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The thesis

Machine learning models can forecast an incoming paroxysmal atrial fibrilla-
tion episode moments before its onset. They demonstrate increasing perfor-
mance as the prediction gets closer to the event.

Moreover, in the comparative analysis of sinus rhythm recordings from patients
with and without paroxysmal atrial fibrillation, machine learning models can
identify a specific signature of paroxysmal atrial fibrillation within the sinus
rhythm.
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Summary

The cardiovascular system is a central part of the biological system that consti-
tutes our body. This system ensures that organs and tissues function properly
by supplying them with the oxygen and nutrients they need to function and
maintain internal balance. Unfortunately, cardiovascular disease is one of the
leading causes of death worldwide. It is estimated to be responsible for 17.9
million deaths worldwide, corresponding to 32% of all deaths. Heart attacks
and strokes account for 85% of these deaths.

Atrial fibrillation is the most common sustained heart rhythm disorder in
adults. Patients with atrial fibrillation have a fivefold increased risk of stroke.
This condition affects the rhythmic contractions of the atria, the two upper
chambers of the heart, which are disrupted by irregular impulses, resulting in
uncontrolled trembling or irregular beating of the muscle. The first stage of
the condition is called paroxysmal, in which episodes of atrial fibrillation begin
and end spontaneously within 7 days of onset.

In this thesis, we propose a machine learning approach to understand if
an incoming paroxysmal atrial fibrillation episode can be forecast moments
before its onset. For this purpose, we created a new database composed of
electrocardiogram Holter monitoring records from patients with atrial fibril-
lation. The records were selected retrospectively in three Belgian centres and
one Luxembourg centre between 2005 and 2023. Recordings with paroxysmal
atrial fibrillation and no major disturbances in signal quality were selected and
annotated by a cardiologist and a specialist cardiac nurse. The annotations cor-
respond to the exact time of the QRS complexes of all atrial fibrillation onsets
and offsets.

Using this new database, we study the evolution of a prediction made by
a machine learning model before the onset of atrial fibrillation. We find that
the closer the analysed electrocardiogram window is to the onset of atrial
fibrillation, the better the resulting prediction. We then compared several
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viii SUMMARY

machine learning models on selected dataset 30-minute electrocardiogram
windows close and distant from atrial fibrillation episodes selected from the
database. We found that models using heart rate variability and RR intervals
performed better compared to models based on the full electrocardiogram
signal.

We extended the database with electrocardiogram Holter monitoring
records from healthy patients. Using these additional recordings, and building
on the previous results, we compare the sinus rhythm windows distant from
episodes from patients with and without atrial fibrillation. We show that
machine learning models can identify a specific signature of paroxysmal atrial
fibrillation within sinus rhythm. The results demonstrate that new machine
learning-based strategies could be explored for practical atrial fibrillation
screening and treatment.

Keywords

Atrial Fibrillation, Onset Forecast, Prediction, Risk Identification,
Electrocardiogram, RR intervals, Heart Rate Variability
Machine Learning, Deep Learning
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and Hugues Bersini. “Reproducibility of machine learning models for
paroxysmal atrial fibrillation onset prediction”. In: Computer in Cardiology
(2022).
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3.3.1 Dr Grégoire outpatient clinic . . . . . . . . . . . . . . . . . 59
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Chapter 1

Introduction

The cardiovascular system is a central part of the biological system that con-
stitutes our body. This complex network of heart, blood vessels and blood is
responsible for blood circulation. Blood carries oxygen and nutrients to the
cells in our body through arteries and removes waste products such as car-
bon dioxide through veins. This system ensures that organs and tissues func-
tion properly by supplying them with the elements they need to function and
maintaining internal balance.

At the centre of this system is the heart, a muscular organ that works tire-
lessly to pump blood throughout the body. Its contractions circulate the blood
and are rhythmically controlled by electrical impulses from pacemaker cells.
The proper functioning of the heart is therefore essential to sustain life, making
it a central issue when discussing cardiovascular health of patients.

The heart is made up of four hollow chambers: two upper chambers, the
atria, and two lower chambers, the ventricles. A diagram is shown in Figure 1.1.
These chambers are separated by valves and surrounded by the heart wall.
This wall is mainly made up of the heart muscle, which is responsible for
the rhythmic contraction of the four chambers. The interventricular septum
separates the left and right sides of the heart. The right side of the heart receives
deoxygenated blood from the body and sends it to the lungs, while the left side
receives oxygenated blood from the lungs and sends it to the rest of the body.

Unfortunately, cardiovascular diseases are one of the leading causes of death
in the world. It is estimated to be responsible for 17.9 million deaths world-
wide, corresponding to 32% of all deaths. Heart attacks and strokes account for
85% of these deaths (WHO 2022). Despite its robustness, the heart is vulnera-
ble to various diseases and malfunctions that can compromise its functioning.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Anatomy of the human heart, modified from Wikimedia Commons

These conditions include:

• arrhythmias — abnormal heart rhythms,

• coronary heart disease — restriction of the flow of blood to the heart
muscle,

• congenital heart defects — structural problem that are present at birth,

• or heart failure — the muscle is incapable of pumping sufficient blood
and meet the blood and oxygen demand of the body.

These diseases can significantly affect the ability of the heart to pump blood ef-
ficiently, which can lead to serious health complications. Understanding these
diseases, their causes, symptoms, and management is essential to maintain-
ing a healthy heart and preventing potentially life-threatening situations. Re-
searchers are therefore studying them in order to better understand, propose
new treatment path and ultimately to treat them better.

In this work, we focus on Atrial Fibrillation (AF), which is the most common
sustained heart rhythm disorder among adults. The rhythmic contractions of
the atria are disrupted by irregular impulses, resulting in uncontrolled trem-
bling or erratic beating of the muscle. AF it is defined as:

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
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a supraventricular tachyarrhythmia with uncoordinated atrial electrical
activation and consequently ineffective atrial contraction. Electrocardio-
graphic characteristics of AF include (i) irregularly irregular R-R intervals,
when atrioventricular conduction is not impaired, (ii) absence of distinct
repeating P waves, and (iii) irregular atrial activations.

Hindricks et al. (2021)

AF is diagnosed using an Electrocardiogram (ECG), which is the medical
test required to diagnose this condition. This disease can often be asymp-
tomatic until revealed by a consequence, such as a stroke. In some cases, AF
symptoms such as palpitations, chest pain, fatigue, or dizziness, can be found,
but they are not commonly present (Lip et al. 2016). Clinical scores can help
physicians to better target patients at risk of AF e.g. CHARGE-AF, or stroke
e.g. CHA2DS2-VASc (Christophersen et al. 2016). It is important to diagnose
AF, as asymptomatic AF patients have a 2-fold increase in risk of mortality
compared to symptomatic patients (Boriani et al. 2015).

AF is an evolving disease and multiple stages are defined. The first stage of
the disease is called paroxysmal, where AF start and end spontaneously within
7 days after the AF onset. Then, the disease evolves to a permanent stage
where the AF crisis lasts more than 7 days. AF episodes can be terminated
with a cardioversion, a procedure to restore a regular heart rhythm. It has
been observed that 20% to 30% of patients in paroxysmal AF are evolving to a
permanent state in the following 4 to 5 years (Al-Khatib et al. 2000; Lakkireddy
et al. 2009). Finally, the disease evolves to long-standing persistent AF, where
AF is continuous for more than 12 months and a rhythm control strategy is
adopted. The term “permanent AF” is used when AF is accepted by both the
patient and the physicians. At this stage, no further attempts are made to
re-establish sinus rhythm.

The main consequence of this condition is an increased risk of blood pool-
ing in the atria, leading to the formation of blood clots. Patients with AF have a
fivefold increased risk of ischaemic stroke (Wolf et al. 1991), i.e. when a blood
cloth obstructs a brain blood vessel. It is estimated that 10% to 20% of pa-
tients with cryptogenic stroke, i.e. stroke of unknown origin, have paroxysmal
AF (Christensen et al. 2014; Sanna et al. 2014). More than 10 000 strokes occur
every year in Belgium, with around 85% of strokes labelled as ischaemic stroke
(S. Pandya et al. 2011). It is estimated to cost around 393 million euros to the
social security system (Wafa et al. 2020).
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AF patients also have an increased risk of heart failure, and other car-
diac complications (Hindricks et al. 2021). The Framingham Heart Study re-
ported that AF increase risk of death, by 1.5 times for men and 1.9 times
for women (Benjamin et al. 1998). In patients with heart failure, AF has also
been shown to be an independent predictor of in-hospital mortality and pro-
longed hospitalization, particularly in the intensive care unit (Rivero-Ayerza
et al. 2008).

The global number of patients with AF was estimated at 33.5 millions in
2010 (Chugh et al. 2014). This estimation increase to 60 millions in 2019 (Roth
et al. 2020). It is estimated to affect between 1% and 2% of the world popula-
tion, around 8% of the population over 55 (Krijthe et al. 2013). The prevalence
rises to 20% for the population over 80 years old, as the prevalence of the dis-
ease increases with the age of the patients (Friberg et al. 2013). In Europe, the
lifetime risk of AF is estimated between 1 in 4 and 1 in 3 individuals, with a
lower risk for women (Heeringa et al. 2006; Hindricks et al. 2021). The amount
of adults aged 55 years and over with AF is projected to double between 2010
and 2060 (Krijthe et al. 2013), therefore the number of patients is likely to con-
tinue to grow. In Belgium, the number of AF patient was estimated to 150
000 patients in 2016 (Proietti et al. 2016). Other risk factors in addition to age
and male gender include ethnicity, smoking, alcohol intake and obesity, which
influence the risk of developing AF (Lip et al. 2016).

The management of AF includes a wide variety of techniques, as simple
as lifestyle changes and treatment of comorbidities or the use of drugs such
as anticoagulants, surgical procedures such as pulmonary vein isolation using
catheter ablation (Marrouche et al. 2018) and electrical shocks (Samuel Lévy
et al. 1997). Finally, Cardiac Implantable Electronic Device (CIED) have also
been proposed for the management of AF with devices such as implantable
pacemakers and atrial defibrillators (Wellens et al. 1998; Cooper et al. 2002).
All of these techniques aim to regulate the heart rhythm and ultimately re-
duce the risks to the patient. Of these, catheter ablation is the most inva-
sive, as it involves creating scars to electrically isolate the pulmonary veins,
which have been found to be a major source of ectopic beats and AF impulses
(Haı̈ssaguerre et al. 1998).

An ECG is required to medically diagnose AF. This non-invasive test
records the heart electrical activity from the patient skin. For AF diagnosis,
ECG can be either a 12-lead recording or a single lead recording, showing
heartbeats with irregular RR intervals and no discernible repetitive P waves.
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ECG have been studied from the end of the 19th century, with Waller (1887)
demonstrating the first recording of a human electrocardiogram. In 1902,
Einthoven developed the first practical ECG device and assigned the nomen-
clature used to describe the different waves that make up the ECG. In 1924,
he received the Nobel Prize in physiology and medicine for his discovery of
the mechanism of the electrocardiogram. He described an ECG as irregular
and unequal, which might correspond to the first recording of AF, in his work
of 1906 (Einthoven 1906). It was later recognised as AF and described as a
common clinical condition (Lewis 1909). Today, an increasing number of ECG
are recorded each year, with an annual estimate of more than 300 million ECG
recordings (Zhu et al. 2020).

The quality of recording devices has improved over the years and there
is now a wide range of devices that can be used for AF screening. The most
commonly used devices in clinical practice for AF are the ambulatory long-term
Holter monitor and the implantable cardiac monitor (Zimetbaum et al. 2010;
Podd et al. 2016). In Belgium, about 270 000 Holter monitoring recordings are
performed each year, 75% of which are performed in outpatient clinics (Meeus
et al. 2023). The average age of the patients is 64 years. This represents an
average annual cost of 18 million euros to the Belgian social security system.

Today, wearables are emerging as a compelling alternative to traditional
ECG and Holter monitors, offering a convenient way to track heart rhythm
irregularities. Recording can be continuous or intermittent, but with more reg-
ular follow-up. Devices such as smartwatches, mobile ECG, connected ECG
patches are proposed as alternatives to facilitate AF screening.

In parallel with hardware improvements, researchers have been exploring
the use of algorithms and models to automate the interpretation of ECG for the
past 25 years (Holst et al. 1999). Machine Learning (ML) approaches have been
proposed for automatic ECG interpretation, particularly for AF detection. ML
can be distinguished from the classical programming paradigm, in which the
programmer defines rules that compute output results from input data. The
ML paradigm allows the computer program to learn rules from the combina-
tion of data and expected results without being explicitly programmed for the
task.

The first use of the term ML is attributed to the work of Samuel (1959).
More formally, ML can be defined as:

a computer program is said to learn from experience E with respect to some
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class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.

Mitchell (1997)

In this work, we use supervised learning to train ML models, which is the
case when both data and annotations are available. Three main consecutive
phases can be described.

1. The first phase is model training, where the model learns from data and
expected responses. During this training phase, the model adapts to re-
duce the error on the training data.

2. At the end of training, model performance is evaluated by testing the
model on test data, i.e. new data not seen during training. The testing
phase validates that the model is able to generalise to new examples.

3. Finally, in the third phase, the trained model is used for inference on the
selected task.

To learn insight from the ECG, we feed the ML model with handcrafted fea-
tures extracted from the ECG data. The definition of the features relies on the
technical experts and cardiologists.

Artificial Neural Network (ANN) and Deep Neural Network (DNN) rep-
resent an evolution in ML, allowing complex data analysis without the need
for manually designed features. It enables autonomous feature extraction and
representation learning of the input data. In Artificial Intelligence (AI), ANN
form the foundation for models inspired by the structure and function of the
human brain, mimicking its interconnected neurons to process information and
perform complex tasks. The perceptron, a fundamental concept in neural net-
works, represents a simplified model of interconnected neurons (McCulloch et
al. 1943; Rosenblatt 1958).

The transition from ANN to DNN has been accelerated by advances in both
computing power and the availability of big data. This development has en-
abled the creation of deeper and more powerful models capable of handling
complex tasks in different domains. However, the downside of DNN is their
reduced interpretability, which poses challenges in understanding and explain-
ing the decision-making process due to their deep and complex internal con-
nections. DNN are often described as black boxes because they encapsulate the
internal mechanisms and reasoning, making them difficult to interpret.
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Figure 1.2: Heart rhythm transition from normal before AF onset to irregular
after AF onset

The aim of this thesis is to apply the ML approach to the prediction of AF
onset and the identification of risk of AF during sinus rhythm. This research is
motivated by the potential of these methods to (i) predict early warning signs
of AF in the windows preceding AF onset, as presented in Figure 1.2, and
(ii) identify the AF signature in sinus rhythm distant from AF. This research
opens up improved opportunities for early detection, improved screening and
proactive management of this heart condition.

Thesis contribution and structure

The thesis contributes to the field of AF research across several key areas. Be-
ginning with Chapter 2, we review the current state-of-the-art methodologies,
including Heart Rate Variability (HRV) analysis, as well as ML models and
Deep Learning (DL) models using ECG data presented in the literature for AF
detection, onset forecast, and risk identification. Additionally, publicly ECG
databases available to researchers are reviewed.

In Chapter 3, we introduce a new large-scale annotated database designed
to extend the existing material for AF onset forecast. The validity of these
annotations is rigorously tested using ML models.
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Chapter 4 focuses on AF onset forecast. First, we explore the reproducibility
of existing ML models presented in the literature. Then, we study the evolution
of ML methods prediction and performance preceding AF onset. Following
those results and using a benchmarking process, we compare the performance
of various ML techniques using a diverse range of inputs derived from ECG
data. The aim of this in-depth study is to improve the performance and relia-
bility of models for the AF onset forecast.

Continuing the main contributions of this work, Chapter 5 explores the as-
pect of AF risk identification during sinus rhythm. As for the previous chapter,
this chapter presents a benchmark study leveraging ML approaches. We extend
the study of model performance by a comparative analysis across different age
groups. This analysis provides an overview of AF risk profiles among the dis-
tinct groups.

Together, these contributions aim to improve the understanding, prediction
and proactive management of AF, with the objective of improving strategies
and interventions to improve the heart health of AF patients. The work is
concluded in Chapter 6, where we summarise the results achieved within this
thesis, while outlining prospective directions for future research following this
work.



Chapter 2

State of the art

2.1 Introduction

Heartbeats irregularities and RR intervals variability is a key indicator of Atrial
Fibrillation (AF), and can be assessed through Heart Rate Variability (HRV)
analysis. In this chapter, we first introduce a selected overview of the sci-
entific literature on HRV and three subdomains: time-domain measurements,
frequency-domain measurements and geometric methods. HRV is used as a
tool in this thesis to measure of the heart rate changes before or during AF
crisis.

Then, we explore the existing databases of Electrocardiogram (ECG) that
are publicly available to researchers for AF related research. Database access
remains one of the main challenges for AF research and reproducibility. In
the last years, a concentration of the research on a limited number of databases
have been observed in various Machine Learning (ML) task communities (Koch
et al. 2021).

Finally, we define and explore three AF predictions tasks: AF detection, AF
onset forecast, and AF risk identification during Normal Sinus Rhythm (NSR).
We study ML approaches proposed in the literature.

2.2 Heart rate variability

2.2.1 Human heart and electrocardiogram

The human heart is the central muscle of the cardiovascular system. It ensures
the continuous circulation of blood through the body into veins and arteries.

9
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The heart is composed of four hollow chambers : two upper chambers called
atria and two lower chambers called ventricles. The heart is divided vertically
into right and left sides, each consisting of an atrium and a ventricle, separated
by a valve. A second valve is present in each side at the ventricle exit, i.e. the
pulmonary valve for the right side and the aortic valve for the left side. A
diagram of the heart can be found in the previous chapter as Figure 1.1. The
right side of the heart receives deoxygenated blood from the body and expels
it to the lungs for re-oxygenation. The left side of the heart receives newly
oxygenated blood from the lungs and sends it to the body through the aorta.

Anatomically, the orientation of the left and right sides of the heart is con-
ventionally described in relation to the position of the human body, with the
left side of the heart referred to as the area closer to the left side of the body
and the right side correspondingly closer to the body. Therefore, the anatomi-
cal orientation of the heart in schematic representations or diagrams is typically
shown in reverse, with the left side of the heart appearing on the right side of
the illustration and vice versa. This intentional inversion matches the perspec-
tive of an observer looking at the diagram, allowing for a clearer understanding
and correspondence with the actual orientation of the body, despite the visual
inversion in the diagrammatic representation.

The contraction of the heart muscles takes place in several phases, all fol-
lowing the rhythm of the sinoatrial node, a group of cells located in the right
atrium. These cells are the natural pacemaker of heartbeats. The electrical sig-
nal for contraction passes through the cardiac nervous system, first to the atria,
then to the atrioventricular node and finally to the ventricles. The heart muscle
contracts following the electrical impulse, and each heartbeat follows the same
cardiac cycle.

The heart electrical activity can be recorded from the skin of the patient
using electrodes. The resulting recording is called an ECG, a graph of the
recorded voltage versus the time. For a healthy heartbeat, the signal is called
sinus rhythm or NSR, as shown in Figure 2.1. A single heartbeat is made up of
three main parts:

• P wave — the contraction of the atria,

• QRS complex — the contraction of the ventricles

• and T wave — the repolarization of the ventricles.
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Figure 2.1: Electrocardiogram of one heartbeat in normal sinus rhythm, from
Wikimedia Commons

Figure 2.2: RR interval corresponds to the distance between consecutive R peak.
Each R peak is used twice to build the RR interval series.

https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
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Figure 2.3: 12-lead ECG, composed of 6 red leads in the coronal plane (vertical)
and 6 blue leads in the transverse place (horizontal), from Wikimedia Com-
mons

Intervals and segments are measured between the waves and peaks. RR
intervals are the time between two consecutive QRS complexes, as presented
in Figure 2.2. PR intervals are from the beginning of the P wave to the begin-
ning of the QRS complex. The QT interval follows the PR intervals, from the
beginning of the QRS to the end of the T wave. The TQ interval is measured
between two beats, from the end of the T wave to the beginning of the next
QRS complex.

For the measurements, electrodes are used in pairs to form a lead. The
standard recording is a 12-lead from 10 electrodes. The 12 leads provide 12
views of the electrical conduction in the heart, as shown in Figure 2.3. The
first 6 leads are in the coronal plane, which is the vertical plane that divides
the body into dorsal and ventral sections. These leads can be divided in two
categories: (i) the 3 limb leads, lead I, lead II and lead III and (ii) the 3 extended
limb leads aVR, aVL and aVF. The precordial leads, labelled V1 to V6, are in
the transverse plane, i.e. the horizontal plane dividing the body into superior
and inferior sections. The limb leads are bipolar: they use a pair of electrodes
to measure the signal. The extended limb leads and the precordial leads are
unipolar, using an artificial reference point as a second measuring point.

For AF screening, ambulatory Holter monitorings are used to record the
patient heart rhythm during a longer period of 24 hours up to a week. To-
day, wearables are being proposed as an alternative to standard ECG. Photo-
PlethysmoGraphy (PPG) recorders (Pereira et al. 2020; Guo et al. 2021), smart-

https://commons.wikimedia.org/wiki/File:EKG_leads.png
https://commons.wikimedia.org/wiki/File:EKG_leads.png
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watches (Perez et al. 2019; Wasserlauf et al. 2019), smartphones (Proesmans
et al. 2019; Freyer et al. 2021; Rizas et al. 2022), wearable mobile ECG (Lopez
Perales et al. 2021; Kleiman et al. 2021), chest straps (Hartikainen et al. 2019),
and ECG patches (Turakhia et al. 2013; Vijayan et al. 2023) have been studied
as tools for AF screening.

The many facets of the cardiac rhythm and cardiac arrhythmias can be anal-
ysed using Heart Rate (HR) measurements from long-term ambulatory ECG
recordings and HRV measurements. HRV is a measure of the variation in the
intervals between successive heartbeats. The study of HR, RR intervals and
HRV allows the examination of a cardiovascular state of a patient. They have
the advantage of being non-invasive and can be carried over an extended pe-
riod of time. Additionally, other studies have shown the usefulness of HRV for
identifying risks in other diseases, such as coronary artery disease (Goldenberg
et al. 2019), heart failure and sudden cardiac death (La Rovere et al. 2003; Sessa
et al. 2018), and ventricular tachycardias (Lee et al. 2016).

2.2.2 Autonomic nervous system

Heart rate is regulated by the Autonomic Nervous System (ANS) through the
intrinsic cardiac nervous system, and ANS variations can be measured by HRV.
The ANS is the subsystem that regulates the involuntary functions of the body,
including heart rate, digestion and the immune system. This system is di-
rectly under the control of the central nervous system. Within the ANS are the
Sympathetic Nervous System (SNS) and the Parasympathetic Nervous System
(PNS). They control the same parts of the body and the same general func-
tions, but with opposite effects. While the SNS sends signals that alert the
body’s systems, the PNS sends signals that relax these systems, using in par-
ticular the vagus nerve, which is the main nerve of the PNS. The ANS has been
shown to play an important role in the development of atrial and ventricular
arrhythmias (Zhu et al. 2019). ANS can be studied by HRV analysis.

2.2.3 Time-domain methods

Time domain measurements are a common method used to study the variabil-
ity of RR interval time series. During an ECG measurement, arrhythmic events
such as Premature Atrial Contraction (PAC), body movement or sensor mal-
function can cause artefacts (Citi et al. 2012). PAC are irregular heartbeats that
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originate in the atria and cause an early heartbeat before the regular rhythm
resumes. Sinus rhythm beats must be distinguished from premature beats, as
premature beats distort the results of the calculation of HRV parameters. In ad-
dition, R peak artefacts can also affect the HRV measurements, and to ensure
the validity of the intervals, only normal R peaks are selected to construct the
Normal to Normal (NN) intervals. In scientific ML publications, RR and NN
intervals are often used as interchangeable (Tarvainen et al. 2014; Kubios 2023).
Moreover, the description of the method in scientific publications does not al-
ways explicitly state whether the RR intervals are used as recorded, or whether
a correction has been applied and therefore corrected intervals are used.

