynomial if all constants are polynomially bounded, i.e. all constants c in the
program are such that c ∈ {0, 1

k , . . . ,
k
k} with k polynomial in the size of the program.

Proof. Follows from the proof of Proposition 4.12.

For the above program with rule

a← a⊕
(

1
2n

)
we could improve the immediate consequence operator by assigning to a immediately truth
value 1. It remains unclear, however, whether a general method could be found that always
finds the answer set in polynomial time. The connection of this question to a well-known
open problem on the feasibility of systems of integer equations suggests that there is not
likely to be a straightforward solution. More precisely, the unique minimal fuzzy model I
of a regular simple FASP program P can be found by computing the least solution of a
system of equations over the integers in which each equation is of the form xi = αi with
the variables xi on the left hand side pairwise distinct, i.e. xi can only occur once as the left
hand side of an equation, and the expressions αi are built from variables, integers, addition,
multiplication with positive constants, maximum and minimum. The translation from P

to such a system is defined as follows. First, create a set P̂ of Łukasiewicz formulas:

P̂ = {rb → rh | (rh ← rb) ∈ P} ∪ {a ∨ 0→ a | a ∈ BP },

where we add tautologies of the form a ∨ 0→ a to ensure that each a obtains a positive
value after translating to a system of equations over the integers. Next, create a new set
P̂1 of Łukasiewicz formulas by replacing for each atom a in P̂ the set of formulas with
the same “head” a, α1 → a, . . . αn → a by the formula α1 ∨ . . .∨αn → a. Finally, define
the set P̂2 of Łukasiewicz formulas:

P̂2 = {α↔ β | (α→ β) ∈ P̂1}.

We can now transform the set P̂2 to a set S of equations over the integers. First, define Ŝ:

Ŝ = {α = β | (α↔ β) ∈ P̂2}

This is justified by the fact that [α ↔ β]I = 1 iff [α]I = [β]I . Each constant in some
equation in Ŝ can be assumed to be of the form

(
i
k

)
for a fixed k. Each such constant

(
i
k

)
is then replaced by i, a⊗ b becomes max(a+ b− k, 0) and a⊕ b becomes min(a+ b, k).
This gives us the set S of equations over the integers.
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There is a positive integer solution J(a), J(b), J(c) for a = max(b + c − k, 0) iff the
fuzzy interpretation I defined by I(a) = J(a)

k , I(b) = J(b)
k , I(c) = J(c)

k is a fuzzy model
of a ↔ (b ⊗ c):

[a↔ (b⊗ c)]I = 1⇔ J(a)
k

= TL

(
J(b)
k

,
J(c)
k

)
⇔ J(a)

k
= max

(
J(b)
k

+ J(c)
k
− 1, 0

)
⇔ J(a)

k
= max

(
J(b)
k

+ J(c)
k
− k

k
, 0
)

⇔ J(a) = max(J(b) + J(c)− k, 0)

Similarly, one obtains that there is a positive integer solution J(a), J(b), J(c) for a =
min(b + c, k) iff I(a) = J(a)

k , I(b) = J(b)
k , I(c) = J(c)

k models a ↔ (b ⊕ c). The unique
least solution of S then corresponds to the unique minimal model of P in this sense.
In [Gawlitza and Seidle 2007], an algorithm is presented for computing least solutions of
such systems of integer equations. Although in practice it turns out that the algorithm
is very efficient, it is still an open problem (e.g. [Bjorklund et al. 2003]) whether it has
polynomial time complexity.

Example 4.3

As an illustration, consider the regular simple FASP program consisting of the rules

a ← b⊕ 1
4

b ← a ∧ 1
3

a ← 1
2

The corresponding set P̂2 is

a ↔ ((b⊕ 1
4 ) ∨ 1

2 ) ∨ 0
b ↔ (a ∧ 1

3 ) ∨ 0

We then have that I is the minimal fuzzy model of P iff I ′ is the least solution of

a = max(min(b+ 3, 12), 6, 0)
b = max(min(a, 4), 0)
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with I(a) = I′(a)
12 and I(b) = I′(b)

12 .

However, as we will show in the following subsections, for several subclasses of regular
simple (and definite) FASP programs, we can show P-membership, even if the constants
in the program are not polynomially bounded. A summary of the complexity results for
regular simple FASP can be found in Table 4.2 in Section 4.1.

Directed graphs and cycles

For a regular simple FASP program P we define the dependency graph G(P ) as follows.
The vertices are the atoms occurring in the program and there is a directed edge from a

to b if a occurs in the body of a rule with head b.

Example 4.4

Program P
a ← b

a ← 0.2
c ← a⊗ b
c ← 0.1
b ← 0.6

has the following dependency graph G(P ).

a b

c

A path in a directed graph is a sequence of vertices such that from each vertex there
is an edge to the next vertex in the sequence. A cycle is a path that begins and ends
at the same vertex. If there are no cycles in the dependency graph of a regular simple
FASP program, the immediate consequence operator will only need a polynomial number
of steps to compute the least fixpoint:

Proposition 4.14
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Consider a regular simple FASP program P such that the dependency graph G(P )
has no cycles and the longest path in G(P ) has length m. Then, the immediate
consequence operator will only need m iterations to compute the answer set of P .

Proof. Start with the fuzzy interpretation that maps all atoms to 0. Define A0 as the
set of all truth constants in P . Define A1 as the set of all atoms a that only depend on
constants: each rule with head a ∈ A1 is of the form a← c. After one application of ΠP ,
each a ∈ A1 is given a truth value

I1(a) = sup{[rb]I0 | (a← rb) ∈ P} = sup{c | (a← c) ∈ P}.

In further applications of ΠP , the truth value of a ∈ A1 will not increase since it only
depends on constants.
Next, define A2 as the set of all atoms a /∈ A1 such that for each rule a ← f(b, d) in
P , we have that b, d ∈ A0 ∪A1. After two applications of ΠP , each a ∈ A2 is assigned a
truth value

I2(a) = sup{[rb]I1 | (a← rb) ∈ P} = sup{[f(b, d)]I1 | (a← f(b, d)) ∈ P}.

In further applications of ΠP , the truth value of a ∈ A2 will not increase since it only
depends on atoms for which we already know the truth value will not increase anymore.
Continuing this procedure, after k iterations of ΠP , we get fixed truth values for all

atoms a ∈ Ak: atoms a /∈ ∪k−1
i=1 Ai such that for each rule a← f(b, d) in P we have that

b, d ∈ ∪k−1
i=0 Ai. Another application of ΠP will give fixed values for the atoms in Ak+1.

Since there are no cycles, we have that Ak = ∅ for k > m. Hence, after m iterations, the
least fixpoint of ΠP has been found.

Example 4.5

Reconsider the following FASP program P from Example 4.4 with a cycle free de-
pendency graph and longest path of length 3.

a ← b

a ← 0.2
c ← a⊗ b
c ← 0.1
b ← 0.6

We apply the immediate consequence operator ΠP to find the unique answer set.
We start from the fuzzy interpretation I0 : BP → [0, 1] ∩ Q : l 7→ 0. After one
application of ΠP , we obtain the fuzzy interpretation I1 = ΠP (I0) which is such
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that I1(a) = 0.2, I1(b) = 0.6 and I1(c) = 0.1. After one more application, we have
I2 = ΠP (I1) which is such that I2(a) = 0.6, I2(b) = 0.6 and I2(c) = 0.1. After the
3th application, the least fixpoint I3 = ΠP (I2) of P has been found: I3(a) = 0.6,
I3(b) = 0.6 and I3(c) = 0.2.

Only disjunction in the body

For regular simple FASP programs with only disjunctions in the bodies of rules, we can
always find the answer set in a polynomial number of steps, even if the dependency graph
contains cycles and the constants are not polynomially bounded. In particular, suppose
there is a cycle in the dependency graph of such a program such that there is a rule c← a⊕b
with a and c elements of the cycle and where b must have a truth value that is strictly
positive. It then follows that the truth values of all atoms in that cycle will saturate to 1.

Proposition 4.15

Consider a regular simple FASP program P and its unique answer set I. Suppose P
contains the following set of rules

a2 ← a1 ⊕ b1
a3 ← a2 ⊕ b2

...
a1 ← an ⊕ bn

and we have I(bj) > 0 for at least one j ∈ {1, . . . , n}. Then for each i ∈ {1, . . . , n}
we have I(ai) = 1.

Proof. Suppose I is the answer set of P and I(bj) > 0 for some j ∈ {1, . . . , n}. Then it
must hold that I(aj) < I(aj) + I(bj). Now suppose that for all i ∈ {1, . . . , n} we have
I(ai) + I(bi) ≤ 1 and thus [ai⊕ bi]I = min(I(ai) + I(bi), 1) = I(ai) + I(bi). Since I is a
fuzzy model of P it then follows for all i ∈ {1, . . . , n−1} that I(ai)+ I(bi) = [ai⊕ bi]I ≤
I(ai+1) and that I(an) + I(bn) = [an ⊕ bn]I ≤ I(a1). But then we have

I(a1) ≤ I(a1) + I(b1) ≤ I(a2) ≤ I(a2) + I(b2) ≤ . . . ≤ I(aj) < I(aj) + I(bj)

≤ I(aj+1) ≤ . . . ≤ I(an) + I(bn) ≤ I(a1),
a contradiction. Thus, there has to be some k ∈ {1, . . . , n} such that I(ak) + I(bk) > 1,
but then I(ak+1) = 1 (or I(a1) = 1 if k = n). This implies that I(ai) = 1 for each
i ∈ {1, . . . , n}.
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Remark 4.2

If we have that I(bi) = 0 for each i ∈ {1, . . . , n}, then we still have I(a1) = . . . =
I(an) = c for some c ∈ [0, 1]. Moreover, if there are no other rules in P that have
one of the atoms ai in the head of a rule, then c = 0.

We can define an equivalence relation on the set of vertices of an arbitrary directed graph
G as follows. Two vertices u and v are equivalent if there is a cycle in G containing both
u and v. The corresponding equivalence classes Vi lead to subgraphs Gi which are defined
as the restrictions of G to the vertices in Vi and the edges between the vertices in Vi.
Each of these subgraphs Gi is strongly connected, i.e. for each two vertices u and v in Gi,
there is a path from u to v. Moreover, no Gi is a proper subgraph of another strongly
connected subgraph of G. The graphs Gi are called the strongly connected components
of G and can be seen as generalisations of cycles. Using Proposition 4.15 we can prove
the following proposition.

Proposition 4.16

Consider a regular simple FASP program with only disjunctions in the bodies of rules
and its unique answer set I. Suppose one of the rules in the program is of the form
a← b⊕ d such that I(b) > 0 and a and d are atoms in the same strongly connected
component S in G(P ). Then for all s ∈ S we have I(s) = 1.

Proof. Suppose S = {a1, . . . , an} with a = a1 and d = a2. By the definition of a strongly
connected component there must be path from a1 to a2 and so on until we reach an.
Similary, one can also find a path from an to a1. If we consider all corresponding rules in
P , we have a cycle consisting of the elements in S that contains a with a ← b ⊕ d and
I(b) > 0. By Proposition 4.15, we can conclude that I(ai) = 1 for all i ∈ {1, . . . , n}.

Remark 4.3

Similar as in Remark 4.2, we obtain that all the atoms in a strongly connected
component must have the same truth value in the answer set.

Given a regular simple FASP program P with only disjunctions in the bodies of rules, we
can find the answer set in polynomial time as follows. Using the algorithm of Tarjan [Tarjan
1972] the strongly connected components in G(P ) can be identified in polynomial time.
Next, for each strongly connected component S a fresh atom aS is introduced and each
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atom from S is replaced by aS . By doing these substitutions it is possible that duplicate
rules arise. A program P ′ is obtained by removing all rules that are already in the program,
i.e. such that each rule occurs only once. Finally a program P ′′ is defined as follows.

• Rules of the form a← b⊕ c in P ′ where a, b and c are different atoms or constants
remain unchanged.

• A rule of the form a ← a ⊕ b in P ′ where b 6= a with b an atom or a constant is
replaced by a← (b > 0).

• A rule of the form a ← a⊕ a in P ′ is replaced by a ← (a′ > 0) with a fresh atom
a′. In all other rules every occurrence of a is replaced by a′.

where the semantics for formulas of the form (a > 0) is defined as I(a > 0) = 1 if
I(a) > 0 and I(a > 0) = 0 otherwise.
The new program P ′′ is then a cycle free program. Since the semantics for formulas

(a > 0) is characterized by an increasing function, the immediate consequence operator
can be used to compute the minimal model I ′′ of P ′′ (see [Janssen 2011]) which coincides
with the answer set I of P in the sense that for each a ∈ S we have I(a) = I ′′(aS).
Since the proof of Proposition 4.14 does not rely on the fact that the FASP programs
adhere to the Łukasiewicz semantics, we can use a very similar proof to show that the
answer set of programs containing formulas of the form (a > 0) in the body of rules will
be found in polynomial time.

Corollary 4.4

The unique answer set of a regular simple FASP program with only disjunction in the
body of the rules can be found in polynomial time.

Proof. Consider a regular simple FASP program P with only disjunctions in the bodies of
rules. We can find the answer set I in polynomial time as follows. Using the algorithm
of Tarjan [Tarjan 1972] the strongly connected components in G(P ) can be identified in
polynomial time. Next, for each strongly connected component S we introduce a fresh
atom aS . This is followed by defining a cycle free program P ′ that is obtained from P

by replacing each atom from S by aS and this for each strongly connected component S.
Moreover, superfluous rules are removed in the sense that no rule appears more than once
in P ′. From P ′, we then obtain a program P ′′ as follows.

• Rules of the form a← b⊕c where a, b and c are different atoms or constants remain
unchanged.

• A rule of the form a← a⊕ b where b 6= a with b an atom or a constant is replaced
by a← (b > 0).
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• A rule of the form a← a⊕ a is replaced by a← (a′ > 0) with a fresh atom a′. In
all other rules every occurrence of a is replaced by a′.

Note that these are the only possible types of rules in P ′. The semantics for formulas of
the form (a > 0) are defined by increasing functions and hence the immediate consequence
operator can be used to compute the minimal model of P ′′, see [Janssen 2011] for details.
Since Proposition 4.14 does not exploit the fact that we have FASP programs under
Łukasiewicz semantics, we can use the same proof to show that if formulas (a > 0) are
allowed in the bodies of rules that the immediate consequence operator will only need a
polynomial number of steps to compute the minimal model I ′′ of P ′′. Finally we choose
I(a) = I ′′(aS) for each a ∈ S. By Remark 4.3 and Proposition 4.16 it follows that I is
the answer set of P .

Example 4.6

Consider the following program P

a ← b

a ← a⊕ 1
2n

b ← a⊕ c
c ← b

with n an integer larger than the size of the program.
The program P has exactly one strongly connected component S = {a, b, c}. The

corresponding program P ′ is

aS ← aS

aS ← aS ⊕ 1
2n

aS ← aS ⊕ aS

From P ′ we obtain the corresponding cycle free program P ′′

a′S ← (0 > 0)
a′S ← ( 1

2n > 0)
aS ← (a′S > 0)

To obtain the answer set of P , we then apply the immediate consequence operator to
the program P ′′. We start from a fuzzy interpretation I0 : BP ′′ → [0, 1]∩Q : a′ 7→ 0.
After one application of ΠP ′′ we obtain I1 = ΠP ′′(I0) which is defined as follows:
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I1(a′S) = 1 and I1(aS) = 0. After one more application we obtain the least fixpoint
I2 = ΠP ′′(I1) where I2(a′S) = I2(aS) = 1. This fixpoint then coincides with the
unique answer set I of P : I(a) = I(b) = I(c) = I2(aS) = 1.

Example 4.7

Consider the following program P

a ← b⊕ c
b ← a

d ← c

c ← 0.3
c ← d⊕ e
a ← c⊕ e

The program P has three strongly connected components S1 = {a, b}, S2 = {c, d}
and S3 = {e}. Hence the corresponding program P ′ is

aS1 ← aS1 ⊕ aS2

aS1 ← aS1

aS2 ← aS2

aS2 ← 0.3
aS2 ← aS2 ⊕ aS3

aS1 ← aS2 ⊕ aS3

From P ′ we obtain the corresponding cycle free program P ′′

aS1 ← (aS2 > 0)
aS1 ← (0 > 0)
aS2 ← (0 > 0)
aS2 ← 0.3
aS2 ← (aS3 > 0)
aS1 ← aS2 ⊕ aS3

To obtain the answer set of P , we apply the immediate consequence operator to
program P ′′. We start from a fuzzy interpretation I0 : BP ′′ → [0, 1] ∩ Q : a′ 7→ 0.
After one iteration of ΠP ′′ we obtain I1 = ΠP ′′(I0) which is defined as follows:
I1(aS1) = I1(aS3) = 0 and I1(aS2) = 0.3. After one more iteration we obtain the
least fixpoint I2 = ΠP ′′(I1) where I2(aS1) = 1, I2(aS2) = 0.3 and I2(aS3) = 0. This
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fixpoint then coincides with the unique answer set I of P : I(a) = I(b) = I2(aS1) = 1,
I(c) = I(d) = I2(aS2) = 0.3 and I(e) = I2(aS3) = 0.

4.4.2 Complexity of regular normal FASP programs
For normal programs in classical ASP, NP-membership follows straightforwardly from the
fact that we can guess an answer set and verify that the guess is an answer set in polynomial
time. In contrast, due to the infinite number of possible truth values, in FASP not every
answer set can be guessed in polynomial time. To address this issue, by analyzing the
geometrical structure of fuzzy equilibrium models, [Schockaert et al. 2012] shows that
whenever there is an answer set I such that I(l) ≥ λ for a literal l, there always is an
answer set J such that J(l) ≥ λ and such that for each literal l, J(l) can be encoded using
a polynomial number of bits. This means that we can verify whether I(l) ≥ λ for a regular
normal FASP program by guessing an answer set in polynomial time and verifying that the
guess is an answer set. As a result, several of the P-membership results for regular definite
programs directly translate to NP-membership results for regular normal programs. The
only exception is the class of regular normal FASP programs with polynomially bounded
constants. Indeed, to check whether I is an answer set of such a program P it has to
be verified that I is an answer set of P I but P I does not necessarily belong to the class
of regular normal FASP programs with polynomially bounded constants. We also obtain
the same results for the existence problem since it is the special case of the membership
problem with λ = 0. For set-entailment we obtain coNP-membership if set-membership
is in NP. Indeed, the complement of the set-entailment problem is “Given a program P ,
a literal l and a value λl, does there exist an answer set I of P such that I(l) < λl?" By
similar results that can be found in [Schockaert et al. 2012], we know that if such an answer
set exists, there is always one that can be encoded using a polynomial number of bits.

Proposition 4.17

1. The set-membership and the existence problem for the class of regular normal
FASP programs with only disjunction in the bodies of rules is in NP. Set-
entailment for this class of programs is in coNP.

2. The set-membership and the existence problem for the class of regular normal
FASP programs with cycle free dependency graphs is in NP. Set-entailment for
this class of programs is in coNP.
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Proof. Let us first show that set-membership and existence are in NP. Suppose P is a
regular normal FASP program in one of the subclasses subscribed in the statement of the
proposition. From the analysis of the geometrical structure underlying fuzzy equilibrium
models which is a proper generalisation of regular FASP [Schockaert et al. 2012], it follows
that a FASP program P has an answer set I such that I(l) ≥ λl for some l ∈ LP and
λI ∈ [0, 1] ∩ Q iff there is such an answer set that can be encoded using a polynomial
number of bits. Hence we can guess such an answer set I in polynomial time. The reduct
P I then belongs to the corresponding subclass of regular definite FASP programs. For
set-membership and existence (special case with λl = 0) it then remains to be verified that
I is an answer set of P I . But this follows easily from the fact that the answer set of P I
can be determined in polynomial time. To show that set-entailment is in coNP, we need to
show that the complement of the decision problem “Given a FASP program P , a literal l
and a value λl, does there exist an answer set I of P such that I(l) < λl?" is in NP. By a
similar result from [Schockaert et al. 2012], it follows that such an answer set, if it exists,
can be guessed in polynomial time. The reduct then belongs to the corresponding subclass
of regular definite FASP programs for which the unique answer set can be determined in
polynomial time.

Moreover, as shown in Proposition 4.9, we can reduce the considered decision problems
for normal ASP to regular normal FASP.

Corollary 4.5

Existence and set-membership for regular normal FASP with polynomially bounded
constants is NP-hard. Set-entailment is coNP-hard.

Proof. By Proposition 4.9, it follows that a normal ASP program can be reduced to a reg-
ular normal FASP program with polynomially bounded constants. Since set-membership
and existence for normal ASP are NP-complete (Table 3.1), it then follows that these
decision problems are NP-hard for regular normal FASP with polynomially bounded con-
stants. The fact that set-entailment is coNP-hard follows from the coNP-completeness for
normal ASP (Table 3.1).

4.5 Reduction to bilevel linear programming
In this section, we will show that we can translate strict disjunctive FASP programs into
bilevel linear programs such that there is a one-to-one correspondence between partic-
ular solutions of the bilevel linear program and the answer sets of the FASP program.
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This implementation into bilevel linear programming can then be used as a basis to build
solvers for FASP.
Bilevel linear programming problems are optimization problems in which the set of all

variables is divided into two disjoint sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}. An
assignment to the variables will be denoted by a vector x = (x1, . . . , xn) for X and by a
vector y = (y1, . . . , ym) for Y . Intuitively, there are two agents, a leader who is responsible
for the variables in X and a follower responsible for the variables in Y . Each vector y
has to be chosen by the follower in function of the choice by the leader x as an optimal
solution of the so-called lower level problem or the follower’s problem. Knowing that the
follower will react in that way, the leader wants to optimize his objective function in the
so-called upper level problem or the leader’s problem.
In a bilevel linear program all objective functions and constraints are linear. In particular,

the type of bilevel linear programming problem in which we are interested is given by
Bard [Bard 1998]:

x∗ = arg minx c1x + d1y∗
s.t. A1x +B1y∗ ≤ b1

y∗ = arg miny c2x + d2y
s.t. A2x +B2y ≤ b2

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m, A2 ∈ Rq×n
and B2 ∈ Rq×m.
Now consider a strict disjunctive FASP program P . Without loss of generality we may

assume that this program contains no strong negation (see Lemma 4.1). We will translate
P to a bilevel linear program Q such that the solutions of Q correspond to the answer sets
of P . By definition, I is an answer set of P iff I is an answer set of P I . Informally, a guess
I needs to be made first and then it has to be checked whether this guess corresponds to an
answer set of P . If BP = {a1, . . . , an}, then we will define the vector ã = (ã1, . . . , ãn) and
the vector ã′ = (ã′1, . . . , ã′n) where the vector ã represents the truth values of the atoms in
{a1, . . . , an} and the vector ã′ intuitively represents the truth values of the guesses for the
atoms. For each such guess I, represented by ã′, we want to check if it is a minimal fuzzy
model of P I . Note that P I is a positive FASP program in which each rule is of the form

r : l1 ⊕ . . .⊕ ln ← x1 ⊗ . . .⊗ xm, (4.7)

with li, xj atoms and/or truth constants. As in the proof of Proposition 4.2, a fuzzy
interpretation J ∈ F(LP ) is a model of r iff

J(l1) + . . .+ J(ln) ≥ J(x1) + . . .+ J(xm)− (m− 1).

Thus for each rule r ∈ P I we have a constraint x1 + . . .+ xm −m+ 1 ≤ l1 + . . .+ ln.
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Hence, for each guess ã′, i.e. an interpretation I, we check if there is a minimal model
J of P I such that J(ai) ≤ I(ai) by minimizing all elements in the vector ã subject to the
constraints arising from P I . This is the follower’s problem. Finally, the guess is chosen
such that the differences between J(ai) and I(ai) are as small as possible. This can be
done by minimizing the function

∑n
i=1(ã′i − ãi). If this sum is equal to 0, we have found

an answer set. If this sum is not equal to 0, there cannot be an answer set. From the
results in [Schockaert et al. 2012], it follows that if a bilevel linear program has a solution,
then it also has a rational solution.
More structured, we have the following proposition.

Proposition 4.18

Given a strict disjunctive FASP program P not containing strong negation such that
BP = {a1, . . . , an}. Define the following bilevel linear program QP .

ã′∗ = arg minã′
∑n
i=1(ã′i − ã∗i )

s.t. 0 ≤ ã′i ≤ 1
ã∗ = arg minã

∑n
i=1 ãi

s.t. ãi ≤ ã′i, 0 ≤ ãi ≤ 1 and
(
∑m
j=1 xj)−m+ 1 ≤

∑n
i=1 li for each rule (4.7)

in the reduct of P w.r.t. ã′

Then

1. If QP has a rational solution ã∗ = (ã1, . . . , ãn), ã′∗ = (ã′1, . . . , ã′n) such
that the objective function of the upper level problem is evaluated to 0, then
I : BP → [0, 1] ∩Q : ai 7→ ãi is an answer set of P .

2. If I is an answer set of P , then ã∗ = (ã1, . . . , ãn), ã′∗ = (ã1, . . . , ãn) where
I(ai) = ãi for each i ∈ {1, . . . , n} is a solution of QP such that the objective
function of the upper level problem is evaluated to 0.

Proof. 1. Suppose QP has a rational solution ã∗ = (ã1, . . . , ãn), ã′∗ = (ã′1, . . . , ã′n)
such that the objective function of the upper level problem is evaluated to 0. We
show that I : BP → [0, 1] ∩Q : ai 7→ ãi is a minimal fuzzy model of P I . First note
that if

∑n
i=1(ã′i − ãi) = 0 it must hold that ã′i = ãi for all i ∈ {1, . . . , n} since we

have the constraints ãi ≤ ã′i. By the constraints in the lower level problem it then
follows that I is a fuzzy model of P I . Now suppose there exists a fuzzy model J of
P I such that J < I. Then ã∗ = (ã1, . . . , ãn), â′∗ = (â′1, . . . , â′n) where J(ai) = â′i
is a solution of QP with

∑n
i=1(â′i − ãi) <

∑n
i=1(ã′i − ãi), a contradiction.
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2. Suppose I is an answer set of P . We need to show that ã∗ = (ã1, . . . , ãn), ã′∗ =
(ã1, . . . , ãn) is a solution of QP . As in the proof of Proposition 4.8, we can show
that if the leader makes a choice ã′∗ = (a′1, . . . , a′n) which can be seen as a fuzzy
interpretation I ′(ai) = a′i of P , that ã∗∗ = (a∗1, . . . , a∗n) where J(ai) = a∗i is a
minimal fuzzy model of P I′ are the possible optimal solutions of the lower level
problem. Since ã∗ = ã′∗ and the fact that if the leader makes the choice ã′∗ =
(ã1, . . . , ãn), that ã∗ = (ã1, . . . , ãn) is an optimal solution of the lower level problem,
we have found a solution of QP .