RR interval variations can be characterised by parameters from several sub-
domains. The first is the time domain, also known as the statistical domain.
A summary of time domain measurements is presented in Table 2.1. Value-
based parameters such as mean, median, minimum and maximum values are
the first descriptors of the RR interval serie. HRV percentiles such as 20th per-
centile and 80th percentile are used by Han et al. (2017) and Hovsepian et al.
(2015) to detect stress in ECG recordings.

Deviation-based parameters such as Standard deviation of NN intervals
(SDNN) reflect the distribution of the components responsible for HRV during
the recording period. The conventional measurements are made on 5 minutes
recordings and (Shaffer et al. 2017), but ultra-short-term SDNN measurements
in 60 seconds recordings have been proposed in the literature (Salahuddin et al.
2007). The regularity of heartbeats can be disturbed by PAC.

Difference-based parameters, such as the Standard Deviation of Successive
RR interval Differences (SDSD), the pNNx or the Root Mean Square of Succes-
sive RR interval Differences (RMSSD) are related to deviation-based parame-
ters, i.e. SDNN, but represent shorter-term variability. The pNNx represents
the percentage of RR intervals with a difference higher than x ms. The pNN50,
i.e. the percentage of adjacents RR intervals that differ by more than 50 ms,
was first proposed by Bigger et al. (1988) and is the most commonly used in
the literature.

Deceleration capacity and acceleration capacity

Bauer et al. (2006) proposed a Phase-Rectified Signals Average (PRSA) ap-
proach to the analysis of RR interval series. This algorithm allows the sepa-
rate characterisation of HR Deceleration (DC) and Acceleration (AC) over long
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recording times. This method, summarised in Figure 2.4, proposes to align RR
interval segments with respect to selected anchor points. The anchor points
are selected according to AC or DC in the signal, i.e. RR intervals larger than
the previous RR interval for DC and RR intervals smaller than the previous
RR interval for AC. Then, windows of interest are defined around these anchor
points and windows are stacked. The values obtained from all points i in the
windows are averaged to create an average segment. Finally, points of interest
Xi are selected around the average anchor point X0.

DC and AC are computed using Equation (2.1) and Equation (2.2). The
equations are similar, but the selection of anchors points is different. An al-
ternative method was later proposed by Nasario-Junior et al. (2014), proposing
ACmod and DCmod measurements. Finally, the Kubios HRV analysis software
use a third method to produce ACk and DCk measurements (Tarvainen et al.
2014).

DC =
(xi + xi+1)− (xi−1 + xx−2)

4
DCmod = xi − xi−1

DCk =
(xi + xi+1)− (xi−1 + xx−2)

2

(2.1)

AC =
(xi + xi+1)− (xi−1 + xx−2)

4
ACmod = xi − xi−1

ACk =
(xi + xi+1)− (xi−1 + xx−2)

2

(2.2)

HRV analysis through AC and DC method offers the possibility to analyse
periodic behaviours related to HR, which could provide more differentiated in-
formation about the autonomic regulation processes of the heart. AC and DC
measurements were used successfully for AF detection by Maji et al. (2014).
Chen et al. (2018) suggested that AC and DC could distinguish and quan-
tify the roles of SNS and PNS in discriminating AF recurrence after ablation.
They showed that DC and AC could discriminate between AF recurrence-free
and AF recurrence patients, whereas traditional HRV measures failed to do so.
This result was confirmed by Călburean et al. (2021), who found DC capacity
allowed for predicting the recurrence of AF after a repeated catheter ablation
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(a) Selection of DC anchors points Ai

(b) Selected segments superpositions around anchors points
and average DC segment creation

(c) Points of interest in the average DC segment

Figure 2.4: Construction of the DC measurement from the RR interval series.
(a) Anchor points Ai selection: RR intervals larger than the previous interval.
For AC, anchors points are RR intervals smaller than the previous interval. (b)
Average segments construction from the superposition of selected segments.
(c) Points of interest Xi selection in the average segment.
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procedure. Finally, Pan et al. (2016) investigated the correlation between DC,
AC and ANS activity using an experimental model and showed that DC and
AC reflect the same aspect of ANS activity and depend exclusively on PNS
activity.

2.2.4 Frequency-domain methods

Frequency-domain measurements allow the extraction and analysis of addi-
tional information contained in the sequence of RR intervals. Power Spectral
Density (PSD) estimation is computed from the interpolated RR interval series.
The interpolation is needed to transform the RR intervals into equidistantly
sampled series (Berger et al. 1986). In this work, we use linear interpolation
and the PSD estimation is computed using Fast Fourier Transform (FFT)-based
method (Welch 1967). The RR intervals are divided in overlapping subwin-
dows and the PSD estimation is computed for each subwindow. The results
correspond to the average of the spectra of all samples. From the final PSD, the
different power bands of the signal can be highlighted and measured.

Autocorrelation methods have also been proposed in the literature and have
been compared with FFT-based methods. They were found not to be inter-
changeable as such, but the normalisation process allows a comparison be-
tween the two methods (Fagard et al. 1998; Pichon et al. 2006), as the pro-
portional change between the defined HRV frequency bands can be consid-
ered roughly equivalent, regardless of the spectral method used as studied by
Heathers (2014). It therefore allows a degree of comparability and interpretabil-
ity between studies using the two methods. In this work, we use FFT-based
methods to estimate frequency-based measurements.

The significance of the different frequency bands obtained in this way needs
to be established. One of the keys to understanding ANS activity lies in the
greater speed of action of PNS and vagal activity, of the order of 500 millisec-
onds, which enables it to exert beat-to-beat control. In comparison, the SNS
has an adrenergic reactivity with an estimated speed of action of the order of
a few seconds. The permanent interactions between the two parts of the ANS
complicate the interpretation of the results obtained. HRV frequency-based
parameters have previously been used by Pomeranz et al. (1985) and Hayano
et al. (2019) to estimate the state of the ANS.

The frequency band for the interpretation of HRV is generally divided in
multiple bands between 0.003 and 0.9 Hz, as presented in Table 2.2 (Task Force
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Frequency band Lower bound (Hz) Higher bound (Hz)

Ultra Low Frequency (ULF) 0 0.003
Very Low Frequency (VLF) 0.003 0.04
Low Frequency (LF) 0.04 0.15
High Frequency (HF) 0.15 0.4
Very High Frequency (VHF) 0.4 0.9

Table 2.2: General frequency bands of the HRV

of The European Society of Cardiology and The North American 1996). The
total power is measured for each band, by integrating between the lower and
higher bounds.

LF and HF bands

The HF and LF bands constitute the majority of the short-term recording sig-
nal band, as shown in Figure 2.5. Frequencies between 0.04 Hz and 0.4 Hz
are associated with SNS or PNS control mechanisms. The LF band indirectly
represents at least part of the SNS activity. It is related to the baro-receptor
reflex, the mechanism that keeps the blood pressure in the body at a constant
level. Therefore, part of the LF can be linked to PNS and vagal activity, as the
vagal nerve mediates this reflex. As a result, the participation of SNS or PNS
in the LF band is highly variable, depending on the position and activity of
the subjects. This variable participation complicates interpretation and invali-
dates the fact that LF can be considered solely representative of SNS. Lombardi
et al. (2004) describes SNS modulation as characteristic of the majority of AF
onsets. The HF band reflects mostly PNS activity. Because the SNS is relatively
slow, it cannot generate significant fluctuations at frequencies above 0.15-0.20
Hz. Therefore, all nervous contributions to HR spectra at higher frequencies
are essentially of PNS origin. In addition, respiratory activity affects the HF
band (Bernston et al. 1997; Shaffer et al. 2017), so the significance of the HF
band is questionable in the presence of abnormal respiratory rates, i.e. less
than 9 per minute or greater than 24 per minute (Song et al. 2003).

Normalised LF and HF

Normalized Low Frequencies (LF)nu and High Frequencies (HF)nu are com-
puted with respect to the total power limited in the two bands. For short
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recordings, LFnu and HFnu are normalized with respect to only the LF and HF
band, i.e. from 0.04 Hz to 0.4 Hz. As shown by Burr (2007), there is redundant
information between LFnu, HFnu and the LF/HF ratio, as VLF are not taken in
account.

For longer recordings, from at least 5 minutes to 24 hours, the normalized
values are computed from an extended power spectrum, including the VLF in
the selected band. This resolves the redundancies described above. The distri-
bution of spectral values does not follow a normal distribution. A logarithmic
scale can be used to obtain a distribution closer to the normal distribution.

LF/HF ratio

The LF/HF ratio has previously been used as an index of SNS-PNS interactions,
to study the autonomic nervous system modulations and its impact on the
heart rate. Because of the complexity of the relationship between two systems,
we should be cautious about drawing conclusions about interactions from this
ratio alone (Billman 2013). Expressions such as autonomic modulations (Lom-
bardi 2002) or ANS responsiveness (Malik et al. 2019) have been suggested as
alternatives in the literature to describe this ratio.

ULF, VLF and VHF

The literature on the extreme frequency bands of PSD analysis of HRV is scarce.
The ULF are associated with the circadian cycle (Shaffer et al. 2014). The Very
Low Frequencies (VLF) may correspond to slower rhythms, such as hormonal
rhythms and thermoregulation. Chang et al. (2014) suggests that Ultra Low
Frequencies (ULF) and VLF could also result from artefacts due to the non-
stationarity of the signal over longer periods of time. Very High Frequencies
(VHF) are associated with respiration and changes in body tilt.

Bispectrum

The bispectrum measures the phase couplings and interactions between the
frequencies in a signal (Pinhas et al. 2004). It can reveal non-linear interactions
that are not captured by other methods, such as spectral analysis. The main
features extracted from the bispectrum plot are the power averages in each of
the regions of interest, as shown in Figure 2.6. The bispectrum plot contains
symmetrical regions, between 0.04 Hz and 0.4 Hz, so only a subset is analysed.
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Figure 2.5: HRV PSD estimation of a 5-minute ECG window using FFT-based
method

Table 2.3: HRV frequency-domain measurements

Measurements Unit Description

LF ms2 Low frequency power (0.04 Hz—0.15 Hz)
LFnu % Normalized LF
HF ms2 High frequency power (0.15 Hz—0.4 Hz)
HFnu % Normalized HF
Total power ms2 Total power (0 Hz—0.5 Hz)
LF/HF ratio (%) Ratio between LF and HF
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Figure 2.6: Bispectrum plot showing the interaction between the frequencies.
The regions of interest (ROI) are interactions between (i) LL: LF and LF, (ii) LH:
LF and HF, and (iii) HH: HF and HF

One of the most common use of bispectrum analysis is in anaesthesia mon-
itoring through the Bispectral Index (BIS) score calculated from the patient’s
Electroencephalogram (EEG) (Mathur et al. 2024). Its use has also been pro-
posed for HRV analysis (Saliu et al. 2002), heart failure detection (Yu et al.
2012) and AF onset forecast (Mohebbi et al. 2012).

2.2.5 Geometric methods

We selected four geometric methods proposed in the literature to analyse HRV:
histogram, Poincaré plot, Second Order Difference Plot (SODP) and recurrence
plot. The features from these plots are summarized in Table 2.5.

Histogram

The interval sequence can first be converted into histograms, which already al-
lows visualisation of the distribution of HRV. Two features are computed from
the RR interval histogram as shown in Figure 2.7. The first is the Triangu-
lar Interpolation of the NN interval histogram (TINN) which corresponds to
the baseline width of the histogram. The second is the HRV Triangular Index
(HRVi) which corresponds to the total number of RR intervals divided by the
most present RR values. The total number of bins selected to construct the his-
togram affects both values. The value of approximately 8 ms, 1

128 s = 7.8125 ms,
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Figure 2.7: Sample distribution of the RR intervals of 1 hour recording, built
using 8 ms bins. The most frequent RR interval duration is marked with X and
a black color. The corresponding number of RR intervals in the bin is marked
as Y. The M and N are marking the corresponding maximal and minimal RR
value in the RR intervals. The HRVi correspond to HRVi = NRR

Y where NRR
corresponds to the total number of RR intervals. The TINN correspond to the
width of the distribution, i.e. TINN = M − N.

was previously proposed (Task Force of The European Society of Cardiology
and The North American 1996) to correspond to the 128 Hz accuracy of medical
equipment at the time of the proposal. In this work, we have chosen to round
it up to 8 ms for the construction of the histogram. We could have lowered it
to 5 ms as the sampling frequency of the recording is 200 Hz, but we chose to
keep 8 ms to correspond to the conventional duration. HRVi has been shown
to be a predictor of cardiovascular mortality in patients with AF (Hämmerle
et al. 2020).
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Poincaré plot

The Poincaré plot is a scatter two-dimensional plot from the RR intervals, as
show in Figure 2.8. Each successive pair of RR intervals is plotted as one point
where x = RRi and y = RRi+1. Their use has been proposed as been proposed
to easily visualize the HRV as a point cloud (Brennan et al. 2001).

The two main measurements are SD1 and SD2. They correspond to the two
standard deviations of the point cloud: (i) SD1 perpendicular to the identity
axis and (ii) SD2 parallel to the identity axis. SD1 is an index of short-term
HRV variations and has been shown to be equivalent to RMSSD from the time
domain (Ciccone et al. 2017). On the other hand, SD2 is an index of long-term
HRV variation. The ratio SD1/SD2 and the area S are also measured. Finally,
Cardiac Sympathetic Index (CSI) and Cardiac Vagal Index (CVI), linked to the
PNS, were introduced by Toichi et al. (1997) and are described in Equation (2.3).
These measurements are based on

• l - the full length of the point cloud parallel to the identity axis,

• t - the full width of the point cloud, i.e. perpendicular to the identity axis

l and t can be estimated using four times SD1 and SD2. Jeppesen et al. (2014)
introduces The modified CSI, with the aim of emphasising the l axis, i.e. long-
term variations, proportionally in the CSI calculation.

t = 4 ∗ SD1

l = 4 ∗ SD2

CSI = l/t

CVI = log10(l × t)

CSVmod = l2/t

(2.3)

The usefulness of Poincaré plots for systematic AF screening has been
demonstrated by Kisohara et al. (2020), who used them as input to Convo-
lutionnal Neural Network (CNN) models. It also allows visualization of the
global aspect of the rhythm, and their automatic recognition is likely to be
used to facilitate the analysis of the big data of ECG recordings received by
mobile health applications (Lopez Perales et al. 2021). Poincaré plots are also
used for other medical signal classification, such as the diagnosis of epileptic
seizures using EEG (Goshvarpour et al. 2020).
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Quadrant xi yi RR relationship Description

I DC DC RR1 < RR2 < RR3 Deceleration of the HR over
three successive RR intervals

II AC DC RR1 < RR2 > RR3 A long interval is surrounded by
two short intervals

III AC AC RR1 > RR2 > RR3 Acceleration of the HR over
three successive intervals

IV DC AC RR1 > RR2 < RR3 A short interval is surrounded
by two long intervals

Table 2.4: Four quadrants in the SODP

Second-order difference plot

The SODP is a recurrence plot using the difference of successive pairs of inter-
vals, as described in Equation (2.4) (Babloyantz et al. 1996).

xi = ∆RRi = RRi+1 − RRi

yi = ∆RRi+1 = RRi+2 − RRi+1
(2.4)

The SODP is divided in four quadrants, as shown in Figure 2.9 and sum-
marized in Table 2.4. A healthy heart has more centred points in an elliptical
shape towards quadrants I and III. AF changes the shape of the SODP to point
towards quadrants II and IV. The SODP allows the evaluation of the VHF, since
it reflects the dynamics over 2 beats, giving the percentage of acceleration, i.e.
RRi+1 < RRi, and deceleration, i.e. RRi+1 > RRi

The Central Tendency Measure (CTM) counts the ratio of points inside a
circle of radius r centred on the origin (Thuraisingham 2009; Diao et al. 2022),
such as in Equation (2.5). For a given threshold r, more points inside the CTM
indicate a more stable heart rate.

CTM(r) =
∑n−2

i=1 δ(RRi)
n − 2

δ(RRi) =

1, if
√

∆RR2
i+1 + ∆RR2

i < r

0, otherwise

(2.5)

Other features from SODP are the number of points in each quadrant or
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(a) NSR recording (b) AF recording

Figure 2.8: Poincaré plots: (a) NSR patients and (b) AF patients. A larger SD1
can be observed in (b) because AF has a large effect on short-term variability.

(a) NSR recording (b) AF recording

Figure 2.9: SODP plots: (a) patient in NSR and (b) patient in AF. The point
cloud in (a) is more centred and in (b) we can observe more points in quadrants
II and IV, which show more fluctuating accelerations and decelerations.
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in subdivision of quadrants. SODP can be extended to 3 dimensions by using
a third ∆RRi+2 and computing the CTM feature with spheres instead of cir-
cles (Altan et al. 2018; Diao et al. 2022). SODP can measure PNS activity over
short durations of recordings, which differs from the AC and DC which mea-
sures PNS activity over longer periods of time. The comparison of RR interval
differences over multiple data points provides a more complete view of the
dynamics than Poincaré plots, which allow discrimination between apparently
identical dynamics. Sarkar et al. (2008) proposed to implement SODP in an im-
plantable loop recorder, for AF screening in patients with cryptogenic stroke. It
could also provide regular information, e.g. daily, on rhythm and rate control
in patients with AF over a long period of time.

Recurrence plot

The last geometric method used in this work is the recurrence plot analysis.
A recurrence plot is a symmetrical plot of the Euclidean distance between em-
bedding vectors (Eckmann et al. 1987; Marwan et al. 2007). It is constructed
using two parameters: m, the embedding dimension, and τ, the embedding
lag. From the series of N RR intervals, the embeddings vectors are constructed
as described in the matrix Equation (2.6), where each embedding vector corre-
sponds to a row. Each RRi interval in the matrix corresponds to an RR interval
selected from the series of RR intervals using the index, m and τ. The visual
effect of varying m and τ can be observed in Figure 2.10

Xemb =


RR1 RR1+τ . . . RR1+(m−1)×τ

RR2 RR2+τ . . . RR2+(m−1)×τ
...

... . . . ...
RRM RRM+τ . . . RRN


where M = N − (m − 1)× τ

(2.6)

The recurrence plot is built from the embedding matrix, using the Euclidean
distance between the embedding vectors, i.e. the rows of the matrix. The
recurrence plot is created using Equation (2.7).

RPij = ||Xembi − Xembj || (2.7)

The result is a M × M matrix. If m = 1 and τ = 1, the first two rows of the
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(a) m = 1 τ = 1 (b) m = 2 τ = 3 (c) m = 10 τ = 5

Figure 2.10: Recurrence plots for the same RR interval window with varying
embedding dimension m and embedding lag τ

matrix correspond to the ∆RR used in the SODP plot. Finally, a threshold t can
be defined to make the recurrence plot binary, as described in Equation 2.8.

RPij =

1 if ||Xembi − Xembj || < t

0 if ||Xembi − Xembj || ≥ t
(2.8)

Recurrence plots were used to measure the variation of PNS and SNS in rats
by Dabiré et al. (1998). They used an embedding dimension of m = 10 and an
embedding delay of τ = 1 to analyse blood pressure measurements. It was also
used by Sun et al. (2008) to predict AF offsets using an embedding dimension
of m = 3 and an embedding delay of τ = 70 on the ECG signal. Ayatollahi
et al. (2023) used recurrence plots to detect sleep apnea in ECG. Finally, in a
preprint, Gavidia et al. (2023) propose to use recurrence plots to forecast the
onset of atrial fibrillation. They propose an embedding dimension m = 2 and
an embedding delay τ = 3 on the RR intervals and an embedding dimension
m = 5 and an embedding delay τ = 7 on the ECG.

2.2.6 Heart rate fragmentation

Costa et al. (2018) introduces Heart Rate Fragmentation (HRF) as an addi-
tional HRV-based biomarker of cardiovascular risk. HRF has been shown to
be a predictor of impaired ANS activity and AF in the healthy general pop-
ulation (Guichard et al. 2022). The four measurements focus on short-term
HRV and are summarised in Table 2.6. Percentage of Inflection Points (PIP)
represents the percentage of zero crossing points in the RR interval series. The
selected points correspond to an RR interval where the preceding difference



2.2. HEART RATE VARIABILITY 29

Ta
bl

e
2.

5:
H

RV
ge

om
et

ri
c

m
ea

su
re

m
en

ts

Su
d-

do
m

ai
n

M
ea

su
re

m
en

ts
U

ni
t

D
es

cr
ip

ti
on

H
is

tr
og

ra
m

-b
as

ed
TI

N
N

m
s

Tr
ia

ng
ul

ar
In

te
rp

ol
at

io
n

of
R

R
in

te
rv

al
s

H
RV

i
%

H
RV

tr
ia

ng
ul

ar
in

de
x

Po
in

ca
ré
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Table 2.6: HRF measurements

Measurements Unit Description

PIP % Percentage of Inflection Points
IALS #RR Inverse of the Average Length of the acceleration/de-

celeration Segments
PSS % complement of the Percentage of Short Segments
PAS % Percentage of RR intervals in Alternation Segments

and the following difference are of opposite sign, i.e. an acceleration followed
by a deceleration or a deceleration followed by an acceleration, as described in
Equation (2.9).

∆RRi × ∆RRi+1 ≤ 0

where ∆RRi = RRi − RRi−1
(2.9)

PIP are therefore related to the number of points in quadrant II and quad-
rant IV of the SODP described in Section 2.2.5. The Inverse of the Average
Length of the acceleration/deceleration Segments (IALS) counts the inverse of
the average RR interval length of the segments between inflection points. The
longer the segments, the lower the IALS. For the Percentage of Short Segments
(PSS), a short segment is defined as an acceleration or deceleration segment of
three or more intervals. Finally, the Percentage of Alternating Segments (PAS)
defines alternating segments as ADAD or DADA, where A represents an ac-
celeration and D a deceleration. All measurements are defined such that the
more fragmented the series, the higher the four measurements, which explains
the use of inverse and complement.

2.3 ECG databases

Two categories of publicly available ECG recording databases are described in
the literature: (i) short ECG, ranging from 10-second to 60-second recordings,
and (ii) long-term recordings, ranging from 30-minute to 24-hour Holter mon-
itoring.
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Table 2.7: Comparison of selected short-term publicly available ECG databases,
sorted by release date. The duration is indicated per recording.

Name Year Patients Records Duration Sample Rate Leads Classes

AF challenge 2017 (Clifford et al. 2017) 2017 8528 8528 9 - 61 s 300 Hz 1 4
CU-SPH database (Zheng et al. 2020) 2020 10646 10646 10 s 500 Hz 12 4
PTB-XL (Wagner et al. 2020) 2020 18885 21837 10 s 500 Hz 12 5 (24)
SPH database (Liu et al. 2022) 2022 24666 25770 10 - 60 s 500 Hz 12 11

2.3.1 Short-term ECG databases with AF

There are several large publicly available databases. These databases are com-
posed of records with a duration of approximately 10 seconds to 60 seconds. A
selection of databases that have been recently published and used as training
material in multiple publications is presented in Table 2.7, where the composi-
tion of each database is presented. Except for the AF challenge 2017 database,
these databases have 12-lead recordings and a high sampling frequency of 500
Hz. For a 10-second recording, the file contains 500 × 10 recorded points for
each lead and therefore a 5000 × 12 matrix for the complete recording, which
corresponds to 60 000 values.

The annotations are not similar between the four selected databases. The
AF Challenge 2017 database contains 4 classes: NSR records, AF records, other
rhythm and noisy records. For the CU-SPH database, 11 rhythm annotations
from cardiologists were grouped into 4 groups: NSR, AF, sinus bradycardia
and supraventricular tachycardia. PTB-XL annotations are grouped into 5 su-
perclasses, e.g. conduction disturbance or hypertrophy, and 24 subclasses. Fi-
nally, in the SPH database, 44 types of cardiologist annotations are grouped
into 11 categories. The differences between the annotations can be explained
by the fact that each database was created independently to meet different re-
quirements and for different research purposes. Nevertheless, correspondences
between databases can be used to group some annotations for cross-database
analysis.