Example 4.8

Consider the following strict normal FASP program P .

a ← not b
b ← not a

The corresponding bilevel linear program is

arg minã′,b̃′ [(ã′ − ã) + (b̃′ − b̃)]
s.t. 0 ≤ ã′, b̃′ ≤ 1

arg minã,b̃[ã+ b̃]
s.t. 0 ≤ ã, b̃ ≤ 1, ã ≤ ã′, b̃ ≤ b̃′

1− ã′ ≤ b̃, 1− b̃′ ≤ ã

The only assignments to the variables for which the objective function of the leader
is 0 are the ones with ã′ = ã, b̃′ = b̃ and ã′ = 1 − b̃′. This coincides with the
answer sets of P (see Example 3.17): Ix with Ix(a) = x and Ix(b) = 1− x for any
x ∈ [0, 1] ∩Q.

Remark 4.4

A similar construction can be used if ASP is combined with other fuzzy logics, e.g.
product logic, but the resulting bilevel program will not necessarily be linear.
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4.6 Conclusion
In this chapter, we presented an overview of the computational complexity of FASP under
Łukasiewicz semantics. The main contributions in this chapter are the following:

• Although existence and set-membership are ΣP
2 -complete for disjunctive ASP, for

strict disjunctive and strict normal FASP we were able to show NP-completeness.
Moreover, we showed that not allowing constraints and strong negation does not
affect the complexity for set-membership.

• We showed that the existence of an answer set for a strict normal FASP program
without constraints and without strong negation is always guaranteed and hence
that the complexity of the existence problem for this class of FASP programs is
“constant”. However, for strict disjunctive FASP without constraints and without
strong negation we were only able to show membership in NP for the existence
problem.

• If more syntactic freedom is allowed, i.e. for regular FASP programs, then we
can show ΣP

2 -completeness for set-membership and existence and ΠP
2 -complete-

ness for set-entailment by using known complexity results about fuzzy equilibrium
logic [Schockaert et al. 2012]. However, if we restrict ourselves to programs with
at most one literal in the head of each rule, then we can only show ΣP

2 -membership
and NP-hardness for set-membership and existence and ΠP

2 -membership and coNP-
hardness for set-entailment. If in addition, we do not allow “not” in the rules we
can only find a pseudo-polynomial time algorithm to compute answer sets based on
computing least fixpoints.

• Although in general we can only show membership in NP ∩ coNP, for several sub-
classes of the class of regular definite FASP programs we can show P-membership. In
particular, for regular definite FASP programs with only conjunction and maximum
or only disjunction in the body of rules we can provide a polynomial time algorithm
to compute answer sets. This is also the case for regular definite FASP programs
with a cycle free dependency graph or with only polynomially bounded constants.

An overview of the complexity results can be found in Tables 4.1 and 4.2. Finally, we have
proposed an implementation of strict disjunctive FASP using bilevel linear programming.
Some open problems remain:

• Does there exist a polynomial time algorithm to compute the answer set of a regular
simple FASP program?

• Is existence NP-hard for strict disjunctive FASP if constraints and strong negation
are not allowed?
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• Is regular normal FASP in NP?
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5 | Embedding fuzzy answer
set programming in fuzzy

autoepistemic logic

5.1 Introduction

Logic programming, which contains answer set programming (ASP) (Section 3.1) as a
special case, has had a significant impact on the development of nonmonotonic logics
and vice versa [Baral and Gelfond 1994]. In particular, as discussed in Section 3.1.3,
ASP can be embedded in autoepistemic logic (Section 2.1). In this chapter we combine
autoepistemic logic and fuzzy logics (Section 2.2) and show that the answer sets of a
FASP program (Section 3.2) can be equivalently described as stable expansions in the
resulting fuzzy autoepistemic logic.
Besides autoepistemic logic, other translations of logic programming to various non-

monotonic logics have been investigated as well, e.g. circumscription ([Lifschitz 1988],
[Przymusinski 1988]) and default logic ([Bidoit and Froidevaux 1991a], [Marek and Tru-
szczyński 1989]). Next to autoepistemic logic, reflexive autoepistemic logic has also been
used to characterise the semantics of ASP [Marek and Truszczyński 1993]. Reflexive au-
toepistemic logic [Schwarz 1992] has several almost identical semantic characterisations of
expansions as autoepistemic logic but it models knowledge rather than belief. In reflexive
autoepistemic logic, a formula is believed (known) if it is true in all possible worlds w.r.t.
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the beliefs of the agent and in the actual world. The major difference with autoepistemic
logic is that belief allows cyclic arguments and knowledge does not; if you believe a state-
ment φ, then it is justified to include φ in some “belief set”. For knowledge this is not
the case. The observation that a rule p ← p in some ASP program does not justify the
inclusion of p into an answer set led the authors in [Marek and Truszczyński 1993] to use
reflexive autoepistemic logic. Reflexive autoepistemic logic turns out to be equivalent to
autoepistemic logic in the sense that there exist translations from each logic to the other
preserving the notion of expansion.
The fuzzy autoepistemic logic we will define in this section is useful to reflect on one’s

beliefs about the degrees to which some properties are satisfied. Consider for example my
reason for not believing that my brother smokes a lot. If he smoked a lot, his breath would
smell often. Since I do not smell it often, I do not believe he smokes a lot. Intuitively,
if the truth value of Bϕ is equal to c, this means that it is believed that ϕ is true at
least to degree c. Hence, from one point of view ϕ is believed to the degree c and from
another point of view, there is a Boolean form of belief that the truth value of ϕ is at
least c. Furthermore, note how these views generalise the notion of belief from classical
autoepistemic logic, in the sense that having Bϕ false corresponds to having ϕ true to at
least degree 0, i.e. being completely ignorant about ϕ, and having Bϕ true corresponds
to having ϕ true at least to degree 1, i.e. believing ϕ to be true. We show that many
important properties from classical autoepistemic logic remain valid when generalising to
fuzzy autoepistemic logic.
For regular normal FASP programs, i.e. regular FASP programs with exactly one literal or

constant in the head, we show that the answer sets correspond to the models of an associ-
ated fuzzy autoepistemic theory. Specifically, it turns out that the translation from normal
ASP to classical autoepistemic logic (Theorem 3.1) can be generalised in a straightforward
way. However, similar as for classical ASP, this correspondence is not valid for programs
with more complex formulas in the head of the rules. To deal with such FASP programs,
we observe that for ASP the results on the equivalence between answer sets of an ASP
program and a corresponding autoepistemic theory (Theorem 3.2) are based on the lo-
gic of minimal belief and negation as failure (MNBF) ([Lin and Shoham 1992], [Lifschitz
1994]). The (classical) logic MNBF uses two independent modal operators, corresponding
to resp. a “minimal belief” modality and negation-as-failure. MBNF is thus an extension
of autoepistemic logic with the “minimal knowledge operator” due to Halpern and Moses
[Halpern and Moses 1984]. A simplified version of MBNF (from [Lifschitz 1994]), which
will also be used in this chapter, can be used to simulate some forms of default logic and
circumscription, as well as some logic programming languages. In this chapter, we will
introduce a fuzzy version of MNBF. As for ASP, this will provide us with a tool to show
that for regular FASP the answer sets correspond to particular models of an associated
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fuzzy autoepistemic theory. The fact that this important relationship is preserved provides
further insight into the nature of FASP, and at the same time serves as a justification for
the particular fuzzy autoepistemic logic we introduce in this chapter.
Note that the language of (fuzzy) autoepistemic logic is much more expressive than

the theories we need to represent the (fuzzy) answer set programs. Among others, this
could serve as a useful basis for defining or comparing extensions to the basic language
of ASP since the computational complexity does not increase when moving from ASP to
autoepistemic logic [Gottlob 1992]. This might open doors to define extensions for FASP.
With the exceptions of e.g. [Lukasiewicz and Straccia 2007], [Schockaert et al. 2012] and
[Straccia et al. 2009], most work on FASP is restricted to programs with exactly one atom
in the head. In this manuscript we consider a rather general form of FASP programs;
the heads of rules are not restricted to single atoms and connectives can in principle be
interpreted by arbitrary [0, 1]n → [0, 1]-mappings. The fuzzy equilibrium logic introduced
in [Schockaert et al. 2012], another generalisation of FASP, also allows such constructs.
In [Schockaert et al. 2012] a correspondence between fuzzy equilibrium logic models and
answer sets of FASP programs was shown. Apart from these exceptions, it appears that
little work has been done on nonmonotonic fuzzy logics and their relationship with fuzzy
answer set programming.
As will become clear in Chapter 6, fuzzy autoepistemic logic is closely related to fuzzy

modal logics. Finitely many-valued modal logics with graded accessibility relations have
been studied in for example [Fitting 1992a] and [Fitting 1992b]. In [Fitting 1992c] Fitting’s
previous work is extended to finitely many-valued nonmonotonic modal logics. In particular
autoepistemic logic is generalised by allowing a finite number of truth values. In [Koutras
and Zachos 2000], reflexive autoepistemic logic is generalised by allowing a finite set of
truth values. All these generalisations use finitely many truth values whereas we introduce
a continuous generalisation for autoepistemic logic.
In the next section we will introduce fuzzy autoepistemic logic, investigate some of its

properties and in Section 5.3 we give a motivating example. In Section 5.4 we analyse the
relationship between regular normal FASP and fuzzy autoepistemic logic. In Section 5.5,
we show that fuzzy autoepistemic logic generalises regular FASP. To do so, we will define
fuzzy MBNF. A conclusion is given in Section 5.6.

5.2 Fuzzy autoepistemic logic
In this section we will formally define fuzzy autoepistemic logic, combining the ideas of
autoepistemic logic (Section 2.1) and fuzzy logics (Section 2.2).
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The language LB of fuzzy autoepistemic logic is defined as follows. Formulas are built
from a countable set of atoms A, the set of truth constants {c | c ∈ [0, 1] ∩ Q}, the set
of connectives F =

⋃
n∈N Fn with Fn the set of n-ary connectives and a modal operator

B.

Definition 5.1

The language LB is recursively defined as follows

• a ∈ A is a formula.
• c with c ∈ [0, 1] ∩Q is a formula.
• If α is a formula, then Bα is a formula.
• If α1, . . . , αn are formulas, then f(α1, . . . , αn) is a formula for every f ∈ Fn
with n ∈ N.

A set of formulas in LB is called a fuzzy autoepistemic theory and formulas not
containing the operator B are called objective.

Similar to FASP, typically we will use connectives f from a given fuzzy logic (Section
2.2). As for classical autoepistemic logic we define

A′ = A ∪ {Bϕ | ϕ ∈ LB} .

We will sometimes treat A′ as a set of atoms and consider formulas recursively built from
A′, the set of truth constants {c | c ∈ [0, 1]∩Q} and the set of connectives F =

⋃
n∈N Fn

with Fn the set of n-ary connectives. For a formula α ∈ LB we will denote by α∗ the
corresponding formula in this non modal language L∗B :

• a∗ = a for a variable a,
• c∗ = c for a truth constant c,
• (f(α1, . . . , αn))∗ = f(α∗1, . . . , α∗n) for f ∈ Fn and α1, . . . , αn ∈ LB ,
• (Bα)∗ = pBα with pBα a fresh variable for α ∈ LB .

We write T ∗ = {α∗ | α ∈ T} for a fuzzy autoepistemic theory T . We consider evaluations
v : A′ → [0, 1] such that v(c) = c for truth constants in {c | c ∈ [0, 1] ∩ Q} and
v(f(α1, . . . , αn)) = f(v(α1), . . . , v(αn)) where f ∈ Fn is interpreted by f : [0, 1]n →
[0, 1]. We will denote this set of evaluations by Ω∗.
Using this trick, we will now define stable fuzzy expansions, generalising Definition 2.3.
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Definition 5.2

Consider a fuzzy autoepistemic theory T in LB and a mapping E : LB → [0, 1].
Then E is a stable fuzzy expansion of T if for each φ ∈ LB

E(φ) = inf {v(φ∗) | v ∈ Ω∗,∀α ∈ T : v(α∗) = 1 and ∀ϕ ∈ LB : v((Bϕ)∗) = E(ϕ)} .

Note that Definition 5.2 generalises the definition of a stable expansion in the following
sense. A classical stable expansion of T is a set E which can be seen as a mapping
E : LB → {0, 1} where E(α) = 1 iff α ∈ E. It then follows that E(φ) = 1 iff
v(φ∗) = 1 for all v ∈ Ω∗ such that v(α∗) = 1 for all α ∈ T and v((Bϕ)∗) = E(ϕ) for
all ϕ ∈ LB . Now suppose we only consider classical (two valued) evaluations v ∈ Ω∗,
i.e. evaluations v : A′ → {0, 1}, then ϕ ∈ E implies v((Bϕ)∗) = 1 and ϕ /∈ E implies
1 − v(∼(Bϕ)∗) = v((Bϕ)∗) = 0 or v(∼(Bϕ)∗) = 1.

Remark 5.1

Suppose E is a stable fuzzy expansion of {α} with α ∈ LB . By Definition 5.2 we thus
have that w((Bα)∗) = E(α) ≤ v(α∗) for all v, w ∈ Ω∗ such that w(α) = v(α) = 1
for all α ∈ T ∗ and w((Bϕ)∗) = v((Bϕ)∗) = E(ϕ) for all ϕ ∈ LB . Thus v((Bα)∗)
determines a lower bound on the truth degree of α∗.

We will now generalise Definitions 2.4 and 2.5 and show that the correspondence between
stable expansions and possible world autoepistemic models remains valid when generalising
to the many-valued case. First of all, we will generalise the Kripke style possible world
semantics for autoepistemic formulas.

Definition 5.3

Truth for fuzzy autoepistemic formulas is defined relative to structures (v, S) where
v ∈ Ω and S ⊆ Ω with Ω the set of all mappings w : A→ [0, 1] such that

• w(c) = c for truth constants in {c | c ∈ [0, 1] ∩Q}
• w(f(α1, . . . , αn)) = f(w(α1), . . . , w(αn)) for autoepistemic formulas α1, . . . , αn
and where f ∈ Fn is interpreted by f : [0, 1]n → [0, 1] with n ∈ N.

Truth evaluations for fuzzy autoepistemic formulas are then recursively defined as
follows:

• ‖a‖(v,S) = v(a) for a ∈ A,
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• ‖c‖(v,S) = c for truth constants in {c | c ∈ [0, 1] ∩Q},
• ‖Bα‖(v,S) = infw∈S ‖α‖(w,S) for a fuzzy autoepistemic formula α,
• ‖f(α1, . . . , αn)‖(v,S) = f(‖α1‖(v,S), . . . , ‖αn‖(v,S)) where f ∈ Fn is inter-

preted by f : [0, 1]n → [0, 1] with n ∈ N.

Remark 5.2

Note that the following are equivalent expressions for a formula α, c ∈ [0, 1] ∩ Q, a
residual implicator → and S ⊆ Ω:

∀v ∈ S : ‖Bα‖(v,S) ≥ c ⇔ ∀v ∈ S : infw∈S ‖α‖(w,S) ≥ c
⇔ ∀w ∈ S : ‖α‖(w,S) ≥ c
⇔ ∀w ∈ S : ‖c→ α‖(w,S) = 1
⇔ ∀v ∈ Ω : ‖B(c→ α)‖(v,S) = 1

Hence on the one hand, we believe α to degree c, and on the other hand, we have a
Boolean belief in the formula c→ α.

Remark 5.3

In possibilistic logic, the semantics are defined in terms of a possibility distribution
over propositional interpretations, i.e. by mappings π : P(A)→ [0, 1] where P(A) is
the set of all propositional interpretations over A (see also in Section 2.1). Such a
mapping encodes for each interpretation or possible world I ∈ P(A) to what extent it
is possible that it refers to the real world, or in other words, to what extent available
knowledge does not exclude I from being the real world.
Syntactically, a formula in possibilistic logic corresponds to a propositional formula,

encapsulated by a graded modality. In particular, formulas are of the form (α, λ),
with α a formula in classical propositional logic and λ ∈ [0, 1], with the intended
meaning that sup {π(I) | I does not model α} ≤ 1− λ.
Hence, there is a clear duality between the semantics of fuzzy autoepistemic logic

as we have defined it here and the semantics of possibilistic logic. Indeed, whereas
we have defined the semantics of fuzzy autoepistemic logic in terms of a classical set
of fuzzy interpretations in Ω, possibilistic logic is defined in terms of a fuzzy set of
classical interpretations in P(A). This duality also reflects the different way in which
the modality should be interpreted. In possibilistic logic, and in a number of graded
modal logics, the strength by which an agent believes a proposition can be expressed.
Degrees of belief are then used to express that some propositions are considered to
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be more plausible than others. In contrast, our approach does not deal with such
strengths of belief; believing a proposition α to degree λ is interpreted as a Boolean
belief in the proposition λ→ α, i.e. degrees of belief are used to express that some
propositions are true to a greater extent than others. Of course, one can also imagine
a logic based on fuzzy sets of fuzzy interpretations, as was proposed for example in
[Alsinet and Godo 2000].

Definition 5.4

A set S ⊆ Ω is a fuzzy possible world autoepistemic model of a fuzzy autoepistemic
theory T iff

S = {v ∈ Ω | ∀ϕ ∈ T : ‖ϕ‖(v,S) = 1}.

Similar as for classical autoepistemic logic (Definition 2.4), the set of possible worlds an
agent has is a fuzzy possible world autoepistemic model of T if it is exactly the set of
worlds in which all formulas in T are true.

Example 5.1

Consider the fuzzy autoepistemic theory

T = {∼Ba→ b,∼Bb→ a}

with a, b ∈ A and the negation ∼ and implication→ from Łukasiewicz logic (Section
2.2.3). Consider v ∈ Ω and S ⊆ Ω. For the first formula of T we have

‖∼Ba→ b‖(v,S) = 1 ⇔ ‖∼Ba‖(v,S) ≤ ‖b‖(v,S)

⇔ 1− ‖Ba‖(v,S) ≤ v(b)
⇔ 1− inf

w∈S
w(a) ≤ v(b)

⇔ 1− v(b) ≤ inf
w∈S

w(a)

By symmetry we also have ‖∼Bb → a‖(v,S) = 1 ⇔ 1 − v(a) ≤ infw∈S w(b). It
follows that if S is a fuzzy possible world autoepistemic model of T , then

S =
{
v ∈ Ω | 1− v(b) ≤ inf

w∈S
w(a) and 1− v(a) ≤ inf

w∈S
w(b)

}
.
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For such a set S, let x = infw∈S w(a) and y = infw∈S w(b). We show that y = 1−x.
For each w ∈ S, we have 1− w(b) ≤ x and thus

1− y = 1− inf
w∈S

w(b) = sup
w∈S

(1− w(b)) ≤ x.

Hence x+y ≥ 1. S contains all v ∈ Ω such that 1−v(b) ≤ x and 1−v(a) ≤ y, thus
there exists a v0 ∈ S with v0(a) = 1 − y. We obtain x = infw∈S w(a) ≤ v0(a) =
1− y, hence x+ y ≤ 1. From x+ y ≤ 1 and x+ y ≥ 1, it follows that x+ y = 1.
Thus, if S is a fuzzy possible world autoepistemic model of T , then

S = {v ∈ Ω | v(b) ≥ 1− x and v(a) ≥ x}

for some x ∈ [0, 1]. Moreover, we can prove that each set of this form is a fuzzy
possible world autoepistemic model of T , such that we can conclude that the fuzzy
possible world autoepistemic models of T are exactly all sets of this form. Indeed,
define for each x ∈ [0, 1]

Sx = {v ∈ Ω | v(b) ≥ 1− x and v(a) ≥ x} .

To conclude that Sx is a fuzzy possible world autoepistemic model of T , we consider
v ∈ Sx and observe that for all w ∈ Sx we have 1 − v(b) ≤ x ≤ w(a), thus
1− v(b) ≤ infw∈Sx

w(a). Similary, 1− v(a) ≤ infw∈Sx
w(b).

Definition 5.5

A mapping T : LB → [0, 1] is called the fuzzy belief set of S ⊆ Ω iff

T (ϕ) = inf
v∈S
‖ϕ‖(v,S) = ‖Bϕ‖(w,S),

for all ϕ ∈ LB with w ∈ Ω arbitrary. We will write Th(S) to denote this fuzzy set of
formulas.

The fuzzy belief set of S is thus a fuzzy set assigning to each formula ϕ a truth degree
which coincides with the truth value of Bϕ, i.e. the belief in the truth value of ϕ.
We now present some lemmas that will help us to prove generalisations of Propositions

2.1 and 2.2 in respectively Proposition 5.2 and 5.1. To prove Proposition 5.1 we will use
the result from Proposition 5.2. In these lemmas we will use the following notation. Since
A ⊆ A′ we can define restrictions for evaluations v ∈ Ω∗. We define by v|A the element
in Ω such that v|A(a) = v(a) for all a ∈ A.
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Lemma 5.1

Consider a set Q ⊆ Ω∗ such that for each v ∈ Q and ϕ ∈ LB we have that
v((Bϕ)∗) = infw∈Q w(ϕ∗). Then, for α ∈ LB , S =

{
v|A | v ∈ Q

}
⊆ Ω and v ∈ Q

we have

‖α‖(v|A,S) = v(α∗).

Proof. We will prove this lemma by induction on the structure of the formulas.

• If α is an objective formula, then we obtain ‖α‖(v|A,S) = v|A(α) = v(α∗).
• Consider the formula f(ϕ1, . . . , ϕn) such that ‖ϕi‖(w|A,S) = w(ϕ∗i ) for all w ∈ Q
and this for all i ∈ {1, . . . , n}. For v ∈ Q it then holds that

‖f(ϕ1, . . . , ϕn)‖(v|A,S) = f(‖ϕ1‖(v|A,S), . . . , ‖ϕn‖(v|A,S))
= f(v(ϕ∗1), . . . , v(ϕ∗n))
= v((f(ϕ1, . . . , ϕn))∗)

• Consider Bϕ such that ‖ϕ‖(w|A,S) = w(ϕ∗) for all w ∈ Q. We will now show that
‖Bϕ‖(v|A,S) = v(ϕ∗) for all v ∈ Q. For each v ∈ Q it holds by definition of Q and
by the induction hypothesis that

v((Bϕ)∗) = inf
w∈Q

w(ϕ∗) = inf
w∈Q
‖ϕ‖(w|A,S).

Finally by the definition of S and by Definition 5.3 we have

inf
w∈Q
‖ϕ‖(w|A,S) = inf

z∈S
‖ϕ‖(z,S) = ‖Bϕ‖(v|A,S).

Lemma 5.2

Consider a set S ⊆ Ω and an evaluation v ∈ Ω∗ such that for each ϕ ∈ LB it holds
that v((Bϕ)∗) = Th(S)(ϕ). Then, for α ∈ LB we have

‖α‖(v|A,S) = v(α∗).

Proof. We will prove this lemma by induction on the structure of the formulas.
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• If α is an objective formula, then we obtain ‖α‖(v|A,S) = v|A(α) = v(α∗).
• Consider the formula f(ϕ1, . . . , ϕn) such that ‖ϕi‖(v|A,S) = v(ϕ∗i ) for all i ∈
{1, . . . , n}. It follows that

‖f(ϕ1, . . . , ϕn)‖(v|A,S) = f(‖ϕ1‖(v|A,S), . . . , ‖ϕn‖(v|A,S))
= f(v(ϕ∗1), . . . , v(ϕ∗n))
= v((f(ϕ1, . . . , ϕn))∗)

• Consider Bϕ such that ‖ϕ‖(v|A,S) = v(ϕ∗). It follows that ‖Bϕ‖(v|A,S) = v((Bϕ)∗).
Indeed, by Definition 5.5, we have

v((Bϕ)∗) = Th(S)(ϕ) = ‖Bϕ‖(v|A,S).

Proposition 5.1

Consider a fuzzy autoepistemic theory T .

1. If E : LB → [0, 1] is a stable fuzzy expansion of T , then there exists a fuzzy
possible world autoepistemic model S of T such that E = Th(S).

2. If S ⊆ Ω is a fuzzy possible world autoepistemic model of T , then E = Th(S)
is a stable fuzzy expansion of T .

Proof. We prove both statements separately.

1. Suppose E is a stable fuzzy expansion of T . We define

Q = {v ∈ Ω∗ | ∀α ∈ T : v(α∗) = 1 and ∀ϕ ∈ LB : v((Bϕ)∗) = E(ϕ)}

and
S =

{
v|A | v ∈ Q

}
.

We prove that S is a fuzzy possible world autoepistemic model of T and that E =
Th(S). By Lemma 5.1 we have for α ∈ LB and v ∈ Q that

‖α‖(v|A,S) = v(α∗).

We can now prove that S is a fuzzy possible world autoepistemic model of T . For
w ∈ S we have that w = v|A for some v ∈ Q. For every ϕ ∈ T it then holds that

‖ϕ‖(w,S) = ‖ϕ‖(v|A,S) = v(ϕ∗) = 1,
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where the last equality follows from the fact that ϕ ∈ T . We have now shown

S ⊆
{
w ∈ Ω | ∀ϕ ∈ T : ‖ϕ‖(w,S) = 1

}
.

For the converse inclusion, consider an interpretation w ∈ Ω such that ‖ϕ‖(w,S) = 1
for all ϕ ∈ T . We will now construct v ∈ Q such that v|A = w. For a ∈ A, we
define v(a) = w(a) and for a formula α ∈ LB , we define v((Bα)∗) = E(α). It is
then clear that v|A = w. By Lemma 5.1 it follows that for each α ∈ T we have
v(α∗) = ‖α‖(v|A,S) = ‖α‖(w,S) = 1. It follows that v ∈ Q and hence

S =
{
w ∈ Ω | ∀ϕ ∈ T : ‖ϕ‖(w,S) = 1

}
.

Finally, we prove that E(α) = Th(S)(α) for each formula α ∈ LB . For every v ∈ Q
we have by definition that E(α) = v((Bα)∗) and by Lemma 5.1 that v((Bα)∗) =
‖Bα‖(v|A,S). We also have ‖Bα‖(v|A,S) = Th(S)(α). We conclude

E(α) = Th(S)(α).

2. Now suppose we have a fuzzy possible world autoepistemic model S of T . For each
formula α ∈ LB , we define E(α) as follows

E(α) = inf
v∈M

v(α∗),

with

M =
{
v ∈ Ω∗ | v|A ∈ S and ∀ϕ ∈ LB : v((Bϕ)∗) = Th(S)(ϕ)

}
.

We show that E = Th(S) and that E is a stable fuzzy expansion of T . By Lemma
5.2, it follows that for v ∈M and α ∈ LB

‖α‖(v|A,S) = v(α∗).

Note that, similar as earlier in the proof, for each w ∈ S we can find v ∈ M such
that v|A = w. Thus by definition of M we have S =

{
v|A | v ∈M

}
. These two

observations lead to the equality E = Th(S). Indeed, for α ∈ LB , we have

Th(S)(α) = inf
w∈S
‖α‖(w,S) = inf

v∈M
‖α‖(v|A,S) = inf

v∈M
v(α∗) = E(α).

To see that E is a stable fuzzy expansion of T , it is sufficient to prove that M is
equal to

Q = {v ∈ Ω∗ | ∀α ∈ T : v(α∗) = 1 and ∀ϕ ∈ LB : v((Bϕ)∗) = E(ϕ)} .
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First, we show M ⊆ Q. Let v ∈ M . By Lemma 5.2, it follows that for α ∈ T we
have v(α∗) = ‖α‖(v|A,S) = 1, where the last equality holds since S is a fuzzy possible
world autoepistemic model of T . It remains to be shown that v((Bϕ)∗) = E(ϕ) for
each ϕ ∈ LB . This follows easily:

E(ϕ) = Th(S)(ϕ) = ‖Bϕ‖(v|A,S) = v((Bϕ)∗),

where the last equality follows from Lemma 5.2.
To conclude the proof, we show that Q ⊆M . From E = Th(S) it follows that

Q ⊆ {v ∈ Ω∗ | ∀ϕ ∈ LB : v((Bϕ)∗) = Th(S)(ϕ)} .

To show that Q ⊆M , it is sufficient to show that for v ∈ Q it holds that v|A ∈ S.
From Lemma 5.2 and the fact that v(α∗) = 1 for all α ∈ T , we have that

‖α‖(v|A,S) = v(α∗) = 1,

for α ∈ T . This means that v|A ∈ S since S is a fuzzy possible world autoepistemic
model of T .

Example 5.2

Reconsider the fuzzy autoepistemic theory

T = {∼Ba→ b,∼Bb→ a}

from Example 5.1. All fuzzy possible world autoepistemic models are of the form

Sx = {v ∈ Ω | v(b) ≥ 1− x and v(a) ≥ x} ,

with x ∈ [0, 1]. Hence, all stable fuzzy expansions of T are of the form Ex with x ∈
[0, 1] defined by Ex(a) = Th(Sx)(a) = infv∈Sx

v(a) = x and Ex(b) = Th(Sx)(b) =
infv∈Sx

v(b) = 1− x.

Proposition 5.2

Every set of objective formulas in LB has a unique stable fuzzy expansion.
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Proof. By Definition 5.4, S is a fuzzy possible world autoepistemic model S of T iff

S =
{
v ∈ Ω | ∀ϕ ∈ T : ‖ϕ‖(v,S) = 1

}
.

Since T only contains objective formulas, we have for all ϕ ∈ T that ‖ϕ‖(v,S) = v(ϕ).
Thus

S = {v ∈ Ω | ∀ϕ ∈ T : v(ϕ) = 1}

is the unique fuzzy possible world autoepistemic model of T . By Proposition 5.1 there is
exactly one stable fuzzy expansion.

Remark 5.4

Every inconsistent set of objective formulas has the empty set as a unique fuzzy
possible world autoepistemic model. Indeed, suppose T is an objective fuzzy autoep-
istemic theory, such that T contains α and ∼α with α an objective formula and ∼
interpreted by a negator. By Proposition 5.2, it follows that T has a unique fuzzy
possible world autoepistemic model S. It follows that

S = {v ∈ Ω | ∀ϕ ∈ T : v(ϕ) = 1} = ∅.

5.3 Motivating example
In this section we will revisit the sensor network example from Section 3.3.1. Recall that
we have a wireless sensor network consisting of a set of devices that can sense their
environment and communicate wirelessly. Suppose this network contains n sensors and
for each sensor i (i ∈ {1, . . . , n}), we denote the exact temperature at its location as the
variable ti and the measured temperature as the truth value t′i ∈ [0, 1]∩Q. As in Section
3.3.1, a weighted graph is defined as follows. The vertices are the sensors and there is an
edge between the vertices corresponding to sensor i and sensor j with weight wij ∈ [0, 1]∩Q
if we can reasonably assume, based on the locations of sensors i and j, that the temperature
difference |t′i − t′j | between these locations should be at most wij . We will now present
two strategies to determine bounds on the actual temperatures, given the values wij
and t′i (i, j ∈ {1, . . . , n}). We will use the connectives from Łukasiewicz logic and the
Rescher implicator →R which is defined as ‖α →R β‖(v,S) = 1 if ‖α‖(v,S) ≤ ‖β‖(v,S)
and ‖α →R β‖(v,S) = 0 otherwise for α, β ∈ LB and v ∈ Ω, S ⊆ Ω.
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5.3.1 Is the sensor broken or not?
First we suppose the variable bi represents the Boolean property “sensor i is broken”.
The formula bi ∨ ∼bi can be used to impose that the truth value of bi is a binary value.
Indeed, for a structure (v, S) we have ‖bi ∨ ∼bi‖(v,S) = 1 iff max(v(bi), 1 − v(bi)) = 1
iff v(bi) ∈ {0, 1}. An alternative way of imposing that bi is Boolean is to use the formula
bi ⊕ bi → bi which can again only be satisfied if v(bi) ∈ {0, 1}. If bi has truth value
1, it means that sensor i is broken. If it has truth value 0, the sensor works normally.
Suppose that each sensor can only display a temperature in [0, 1] ∩ Q with a limited
granularity of one decimal but we have no idea how the grounding of decimal numbers
is defined. And that for a sensor that is not broken the maximum measurement error is
0.01. If for example the actual temperature is ti = 0.095 and the sensor is not broken,
then the measured temperature will be between 0.085 and 0.105. Since we do not know
how the grounding works it is possible that the displayed temperature t′i is equal to 0, 0.1
or 0.2. In formulas (2)-(9) we will provide bounds on the actual temperatures that are
large enough to take into account all possible scenarios. We can now write the following
formulas with i, j ∈ {1, . . . , n}:

(1) bi ∨ ∼bi

(2) (0.2→R t′i)→ (Bbi ⊕ (0.09→R ti))

(3) (0.3→R t′i)→ (Bbi ⊕ (0.19→R ti))

(4) . . .

(5) (1→R t′i)→ (Bbi ⊕ (0.89→R ti))

(6) (t′i →R 0)→ (Bbi ⊕ (ti →R 0.11))

(7) (t′i →R 0.1)→ (Bbi ⊕ (ti →R 0.21))

(8) . . .

(9) (t′i →R 0.8)→ (Bbi ⊕ (ti →R 0.91))

(10) Bij → (bi ⊕ bj)

(11) ∼Bbi → ∼bi

Formulas (2) to (9) define the relationship between the measured and the actual tem-
perature based on what is believed about sensors being broken or not and taking into
account the granularity and the maximum measurement error. For instance, suppose you
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believe that sensor i is not broken and it is given that t′i = 0.4. This means that there
is a structure (v, S) such that ‖Bbi‖(v,S) = 0 and v(t′i) = 0.4. Formulas (2) to (5) then
impose that 0.29 ≤ v(ti) and formulas (6) to (9) that v(ti) ≤ 0.51. If you believe that
sensor i is broken, you cannot conclude anything about ti.
In formula (10), the truth constant Bij is a short notation for wij →R ∼(t′i ↔ t′j). Thus

‖Bij‖(v,S) = 1 iff wij ≤ |t′i − t′j |.

The formula imposes that if the difference between t′i and t′j is too large with respect to
the weight wij , then at least one of the sensors must be broken. Formula (11) captures
the connection between broken sensors and what you believe about them. It is needed to
ensure that a sufficient number of sensors is believed to be broken, which in turn ensures
that we do not derive more about the actual temperatures ti than is warranted. In other
words, (11) enforces some form of minimality. It also ensures that we obtain a minimal
set of broken sensors.
Consider as a concrete example a forest with three sensors. Suppose we have t′1 = 0.4,
t′2 = 0.9 and t′3 = 0.5 and w1,2 = 0.2, w1,3 = 0.2 and w2,3 = 0.2.
We obtain the following degrees of similarity. For an arbitrary structure (v, S) we have

• ‖t′1 ↔ t′2‖(v,S) = 0.5
• ‖t′1 ↔ t′3‖(v,S) = 0.9
• ‖t′2 ↔ t′3‖(v,S) = 0.6

For a structure (v, S) to model formulas (10) and (11) for each sensor i, it must hold that

(a) 1 ≤ v(b1) + v(b2)

(b) 1 ≤ v(b2) + v(b3)

(c) v(b1) ≤ ‖Bb1‖(v,S)

(d) v(b2) ≤ ‖Bb2‖(v,S)

(e) v(b3) ≤ ‖Bb3‖(v,S)

Suppose we want to find a fuzzy possible world autoepistemic model S ⊆ Ω of the set T
consisting of formulas (1)-(11) for all sensors i. If there exists such a set S, then we have

S = {v ∈ Ω | ∀α ∈ T : ‖α‖(v,S) = 1}.

Every v ∈ S should satisfy inequalities (c)-(e) which implies that v(bi) ≤ infz∈S z(bi) ≤
v(bi) and hence that v(bi) = infz∈S z(bi). It follows that there is a unique evaluation
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v ∈ S. Moreover it is a minimal evaluation such that inequalities (a) and (b) are satisfied.
Indeed, take w /∈ S = {v} such that w < v, 1 ≤ w(b1) + w(b2) and 1 ≤ w(b2) + w(b3).
Then we have have

w(bi) < v(bi) = inf
z∈S

z(bi) = ‖Bbi‖(w,S)

This is a contradiction since v was the unique evaluation satisfying (c)-(e). It follows that
there are at most 2 fuzzy possible world autoepistemic models, one in which v(b1) = 0,
v(b2) = 1 and v(b3) = 0. And another in which v(b1) = 1, v(b2) = 0 and v(b3) = 1.
Finally, by including the formulas (2)-(9), we get two sets S1 and S2:

S1 = {v ∈ Ω | v(b1) = 0, v(b2) = 1, v(b3) = 0,

0.29 ≤ v(t1) ≤ 0.51, 0 ≤ v(t2) ≤ 1 and 0.39 ≤ v(t3) ≤ 0.61}

and
S2 = {v ∈ Ω | v(b1) = 1, v(b2) = 0, v(b3) = 1,

0 ≤ v(t1) ≤ 1, 0.79 ≤ v(t2) ≤ 1 and 0 ≤ v(t3) ≤ 1} .

Using Definition 5.4, one can show that S1 and S2 are indeed fuzzy possible world autoep-
istemic models of T . These are the only fuzzy possible world autoepistemic models of T .
In S1 we have the model in which sensor 2 is broken and the others are not. There

are lower and upper bounds given for the temperatures ti. In S2 we have the case in
which sensors 1 and 3 are broken and sensor 2 is not. Corresponding intervals for the
temperatures are given. There are no other possibilities since S1 and S2 are the unique
fuzzy possible world autoepistemic models of T .

5.3.2 How big is the error on the measurement?
Now we suppose that the variable ei represents the error in [0, 1] on the temperature
measured by sensor i. We can then write the following formulas with i, j ∈ {1, . . . , n}:

(1) t′i → (Bei ⊕ ti)

(2) ∼t′i → (Bei ⊕∼ti)

(3) Eij → (ei ⊕ ej)

(4) ∼Bei → ∼ei
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Formulas (1) and (2) define the relationship between the measured and the actual temper-
ature. For a structure (v, S) we have that v(t′i)−‖Bei‖(v,S) ≤ v(ti) ≤ v(t′i)+‖Bei‖(v,S).
In formula (3), Eij is a short notation for ∼(t′i ↔ t′j) ⊗ ∼wij . Thus

‖Eij‖(v,S) = max(v(∼(t′i ↔ t′j))− v(wij), 0) = max(|t′i − t′j | − wij , 0).

Formula (3) thus imposes that if the difference between t′i and t′j is too big with respect
to the weight wij , then there must be something wrong with the sensors. The size of the
error depends on how big the difference between t′i and t′j is.
Reconsider the previous example: t′1 = 0.4, t′2 = 0.9 and t′3 = 0.5 and w1,2 = 0.2,
w1,3 = 0.2 and w2,3 = 0.2.
For a structure (v, S) to model formulas (3) and (4) for each sensor i, it must hold that

(a) 0.3 ≤ v(e1) + v(e2)
(b) 0.2 ≤ v(e2) + v(e3)
(c) v(e1) ≤ ‖Be1‖(v,S)
(d) v(e2) ≤ ‖Be2‖(v,S)
(e) v(e3) ≤ ‖Be3‖(v,S)

Suppose we want to find a fuzzy possible world autoepistemic model S ⊆ Ω of the set T
consisting of formulas (1)-(4) for all sensors i. If there exists such a set S, then we have

S = {v ∈ Ω | ∀α ∈ T : ‖α‖(v,S) = 1}.

As before since every v ∈ S should satisfy inequalities (c)-(e), it follows that there is a
unique evaluation v ∈ S. Moreover it is a minimal evaluation such that inequalities (a)
and (b) are satisfied.
There are infinitely many fuzzy possible world autoepistemic models S, i.e. there are

infinitely many possibilities how the total error can be “divided” among the sensors. How-
ever, we know by the minimality of v ∈ S that v(e1) must be less than or equal to 0.3,
and v(e3) less than or equal to 0.2.
Let us consider some examples.

S1 = {v ∈ Ω | v(e1) = 0.01, v(e2) = 0.29, v(e3) = 0,

0.39 ≤ v(t1) ≤ 0.41, 0.6 ≤ v(t2) ≤ 1 and v(t3) = 0.5}
and

S2 = {v ∈ Ω | v(e1) = 0.29, v(e2) = 0.01, v(e3) = 0.19,
0.11 ≤ v(t1) ≤ 0.69, 0.89 ≤ v(t2) ≤ 0.91 and 0.31 ≤ v(t3) ≤ 0.69} .

For all such scenarios, exact errors on the measurement for each sensor and corresponding
intervals for the temperature are given.
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5.4 Relation between regular normal FASP and fuzzy
autoepistemic logic

We will now show that the important relation between autoepistemic logic and ASP (The-
orem 3.1) is preserved: fuzzy autoepistemic logic generalises regular normal FASP. By
Lemmas 4.1 and 4.2 we can restrict ourselves without loss of generality to regular normal
FASP programs without constraints and without strong negation. Hence we are interested
in programs P in which each rule is of the form

r : a← f(b1, . . . , bm,not1 c1, . . . ,notk ck),

with a an atom, bi, cj atoms and/or truth constants (i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}) and
f an (m + k)-ary connective such that the corresponding function f : [0, 1]m+k → [0, 1]
is increasing in each of its arguments and where ← is interpreted by a residual implicator
IT . The negation-as-failure operators notj are interpreted by negators Nj .
We use a similar transformation as for normal ASP. For rule r we define the associated

fuzzy autoepistemic formula λ(r) as

f(b1, . . . , bm,∼1Bc1, . . .∼kBck)→ a,

where ∼j is the negation that is interpreted by the same negator Nj as for notj. The
resulting fuzzy autoepistemic theory is λ(P ) = {λ(r) | r ∈ P}. We will show in Theorem
5.1 that the stable fuzzy expansions of λ(P ) correspond to the answer sets of P . First
we provide a lemma that characterises the relationship between stable fuzzy expansions of
λ(P ) and stable fuzzy expansions of the autoepistemic theory corresponding to a specific
reduct of the program P .

Lemma 5.3

Consider a mapping E : LB → [0, 1] such that E(x) ∈ Q for all x ∈ BP and a regular
normal FASP program P without constraints and without strong negation. Then E
is a stable fuzzy expansion of λ(P ) iff E is a stable fuzzy expansion of λ(P Ê) with
Ê ∈ F(BP ) such that Ê(x) = E(x) for all x ∈ BP .

Proof. We need to prove that for each φ ∈ LB it holds that

inf {v(φ∗) | v ∈ Ω∗,∀α ∈ λ(P ) : v(α∗) = 1 and ∀ϕ ∈ LB : v((Bϕ)∗) = E(ϕ)}
= inf

{
v(φ∗) | v ∈ Ω∗,∀α ∈ λ(P Ê) : v(α∗) = 1 and ∀ϕ ∈ LB : v((Bϕ)∗) = E(ϕ)

}
.
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We will show this by proving that v(α∗) = 1 for all α ∈ λ(P ) iff v(α∗) = 1 for all
α ∈ λ(P Ê) as soon as v((Bϕ)∗) = E(ϕ) for all ϕ ∈ LB . We will show this by proving
that for each

r : a← f(b1, . . . , bm,not1 c1, . . . ,notk ck)

in P we have
v ((λ(r))∗) = v

(
(λ(rÊ))∗

)
for all mappings v ∈ Ω∗ for which it holds that v((Bϕ)∗) = E(ϕ) for all ϕ ∈ LB . Indeed,
for such a mapping v, an atom a and a negator N (with corresponding negation-as-failure
operator not) we have

[not a]Ê = N(Ê(a)) = N(E(a)) = N(v((Ba)∗)) = N(v(pBa))

and we obtain

v
(

(λ(rÊ))∗
)

= v
(
f(b1, . . . , bm, [not1 c1]Ê , . . . , [notk ck]Ê)→ a

)
= IT

(
f(v(b1), . . . , v(bm), [not1 c1]Ê , . . . , [notk ck]Ê), v(a)

)
= IT

(
f(v(b1), . . . , v(bm), N1(v(pBc1)), . . . , Nk(v(pBck

)), v(a)
)

= v (f(b1, . . . , bm,∼1pBc1 , . . . ,∼kpBck
)→ a)

= v ((λ(r))∗)

Now we can prove the generalisation of Theorem 3.1.

Theorem 5.1

Consider a regular normal FASP program P without constraints and without strong
negation and M ∈ F(BP ). M is an answer set of P iff λ(P ) has a stable fuzzy
expansion E : LB → [0, 1] such that E(a) = M(a) for all a ∈ BP .

Proof. (⇒) First suppose M is an answer set of P . Since PM is a regular simple FASP
program, M is the unique minimal fuzzy model of PM . Since λ(PM ) is a set of
objective formulas, by Proposition 5.2 it has exactly one stable fuzzy expansion E.
By Proposition 5.1 we know that E = Th(S) with S the unique fuzzy possible world
autoepistemic model of λ(PM ):

S =
{
v ∈ Ω | ∀α ∈ λ(PM ) : ‖α‖(v,S) = 1

}
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=
{
v ∈ Ω | ∀α ∈ λ(PM ) : v(α) = 1

}
.

Note that, since PM does not contain negation-as-failure, the mapping vM ∈ Ω
such that vM (a) = M(a) for all a ∈ BP and vM (a) = 0 otherwise, is an element of
S. Since M is the unique minimal fuzzy model of PM , it must hold that vM is the
unique minimal element in S and hence that

E(a) = Th(S)(a) = inf
v∈S

v(a) = vM (a) = M(a)

for all a ∈ BP .

(⇐) Now suppose that λ(P ) has a stable fuzzy expansion E such that M(a) = E(a)
for all a ∈ BP . We show that M is an answer set of P . Since PM is a regular
simple FASP program it has a unique minimal model I. We show that M equals I.
Consider the following set of evaluations.

Q =
{
v ∈ Ω | ∀α ∈ λ(PM ) : v(α) = 1

}
=
{
v ∈ Ω | ∀α ∈ λ(PM ) : ‖α‖(v,Q) = 1

}
.

where the last equality follows from that fact that λ(PM ) is a set of objective
formulas. Note that vI ∈ Ω with vI(a) = I(a) for all a ∈ BP and vI(a) = 0
otherwise is the unique minimal element of Q since PM is a regular simple FASP
program. Hence it remains to be shown that vI(a) = M(a) for all a ∈ BP . By
Lemma 5.3 we know that E is a stable fuzzy expansion of λ(PM ). This implies by
Proposition 5.1 that E = Th(Q) which finishes the proof:

M(a) = E(a) = Th(Q)(a) = inf
z∈Q

z(a) = vI(a).

Example 5.3

Consider the following regular normal FASP program P under Łukasiewicz semantics
from Example 3.12:

b ← not a
a ← not b

We compute the answer sets by using the characterisation from Theorem 5.1. We
compute the stable fuzzy expansions of

λ(P ) = {∼Ba→ b,∼Bb→ a}

140



5.5. RELATION BETWEEN REGULAR FASP AND FUZZY AUTOEPISTEMIC LOGIC

with ∼ the Łukasiewicz negation. Note that this is the fuzzy autoepistemic theory T
we encountered in Examples 5.1 and 5.2. All stable fuzzy expansions of T are thus of
the form Ex with x ∈ [0, 1] such that Ex(a) = x, Ex(b) = 1− x. Hence all answer
sets are of the formMx with x ∈ [0, 1]∩Q such thatMx(a) = x andMx(b) = 1−x.
Note that for x = 0 and x = 1 we get the answer sets from Example 3.5.

Remark 5.5

Theorem 5.1 cannot be generalised to programs in which more complex formulas
are allowed in heads of rules. For example, consider the regular FASP program P

containing the single rule
a⊕ b← 1

with a and b atoms and ⊕ and ← connectives from Łukasiewicz logic. The corres-
ponding fuzzy autoepistemic theory would be

λ(P ) =
{

1→ a⊕ b
}
.

All formulas in λ(P ) are objective, thus by Proposition 5.2, λ(P ) has only 1 stable
fuzzy expansion. The program P however has infinitely many answer sets: for x ∈
[0, 1]∩Q, one can easily verify thatMx(a) = x andMx(b) = 1−x defines an answer
set of P .
In Section 5.5 however, we will show that regular FASP can be embedded in fuzzy

autoepistemic logic. We will return to this example in Example 5.4.

5.5 Relation between regular FASP and fuzzy autoep-
istemic logic

In this section we will investigate the relationship between regular FASP, the fuzzy logic
of minimal belief and negation-as-failure (FMBNF) which we will define in Section 5.5.2
and fuzzy autoepistemic logic which we introduced in Section 5.2. In particular, in Section
5.5.3 we will show how the answer sets of a regular FASP program correspond to the
models of a corresponding FMBNF theory. In Section 5.5.4, we will then use this result
to embed regular FASP in fuzzy autoepistemic logic.
By Lemma 4.1, we can restrict ourselves to regular FASP programs without strong neg-

ation. Hence we are interested in programs in which each rule is of the form

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck),
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with ai, bj , cl atoms and/or truth constants corresponding to truth values in [0, 1]∩Q with
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . , k}. The function g is a prefixnotation for
an n-ary connective and f represents an (m+k)-ary connective corresponding to increasing
functions g : [0, 1]n → [0, 1] and f : [0, 1]m+k → [0, 1]. The negation-as-failure operators
notl correspond to negators NL and ← corresponds to some residual implicator IT .
First we provide some background on the classical logic of minimal belief and negation-

as-failure.

5.5.1 Logic of minimal belief and negation-as-failure (MBNF)
Lin and Shoham [Lin and Shoham 1992] defined a propositional nonmonotonic logic which
uses two independent modal operators. One of them represents minimal belief and the
other is related to the ideas of justification and of negation-as-failure. In this manuscript
we consider a special case of this system: the logic of minimal belief and negation-as-failure
(MBNF) [Lifschitz 1994]. It extends the logic of grounded knowledge of Lin and Shoham
[Lin and Shoham 1992] with the theories of epistemic queries by Levesque [Levesque
1984] and Reiter [Reiter 1991].
Formulas of the propositional logic of MBNF are built from a countable set of atoms
A, the constants true and false, the standard propositional connectives and two modal
operators B and “not”. If a formula contains neither B nor “not” it is called objective.
Truth is defined relative to a triple (I, Sb, Sn) with I ∈ P(A), Sb ⊆ P(A) and Sn ⊆
P(A). Sb is the set of interpretations for defining the meaning of the operator B and Sn
for “not”. If a formula is true in each interpretation in Sb, it is believed by the agent. If
there exists an interpretation in Sn in which a formula is not true, then the agent does not
believe it. Using this intuition, then in autoepistemic logic the sets Sn and Sb coincide.
Note that for MBNF there is not necessarily a relation between Sb and Sn. This implies
that there can exist formulas the agent believes and does not believe at the same time.
The interpretation of formulas is defined as follows:

• (I, Sb, Sn) |= p iff p ∈ I
• (I, Sb, Sn) |= 0 iff 0 ∈ I
• (I, Sb, Sn) |= (α→ β) iff (I, Sb, Sn) 2 α or (I, Sb, Sn) |= β

• (I, Sb, Sn) |= Bα iff for every J ∈ Sb it holds that (J, Sb, Sn) |= α

• (I, Sb, Sn) |= notα iff for some J ∈ Sn it holds that (J, Sb, Sn) 2 α

for p ∈ A and formulas α and β.
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Definition 5.6

Consider I ∈ P(A), S ⊆ P(A) and a MBNF theory T . The structure (I, S) is a
MBNF model of T iff

1. for each α ∈ T : (I, S, S) |= α and

2. there is no structure (I ′, S′) such that S ⊂ S′ and (I ′, S′, S) |= α for all
α ∈ T .

The maximality of S in Definition 5.6 expresses the idea of minimal belief: if the set
of possible worlds is larger, then fewer propositions are believed. As pointed out in [Lin
and Shoham 1992], minimizing knowledge is not sufficient to model a rational agent’s
knowledge or beliefs. Intuitively, the agent’s conclusions based on negation-as-failure
should be supported by his knowledge.
Disjunctive ASP programs can be simulated by theories in MBNF. For each rule

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

in a disjunctive ASP program P , the formula µ(r)

Bb1 ∧ . . . ∧ Bbm ∧ not c1 ∧ . . . ∧ not ck → Ba1 ∨ . . . ∨ Ban

is added to the theory µ(P ) in MBNF. Lifschitz [Lifschitz 1994] showed the following
theorem with Mod(M) = {I ∈ P(A) | M ⊆ I} for an interpretation M ∈ P(A).

Theorem 5.2: [Lifschitz 1994]

Consider a disjunctive ASP program P and M ∈ P(LP ). M is an answer set of
P iff there exists a structure (I, S) which is a MBNF model of µ(P ) such that
S = Mod(M).

Note that in Theorem 5.2, the interpretation I is arbitrary. This follows easily from the
fact that all occurrences of literals in µ(P ) are encapsulated by either B or “not”. Using
Theorem 5.2, Lifschitz and Schwarz [Lifschitz and Schwarz 1993], showed Theorem 3.2,
i.e. that disjunctive ASP programs can also be modelled in autoepistemic logic.

5.5.2 Fuzzy logic of minimal belief and negation-as-failure (FMBNF)
In this section we will generalise the definitions from Section 5.5.1 and use these to establish
the relationship between regular FASP and fuzzy autoepistemic logic in Section 5.5.4. The
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language of fuzzy logic of minimal belief and negation-as-failure (FMBNF) is recursively
defined as follows

• a ∈ A is a formula.
• c with c ∈ [0, 1] ∩Q is a formula.
• If α is a formula, then Bα is a formula.
• If α is a formula, then notj α is a formula (for j ∈ J).
• If α1, . . . , αn are formulas, then f(α1, . . . , αn) is a formula for every f ∈ Fn with
n ∈ N.