2.3.2 Long-term ECG databases with AF

We have identified 4 publicly available long-term recordings with a focus on
paroxysmal AF. Table 2.8 presents an overview of the databases. The four
databases are available on the Physionet website (Goldberger et al. 2000).

The MIT-BIH Arrhythmia Database (Moody et al. 2001b) consists of 48



32 CHAPTER 2. STATE OF THE ART

Figure 2.11: 10 seconds of 2-lead ECG from recording 100 from the MIT-BIH
database, with QRS complex annotated

recordings from 47 patients recorded between 1975 and 1979 at Boston Hos-
pital in the United States. The database consists of a mixed population of
inpatients and outpatients. Each recording lasts 30 minutes and is recorded
at a sampling rate of 360 Hz. Two leads are available and QRS complexes are
annotated as shown with stars in Figure 2.11. The first lead is lead II and the
second lead can vary between V1, V2, V4 and V5 depending on the recording.
The annotations were made by two cardiologists at beat level, i.e. on each QRS
annotation.

The MIT-BIH Atrial Fibrillation Database (AFDB) consists of 23 two-channel
recordings from patients with AF (Moody et al. 1983). The long-term record-
ings last 10 hours at a sampling rate of 250 Hz. It contains a total of 299 AF
episodes, of which 11 episodes have more than 30 minutes of NSR before the
onset of AF and an AF duration of at least 5 minutes or more. The annotations
were made manually on the original analogue recordings and then converted
into digital files.

The Long Term AF Database (LTAFDB) contains 84 24-hour recordings from
84 patients (Petrutiu et al. 2007). The sampling frequency is 128 Hz. We found
7314 AF episodes present in the database, but only 2 AF have more than 30
minutes of NSR before the AF onset and more than 5 minutes.

Finally, the China Physiological Signal Challenge 2021 Database (CPSC2021)
contains 1436 2-lead recordings selected from 3-lead or 12-lead Holter monitor-
ing (Wang et al. 2021). The duration of the recordings is variable, with a mean
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Table 2.8: Comparison of publicly available ECG database, sorted by release
date. The duration is indicated per record.

Name Year Patients Records Duration Sample Rate Leads

MIT-BIH Arr. DB (Moody et al. 2001b) 1980 47 48 30 min 360 Hz 2
MIT-BIH AFDB (Moody et al. 1983) 1983 23 23 10 h 250 Hz 2
LTAFDB (Petrutiu et al. 2007) 2007 84 84 24 h 128 Hz 2
CPSC2021 (Wang et al. 2021) 2021 105 1436 34 min 200 Hz 2

recording duration of 34 minutes. The shortest recordings last 8 seconds and
the longest 6 hours. 229 recordings show evidence of paroxysmal AF, repre-
senting 493 AF crises, but only 6 episodes meet the criteria of 30 minutes of
NSR before onset and an AF duration of at least 5 minutes.

2.3.3 AF onset forecast databases

Based on the selected database from the previous section, we identified
databases that could be used to predict the onset of AF. This required record-
ings containing paroxysmal AF episodes preceded by a continuous period of
sinus rhythm.

The primary database used in the literature is the Paroxysmal Atrial
Fibrillation Prediction Database (AFPDB) release for the 2001 Physionet
challenge (Moody et al. 2001a). The specific purpose of this challenge was to
promote and stimulate research into the forecasting of atrial fibrillation. The
database contains 200 recordings from 100 patients, including 53 patients with
paroxysmal AF and 47 healthy patients. Each recording lasts 30 minutes. For
the healthy patients, the database contains two NSR recordings per patient.
For patients with AF, the database contains one NSR recording before the
onset of AF and one NSR recording at least 2 hours before any signs of AF. The
database also contains a 5-minute continuation recording for all recordings. It
follows the end of the NSR recording to confirm the presence or absence of
AF. The 53 AF recordings can be used to forecast the onset of AF as they are
all 30 minutes long and have the 5-minute continuation recording to prove the
presence of AF after the NSR recording.

Other long-term databases contain a larger number of AF crisis, but when
we compare using the same selection criteria, we found that the number of AF
crisis that can be selected is only a small proportion of the total number of
crisis present, as summarised in Table 2.9. The results for the AFDB (Moody



34 CHAPTER 2. STATE OF THE ART

Table 2.9: Comparison of publicly available ECG database for AF onset fore-
cast, sorted by release date. The duration is indicated per recording. The AF*
episodes selected have > 30 minutes normal sinus rhythm before the AF onset
and > 5 minutes of AF duration after the onset.

Name Year Patients Records Duration Leads AF AF*
episodes

AFPDB (Moody et al. 2001a) 2001 100 200 30 min 2 53 53
MIT-BIH AFDB (Moody et al. 1983) 1983 25 25 30 min 2 299 11
LTAFDB (Petrutiu et al. 2007) 2007 84 84 24 h 2 7358 2
CPSC2021 (Wang et al. 2021) 2021 105 1436 30 min 2 493 6

et al. 1983) is presented in Table 2.10. This database contains a total of 299
AF episodes, but 120 episodes have less than 1 minutes of sinus rhythm be-
fore the AF onset and 99 episodes have less than 5 minutes before AF onset.
The LTAFDB contains a total of 7314 AF crisis but only 2 corresponds to the
selection criteria, as shown in Table 2.11. Finally, the CPSC2021 database con-
tains 493 AF crisis, but Table 2.12 shows that only 6 episodes are matching the
selection criteria.

2.4 Machine learning for AF predictions

Multiple AF-related tasks have been investigated in the scientific literature. A
graphical summary of the three tasks is presented in Figure 2.12. (i) The pri-
mary task involves AF screening, which corresponds to detecting AF presence
within an ECG recording. This screening task applies to both short-term and
long-term ECG recordings. (ii) The second task focuses on forecasting AF on-
set, seeking to predict incoming signs of AF episodes during NSR preceding
the onset. This type of prediction necessitates the utilization of extended ECG
recordings. The model analyses the ECG window preceding AF onset. (iii)
Finally, the last task involves identifying the individual risk of developing AF.
This task involves a comparative analysis between NSR data obtained from AF
patients and that from healthy individuals to find and AF signature.

In this section, we review selected publications about the three tasks, with
an in-depth focus on AF onset forecast and AF risk identification. The metrics
used to evaluate the model are introduced in Section 2.5.
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Table 2.10: Count of the number of AF episodes in the MIT-BIH Atrial Fibrilla-
tion database, based on the durations of sinus rhythm before the AF onset

NSR duration
before AF (min)

AF duration (min)
> 0 > 5 > 10 Total

< 1 79 12 29 120
1 - 5 77 9 13 99

5 - 30 34 2 3 39
30 - 60 12 2 0 14
> 60 18 2 7 27

Total 220 27 52 299

Table 2.11: Count of the number of AF episodes in the Long Term
Database (Petrutiu et al. 2007), based on the durations of sinus rhythm be-
fore the AF onset

NSR duration
before AF (min)

AF duration (min)
> 0 > 5 > 10 Total

< 1 6217 193 296 6706
1 - 5 476 11 8 495
5 - 30 94 3 20 117

30 - 60 18 0 0 18
> 60 20 1 1 22

Total 6825 208 325 7358

Table 2.12: Count of the number of AF episodes in the CPSC2021
database (Wang et al. 2021), based on the durations of sinus rhythm before
the AF onset

NSR duration
before AF (min)

AF duration (min)
> 0 > 5 > 10 Total

< 1 261 4 5 270
1 - 5 167 1 2 170

5 - 30 26 0 0 26
30 - 60 0 0 0 0
> 60 21 0 6 27

Total 475 5 13 493
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(a) AF detection for healthy patient

(b) AF detection for AF patient

(c) AF onset forecast
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(d) AF risk identification for healthy patient

(e) AF risk identification for AF patient

(f) Legend

Figure 2.12: AF prediction tasks:
(a) and (b) AF detection — the model predicts if an ECG contains AF and where
the AF is located,
(c) AF onset forecast — the model predicts incoming AF onset by detection
signs in pre-AF window,
(d) and (e) AF risk identification — the models predicts the risk to develop AF,
based on NSR recordings



38 CHAPTER 2. STATE OF THE ART

2.4.1 Atrial fibrillation detection

AF detection models predict whether an ECG segment or RR interval window
contains AF. Various ML and Deep Learning (DL) methods have been proposed
in the literature. The results of these models have achieved a high level of
performance, sometimes described as corresponding to cardiologist level as by
Hannun et al. (2019). Methods in the literature include the use of Poincaré plots
analysis with ML models (Bashar et al. 2021), RR analysis with CNN-RNN
(Biton et al. 2023), RR analysis with RNN (Faust et al. 2018), ECG analysis with
RNN (Singh et al. 2018) and ECG analysis with CNN (Erdenebayar et al. 2019;
Ribeiro et al. 2020).

In particular the recent results from Hannun et al. (2019) can be detailled.
They propose a Deep Neural Network (DNN), and in particular a 1D ResNet
based CNN (He et al. 2015) composed of 16 blocks, achieving performance of
0.973 (95% Confidence Interval (CI) [0.966–0.980]) Area Under the Receiver Op-
erating Characteristic Curve (AUROC) for the AF class on 1.5 seconds ECG seg-
ments. For the training of this model, they used a private database composed
of 91 000 ECG records from 53 000 patients, with 12 annotated heart diseases.
Their model achieved a comparable or superior Area Under the Curve (AUC)
for all the 12 diseases compared to a committee of cardiologists.

Faust et al. (2018) achieved an accuracy of 98.51% on the MIT-BIH Atrial
Fibrillation Database (Moody et al. 2001b) using a bidirectional LSTM model
(Hochreiter et al. 1997) with RR intervals as input. Equivalent accuracy was
achieved by Xia et al. (2018) using 5-second ECG segments. They extracted a 2D
spectrogram of the ECG signal using FFT as input to a CNN model. They used
the MIT-BIH atrial fibrillation database and the model achieved an accuracy of
98.29%. More recently, Hu et al. (2022) proposed a transformer-based model
and achieved an accuracy of 99.23%.

Comparing models on the same medical task has become more challeng-
ing, given that ML models are trained and tested on different datasets. This
variation in training and testing data introduces complexity in assessing their
relative performance and generalisability. However, despite this challenge, a
prevailing global trend indicates consistently high performance and predictive
value for AF detection across different research results. This highlights the
robustness of these models in a clinical context, with opportunities for the de-
velopment of novel clinical tools.
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Table 2.13: PAF challenge 2001 entries using the AFPDB database

Author & Data Methodology
Model Input

Zong et al. (2001) Stat. analysis PAC analysis
Maier et al. (2001) Stat. analysis HRV
Chazal et al. (2001) Stat. analysis P wave
Yang et al. (2001) Stat. analysis HRV

Schreier et al. (2001) Stat. analysis P wave
Lynn et al. (2001) KNN HRV

2.4.2 Atrial fibrillation onset forecast

In 2001, Physionet launched the PAF Prediction Challenge (Moody et al. 2001a)
with the aim of understanding whether early signs of AF onset can be de-
tected in the 30-minute window before the onset of an AF crisis. The idea is
to compare 30-minute windows close to AF onset and 30-minute windows dis-
tant from AF onset of at least 45 minutes. The database of the challenge is the
AFPDB.

For the competition, the proposed methods were mainly based on statistical
analysis of the HRV, PAC and P wave. One research team proposed the use of
K-Nearest Neighbours (KNN) as a predictive model. The methods proposed in
2001 are summarised in Table 2.13.

The dataset proposed in the challenge has continued to be used in many
publications since then, as shown in Table 2.14. The few publications using
alternative databases did not make the ECG recordings publicly available. The
results presented in the publications using this database are rather optimistic,
with accuracy values reaching 90% (Mohebbi et al. 2012; Narin et al. 2018;
Boon et al. 2018). However, these results should be treated with caution, as we
have shown that some could not be reproduced (Gilon et al. 2022). Therefore,
in Table 2.14 we focus on the different methodologies rather than the results
and metrics. We can classify the inputs used into four classes: ECG, ECG
Morphology Variability (ECGMV), RR and HRV. Most of the recent methods
use ML approaches with different models and DNN models.
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Table 2.14: Paroxysmal AF onset forecast selected publications

Author & Date Dataset Methodology
Model Input

Hickey et al. (2002) AFPDB ML (LR) HRV
Mota et al. (2003) AFPDB ML (GA & KNN) ECGMV
Ros et al. (2004) AFPDB ML (KNN) ECGMV
Thong et al. (2004) AFPDB Stat. analysis PAC
Kikillus et al. (2007) MIT-BIH Stat. analysis HRV
Chesnokov (2008) AFPDB ML (SVM) & DL (DNN) HRV
Pourbabaee et al. (2008) AFPDB ML (KNN) & DL (DNN) ECGMV
Panusittikorn et al. (2010) AFPDB ML (KNN) HRV
Mohebbi et al. (2012) AFPDB ML (SVM) HRV
Costin et al. (2013) AFPDB Stat. analysis HRV & ECGMV
Anwar et al. (2013) AFPDB DL (DNN) HRV & ECGMV
Alcaraz et al. (2015) private Stat. analysis P wave
Martinez et al. (2015) private Stat. & ML (DT) P wave
Boon et al. (2016) AFPDB ML (SVM) HRV
De Giovanni et al. (2017) AFPDB ML (SVM) ECGMV
Ozcan et al. (2017) AFPDB ML (GA & KNN) HRV
Pourbabaee et al. (2018) AFPDB CNN ECG
Bianchi et al. (2018) AFPDB ML (KNN & SVM) ECGMV
Boon et al. (2018) AFPDB ML (SVM) HRV
Ebrahimzadeh et al. (2018) AFPDB ML (KNN & SVM) & DL (DNN) HRV
Narin et al. (2018) AFPDB ML (KNN) HRV
Lee et al. (2018) AFPDB ML (RF) HRV & ECGMV
Cho et al. (2018) private DL (CNN) ECG spectrogram
Aligholipour et al. (2018) AFPDB ML (clustering) HRV
Jalali et al. (2020) AFPDB DL (CNN) ECG spectrogram
Gilon et al. (2020) IRIDIA-AF v1 DL (CNN-RNN) RR
Castro et al. (2021) AFPDB ML (RF & KNN & SVM) HRV
Tzou et al. (2021) private DL (CNN) P wave spectrogram
Guo et al. (2021) private ML (XGB) HRV from PPG
Parsi et al. (2021) AFPDB ML (SVM) HRV
Bashar et al. (2021) AFPDB ML (SVM & RF) HRV
Surucu et al. (2021) AFPDB DL (CNN) HRV
Hammer et al. (2022) MITBIH AF ML (LR & RF) HRV & ECGM
Mendez et al. (2022) AFPDB DL (CNN) Poincaré plot
Gavidia et al. (2023) private DL (CNN) Recurrence plot
Rooney et al. (2023) LTAFDB DL (CNN+Attention) ECG
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2.4.3 Atrial fibrillation identification

Since 2019, several studies have presented models that are able to identify pa-
tients at risk of AF using NSR alone. This opens up the use of ML as an
alternative to the risk score in clinical practice. The studies suggest using large
databases available in hospital centres with DL models. Unfortunately, most of
these databases are still private.

Attia et al. (2019a) proposed a CNN model able to identify patients at risk
up to 30-days before the first sign of AF with and AUC of 0.87. The database
they used is composed of 180 000 patients and 649 000 10-second records. They
used all the NSR records from healthy patients and NSR records 30-days prior
to the first AF sign for AF patients. The ECGs are 10-second 12-lead 500 Hz
record. The final model is composed of 9 residual blocks, in which each block is
composed of 2 sub-blocks. Other studies proposed similar results in 2021 and
2022. Suzuki et al. (2022) and Kim et al. (2022) also used CNN models. Baek
et al. (2021) used bi-LSTM mode. Selected state-of-the-art studies are listed in
Table 2.15.

All models presented in Table 2.15 are trained using a private database.
Data sharing is critical to the reproducibility of research, especially in machine
learning, as it allows replication of results and methods across studies, ensur-
ing transparency and scientific rigour in research (Miyakawa 2020). Access to
private databases can occasionally be granted on request to the original author,
but such limited access can disrupt the continuous flow of research. In addi-
tion, Gabelica et al. (2022) analysed the data availability statements made in
the literature. The authors found that of the publications that mentioned that
the database could be accessed on reasonable request, only 6% of the original
authors responded to the data sharing request.

These models can be proposed as an extension or alternative to the clinical
scores currently used in medical practice to identify the risk of AF and stroke
in different patient groups. The Chad2DS2Vasc measures the risk of ischaemic
stroke in patients with AF over the next 7-10 years Lip et al. (2010) and Ole-
sen et al. (2011). CHARGE-AF measures the risk of AF over the next 5 years
(Alonso et al. 2013). HARMS2-AF has recently been proposed as a superior
alternative to CHARGE-AF, with an AUROC of 0.75 for AF detection over the
next 5 to 10 years (Segan et al. 2023). Finally, Mr-DASH (Mitrega et al. 2021)
and C2HEST (Li et al. 2019) are two specialised identification scores, the first
for elderly patients and the second for Asian patients. Noseworthy et al. (2022)
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have shown that an ML approach outperforms a risk score in a prospective
study following patients for 30 days. The model increased AF detection by
10%.

2.5 Performance evaluation

This section discusses the evaluation of the performance of ML models for AF
prediction. In the case of perfect prediction model, all healthy recordings are
classified as healthy and all AF recordings are classified as AF. In practice,
models make misclassifications. In the AF literature, ML model predictions
are evaluated using metrics such as AUROC, Area Under the Precision-Recall
Curve (AUPRC), accuracy, sensitivity, specificity and F1 score.

AF tasks are commonly defined as a binary classification problem between
two classes: healthy and sick patients. For a given input, such as an ECG, the
model predicts the probability of being sick, i.e. having AF. The probability
of having AF is a real value between 0 and 1. Given a threshold value, e.g.
0.5, the predictions can be classified into the 4 categories of the confusion ma-
trix, as shown in Figure 2.13. If the predicted probability value is lower than
the threshold value, the prediction is classified as healthy, and if the predicted
probability value is higher than the threshold value, the prediction is classified
as AF. True Positive (TP) represents recordings that were correctly predicted
as disease, False Negative (FN) represents recordings that were incorrectly pre-
dicted as healthy. True Negative (TN) represents recordings correctly predicted
as healthy and TP represents recordings incorrectly predicted as AF.

The accuracy represents the total number of correct predictions for both
healthy and AF, by counting the total of TP and TN over the total number of
recordings. This corresponds to Equation (2.10). In the case of an unbalanced
classification problem, the accuracy score can be misleading: if 99% of the
recordings are healthy and the remaining 1% are AF the classifier can always
predict recordings as healthy and achieve a 99% accuracy score.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)

Row-based metrics

The sensitivity, also called recall or True Positive Rate (TPR), is the number of
correct predictions for the positive class, i.e. AF patients in this work. It is
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Figure 2.13: Confusion matrix for the binary classification task between NSR
and AF. The first row represents the recordings from the healthy patients and
the second row represents the recordings from the AF patients. The first col-
umn represents the recordings predicted as healthy by the model and the sec-
ond column represents the recordings predicted as AF by the model.

described in Equation (2.11).

Sensitivity = Recall = TPR =
TP

TP + FN
(2.11)

The specificity, also called True Negative Rate (TNR), is the number of cor-
rect predictions for the negative class, i.e. healthy patients in the work. It is
described in Equation (2.11).

Speci f icity = TNR =
TN

FP + TN
(2.12)

The False Positive Rate (FPR) and the False Negative Rate (FNR) are the com-
plement of the sensitivity and specificity. It counts the number of misclassified
recordings in the positive and negative classes.

FPR = 1 − TNR =
FP

FP + TN
(2.13)

FNR = 1 − TPR =
FN

FN + TP
(2.14)
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Column-based metrics

Column-based metrics are based on the predicted class. The precision, also
called Positive Predictive Value (PPV), count the number of correct predictions
for the predicted positive categories.

Precision = PPV =
TP

FP + TP
(2.15)

The Negative Predictive Value (NPV) counts the number of correct predictions
for the predicted negative categories.

NPV =
TN

FN + TN
(2.16)

Aggregate metrics

The F1-score is proposed has an aggregation between the positive class row
metric and the positive class column metric. It is defined has the harmonic
mean of the precision and the recall, as in Equation (2.17).

F1 − score = 2 × precision × recall
precision + recall

(2.17)

Threshold-free metrics

The metrics presented above depend on the choice of threshold t. The most
common choice for the threshold is 0.5, as this threshold divides the probability
range into two equal parts, i.e. from 0 to 0.5 for the negative class and from 0.5
to 1 for the positive class. Varying the threshold will change the value of the
metric.

Threshold-free metrics allow the prediction of models to be evaluated with-
out having to rely on the choice of a threshold. The Receiver Operating Charac-
teristic (ROC) curve (Fawcett 2004; Fawcett 2006) is constructed by plotting the
TPR against the FPR for all selected thresholds t between 0 and 1. A random
classifier is represented as a straight line between (0,0) and (1,1). The better the
classifier, the higher the curves, as shown in Figure 2.14a. The performance of
the model is evaluated by the AUC under the ROC curve, i.e. the AUROC, as
in Figure 2.14b.

The Precision-Recall (PR) curve is another curve constructed by plotting
precision against recall for all selected thresholds t between 0 and 1 (Boyd et al.
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2013). The TPR used as y for the PR curve and the recall used as x for the PR
curve are the same metric. As for the ROC evaluation, models that produce
better predictions have a higher PR curve, as shown in Figure 2.15a. The PR is
evaluated using the AUC, as shown in Figure 2.15b. Finally, Saito et al. (2015)
showed that PR curves are more informative than ROC curves when using
imbalanced databases.

Multi-class metrics

In the case of a multi-class classification with C classes, the confusion matrix
can be extended to a C × C matrix, as in Figure 2.16. The accuracy of the
predictions is the sum of the diagonal of the matrix divided by the number of
predictions. The metrics presented above in the case of binary classification can
be used in this case of multi-class by adopting a one-against-all approach (Thar-
wat 2020). For each class, the metrics are calculated using the chosen class Ci

as the positive class and all other classes as the negative class.

2.6 Summary

In this chapter we first introduce the electrocardiogram and heart rate measure-
ments. We studied the analysis of HRV through three main domains: the time
domain, the frequency domain and the geometric domain. All HRV measure-
ments essentially reflect the modulation of the ANS and its two subsystems,
the SNS and the PNS. Long-term measurements such as 24H-SDNN, 24H total
spectral power, DC and HRT provide information on the individual ANS state.
Spectral measurements taken over short periods, e.g. 5 minutes, provide infor-
mation on the dynamics of systems that disturb this ANS balance and may be
part of the trigger for arrhythmias and premature beats. Geometric methods
such as Poincaré plots allow rapid screening for AF and are emerging as an
important part of e-cardiology systems. Although mathematical and computa-
tional techniques allow manipulation of the ECG signal to extract information
and use it in predictive models for individual cardiac risk stratification, its ex-
plicability remains difficult. Conclusions about ANS activity from these models
must remain cautious.

In this chapter we also reviewed the existing and publicly available ECG
database. The database can be divided into two groups: short-term recordings
and long-term recordings. In the case of forecasting the AF onset, databases
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(a) ROC curve (b) AUROC

Figure 2.14: Receiver Operating Characteristic curve: (a) ROC curves from a
random classifier in red and two classifiers (green and blue), and (b) the area
under the ROC curve for the green classifier. In (a), the blue classifier (dash
and dot) is the best classifier of the three, as is the curve above the green (dash)
and red (dot) curves.