A theory in FMBNF is a set of formulas in FMBNF. If a formula contains neither B nor
notj it is called objective. The semantics are defined relative to triples (v, Sb, Sn) with
v ∈ Ω, Sb ⊆ Ω and Sn ⊆ Ω. Sb is the set of evaluations for defining the meaning of B
and Sn for the operators notj. The evaluation of formulas is defined as follows:

• ‖p‖(v,Sb,Sn) = v(p)
• ‖c‖(v,Sb,Sn) = c

• ‖Bα‖(v,Sb,Sn) = infw∈Sb ‖α‖(w,Sb,Sn)
• ‖notj α‖(v,Sb,Sn) = Nj

(
infw∈Sn ‖α‖(w,Sb,Sn)

)
, where notj is interpreted by the

negator Nj
• ‖f(α1, . . . , αn)‖(v,Sb,Sn) = f(‖α1‖(v,Sb,Sn), . . . , ‖αn‖(v,Sb,Sn)) where f is inter-

preted by f : [0, 1]n → [0, 1]

for p ∈ A, c ∈ [0, 1] ∩ Q, formulas α, α1, . . . , αn and a connective f ∈ Fn.

Definition 5.7

Consider v ∈ Ω and S ⊆ Ω. The structure (v, S) is a FMBNF model of a theory T
in FMBNF iff

1. for each α ∈ T : ‖α‖(v,S,S) = 1 and

2. there is no structure (v′, S′) such that S ⊂ S′ and ‖α‖(v′,S′,S) = 1 for all
α ∈ T .

For a mapping v ∈ Ω, we define Mod(v) as the set of all mappings w ∈ Ω such that
v(a) ≤ w(a) for all a ∈ A, i.e. v ≤ w. With this definition, we have the following property.

Lemma 5.4
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Consider v, v′ ∈ Ω. Then v ≤ v′ iff Mod(v′) ⊆ Mod(v).

Proof. First suppose that v ≤ v′, we show that Mod(v′) ⊆ Mod(v). Let w′ ∈ Mod(v′),
then v ≤ v′ ≤ w′, i.e. w′ ∈ Mod(v). Now suppose that Mod(v′) ⊆ Mod(v), we show that
v ≤ v′. This follows easily since it holds that v′ ≤ v′ and thus v′ ∈ Mod(v′) ⊆ Mod(v),
i.e. v ≤ v′.

One can now easily see that the following lemma must hold.

Lemma 5.5

Consider v, v′ ∈ Ω. Then v < v′ iff Mod(v′) ⊂ Mod(v).

Proof. First suppose that v < v′, we show that Mod(v′) ⊂ Mod(v). By Lemma 5.4 it
follows that Mod(v′) ⊆ Mod(v). Now suppose that Mod(v′) = Mod(v), then in particular
we have Mod(v) ⊆ Mod(v′) and by Lemma 5.4 it follows that v′ ≤ v, a contradiction.
Next, suppose that Mod(v′) ⊂ Mod(v), we show that v < v′. By Lemma 5.4 it follows
that v ≤ v′. Now suppose that v = v′, then in particular we have v′ ≤ v and by Lemma
5.4 it follows that Mod(v) ⊆ Mod(v′), a contradiction.

Remark 5.6

For fuzzy interpretations I ∈ F(BP ) one can also define Mod(I) since BP ⊆ A.
Indeed, let Mod(I) = Mod(vI) with vI ∈ Ω defined as follows: vI(x) = I(x) if
x ∈ BP and vI(x) = 0 if x /∈ BP . Lemma 5.5 then also holds for I ∈ F(BP ).

5.5.3 Embedding regular FASP in FMBNF
First, we investigate the relationship between FMBNF and regular FASP. A regular FASP
program is translated to a theory in FMBNF as follows. Consider a regular FASP program
P . By Lemma 4.1 we may assume without loss of generality that P does not contain
strong negation. For each rule

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck),
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the formula µ(r)

f(Bb1, . . . ,Bbm,not1 c1, . . . ,notk ck)→ g(Ba1, . . . ,Ban)

is added to the theory µ(P ) in FMBNF.
To prove the correspondence between the answer sets of P and the models of µ(P ),

we define for a regular FASP program P and a fuzzy interpretation M ∈ F(BP ), a set
of evaluations Π(P,M) ⊆ Ω.

Definition 5.8

Consider a regular FASP program P without strong negation and M ∈ F(BP ).
Define

πMP = {w ∈ Ω | ∀α ∈ µ(P ),∀v ∈ Ω : ‖α‖(v,Mod(w),Mod(M)) = 1}

and
Π(P,M) = {w ∈ Ω | w is a minimal element of πMP }.

Note that πMP may not contain any minimal elements, and may even be empty. Also,
note that in Definition 5.8, since all atoms in µ(P ) are preceded by a modal operator, the
choice of the evaluation v is irrelevant.

Lemma 5.6

Consider a regular FASP program P without strong negation and without negation-
as-failure and M ∈ F(BP ). Suppose I ∈ F(BP ), then vI ∈ Π(P,M) iff I is an
answer set of P .

Proof. We need to prove that {I ∈ F(BP ) | vI ∈ Π(P,M)} is exactly the set of the
minimal elements of {I ∈ F(BP ) | I fuzzy model of P}. It is thus sufficient to prove that
vI ∈ πMP iff I is a fuzzy model of P .
A rule r in P is of the form

r : g(a1, . . . , an)← f(b1, . . . , bm).

Note that for I ∈ F(BP ) we have I(a) = infK∈Mod(I)K(a) for each a ∈ BP . We then
obtain

I fuzzy model of P
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⇔ ∀r ∈ P : f(I(b1), . . . , I(bm)) ≤ g(I(a1), . . . , I(an))
⇔ ∀r ∈ P : f( inf

K∈Mod(I)
K(b1), . . . , inf

K∈Mod(I)
K(bm))

≤ g( inf
K∈Mod(I)

K(a1), . . . , inf
K∈Mod(I)

K(an))

⇔ ∀r ∈ P,∀v ∈ Ω :
f(‖Bb1‖(v,Mod(I),Mod(M)), . . . , ‖Bbm‖(v,Mod(I),Mod(M)))
≤ g(‖Ba1‖(v,Mod(I),Mod(M)), . . . , ‖Ban‖(v,Mod(I),Mod(M)))

⇔ ∀r ∈ P,∀v ∈ Ω :
‖f(Bb1, . . . ,Bbm)→ g(Ba1, . . . ,Ban)‖(v,Mod(I),Mod(M)) = 1

⇔ ∀α ∈ µ(P ),∀v ∈ Ω : ‖α‖(v,Mod(I),Mod(M)) = 1
⇔ vI ∈ πMP

For a regular FASP program without strong negation we have the following result:

Lemma 5.7

Consider a regular FASP program without strong negation P and I,M ∈ F(BP ).
Then

vI ∈ Π(PM ,M) iff vI ∈ Π(P,M).

Proof. By Definition 5.8, it is sufficient to check that for I ∈ BP :

∀α ∈ µ(P ),∀v ∈ Ω : ‖α‖(v,Mod(I),Mod(M)) = 1

is equivalent with

∀α ∈ µ(PM ),∀v ∈ Ω : ‖α‖(v,Mod(I),Mod(M)) = 1

Hence for a rule in P

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck)

it is sufficient to prove that for each v ∈ Ω we have

‖µ(r)‖(v,Mod(I),Mod(M)) = 1⇔ ‖µ(rM )‖(v,Mod(I),Mod(M)) = 1.
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Or, in other words, it has to be shown that

f(‖Bb1‖(v,Mod(I),Mod(M)), . . . , ‖Bbm‖(v,Mod(I),Mod(M)),

‖ not1 c1‖(v,Mod(I),Mod(M)), . . . , ‖ notk ck‖(v,Mod(I),Mod(M)))
≤ g(‖Ba1‖(v,Mod(I),Mod(M)), . . . ‖Ban‖(v,Mod(I),Mod(M)))

iff

f(‖Bb1‖(v,Mod(I),Mod(M)), . . . , ‖Bbm‖(v,Mod(I),Mod(M)),

[B([not1 c1]M )](v,Mod(I),Mod(M)), . . . , [B([notk ck]M )](v,Mod(I),Mod(M)))
≤ g(‖Ba1‖(v,Mod(I),Mod(M)), . . . ‖Ban‖(v,Mod(I),Mod(M)))

Thus we need to show that for each atom cj (j ∈ {1, . . . , k}) we have

‖notj cj‖(v,Mod(I),Mod(M)) = ‖B([notj cj ]M )‖(v,Mod(I),Mod(M)).

But this follows easily by the definitions and since [notj cj ]M is a truth constant:

‖B([notj cj ]M )‖(v,Mod(I),Mod(M)) = inf
w∈Mod(I)

‖[notj cj ]M‖(w,Mod(I),Mod(M))

= [notj cj ]M
= Nj(M(cj))

= Nj

(
inf

w∈Mod(M)
w(cj)

)
= ‖notj cj‖(v,Mod(I),Mod(M))

Next, we will define a notion of equivalence for subsets of Ω.

Definition 5.9

Consider a regular FASP program without strong negation P and S1, S2 ⊆ Ω. We
say that S1 and S2 are inf-equivalent w.r.t. P if ∀x ∈ BP

inf
v∈S1

v(x) = inf
v∈S2

v(x).

For inf-equivalent sets we have the following result.
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Lemma 5.8

Consider a regular FASP program without strong negation P and S1, S2 ⊆ Ω inf-
equivalent w.r.t. P . Then for each r ∈ P we have

‖µ(r)‖(v,S1,S) = ‖µ(r)‖(v,S2,S),

with v ∈ Ω and S ⊆ Ω arbitrary.

Proof. A rule r ∈ P is of the form

g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck)

and the corresponding formula µ(r) is

f(Bb1, . . . ,Bbm,not1 c1, . . . ,notk ck)→ g(Ba1, . . . ,Ban).

It follows that

‖µ(r)‖(v,S1,S)

= IT
(
f(‖Bb1‖(v,S1,S), . . . , ‖Bbm‖(v,S1,S), ‖not1 c1‖(v,S1,S), . . . , ‖ notk ck‖(v,S1,S)),

g(‖Ba1‖(v,S1,S), . . . , ‖Ban‖(v,S1,S))
)

= IT

(
f( inf
w∈S1

w(b1), . . . , inf
w∈S1

w(bm), sup
w∈S

N1(w(c1)), . . . , sup
w∈S

Nk(w(ck))),

g( inf
w∈S1

w(a1), . . . , inf
w∈S1

w(an))
)

= IT

(
f( inf
w∈S2

w(b1), . . . , inf
w∈S2

w(bm), sup
w∈S

N1(w(c1)), . . . , sup
w∈S

Nk(w(ck))),

g( inf
w∈S2

w(a1), . . . , inf
w∈S2

w(an))
)

= IT
(
f(‖Bb1‖(v,S2,S), . . . , ‖Bbm‖(v,S2,S), ‖not1 c1‖(v,S2,S), . . . , ‖ notk ck‖(v,S2,S)),

g(‖Ba1‖(v,S2,S), . . . , ‖Ban‖(v,S2,S))
)

= ‖µ(r)‖(v,S2,S)

We need one more lemma.
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Lemma 5.9

Consider a regular FASP program without strong negation P , v ∈ Ω and S ⊆ Ω.
Then (v, S) is a FMBNF model of µ(P ) iff there exists w ∈ Π(P,M) such that
S = Mod(w).

Proof. (⇒) First assume that (v, S) is a FMBNF model of µ(P ). By Definition 5.7, this
means that

(a) for each α ∈ µ(P ): ‖α‖(v,S,S) = 1 and
(b) there is no structure (v′, S′) such that S ⊂ S′ and ‖α‖(v′,S′,S) = 1 for all

α ∈ µ(P ).

Define w ∈ Ω as follows:

w : A→ [0, 1] : x 7→ inf
z∈S

z(x).

For z ∈ S we obtain w(x) ≤ z(x) for all x ∈ A, hence S ⊆ Mod(w). Note that S
and Mod(w) are inf-equivalent w.r.t P :

inf
z∈S

z(x) = w(x) = inf
z∈Mod(w)

z(x)

for all x ∈ BP . By Lemma 5.8, it follows that

‖α‖(v,Mod(w),S) = ‖α‖(v,S,S) = 1

for all α ∈ µ(P ). Now suppose that S ⊂ Mod(w), then we have a contradiction
since S is maximal under all S′ such that ‖α‖(v,S′,S) = 1 for all α ∈ µ(P ). Thus
S = Mod(w) and ‖α‖(v,Mod(w),Mod(w)) = 1 for all α ∈ µ(P ). To prove that
w ∈ Π(P,M) it remains to be shown that w is minimal under all w′ ∈ Ω such that
for all z ∈ Ω and for all α ∈ µ(P ) it holds that ‖α‖(z,Mod(w′),Mod(w)) = 1. Suppose
this is not the case and there exists an w′ such that w′ < w and for all z ∈ Ω and
for all α ∈ µ(P ) it holds that ‖α‖(z,Mod(w′),Mod(w)) = 1. By Lemma 5.5, it follows
that S = Mod(w) ⊂ Mod(w′). This is in contradiction with the maximality of S.

(⇐) Now assume S = Mod(w) with w ∈ Π(P,M). By Definition 5.8, this means that
w is minimal under all w′ ∈ Ω such that for all α ∈ µ(P ) and for all z ∈ Ω it
holds that ‖α‖(z,Mod(w′),Mod(w)) = 1. Thus, we already know that ‖α‖(v,S,S) =
‖α‖(v,Mod(w),Mod(w)) = 1 for all α ∈ µ(P ). To show that (v, S) is a FMBNF
model of µ(P ), it remains to be shown that there is no structure (v′, S′) such that
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Mod(w) ⊂ S′ and ‖α‖(v′,S′,Mod(w)) = 1 for all α ∈ µ(P ). Suppose there exists
such a structure (v′, S′). Define w′ ∈ Ω as follows:

w′ : A→ [0, 1] : x 7→ inf
v∈S′

v(x).

Similar as in the first part of the proof we have that S′ ⊆ Mod(w′) and that S′ and
Mod(w′) are inf-equivalent w.r.t. P . By Lemma 5.8 we then have that

‖α‖(v′,Mod(w′),Mod(w)) = ‖α‖(v′,S′,Mod(w)) = 1

for all α ∈ µ(P ). Since µ(P ) only contains atoms preceded by a modal operator, it
also follows that for all z ∈ Ω and for all α ∈ µ(P ) we have ‖α‖(z,Mod(w′),Mod(w)) =
1. But this contradicts the minimality of w. Indeed, since Mod(w) ⊂ S′ ⊆ Mod(w′),
it follows by Lemma 5.5 that w′ < w.

Combining Lemmas 5.6-5.9, we get the following generalisation of Theorem 5.2.

Theorem 5.3

Consider a regular FASP program without strong negation P andM ∈ F(BP ). M is
an answer set of P iff (v,Mod(M)) is a FMBNF model of µ(P ) with v ∈ Ω arbitrary.

Proof.

M is an answer set of P
⇔M is an answer set of PM (definition answer set)
⇔ vM ∈ Π(PM ,M) (Lemma 5.6)
⇔ vM ∈ Π(P,M) (Lemma 5.7)
⇔ (v,Mod(vM )) is an FMBNF model of µ(P ) (Lemma 5.9)
⇔ (v,Mod(M)) is an FMBNF model of µ(P ) (Remark 5.6)

5.5.4 Embedding regular FASP in fuzzy autoepistemic logic
Using the result from Theorem 5.3, we will now generalise Theorem 3.2: fuzzy autoep-
istemic logic generalises regular FASP. The translation is defined as follows. For each rule

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck)
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in a regular FASP program P we add the formula σ(r):

f (b1 ∧ Bb1, . . . , bm ∧ Bbm,∼1Bc1, . . . ,∼kBck)→ g ((a1 ∧ Ba1), . . . , (an ∧ Ban)) ,

to the fuzzy autoepistemic theory σ(P ) where ∼j is the negation that is interpreted by
the same negator Nj as for notj.
First we provide some useful lemmas.

Lemma 5.10

Consider a regular FASP program without strong negation P and S ⊆ Ω. Then for
r ∈ P , v, w ∈ Ω and S′ = S ∪ {w} we have

‖µ(r)‖(v,S′,S) = ‖σ(r)‖(w,S).

Proof. Consider a rule r ∈ P

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck).

Since S′ = S ∪ {w} we have that infz∈S′ z(x) = min(w(x), infz∈S z(x)) for each x ∈ A.
It follows that

‖µ(r)‖(v,S′,S) = ‖f(Bb1, . . . ,Bbm,not1 c1, . . . ,notk ck)→ g(Ba1, . . . ,Ban)‖(v,S′,S)

= IT

(
f
(

inf
z∈S′

z(b1), . . . , inf
z∈S′

z(bm), N1( inf
z∈S

z(c1)), . . . , Nk( inf
z∈S

z(ck))
)
,

g
(

inf
z∈S′

z(a1), . . . , inf
z∈S′

z(an)
))

= IT

(
f
(

min
(
w(b1), inf

z∈S
z(b1)

)
, . . . ,min

(
w(bm), inf

z∈S
z(bm)

)
N1( inf

z∈S
z(c1)), . . . , Nk( inf

z∈S
z(ck))

)
,

g
(

min
(
w(a1), inf

z∈S
z(a1)

)
, . . . ,min

(
w(an), inf

z∈S
z(an)

))
= ‖f((b1 ∧ Bb1), . . . , (bm ∧ Bbm),∼1Bc1, . . . ,∼kBck)
→ g((a ∧ Ba1), . . . , (an ∧ Ban))‖(w,S)

= ‖σ(r)‖(w,S)
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Lemma 5.11

Consider a regular FASP program without strong negation P , v′ ∈ Ω and w,w′ ∈ Ω
such that w′ ≤ w. Then for r ∈ P and for S, S′ ⊆ Ω such that S and Mod(w) are
inf-equivalent and S′ and Mod(w′) are inf-equivalent w.r.t. P , we have that

‖σ(r)‖(w′,S) = ‖µ(r)‖(w′,S′,S).

Proof. Consider a rule r ∈ P :

r : g(a1, . . . , an)← f(b1, . . . , bm,not1 c1, . . . ,notk ck).

Since S and Mod(w) are inf-equivalent w.r.t. P (Definition 5.9), we have

w(a) = inf
z∈Mod(w)

z(a) = inf
z∈S

z(a)

for each a ∈ BP . By the inf-equivalence of S′ and Mod(w′), we have

w′(a) = inf
z∈Mod(w′)

z(a) = inf
z∈S′

z(a)

for each a ∈ BP . It follows that

‖σ(r)‖(w′,S)

=‖f((b1 ∧ Bb1), . . . , (bm ∧ Bbm),∼1Bc1, . . . ,∼kBck)
→ g((a1 ∧ Ba1), . . . , (an ∧ Ban))‖(w′,S)

=IT

(
f
(

min
(
w′(b1), inf

z∈S
z(b1)

)
, . . . ,min

(
w′(bm), inf

z∈S
z(bm)

)
,

N1( inf
z∈S

z(c1)), . . . , Nk( inf
z∈S

z(ck))
)
,

g
(

min
(
w′(a1), inf

z∈S
z(a1)

)
, . . . ,min

(
w′(an), inf

z∈S
z(an)

)))

=IT

(
f
(

min
(
w′(b1), w(b1)

)
, . . . ,min

(
w′(bm), w(bm)

)
,

N1( inf
z∈S

z(c1)), . . . , Nk( inf
z∈S

z(ck))
)
,
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g
(

min
(
w′(a1), w(a1)

)
, . . . ,min

(
w′(an), w(an)

)))

=IT

(
f
(
w′(b1), . . . , w′(bm), N1( inf

z∈S
z(c1)), . . . , Nk( inf

z∈S
z(ck))

)
,

g
(
w′(a1), . . . , w′(an)

))

=IT

(
f
(

inf
z∈S′

z(b1), . . . , inf
z∈S′

z(bm), N1( inf
z∈S

z(c1)), . . . , Nk( inf
z∈S

z(ck))
)
,

g
(

inf
z∈S′

z(a1), . . . , inf
z∈S′

z(an)
))

=‖f(Bb1, . . . ,Bbm,not1 c1, . . . ,notk ck)→ g(Ba1, . . . ,Ban)‖(v′,S′,S)

=‖µ(r)‖(v′,S′,S)

We will now use Lemmas 5.10 and 5.11 to prove the main theorem:

Theorem 5.4

Consider a regular FASP program without strong negation P and M ∈ F(BP ). M
is an answer set of P iff Mod(M) is a fuzzy possible world autoepistemic model of
σ(P ).

Proof. (⇒) First suppose that M is an answer set of P . By Theorem 5.3, it follows that
(v, S) with S = Mod(M) and v ∈ Ω arbitrary is a FMBNF model of µ(P ). By
Definition 5.7 this means that

(a) for each α ∈ µ(P ): ‖α‖(v,S,S) = 1 and
(b) there is no structure (v′, S′) such that S ⊂ S′ and ‖α‖(v′,S′,S) = 1 for all

α ∈ µ(P ).

We need to prove that S is a fuzzy possible world autoepistemic model of σ(P ), or
by Definition 5.4 that

S =
{
z ∈ Ω | ∀ϕ ∈ σ(P ) : ‖ϕ‖(z,S) = 1

}
.
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Let w ∈ S, thus S ∪ {w} = S. By Lemma 5.10 it follows that ‖σ(r)‖(w,S) =
‖µ(r)‖(v,S,S) = 1 for all r ∈ P . Hence

w ∈
{
z ∈ Ω | ∀ϕ ∈ σ(P ) : ‖ϕ‖(z,S) = 1

}
as soon as w ∈ S. Conversely, consider w ∈ Ω such that ‖ϕ‖(w,S) = 1 for every
ϕ ∈ σ(P ). If w /∈ S define S′ = S ∪ {w}. By Lemma 5.10 it follows that
‖µ(r)‖(w,S′,S) = ‖σ(r)‖(w,S) = 1 for each r ∈ P . This contradicts the maximality
of S.

(⇐) Now suppose that S = Mod(M) is a fuzzy possible world autoepistemic model of
σ(P ). By Theorem 5.3, it is sufficient to show that (v, S) with v ∈ Ω arbitrary is a
FMBNF model of µ(P ). By Definition 5.7 we need to show that

(a) for each α ∈ µ(P ): ‖α‖(v,S,S) = 1 and
(b) there is no structure (v′, S′) such that S ⊂ S′ and ‖α‖(v′,S′,S) = 1 for all

α ∈ µ(P ).

Let w ∈ S, thus S ∪ {w} = S. By Lemma 5.10, it follows that ‖µ(r)‖(v,S,S) =
‖σ(r)‖(w,S) for each r ∈ P . Since S is a fuzzy possible world autoepistemic model
of σ(P ) and thus

S =
{
z ∈ Ω | ∀ϕ ∈ σ(P ) : ‖ϕ‖(z,S) = 1

}
we have ‖µ(r)‖(v,S,S) = ‖σ(r)‖(w,S) = 1 for all µ(r) ∈ µ(P ). Now suppose there is
a structure (v′, S′) such that S ⊂ S′ and ‖α‖(v′,S′,S) = 1 for all α ∈ µ(P ). Define
w′ ∈ Ω as follows:

w′ : A→ [0, 1] : a 7→ inf
z∈S′

z(a).

For z′ ∈ S′ it holds that w′(a) = infz∈S′ z(a) ≤ z′(a) for all a ∈ A, hence
S′ ⊆ Mod(w′) and thus Mod(w) = S ⊂ S′ ⊆ Mod(w′). By Lemma 5.5 it follows
that w′ < w. Note that S′ and Mod(w′) are inf-equivalent w.r.t. P by definition of
w′. By Lemma 5.11 it then follows that ‖σ(r)‖(w′,S) = ‖µ(r)‖(v′,S′,S) = 1 for all
σ(r) ∈ σ(P ) which implies that w′ ∈ S = Mod(w) since S is a fuzzy possible world
autoepistemic model of σ(P ). Hence w ≤ w′, a contradiction.

Example 5.4

Reconsider the regular FASP program P from Remark 5.5.

a⊕ b← 1
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with a and b atoms and ⊕ and ← connectives from Łukasiewicz logic. The corres-
ponding fuzzy autoepistemic theory is

σ(P ) =
{

1→ (a ∧ Ba)⊕ (b ∧ Bb)
}
.

We will use Theorem 5.4 to calculate all answer sets of P . Suppose I ∈ F(BP ) is
an arbitrary answer set of P . Rename I(a) = x and I(b) = y. By Theorem 5.4, it
then follows that

S = Mod(I) = {w ∈ Ω | w(a) ≥ x,w(b) ≥ y}

is a fuzzy possible world autoepistemic model of σ(P ). Thus, what we want to know
is for which values x and y we have that S is a fuzzy possible world autoepistemic
model, or in other words for which values x and y does it hold that

S =
{
w ∈ Ω | 1 ≤ min(w(a), inf

z∈S
w(a)) + min(w(b), inf

z∈S
w(b))

}
.

For an arbitrary w ∈ S we have

min(w(a), inf
z∈S

z(a)) + min(w(b), inf
z∈S

z(b)) = inf
z∈S

z(a) + inf
z∈S

z(b)

= x+ y

Hence x+ y ≥ 1 is a necessary condition. Now suppose that x+ y > 1. We show
that {

w ∈ Ω | 1 ≤ min(w(a), inf
z∈S

z(a)) + min(w(b), inf
z∈S

z(b))
}
6⊆ S.

Indeed, consider w ∈ Ω defined by w(a) = x and w(b) = 1− x. If x+ y > 1 then

min(w(a), inf
z∈S

z(a)) + min(w(b), inf
z∈S

z(b)) = min(x, x) + min(1− x, y)

= x+ (1− x)
= 1

Thus w is an element of{
w ∈ Ω | 1 ≤ min(w(a), inf

z∈S
z(a)) + min(w(b), inf

z∈S
z(b))

}
.

If it would hold that w ∈ S, then 1 − x = w(b) ≥ y or x + y ≤ 1, a contradiction.
Hence w /∈ S.
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We conclude that x+ y = 1 is a necessary condition such that S is a fuzzy possible
world autoepistemic model of σ(P ). Moreover, we can prove that each set of the
form

S = {w ∈ Ω | w(a) ≥ x,w(b) ≥ 1− x}

is a fuzzy possible world autoepistemic model of σ(P ).

5.6 Conclusion
In this chapter we have introduced a fuzzy version of autoepistemic logic, which can be
used to reason about one’s (lack of) beliefs about the degrees to which properties are
satisfied. We have shown that important properties of classical autoepistemic logic are
preserved and that the relation between answer set programming and autoepistemic logic
remains valid when generalising to the many-valued case. Moreover, we have presented
two different but equivalent characterisations of answer sets in fuzzy autoepistemic logic
and in a fuzzy logic of minimal belief and negation-as-failure. These results lead to a
better comprehension of how to interpret fuzzy answer sets. Since the language of (fuzzy)
autoepistemic logic is much more expressive than the theories we need to represent the
(fuzzy) answer set programs, this could serve as a useful basis for defining or comparing
extensions to the basic language of ASP since the computational complexity does not
increase when moving from ASP to autoepistemic logic. This might open doors to define
extensions for FASP.
In future work, it would be interesting to see whether the implementation of classical

autoepistemic logic by using Quantified Boolean Formulas [Egly et al. 2000] can be
extended to fuzzy logics using multi-level linear programming. If this is indeed the case,
it could be used as a basis to implement fuzzy autoepistemic logic reasoners, as well as
fuzzy answer set programming solvers.
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6 | Relating fuzzy
autoepistemic logic and

fuzzy modal logics of
belief

6.1 Introduction
In this chapter we will discuss relationships between fuzzy autoepistemic logic and fuzzy
modal logics, generalising well-known links beween autoepistemic logic and several clas-
sical modal logic systems. In particular we will generalise Levesque’s logic of only knowing
[Levesque 1990] to the many-valued case, and show that the correspondence with au-
toepistemic logic is preserved under this generalisation. Moreover we provide a sound and
complete axiomatisation for this many-valued logic of only knowing.
Autoepistemic logic, discussed in Section 2.1, has been one of the main formalisms for

nonmonotonic reasoning. It extends propositional logic by offering the ability to reason
about an agent’s (lack of) beliefs. Recall that, given a set of initial premises, the (closed)
set of beliefs an agent should adopt is given by the so-called stable expansions. In [Levesque
1990], autoepistemic logic is extended to expressions of the form “ϕ is all that is believed”,
i.e. there are no other relevant beliefs, but ϕ. To this end, a second modal operator O is
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used where Oϕ has to be read as “ϕ is all that is believed” or “only ϕ is believed”. In
[Levesque 1990] it is then shown that stable expansions correspond to a particular type
of valid sentences in this logic, see also Theorem 2.1. Finally, a sound and complete
axiomatisation based on classical K45 modal logic is provided by pointing out that Oϕ can
be rewritten as Bϕ∧N(∼ϕ) where the modal operators N and B are both K45 operators.
In particular, Bϕ corresponds to “ϕ is believed” and N(∼ϕ) to “at most ∼ϕ is believed
to be false”. Hence Oϕ corresponds to at least and at most ϕ is believed, i.e. “exactly ϕ
is believed”. By Theorem 3.1 it follows that the answer sets of answer set programs also
correspond to valid sentences in logic of only knowing.
In Chapter 5 we introduced a generalisation of autoepistemic logic using fuzzy logic and

we showed that the relation between the answer sets of a fuzzy answer set program and
the stable fuzzy expansions of a corresponding fuzzy autoepistemic logic theory remains
valid. In this chapter, we introduce generalisations of the main classical propositional
modal logics of belief (K45, KD45, S5) based on finitely-valued Łukasiewicz logic with
truth constants in order to model the notion of belief on fuzzy propositions, in the sense
of admitting partial degrees of truth between 0 (fully false) and 1 (fully true). Similar
as in the classical case, we show soundness and completeness w.r.t. appropriate Kripke
style semantics. We will also show NP-completeness for two variants of the satisfiability
problem. Note in particular that generalising to the many-valued case does not imply an
increase in computational complexity.
Many-valued modal logics have appeared in the literature under different forms and

contexts. In [Fitting 1992a, Fitting 1992b], a modal logic with truth values in finite
Heyting algebras is introduced. These modal systems are then used for dealing with
opinions of experts with a dominance relation among them. Other papers mainly offer
theoretical frameworks. For instance, in the last years there has been some work on
fuzzy modal logics with generalised Kripke semantics, see e.g. [Bou et al. 2011b]. In
particular, [Bou et al. 2011b] systematically investigates many-valued modal logics over a
residuated lattice, dealing with accessibility relations that can take values in this lattice as
well as relations taking only values > and ⊥ in the lattice. In this chapter we will focus
on modal systems based on a finite set of linearly ordered truth values with Łukasiewic
logic semantics for connectives which generate the class of finite MV-algebras [Mundici
1987]. These systems represent a good compromise between expressive power and nice
logical properties. The infinitely-valued case offers some problems, see e.g. [Hansoul and
Teheux 2013] where extending infinitely-valued Łukasiewicz logic with a modality results
in an infinitary deduction rule. Another example is the case of S5 with total accessibility
relations [Hájek 2010]. In this paper the fact that formulas are in correspondence with
formulas of the monadic fuzzy predicate calculus is used to propose a sound and complete
axiomatisation by interpreting the modality as “∀”. However, for KD45 and K45 this trick
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fails. On the other hand, a closely related work is [Maruyama 2011] which considers modal
logics for belief based on a finitely-valued Heyting algebra of truth values. Recall that in
a Heyting algebra, the truth values are not necessarily linearly ordered. The formalisation
is very similar as in our work, but he also deals with common belief. Here we rather
focus on providing a formal basis for the fuzzy generalisation of autoepistemic logic as
introduced in Chapter 5.
Then we show how fuzzy autoepistemic logic can be characterised using the possible

worlds semantics corresponding to these many-valued modal logics. Finally, we also con-
sider the extension of many-valued autoepistemic logic with an “only knowing” operator O
and show that the relationship between stable expansions, belief sets and “only knowing”
operators [Levesque 1990] naturally extends to our framework. As in the classical case we
show that formulas of the form Oϕ can be rewritten as Bϕ ∧N(∼ϕ) where B and N are
now many-valued K45 structures. We provide a sound and complete axiomatization for
this finitely-valued Łukasiewicz logic of only knowing and show that stable fuzzy expan-
sions correspond to valid sentences in this logic. In particular this implies that the answer
sets of a fuzzy answer set program correspond to valid sentences in this logic.
A summarising diagram of embeddings and generalisations with references can be found

in Figure 6.1.
This chapter is structured as follows. After this introduction, in Section 6.2 we define

proper generalisations of the classical modal systems K45, KD45 and S5 and prove sound-
ness and completeness with respect to appropriate Kripke-style semantics, and we provide
a (possibly exponential) reduction of satisfiability to classical modal logics. We also analyse
the complexity of these logics and prove NP-completeness for two variants of the satis-
fiability problem. Then in Section 6.3 we consider possible world semantics for the fuzzy
autoepistemic logic and provide a characterisation of stable fuzzy expansions in terms of
many-valued K45 belief sets, and also in terms of proper generalisations of stable sets. In
Section 6.4, we generalise the propositional fragment of Levesque’s “only knowing” logic,
provide a sound and complete axiomatisation and show that there is a characterisation of
stable fuzzy expansions in terms of the belief sets involving the “only knowing” operator
O. We conclude with some final remarks about related work.

6.2 Fuzzy modal logics of belief: Extensions of BŁck
In this section we will introduce fuzzy modal logics of belief. We will do this by extending
the minimal modal logic over finitely-valued Łukasiewicz logic with a finite set of truth con-
stants BŁck; see Section 2.3. Recall that the language of the logic BŁck is LkB, see Definition
2.12. When defining logics of belief, it is common to require a number of properties of the
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Answer Set 
Programming

Fuzzy Answer Set 
Programming

Autoepistemic Logic Fuzzy Autoepistemic 
Logic

Logic of Only 
Knowing

Fuzzy Logic of Only 
Knowing

(a)

(b) (c)

(d)

(e) (f)

(g)

Figure 6.1: Summarising diagram of embeddings and generalisations
(a): e.g. [Van Nieuwenborgh et al. 2007], (b): [Gelfond and Lifschitz 1988], (c)-(d):

Chapter 5, (e): [Levesque 1990], (f)-(g) Chapter 6

modal operator B which do not follow from the axioms of BŁck. For instance, it is common
to presume that the agent has both positive and negative introspective capabilities. This is
captured in the classical case by the well-known axioms (4) and (5). Moreover, sometimes
belief consistency is required which is captured by axiom (D). Finally, when dealing with
knowledge instead of beliefs modal axiom (T) can be added. In particular, we will consider
extensions of BŁck which are obtained by adding some or all of these classical axioms:

(D) ∼B∼1

(4) Bφ→ BBφ

(5) ∼Bφ→ B∼Bφ

(T) Bφ→ φ

As in the classical case [Chellas 1980, Fagin et al. 1994], we consider the following
extensions of BŁck:
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• K45(Łck): BŁck extended with axioms (4) and (5),
• KD45(Łck): BŁck extended with axioms (D), (4) and (5)
• S5(Łck): BŁck extended with axioms (T), (4) and (5)

We will denote by `L the notion of proof for any of the logics

L ∈ {K45(Łck),KD45(Łck),S5(Łck)}.

The first task is to define the corresponding class of multi-valued Kripke models and to
show soundness and completeness w.r.t. these models1.
Similar as in Chapter 5 we define the set

A′ = A ∪
{

Bϕ | ϕ ∈ LkB
}
.

In this chapter, we will sometimes treat A′ as a set of atoms and consider formulas
recursively built from A′, the set of truth constants Sk = {0, 1

k , . . . ,
k−1
k , 1} for a fixed

k ∈ N and the connectives of Łukasiewicz logic (see Section 2.2.4). For a formula α ∈ LkB
we will denote by α∗ the corresponding formula in this non modal language (LkB)∗

• p∗ = p for a variable p,
• c∗ = c for c ∈ Sk,
• (φ→ ψ)∗ = φ∗ → ψ∗ for φ, ψ ∈ LkB and → the Łukasiewicz implication,
• (Bα)∗ = pBα with pBα a fresh variable for α ∈ LkB.

We write T ∗ = {α∗ | α ∈ T} for a set of formulas T in LkB. The set of all propositional
evaluations e : A′ → Sk will be denoted by Ω∗k.
As a first step, we show a relation between proving a formula ψ ∈ LkB in one of the

extensions of BŁck and proving the corresponding B-free formula ψ∗ ∈ (LkB)∗ from a
suitable theory in the propositional logic Łck (but over the set of variables A′).

Lemma 6.1

Let L be any of the logics K45(Łck), KD45(Łck), S5(Łck). Suppose T ∪ {ψ} is a set
of formulas from LkB and let ΛL = {φ∗ |`L φ}. Then it holds that

T `L ψ iff T ∗ ∪ ΛL ` ψ∗.

Proof. Suppose a proof for ψ in L from T has the form Γ = (γ1, . . . , γm). A proof for ψ∗
in Łck from T ∗∪ΛL is then easily obtained by replacing all formulas γi in Γ by γ∗i . Indeed,
notice that for all i it holds that γi is one of the following

1We restrict ourselves to the logics K45(Łc
k), KD45(Łc

k) and S5(Łc
k), but completeness results could

be obtained in a similar way for any of the logics resulting from other combinations of the above axioms.
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• an element in T , and then γ∗i is an element of T ∗;
• an instance of an axiom of L, and then γ∗i is an element of ΛL;
• a formula obtained by modus ponens from γj = γk → γi and γk, with j, k < i.
Then γ∗i is also obtained by modus ponens from γ∗j and γ∗k ;

• a formula Bγj obtained by necessitation from a theorem γj (j < i) of L. Then γj is
a theorem in L and γ∗i is an element of ΛL.

Conversely, suppose there is a proof Φ = (φ1, . . . , φn) for ψ∗ in Łck from T ∗ ∪ ΛL. The
sequence Φ can then be converted to a proof for ψ in L from T as follows.

• If φi ∈ ΛL, i.e. φi = ψ∗ with `L ψ, then replace φi by ψ and add a proof for ψ.
• Otherwise, replace φi = ψ∗ by ψ.

The proof of Lemma 6.1 is based on the fact that a proof in L can be converted into a
proof in Łck and vice versa. Below we illustrate this idea with an example.

Example 6.1

Consider T = {Ba}. Then T `L B(b → a) with b an arbitrary atom. Indeed, by
axiom (Ł1) it follows that `L a→ (b→ a) and thus by necessitation it follows that
`L B(a→ (b→ a)). By axiom (K) we have

`L B(a→ (b→ a))→ (Ba→ B(b→ a)).

and by modus ponens we can then infer `L Ba→ B(b→ a). Another application of
modus ponens using Ba ∈ T then implies T `L B(b→ a).
On the other hand, if we consider T ∗ = {pBa}, then we have T ∗ ∪ ΛL ` pB(b→a).

Indeed, since `L Ba→ B(b→ a), it follows that

pBa → pB(b→a) = (Ba→ B(b→ a))∗ ∈ ΛL

and by modus ponens and pBa ∈ T ∗ we derive that T ∗ ∪ ΛL ` pB(b→a).

We now define the canonical Kripke model for a given fuzzy modal logic L. We will use
this particular Kripke model to show completeness in Theorem 6.1. The following definition
applies to any logic L obtained by adding to the axioms of BŁck combinations of the axioms
(D), (4), (5) and (T) and hence in particular for L ∈ {K45(Łck),KD45(Łck),S5(Łck)}.
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Definition 6.1

Let L be any of the logics K45(Łck), KD45(Łck), S5(Łck). The L-canonical Kripke
model is defined as the Kripke model ML

can = (WL
can, e

L
can, R

L
can), where

• WL
can = {w ∈ Ω∗k | ∀φ ∈ ΛL : w(φ) = 1} with ΛL = {φ∗ | `L φ}

• RLcan = {(w1, w2) ∈ Ω∗k × Ω∗k | ∀φ ∈ LkB : if w1((Bφ)∗) = 1, then w2(φ∗) =
1},

• eLcan(w, p) = w(p) for each variable p.

We now introduce some subclasses of the class M of Kripke models (W, e,R) with two-
valued accessibility relations, depending on which properties R satisfies. Recall that a
relation2 R : X × X → {0, 1} is

- Euclidean if R(x, y) = R(x, z) = 1 implies R(y, z) = 1,

- serial if for every x ∈ X there exists y ∈ X such that R(x, y) = 1.

- transitive if R(x, y) = R(y, z) = 1 implies R(x, z) = 1.

- reflexive if R(x, x) = 1 for all x ∈ X.

- symmetric if R(x, y) = R(y, x) for all x, y ∈ X.

We can then define the following subclasses of M.

Definition 6.2

• Met: class of Kripke models (W, e,R) with R Euclidean and transitive.
• Mest: class of Kripke models (W, e,R) with R Euclidean, serial and transitive.
• Mrsyt: class of Kripke models (W, e,R) with R reflexive, symmetric and trans-
itive.

In Theorem 6.1 we will show that the extensions of BŁck defined above are sound and
complete axiomatisations for these subclasses of M. To show completeness, we need the
following truth lemma.

2Note that a relation R ⊆ X ×X can be seen as a mapping R : X ×X → {0, 1} where R(x, y) = 1
iff (x, y) ∈ R. In this text will use both notations to denote two-valued relations.

165



CHAPTER 6. RELATING FUZZY AUTOEPISTEMIC LOGIC AND FUZZY MODAL
LOGICS OF BELIEF

Lemma 6.2

(Truth lemma) Suppose φ is a formula in LkB and L ∈ {K45(Łck), KD45(Łck),S5(Łck)}
with ML

can its canonical Kripke model. Then it holds that v(φ∗) = ‖φ‖ML
can,v

, for
every v ∈WL

can.

Proof. By using the monotonicity of B and the distributivity of ∨ and ∧, the claim follows
by an easy adaptation from Lemma 4.20 in [Bou et al. 2011b].

We can now show the following properties for the canonical Kripke models.

Proposition 6.1

Let L ∈ {K45(Łck),KD45(Łck),S5(Łck)}, then the following conditions hold

1. If L contains axiom (T) then RLcan is reflexive.

2. If L contains axiom (4) then RLcan is transitive.

3. If L contains axiom (5) then RLcan is Euclidean.

4. If L contains axiom (D) then RLcan is serial.

Proof. In this proof we frequently use the result from Lemma 6.2: for every v ∈WL
can and

every formula φ ∈ LkB it holds that v(φ∗) = ‖φ‖ML
can,v

.

1. Let w ∈WL
can and suppose that w((Bφ)∗) = 1. We show w(φ∗) = 1. Then it follows

by the construction of the canonical model that RLcan(w,w) = 1. Since L contains axiom
(T), we have (Bφ→ φ)∗ ∈ ΛL and it follows that

1 = w((Bφ→ φ)∗) = ‖Bφ→ φ‖ML
can,w

.

Hence
1 = w((Bφ)∗) = ‖Bφ‖ML

can,w
≤ ‖φ‖ML

can,w
= w(φ∗).

2. Let w1, w2, w3 ∈ WL
can such that RLcan(w1, w2) = RLcan(w2, w3) = 1. We show that

RLcan(w1, w3) = 1. Suppose that w1((Bφ)∗) = 1, we show w3(φ∗) = 1. Since L contains
axiom (4), we have (Bφ→ BBφ)∗ ∈ ΛL and it follows that

1 = w1((Bφ→ BBφ)∗) = ‖Bφ→ BBφ‖ML
can,w1 ,
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and hence that

1 = w1((Bφ)∗) = ‖Bφ‖ML
can,w1 ≤ ‖BBφ‖ML

can,w1 = w1((BBφ)∗).

Since RLcan(w1, w2) = 1, we then have that w2((Bφ)∗) = 1 and subsequently, since
RLcan(w2, w3) = 1, that w3(φ∗) = 1.

3. Let w1, w2, w3 ∈ WL
can such that RLcan(w1, w2) = RLcan(w1, w3) = 1. We show that

RLcan(w2, w3) = 1. Suppose that w2((Bφ)∗) = 1. We show w3(φ∗) = 1. By definition of
B,

‖B∼Bφ‖ML
can,w1 = inf{‖∼Bφ‖ML

can,w
| RLcan(w1, w) = 1},

hence in particular
‖B∼Bφ‖ML

can,w1 ≤ ‖∼Bφ‖ML
can,w2 .

Now since
‖∼Bφ‖ML

can,w2 = 1− ‖Bφ‖ML
can,w2 = 1− w2((Bφ)∗) = 0,

we obtain ‖B∼Bφ‖ML
can,w1 = 0. But since (∼B∼Bφ → Bφ)∗ ∈ ΛL, because of axiom

(5), it follows that

1 = w1((∼B∼Bφ→ Bφ)∗) = ‖∼B∼Bφ→ Bφ‖ML
can,w1

and hence
1 = ‖∼B∼Bφ‖ML

can,w1 ≤ ‖Bφ‖ML
can,w1 = w1((Bφ)∗).

Finally, since RLcan(w1, w3) = 1, it then follows that w3(φ∗) = 1.

4. Let w1 ∈ WL
can. We show that there exists w2 ∈ WL

can such that RLcan(w1, w2) = 1.
Since by axiom (D) we have (∼B∼1)∗ ∈ ΛL, it follows that

1 = w1((∼B∼1)∗) = ‖∼B∼1‖ML
can,w1 ,

and thus
0 = ‖B∼1‖ML

can,w1 = inf{‖0‖ML
can,w

| RLcan(w1, w) = 1}.

Therefore the latter set must be non-empty, and hence there must exist w2 ∈ WL
can such

that RLcan(w1, w2) = 1.

Using Proposition 6.1, we can now show the following theorem.
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Theorem 6.1

K45(Łck), KD45(Łck) and S5(Łck) are sound and complete w.r.t. the classesMet, Mest
and Mrsyt respectively.

Proof. Soundness is straightforward. We can show the completeness by proving that if
there is a formula φ ∈ LkB such that 0L φ with

L ∈ {K45(Łck),KD45(Łck),S5(Łck)},

then there must exist a Kripke model M = (W, e,R) in the corresponding subclass of
Kripke models and a w ∈ W with ‖φ‖M,w < 1. We show that the L-canonical Kripke
model meets this condition. The fact that each of these canonical Kripke models belongs
to the correct subclass ofM follows from Proposition 6.1 and from the fact that all reflexive
and Euclidean relations are symmetric. By Lemma 6.1 it follows, independent of the choice
of L, that ΛL 0 φ∗ and by the strong completeness of Łck that ΛL 2 φ∗, i.e. there exists
a v ∈WL

can such that v(φ∗) < 1. By Lemma 6.2 we obtain that ‖φ‖ML
can,v

< 1.

As in the classical case (see e.g. [Halpern and Moses 1992]), the logics K45(Łck), KD45(Łck)
and S5(Łck) admit simpler semantics while preserving soundness and completeness. Con-
sider the following classes of Kripke models.

Definition 6.3

• Ms
et : the subclass of Kripke models (W, e,R) with R = W ×E for some fixed

E ⊆W
• Ms

est: the subclass of Kripke models (W, e,R) with R = W ×E for some fixed
and non-empty E ⊆W

• Ms
rsyt: the subclass of Kripke models (W, e,R) with R = W ×W

Notice that Ms
et, Ms

est and Ms
rsyt are subclasses of resp. Met, Mest and Mrsyt.

Proposition 6.2

K45(Łck), KD45(Łck) and S5(Łck) are sound and complete w.r.t. the classesMs
et, Ms

est
and Ms

rsyt respectively.

Proof. We only prove the case of KD45(Łck), the other cases being easy variations. By
Theorem 6.1, it is sufficient to show that Mest and Ms

est have the same tautologies. Since
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Ms
est is a subclass of Mest, we only have to show that if for a formula φ ∈ LkB there

exists an M = (W, e,R) ∈ Mest and w ∈ W such that ‖φ‖M,w < 1, then there exists an
M ′ = (W ′, e′, R′) ∈Ms

est and w′ ∈W ′ such that ‖φ‖M ′,w′ < 1.
Suppose such a Kripke model M = (W, e,R) ∈ Mest and w ∈ W are given. Define
E = {v ∈ W | R(w, v) = 1}. By the seriality and symmetry of R we have E 6= ∅.
We define M ′ as follows: W ′ = {w} ∪ E, e′ : W ′ × V → Sk : (w, p) 7→ e(w, p) and
R′ = W ′ × E.
Notice that for any v ∈ E we have E ⊆ {z ∈ W | R(z, v) = 1}. Indeed, for every
z ∈ E we have R(w, z) = 1 and since R is Euclidean and R(w, v) = 1 (because v ∈ E)
it follows that R(z, v) = 1. Since R is transitive and symmetric we also have {z ∈ W |
R(z, v) = 1} ⊆ E. Indeed, if R(z, v) = 1, then since R(v, w) = R(w, v) = 1 it follows
R(w, z) = R(z, w) = 1 and thus z ∈ E. Hence

E = {z ∈W | R(z, v) = 1} = {z ∈W | R(v, z) = 1}

for all v ∈ E.
We will now use this result to show by structural induction that for each ψ ∈ LkB it holds

that ‖ψ‖M,v = ‖ψ‖M ′,v for every v ∈ E. The only notable case is when ψ = Bα, but the
result then follows by the fact that E = {z ∈ W | R(v, z) = 1} for all v ∈ E and by the
hypothesis:

‖Bα‖M,v = inf{‖α‖M,z | R(v, z) = 1}
= inf{‖α‖M,z | z ∈ E}
= inf{‖α‖M ′,z | z ∈ E}
= inf{‖α‖M ′,z | R′(v, z) = 1}
= ‖Bα‖M ′,v

where we use the fact that that R′ = W ′ × E.
We will use this last result to show that ‖ψ‖M,w = ‖ψ‖M ′,w for all ψ ∈ LkB. In particular,

it then follows that ‖φ‖M ′,w = ‖φ‖M,w < 1. We will show this by structural induction.
Again, the only notable case is when ψ = Bα:

‖Bα‖M ′,w = inf{‖α‖M ′,z | R′(w, z) = 1}
= inf{‖α‖M ′,z | z ∈ E}
= inf{‖α‖M,z | z ∈ E}
= inf{‖α‖M,z | R(w, z) = 1}
= ‖Bα‖M,w

where we use the fact that E = {v ∈W | R(w, v) = 1}.
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Finally, let us show that any of our many-valued modal logics can be reduced to classical
modal logics. We will use this result in Section 6.4 to obtain a sound and complete
axiomatisation for the many-valued logic of only knowing we will define.
For each formula φ ∈ LkB and truth value r ∈ Sk consider the formula φr ∈ LkB defined as

∆(φ↔ r). This formula is a Boolean formula and for each Kripke model M = (W, e,R)
in M and each w ∈ W we have ‖φr‖M,w = 1 iff ‖φ‖M,w = r.
We define (LkB)′ ⊆ LkB as the set of formulas constructed from the set of formulas

{∆(p↔ r) | p ∈ A, r ∈ Sk}.

In particular we have

• ∆(p↔ r) ∈ (LkB)′ for every p ∈ A and r ∈ Sk
• (φ→ ψ) ∈ (LkB)′ if φ, ψ ∈ (LkB)′
• Bφ ∈ (LkB)′ if φ ∈ (LkB)′.

In the following lemma we will use the short notation φr for a formula ∆(φ ↔ r). We
will show that for each φr, there exists some (φr)′ ∈ (LkB)′ such that the truth values
remain the same.

Lemma 6.3

For any formula φ ∈ LkB and truth value r ∈ Sk, there exists a formula (φr)′ ∈ (LkB)′
such that for each Kripke modelM = (W, e,R) ∈M and each world w ∈W it holds
that

‖φr‖M,w = ‖(φr)′‖M,w.

Proof. We show this lemma by induction on the structure of the formula.

• If φ = p ∈ A, then we can choose

(φr)′ = ∆(p↔ r).

• Suppose that φ = c with c ∈ Sk. Then ‖φr‖M,w = 1 iff r = c. If c = r, then we
can choose any tautology, e.g.

(φr)′ = ∆(p↔ 1)↔ ∆(p↔ 1)

with p ∈ A arbitrary. If c 6= r, then we can choose any contradiction, e.g.

(φr)′ = ∼(∆(p↔ 1)↔ ∆(p↔ 1))

with p ∈ A arbitrary.

170



6.2. FUZZY MODAL LOGICS OF BELIEF: EXTENSIONS OF BŁCK

• Suppose the claim holds for formulas φ and ψ, i.e. for every s ∈ Sk there exist
some (φs)′ and (ψs)′ in (LkB)′ such that ‖φs‖M,w = ‖(φs)′‖M,w and ‖ψs‖M,w =
‖(ψs)′‖M,w for every M and every w. We show that the lemma also holds for
α = φ→ ψ. Indeed, for r ∈ Sk we choose

(αr)′ =
∨

s,t∈Sk

{(φs)′ ∧ (ψt)′ | r = IL(s, t)}.