(a) PR curve (b) AUPRC

Figure 2.15: Precision-Recall curve: (a) PR curves of two classifiers (green and
blue), and (b) the area under the PR curve for the green classifier. In (a), the
blue classifier (line and dot) is the best classifier of the two, as the curve is
above the green one (line).
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Figure 2.16: Multi-class confusion matrix for ECG classification. In this case,
the prediction can belong to 1 of 4 classes: healthy recordings, recordings with
AF, recordings with other diseases and noisy recordings. Correct predictions
are on the diagonal of the matrix.

containing short-term recordings are of no use, as we want to analyse the pe-
riod of at least 30 minutes prior to the onset of fibrillation. In the case of
long-term databases, we have seen that several databases exist and are publicly
available. In the case of these databases, the number of AF episodes preceded
by at least 30 minutes of NSR and with AF episode duration of at least 5 min-
utes is limited.

This review highlights several research needs. The first need is the creation
of a new large-scale database of long-term Holter monitoring ECG from the
onset of paroxysmal AF. For the forecasting of AF onset, we need to determine
the transferability of existing algorithms to a new database. To do this, we first
need to assess the reproducibility of previous research. Then we will build on
the results and extend the existing models from the three types of prediction
to AF onset prediction and AF risk identification.



Chapter 3

Paroxysmal atrial fibrillation Holter
monitoring database

3.1 Introduction

In the previous chapter, we have reviewed existing and publicly available
database for Atrial Fibrillation (AF) onset forecast and AF identification during
Normal Sinus Rhythm (NSR). We have showed that there is no large scale
database for AF onset forecast, and the quantity of available recordings is
limited. The largest database is the Paroxysmal Atrial Fibrillation Prediction
Database (AFPDB) (Moody et al. 2001a) available on Physionet (Goldberger
et al. 2000), which contains 53 AF onsets recordings.

For this research, we created and labelled a new Electrocardiogram (ECG)
database composed of long-term Holter recordings. Holter recordings are
made daily in hospitals, and most of these recordings are stored locally. It
is estimated that 300 million ECGs are recorded worldwide every day (Zhu et
al. 2020). However, access to these recordings requires compatibility or permis-
sions within the proprietary format. This highlights the need and importance
for collaboration between public research and industry, which can only benefit
patients.

In the database, AF crisis were manually labelled to detect AF onsets and
AF offsets for each AF crisis. Therefore, it could be later used for supervised
training of Machine Learning (ML) models. In recent publications related to
AF task using ML and Deep Learning (DL) models, database are sometimes
kept private by the research teams. An additional objective of this database
is to expand the options available to researchers by publishing the database.

49
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We described the collection of data at the centres, the annotation process to
create the labels and the final format of the database. The whole process is
time-consuming, but the quality of the data and the quality of the annotations
have a major impact on the performance of the model.

3.2 IRIDIA-AF database version 1

The first version of the IRIDIA-AF is the result of a mono-centric retrospective
study on Holter monitorings from Dr Grégoire outpatient cardiology clinic.
The total duration of all recordings in the database represents more than 24
million seconds of recordings in total, which represents 278 days or 6690 hours
of Holter monitorings. In total, 388 AF episodes were recorded and annotated,
with a total duration of 5 million seconds, which represent 67 days or 1609
hours. It corresponds to 24% of the total duration of the dataset.

3.2.1 Recordings selection and annotation

The ECG signal data was recorded using Microport Spiderview Holter
recorders. The data acquisition phases started in January 2006 and ended in
August 2017. The recording frequency of the device is 200 Hz, with a precision
of 10 µV. Two leads were recorded: lead I and lead II. The medical analysis
and annotations of AF onset and offsets were done using Microport Syneview
(version 3.30a). The software was used to view the data, evaluate the quality
of the recording and to select the precise time of events in the recording.

This study was approved by the institutional ethics committee Erasme-ULB
P2017/413. The request for exemption from consent has been granted by the
committee, due to the unrealistic feasibility of obtaining consent given the large
number of involved cases and the high probability of being unable to reach
numerous patients, and the publication of the anonymous data was allowed.

A total of 167 recordings from 152 patients were selected from the 9568
recordings. The recordings were selected as follows.

1. The database of Holter recordings was reviewed and searched by an ex-
perienced cardiac nurse. Holter recordings from patients with a Cardiac
Implantable Electronic Device (CIED) were rejected. Holters with persis-
tent or permanent atrial fibrillation or other heart disease were discarded.
Holters with low recording quality or excessive noise were rejected. The
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Figure 3.1: ECG and corresponding annotations in recording 104

selection of recordings was based on the analyses of the cardiologist and
nurse, based on years of experience in Holter reading and interpretation
for AF screening.

2. Holters with paroxysmal atrial fibrillation were selected. The selected
recordings were reviewed by an experienced cardiologist and cardiac spe-
cialist nurse to validate the diagnosis.

3. All the recordings passing the previous validations were annotated. The
annotation consists of searching and determining the precise beginning
and end of each AF crisis in each recording, as presented in Figure 3.1.
The start of the AF crisis corresponds to the first beat in AF, as shown in
Figure 3.2. The annotation is positioned on the QRS complex of this first
AF beat. The end of the AF crisis corresponds to the first beat in normal
sinus rhythm (NSR) after the crisis. The annotation is also positioned on
the QRS complex of this first NSR beat. In case of doubt about one event,
a second opinion was asked to validate the annotation.

4. The recording was then exported, using the Microport Syneview software,
from Microport proprietary format to ISHNE format (Badilini et al. 1998).
Each recording was stored along the annotations and RR intervals. The
RR intervals files were exported from the automatic QRS annotation by
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Figure 3.2: AF onset for the first AF crisis in recording 026

Microport Syneview software.

5. The labels were checked by a technical expert to validate the correspon-
dence with the waveform data available in the exported ECG signal file.
Because the recording frequency is 200 Hz and the annotations were ac-
curate down to the second, the sample index that corresponds to the an-
notated time may not precisely align with the selected QRS complex. If
a difference was found, the label was manually corrected and realign the
sample index to correspond precisely to the QRS complex index chosen
by the annotators. An example of annotation, label and correction is pre-
sented in Figure 3.3.

6. For some recordings, the Holter monitor does not seem to have been
stopped just after the electrodes were removed from the patient skin. The
end of each recording was visually inspected to determine if end of record
noise is present. An example of such end of recording noise is presented in
Figure 3.4, where most of the recording is noise. If end of recording noise is
present, the recording was trimmed to only contain the interesting data.
The RR files were automatically reworked to correspond to the new length
of the file.

7. The waveform files and RR files were exported from ISHNE format to
HDF5 format.The metadata files were double-checked with annotations
to validate the conversion.
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The quality of the waveform file was left as it was recorded by the Microp-
ort Holter devices, in order to match real life recordings. Recordings with high
levels of noise were discarded by the cardiologist during the selection phase.
The sampling frequency of the recordings was left unchanged at 200 Hz. The
unique patient identifier and the unique recording identifier were randomly
generated. Some patients have multiple Holter recordings, so the recordings
are assigned to the same patient identifier. Each recording acquisition date
was shifted by a random offset for each patient, as suggested by previous ECG
databases (Wagner et al. 2020; Liu et al. 2022), to unlink recordings from the
original database in the de-identification process. If there were multiple record-
ings for a patient, the chronological order of the recordings was maintained. We
converted each patient’s birthday to their age at the time of recording. Even
with these pseudonymisation measures, re-identification remains a risk, as the
ECG itself could be used to identify the patient, as suggested by (Guillaudeux
et al. 2023).

3.2.2 Results

The first version of the database is based on Holter recordings database from
Dr Jean-Marie Grégoire outpatient clinic from 2006 to 2017. From the 9568
available recordings, a total of 167 recordings from 152 patients were selected.

3.2.3 Comparison with existing database

The comparison of the IRIDIA-AF database and selected publicly available
database with AF diagnosis is presented in Table 3.1 and Table 3.2. Other
databases, such as the PTB-XL (Wagner et al. 2020) or the AF classification
challenge 2017 database (Clifford et al. 2017) propose a larger number of pa-
tients and number of heart disease diagnosis. IRIDIA-AF database proposes a
longer total cumulative recording duration when compared to other publicly
available databases with AF. In addition, thanks to the length of the recordings,
this database can also be used for other AF related tasks, such as short-term AF
onset forecast (Gilon et al. 2020). Other databases, as PTB-XL, cannot be used
for AF onset short-term forecast as the recordings are 10-second long and does
not include the minutes before AF onsets.
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(a) Cardiologist annotation

↓

(b) Converted annotation

↓

(c) Manually corrected annotation

Figure 3.3: Example of annotation correction in recording 026. The first anno-
tation (a) is made by the cardiologist. The converted annotation (b) corresponds
to the conversion of the annotation time, i.e. time (h:m:s) to the sample index
in the file. The sample index in the recording may differ from the annotation
made by the cardiologist due to the conversion, as the accuracy of the annota-
tion is limited to 1 second and the recording frequency is 200 Hz. A manual
correction (c) is therefore required to realign the annotation of the selected QRS
complex in the time series.
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Figure 3.4: ECG recording record 142 with noisy end after electrode removal

Table 3.1: Comparison of selected publicly available ECG arrhythmia database
and IRIDIA-AF

Name # patients # recordings # leads recording duration (seconds) # classes
min max

MIT-BIH Arrhythmia (Moody et al. 2001b) 47 48 2 1800 1800 2
AF classification challenge 2017 (Clifford et al. 2017) 8528 8528 1 9 61 4
SPH dataset (Liu et al. 2022) 24666 25770 12 10 60 59
CU-SPH dataset (Zheng et al. 2020) 10646 10646 12 10 10 11
PTB-XL (Wagner et al. 2020) 18885 21837 12 10 10 71
IRIDIA-AF version 1 (Gilon et al. 2023b) 152 167 2 71 408 345 596 2

Table 3.2: Comparison of selected available samples in publicly available ECG
arrhythmia database

Name Total duration (seconds) Sampling rate (Hz) Total samples

MIT-BIH Arrhythmia (Moody et al. 2001b) 86 400 360 31 104 000
AF classification challenge 2017(Clifford et al. 2017) 277 138 300 83 141 400
SPH dataset (Liu et al. 2022) 281 109 500 140 554 500
CU-SPH dataset (Zheng et al. 2020) 106 460 500 53 230 000
PTB-XL 100 Hz (Wagner et al. 2020) 218 370 100 21 837 000
PTB-XL 500 Hz (Wagner et al. 2020) 218 370 500 109 185 000
IRIDIA-AF 24 085 688 200 4 817 137 600
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3.2.4 Annotation evaluation

ECG and ECG annotation quality

The quality assessment for the waveform data was done during the data se-
lection process. As stated previously, the data was first validated by an ex-
perienced specialist cardiac nurse and then validated again by an experienced
cardiologist. Recordings presenting a high level of noise were rejected during
this phase. All the AF crisis, starting from the AF onset to the AF termination,
were annotated by the cardiologist and reviewed by the specialist cardiac nurse
if a second opinion was needed. The labels were then cross-validated during
the creation and clean-up of the database, as discussed in the previous sections.

AF detection with ML and DL models for annotation validation

Before the publication of the database, we evaluated the ECG waveform anno-
tations and the RR interval annotations using ML and DL models. The task
given to the model is to detect the presence of AF in an ECG window or RR in-
terval window. The first model was trained and tested on the RR intervals and
corresponding RR interval annotations. We created a XGBoost (XGB) model
and derived Heart Rate Variability (HRV) features from the RR intervals. The
model was implemented using the XGBoost and scikit-learn packages. The
number of tress was set to 150 with a maximal depth of 5. The HRV features
were extracted from the time domain, frequency domains and the Poincaré
plot. We used a 10-fold cross-validation with stratification on the patient level,
i.e. all the recordings from one patient can only be found in either the train or
the test split.

We compared the performance of the XGBoost model, with a DL model. We
implemented a 1-dimensional Convolutionnal Neural Network (CNN) using
PyTorch, using an input window of 8192 samples corresponding to 40 seconds
of ECG. We use a step of 4096 to select the windows for the training set, i.e.
50% overlap between windows and a 8192 step for the testing, i.e. 0% over-
lap between windows. The model is composed of 9 blocks of CNN with two
branches, where the second branch is a skip connection has it has been shown
to improve the training and results in deeper models. The model is described
in Figure 3.9. CNN models have shown great performance for the classifica-
tion of 1-dimensional time series and in particular for ECG classification and
AF-related tasks, as shown by Attia et al. (2019a). The model was trained dur-
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Table 3.3: Comparison of the results for AF detection task using two models:
ML model (XGBoost) vs DL model (CNN). The value in parentheses represents
the 95% confidence interval. AUROC is the area under the ROC curve. The
metrics are computed using a threshold of 0.5.

Model Input Window size AUROC Accuracy Sensitivity Specificity F1 score

XGBoost HRV 300 RR 0.967 0.972 0.951 0.983 0.957
RR (≈ 5 minutes) (0.950-0.983) (0.961-0.983) (0.917-0.984) (0.975-0.990) (0.938-0.975)

CNN ECG 8192 samples 0.995 0.982 0.952 0.992 0.971
(≈ 40 seconds) (0.990-0.999) (0.972-0.992) (0.919-0.985) (0.988-0.997) (0.954-0.989)

ing 100 epochs with early stopping with patience of 5 epochs, i.e. the training
stops after 5 epochs with no improvement on the validation set. The model
was optimized using Adam, using a learning rate of 10−4. The loss function
was the binary cross-entropy. The bach size was 32. We used boostraping with
5 repetitions. For each one of the model trainings, a new train-validation-test
split was created. Confidence intervals were computed for each metrics across
the 5 repetitions. As for the first ML model, the recordings were separated at
the patient level to avoid any contamination of the test set. The results of the
two models are presented in Table 3.3.

Finally, we evaluated both models on an unseen patient recording. We
used a sliding window to create the annotation of the model on the whole
recording and compared it visually to the cardiologist annotations. The results
for the ML model are presented in Figure 3.5 and the results from the DL model
are presented in Figure 3.6. Both models were able to create new annotation
corresponding to the cardiologist annotations with the 5 AF episodes present
in the recording. It confirms the ability of ML and DL models to be used as a
tool for medical decision support.

3.2.5 Database publication

This version 1 of the database is published on Zenodo (Gilon et al. 2023a), with
the DOI 10.5281/zenodo.8186845 and is accessible at https://zenodo.org
/doi/10.5281/zenodo.8186845. A main DOI represents the overall database,
and each version of the database is assigned a new specific DOI. The URL to
the main DOI has the nice property of redirecting to the latest version of the
database.

10.5281/zenodo.8186845
https://zenodo.org/doi/10.5281/zenodo.8186845
https://zenodo.org/doi/10.5281/zenodo.8186845
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Figure 3.5: Prediction of the ML model on a test recording

Figure 3.6: Prediction of the DL model a test recording
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3.3 IRIDIA-AF database version 2

The version 2 of the IRIDIA-AF database is an extended version of the pub-
lished IRIDIA-AF version 1. New recordings from the first centre, Dr Grégoire
outpatient clinic, were added to the database. In addition, three new centres
were added to the database. The three new centres are:

• CHU Ambroise Paré in Mons (Belgium),

• Centre Hospitalier de Luxembourg (Luxembourg),

• CHU Bruggmann in Brussels (Belgium).

The three centres were selected because of the use of the Holter moni-
tors from Microport and corresponding Holter recordings software, Microport
Synescope. Indeed, during the creation of the first version, the team developed
understanding of the proprietary database structure. It was therefore easier to
apply the same process as for Dr Grégoire outpatient clinic to select the pa-
tients and corresponding recordings. As for the first version, each paroxysmal
AF crisis were annotated.

3.3.1 Dr Grégoire outpatient clinic

We continued the analysis of the recordings in the archive database of the Dr
Grégoire outpatient clinic. Figure 3.7a shows the distribution of the 11656 avail-
able records. We found 1105 recordings from 2017 to 2018. After selection, 27
new Holter recordings were added to the database.

3.3.2 CHU Ambroise Paré

The retrospective study at the CHU Ambroise Paré in Mons was conducted in
collaboration with Dr Pascal Godart and Dr Stéphane Carlier. The study was
approved by the hospital ethics committee of the CHU Ambroise Paré. A total
of 24 872 Holter recordings were collected between 2010 and 2020, as shown in
Figure 3.7b. The ECG signal was recorded using Microport Spiderview Holter
recorder at the sample rate of 200 Hz, with two leads: Lead I and Lead II.
A total of 80 Holter recordings from 74 patients were selected, and 130 AF
crisis were annotated. In addition, 29 healthy patients with Holter recordings
presenting no signs of AF or other cardiac diseases and with a low level of noise
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were selected. The selection of recordings is the same for all centres: rejection
of patients with CEID, rejection of noisy recordings and rejection of recordings
with other diseases.

3.3.3 Centre Hospitalier de Luxembourg

The retrospective study at the Centre Hospitalier de Luxembourg was made
in collaboration with Dr Laurent Groben. This study was approved by the
Comité National d’éthique de recherche from Luxembourg (N° 202101/01). Fig-
ure 3.7c presents the Holter recordings database from Centre Hospitalier de
Luxembourg (CHL). It contains a total of 29 579 Holter monitorings, recorded
from 2006 to 2021. The raw ECG signal data was recorded using Microport
Spiderview Holter recorder at a sample rate of 200 Hz. Lead I and Lead II

were recorded. Each year an average of 1848 ± 394 Holters recordings were
recorded in the centre. A total of 250 recordings with paroxysmal AF from 226
patients were selected. It represents a total of 610 annotated AF episodes. In
addition, 322 Holter recordings from 315 healthy patients were recorded.

3.3.4 CHU Brugmann

This retrospective study at the CHU Brugmann was made in collaboration wih
Dr Thomas Nguyen. This study was approved by the Comité d’Ethique CHU
Brugmann. Figure 3.7d shows the 29 764 Holter recordings available, recorded
from 2007 to 2023. 362 recordings were selected by Dr Nguyen, using the anno-
tations available with the recording. 317 files could be extracted from hospital
archives. After re-analysis of recordings by a cardiologist, 113 recordings from
106 patients were selected and a total of 170 AF crisis were annotated.

3.3.5 Results

The IRIDIA-AF version 2 database is composed of 988 recordings from 928
patients. This represents only a small fraction, around 1%, of the 95 871 record-
ings composing the available archives in the centres as show in Figure 3.8. The
number of recordings and patients in each centre is presented in Table 3.4. The
database contains a total of 1319 AF crisis, as show in Table 3.6. A total of
835 AF have more than 60 minutes of sinus rhythm before the AF onset and
more than 10 minutes of AF after the onset, and a total of 964 AF crisis have 30
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(a) Dr Grégroire outpatient clinic
(n = 11 656)

(b) CHU Ambroise Paré
(n = 24 872)

(c) CHL Luxembourg
(n = 29 579)

(d) CHU Brugmann
(n = 29 764)

Figure 3.7: Distribution of the Holter monitoring dates in the four centres: (a)
Dr Grégoire outpatient clinic, (b) CHU Ambroise Paré, (c) CHL Luxembourg
and (d) CHU Brugmann
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Figure 3.8: Diagram of the database composition

minutes or more sinus rhythm before the AF onset and 5 minutes or more of
AF after the onset.

Microport recordings are separated in 24 hours recordings, therefore, the
sinus rhythm window previous to the AF or AF crisis can be separated be-
tween two sub-recordings. The goal of this new database is to propose a new
larger database than existing publicly available database to enable supervised
learning for AF onset forecast and AF identification during sinus rhythm.

We can compare this new database with existing publicly available
database, as presented in Table 3.7. This new database contains more patients,
more recordings and more AF onset windows than the previously existing
database by a large margin. This allows supervised training and testing of
ML models on a larger scale. The amount of data would also be sufficient for
training and testing DL models.

3.4 Database validation using AF detection

AF detection is a daily task in hospitals and outpatient clinics in order to detect
and manage AF before one of its consequences, such as a stroke, reveals it (Hin-
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Table 3.4: Composition of the IRIDIA-AF database version 2, comparing the
number of patients and number of recording in each of the four centres in-
cluded in the study

Patients Recordings
Centre City Country Years Selected AF NSR Available Selected AF NSR

Dr Grégoire Brussels Belgium 2005–2018 178 164 14 11 656 194 180 14
CHU Ambroise Paré Mons Belgium 2007–2020 103 74 29 24 872 109 80 29
CHL Luxembourg Luxembourg 2005–2021 541 226 315 29 579 572 250 322
CHU Brugmann Brussels Belgium 2007–2023 106 106 0 29 764 113 113 0
Total 928 570 358 95 871 988 623 365

Table 3.5: Count of the number of AF episodes in the IRIDIA-AF database
version 1, based on the durations of sinus rhythm before the AF onset and the
duration of AF crisis

NSR duration
before AF (min)

AF duration (min)
> 0 > 5 > 10 Total

< 1 8 3 6 17
1–5 19 5 16 40

5–30 17 6 10 33
30–60 5 4 9 18
> 60 32 8 240 280
Total 81 26 281 388

Table 3.6: Count of the number of AF episodes in the IRIDIA-AF database
version 2, based on the durations of sinus rhythm before the AF onset and the
duration of AF crisis

NSR duration
before AF (min)

AF duration (min)
> 0 > 5 > 10 Total

< 1 8 3 6 17
1–5 30 6 26 62

5–30 60 27 51 138
30–60 23 11 71 105
> 60 115 47 835 997
Total 236 94 989 1319
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Table 3.7: Comparison of publicly available ECG database for AF onset fore-
cast with IRIDIA-AF v2, sorted by release date. The duration is indicated per
recording. The AF episodes selected have > 30 minutes sinus rhythm before
the AF onset and > 5 minutes of AF duration.

Database name Year Patients Recordings Duration Sample Rate Leads AF episodes

MIT-BIH AFDB (Moody et al. 1983) 1983 25 25 30 min 250 Hz 2 11
AFPDB (Moody et al. 2001a) 2001 100 200 30 min 128 Hz 2 53
LTAFDB (Petrutiu et al. 2007) 2007 84 84 24 h 128 Hz 2 2
IRIDIA-AF v1 (Gilon et al. 2023b) 2023 152 167 24 - 96 h 200 Hz 2 261
IRIDIA-AF v2 2023 928 988 24 - 96 h 200 Hz 2 964

dricks et al. 2021). The detection of AF was used in Section 3.2.4 to validate
the usability of the annotations on the IRIDIA-AF version 1. The same pro-
cess has been applied to the Holter recordings of version 2. It provides a good
starting point for a technical validation and usability test of the recordings and
annotations contained in the new database.

For this task, we trained and tested multiple ML and DL models on the two
types of recording signals, ECG and RR intervals, available for each recording.
The RR intervals available in the database are based on the automatic detection
made by the Microport Syneview software during the automatic analysis of the
Hotler recordings.

AF detection can be modelled as a binary classification task. The models
receive an ECG window as input and determine the probability of AF being
present in this window. A high probability, close to 1, indicates that the model
considers that AF is present in the ECG and a low probability, close to 0, in-
dicates that the model considers that the ECG window contains only sinus
rhythm.

3.4.1 Methods

AF detection using HRV parameters

All recordings in the database, from both AF and healthy patients, were di-
vided into overlapping RR interval windows using a sliding window method.
We selected all windows of size 300 RR intervals, with a step of 100 RR inter-
vals. This means that two successive windows have 200 RR in common. The
duration in seconds of each window is therefore variable, as it depend on the
heart rate in the window. It corresponds to a 3-minute window when the heart
rate is 100 bpm and a 5-minute window when the heart rate is 60 bpm. Out-
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liers in the window, i.e. RR intervals less than 200 ms and greater than 4000
ms, were removed and linear interpolation was used to replace the missing RR
intervals. This was applied to 0.01% of the total RR intervals. HRV parameters
were calculated on the window. Parameters were extracted from time domain,
frequency domain, Poincaré plot, Second Order Difference Plot (SODP) plot
and heart rate fragmentation.

Four different ML models have been trained to classify HRV parameters
from RR interval window. We first trained a logistic regression as baseline.
Then, we selected three ML models and trained them on the same training
split. The models are Decision Tree, Random Forest (RF), XGB. The decision
tree and the random forest were implemented using scikit-learn package. The
random forest was implemented using 200 trees with a depth of 10. The XGB
model was implemented using xgboost library and the number of trees was set
to 100 with a maximum depth of 5.