Then we have

‖αr‖M,w = 1 ⇔ IL(‖φ‖M,w, ‖ψ‖M,w) = r

⇔ ∃s, t ∈ Sk : ‖φ‖M,w = s, ‖ψ‖M,w = t, r = IL(s, t)
⇔ ∃s, t ∈ Sk : ‖φs‖M,w = 1, ‖ψt‖M,w = 1, r = IL(s, t)
⇔ ∃s, t ∈ Sk : ‖(φs)′‖M,w = 1, ‖(ψt)′‖M,w = 1, r = IL(s, t)
⇔ ‖(αr)′‖M,w = 1

Since αr and (αr)′ are both Boolean formulas it follows that ‖αr‖M,w = ‖(αr)′‖M,w.
• Suppose the claim holds for a formula φ, i.e. for every s ∈ Sk there exist some

(φs)′ in (LkB)′ such that ‖φs‖M,w = ‖(φs)′‖M,w for every M and every w. We
show that it also holds for α = Bφ. Suppose that r ∈ Sk. If r = 1, then consider
(α1)′ = B(φ1)′ ∈ (LkB)′:

‖α1‖M,w = 1 ⇔ ‖Bφ‖M,w = 1
⇔ inf{‖φ‖M,v | R(w, v) = 1} = 1
⇔ ∀v ∈W such that R(w, v) = 1 : ‖φ‖M,v = 1
⇔ ∀v ∈W such that R(w, v) = 1 : ‖φ1‖M,v = 1
⇔ ∀v ∈W such that R(w, v) = 1 : ‖(φ1)′‖M,v = 1
⇔ inf{‖(φ1)′‖M,v | R(w, v) = 1} = 1
⇔ ‖B(φ1)′‖M,w = 1
⇔ ‖(α1)′‖M,w = 1

If r < 1, then let r+ be the successor of r, i.e. if r = i
k , then r

+ = i+1
k . Define

formulas φ≥r, φ>r, φ≤r and φ<r as disjunctions3 of formulas φs, i.e. φ≥r =
∨
s≥r φs

which means that ‖φ≥r‖M,w = 1 iff ‖φ‖M,w ≥ r and similar for φ>r, φ≤r and φ<r.
Then we have that αr is equivalent to α≥r ∧ ∼(α≥r+).

3Note that for Boolean formulas, ⊕, ∨ and the classical disjunction coincide. The same result holds
for ⊗, ∧ and the classical conjunction.
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First note that for each s ∈ Sk and each formula ψ we have

‖(Bψ)≥s‖M,w = 1 ⇔ ‖Bψ‖M,w ≥ s
⇔ inf{‖ψ‖M,v | R(w, v) = 1} ≥ s
⇔ ∀v ∈W such that R(w, v) = 1 : ‖ψ‖M,v ≥ s
⇔ ∀v ∈W such that R(w, v) = 1 : ‖ψ≥s‖M,v = 1
⇔ ∀v ∈W such that R(w, v) = 1 : ‖

∨
t≥s ψt‖M,v = 1

⇔ ‖B(
∨
t≥s ψt)‖M,w = 1

Hence we obtain

‖αr‖M,w = 1 ⇔ ‖α≥r ∧ ∼(α≥r+)‖M,w = 1
⇔ ‖(Bφ)≥r‖M,w = 1 and ‖∼((Bφ)≥r+)‖M,w = 1
⇔ ‖B(

∨
t≥r φt)‖M,w = 1 and ‖∼(B(

∨
t≥r+ φt))‖M,w = 1

⇔ ‖B(
∨
t≥r φt) ∧ ∼B(

∨
t≥r+ φt)‖M,w = 1

By the induction hypothesis it follows that there exists (αr)′ ∈ (LkB)′ such that
‖αr‖M,w = ‖(αr)′‖M,w.

Example 6.2

Consider S2 = {0, 1
2 , 1}, φ = a → b, ψ = Ba and r = 1

2 . Then the following
formulas are the ones that are constructed in the proof of Lemma 6.3

(φ 1
2
)′ = (a 1

2
∧ b0) ∨ (a1 ∧ b 1

2
)

and
(ψ 1

2
)′ = B(a 1

2
∨ a1) ∧ ∼B(a1).

Using Lemma 6.3 we then have the following reduction from BŁck to classical modal
logic. Note that this reduction is not necessarily polynomial since for a formula φ ∈ LkB
and truth value r ∈ Sk, the length of the constructed formula (φr)′ ∈ (LkB)′ in Lemma
6.3 can be exponential in the length of φ ∈ LkB.

Proposition 6.3

For each formula φ ∈ LkB and r ∈ Sk there exists some formula ψ ∈ (LkB)′ such that

‖φ‖M,w = r iff ‖ψ‖M,w = 1

172



6.2. FUZZY MODAL LOGICS OF BELIEF: EXTENSIONS OF BŁCK

for every Kripke model M = (W, e,R) ∈M and every world w ∈W .

In the remainder of this section we will discuss the complexity of two satisfiability problems
for KD45(Łck). As before, the same results can be obtained for K45(Łck) and S5(Łck). More
precisely, we will discuss the following decision problems.

• 1-SAT: Given a formula φ ∈ LkB, does there exist an M = (W, e,R) ∈ Ms
est and a

w ∈W such that ‖φ‖M,w = 1?
• pos-SAT: Given a formula φ ∈ LkB, does there exist an M = (W, e,R) ∈ Ms

est and
a w ∈W such that ‖φ‖M,w > 0?

We will show that these problems are NP-complete, which is the same complexity class as
the corresponding decision problem for classical KD45. See [Halpern and Moses 1992] for
more details on the complexity of classical modal logics.
Note that 1-SAT and pos-SAT can be polynomially reduced to each other. Indeed, a

formula φ is “pos-SAT” if ∼∆(∼φ) is “1-SAT” and a formula φ is “1-SAT” if ∆φ is
“pos-SAT”. Hence it is sufficient to show the NP-completeness of 1-SAT.
For any formula φ ∈ LkB, we denote by #φ its length:

- #c = 1 for each c ∈ Sk and #p = 1 for every p ∈ A

- #(φ→ ψ) = 1 + #φ+ #ψ and similar for the other connectives

- #(Bφ) = 1 + #φ.

For a formula φ ∈ LkB, we denote by d(φ) its depth which is defined as usual by counting
the nested occurrences of the modality B. In particular, for a formula φ ∈ LkB, we have

- d(c) = 0 for each c ∈ Sk and d(p) = 0 for every p ∈ A

- d(φ→ ψ) = max{d(φ), d(ψ)} and similar for the other connectives

- d(Bφ) = 1 + d(φ).

Example 6.3

Consider the formula φ = Ba⊕∼b with a and b atoms. Then

#(Ba⊕∼b) = 1 + #(Ba) + #(∼b) = 1 + 1 + #(a) + 1 + #(b) = 5.
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For ϕ and ψ propositional (B-free) formulas, we have: d(ϕ) = d(ψ) = 0, d(B(ϕ)) =
d(B(ϕ⊕ ψ)) = d(ϕ⊕ B(ψ)) = 1, d(B(ϕ⊕ B(ψ))) = 2, d(Bϕ⊗ (B(B(Bψ)))) = 3
and so forth.

We can then show the following finite model property:

Lemma 6.4

Let φ be a formula in LkB. Then for every model M = (W, e,R) ∈ Ms
est, and for

every w ∈ W , there exists a finite model M ′ = (W ′, e′, R′) ∈ Ms
est and a world

w′ ∈W ′ such that |W ′| ≤ #φ and ‖φ‖M,w = ‖φ‖M ′,w′ .

Proof. Consider a Kripke model M = (W, e,R) with R = W × E (∅ 6= E ⊆ W ) and
w ∈ W . The aim is to find a finite set W ′, a non empty subset E′ ⊆ W ′, a mapping
e′ : W ′ × V → Sk and some w′ ∈W ′ for which the claim holds.
Trivially, if φ is B-free, then take W ′ = E′ = {w}, R′ = W ′ × E′, let e′ be defined by

restriction of e : W × V → Sk to W ′ × V and let w′ = w.
In general, if d(φ) ≥ 1 we proceed as follows. Let Bψ1

1 , . . . ,Bψ1
i1

be the subformulas
of φ of depth 1, which means that each ψ1

j is B-free. Since the set of truth-values Sk is
finite, clearly for each ψ1

j , there exists a world w1
j such that

‖Bψ1
j ‖M,w = ‖ψ1

j ‖M,w1
j

= w1
j (ψ1

j ).

Letting r1j = ‖Bψ1
j ‖M,w, now replace each subformula Bψ1

j by the corresponding truth
constant r1j and, if d = d(φ) > 1, repeat the process for all levels 2, . . . , d. Let E′ =
{wlj | 1 ≤ l ≤ d, 1 ≤ j ≤ il}, W ′ = {w} ∪E′, w′ = w and let e′ be defined by restriction
of e : W × V → Sk to W ′ × V . Then, by construction, ‖φ‖M,w = ‖φ‖M ′,w′ . Moreover,
|W ′| = 1 +

∑d
l=1 il ≤ #φ.

Observe that, as in the proof of Lemma 6.4, given a formula φ ∈ LkB and a Kripke model
M = (W, e,R) ∈Ms

est, we can construct a B-free formula φM . Indeed, given this Kripke
model M every subformula of the form Bψ can be substituted by a truth constant. We
will use this construction in the following theorem.

Theorem 6.2

The problems 1-SAT and pos-SAT for KD45(Łck) are NP-complete.

174



6.3. RELATING FUZZY MODAL LOGIC AND FUZZY AUTOEPISTEMIC LOGIC

Proof. Since each formula of Łukasiewicz logic is in particular a formula of LkB, and since
1-SAT (as well as pos-SAT) for Łck is NP-complete, the NP-hardness of our problems
follow. In order to prove NP-membership, recall that from Lemma 6.4 a formula φ is
1-SAT in a model M iff φ is 1-SAT in a finite model M ′ whose cardinality is polynomial in
the length of φ. Let us guess the model M ′ = (W ′, e′, R′). Since |W ′| ≤ #φ, the guess
is polynomial in #φ. Let φM ′ be the formula of Łck obtained from M ′ and φ by applying
the procedure described above, and notice that #φM ′ is polynomial in #φ. Moreover,
since |W ′| ≤ #φ the formula #φM ′ is obtained in a number of steps which is polynomial
in #φ. From [Mundici 1987] it follows that checking 1-SAT (as well as pos-SAT) for φM ′

in Łck is in NP. Hence NP-membership follows.

Remark 6.1

It follows that for each r ∈ Sk, the following decision problem, which is called r-SAT,
is NP-complete as well:

“Given a formula φ ∈ LkB, does there exist an M = (W, e,R) ∈Ms
est and a w ∈W

such that ‖φ‖M,w = r?”

Indeed, this problem is equivalent to 1-SAT for the formula ψ = ∆(φ ↔ r) where
ψ is polynomial in φ. Hence NP-membership follows. NP-hardness follows from the
fact that for each r > 0, 1-SAT can be reduced to r-SAT since a formula ‖φ‖M,w = 1
iff ‖φ ⊗ r‖M,w = r. For r = 0, we can reduce 1-SAT as follows: ‖φ‖M,w = 1 iff
‖∼φ‖M,w = 0.

Note that in [Bou et al. 2011a], it was shown that 1-SAT and pos-SAT for the minimal
modal logic over Łk are PSPACE-complete when the relation R in Kripke models (W, e,R)
is many-valued.

6.3 Relating fuzzy modal logic and fuzzy autoepistemic
logic

In this section we will discuss the relation between the fuzzy modal logic introduced in
the previous section and the fuzzy autoepistemic logic from Section 5.2 but restricting
to finitely-valued Łukasiewicz logic with truth constants. In this setting, the language of
fuzzy autoepistemic logic is LkB, see Definition 2.12. The basic construct is the notion of
a stable fuzzy expansion E of a set of premises T , introduced in a more general setting in
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Definition 5.2. The following definition coincides with Definition 5.2 but for the case of
finitely-valued Łukasiewicz logic with truth constants Łck.

Definition 6.4

A stable fuzzy expansion of a set of LkB-formulas T is a fuzzy set E : LkB → Sk that
satisfies the following fix-point condition:

E(φ) = min
{
v(φ∗) | v ∈ Ω∗k,∀α ∈ T ∗ ∪ {(Bψ)∗ ↔ E(ψ) | ψ ∈ LkB} : v(α) = 1

}
for all φ ∈ LkB.

Recall that EA(ψ) denotes the truth constant corresponding to the truth value EA(ψ) ∈
Sk, and that for a formula φ ∈ LkB, the formula φ∗ is the corresponding B-free formula in
the language (LkB)∗. As in the previous section we will denote by Ω∗k the set of evaluations
w : A′ → Sk with

A′ = A ∪ {Bϕ | ϕ ∈ LkB}.

Using the strong completeness of Łck, in particular the fact that for any set of Łck formulas
T ∪ {φ} one has

min{v(φ) | v(ψ) = 1 for all ψ ∈ T} = max{r ∈ Sk | T ` r → φ},

one can rewrite the above definition of stable fuzzy expansion of T as a fuzzy set ET
satisfying the following fix-point condition:

ET (φ) = max
{
r ∈ Sk | T ∗ ∪ {(Bψ)∗ ↔ ET (ψ) | ψ ∈ LB} ` r → φ∗

}
.

Finally, this condition can be rewritten as the following two joint conditions:

ET =
{
φ ∈ LkB | T ∗ ∪ {(Bψ)∗ ↔ ET (ψ) | ψ ∈ LB} ` φ∗

}
, and

ET (φ) = max{r ∈ Sk | r → φ ∈ ET }.

Notice that φ ∈ ET if and only if ET (φ) = 1.

Definition 6.5

Truth for fuzzy autoepistemic formulas is defined relative to structures (v, S) where
v ∈ Ωk and S ⊆ Ωk with Ωk the set of all propositional evaluations w : A → Sk.
The class of these structures will be denoted by Mae.
Truth evaluations for fuzzy autoepistemic formulas w.r.t. Mae are then recursively

defined as follows:
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• ‖a‖(v,S) = v(a) for a ∈ A,
• ‖c‖(v,S) = c for truth constants in {c | c ∈ Sk},
• ‖Bα‖(v,S) = infw∈S ‖α‖(w,S) for α ∈ LkB,
• ‖φ→ ψ‖(v,S) = min(1− ‖φ‖(v,S) + ‖ψ‖(v,S), 1) for φ, ψ ∈ LkB.

We consider the following subclasses of Mae:

• the class Mae
e , where only pairs (v, S) with S non-empty are considered,

• the class Mae
in ⊆Mae

e , where only pairs (v, S) with v ∈ S are considered.

Intuitively, one can think of S as a set of “sources" (worlds) and we define the truth
value of Bϕ in S as the minimal value of ϕ such that each source supports it at least to
this degree. Since the truth evaluation of formulas of the form Bϕ in a structure (w, S)
does not depend on the actual world w, we will also write ‖Bϕ‖S to denote ‖Bϕ‖(w,S).
Note that if S = ∅, then ‖Bϕ‖S = 1. Also note that, conversely, the interpretation w in
(w, S) is needed to evaluate non-modal formulas.
It can be shown that K45(Łck), KD45(Łck) and S5(Łck) are still sound and complete with

respect to the classes Mae, Mae
e and Mae

in respectively.

Theorem 6.3

K45(Łck), KD45(Łck) and S5(Łck) are sound and complete w.r.t. to Mae, Mae
e and

Mae
in, respectively.

Proof. We only show the case of KD45(Łck). The other cases are obtained by slight
adaptations of the proof. By Proposition 6.2 it is sufficient to show that Ms

est and Mae
e

have the same tautologies.
First suppose there exists an M = (W, e,R) ∈ Ms

est, i.e. R = W × E and ∅ 6= E ⊆
W , and w ∈ W such that ‖φ‖M,w < 1. We show that for (e(w, ·), S) ∈ Mae

e where
S = {e(w′, ·) | w′ ∈ E}, we have ‖φ‖(e(w,·),S) < 1. We will do this by showing that
‖φ‖M,w = ‖φ‖(e(w,·),S). To obtain this result we will show by structural induction that
for each formula γ we have

‖γ‖M,z = ‖γ‖(e(z,·),S) for each z ∈W.

The only notable case is γ = Bα for which it holds that ‖α‖M,v = ‖α‖(e(v,·),S) for all v ∈
W (induction hypothesis). Now consider z ∈W , we show that ‖Bα‖M,z = ‖Bα‖(e(z,·),S).

‖Bα‖M,z = inf{‖α‖M,v | R(z, v) = 1} = inf{‖α‖M,v | v ∈ E}
= inf{‖α‖(e(v,·),S) | v ∈ E} = inf{‖α‖(v′,S) | v′ ∈ S}
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= ‖Bα‖(e(z,·),S)

To show the other direction, suppose we have (v, S) ∈ Mae
e such that ‖φ‖(v,S) < 1.

Define M = (W, e,R) ∈ Ms
est as follows. Let W be a set of worlds such that W has the

same cardinality as S′ = {v} ∪S. Hence there exists a bijection h : W → {v} ∪S′ : w →
w′. The mapping e : W ×V → Sk is defined as e(w, ·) = h(w) and we define R = W ×E
with E = {w ∈ W | h(w) ∈ S}. We show by structural induction that for each formula
γ and each w ∈W we have

‖γ‖M,w = ‖γ‖(h(w),S).

The only non-trivial case is γ = Bα such that ‖α‖M,w = ‖α‖(h(w),S) for each w ∈ W
(induction hypothesis). But then we have for z ∈W by the induction hypothesis that

‖Bα‖M,z = inf{‖α‖M,w | R(z, w) = 1} = inf{‖α‖M,w | w ∈ E}
= inf{‖α‖M,w | h(w) ∈ S} = inf{‖α‖(h(w),S) | h(w) ∈ S}
= ‖Bα‖(h(z),S)

In particular it then follows that ‖φ‖M,h−1(v) = ‖φ‖(v,S) < 1.

To summarise, Table 6.1 provides a list of the languages and corresponding logics and
semantics that have been introduced and used so far, as well as the one we will introduce
in the next section.
We also modify Definition 5.4 to the setting of Łck.

Definition 6.6

A set S ⊆ Ωk is a fuzzy possible world autoepistemic model of a fuzzy autoepistemic
theory T ⊆ LkB iff

S = {v ∈ Ωk | ∀ϕ ∈ T : ‖ϕ‖(v,S) = 1}.

Recall that from Proposition 5.1 we obtain that E : LkB → Sk is a stable fuzzy expansion
of a set of formulas T iff it is the fuzzy belief set for some fuzzy possible world autoepistemic
model S of T , i.e.

E(φ) = ‖Bφ‖S

for all φ ∈ LkB.
On the other hand, as in the classical case, we can also characterise fuzzy belief sets,

or equivalently stable fuzzy expansions, by the syntactic notion of fuzzy stable sets (cfr.
[Halpern and Moses 1992]).
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Table 6.1: List of languages, logics and semantics used in this chapter.

Syntax Logic Semantics
finitely-valued Łukasiewicz logic Lck Łck Ωk

with truth constants
over variables A

minimal modal logic over Łck LkB BŁck M
with crisp accessibility relations

over variables A
K45 over Łck LkB K45(Łck) Met

LkB K45(Łck) Ms
et

LkB K45(Łck) Mae

KD45 over Łck LB KD45(Łck) Mest

LkB KD45(Łck) Ms
est

LkB KD45(Łck) Mae
e

S5 over Łck LkB S5(Łck) Mrsyt

LkB S5(Łck) Ms
rsyt

LkB S5(Łck) Mae
in

“only knowing” over Łck LkO O(Łck) Mae
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Definition 6.7

Let Γ : LkB → Sk be a fuzzy set of modal formulas and let Γ̂ = {Γ(ϕ) → ϕ∗ | ϕ ∈
LkB}. We say that Γ is a fuzzy stable set if the following conditions hold:

(1) Γ̂ is propositionally consistent, i.e. Γ̂ 6` 0.

(2) If Γ̂ ` c̄→ ϕ∗, then Γ(ϕ) ≥ c.

(3) Γ(ϕ) = Γ(Bϕ)

(4) 1− Γ(ϕ) = Γ(∼Bϕ)

Proposition 6.4

Γ is a fuzzy stable set iff Γ is a fuzzy belief set.

Proof. (⇐) First we show that a fuzzy belief set Γ is a fuzzy stable set. By definition
of a fuzzy belief set we know that there exists a S ⊆ Ωk such that Γ(ϕ) = ‖Bϕ‖S
for each formula ϕ ∈ LkB. Note that S 6= ∅ since otherwise it would hold for
each ϕ ∈ LkB that Γ(ϕ) = infw∈S ‖ϕ‖(w,S) = 1 which violates (1). In order to
show that Γ̂ is propositionally consistent, by the strong completeness of Łck, it is
sufficient to show that there exists a v ∈ Ω∗k such that for each formula ϕ we have
Γ(ϕ) ≤ v(ϕ∗). Indeed, it then follows that for each ϕ we have v(Γ(ϕ) → ϕ∗) = 1
and thus v(α) = 1 for all α ∈ Γ. Let w ∈ S be arbitrary but fixed and define v such
that v(ϕ∗) = ‖ϕ‖(w,S) for each ϕ. It follows that

Γ(ϕ) = inf
z∈S
‖ϕ‖(z,S) ≤ ‖ϕ‖(w,S) = v(ϕ∗)

which proves (1). Next, assume that Γ̂ ` c̄ → ϕ∗, or by the strong completeness
of Łck that Γ̂ |= c̄ → ϕ∗. We show that Γ(ϕ) ≥ c. Note, similar as above,
that for each w ∈ S we have that v with v(ψ∗) = ‖ψ‖(w,S) for all ψ ∈ LkB is a
model of Γ̂ and hence of c̄ → ϕ∗. Therefore c ≤ ‖ϕ‖(w,S) for each w ∈ S and
c ≤ infw∈S ‖ϕ‖(w,S) = Γ(ϕ) which proves (2). Proving (3) follows easily by noting
that

Γ(ϕ) = ‖Bϕ‖S = ‖BBϕ‖S = Γ(Bϕ).
Finally, to show (4), observe that Γ(∼Bϕ) equals

‖B∼Bϕ‖S = inf
w∈S
‖∼Bϕ‖(w,S) = inf

w∈S
(1− ‖Bϕ‖(w,S)) = inf

w∈S
(1− Γ(ϕ))
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which is equal to 1− Γ(ϕ).

(⇒) Now, let Γ be a fuzzy stable set. Define

S∗ = {u ∈ Ω∗k | u(α) = 1,∀α ∈ Γ̂}.

Note that S∗ is non-empty by (1). We show that for each ϕ and S = {u|A | u ∈
S∗} 6= ∅ with u|A : A→ Sk : p 7→ u(p) we have

Γ(ϕ) = ‖Bϕ‖S .

First, note that for a formula ϕ we have by definition of S∗ that w(Γ(Bϕ) →
(Bϕ)∗) = 1, or w((Bϕ)∗) ≥ Γ(Bϕ), for each w ∈ S∗. By (3) it then follows that
w((Bϕ)∗) ≥ Γ(Bϕ) = Γ(ϕ) for each w ∈ S∗. We show that also w((Bϕ)∗) ≤ Γ(ϕ)
from which it then follows that

w((Bϕ)∗) = Γ(ϕ)

for each w ∈ S∗. Indeed, since Γ(∼Bϕ) → (∼Bϕ)∗ is in Γ̂ and thus Γ(∼Bϕ) ≤
w((∼Bϕ)∗) = w(∼(Bϕ)∗) we have

w((Bϕ)∗) = 1− w(∼(Bϕ)∗) ≤ 1− Γ(∼Bϕ).

Hence by (4) it follows that w((Bϕ)∗) ≤ Γ(ϕ). We will now use the fact that

w((Bϕ)∗) = Γ(ϕ)

for each w ∈ S∗ to show that for each formula α and each w ∈ S∗ we have
w(α∗) = ‖α‖(w|A,S) from which we can conclude that

Γ(ϕ) = w((Bϕ)∗) = ‖Bϕ‖(w|A,S) = ‖Bϕ‖S

for each formula ϕ and an arbitrary w ∈ S∗. We show w(α∗) = ‖α‖(w|A,S) by
structural induction.The only notable case is where α = Bψ. By the definition of
S∗ we have Γ(ψ) ≤ u(ψ∗) for all u ∈ S∗ and hence

Γ(ψ) ≤ inf
u∈S∗

u(ψ∗).

Now suppose that Γ(ψ) < infu∈S∗ u(ψ∗), i.e. for each u ∈ S∗ we have Γ(ψ) <
u(ψ∗). Since the set of truth values is finite there exists a v ∈ S∗ such that
v(ψ∗) = minu∈S∗ u(ψ∗). Hence for all u ∈ S∗ we have v(ψ∗) ≤ u(ψ∗) and thus
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that u(v(ψ∗) → ψ∗) = 1. By the strong completeness of Łck and the definition of
S∗ it follows that

Γ̂ ` v(ψ∗)→ ψ∗.

By (2), it then follows that Γ(ψ) ≥ v(ψ∗). Since v ∈ S∗ it follows that Γ(ψ) < v(ψ∗)
and thus that Γ(ψ) > Γ(ψ), a contradiction. Hence Γ(ψ) = infu∈S∗ u(ψ∗) and by
the induction hypothesis we conclude that

w(α∗) = w((Bψ)∗) = Γ(ψ) = inf
u∈S∗

u(ψ∗)

= inf
u∈S∗

‖ψ‖(u|A,S) = inf
z∈S
‖ψ‖(z,S) = ‖α‖(w|A,S).

By combining Propositions 5.1 and 6.4, we can derive the following list of properties
stable fuzzy expansions satisfy:

Proposition 6.5

Let T be a set of LkB-formulas. If ET is a stable fuzzy expansion of T , then the
following properties with ET the alternative definition for a stable fuzzy expansion
that was introduced previously in this section, hold:

(i) {φ ∈ LkB | T ∗ ` φ∗} ⊆ ET ;
(ii) r → φ ∈ ET iff ET (φ) ≥ r;
(iii) If r → φ ∈ ET and s→ φ 6∈ ET for s > r, then ET (φ) = r;
(iv) ET (φ) = ET (Bφ), and hence φ ∈ ET iff Bφ ∈ ET ;
(v) 1− ET (φ) = ET (∼Bφ).

Proof. First of all, by Propositions 5.1 and 6.4 it follows that ET is a fuzzy stable set.
Then, (i) is the trivial consequence of ET being (propositionally) deductively closed and
containing T , (ii) and (iii) directly follows from the definition of ET , while (iv) and (v) are
just translations from analogous properties of fuzzy stable sets from Proposition 6.4.

6.4 “Only knowing” operators and stable fuzzy expan-
sions

In this section we will extend the language of LkB with a modal operator O (as well as
an operator N) where a formula Oψ will be interpreted as “ψ is all that is believed”. We
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denote this language by LkO. As discussed in Section 2.1.3, in the classical case [Levesque
1990], the semantics for a corresponding logic is defined as follows. Given an epistemic
state S consisting of a set of classical evaluations, a formula Oψ is true in S when ψ is
true in any structure (z, S) with z ∈ S, and false in any structure (z′, S) with z′ 6∈ S.
We can straightforwardly generalise this condition to the many-valued case by defining

‖Oψ‖(w,S) = min( inf
z∈S
‖ψ‖(z,S), inf

z 6∈S
‖∼ψ‖(z,S)),

where now w ∈ Ωk and S ⊆ Ωk. Other formulas are evaluated as in fuzzy autoepistemic
logic. If we then use the modal operator N whose truth evaluation in a pair (w, S) is

‖Nψ‖(w,S) = inf
z/∈S
‖ψ‖(z,S),

then it is easy to see that the semantics of Oψ is exactly that of Bψ ∧ N∼ψ. Notice
that ‖Nψ‖(w,S) = ‖Bψ‖(w,Ωk\S). Hence by Theorem 6.3 it follows that N is another K45
“operator”. Again, since the truth value of Oψ and Nψ in a structure (w, S) does not
depend on w, we will also write ‖Oψ‖S and ‖Nψ‖S to denote ‖Oψ‖(w,S) and ‖Nψ‖(w,S)
respectively.
To summarise, the language LkO we consider is built as follows.