The performance of the models were compared across 10-fold cross-
validation at patient level. The same splits were used across all models to
obtain comparable metrics.

AF detection using ECG

For the second class of model, as for IRIDIA-AF version 1 annotation evalu-
ation, we used a 1D CNN model, with an input size of 8192 samples corre-
sponding to 40 seconds of ECG. We used a step of 8192 to select windows, i.e.
there is no overlapping between windows.

The model is using the same architecture and is composed of 9 blocks of
CNN with two branches, where the second branch is a skip connection. 1-
dimensional CNN models have shown great performance for ECG classifica-
tion and AF related tasks, as show by Attia et al. (2019a). The CNN model is
composed of 9 blocks, with shortcut, as shown in Figure 3.9. The final pre-
diction is the results of the sigmoid activation of the output from the last fully
connected layer.

The model is created in PyTorch (Paszke et al. 2019), we used Adam
(Kingma et al. 2017) as optimizer, and the binary cross-entropy loss function.
We used a learning rate of 10−4 and a batch size of 128. The model was
trained up to 100 epochs, with an early stopping strategy after 3 epochs if
the validation loss did not decrease. After two epochs with no increase, the
learning rate was divided by 2.
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(a) Full CNN model

(b) Block* (c) Block

Figure 3.9: Architecture of the CNN model used for AF identification. The
model architect (a) is composed of an input block, followed by 9 blocks and a
final classification. The 9 blocks are divided into 3 groups, where the first block
is a Block* (b) and the next two are Blocks (c).
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Cross-validation methods

To evaluate the generalization of the predictions made by a trained ML model,
two evaluation methods were used: temporal cross-validation and spatial cross-
validation. For each of the two methods, the database is separated into two
parts: a training part and a test part. For some models, a validation part can
also be created for use during training. The separation is carried out at patient
level to avoid any data leakage between the training and the testing set. A
patient and Holter recordings can only be contained in either the training or
testing split. This separation process is repeated multiple times to determine
the stability of the results.

For the temporal cross-validation, the recordings are sorted by recording
date and separated into n splits, as suggested by Cerqueira et al. (2020). The
first split contains the oldest recordings and the last split contains the most
recent recordings, as shown in Figure 3.10. During the annotation process,
we had the opportunity to visually analyse all the recordings, and we found
no difference in quality between the first and last recordings, as the recording
devices and the analysis software were the same for across all four centres.
We wanted to keep the number of splits in the training set constant, with one
split used as a test split and another as a validation split if the model required
it. In this paper, the DL models use a validation split to stop training early.
If a patient has multiple recordings, the first recording date is used and all
recordings from that patient are placed in the same split.

The database consists of recordings from four centres. Spatial cross-
validation uses this feature to divide the database into a test split containing
recordings from one centre and a training split containing the remaining three
centres. For models using a validation split during the training phase, the
remaining three centres are divided proportionally into a training split and
a validation split, as shown in Figure 3.11. Due to the variable number of
recordings in each centre, we decided to use the first option and split the
recordings from the three centres between training and validation. This is
equivalent to using an ML model in clinical practice in the first three hospitals
and testing the performance of the model in a fourth hospital.
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Figure 3.10: Temporal cross-validation. The data set is divided into a training
set (blue), a validation set (orange) and a test set (red). The validation set is
used in particular by the DL model to stop training early.

Figure 3.11: Spacial cross-validation: the blue splits are used for training and
the red split for testing
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Table 3.10: Evaluation metrics on the 10-fold temporal cross-validation using
ML models

Model AUROC AUPRC

Logistic Regression 0.957 (0.943–0.971) 0.772 (0.726–0.818)
Decision Tree 0.947 (0.937–0.957) 0.926 (0.911–0.942)

Random Forest 0.990 (0.984–0.997) 0.963 (0.937–0.989)
XGBoost 0.990 (0.983–0.996) 0.960 (0.936–0.984)

Table 3.11: Evaluation metrics on the 10-fold temporal cross-validation using
CNN model

Model Input size Leads AUROC AUPRC

CNN 8192 I 0.987 (0.982-0.993) 0.948 (0.920-0.975)
CNN 8192 I&II 0.988 (0.983-0.993) 0.954 (0.928-0.980)

3.4.2 Results

Temporal cross-validation

We evaluated ML and DL models using temporal split on the IRIDIA-AF v2
database. The results are presented in Table 3.10 for the ML models and in
Table 3.11 for the DL models. We found that RF and XGBoost achieve the best
average performance with an Area Under the Receiver Operating Characteristic
Curve (AUROC) of 0.990. Compare to the evaluation on IRIDIA-AF v1 where
the CNN model achieved better results than the XGB model, the tendency is
now reversed.

Inter-hospital cross-validation

As a second evaluation method, we compared the performance of ML models
using inter-hospital cross-validation on the four centres composing the IRIDIA-
AF v2 database. The results are presented in Table 3.12 for the ML models. We
found that RF and XGB achieve similar AUROC performance, but the XGB
model achieved better Area Under the Precision-Recall Curve (AUPRC) on
three of the four centres. The best results were achieved on recordings from
Dr Grégoire outpatient clinic, and the lowest results were achieved when the
model were tested on recordings from CHU Ambroise Paré.
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Table 3.12: Performance of the classifier on the hospital

XGBoost Random Forest
Hospital AUROC AUPRC AUROC AUPRC

Dr Grégoire 0.999 0.998 0.996 0.964
CHU Ambroise Paré 0.956 0.960 0.953 0.958
CHL Luxembourg 0.976 0.844 0.974 0.865
CHU Brugmann 0.983 0.980 0.980 0.979

Complete recording prediction

AF detection algorithm could help to reduce cardiologist Holter monitoring
recordings reading and annotation work. If an algorithm is proven to have at
least the same level of annotation accuracies as a trained clinical technician or
cardiologist, this model could be used to make an initial reading and annota-
tions of the recordings.

The algorithm using HRV features computed from RR intervals has a high
level of accuracy on a single window, but these results should be extended to
correspond to the whole recording.

To validate the model-based approach on the complete recording, we se-
lected a random patient and trained a new RF model on the HRV feature
dataset, excluding the recordings of the selected patient. Then, using a sliding
window over the entire recording, we compute the mean AF detection prob-
ability. This is done by taking the mean of all predictions from all windows
containing the RR. The corresponding prediction is shown in Figure 3.12.

Using the same patient, we used the trained model from the fold in which
the selected patient is in the test split. We compute a new prediction every 256
samples and computing the mean of the result for each sample. The results
are presented in Figure 3.13 showing predictions corresponding to cardiologist
annotations.

3.5 Summary

From a state-of-the-art analysis, we have highlighted the need for a new
database for the task of AF onset forecast, as the publicly available databases
for this task are limited. In this chapter, we presented a new publicly available
database consisting of two versions: IRIDIA-AF version 1 and version 2.
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Figure 3.12: ML model prediction of AF presence in a Holter recording. The
ECG intervals (a) are used by as input by the CNN model. Using the cardiol-
ogist annotations (b) of AF onset and AF offset, AF crisis can be labelled. The
mean AF presence prediction (c) is computed for all RR interval. Using a 0.5
threshold, the final prediction is presented in (d).

Figure 3.13: CNN model prediction of AF presence in a Holter recording. The
RR intervals (a) are used to compute the HRV features for each window. Using
the cardiologist annotations (b) of AF onset and AF offset, AF crisis can be la-
belled. The mean AF presence prediction (c) is computed for all ECG windows.
Using a 0.5 threshold, the final prediction is presented in (d).
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IRIDIA-AF version 1 has already been published online on Zenodo and is
available to the research community. This database contains 167 Holter record-
ings from 157 patients in an outpatient clinic. The second version, IRIDIA-AF
version 2, consists of 988 recordings from 928 patients. Three new hospitals
were added to the database, bringing the total number of centres to 4. All
AF onsets and offsets were annotated in the recordings, with a total of 964 AF
crises with AF lasting more than 5 minutes and 30 minutes or more of NSR
before AF onset. To the best of our knowledge, this database is the largest
publicly available database of annotated recordings for AF research.

To validate the annotations, we evaluated the performance of the ML and
DL models on both IRIDIA-AF version 1 and version 2. In both cases, the mod-
els showed impressive performance in AF detection, with results consistent
with those previously obtained by machine learning and deep learning models
using alternative databases in the literature.

In this context, and in line with the high performance of the models, the
detection of AF can be considered an easy task. The extension of the database
towards a version 3 should be further developed by including new centres and
other cardiovascular diseases. Automatic selection of high quality recordings
and rejection of low quality recordings could also simplify the process. For ver-
sions 1 and 2, we relied on the expertise of a cardiologist and a cardiac nurse
to make this selection, but defined selection criteria could be created based on
the existing database as noise ratio or p-wave, qrs and t-wave detection ratio.
The annotations should be redefined to include four labels: (i) AF, (ii) NSR,
(iii) other diseases and (iv) noisy parts. This could help to understand the gen-
eralisation of model performance. Automated annotation of atrial fibrillation
in Holter monitoring can significantly improve clinical accessibility and inter-
pretation, speeding up analysis and enhancing the use of such AF screening
monitoring in clinical settings.



Chapter 4

Paroxysmal atrial fibrillation onset
forecast

4.1 Introduction

The main research question of this thesis is to understand if Atrial Fibrillation
(AF) onset can be forecast, particularly using Machine Learning (ML) and Deep
Learning (DL) models. The underlying question is to understand if these mod-
els are able to extract meaningful information from the Normal Sinus Rhythm
(NSR) preceding the AF onset. The comparison of larger DL models with more
classical ML models was made possible by the use of the novel database intro-
duced in Chapter 3, as existing public databases do not contain enough record-
ings. Previous studies in this research area have mainly used the Paroxysmal
Atrial Fibrillation Prediction Database (AFPDB), which is significantly smaller
than IRIDIA-AF. In the literature, the AF onset forecast task is presented as
a binary classification problem. To achieve good performance, two classes of
Electrocardiogram (ECG) windows should be distinguished: (i) ECG windows
close to the AF onset, in the pre-AF windows, and (ii) ECG windows distant
from the AF onset.

Most published results are based on the AFPDB. However, it is important to
note that this database has a limited number of AF onset recordings. Although
the ML models presented in the existing literature have reported high perfor-
mance on this task, it may be premature to consider the task as completely
solved. In this chapter, we begin our investigation by assessing the perfor-
mance of state-of-the-art models reimplemented according to the methodology
described in their respective publication. The aim is to assess the level of re-

75
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producibility of the scientific literature on the prediction of AF onset.
We then discuss the evolution of ECG waves, intervals and complexes prior

to AF onset to understand if changes can be observed in the ECG. We then
compare the evolution of the performance of a ML model in classifying 5-
minute windows close to and distant from AF onsets as the windows close to
the AF onset are moved further away. Finally, we compare the performance
of several ML models using a variety of input representations in classifying
selected 30-minute windows close to AF onsets and 30-minute windows at
least 2 hours away from AF onsets. Using the model which achieved the best
average metrics, we analyse the predictions on complete recordings.

4.2 State-of-the-art reproducibility

Reproducibility of published work is not always straightforward, and can be
even more difficult without access to the original code, or even impossible with-
out access to the dataset used in the study. Recently, ML-based methods have
shown great results in various areas, including AF onset prediction. Reviews
have shown that ML publications contain errors or missing information in the
methodology. In addition, data leakage and overfitting from train to test split
can also be found in publications, making the results difficult or sometimes
impossible to reproduce (Vandewiele et al. 2021; Shim et al. 2021). It is neces-
sary to provide an independent data split to test the model to ensure a good
generalisation of the prediction (Walsh et al. 2021). We have selected, analysed
and reproduced the method of 3 publications on AF onset prediction using the
AFPDB to understand whether the results can be reproduced.

4.2.1 PAF Prediction Challenge Database

The AFPDB (Moody et al. 2001a) is the database of the three selected studies.
This dataset is composed of 200 ECG recordings from 100 patients, with 2
recordings per patient. The data and labels are also available on the Physionet
website (Goldberger et al. 2000). Each recording is 30 minutes long and the
sampling frequency is 128 Hz. For AF patients, one recording is preceding an
AF and the other is distant from any AF sign, with at least 45 minutes before
and 30 minutes after. For healthy patients, the two recordings are NSR.

For the 2001 Physionet Challenge, the dataset was split into a train set and a
hidden test set and later published as a whole. The challenge train set consists
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Table 4.1: Selected models for AF onset prediction

Authors Model Window Features

Mohebbi et al. (2012) SVM 30 non-linear
frequency-domain
bispectrum

Boon et al. (2018) SVM 5 time-domain
bispectrum
frequency-domain
non-linear

Narin et al. (2018) KNN 5 time-domain
frequency-domain

of 50 patients with 25 healthy patients and 25 AF patients, resulting in a total
of 100 healthy recordings, 50 NSR recordings from AF patients and 50 pre-
AF recordings. The test set consists of 50 patients with 22 healthy and 28 AF
patients, resulting in a total of 44 healthy recordings, 28 AF NSR recordings
and 28 pre-AF recordings. If both healthy and AF NSR recordings are grouped
together, the data set consists of 53 pre-AF recordings and 147 recordings far
from any AF sign.

4.2.2 Materials and methods

We searched the literature for publications on AF onset forecast. 10 challenge
entries and 6 resulting publications were presented at the Computing in Car-
diology 2001 conference. We found more than 30 publications on this topic,
published after the 2001 conference and the release of the database. We se-
lected 3 ML-based methods using Heart Rate Variability (HRV) features, based
on the total number of citations at the time of the selection. The methods are
summarised in Table 4.1.

For each selected publication, we reproduce the methodology as presented
in each publication. We also create several alternative scenarios by varying the
dataset selection, dataset split, HRV features computation, and model param-
eters. Each scenario was run 1000 times and the average accuracy, sensitivity
and specificity were reported with a 95% confidence interval.
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Model SVM-30

A Support Vector Machine (SVM) classifier is proposed by Mohebbi et al.
(2012). They used the full 30-minute window of the signal as a single win-
dow. After preprocessing, they used QRS complex (QRS) detection to create
the HRV signal. They computed frequency domain features (Low Frequencies
(LF) and High Frequencies (HF)), bispectrum features, Poincaré plot features
(SD1, SD2, SD1/SD2) and sample entropy. They used the first train-test split
from the challenge, but restricted the dataset to the 53 AF patients. In total, 106
recordings were used, 50 ECGs for training and 56 ECGs for testing. The best
average results were obtained using an SVM with C = 1000 and γ = 3.6.

We implemented several models using the 30 minute window. The first
with C=1000 and γ=3.6 as presented in the methodology, and an alterna-
tive second SVM with C chosen in [0.1, 1, 10, 100, 1000, 10000] and γ chosen
in [10, 3.6, 1, 0.1, 0.01, 0.001, 0.0001]. We used the initial train-test split as in the
publication. We also tested whether the use of feature standardisation im-
proved the results.

Model SVM-5

Boon et al. (2018) proposed an SVM classifier using HRV features computed
from 5-minute windows. HRV is extracted from ECGs using QRS detection.
Features from the time domain, frequency domain and bispectrum are used.
They used Genetic Algorithms (GA) to select features and the final set still con-
sists of temporal features (NN50, pNN50), non-linear features (entropy, SD2),
frequency domain features and bispectrum features. They used 10-fold cross-
validation to analyse their performance on the 106 ECGs from the 53 AF pa-
tients.

We created an SVM model with HRV features extracted from 5-minute win-
dows, using a GA to select the features. We used the variable C and γ as in
the SVM-30 model. We tested two types of window selection: only the last
five minutes of the recordings or all 5-minute windows available from the 30-
minute window (with 50% overlap). We tested two datasets: the first with all
AF patients and the second with the whole dataset, using 10-fold CV at the
patient level.
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Table 4.2: Reported results for AF onset forecast in the original publications

Authors Accuracy Sensitivity Specificity

Mohebbi et al. (2012) - 96.30% 93.10%
Boon et al. (2018) 87.7% 86.8% 88.7%
Narin et al. (2018) 90.0% 92.0% 88.0%

Model KNN

Narin et al. (2018) used a K-Nearest Neighbours (KNN) model. The 30-minute
recordings are divided into 5-minute windows with 50% overlap. They used
all the training data except the n27 recording. In total, there are 74 NSR record-
ings and 25 AF recordings. To compute their classifier performance, they used
10-fold CV. They extracted HRV from the ECG signal and used temporal, fre-
quency and non-linear features. To select features, they used a GA where each
feature usage is encoded as a bit. They present several models with results for
different dataset splits, feature selection and k value for KNN models. The best
model uses k = 3 and 5 features (Root Mean Square of Successive RR interval
Differences (RMSSD), LF, VLF and total power).

We trained a KNN model with HRV features from the 5-minute RR inter-
val window and selected HRV features using a GA. We tested three dataset
splits: the train split from the challenge using only AF patients, the train split
from the challenge using all patients, and finally the full dataset. We used two
types of 10-fold cross-validation, either at the recording level or at the patient
level, i.e. the two recordings of a patient should be included in the same split.
We could not verify whether the same constraint was applied in the original
methodology.

4.2.3 Results

For all 3 methods, we were unable to reproduce the results reported in the
publications. The performance of the reproduced models and extended models
were lower than reported. The reproduced results are presented in Table 4.2.

Model SVM-30

For the model from Mohebbi et al. (2012) we obtained a sensitivity of 78.57%
at the cost of a low specificity of 10.71%. The results are shown in Table 4.3 for
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Figure 4.1: Figure 4a from
Mohebbi et al. (2012) Figure 4.2: Reproduction

Figure 4.3: Reproduction of the biamplitude contour plot for a 30-minute win-
dow from the p03 recording of the AFPDB

both fixed and variable parameters. We were able to reproduce the bispectral
plot presented in the publication as shown in Figure 4.3 to validate our method.
The model seems to overfit on one class when no standardisation is used. The
results were better using varying C and γ.

Model SVM-5

For the method of (Boon et al. 2018) we achieved a top accuracy of 74.45%
corresponding to a low specify of 17.85% and a high specificity of 94.82%. The
results with the different scenarios and data splits are shown in Table 4.5. The
results with the whole data set were better in terms of accuracy, but at the cost
of a much lower sensitivity.

Model KNN

For the model of (Narin et al. 2018) we obtained 75.62% accuracy for KNN with
k = 3, with a sensitivity of 40.80% and a specificity of 87.44%. The results are
shown in Table 4.6. The distribution of sensitivity and specificity for each fold
is shown in Figure 4.4. The results using splits are better at the recording level,
but could be related to data leakage between the training and test sets. Indeed,
in this case, the model could be tested on the HRV of a patient already present
in the training data.
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Table 4.3: Reproduced results for SVM-30 model with C = 1000 and γ = 3.6.
Results are presented with 95% confidence interval.

Dataset Patient # ECG Norm. Accuracy (%) Sensitivity (%) Specificity (%)
train test

train test AF 50 no 50.0 (50.0-50.0) 100.0 (100.0-100.0) 0.0 (0.0-0.0)
train test AF 50 yes 44.64 (44.64-44.64) 78.57 (78.57-78.57) 10.71 (10.71-10.71)
train test AF+NSR 108 no 72.0 (72.0-72.0) 0.0 (0.0-0.0) 100.0 (100.0-100.0)
train test AF+NSR 108 yes 70.0 (70.0-70.0) 0.0 (0.0-0.0) 97.22 (97.22-97.22)

train test AF 50 no 50.0 (50.0-50.0) 100.0 (100.0-100.0) 0.0 (0.0-0.0)
train test AF 50 yes 47.92 (47.58-48.26) 59.28 (57.72-60.83) 36.56 (34.8-38.32)
train test AF+NSR 108 no 72.0 (72.0-72.0) 0.0 (0.0-0.0) 100.0 (100.0-100.0)
train test AF+NSR 108 yes 69.67 (69.46-69.87) 5.81 (5.35-6.27) 94.5 (94.06-94.95)

Table 4.4: Reproduced results for SVM-30 model with variable C and γ. Results
are presented with 95% confidence interval.

Dataset Patient # ECG Norm. Accuracy (%) Sensitivity (%) Specificity (%)
train test

train test AF 50 no 50.0 (50.0-50.0) 100.0 (100.0-100.0) 0.0 (0.0-0.0)
train test AF 50 yes 47.92 (47.58-48.26) 59.28 (57.72-60.83) 36.56 (34.8-38.32)
train test AF+NSR 108 no 72.0 (72.0-72.0) 0.0 (0.0-0.0) 100.0 (100.0-100.0)
train test AF+NSR 108 yes 69.67 (69.46-69.87) 5.81 (5.35-6.27) 94.5 (94.06-94.95)

Table 4.5: Reproduced results for SVM-5 model. Results are presented with
95% confidence interval.

Dataset Windows Patient # ECG CV Accuracy (%) Sensitivity (%) Specificity (%)

train+test last AF 106 patients 53.17 (52.87-53.47) 56.89 (56.37-57.4) 50.91 (50.17-51.64)
train+test last AF+NSR 200 patients 72.33 (72.16-72.5) 10.06 (9.45-10.67) 94.79 (94.39-95.19)
train+test all AF 106 patients 62.84 (62.46-63.22) 61.33 (60.45-62.21) 64.39 (63.83-64.96)
train+test all AF+NSR 200 patients 74.45 (74.35-74.54) 17.95 (16.83-19.07) 94.82 (94.43-95.2)

Table 4.6: Reproduced results for KNN model with k=3. Results are presented
with 95% confidence interval.

Dataset Patient # ECGs CV Accuracy (%) Sensitivity (%) Specificity (%)

train AF 50 patients 58.11 (58.11-58.11) 60.61 (60.61-60.61) 55.61 (55.61-55.61)
train AF 50 recording 65.07 (65.01-65.13) 65.12 (65.03-65.2) 65.21 (65.13-65.28)
train AF+NSR 100 patients 69.58 (69.53-69.64) 33.34 (33.2-33.48) 82.06 (82.0-82.11)
train AF+NSR 100 recordings 75.62 (75.58-75.65) 40.80 (40.71-40.89) 87.44 (87.4-87.47)
train+test AF+NSR 200 patients 64.45 (64.41-64.48) 28.31 (28.22-28.39) 77.65 (77.6-77.69)
train+test AF+NSR 200 recordings 70.03 (70.01-70.06) 32.65 (32.59-32.72) 83.63 (83.6-83.66)
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Figure 4.4: Sensitivity and specificity for KNN with k=3 in the different scenar-
ios

Table 4.7: Comparison of reported results and reproduced results for AF onset
forecast

Reported Reproduced
Authors Sensitivity Specificity Sensitivity Specificity

Mohebbi et al. (2012) 96.30% 93.10% 59.28% 36.56%
Boon et al. (2018) 86.8% 88.7% 61.33% 64.39%
Narin et al. (2018) 92.0% 88.0% 65.12% 65.21%

4.2.4 Discussion

Published methodologies achieving overly optimistic and non-reproducible re-
sults may be the cause of rejection of ML methods by clinicians, as discussed
by Shah et al. (2022). We reviewed three publications proposing ML models for
AF onset forecast. We reproduced the methodologies presented in the publi-
cations. Our results did not correspond with those reported by the authors as
shown in Table 4.7, with large differences. The results also highlight the class
imbalance issue in this database, as the model is able to achieve a 72% accuracy
with a 0% sensitivity and a 100% specificity, meaning that the ML model was
not able to find useful information from the data. No AF episode has been
detected, as the model is always predicting recordings in the NSR class.

In addition, some methodological questions remain unanswered. We could
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not verify whether the same constraints were applied in the original method-
ologies regarding the cross-validation between patient. This could have pro-
duce a data leakage in the original publications. We did not receive answers
when we contacted the authors. In particular, we should know whether the
authors pre-processed or normalised the features before using them in the
model. Another question concerns the selection of data, as if only a subset
of the data was selected and used by the model, this could also help to explain
the differences between the results reported in the articles and those repro-
duced. Researchers are now proposing frameworks to help authors include
all the necessary material and methodological information to better reproduce
their work (Walsh et al. 2021). We think a good step forward would be to open
source the code created by the author to retrain the exact same model.

4.3 Evolution of the ECG before AF onset

This section examines the evolution of the waves, complexes and intervals that
make up the ECG heartbeats before the onset of AF. The aim is to understand
whether underlying patterns can be detected in the evolution of the ECG. Al-
though we were not able to reproduce the results presented in existing publi-
cations, some models showed both sensitivity and specificity of over 65% for
their predictions. These models were able to find useful information in the
HRV data for the prediction of recordings preceding AF onset. Based on these
results, we examined the evolution of HRV features and ECG waves, complexes
and intervals before AF onset to understand if we could observe an evolution
in the ECG signal.

4.3.1 Method

We used the IRIDIA-AF v2 database, as presented in Chapter 3. We selected all
the AF crisis onsets with 30 minutes of NSR before the AF onset of an AF lasting
at least 5 minutes, as originally proposed in the AFPDB. Baseline wander was
removed using a high-pass filter (Kher 2019; Makowski et al. 2021) and power
line interference were removed using a notch filter at 50 Hz. We checked the
recording to ensure that the ECG was not inverted and, if it was, the trace was
inverted along the y-axis QRS complexes and R peaks were detected using the
Pan-Tomkins algorithm (Pan et al. 1985).
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The selected NSR window is analysed using a 5-minute sliding window
with 30 second increments, as the conventional duration for short-term record-
ing analysis is 5 minutes (Task Force of The European Society of Cardiology
and The North American 1996; Shaffer et al. 2017). For each window, each
heartbeat is analysed separately, using the positions of the corresponding QRS
complex as anchor points to divide the sliding window into heartbeats. Invalid
measurements were excluded from the analysis. The onset, peak and offset of
the P wave were located in the 200 ms before the R peak, as the P-R interval
is typically 200 ms. The T wave was located in the 320 ms after the end of the
QRS complex (Feher 2012; Padsalgikar 2017). We detected the boundaries us-
ing signal processing and calculated the corresponding features for each wave
and complex.

For the P wave, we compute the wave duration, the amplitude and the total
area between the onset and offset. For the QRS complex, we computed the
duration, the amplitude, and area under the QRS complex. In addition, we
computed the same value for the R peak only. For the T wave, we computed
the duration, amplitude, and area between T wave onset and T wave offset.
We also compute the QT interval, RR interval, and TQ intervals. For the RR
interval and TQ interval, the duration is computed between the current beat
and the previous beat.

Finally, we plotted the features evolutions from -30 minutes, i.e. -1800 sec-
onds before AF to 0, i.e. the AF onset. We use the mean and 95% Confidence
Interval (CI) to represent each time window. Corrected QT intervals were calcu-
lated using Bazett Equation (4.1) (Bazett 1920; Taran et al. 1947). This correction
removes the effect of the heart rate on the QT duration, allowing the QT dura-
tion to be compared at different heart rates. We used the same equation for the
TQ interval correction in Equation (4.2) and for the P wave duration correction
in Equation (4.3).

QTc =
QT√
RR

(4.1)

TQc =
TQ√
RR

(4.2)

Pc =
P√
RR

(4.3)

As a second analysis, we studied the evolution of the HRV parameters. We
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selected 5-minute sliding windows with a step of 30 seconds. For each window
we detected the QRS complexes, created the RR interval series and calculated
the selected HRV features. In particular, we analysed the evolution of the mean
RR interval, Standard deviation of NN intervals (SDNN), RMSSD and pNN50
in the time domain features. For the frequency domain, we analysed the LF and
HF evolution. Finally, for Poincaré, we analysed SD1 and SD2. The complete
description of HRV features is available in Appendix A.

4.3.2 Results

ECG waves complexes and intervals

Among the 623 patients with AF, we identified 964 AF episodes that met the
selection criteria. This corresponds to AF in 521 patients in 570 recordings. The
results were grouped into Figure 4.5 for the P waves, Figure 4.6 for the QRS
complexes and R waves, Figure 4.7 for the T waves, Figure 4.8 for the QT and
TQ intervals and finally Figure 4.10 for the RR intervals and ectopic beats. The
T wave duration has a remarkably low confidence interval around the mean at
AF onset.

HRV features

The selected parameters were calculated from the corresponding 964 AF onsets:
mean RR, SDNN, RMSSD, pnn50, Poincaré SD1, Poincaré SD2, LF and HF. The
time domain characteristics are shown in Figure 4.13. We found that the mean
RR is decreasing, which corresponds to the results we previously obtained
for heart rate in Figure 4.12, i.e. an increasing heart rate means shorter RR
intervals. We found an increase in mean heart rate of 2 beats per minute just
before the onset of atrial fibrillation compared to 30 minutes before. Long-
term variability and short-term variability also increase before the onset of AF.
Long-term variability was measured mainly using SDNN and pNN50 and the
short-term variability using RMSSD. The LF results show an increasing trend,
but it should be noted that the range of confidence intervals increases in the
5 minutes before the onset of AF. In this period it is much larger than for the
other measures, between 5 minutes and 1 hour before AF.
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(a) P wave amplitude (b) P wave area

(c) P wave duration (d) P wave corrected duration

Figure 4.5: Evolution of P wave before AF onset. The analysis was performed
using a 5-minute sliding window and a step of 30 seconds. The main line
corresponds to the mean value of all selected windows. The 95% confidence
interval is displayed around the line. The baseline (black dotted line) represents
the average value of the features in the 2-hour period preceding the analysed
30-minute window.
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(a) QRS complex amplitude (b) R wave amplitude

(c) QRS complex area (d) R wave area

(e) QRS complex duration (f) R wave duration

Figure 4.6: Evolution of QRS complex and R wave before AF onset. The analy-
sis was performed using a 5-minute sliding window and a step of 30 seconds.
The main line corresponds to the mean value of all selected windows. The 95%
confidence interval is displayed around the line.
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(a) T wave amplitdude (b) T wave area

(c) T wave duration

Figure 4.7: Evolution of T wave before AF onset. The analysis was performed
using a 5-minute sliding window and a step of 30 seconds. The main line
corresponds to the mean value of all selected windows. The 95% confidence
interval is displayed around the line.



4.3. EVOLUTION OF THE ECG BEFORE AF ONSET 89

(a) QT interval duration (b) QTc interval duration

(c) TQ interval duration (d) TQc interval duration

(e) RR interval duration (f) QT-RR

Figure 4.8: Evolution of QT and TQ intervals before AF onset. The analysis
was performed using a 5-minute sliding window and a step of 30 seconds. The
main line corresponds to the mean value of all selected windows. The 95%
confidence interval is displayed around the line.
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Figure 4.9: Percentage of ectopic beats

Figure 4.10: Evolution of number of ectopic beats before AF onset. The analysis
was performed using a 5-minute sliding window and a step of 30 seconds. The
main line corresponds to the mean value of all selected windows. The 95%
confidence interval is displayed around the line.

Figure 4.11: Heart rate

Figure 4.12: Evolution of heart rate before AF onset. The analysis was per-
formed using a 5-minute sliding window and a step of 30 seconds. The main
line corresponds to the mean value of all selected windows. The 95% confi-
dence interval is displayed around the line.
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(a) Mean RR (b) SDNN

(c) RMSSD (d) pNN50

Figure 4.13: Evolution of HRV features before AF onset. The analysis was
performed using a 5-minute sliding window and a step of 30 seconds. The
main line corresponds to the mean value of all selected windows. The 95%
confidence interval is displayed around the line.
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(a) LF (b) HF

(c) Poincaré SD1 (d) Poincaré SD2

Figure 4.14: Evolution of HRV features before AF onset. The analysis was
performed using a 5-minute sliding window and a step of 30 seconds. The
main line corresponds to the mean value of all selected windows. The 95%
confidence interval is displayed around the line.
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4.3.3 Discussion

We found that there are moving trends in the ECG waves, complexes and inter-
vals as well as in the HRV parameters in the ECG windows preceding the AF
onset. The P wave evolves before the onset of AF, as shown in Figure 4.5. It was
previously shown that a relationship was found between AF risk and P wave
duration (Sebestyén et al. 2016; Hari et al. 2018). We found an increasing trend
for P-wave amplitude, area under the P-wave and P-wave corrected duration,
with final values above the baselines. Both area and amplitude start to increase
around 400 seconds before the onset of AF. The P-wave duration shows an in-
creasing trend line without a clear increase in the last minutes, similarly to the
other parameters. It has been shown that the P-wave duration is increased in
stroke patients compared to healthy patients (Dewland et al. 2013; Deschamps
et al. 2023).

Coumel et al. (1994) describe that any heart disease alters the QT dynamics
and Batchvarov et al. (2002) found that the QT-RR has a high inter-patient vari-
ability but a low intra-patient variability, i.e. a high stability. In Figure 4.8f we
found (i) that the QT-RR varies before this AF onset and (ii) that the increas-
ing trend is similar between all recordings, with values above the baseline. We
also observed an increase in high frequencies above the baseline, as we found
previously in the analysis of IRIDIA-AF v1 (Grégoire et al. 2022). This could
be related to an increase in Parasympathetic Nervous System (PNS) activity.

The development of ectopic beats before the onset of AF has previously
been studied by Vikman et al. (1999). We confirmed the findings of increasing
trends before the onset of AF, from 7% of the heartbeats to 10% of the heart-
beats. Waktare et al. (2001) also found that ectopic beats were more frequent
when they preceded an episode of AF. Premature Atrial Contraction (PAC) are
related to the trigger described in the Coumel triangle. The triangle defines
three components required for AF onset: a substrate, a modulator and finally a
trigger (Coumel 1994; Rebecchi et al. 2023). The substrate is the anatomical and
electrophysiological support that allows the arrhythmia to persist. The trigger
is the electrical element that is likely to cause the arrhythmia by activating the
arrhythmogenic substrate. Finally, the Autonomic Nervous System (ANS) acts
as a modulator and uses the first two factors by increasing the sensitivity of the
arrhythmogenic substrate, thereby facilitating the onset of the AF.



94 CHAPTER 4. ATRIAL FIBRILLATION ONSET FORECAST

4.4 Evolution of predictions before AF onset

Forecasting the onset of AF using ML is also a more complex task than detect-
ing AF. The idea is to detect whether there are signs of incoming AF in the NSR
that precede the onset of AF. As this has never been shown to be possible in real
life conditions, there is currently no developed treatment. We can think of sev-
eral research directions for the future of AF onset forecasting, one being a pill
in the pocket strategy if AF can be detected a few hours before its onset. Indeed,
the time required for a pill to take effect is not immediate. The other direction
could be the implementation of an effective overdrive algorithm in the Cardiac
Implantable Electronic Device (CIED), which could benefit from the results of
an initial AF onset prediction algorithm and be activated as a second step. The
last direction we can think of is stimulation of the parasympathetic and vagal
systems. We have shown that parasympathetic activity increases before the AF
onset. Stimulating it could reduce its activity and allow a return to a normal
state. (Kharbanda et al. 2022).

4.4.1 Materials and methods

As a first step in analysing the performance of ML models in forecasting AF, we
compared the performance of the model in a binary classification of windows
close to AF compared to windows distant from AF. In this experiment, we
examined the performance of the model when the windows defined as pre-AF
are moving away from AF onset.

Holter recordings in the IRIDIA-AF database can be divided into three cat-
egories: AF, pre-AF and inter-AF. AF crises start with the onset of AF and end
with the offset of AF. It should be noted that Holter monitoring recordings are
long-term recordings and do not always contain the beginning and end of each
crisis. For some AF crises, the AF onset happened before the start of Holter
monitoring. For other AF episodes, the AF offset happened after the end of
monitoring. Therefore, not all annotated AF crises in the database could be
used AF onset forecast.

The pre-AF is the selected window preceding the onset of AF. Pre-AF win-
dows were defined as 30-minute windows in the AFPBD database (Moody et
al. 2001a). We used a sliding 5-minute sub-window, because short-term HRV
measurements are usually based on 5-minute recordings. (Shaffer et al. 2017).
Inter-AF windows correspond the residual portion of the recordings that is
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neither AF nor pre-AF. Inter-AF are windows between AF episodes and are
defined as 30 minute windows separated by at least 2 hours from any AF sign
in the AFPBD database (Moody et al. 2001a). This distance to AF onset can be
selected as an additional parameter. If the post-NSR distance is greater than
the pre-AF window size, there is a gap between the NSR and pre-AF windows.

We created a dataset for AF onset forecast using IRIDIA-AF v2 database,
described in Chapter 3. Only patients with AF were included in the dataset,
and only AF crises lasting more than 5 minutes were selected. We selected
evolving pre-AF windows, starting with pre-AF windows just before the onset
of AF up to pre-AF windows 1 hour before the onset of AF.

We selected all distance from 0 up to 1 hour, i.e. just before the AF onset
to 1 hour before the AF onset. We used a step of 30 seconds, for a total of
120 selected distances. This is shown in Figure 4.15. For each distance, we
selected all windows between the selected distance d and 5 minutes after, i.e.
300 seconds corresponding to d − 300. We added an extension of 30 seconds,
as data augmentation, to allows the selection of additional windows for each
distance. Therefore, for each distance d, the windows are selected between
d and d − 300 − 30, with a duration of 300 and a step of 1. The selection of
window boundaries is presented in Table 4.8.

The dataset was balanced with randomly selected windows at least 2 hours
away from any AF signs before the start of the windows and 2 hours after the
end of the windows. For each distance, we created 10 datasets and for each
dataset we used a 10-fold cross validation at the patient level, for a total of 100
experiments per distance. IN total, it represents 12 000 experiments. We ensure
that each fold was composed of the same ratio of pre-AF and NSR windows.

As a first baseline model from the results we obtained on AF detection dur-
ing database validation, we chose to use a Random Forest (RF) model (Breiman
2001). A random forest is an ensemble learning method that fits a number of
decision tree classifiers and uses averaging of the individual predictions to im-
prove the global predictive accuracy of the model and control over-fitting. For
this experiment, we set the number of trees to 100, with a maximal depth of 10.

From each 5-minute window, we selected up to 300 corresponding RR inter-
vals. From the RR intervals, we compute HRV parameters from time-domains,
geometrical plots and frequency-domain. The complete feature input consists
of:

• time domain features: mean heart rate, SDNN, RMSSD, Standard Devia-
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Distances AF windows
Index Start End Index Start End

0 0 -329

w0 0 -300
w1 -1 -301
w2 -2 -302

. . .
w29 -29 -329

1 -30 -359
w0 -30 -360

. . .
w29 -59 -359

. . . . . .

119 -3570 -3900
w0 -3570 -3870

. . .
w29 -3599 -3899

Table 4.8: Selection of window boundaries for the evolution of prediction before
AF onset. For each experiments from 0 to

Figure 4.15: Selection of windows for AF onset forecast prediction evolution.
The Holter recording is divided into three types of windows: AF (red), pre-
AF (yellow) and inter-AF (green). We successively construct new datasets with
increasing pre-AF distance, starting from AF windows just before AF onset to
windows 1 hour before onset. Inter-AF windows are chosen to be 2 hours away
from any AF sign. Each dataset correspond to a pre-AF distance and is com-
posed of 5-minute pre-AF windows (yellow) and 5-minute inter-AF windows
(green).
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tion of Successive RR interval Differences (SDSD), CVNN, CVSD, pNN10,
pNN20, pNN50, minNN, maxNN, medianNN, prc20NN, prc80NN, Tri-
angular Interpolation of the NN interval histogram (TINN), and HRV
Triangular Index (HRVi);

• frequency domain features: total power, power LF band, power HF band,
their normalized values, and LF/HF ratio;

• Poincaré plot features: SD1, SD2, and SD1/SD2 ratio, Cardiac Sympa-
thetic Index (CSI), Cardiac Vagal Index (CVI) and CVI modified;

• Second Order Difference Plot (SODP) features: number of ∆RR in Q1 to
Q4, Central Tendency Measure (CTM)20, CTM50, and CTM100;

• Acceleration (AC), Deceleration (DC), AC modified, DC modified, ACk

and DCk;

• Heart Rate Fragmentation (HRF) features: Percentage of Inflection Points
(PIP), Inverse of the Average Length of the acceleration/deceleration Seg-
ments (IALS), Percentage of Short Segments (PSS), and Percentage of Al-
ternating Segments (PAS).

For each distance, the performance was evaluated using the Area Under
the Receiver Operating Characteristic Curve (AUROC) and the Area Under
the Precision-Recall Curve (AUPRC) for the binary classification between pre-
AF at distance d and NSR windows. We also evaluate the predictions using
threshold-based metrics, choosing a threshold of 0.5.

4.4.2 Results

Using the RF model with HRV features computed from the RR intervals, we
found that the model is able to make the distinction between pre-AF and NSR
windows. We also found a gradual increase in AUROC performance when
the pre-AF windows are closer to the AF onset, up to a performance of 0.714
AUROC (95% CI 0.692–0.735) and AUPRC 0.697 (95% CI 0.671–0.724). For the
evaluation 1 hour before the AF onset, the model achieved a lower perfor-
mance, with an AUROC of 0.562 (95% CI 0.539–0.586) and an AUPRC of 0.555
(95% CI 0.534–0.576). The complete results are presented in Appendix A in
Tables A.1 to A.3.
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Figure 4.16: Evolution of AUROC performance for balanced binary classifica-
tion between NSR windows close to AF and NSR windows distant from AF
using a gradient boosted tree model. Each point represent the AUROC mean
for a binary classification task between NSR windows at the distance d and
randomly selected NSR windows distant at 2h of any AF sign.

Using a threshold of 0.5, we observed the same trend for the following
metrics:

• accuracy increase from 53.6% (51.8–55.4) to 66.9% (65.0–68.8),

• sensitivity increase from 41.7% (38.5–44.8) to 63.6% (59.3–68.0),

• specificity from 65.5% (63.0–68.0) to 70.1% (66.6–73.6),

• PPV from 54.7% (52.4–57.0) to 68.1% (66.0–70.3),

• NPV from 52.9% (51.4–54.5) to 66.0% (63.6–68.5),

• and F1-score from 47.2% (44.6–49.9) to 65.6% (63.1–68.1).

4.5 Comparison of models for AF onset forecast

From the results in the previous section, we have shown that the sinus rhythm
before AF onset contains meaningful information about the oncoming AF on-
set. The ML model is able to identify this information and is able to distinguish
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NSR windows close to AF onset and NSR windows distant from any signs. In
the last years, DL model have shown their great capacity to generalize pre-
diction in various tasks, including medical ones (Hannun et al. 2019). In this
section, we compare the performance of various ML and DL models using
various inputs in the AF onset forecast task.

4.5.1 Materials and methods

Window selection

We selected all the recordings with AF from the IRIDIA-AF v2 database. In
those recordings, we selected all the AF onsets with at least 30 minutes of
NSR before the AF onset and AF crisis with a duration of at least 5 minutes.
From those selected onsets, we selected the 30 minutes of recordings before the
AF, as highlighted in yellow in Figure 4.17. For the NSR window selection,
if the 3 hours before the AF onset are in sinus rhythm, we selected the 30-
minute window between 2 hours and 2 hours 30 minutes before the AF onset,
as highlighted in green in Figure 4.17. If the NSR duration before the AF onset
is not sufficient, we search for another window in the recording with at least 1
hour of NSR before the window and 2 hours of NSR after the window.

The ECG data from the selected windows can be analysed in 4 different
ways. The most straightforward is the analysis of the raw ECG signal. The
ECG signal can then be decomposed, and the signal morphology analysed.
Next, the series of RR intervals can be analysed. Finally, the HRV parameters
can be calculated from the RR intervals and analysed. For each model, the
selected 30-minute windows are split into variables sub-window size. This
extends the data available for the training, but we should note that windows
closer to AF are contains more signs about the incoming AF onset, as discussed
in the previous section.

Other data augmentation techniques such as the random concatenation of
beats, ECG window squeezing or dilatation are proposed in the literature (Liu
et al. 2020). It can increase the diversity in the data set, but it disrupts the order
of the beats and the morphology of the signal. We decided to limit ourselves
to window slicing enhancement.

For all models, the dataset was divided into 10 folds using temporal cross-
validation. The 10 folds were used to evaluate each model, using AUROC and
AUPRC. For DL models, a validation set is also used during model training. In
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Figure 4.17: Window selection for AF onset forecast. The AF onset is located at
0 on the x-axis and is preceded by NSR and followed by AF (red). Two types
of windows are selected for the binary classification task of AF onset forecast:
pre-AF windows (yellow), which correspond to the 30-minute window preced-
ing the AF (red), and NSR windows (green), which correspond to 30-minute
window distant from at least 2 hours from any AF sign.
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this case, another split is used as validation. If a patient has multiple record-
ings, the date of the first recording is used and all recordings of the patient are
in the same split.

Models selection

We want to compare the performance of various ML and DL models using var-
ious inputs in the AF onset forecast task. We distinguish 4 classes of models,
grouped by their input type. The four input types are: (i) ECG, (ii) ECG mor-
phology, (iii) RR intervals, and (iv) HRV parameters. The ECG and RR intervals
are used by Deep Neural Network (DNN) models to create the predictions. The
ECG Morphology Variability (ECGMV) features and HRV features are used by
ML models to create the features. The relation between input types and their
use by the models is presented in Figure 4.18.

ECG model

The most straightforward input is the use of the ECG as is. We choose to use
two types of Convolutionnal Neural Network (CNN) models. The first model
is a CNN, with 3 blocks, where each block is composed of a convolution layer,
a batch normalization layer, and finally a max pooling layer. A ReLU activation
function is used between the batch normalization and the max pooling. The
final prediction is obtained by fully connected layer and a sigmoid function,
with the features from the CNN layers as input. The model is depicted in
Figure 4.19.

The second selected model is a deeper CNN with 9 blocks. Each block con-
sists of a convolution layer, followed by a batch normalisation, a second convo-
lution layer and a second batch normalisation. We added a shortcut connection
in the blocks to help the network propagate the features during the forward
pass and the gradient during the backward pass. This type of ResNet base net-
work is used in the literature for AF risk identification, as in the research from
Attia et al. (2019a). The model is described in Figure 4.20.

Baseline wander was removed using a high-pass filter (Kher 2019;
Makowski et al. 2021) and power line interference were removed using a notch
filter at 50 Hz. We checked the recording to ensure that the ECG was not
inverted and, if it was, the trace was inverted along the y-axis. As the full
30-minute window could not be used by the model, we selected 3 sub-window
input sizes: 10 seconds, 30 seconds and 60 seconds. The sampling rate of the
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Figure 4.19: Selected architecture of the CNN model

(a) Selected architecture of the ResNet model

(b) Block* (c) Block

Figure 4.20: Architecture of the CNN model used for AF identification. The
model architect (a) is composed of an input block, followed by 9 blocks and a
final classification. The 9 blocks are divided into 3 groups, where the first block
is a Block* (b) and the next two are Blocks (c).
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signal is 200 Hz, therefore the input window size is 2000 for the 10-second
window, 6000 for the 30-second window and 12000 for the 60-second window.

For the two models, we use a batch size of 32 and an initial learning rate of
10−5. We used the binary cross entropy loss function and the model weights
were optimised using Adam (Kingma et al. 2017). A total of 100 epochs were
allowed for each fold, with an early stopping after 5 epochs if the performance
of the model did not improve on the validation split. The same validation set is
used to reduce the learning rate after 2 epochs if no improvement is observed.
The model is built in PyTorch (Paszke et al. 2019).

ECG morphology based model

As a second type of input, ECGMV was used to analyse the recordings. QRS
complexes are detected and individual beats are analysed to find the P wave
onset, peak and offset, Q, R and S peaks, R onset and R offset, S peak and
finally T onset, peak and offset.