Definition 6.8

The language LkO is recursively defined as follows

• a ∈ A is a formula.
• c with c ∈ Sk is a formula.
• If α is a formula, then Bα and Nα are formulas.
• If α and β are formulas, then α→ β with → the Łukasiewicz implication is a
formula.

Truth is defined w.r.t. the structures in Mae = {(w, S) | w ∈ Ωk, S ⊆ Ωk} (Defini-
tion 6.5).

Definition 6.9

Truth evaluations for formulas in LkO are recursively defined as follows:

• ‖a‖(v,S) = v(a) for a ∈ A,
• ‖c‖(v,S) = c for truth constants in Sk,
• ‖Bα‖(v,S) = infw∈S ‖α‖(w,S) for α ∈ LkO,
• ‖Nα‖(v,S) = infw/∈S ‖α‖(w,S) for α ∈ LkO,
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• ‖φ→ ψ‖(v,S) = min(1, 1− ‖φ‖(v,S) + ‖ψ‖(v,S)) for φ, ψ ∈ LkO.

As in the classical case [Levesque 1990], we will provide a sound and complete axiomatisa-
tion for the fuzzy logic of “only knowing”. This axiomatisation is similar to axiomatisations
for multi-agent extensions of K45. The difference is that we have one agent but two separ-
ate modalities for belief and not two “separate believers”. Morevover, we have a partition
of the worlds in two subsets of worlds: some set S is used for the semantics of B and
Ωk \ S for N. Specifically, we have the following axioms.

(i) axioms of Łck,
(ii) axioms of K45(Łck) for both B and N,

(iii) φ → Bφ, where all variables and constants in φ occur in the scope of an operator
N or B,

(iv) φ → Nφ, where all variables and constants in φ occur in the scope of an operator
N or B,

(v) ∼Bφ ∨ ∼Nφ, if ∼φ is 1-satisfiable and does not contain any modal operator,
(vi) Oφ ≡ Bφ ∧N∼φ.

The rules are modus ponens and necessitation for N and B. We will denote this lo-
gic as O(Łck).
First, note that all these axioms are tautologies in our fuzzy framework and rules preserve

tautologies in every (w, S) ∈ Mae. In particular, we have the following result.

Lemma 6.5

The axioms (i) - (vi) are sound w.r.t. the class of structures Mae.

Proof. Axioms (i) and (ii) follow from previous results.
Axioms (iii) and (iv) are easy to check. It only has to be shown that these axioms are

tautologies for formulas of the form φ = Bα and φ = Nα. Indeed by truth functionality we
then obtain that these axioms are tautologies for formulas where all variables and constants
occur in the scope of an operator N or B. For axiom (iii), (w, S) ∈Mae and φ = Bα we
have

‖Bφ‖(w,S) = inf
v∈S
‖Bα‖(v,S) = inf

z∈S
‖α‖(z,S) = ‖φ‖(w,S).

The other cases follow similarly.
For condition (v), suppose ∼φ is satisfiable, i.e. there exists w∗ ∈ Ω∗k such that w∗(φ) =

0. For a structure (w, S) ∈Mae we then have

‖∼Bφ ∨ ∼Nφ‖(w,S) = 1
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iff
max(‖∼Bφ‖(w,S), ‖∼Nφ‖(w,S)) = 1

iff
‖Bφ‖(w,S) = 0 or ‖Nφ‖(w,S) = 0

iff there exists z ∈ S such that z(φ) = ‖φ‖(z,S) = 0 or there exists z /∈ S such that
z(φ) = ‖φ‖(z,S) = 0. This is satisfied by the fact that there exists w′ ∈ Ωk = S∪ (Ωk \S)
such that w′(φ) = 0. Indeed let w′ = w∗|A.

Similarly as in Section 6.2, we can show that there exists a reduction of the satisfiability
problem for the fuzzy logic of only knowing to the classical counterpart. For every structure
(w, S) ∈Mae we then have ‖∆(φ↔ r)‖(w,S) = 1 iff ‖φ‖(w,S) = r. Define (LkO)′ ⊆ LkO as
the set of formulas built from atomic propositions of the form {∆(p↔ r) | p ∈ A, r ∈ Sk},
Łukasiewicz connectives and operators B and N:

- ∆(p↔ r) ∈ (LkO)′ for every p ∈ A and r ∈ Sk

- (φ→ ψ) ∈ (LkO)′ if φ, ψ ∈ (LkO)′

- Bφ ∈ (LkO)′ if φ ∈ (LkO)′

- Nφ ∈ (LkO)′ if φ ∈ (LkO)′

Lemma 6.6

Given a formula φ ∈ LkO and a truth value r ∈ Sk, there exists a formula (φr)′ ∈
(LkO)′ such that for each structure (w, S) ∈Mae it holds that

‖φ‖(w,S) = r iff ‖(φr)′‖(w,S) = 1,

where φr is a short notation for the formula ∆(φ↔ r) with φ ∈ LkO.

Proof. This lemma can be shown in a similar way as in Lemma 6.3. In particular the
claim now also has to be checked for formulas of the form Nφ which can be done entirely
analogously as for formulas of the form Bφ.

We will use this lemma together with the following proposition to show that the pro-
posed axiomatisation is complete w.r.t. the proposed semantics. In Proposition 6.6 and
Theorem 6.4, besides the languages LkO and (LkO)′ and structures Mae, we also consider
the following languages:
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• (LkO)+, which is an extension of LkO with an additional set of variables Â = {pr |
p ∈ A, r ∈ Sk}, i.e. the language built from variables A ∪ Â, truth constants from
Sk, the Łukasiewicz implication and operators B and N;

• (LkO)C , built from variables Â, classical connectives (∧, ∨, ∼, →) and operators B
and N

and the following classes of semantic structures:

• Mae
+ = {(w, S) | w ∈ Ω+

k , S ⊆ Ω+
k } where Ω+

k is the set of all evaluations w :
A ∪ Â→ Sk,

• Mae
C = {(w, S) | w ∈ ΩCk , S ⊆ ΩCk } where ΩCk is the set of all evaluations w : Â→
{0, 1}

Proposition 6.6

Suppose φ ∈ (LkO)′ is a tautology w.r.t. Mae, then φ is provable in O(Łck).

Proof. Suppose φ ∈ (LkO)′ is a tautology w.r.t. Mae. Define φ′′ as the formula in (LkO)+

obtained by replacing each subformula ∆(p ↔ r) by the atom pr ∈ Â. We show that
Ψ′′ → φ′′, with

Ψ′′ = ∆

 ∧
p∈A,r∈Sk

(∆(p↔ r)↔ pr)

 ,
is a tautology in Mae

+ . Indeed, consider a structure (w, S) in Mae
+ . Note that ‖Ψ′′‖(w,S) =

1 if ‖∆(p ↔ r)‖(w,S) = ‖pr‖(w,S) for all p ∈ A and ‖Ψ′′‖(w,S) = 0 otherwise. If
‖Ψ′′‖(w,S) = 1, then ‖φ′′‖(w,S) = 1 since φ is a tautology in Mae and in this case we
have ‖∆(p ↔ r)‖(w,S) = ‖pr‖(w,S) for all p ∈ A. If ‖Ψ′′‖(w,S) = 0, then trivially
‖Ψ′′‖(w,S) ≤ ‖φ′′‖(w,S). Hence, in both cases we obtain

‖Ψ′′ → φ′′‖(w,S) = 1.

Next we show that Σ′′ → φ′′, with

Σ′′ =
∧
p∈V

 ∨
r∈Sk

pr ∧
∧

s,t∈Sk,s 6=t
∼(pr ∧ ps)

 ,

is a tautology in Mae
C . Indeed, consider a structure (ŵ, Ŝ) in Mae

C . We show that
‖Σ′′‖(ŵ,Ŝ) = 1 implies ‖φ′′‖(ŵ,Ŝ) = 1. Suppose that ‖Σ′′‖(ŵ,Ŝ) = 1. By the defini-
tion of Σ′′, it then holds that for each p ∈ A there exists exactly one rp ∈ Sk such that
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ŵ(prp) = ‖prp‖(ŵ,Ŝ) = 1. We will now show that there exists a (w, S) ∈ Mae
+ such

that ‖φ′′‖(ŵ,Ŝ) = ‖φ′′‖(w,S) and such that ‖Ψ′′‖(w,S) = 1. Since Ψ′′ → φ′′ is a tauto-
logy in Mae

+ we then obtain that ‖φ′′‖(ŵ,Ŝ) = 1. To do this, we first define a mapping
f : ΩCk → Ω+

k as follows. For v̂ ∈ ΩCk , let f(v̂) : A ∪ Â → Sk be the evaluation such
that f(v̂)(pr) = v̂(pr) for all pr ∈ Â and for each p ∈ A let f(v̂)(p) = rp where rp is
the unique element in Sk such that v̂(prp

) = ‖prp
‖(v̂,Ŝ) = 1. We define (w, S) ∈ Mae

+

as follows: w = f(ŵ) and S = {f(v̂) | v̂ ∈ Ŝ}. It then holds that ‖Ψ′′‖(w,S) = 1 and
‖φ′′‖(ŵ,Ŝ) = ‖φ′′‖(w,S).
Since Σ′′ → φ′′ is a tautology inMae

C and the classical logic of only knowing is sound and
complete w.r.t. Mae

C [Levesque 1990], there is a corresponding proof Γ for Σ′′ → φ′′. We
will transform this proof to a proof for φ′ in O(Łck). First note that Σ′, which is obtained
from Σ′′ by replacing each pr by ∆(p↔ r), is a theorem in Łck and hence also a theorem
in O(Łck). By modus ponens, it is now sufficient to show that Σ′ → φ′ is a theorem as
well. This follows trivially by substituting in every formula in Γ expressions of the form pr
by ∆(p↔ r).

In the following theorem we will show completeness for O(Łck) w.r.t. Mae.

Theorem 6.4

Every tautology in Mae is a theorem in O(Łck).

Proof. Suppose φ is a tautology in Mae. Trivially, φ1 = ∆φ is a tautology as well and
by Lemma 6.6, it follows that (φ1)′ ∈ (LkO)′ constructed analogously as in Lemma 6.3
is also a tautology. By Proposition 6.6 it then follows that there is a proof for (φ1)′ in
O(Łck). We will now show that this implies that there also exists a proof for φ in O(Łck).
We will do this by showing that for each ϕ ∈ LkO and for each r ∈ Sk it holds that
ϕr = ∆(ϕ ↔ r) is provably equivalent to (ϕr)′ as constructed in Lemma 6.3, i.e. that
O(Łck) proves ϕr ↔ (ϕr)′. In particular, this implies that (φ1)′ and φ1 = ∆φ are provably
equivalent formulas. Since by Proposition 6.6 (φ1)′ is a theorem in O(Łck) it then follows
that ∆φ and hence φ is a theorem as well.
Let us show by induction that for each ϕ ∈ LkO and for each r ∈ Sk it holds that
ϕr = ∆(ϕ↔ r) is provably equivalent to (ϕr)′. The only non trivial step in this proof is
to show that there exists a (Bαr)′ ∈ (LkO)′ provably equivalent to ∆(Bα↔ r) given that
the claim holds for α. The case of N can be proved analogously. First note that if r < 1,
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Łck proves that ∆(Bα↔ r) is equivalent to∨
t≥r

∆(Bα↔ t)

 ∧
∼ ∨

t≥r+

∆(Bα↔ t)


where r+ is the successor of r. Now using axioms (B2)−(B4) and the fact that B(ϕ⊗ϕ)↔
Bϕ⊗Bϕ, and hence B∆ϕ↔ ∆Bϕ is a theorem of K45(Łck), the following expression can
be derived from ∆(Bα↔ r).

B

∨
t≥r

∆(α↔ t)

 ∧ ∼B

 ∨
t≥r+

∆(α↔ t)

 .

By the induction hypothesis, there exists for each t ≥ r a formula (αt)′ ∈ (LkO)′ that is
equivalent to ∆(α↔ t). Therefore, ∆(Bα↔ r) is equivalent to

B

∨
t≥r

(αt)′
 ∧ ∼B

 ∨
t≥r+

(αt)′
 ∈ (LkO)′.

If, on the other hand r = 1, then we have to show that ∆Bα is equivalent to B∆α. As
previously mentioned, this is a theorem of KD45(Łck).

Finally, we show that the relationship between the “only knowing” operator O and
Moore’s stable expansions proved in [Levesque 1990] naturally extends to our framework.
The next proposition shows that the belief set Th(S) (Definition 5.5) for an epistemic
state defined by a set of Łk-evaluations S is indeed a stable fuzzy expansion of a premise
ϕ whenever ∆ϕ is all what is fully believed in the epistemic state S.

Proposition 6.7

Suppose T = {φ1, . . . , φn} is a set of formulas in LkB. Then Th(S) is a stable fuzzy
expansion of T iff ‖O(∆φ1 ∧ . . . ∧∆φn)‖S = 1.

Proof. Since for a formula ψ we have ‖Oψ‖S = min(‖Bψ‖S , ‖N(∼ψ)‖S), we have the
following chain of equivalences:
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‖O(∆φ1 ∧ . . . ∧∆φn)‖S = 1
⇔ ‖B(∆φ1 ∧ . . . ∧∆φn)‖S = 1 and ‖N(∼(∆φ1 ∧ . . . ∧∆φn))‖S = 1
⇔ ∀v ∈ S : ‖∆φ1 ∧ . . . ∧∆φn‖(v,S) = 1 and ∀v /∈ S : ‖∆φ1 ∧ . . . ∧∆φn‖(v,S) = 0
⇔ ∀v ∈ S,∀i ∈ {1, . . . , n} : ‖∆φi‖(v,S) = 1 and ∀v /∈ S, ∃j ∈ {1, . . . , n} :

‖∆φj‖(v,S) = 0
⇔ ∀v ∈ S,∀i ∈ {1, . . . , n} : ‖φi‖(v,S) = 1 and ∀v /∈ S,∃j ∈ {1, . . . , n} : ‖φj‖(v,S) < 1

Thus, assuming that
‖O(∆φ1 ∧ . . . ∧∆φn)‖S = 1,

we can show that

S = {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}}.

Indeed, by the chain of equivalences we have

S ⊆ {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}}.

If w ∈ {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}} and w /∈ S, then there would exist
a j ∈ {1, . . . , n} such that ‖φj‖(w,S) < 1, a contradiction. Hence

S = {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}}.

Similar, one can also show that

S = {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}}

implies that for all v ∈ S we have ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n} and for all v /∈ S
we have that there exists a j ∈ {1, . . . , n} such that ‖φj‖(v,S) < 1. Hence

‖O(∆φ1 ∧ . . . ∧∆φn)‖S = 1
⇔ S = {v ∈ Ωk | ‖φi‖(v,S) = 1 for all i ∈ {1, . . . , n}}
⇔ S is a fuzzy possible world autoepistemic model of T
⇔ Th(S) is a stable fuzzy expansion of T.

where the last equivalence follows from Proposition 5.1.

Example 6.4

Recall the sensor network example from Section 5.3. We will now present an altern-
ative method to find the stable fuzzy expansions.
Let ti be the variable representing the temperature measured by sensor i. Suppose

we have an appropriate rescaling to assure that all variables take values in Ωk and
let ei be the variable representing the degree to which sensor i is faulty.
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Let us define a new connective d(ϕ,ψ) as ∼(ϕ ↔ ψ) for which the semantics
is given by the Euclidean distance d̂: for all x, y ∈ [0, 1], d̂(x, y) = |x − y|. The
connective d is well known in the literature of many-valued logics and it is usually
called Chang distance function [Cignoli et al. 2000]. The fact that d can be defined in
a many-valued logical setting is a peculiarity of MV-algebras and also for this reason
we believe these structures to be a suitable algebraic setting.
Then, for i 6= j, the formulas

d(ti, tj)→ (ei ∨ ej)

capture the idea that if the sensed values ti and tj of two sensors i and j are different,
this provides a reason to believe that at least one of those two sensors is faulty. Note
that we assume that all sensors are physically close to each other and thus they should
measure the same temperature.
On the other hand, the formula

∼Bei → ∼ei

represents the default information that sensors are not faulty.
As a concrete case, we further assume we are told sensor e2 is very reliable, and

hence we believe that sensor e2 is not faulty, i.e. B(∼e2), and that the three measured
values are t1 = 0.2, t2 = 0.9, t3 = 0.5.
The formalisation of this scenario then amounts to consider the following theory:

T = {∼Be1 → ∼e1,∼Be2 → ∼e2,∼Be3 → ∼e3,B(∼e2), 0.7→ (e1 ∨ e2),
0.4→ (e2 ∨ e3), 0.3→ (e1 ∨ e3)}

Let us define the formula φT as follows

φT = ∆(B(∼e2)) ∧∆(∼Be1 → ∼e1) ∧∆(∼Be2 → ∼e2) ∧∆(∼Be3 → ∼e3)∧
∆(0.7→ (e1 ∨ e2)) ∧∆(0.4→ (e2 ∨ e3)) ∧∆(0.3→ (e1 ∨ e3))

Let us now use Proposition 6.7 to find the stable fuzzy expansion of T . Suppose
there exists a fuzzy possible world autoepistemic model S of T , then by Proposition
6.7 it should hold that ‖OφT ‖S = 1. By the semantics of the operator O, it follows
that

‖B (∆(∼Be1 → ∼e1) ∧∆(∼Be2 → ∼e2) ∧∆(∼Be3 → ∼e3) ∧∆(B(∼e2))∧
∆(0.7→ (e1 ∨ e2)) ∧∆(0.4→ (e2 ∨ e3)) ∧∆(0.3→ (e1 ∨ e3))

)
‖S = 1
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and hence by the semantics of the operator B we obtain for all v ∈ S and for all
φ ∈ T that ‖∆φ‖(v,S) = 1 and hence that ‖φ‖(v,S) = 1. For every v ∈ S it must
hold that ‖B(∼e2)‖(v,S) = 1 and thus that infw∈S(1 − w(e2)) = 1, i.e. that for all
w ∈ S we have w(e2) = 0. Moreover since ‖∼Bei‖(v,S) ≤ ‖∼ei‖(v,S) it follows that

v(ei) ≤ inf
w∈S

w(ei) ≤ v(ei)

for i ∈ {1, 2, 3}. If there exists v1, v2 ∈ S, then we have that v1(ei) = infw∈S w(ei) =
v2(ei) for all i ∈ {1, 2, 3}. It follows that S = {v} is a singleton such that v(e2) = 0.
Taking into account the remaining formulas in T we obtain that it must hold that
0.7 ≤ v(e1), 0.4 ≤ v(e3) and 0.3 ≤ max(v(e1), v(e3)). Actually, we can check that v
is the minimal element in Ωk such that these inequalities are satisfied, i.e. v(e1) = 0.7,
v(e2) = 0 and v(e3) = 0.4. Indeed, let z ∈ Ωk such that z ≤ v and such that z
satisfies the above inequalities. Then we obtain z(ei) ≤ v(ei) = infw∈S w(ei) and
thus ‖∼Bei → ∼ei‖(z,S) = ‖ei → Bei‖(z,S) = 1 for i ∈ {1, 2, 3}. This implies
that z ∈ S, a contradiction if z 6= v. Hence if there exists a fuzzy possible world
autoepistemic model S of T it has to be

S = {v ∈ Ωk | v(e1) = 0.7, v(e2) = 0, v(e3) = 0.4}.

To obtain that S is a fuzzy possible world autoepistemic model of T , it remains to
be shown that

‖N∼ (∆(∼Be1 → ∼e1) ∧∆(∼Be2 → ∼e2) ∧∆(∼Be3 → ∼e3) ∧∆(B(∼e2))∧
∆(0.7→ (e1 ∨ e2)) ∧∆(0.4→ (e2 ∨ e3)) ∧∆(0.3→ (e1 ∨ e3))

)
‖S = 1

Or in other words, it has to be shown that for all w /∈ S there exists φ ∈ T such
that ‖φ‖(w,S) < 1. Suppose this is not the case and there exists w /∈ S such
that for all φ ∈ T it holds that ‖φ‖(w,S) = 1. Since for all i ∈ {1, 2, 3} we have
‖∼Bei → ∼ei‖(w,S) = 1 it follows that w(ei) ≤ infz∈S z(ei) = v(ei). Since w 6= v

there exists j ∈ {1, 3} such that w(ej) < v(ej) and w(e2) = 0. If j = 1, since
‖0.7→ e1 ∨ e2‖w,S = 1, we obtain

w(e1) < v(e1) = 0.7 ≤ w(e1 ∨ e2) = w(e1),

a contradiction. For j = 3 we obtain a similar contradiction.

The next proposition proves interesting properties about graded beliefs the only knowing
operator O captures inside the many-valued modal logic O(Łck). These are related to
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similar features of the fuzzy autoepistemic logic. We recall that a propositional formula ϕ
is r-satisfiable, for r ∈ Sk, if there exists an evaluation w ∈ Ωk such that w(ϕ) ≥ r.

Proposition 6.8

If ϕ is a propositional (B-free) formula which is r-satisfiable for some r ∈ Sk, then
O(Łck) proves the following formulas:

(i) N(∼∆(r → ϕ))→ (Bϕ→ r)
(ii) O(∆(r → ϕ))→ (Bϕ↔ r)

Proof. Let φ = ∆(r ↔ ϕ).
(i) Obviously, ϕ is r-satisfiable iff φ is 1-satisfiable, and since φ is Boolean, by axiom (v)

of the logic O(Łck) we have that

N(∼∆(r ↔ ϕ))→ ∼B∼∆(r ↔ ϕ)

is a theorem. Since ∆(r ↔ ϕ) → (ϕ → r) is a theorem in Łck we can derive that the
following formula is a theorem in O(Łck):

∼B(∼∆(r ↔ ϕ))→ ∼B(∼(ϕ→ r))

Hence O(Łck) proves
N(∼∆(r ↔ ϕ))→ ∼B(∼(ϕ→ r)).

Since by axiom (B3),
∼B(∼(ϕ→ r))→ (Bϕ→ r)

is a theorem, (i) is proved.
(ii) follows by observing that Oφ is equivalent to Bφ ∧N∼φ, and hence Oφ→ Bφ, i.e.

O∆(r ↔ ϕ)→ B∆(r ↔ ϕ)

is a theorem. Since ∆(r ↔ ϕ)→ (r → ϕ) is a theorem in Łck we obtain that

B(∆(r ↔ ϕ))→ B(r → ϕ)

is a theorem in O(Łck). Since B(r → ϕ) is equivalent to r → Bϕ by axiom (B3), we obtain
that

B(∆(r ↔ ϕ))→ (r → Bϕ)
is a theorem in O(Łck). Hence we obtain that O(Łck) proves

O(∆(r → ϕ))→ (Bϕ↔ r).
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6.5 Conclusion
In this chapter we have introduced Hilbert-style axiomatisations for fuzzy modal logics of
belief as well as for a “logic of only knowing” based on finitely-valued Łukasiewicz logic
with truth constants. In particular, we have introduced generalisations of the main clas-
sical propositional modal logics of belief (K45, KD45, S5) in order to model the notion of
belief for fuzzy propositions, in the sense of admitting partial degrees of truth between 0
(fully false) and 1 (fully true). We have shown that their Kripke style semantics can also
be used to characterise fuzzy autoepistemic logic using a possible world semantics, in line
with the original work of Moore [Moore 1984]. We have also developed a fuzzy version
of Levesque’s (propositional) logic of “only knowing”, proving soundness and complete-
ness, and in particular we have generalised bridges with autoepistemic logic established in
[Levesque 1990] for the classical case by characterising stable fuzzy expansions in terms
of models of suitable “only knowing” formulas.
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In this thesis we have thoroughly studied nonmonotonic reasoning in many-valued logic and
provided a theoretical basis for fuzzy answer set programming. This was accomplished by
investigating the foundations of nonmonotonic reasoning when properties may be graded.
In particular, we have defined graded generalisations of autoepistemic logic and logic of only
knowing and discussed relationships among them and with fuzzy answer set programming.
To do this we have also introduced fuzzy modal logics of belief.
Answer set programming (ASP) is a declarative programming language that allows us

to model combinatorial optimisations problems in a concise and elegant way. To solve
a problem, we translate it to an ASP program and particular models of the program,
the answer sets, then correspond to the solutions of the original program. An important
component of ASP is the negation-as-failure operator “not” providing a framework for
nonmonotonic reasoning.
While ASP provides a rich language, it is not directly suitable for modelling problems

with continuous domains. Hence in Section 3.2 we defined a particular – but very general
– form of fuzzy answer set programming (FASP) as a combination of ASP and fuzzy logic.
In Section 3.3 we have presented some motivating and illustrating examples for FASP. The
first example showed how strict disjunctive FASP can be used to model sensor networks.
This was followed by an example showing how strict simple FASP can be used to compute
transitive closures of proximity relations. Finally, we defined two regular normal FASP
programs: one for tackling a version of the ATM location selection problem and a second
one that can be used to solve the fuzzy graph colouring problem.
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In Chapter 4, we presented an overview of the computational complexity of FASP under
Łukasiewicz semantics, a fuzzy logic discussed in Section 2.2.3. In particular we dis-
cussed the following decision problems: Given a FASP program P , a literal l and a value
λl ∈ [0, 1] ∩ Q:

1. Existence: Does there exist an answer set I of P?

2. Set-membership: Does there exist an answer set I of P such that I(l) ≥ λl?

3. Set-entailment: Does I(l) ≥ λl hold for each answer set I of P?

For the programs with the most syntactic freedom, i.e. regular FASP programs, we
showed ΣP

2 -completeness for set-membership and existence and ΠP
2 -completeness for set-

entailment by using known complexity results about fuzzy equilibrium logic [Schockaert
et al. 2012]. However, if we restrict ourselves to programs with at most one literal in
the head of each rule, then we could only show ΣP

2 -membership and NP-hardness for set-
membership and existence and ΠP

2 -membership and coNP-hardness for set-entailment. If
in addition, we do not allow “not” in the rules we could only find a pseudo-polynomial
time algorithm to compute answer sets based on computing least fixpoints. If we restrict
to regular definite FASP programs, we could only show membership in NP ∩ coNP, but
for several subclasses we can show P-membership. In particular, for regular definite FASP
programs with only conjunction and maximum or only disjunction in the body of rules
we have provided a polynomial time algorithm to compute answer sets. This is also the
case for regular definite FASP programs with a cycle free dependency graph or with only
polynomially bounded constants.
Although existence and set-membership are ΣP

2 -complete for disjunctive ASP, for strict
disjunctive and strict normal FASP we were able to show NP-completeness. Moreover, we
showed that not allowing constraints and strong negation does not affect the complexity
for set-membership. We showed that the complexity of the existence problem for this
class of strict normal FASP programs without constraints and without strong negation is
“constant” since the existence of an answer set for such a program is always guaranteed.
However, for strict disjunctive FASP programs without constraints and without strong
negation we were only able to show membership in NP for the existence problem.
An overview of the complexity results that we have established can be found in Tables

4.1 and 4.2. Finally, we have also proposed an implementation of strict disjunctive FASP
using bilevel linear programming, providing a basis to build solvers for FASP. However,
some open problems remain: the existence of a polynomial time algorithm to compute the
answer set of a regular simple FASP program, the complexity of the decision problems for
regular normal FASP and existence for strict disjunctive FASP if constraints and strong
negation are not allowed.
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In Chapter 5, we considered a more general form of FASP programs, in which the connect-
ives can in principle be interpreted by arbitrary mappings not restricted to the connectives
of a particular fuzzy logic. We introduced a fuzzy version of autoepistemic logic which
can be used to reason about one’s (lack of) beliefs about the degrees to which properties
are satisfied. In this chapter, we have shown that, when generalising to the many-valued
case, important properties of classical autoepistemic logic are preserved and that the re-
lation between answer set programming and autoepistemic logic remains valid. Moreover,
we have presented two different but equivalent characterisations of answer sets in fuzzy
autoepistemic logic and in a fuzzy logic of minimal belief and negation-as-failure. These
results lead to a better comprehension of how to interpret fuzzy answer sets. Since the
language of fuzzy autoepistemic logic is much more expressive than the theories we need to
represent the fuzzy answer set programs, this could also serve as a useful basis for defining
or comparing extensions to the basic language of FASP.
Finally, in Chapter 6 we discussed relationships between fuzzy autoepistemic logic and

fuzzy modal logics, generalising well-known links beween autoepistemic logic and several
classical modal logic systems. In particular we have generalised Levesque’s logic of only
knowing and showed that when generalising to the many-valued case the correspondence
to autoepistemic logic remains valid. Moreover we have provided a sound and complete
axiomatisation for this logic of only knowing based on finitely-valued Łukasiewicz logic with
truth constants. To obtain this axiomatisation, we have introduced generalisations of the
main classical propositional modal logics of belief (K45, KD45, S5). We have shown that
their Kripke style semantics are closely related to fuzzy autoepistemic logic. Moreover, we
have generalised correspondences with autoepistemic logic by characterising stable fuzzy
expansions in terms of models of suitable “only knowing” formulas.
Overall we have presented many results that enhance our understanding of the complexity

of FASP and its relationship to other forms of nonmonotonic reasoning with degrees, but
along the way also new questions have emerged that would be interesting avenues of future
work. To conclude this dissertation, below we list those questions and problems that we
consider the most interesting and intriguing:

• Studying the remaining open problems w.r.t. the complexity of FASP under Łuka-
siewicz semantics:

– Providing a polynomial time algorithm to compute the answer set of a regular
simple FASP program or showing that such an algorithm cannot exist.