Using these points of interest in the signal, we computed multiple features
and intervals as follows. For the P wave, QRS complex, R wave and T wave, we
calculated the duration, amplitude and area. The QT, TQ and RR intervals were
calculated. Corrected intervals were calculated using the RR interval duration.
The corrected intervals are QTc and TQc. The corrected P-wave duration was
also calculated. Using the 18 features for all beats, we calculated the mean,
median, first quartile, third quartile and standard deviation. Finally, we also
included the heart rate, PAC count and PAC percentage in each window. In to-
tal, 92 features were computed for each window. Additionally, we studied the
pairwise correlations between these 92 features using the Spearman correlation
coefficient. We found that some features were highly correlation, with a coeffi-
cient above 0.9. The complete correlation matrix is available in Appendix A in
Figure A.12.

Two ML models were trained and tested: RF (Breiman 2001) and XGBoost
(XGB) (Chen et al. 2016). Like RF, XGB uses ensemble decision trees, but with
boosted decision trees. This is an ensemble learning technique in which de-
cision trees are sequentially added to correct the errors of previous models to
achieve high predictive accuracy. For both models, we set the number of trees
to 200 and the maximum depth of the trees to 10. As we found that some
features were highly correlated, both models were trained on the full dataset
and on a selected dataset in which one feature from each highly correlated pair
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Figure 4.21: Architecture of the CNN-RNN model used for AF identification

was removed from the dataset. The high correlation was defined as an absolute
correlation value above 0.9. The feature selection was computed on the training
set and used to select the features available in the test set.

RR intervals model

Using the detected QRS complexes we construct the RR interval series. This
series can be used as input for a DL model. We trained 3 models using an
input window size of 300 RR. The first two models are CNN with a similar
architecture to those used for the ECG signal: a simple CNN and a ResNet-
based model. We also tested the performance of a CNN-RNN used in our
previous work (Gilon et al. 2020). The three models were implemented using
PyTorch.

We used a batch size of 32 and an initial learning rate of 10−5. We used
the binary cross entropy loss function and Adam as the optimisation algorithm
(Kingma et al. 2017). A total of 100 epochs were allowed for each fold, with
an early termination after 5 epochs if the performance of the model did not
improve on the validation split. If no improvement was observed after 2 suc-
cessive epochs, the learning rate was divided by 2.

The CNN-RNN model is presented in Figure 4.21. The first two convo-
lutional layers are used to create features. ReLU layers are used after each
convolution. Next, a GRU receives its inputs from the CNN. We used a bidi-
rectional layer to create features in both directions in the time series: from start
to end and from end to start. The features are flattened and the final prediction
is computed using a fully connected layer and a sigmoid.
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RR intervals recurrence plot model

Gavidia et al. (2023) proposed a new approach using recurrence plots con-
structed from RR intervals, described in Section 2.2.5. We used a methodology
similar to the one proposed in the publication. We used a 60-second window
to find the QRS complex and generate the RR interval series, with a 30 seconds
overlap between windows. From the RR intervals, we created the recurrence
plot using the following parameters: an embedding size of 3 and a lag of 2.
The recurrence plot was expanded to an image size of 224×224.

We used a CNN model to classify the images. We reproduce the EfficientNet
based model as proposed by Tan et al. (2021). This model is based on using
uniform scaling of all widths and depths of the convolution.

In the methodology described by Gavidia et al. (2023), a CNN model was
used for the classification of recurrence plots. Specifically, we reproduced the
model based on EfficientNet. This architecture has been proposed as an effi-
cient alternative to other CNN architectures. In this case the width, depth and
resolution of the network are scaled uniformly. This approach allows the model
to achieve better performance while being computationally efficient compared
to other architectures. In the original paper by Tan et al. (2021), they achieved
better performance on a benchmark database while using a smaller architecture
and therefore faster training time.

Compared to the other DL models used in this work, this model uses a
2D input of size 224×224, rather than a 1D input. As with the model using
raw RR intervals, a total of 100 epochs were used for each fold, with an early
stopping after 5 epochs if the performance of the model did not improve on
the validation split. The same validation performance is used to reduce the
learning rate after 2 epochs if no improvement is observed. The batch size was
32. The model is implemented using Keras (Chollet et al. 2015) and TensorFlow
(Abadi et al. 2016).

HRV models

The final class of models are those that use HRV features. We use features
from the time domain, geometric plots and the frequency domain as defined
in Section 4.4.1. As for ECGMV features, we studied the pairwise correlations
between these features using the Spearman correlation coefficient. We found
that some features were highly correlation, with a coefficient above 0.9. The
complete correlation matrix is available in Appendix A in Figure A.11.
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We compared two ML ensemble decision tree models: Random Forest and
XGBoost. The models were using 200 trees with a maximal depth of 10. We
compared 4 sub-window sizes: 60 seconds as suggested by Levasseur et al.
(2022), 85 seconds as suggested by Kisohara et al. (2020), 5 minutes and the
complete 30 minutes. As for the ECGMV features, we found that some fea-
tures were highly correlated. We applied the same method for both models
using HRV. The models were trained on the full dataset and on a selected
dataset in which one feature from each highly correlated pair was removed
from the dataset. The high correlation was defined as an absolute correlation
value above 0.9. The feature selection was computed on the training set and
used to select the features available in the test set.

4.5.2 Results

From the 623 recordings with annotated AF onset, we selected the 900 AF
onsets with at least 5 minutes of AF and 30 minutes of NSR before AF onset
in the same file. The remaining 64 AF onsets with at least 5 minutes of AF
and at least 30 minutes of NSR before AF onset were excluded because the
NSR window overlapped on two recording days and therefore included the
calibration phase. Of these, 538 AF onsets had 3 hours of NSR before AF
onset, and 301 NSR windows were selected elsewhere in the recordings. For 61
recordings, we could not find an NSR window that met the criteria.

The benchmark is presented in Table 4.9 for the full-window models, Ta-
ble 4.10 for the window-level evaluation and Table 4.11 for the record-level
evaluation. The window-level evaluation compares the model to individual
sub-windows of the 30-minute window. The record level evaluation averages
all predictions from all sub-windows into a single evaluation for each record-
ing. The threshold-based metrics for the two models with the best average
metrics are shown in Tables A.5 and A.6.

Overall, the best average results were obtained by the XGB model using
HRV parameters from the full 30-minute windows, with an AUROC of 0.643
and an AUPRC of 0.634. It should be noted that the confidence intervals with
the RF model using HRV overlap to a large extent. We also found that using a
selected feature set in which the correlation between features was used did not
improve the results obtained by the models.

Using a threshold of 0.5, the predictions across all folds have an accuracy
of 0.608, a sensitivity of 0.706, a specificity of 0.504, a Positive Predictive Value
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(PPV) of 0.604, a Negative Predictive Value (NPV) of 0.615 and an F1 score of
0.651. If we choose a threshold of 0.3, the sensitivity increases to 0.933 but at
the cost of a lower specificity of 0.175. The results with different thresholds
between 0 and 1 are shown in the Table A.4 of the Appendix A. In the context
of clinical practice, thresholds should be chosen individually for each patient
based on their previous recordings. However, further testing of the validity of
the threshold should be performed as the threshold should be chosen using a
validation set to understand if the previous recordings are sufficient to allow
the correct choice of threshold.

When analysing the results of the models using smaller windows, the RF
using ECGMV achieved the best average AUROC performance of 0.579 and an
AUPRC of 0.577 when evaluated at the window level. The confidence inter-
vals were computed using the test metrics for each test set over the 10 folds.
The best average performance was achieved by the CNN using RR intervals
when comparing AUPRC, as the CNN achieved 0.585. When evaluated at the
recording level, the best average performance for both AUROC and AUPRC
was achieved by the CNN model, with an AUROC of 0.604 and an AUPRC of
0.595. The confidence intervals of the results overlap to a large extent.

To understand whether the models using the full 30-minute window were
statistically significantly better, we compute the pairwise p-value for both AU-
ROC and AUPRC using Mann-Whitney U test. The p-values were computed
between these four models and the CNN, which achieved the best average in
the benchmark. The results are shown in Table 4.12. We found that except
for the AUPRC results between the XGB model using the HRV features from
the 30-minute window and the CNN using 300 RR intervals, all the p-values
were above 0.05 and therefore the difference in AUROC and AUPRC was not
statistically significant.

4.5.3 Predictions analysis

Following these results, we studied the evolution of the prediction over a com-
plete 24-hour Holter monitoring. For each patient, we retrained a new XGB
model on the entire database, except for the patient which is used for testing.
The model used 200 trees with a maximum depth of 10. As Holter monitoring
consists of AF and NSR periods, the model was trained on labels composed of
NSR windows and AF windows. The pre-AF windows were assigned the same
label as the AF windows.
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Table 4.9: Model performance benchmark for 10-fold cross-validation with a
balanced dataset of 30-minute windows. The models use the full 30 minutes.
For each model, we tested two types of input dataset: (i) a full dataset contain-
ing all the features and (ii) a selected dataset in which one features from each
highly correlated feature pair was removed.

Input Model Input size Features AUROC AUPRC

HRV

RF 30 min all 0.640 (0.608-0.671) 0.631 (0.599-0.662)
RF 30 min selected 0.627 (0.595-0.659) 0.615 (0.579-0.652)
XGB 30 min all 0.643 (0.609-0.677) 0.634 (0.594-0.674)
XGB 30 min selected 0.617 (0.589-0.645) 0.610 (0.575-0.646)

ECGMV

RF 30 min all 0.627 (0.591-0.663) 0.600 (0.565-0.635)
RF 30 min selected 0.616 (0.576-0.656) 0.603 (0.559-0.646)
XGB 30 min all 0.625 (0.591-0.659) 0.603 (0.562-0.643)
XGB 30 min selected 0.621 (0.584-0.659) 0.606 (0.565-0.647)

For training, we selected a 60-minute NSR window, 15-minute pre-AF win-
dows and a 10-minute AF window from the onset of the AF crisis, with at least
60 minutes of NSR before the onset of AF and at least 10 minutes of AF. The
problem is formulated as a binary classification, with the NSR window as the
negative class and the pre-AF and AF windows as the positive class. The XGB
model using HRV was chosen as it performed best with the full windows in
the previous section and is faster to train than the CNN model, as a new model
has to be trained for each patient.

Model predictions are made using a sliding window. This is done by mov-
ing a window of fixed size across the entire recording to average the perfor-
mance of the model over each window of a recording. This is equivalent to a
sequential testing on the entire recording. The predictions were then evaluated
visually, as shown in Figure 4.22. We found that for some recordings the model
reacts as expected: for the majority of the recording the prediction value is low,
then before the onset of AF the prediction values increase up to the arbitrary
selected threshold of 0.5. During the AF crisis, the predicted values increase
again and exceed the second arbitrarily chosen threshold of 0.75. As for the
benchmark, the choice of threshold will be most important if the model is to be
used in a clinical setting. This threshold should be chosen from the previous
recording of the patient to determine the best value based on the medical deci-
sion to aim for a high detection rate of episodes and a high risk of false alarms
or a lower detection rate and a lower risk of false alarms but an increased risk
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Table 4.10: Model performance comparison for 10-fold cross-validation with a
balanced data set of 30-minute windows. Models are evaluated at the window
level.

Input Model Input size AUROC AUPRC

HRV RF
60 s 0.567 (0.535-0.598) 0.571 (0.539-0.603)
85 s 0.572 (0.540-0.604) 0.575 (0.543-0.607)
5 min 0.570 (0.535-0.605) 0.573 (0.545-0.602)

HRV XGB
60 s 0.558 (0.527-0.590) 0.567 (0.533-0.601)
85 s 0.563 (0.531-0.595) 0.569 (0.536-0.603)
5 min 0.559 (0.527-0.591) 0.567 (0.540-0.595)

RR
CNN-RNN 300 RR 0.563 (0.540-0.586) 0.577 (0.555-0.599)
CNN 300 RR 0.574 (0.553-0.595) 0.585 (0.559-0.611)
ResNet 300 RR 0.545 (0.526-0.563) 0.567 (0.543-0.592)

RR RP EfficientNet 60 s 0.553 (0.533-0.574) 0.565 (0.543-0.587)

ECGMV RF
60 s 0.567 (0.539-0.594) 0.572 (0.538-0.606)
85 s 0.573 (0.546-0.599) 0.575 (0.544-0.607)
5 min 0.579 (0.552-0.606) 0.577 (0.543-0.611)

ECGMV XGB
60 s 0.565 (0.533-0.596) 0.569 (0.529-0.608)
85 s 0.560 (0.531-0.589) 0.569 (0.531-0.606)
5 min 0.565 (0.537-0.592) 0.566 (0.533-0.599)

ECG CNN
10 s 0.541 (0.527-0.555) 0.545 (0.533-0.557)
30 s 0.534 (0.521-0.547) 0.540 (0.527-0.552)
60 s 0.528 (0.516-0.539) 0.534 (0.523-0.545)

ECG ResNet
10 s 0.522 (0.504-0.540) 0.533 (0.517-0.550)
30 s 0.543 (0.516-0.570) 0.554 (0.520-0.589)
60 s 0.541 (0.513-0.569) 0.551 (0.512-0.590)
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Table 4.11: Model performance comparison for 10-fold cross-validation using a
balanced dataset of 30-minute windows. Models are evaluated at the episode
level using the mean prediction aggregated across all windows.

Input Model Input size AUROC AUPRC

HRV RF
60 s 0.591 (0.548-0.635) 0.589 (0.547-0.631)
85 s 0.597 (0.555-0.639) 0.593 (0.551-0.635)
5 min 0.585 (0.543-0.628) 0.581 (0.543-0.619)

HRV XGB
60 s 0.589 (0.543-0.635) 0.593 (0.546-0.640)
85 s 0.594 (0.548-0.640) 0.593 (0.546-0.640)
5 min 0.580 (0.538-0.622) 0.578 (0.541-0.615)

RR
CNN-RNN 300 RR 0.597 (0.559-0.636) 0.592 (0.559-0.626)
CNN 300 RR 0.604 (0.582-0.625) 0.595 (0.569-0.622)
ResNet 300 RR 0.591 (0.553-0.629) 0.593 (0.557-0.628)

RR RP EfficientNet 60 s 0.588 (0.559-0.618) 0.589 (0.560-0.617)

ECGMV RF
60 s 0.583 (0.547-0.618) 0.584 (0.545-0.623)
85 s 0.590 (0.557-0.623) 0.587 (0.551-0.623)
5 min 0.589 (0.557-0.621) 0.585 (0.547-0.623)

ECGMV XGB
60 s 0.583 (0.542-0.624) 0.585 (0.538-0.631)
85 s 0.577 (0.538-0.616) 0.581 (0.538-0.623)
5 min 0.577 (0.544-0.610) 0.576 (0.541-0.611)

ECG CNN
10 s 0.563 (0.540-0.586) 0.565 (0.547-0.584)
30 s 0.558 (0.535-0.581) 0.565 (0.548-0.582)
60 s 0.543 (0.522-0.564) 0.551 (0.536-0.566)

ECG ResNet
10 s 0.529 (0.508-0.549) 0.539 (0.518-0.559)
30 s 0.550 (0.521-0.579) 0.561 (0.523-0.598)
60 s 0.546 (0.515-0.577) 0.554 (0.515-0.594)
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Model A Model B p-value
Input Model Size Input Model Size AUROC AUPRC

HRV RF 30 min HRV XGB 30 min 0.791 0.677
HRV RF 30 min ECGMV RF 30 min 0.520 0.185
HRV XGB 30 min ECGMV XGB 30 min 0.344 0.384
HRV RF 30 min RR CNN 300 RR 0.075 0.088
HRV XGB 30 min RR CNN 300 RR 0.064 0.045

Table 4.12: P-value between models using the full 30-minute window and the
CNN which obtained the best average AUROC and AUPRC in the model com-
parison benchmark.

of missing the first AF.

It should be noted that this was not the case for all recordings. For some
recordings the predictions contained primarily false alarms, while for others
the predicted values did not respond at all during the pre-AF windows. We
found no differences in the signals examined that could visually explain the
differences in prediction.

It should also be noted that the choice of individual thresholds is central to
the performance of the model when assessing performance using the threshold
base metrics. In practice, these thresholds should be chosen in consultation
with medical professionals to enable the best therapeutic strategy for the pa-
tient. In addition, machine learning based methods could guide the choice of
these thresholds by assessing the level of risk for a patient. The analysis of
model performance using different thresholds should be further analysed in
future work.

4.6 Discussion

In this study, we found that an ML model is able to detect changes in the
sinus rhythm ECG before the onset of AF. We first examined the evolution
of ECG and HRV before the onset of AF. We found that both the ECG and
HRV varied significantly before the onset of AF. Some parameters increase and
others decrease, but changes are observed in most parameters.

We then showed that the closer the prediction is to the onset of AF, the
better the prediction performance of the ML model. This correlates with the
results obtained for ECG and HRV evolution, as predictions are better closer to
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(a) Prediction on the complete 24-hour recording using XGB model with HRV features
computed on a 5-minute sliding window

(b) Focus on the AF crisis

Figure 4.22: AF onset forecast prediction on the recording 589 from IRIDIA-AF
v2. The model use a 5-minute sliding window and the prediction are concate-
nated over the whole recording. For (a) and (b), the first row correspond to the
raw ECG of the patient, i.e. the input. The second row correspond to the raw
prediction of the model, i.e. the concatenation prediction of all windows. The
third row corresponds to the decision based on the two threshold: green means
(NSR), yellow is the first warning (pre-AF), red is the second warning (AF).



114 CHAPTER 4. ATRIAL FIBRILLATION ONSET FORECAST

AF onset.
In the benchmarking process to compare the performance of the models,

we first compare the performance of two ML models using HRV features and
two ML models using ECGMV. The HRV features and ECGMV features were
computed on the full 30-minute window. The best performance was achieved
by the XGB model using HRV features with an AUROC of 0.640 (0.608-0.671)
and an AUPRC of 0.631 (0.599-0.662). The results of this model were almost
identical to the performance of the RF model. Both models with HRV features
performed better than the two models with ECGMV features.

The features ranking for both the random forest and XGBoost models are
compared for each of the 10-fold and then ranked across the folds. For the
RF model, the feature importance is computed using the average decrease in
impurity resulting from splitting a node using that feature across all decision
trees in the forest (Breiman et al. 1984). For the XGBoost model, feature impor-
tance is computed using a gain, which corresponds to the sum of the weighted
feature contributions from each node split in all decision trees in the forest
(Chen et al. 2016). While both impurity reduction and gain are measures of
improvement in model performance, they are computed differently. Impurity
reduction focuses more on the purity of subsets within decision trees, while
gain focuses more on the overall improvement in prediction accuracy across
the ensemble of trees in boosting algorithms. However, in both cases, lower
impurity and higher gain indicate better model performance.

The 5 features achieving the highest mean rank across the 10 folds are
shown in Figure 4.23 and the box plots are shown in Appendix A in Fig-
ure A.13. For both models, the top 3 features are the CVSD, the Central Ten-
dency Measure (CTM)100 in the Second Order Difference Plot (SODP) and the
CVNN. The CVSD corresponds to the short-term variability and the CVNN to
the long-term variability. For the pre-AF windows, the mean RMSSD is higher
and the mean RR is lower, hence the CVSD is higher. The same is true for
the CVNN, as the SDNN is higher for the pre-AF windows. In both cases, the
pre-AF windows have higher variability and a lower mean RR, which means
that the heart rate is increasing towards AF. The CVNN was previously used as
a single feature for AF detection by (Tateno et al. 2001) and is used by Gavidia
et al. (2023) as a threshold for the selection of pre-AF windows.

The CTM100 is lower for pre-AF windows, further supporting the idea that
short-term variability is higher during pre-AF windows. The next two features
are different between the two models: the RF use the minimum RR and the
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pnn50 the most, and the XGB use the HF and the SODP CTM20. An increase in
HF activity has been shown in Figure 4.14b and corresponds to an increase in
PNS activity. SODP CTM20 and pnn50 also indicate an increase in short-term
variability. Finally, the minimum RR value is lower for the pre-AF windows,
which correlate with the increase in Heart Rate (HR).

The top 5 ECGMV features across the 10-folds for the RF and XGB are
shown in Figure 4.23 and box plots are shown in Appendix A in Figure A.14.
For both models, the percentage of ectopic beats is the most meaningful feature
over the 10-fold range. Both models use the standard deviation of the RR, i.e.
the SDNN in HRV analysis, which correlates with the CVNN as discussed for
the previous models. The minimum values of TQ interval and TQc interval
are both lower for pre-AF windows. The TQ interval encapsulates the P wave,
which has been shown to increase in duration as AF approaches. The decrease
in TQ may therefore be more related to the heartbeats being closer together and
therefore the increase in HR, rather than the change in P wave. In addition, we
measured the changes in the T-P segment from the end of the T wave to the
beginning of the P wave and found that the duration of the segment decreases
before the onset of AF, as shown in Figure 4.24. Comparing the distribution,
we found that the T-P segments are shorter for pre-AF windows compared to
NSR windows.

After evaluating the four models using features from the full 30-minute
window, we evaluate the models using shorter windows. It should be noted
that this benchmark has been constructed with an emphasis on testing a larger
number of models and inputs more broadly, rather than deep optimisation and
hyper-parameter search for a single specific model.

Interestingly, models based on RR and HRV outperformed those using ECG
and ECGMV. Furthermore, DL models using the raw ECG as an input achieved
the lowest overall scores. Using the same CNN architecture with RR or ECG
as input, a 4% difference in AUROC and a 3% difference in AUPRC were ob-
served. The initial experiments used ML models with HRV features as the
first baseline, and it was expected that using the full ECG would improve per-
formance. However, this hypothesis proved to be incorrect. In addition, the
P-wave features were in the lower part of the ranking when analysing the full
ECG-MV ranking. This also suggests that the meaningful information is con-
tained in short-term and long-term variability, such as RR intervals and HRV,
rather than in P-wave variability. Another hypothesis is that detection of the
QRS complex is more robust than detection of other waves on a Holter. The
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(a) HRV - Random Forest (b) HRV - XGBoost

(c) ECGMV - Random Forest (d) ECGMV - XGBoost

Figure 4.23: Comparison of top ranked features. HRV features used by Random
Forest (a) and XBGoost (b) and ECGMV features used by Random Forest (c)
and XGBoost (d)
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(a) Evolution of T-P interval
(b) Comparison of pre-AF and NSR mini-
mum T-P interval

Figure 4.24: T-P interval before AF onset

recording lasts for 24 hours and, despite the cleaning of the signal, it still con-
tains a lot of noise. QRS complexes are therefore more representative of the
heart rhythm than the full ECG. Further research into reducing the noise in
Holter monitorings could improve the performance of DNN models.

In the context of medical applications, the choice of threshold values is
not straightforward when moving from area-based metrics to threshold-based
metrics and making clinical decisions. A lower sensitivity may miss episodes
and a lower specificity AF may give false alarms. In this case, we could aim for
higher sensitivity to predict all episodes, but with a required continuous time
above the threshold before triggering an alarm to limit false alarms. However,
the current level of performance is not yet sufficient for practical use in clinical
practice.

These results also allow us to consider the direction of application of these
models. Indeed, if the models that perform best are also those that require
the least resources, it is possible to consider implementing them in the car-
diac implantable electrical devices. The development of the database and the
evaluation of different models and inputs were necessary to reach this conclu-
sion. The input requirements are also lower: if the full ECG is not needed,
PhotoPlethysmoGraphy (PPG) could be sufficient to capture the changes in
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variability, as proposed by Guo et al. (2021) and Gruwez et al. (2023b). In this
work, the authors were able to identify an AF signature in sinus rhythm using
the PPG signal.

Studies have shown that flecainide can be used as an antiarrhythmic drug
for recovery from AF to sinus rhythm (Echt et al. 2020). Pill-In-The-Pocket
(PITP) strategies have been studied as a solution for AF (Reiffel et al. 2023).
If we can achieve performance as in the predictive evaluation in Figure 4.22,
where the model starts to react 1 to 2 hours before AF onset, the use of PITP
for AF management is achievable. Further research is needed to address the
variations in problem definition, such as binary versus ternary classification
and class balanced versus unbalanced settings, as these may more closely re-
flect real-world AF scenarios.