– Investigating whether existence for strict disjunctive FASP is NP-hard when
constraints and strong negation are not allowed.

– Investigating whether the decision problems for regular normal FASP are in NP
(or co-NP for set-entailment).
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• Establishing the computational complexity of FASP under product logic and Gödel
logic.

• Studying the implementation of fuzzy answer set programming and fuzzy autoep-
istemic logic using multi-level linear programming, generalising the implementation
of classical autoepistemic logic using Quantified Boolean Formulas.

• Investigating fuzzy autoepistemic logic and fuzzy logic of only knowing based on
infinitely-valued Łukasiewicz logic with truth constants, as well as using semantics
of other fuzzy logics.

198



Samenvatting

In deze thesis hebben we een grondige studie van niet-monotoon redeneren in meerwaardige
logica’s uitgevoerd en hebben we een theoretische basis gelegd voor vaag answer set pro-
grammeren. Hiertoe hebben we de fundamenten onderzocht van niet-monotoon redeneren
wanneer eigenschappen gradueel kunnen zijn. In het bijzonder hebben we meerwaardige
veralgemeningen van autoepistemische logica en van logica van “only knowing” geïntro-
duceerd en hebben we relaties tussen deze logica’s onderling en relaties met vaag answer
set programmeren bestudeerd. Om dit te doen hebben we ook modale vaaglogica’s van
geloof geïntroduceerd.
Answer set programmeren (ASP) is een declaratieve programmeertaal die ons toelaat

om combinatorische optimalisatieproblemen te modelleren op een beknopte en elegante
manier. Om zo’n probleem op te lossen vertalen we het eerst naar een ASP programma.
Bepaalde modellen van het programma, de answer sets, komen dan overeen met de
oplossingen van het oorspronkelijke probleem. Een belangrijke component van ASP is
de negatie-door-falen operator “not” die een kader voor niet-monotoon redeneren schept.
Hoewel ASP een rijke taal biedt, leent het zich niet onmiddellijk tot het modelleren

van problemen met continue domeinen. In Sectie 3.2 hebben we daarom een bepaalde
– heel algemene – vorm van vaag answer set programmeren (FASP) gedefinieerd, die
ASP en vaaglogica combineert. In Sectie 3.3 hebben we vervolgens enkele motiverende
voorbeelden voor FASP gepresenteerd. Het eerste voorbeeld illustreerde hoe FASP gebruikt
kan worden om sensornetwerken te modelleren. Dit werd gevolgd door een voorbeeld dat
toonde hoe we FASP kunnen aanwenden om transitieve sluitingen van nabijheidsrelaties
te berekenen. Ten slotte hebben we een FASP-programma gedefinieerd voor het probleem
van het plaatsen van bancontactautomaten op strategische plaatsen (het zogenaamde
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“ATM-selectieprobleem”) evenals een FASP-programma dat gebruikt kan worden om het
vaag graafkleuringsprobleem op te lossen.
In Hoofdstuk 4 hebben we een overzicht gegeven van de computationele complexiteit

van FASP onder de Łukasiewicz semantiek (d.i. een vaaglogica die we besproken hebben
in Sectie 2.2.3). In het bijzonder hebben we volgende beslissingsproblemen behandeld:
gegeven een FASP-programma P , een literaal l en een waarde λl ∈ [0, 1] ∩ Q:

1. Bestaan: Bestaat er een answer set I van P?

2. Lidmaatschap: Bestaat er een answer set I van P zodat I(l) ≥ λl?

3. Gevolg: Geldt I(l) ≥ λl voor elke answer set I van P?

Voor de programma’s met de grootste syntactische vrijheid, nl. reguliere FASP-pro-
gramma’s, hebben we ΣP

2 -compleetheid aangetoond voor lidmaatschap en existentie, en
ΠP

2 -compleetheid voor gevolg door gebruik te maken van gekende complexiteitsresultaten
voor een meerwaardige versie van equilibrium logica [Schockaert et al. 2012]. Als we ons
echter beperkten tot programma’s met maximaal één literaal in de head van elke regel, dan
konden we enkel ΣP

2 -lidmaatschap en NP-hardheid aantonen voor lidmaatschap en exist-
entie en ΠP

2 -lidmaatschap en coNP-hardheid voor gevolg. Voor dergelijke programma’s
die bovendien geen negatie-door-falen bevatten, hebben we een algoritme gegeven dat –
gebaseerd op het bepalen van kleinste fixpunten – de answer sets kan berekenen in pseudo-
polynomiale tijd. In het bijzonder, voor de deelklasse van zulke FASP-programma’s met
enkel conjunctie en maximum of enkel disjunctie in de body van regels hebben we een
algoritme gevonden dat in polynomiale tijd de answer sets kan berekenen. Dit was ook
het geval voor de deelklasse van programma’s met een afhankelijksheidgraaf zonder cykels
of met enkel polynomiaal gebonden constanten.
Hoewel existentie en lidmaatschap ΣP

2 -compleet zijn voor disjunctieve ASP-programma’s,
hebben we voor strikt disjunctieve FASP-programma’s NP-compleetheid aangetoond. Strikt
FASP omvat de programma’s die syntactisch overeenkomen met ASP, maar gebruik maken
van de semantiek van Łukasiewicz logica. Bovendien hebben we aangetoond dat het niet
toestaan van beperkingen en sterke negatie de complexiteit van lidmaatschap niet aantast.
Daarnaast hebben we aangetoond dat de complexiteit van het existentie probleem voor de
deelklasse van programma’s van maximaal één literaal in de head van elke regel en zonder
beperkingen en zonder sterke negatie “constant” is omdat het bestaan van een answer set
voor zulke programma’s steeds gegarandeerd is. We hebben echter enkel lidmaatschap in
NP kunnen aantonen voor de programma’s zonder restricties op de heads van de regels
maar zonder beperkingen en zonder sterke negatie.
Een overzicht van de complexiteitsresultaten kan gevonden worden in Tabellen 4.1 en

4.2. Ten slotte hebben we ook een implementatie van strikt disjunctief FASP voorgesteld,
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gebruikmakend van lineair programmeren met twee niveaus. Zo bekomen we een basis
voor solvers voor FASP.
In Hoofdstuk 5 hebben we een algemenere vorm van FASP-programma’s beschouwd

waarin de connectieven geïnterpreteerd worden door willekeurige functies die niet beperkt
zijn tot de connectieven van een bepaalde vaaglogica. We hebben vervolgens een meer-
waardige versie van autoepistemische logica ingevoerd. Deze logica kan gebruikt worden
om te redeneren over iemands (gebrek aan) geloof over de graad waarin bepaalde ei-
genschappen waar zijn. In dit hoofdstuk hebben we aangetoond dat na veralgemenen
naar een meerwaardige versie belangrijke eigenschappen van klassieke autoepistemische
logica en het verband tussen answer set programmeren en autoepistemische logica be-
waard blijven. Bovendien hebben we twee verschillende maar equivalente karakterisaties
van answer sets in autoepistemische vaaglogica en in vaaglogica van minimaal geloof en
negatie-door-falen aangetoond. Deze resultaten leiden tot een beter begrip van hoe we
vage answer sets moeten interpreteren. Omdat de taal van autoepistemische vaaglogica
veel expressiever is dan de theorieën die we nodig hebben om de vage answer set pro-
gramma’s voor te stellen kan dit een nuttige basis zijn voor het definiëren of vergelijken
van uitbreidingen van de basistaal van FASP.
Ten slotte, in Hoofdstuk 6 hebben we relaties tussen autoepistemische vaaglogica en

modale vaaglogica’s bestudeerd en hebben we gekende verbanden tussen autoepistemis-
che logica en verschillende klassieke modale logica systemen veralgemeend. In het bijzonder
hebben we Levesque’s logica van “only knowing” veralgemeend en we hebben aangetoond
dat het verband met autoepistemic logic bewaard blijft onder deze veralgemening. Boven-
dien hebben we een correcte en volledige axiomatisatie gegeven. Om deze axiomatisatie
te bekomen hebben we veralgemeningen van de standaard propositionele modale logica’s
van geloof (K45, KD45, S5) gedefinieerd. We hebben aangetoond dat hun semantiek
in de stijl van Kripke gerelateerd is aan autoepistemische vaaglogica en dat het klassieke
verbrand tussen autoepistemische logica en logica van “only knowing” bewaard blijft.
Doorheen deze thesis hebben we een waaier van resultaten gepresenteerd die ons begrip

over de complexiteit van FASP en het verband met andere vormen van niet-monotoon
redeneren met continue waarheidswaarden hebben verrijkt en uitgediept. Hierbij zijn echter
ook weer nieuwe vragen en open problemen aan het licht gekomen. Ter afsluiting sommen
we die vragen en problemen op die we het meest interessant en intrigerend vinden:

• Het bestuderen van de overgebleven open problemen i.v.m. de complexiteit van FASP
onder Łukasiewicz semantiek:

– Het vinden van een polynomiaal algoritme om de answer sets te bepalen van een
regulier FASP-programma zonder sterke negatie, zonder negation-as-failure en
met exact één atoom in de head van elke regel, of aantonen dat zo’n algoritme
niet kan bestaan.
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– Onderzoeken of existentie voor strikt disjunctief FASP NP-hard is wanneer
beperkingen en sterke negatie niet toegelaten zijn.

– Onderzoeken of de beslissingsproblemen voor regulier FASP – als de head van
elke regel maximaal één literaal of constante bevat – in NP zijn (of co-NP voor
gevolg).

• De computationele complexiteit van FASP onder product logica en Gödel logica in
kaart brengen.

• Het bestuderen van de implementatie van vaag answer set programmeren en auto-
epistemische vaaglogica gebruik makend van multi-level lineair programmeren en op
die manier de implementatie van klassieke autoepistemische logics m.b.v. Quantified
Boolean Formulas veralgemenen.

• Het onderzoeken van vaagautoepistemische logica en vaaglogica van “only knowing”
gebaseerd op oneindigwaardige Łukasiewicz logica met constanten, evenals voor
semantieken van andere vaaglogica’s.
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List of Symbols

A′ denotes the set A ∪ {Bϕ | ϕ ∈ LcB}, page 24

A′ denotes the set A ∪ {Bϕ | ϕ ∈ LB}, page 122

A′ denotes the set A ∪
{

Bϕ | ϕ ∈ LkB
}
, page 161

P I reduct of an ASP program P w.r.t. to an interpretation I, page 49

P I reduct of a FASP program P w.r.t. to a fuzzy interpretation I, page 65

T ∗ denotes the set {α∗ | α ∈ T} with T ⊆ LB , page 122

T ∗ denotes the set {α∗ | α ∈ T} with T ⊆ LkB, page 161

L∗B non modal language corresponding to LB , page 122

ΠP immediate consequence operator of an ASP program P , page 48

ΠP immediate consequence operator of a FASP program P , page 62

α∗ corresponding formula in L∗B for α ∈ LB , page 122

α∗ corresponding formula in (LkB)∗ for α ∈ LkB, page 161

λ(P ) corresponding autoepistemic theory for a normal ASP program P without
constraints or strong negation, page 55

219



List of Symbols

λ(P ) corresponding fuzzy autoepistemic theory for a normal FASP program P

without constraints or strong negation, page 136

BP set of all atoms in an ASP program P , page 47

BP set of all atoms in a FASP program P , page 61

LP denotes the set {a | a ∈ BP } ∪ {¬a | a ∈ BP } for an ASP program P ,
page 47

LP denotes the set {a | a ∈ BP } ∪ {¬a | a ∈ BP } for a FASP program P ,
page 61

µ(P ) corresponding theory in MBNF for a disjunctive ASP program P , page 141

µ(P ) corresponding theory in FMBNF for a regular FASP program P , page 143

not negation-as-failure operator in an ASP program, page 46

not negation-as-failure operator in a FASP program, page 59

¬a strong negation of a in an ASP program, page 46

¬a strong negation of a in a FASP program, page 59

φr denotes the formula ∆(φ↔ r) ∈ LkB for φ ∈ LkB and r ∈ Sk, page 168

φr denotes the formula ∆(φ↔ r) ∈ LkO for φ ∈ LkO and r ∈ Sk, page 183

σ(P ) corresponding autoepistemic theory for a disjunctive ASP program, page 57

σ(P ) corresponding fuzzy autoepistemic theory for a regular FASP program,
page 149

rb body of an ASP rule r, page 46

rb body of a FASP rule r, page 59

rh head of an ASP rule r, page 46

rh head of a FASP rule r, page 59

v|A evaluation v|A : A→ [0, 1] for v ∈ Ω∗, page 126

(LkB)′ subset of LkB, set of formulas constructed from {∆(p↔ r) | p ∈ V, r ∈ Sk},
page 168

220



List of Symbols

(Ł1) axiom (Ł1), page 41

(Ł2) axiom (Ł2), page 41

(Ł3) axiom (Ł3), page 41

(Ł4) axiom (Ł4), page 41

(Ł5) axiom (Ł5), page 41

(Ł6) axiom (Ł6), page 41

(LkB)∗ non modal language corresponding to LkB, page 161

(LkO)′ subset of LkO, set of formulas constructed from {∆(p↔ r) | p ∈ V, r ∈ Sk},
page 183

(LkO)+ extension of LkO, page 184

(LkO)C two valued LkO, page 184

BŁck axiomatic extension of the minimal model logic over Łck with axiom (K),
page 43

B modal operator, page 24

∆ ∆φ = φ⊗ . . .⊗ φ (k times), page 43

KD45(Łck) BŁck extended with axioms (D), (4) and (5), page 160

K45(Łck) BŁck extended with axioms (4) and (5), page 160

ΛL denotes the set {φ∗ | `L φ}, page 163

LB language of fuzzy autoepistemic logic, page 121

LkB expansion of Lck with modal operator B, page 42

Lc language of all propositional formulas over A, page 24

LcB extension of Lc with modal operator B, page 24

LK propositional fuzzy logic corresponding to a set of continuous t-norms K,
page 35

Lck language of finitely-valued Łukasiewicz logic with a finite set of truth con-
stants, page 40

221



List of Symbols

Łck finitely-valued Łukasiewicz logic with a finite set of truth constants, page 41

LkO language of the logic of only knowing under finitely-valued Łukasiewicz logic
with truth constants, page 181

M class of Kripke models with crisp accessibility relations, page 43

Mae class of structures (v, S) where v ∈ Ωk and S ⊆ Ωk, page 174

Mae
+ denotes the set {(w, S) | w ∈ Ω+

k , S ⊆ Ω+
k }, page 184

Mae
C denotes the set {(w, S) | w ∈ ΩCk , S ⊆ ΩCk }, page 184

Mae
in subclass ofMae where only pairs (v, S) with v ∈ S are considered, page 175

Mae
e subclass of Mae where only pairs (v, S) with S non-empty are considered,

page 175

F(BP ) set of fuzzy interpretations I : BP → [0, 1] ∩ Q of a FASP program P ,
page 61

F(LP ) set of all fuzzy interpretations of a FASP program P , page 61

P(LP ) set of all consistent interpretations of an ASP program P , page 47

P(X) denotes the set {B | B ⊆ X} for a set X, page 24

Cn(X) the set of propositional consequences of a set of formulas X, page 27

Mest class of Kripke models (W, e,R) with R Euclidean, serial and transitive,
page 163

Ms
est class of Kripke models (W, e,R) with R = W × E for some fixed and

non-empty E ⊆W , page 166

Met class of Kripke models (W, e,R) with R Euclidean and transitive, page 163

Ms
et class of Kripke models (W, e,R) with R = W ×E for some fixed E ⊆W ,

page 166

Mod(I) defined as Mod(vI) for I ∈ F(BP ), page 143

Mod(v) denotes the set {w ∈ Ω | ∀a ∈ A : v(a) ≤ w(a)} for v ∈ Ω, page 142

Mrsyt class of Kripke models (W, e,R) with R reflexive, symmetric and transitive,
page 163

222



List of Symbols

Ms
rsyt class of Kripke models (W, e,R) with R = W ×W , page 166

N modal operator, page 30

Ω set of propositional evaluations A→ [0, 1], page 123

Ω∗ set of propositional evaluations A′ → [0, 1], page 122

Ω∗k set of propositional evaluations A′ → Sk, page 161

Ωk set of propositional Łck evaluations, page 40

O modal operator, page 29

O(Łck) logic of only knowing under Łck, page 182

Π(P,M) denotes the set {w ∈ Ω | w is a minimal element of πMP } for a FASP pro-
gram P and M ∈ F(BP ), page 144

ΠP
i+1 class of decision problems co(ΣP

i+1), page 53

S5(Łck) BŁck extended with axioms (T), (4) and (5), page 160

ΣP
i+1 class of decision problems NPΣPi , page 52

`L notion of proof in a logic L, page 38

A set of atoms, page 24

eLcan eLcan(w, p) = w(p) for a variable p and w ∈WL
can, page 163

Fn the set of n-ary connectives, page 122

IL residual implicator for TL, page 34

IM residual implicator for TM , page 34

IP residual implicator for TP , page 34

ML
can L-canonical Kripke model ML

can = (WL
can, e

L
can, R

L
can) for a fuzzy modal

logic L, page 163

NIL
negator for IL, page 35

NIM
negator for IM , page 35

223



List of Symbols

NIP
negator for IP , page 35

RLcan denotes the set {(w1, w2) ∈ Ω∗k × Ω∗k | ∀φ ∈ LkB : if w1((Bφ)∗) =
1, then w2(φ∗) = 1}, page 163

Sk denotes the set {0, 1
k , . . . ,

k−1
k , 1}, page 40

SL Łukasiewicz t-conorm, page 32

SM maximum t-conorm, page 32

SP probabilistic sum t-conorm, page 32

TL Łukasiewicz t-norm, page 32

TM minimum t-norm, page 32

TP product t-norm, page 32

vI vI(x) = I(x) if x ∈ BP and vI(x) = 0 otherwise with I ∈ F(BP ), page 143

WL
can denotes the set {w ∈ Ω∗k | ∀φ ∈ ΛL : w(φ) = 1}, page 163

(4) axiom (4), page 160

(5) axiom (5), page 160

(B2) axiom (B2), page 42

(B3) axiom (B3), page 42

(B4) axiom (B4), page 42

(D) axiom (D), page 160

(K) axiom (K), page 43

(Q1) axiom (Q1), page 41

(T) axiom (T), page 160

BL basic logic, page 36

NP class of decision problems that can be solved in polynomial time on a non-
deterministic Turing machine, page 52

224



List of Symbols

P class of decision problems that can be solved in polynomial time on a de-
terministic Turing machine, page 52

Mod(M) denotes the set {I ∈ P(A) |M ⊆ I} for an ASP program P , page 57

Mod(M) denotes the set {I ∈ P(A) |M ⊆ I} for M ∈ P(A), page 141

Th(S) belief set of S, page 28

Th(S) fuzzy belief set of S, page 126

225





Index

Łukasiewicz logic, 36, 39
3SAT, 53

answer set, 50, 65
answer set programming (ASP), 45
atom, 24
autoepistemic formulas, 24
autoepistemic logic, 24
autoepistemic theory, 24

belief set, 28
biresiduum, 34
body, 46, 59
Boolean satisfiability problem (SAT), 53

canonical Kripke model, 162
completeness, 53
consistent, 47, 61
constraint, 46, 59
cycle, 105

decision problems, 52
definite ASP program, 46

depth, 171
disjunctive ASP program, 46

Euclidean, 163
existence, 52, 80

fact, 46, 59
finitely-valued Łukasiewicz logic with a fi-

nite set of truth constants, 40
FMBNF model, 142
forward chaining, 47
fuzzy autoepistemic logic, 121
fuzzy autoepistemic theory, 122
fuzzy belief set, 126
fuzzy interpretation, 61
fuzzy logic of minimal belief and negation-

as-failure (FMBNF), 141
fuzzy logics, 31
fuzzy modal logics of belief, 160
fuzzy model, 61
fuzzy possible world autoepistemic model,

125
fuzzy stable set, 178

227



INDEX

Gödel logic, 36
Gelfond-Lifschitz reduct, 49, 65

hardness, 53
head, 46, 59
Herbrand base, 47

immediate consequence operator, 48, 62
implicator, 32
inconsistent, 46, 59
inf-equivalent, 146
interpretation, 47

Kripke models, 42

length, 171
literal, 46, 59
logic of minimal belief and negation-as-failure

(MBNF), 140
logic of only knowing, 30

minimal fuzzy model, 61
minimal modal logic over Łck, 42
minimal model of an ASP program, 48
model of an ASP program, 48
modus ponens, 37
monotonicity, 42

necessitation, 43
negation-as-failure operator, 46, 59
negator, 35
nonmonotonic, 11
normal ASP program, 46

objective formula, 24, 122, 140, 142

possible world autoepistemic model, 28
product logic, 36
proof, 38

Quantified Boolean Formula (QBF), 54

Rational Pavelka logic, 40
reflexive, 163
regular definite FASP program, 60
regular FASP program, 59
regular normal FASP program, 60
regular simple FASP program, 60
residual implicator, 33

serial, 163
set-entailment, 52, 80
set-membership, 52, 80
simple ASP program, 47
stable autoepistemic theory, 26
stable expansion, 26
stable fuzzy expansion, 122
strict definite FASP program, 60
strict disjunctive FASP program, 60
strict normal FASP program, 60
strict simple FASP program, 60
strong negation, 46, 59
symmetric, 163

t-conorm, 31
t-norm, 31
theorem, 41
theory in FMBNF, 142
transitive, 163
truth lemma, 164

228


	Abstract
	Contents
	Acknowledgments
	Introduction
	Logic
	Nonmonotonic reasoning
	Nonmonotonicity in logic programming

	Many-valued logic
	Outline of the thesis

	Reasoning about beliefs
	Autoepistemic logic
	Formalizing autoepistemic reasoning
	Possible world semantics and syntactical characterisation
	Embedding autoepistemic logic into logic of only knowing

	Fuzzy logic
	Logical operators
	The basic many-valued logic
	Łukasiewicz logic
	Finitely-valued Łukasiewicz logic

	Minimal modal logic over finitely-valued Łukasiewicz logic

	Fuzzy answer set programming
	Answer set programming (ASP)
	Syntax and semantics
	Complexity of ASP
	Embedding answer set programming into autoepistemic logic

	Fuzzy answer set programming (FASP)
	Motivating examples
	Sensor networks
	Transitive closure
	ATM location selection problem
	Fuzzy graph colouring problem


	Complexity of fuzzy answer set programming under Łukasiewicz semantics
	Introduction
	Preliminaries
	Complexity of strict FASP
	Complexity of regular FASP
	Complexity of regular definite FASP programs
	Complexity of regular normal FASP programs

	Reduction to bilevel linear programming
	Conclusion

	Embedding fuzzy answer set programming in fuzzy autoepistemic logic
	Introduction
	Fuzzy autoepistemic logic
	Motivating example
	Is the sensor broken or not?
	How big is the error on the measurement?

	Relation between regular normal FASP and fuzzy autoepistemic logic
	Relation between regular FASP and fuzzy autoepistemic logic
	Logic of minimal belief and negation-as-failure (MBNF)
	Fuzzy logic of minimal belief and negation-as-failure (FMBNF)
	Embedding regular FASP in FMBNF
	Embedding regular FASP in fuzzy autoepistemic logic

	Conclusion

	Relating fuzzy autoepistemic logic and fuzzy modal logics of belief
	Introduction
	Fuzzy modal logics of belief: Extensions of BŁck
	Relating fuzzy modal logic and fuzzy autoepistemic logic
	``Only knowing'' operators and stable fuzzy expansions
	Conclusion

	Conclusions
	Samenvatting
	List of Publications
	Bibliography
	List of Symbols
	Index