4.7 Summary

In this chapter, we investigated the performance of ML models for forecasting
AF onset. First, we reproduced the three methodologies described in the liter-
ature to understand if the results could be reproduced. We were not able to
reproduce the results obtained with the described methodology and variations.

Then, using the new database created and presented in the Chapter 3, we
studied the evolution of ECG waves, ECG intervals and HRV parameters before
the onset of AF. We found significant variations in several parameters of both
ECG and HRV before the onset of AF, reinforcing the fact that changes in the
ECG and heart rhythm occur before the onset of AF. Building on these results,
we investigated the evolution of the predictive performance of an ML model
when comparing NSR windows close to AF and NSR windows far from AF.
We varied the distance between the pre-AF and AF onset windows and found
that performance increased when the pre-AF windows were closer to AF onset,
with the highest scores of 0.714 AUROC and 0.697 AUPRC.

We compared the performance of different ML and DL models using dif-
ferent inputs such as ECG, ECGMV, RR and HRV. We found that models using
RR and HRV performed better than models using ECG. This highlights the fact
that most of the information for predicting the onset of AF is contained in the
variability of the heart rate. This could also be related to the fact that even if we
increase the size of our database, there is still not enough data available for DL
training, or that this data, although selected, still contains too much noise to
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be used in its raw state. The best models were the XGBoost models using HRV
parameters with an AUROC of 0.643 and an AUPRC of 0.634. We analysed the
key features used by the model and found that short-term variability features
were the most important.

Finally, we tested the performance of this model on 24-hour recordings. We
visually analysed the prediction and found that for some recordings the pre-
dictions were perfectly accurate, i.e. predicting NSR for most of the recording,
starting to increase the risk score 1 hour before AF onset and correctly pre-
dicting AF. We also found that the models under-predicted and over-predicted
multiple AF events, with recordings containing AF alarms for the entire record-
ing and recordings where the model did not detect any AF events. These results
correlate with our benchmark results comparing the four classes of models. It
supports the view that these models are not yet ready for practical clinical use
in predicting the onset of AF.





Chapter 5

Paroxysmal atrial fibrillation risk
identification during sinus rhythm

5.1 Introduction

Atrial Fibrillation (AF) patients have an increased risk of ischaemic stroke.
Early detection enables the disease to be treated with anticoagulant therapy
or rhythm control therapy (Svennberg et al. 2021; Kirchhof et al. 2023). Risk
scores such as CHARGE-AF (Alonso et al. 2013) or the HARMS2-AF (Segan
et al. 2023) are used for AF screening, i.e. the prediction of the individual risk
of AF in the global population. Other related scores, as the CHA2DS2-VASc
(Lip et al. 2010) are used to predict the individual risk of stroke.

In medical practice, a high risk score is not sufficient to establish the diag-
nosis of AF. This diagnosis requires Electrocardiogram (ECG) documentation,
which includes either a standard 12-lead ECG or a 30-second single-lead ECG
with no detectable P waves and irregular RR intervals (Hindricks et al. 2021).
For AF screening, long-term ECG, such as Holter monitoring, is used to record
heartbeats over a longer period of 24 hours to a week. This is because longer
recordings are more likely to capture the required 30-second AF crisis sample.

Although no clinical application has yet been developed, recent research re-
sults suggest that Machine Learning (ML) can reliably identity the presence of
an AF electrocardiographic signature in Normal Sinus Rhythm (NSR) ECG (At-
tia et al. 2019a). This identification is made weeks before the first recorded AF
event, without using the medical parameters of the patient. The results of stud-
ies, presented in the Chapter 2, are obtained from Deep Learning (DL) models
analysing 12-lead 10-second ECG. However, even if we can better identify pa-
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tients at risk, preventive treatments other than improved screening, lifestyle
changes and dietary measures are not obvious because we do not know how
many days, weeks or months it will take for AF to develop. Identifying short-
term risk, within a window of less than a day, could make it possible to develop
predictive models for paroxysmal AF. An efficient model for short-term predic-
tion of AF may prove to be an effective prevention tool for initiating preventive
measures. This may allow screening methods to be optimised, thereby reduc-
ing the workload of cardiologists. These preventive measures may also include
changes in the patient lifestyle and, with a longer-term vision, open up new
avenues of treatment research, such as the use of a Pill-In-The-Pocket (PITP)
strategy (Reiffel et al. 2023).

In this chapter, we investigate the performance of ML models and DL mod-
els to identify the risk of AF. For this, we evaluate the model performance to
identify the AF signature in the first hour of NSR from 24-hour ECG Holter
monitorings, where AF can be found in the next hours of the recording. We
compare these recordings with recordings from NSR patients, i.e. patients with
no signs of AF or other cardiac diseases in the recording.

5.2 Materials and method

The state-of-the-art methods presented in the literature use DL models trained
to detect AF in 12-lead ECG. Unfortunately, the different databases used are
not publicly available. Therefore, we constructed a new database of Holter
monitorings composed of records from AF patients and NSR patients. This
database, IRIDIA-AF v2, is presented in depth in Chapter 3. IRIDIA-AF v2 is
the results of a retrospective multicentre study. The database is composed of
recordings from 4 centres: 3 hospitals and 1 outpatient clinic. The 4 centres
used 2-lead Microport Spiderview digital recorders, with a recording sample
rate of 200 Hz. The recordings last between 24 and 96 hours.

We reviewed all available recordings and selected recordings according to
the following inclusion criteria. For patients with AF, the patient should be 35
years or older. In addition, the selected recordings should contain at least one
crisis of paroxysmal AF. We excluded Cardiac Implantable Electronic Device
(CIED) patients and recordings with persistent and permanent AF or other
heart diseases. Automated analysis was performed using Microport Synescope
version 3.30a software. Automatic correction of the recording was performed to
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label the ECG complexes and to eliminate artefacts, under and over detection
of complexes by the Synescope software. For NSR patients, we selected all
patients in the database.

All selected AF recordings were analysed to determine the exact beginning
and end of each paroxysmal AF episode and the corresponding complexes.
This allows a precise analysis of the transition from NSR to AF episodes. Each
recording contains both NSR and one or more AF episodes. We selected pa-
tients with AF episodes lasting more than 30 seconds and recordings without
evidence of AF or other heart disease from patients without CIED. These pa-
tients and their recordings are referred to as NSR.

5.2.1 Recordings selection

From the recordings of AF patients in the database, we select the first hour
for those with no evidence of AF in the first two hours of the recordings and
presence of AF in the next 22 hours. The first 10 minutes were skipped to
remove any noise caused by the start of the recording. For recordings spanning
more than one day, the second and subsequent days were only selected if the
last hour of the previous day did not contain AF and the first two hours did
not contain signs of AF.

For NSR recordings, we select the first hour of the recording. To increase
the data available for model training and to increase the variability of the data
of healthy patients, we include the 12th hour, which is the hour in the middle
of the recording. The Figure 5.1 summarises the selection of windows for both
AF and NSR patients.

5.2.2 Models comparison using temporal cross validation

ECG-based models

We compared the performance of several models using cross-validation. The
first model is a Deep Neural Network (DNN), we implemented a 1-dimensional
ResNet Convolutionnal Neural Network (CNN) using PyTorch (Paszke et al.
2019). This kind of model is used in several state-of-the-art studies and was
first proposed in the study of Attia et al. (2019a). We chose to use lead I to
correspond to wearable applications where only 1 lead is measured and avail-
able to the model. We tested several input sizes and evaluated the performance
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(a) Healthy subject, i.e. patient without atrial fibrillation in the recording

(b) Patient with atrial fibrillation after the first hour in the recording

(c) Legend

Figure 5.1: Selection of ECG windows of interest from Holter monitoring for
AF risk identification. Selected windows are highlighted in blue or yellow.
(a) For healthy subjects, the first hour is selected.
(b) For patients with AF, the window is selected if there is no evidence of AF
in the first two hours of the recording and evidence of AF in the following 22
hours.
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of the CNN models using a variable input size of 10 seconds, 30 seconds, 60
seconds and 5 minutes.

The CNN model is composed of 9 blocks, composed of two lanes: a two-
convolution lane and a shortcut lane, as shown in Figure 3.9. The final pre-
diction is the result of the sigmoid activation of the output from the last fully
connected layer. We used Adam (Kingma et al. 2017) as optimizer, and the
binary cross-entropy as loss function. We used a learning rate of 10−4 and
a batch size of 32. The model was trained up to 100 epochs, with an early
stopping strategy after 3 epochs if the validation loss did not decrease.

The second model is a CNN-RNN model, as proposed by Biton et al. (2023).
The model is presented in Figure 4.21. It is composed of two CNN layers
followed by a bidirectional GRU layer and two fully connected layers. The
sigmoid function is used for the final prediction. The model is also created
in PyTorch (Paszke et al. 2019), we used the same optimizer, loss function,
learning rate, and batch size. The model was also trained up to 100 epochs,
with an early stopping strategy after 3 epochs if the validation loss did not
decrease.

HRV-based models

We compared the performance of DL models with a ML approach, using Heart
Rate Variability (HRV) parameters measures from RR intervals. The first model
is a Random Forest (RF) classifier. We set the number of estimators to 200 with
a maximum depth to 10. The second model is a gradient-boosted decision trees
XGBoost (XGB) model (Chen et al. 2016). We used the same limitations as for
the RF model, with a limit of 200 trees and a maximal tree depth of 10.

The two classifiers were evaluated on multiple windows size, i.e. 60 seconds
as proposed by Levasseur et al. (2022), 85 seconds as proposed by Kisohara et
al. (2020), 5 minutes and the complete 1 hour. The two models used short-
term and long-term HRV and Heart Rate Fragmentation (HRF) parameters
presented in Chapter 2. The input is composed of the following parameters:

• time domain features: mean heart rate, Standard deviation of NN inter-
vals (SDNN), Root Mean Square of Successive RR interval Differences
(RMSSD), Standard Deviation of Successive RR interval Differences
(SDSD), CVNN, CVSD, pNN10, pNN20, pNN50, minNN, maxNN,
medianNN, prc20NN, prc80NN, Triangular Interpolation of the NN
interval histogram (TINN), and HRV Triangular Index (HRVi);
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• frequency domain features: total power, power Low Frequencies (LF)
band, power High Frequencies (HF) band, their normalized values, and
LF/HF ratio;

• Poincaré plot features: SD1, SD2, and SD1/SD2 ratio, Cardiac Sympa-
thetic Index (CSI), Cardiac Vagal Index (CVI) and CVI modified;

• Second Order Difference Plot (SODP) features: number of ∆RR in Q1 to
Q4, Central Tendency Measure (CTM)20, CTM50, and CTM100;

• Acceleration (AC), Deceleration (DC), AC modified, DC modified, ACk

and DCk;

• HRF features: Percentage of Inflection Points (PIP), Inverse of the Average
Length of the acceleration/deceleration Segments (IALS), Percentage of
Short Segments (PSS), and Percentage of Alternating Segments (PAS).

Evaluation using cross-validation

The models were evaluated using temporal 10-fold cross-validation at patient
level. The recordings were ordered using their recording date, and separated
in 10 groups. Each of the 10 group is used in turn as the test set, and the
remaining 9 groups as the train set, i.e. 90%-10% train-test ratio. If a validation
procedure is useful during the model training, a validation set is also set aside
and the model is trained on the remaining 8 groups, i.e. 80%-10%-10% train-
validation-test ratio. We should note that the separation is done at the patient
level to avoid any data contamination between the train and the test set. If a
patient has more than one recording, the first recording of the patient is used a
reference date and all the recordings from this patient are in the same group.

We evaluated performance using Area Under the Receiver Operating
Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve
(AUPRC). We also used threshold-based metrics: accuracy, sensitivity, speci-
ficity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and F1
score, as described in Chapter 2. For models using windows smaller than 1
hour, we first evaluated at the window level, then aggregated all windows for
a single recording and evaluated the model at the recording level.
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5.2.3 Inter-hospital cross-validation

As a second performance evaluation, we trained the model who obtained the
best average score from the model benchmark, using the four centres in turn as
testing group. The model is trained on the recordings from the first 3 centres
and evaluated on the last centres. If a validation procedure is useful during the
model training, a validation set is randomly chosen from the three centres and
correspond to 10% of the recordings.

5.2.4 Age-group comparison

Finally, we measured the performance of our models according to different
age groups. The recordings are divided into 5 groups according to the age
of the patient at the time of recording: patients under 60, patients between
60 and 70, patients between 70 and 80 and patients over 80. A patient with
multiple recordings could be found in more than one group. Using the model
who obtained the best average score from the models benchmark, we train the
model using 10-fold cross validation.

5.3 Results

5.3.1 Database and window selection

A total of 95 871 recordings were collected. After analysing the recordings, 879
were selected from 833 patients. 475 recordings are from 514 AF patients and
365 NSR recordings are from 358 patients, as summarized in Table 5.1. In total,
we selected 1390 1-hour windows, 654 AF windows and 736 NSR windows.
The CHU Luxembourg contribute the most to the number of recordings. We
should note that CHU Brugmann does not have any NSR recordings, therefore
the performance evaluation is not applicable. The 60-70 and 70-80 age groups
contains the most AF recordings. For NSR recordings, the patients less than 60
are the largest group.

Among all included patients, the mean age is 62.6 years ± 16.4, ranging
from 7 to 99 years, on the date of the Holter monitoring. The mean age of AF
patients is 70.2 years ± 11.4, from 35 years to 99 years. The age distribution is
presented in Figure 5.2. The CHA2DS2-VASc score is 2.9 ± 1.7. This score is
ranging from 1 to 9. This score is computed from the clinical measurements
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Figure 5.2: Comparison of patient age distribution between AF patients and
NSR patients

from 2 centres: Dr Grégoire outpatient clinic and CHU Ambroise Paré. For
the other two centres, CHL Luxembourg and CHU Brugmann, we have not yet
been able to obtain the clinical data following the work required to achieve the
same result as in the other two centres.

Recordings from female and male patients are nearly balanced, as shown
in Table 5.2, with a lower ratio in the number of recordings from AF patients,
with 44% recordings from female and 56% from male. The mean age is higher
for women than for man recordings.

5.3.2 CNN window size comparison

We trained CNN models on the first 8 folds, using the 9th fold as validation
and the 10th fold as testing. We compared the performance of the models
with different input window sizes. We found that the CNN models performed
best with an input window size of 30 seconds, both at the window level and
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Table 5.2: Patients age comparison between AF and NSR groups

Patient Recording Age (year)
Type Sex # % # % Mean σ Min Max

All
All 833 879 62.6 16.4 7 99
Female 394 47.2 413 47.0 64.0 17.3 15 99
Male 440 52.8 468 53.0 61.1 15.3 7 95

AF
All 475 514 70.2 11.4 35 99
Female 208 43.8 225 43.8 74.4 10.6 36 99
Male 267 56.2 289 56.2 66.9 10.9 35 95

NSR
All 358 365 55.8 17.1 7 89
Female 186 52.0 188 51.1 56.1 17.3 15 89
Male 173 48 .0 179 48.9 55.2 16.9 7 88

Table 5.3: Performance comparison for varying windows input size at window
level, testing on the last fold

Model Window size Windows Recordings
Seconds Samples AUROC AUPRC AUROC AUPRC

CNN

10 2048 0.805 0.769 0.845 0.899
30 6144 0.822 0.784 0.856 0.912
60 12 288 0.814 0.780 0.831 0.889

300 60 000 0.796 0.763 0.822 0.876

at the recording level, for the AUROC and the AUPRC. The performance are
shown in Table 5.3. We found a parabolic tendency in the performance for AF
detection using RR intervals, similar to the tendency found by Kisohara et al.
(2020), i.e. low and high window sizes achieved lower results and the best
results were achieved by a window size in between.

We chose to use a 30-second input window for both the CNN and CNN-
RNN models in the benchmark model comparison. For all input sizes, we
observed an improvement when the model was evaluated at the recording level
rather than at the window level.

5.3.3 Model comparison

We compared the performance of RF and XGB models with two DL mod-
els: a CNN model and CNN-RNN model. The best average performance was
achieved by the XGB model on the recording evaluation, with an AUROC of
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0.919 (0.879-0.958) and an AUPRC of 0.919 (0.879-0.958). The confidence inter-
vals were computed using the test metrics for each test set over the 10 folds.

Using a threshold of 0.5, this corresponds to an accuracy of 84.5 %
(81.2–87.8), a sensitivity of 83.0 % (79.5–86.4), a specificity of 86.6 % (79.3–93.9),
a precision of 90.2 % (85.5–94.9), a NPV of 78.4 % (74.7–82.1), and a F1-score of
86.2 % (83.5–89.0). An extended table for threshold-based metrics is presented
in Table B.1 from Appendix B.

For both RF and XGB models, we observed a performance increase for both
AUROC and AUPRC when using longer windows. For the evaluation at the
recording level, 5 minutes windows gave the best results, outperforming 1-hour
windows.

We observed the same performance increase between windows evaluation
and recording evaluation for the DNN models, but the performance is lower
than for those from the RF and XGB. The CNN model performs better than the
CNN-RNN model using the same 30-second input window. We observed that
both models overfit on the training set after one epoch and the performance did
not improve after this first step. Lowering the learning rate did not improve
the results.

5.3.4 Inter-hospital cross-validation

Using the XBG models on HRV features from 5 minute ECG windows, we eval-
uate the performance of the model in inter-hospital validation. As there are no
NSR patients for CHU Brugmann, AUROC and AUPRC cannot be calculated
for this group. The remaining results are all above 0.860, which corresponds
to the performance achieved in the benchmarking of the models. The best
performance was achieved for the Dr Grégoire outpatient clinic. The lowest
performance was obtained on Centre Hospitalier de Luxembourg (CHL) pa-
tients. This can be explained by the fact that the highest proportion of patients
in the database are from the CHL.

5.3.5 Age-group comparison

Using the XBG models on HRV features from 5-minute ECG windows, we
evaluate the performance of the model using the four selected age group. In
Table 5.1, the < 60 group has the most recordings. The > 80 group only has 20
NSR records.
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Table 5.5: Performance using spacial fold. For CHU Brugmann AUROC and
AUPRC are not applicable, as there is no NSR recording in the database for
this hospital, the AUPRC value is 1.

Hospital Windows Recordings
AUROC AUPRC AUROC AUPRC

Dr Grégoire 0.942 0.993 0.965 0.997
CHU Ambroise Paré 0.880 0.910 0.923 0.966
CHL Luxembourg 0.860 0.737 0.894 0.871
CHU Brugmann N/A 1.000 N/A 1.000

Results are presented in Table 5.6. The best performance was achieved in
the > 80 group with an AUROC of 0.983 and an AUPRC of 0.997. The AUPRC
is lower for the < 60 group as the prevalence is lower for this group, but
surprisingly the AUROC is the lowest for the 70-80 group for both window
size. The threshold-based metrics are presented in Table 5.6. The accuracy
reflects the performance of the AUROC and AUPRC, with a lower performance
for the 70–80 group. Sensitivity and PPV values are increasing with age, with
a 98% sensitivity and 94% PPV for the patients aged 80 and older.

Building on these results and the results from Singh et al. (2022), we ex-
tended the results presented in the benchmark presented in Table 5.4 to include
the age of the patient at the time of recording and the sex of the patient. In ad-
dition, we calculated the pairwise correlations between the HRV features using
the Spearman correlation coefficient. As for the forecast of AF onset, we found
that some features were highly correlated, with a coefficient greater than 0.9.
The full correlation matrix is available in Appendix B in Figure B.1. For each
experiment, we run it once with all features and once with selected features,
i.e. one feature was removed from each highly correlated pair. The results are
shown in Table 5.8. The average model score improved with the addition of
the two parameters, to 0.92 AUROC and 0.95 AUPRC for the RF using HRV
features from the 300-second window. Future work should explore the use of
additional clinical variables to improve model performance.

5.4 Discussion

We found that a ML model is able to identify a AF signature in Holter record-
ings from AF patients. The ML model was able to identify HRV parameters
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that allowed classification between AF and NSR recordings. We also found
that a DL model is able to find an AF signature in an ECG recording. In the
performance analysis, the ML model performs better than the DL model when
evaluated either at the window level or at the recording level, i.e. when the
evaluation is done by aggregating all windows from a single recording. Never-
theless, using a 5-minute window, the model achieves an AUROC of 0.866 and
an AUPRC of 0.863.

When compared to the state of the art, such as the results from Attia et al.
(2019a), we obtained lower results with a comparable DL model, but higher
results with the XGB model. Our hypothesis is that DNN are not able to gen-
eralise properly due to the limited size of the database, as all windows are
selected from a total of 1390 unique 1-hour windows.

Attia et al. (2019a) used a database composed of 649 931 normal sinus
rhythm ECGs from 180 922 patients. During this study, we wondered what
the results of the studies proposed above would have been if the variability pa-
rameters had been used, but existing research on AF identification is difficult
to extend due to data access limitations.

The results of Singh et al. (2018) are interesting to compare with this study,
as they proposed a model based only on Premature Atrial Contraction (PAC),
sex and age of the patient, and not only on ECG analysis with DL. The model
achieved an AUROC of 0.74, and the ECG was able to add valuable information
to improve the results. The age and sex of the patient can be inferred from the
ECG by DNN (Attia et al. 2019b). We have shown that the results of the models
did improve when the age and sex was added as input value to the model. Part
of the DNN prediction may be related to these results, but in this study the
DNN models performed worse than the ML models using HRV parameters. In
the future, the effect of other clinical parameters such as hypertension, obesity,
diabetes, hyperthyroidism should also be investigated to understand if other
risk factors could help the model to better understand the context of the ECG
and therefore make better predictions for the identification of these patients.

5.4.1 Features importance analysis

We have analysed the features used by the XGB model to understand which are
the most important parameters for AF identification. The analysis is performed
using multiple methods and only the top 5 features are shown. The full feature
ranking is presented in Appendix B.
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For the first analysis, Figure 5.3a, we analysed the gain of each feature,
i.e. the relative contribution of the feature to the model prediction, which is
determined by computing the contribution of all features across all trees in the
model, as defined by Chen et al. (2016). A higher gain value indicates that it is
more important for generating a prediction. The results show that the SDSD,
RMSSD and SD1 from the Poincaré plot were the most useful parameters over
the 10-fold cross-validation. The three parameters described the short-term
variability, more precisely the single-beat variability (Brennan et al. 2001).

These parameters are also found in the second analysis, i.e. the aggregation
of the first method with two alternative analyses: (i) the frequency, i.e. the
number of times a feature is used in a tree, and (ii) the coverage, i.e. the
number of HRV windows affected by this feature. The result is presented in
Figure 5.3b. The SDSD is replaced by the PAS as the first ranked feature, but
this parameter also measures short-term variability using alternating segments.
As a reminder, it measures the percentage of short segments, defined as ADAD
or DADA, where A is an acceleration as ∆RR < 0 and D is a deceleration as
∆RR > 0. NSR recordings are associated with less short-term variability, but
as a healthy heart is not a perfect metronome, there is always variability in the
heartbeats (Shaffer et al. 2014).

The features highlighted by the two previous evaluation did not yield ex-
actly the same results, but the same underlying meaning to highlight the short-
term RR variability. We used the Shapley values as a third method, to examine
the features used by the models for the predictions. The SHAP score described
the contribution of each features in the model output. It is computed using a
subset and permutation-based and subset method, as proposed by Lundberg
et al. (2020). As shown in Figure 5.4, similar features to the features impor-
tance analysis using the 3 methodologies can be found in the SHAP results.
The RMSSD, PAS and SODP Q1 are the top 3 features. The next two features,
the SODP CTM 100 and the SD1/SD2 ratio, are also ranked in the two previous
methods.

Using the beeswarm plot, presented in Figure 5.4b, we can use the values
of the features to explain the impact of these features on the model prediction.
A higher RMSSD or PAS, i.e. more short-term variability, tends to lean the
prediction towards AF. AF recordings seems to have less ∆RR in the Q1 of
the Second Order Difference Plot (SODP). Indeed, alternating segments are
classified in Q2 or Q4. The distinction for CTM measure is not clear. The
SD1/SD2 ratio is lower for NSR recordings, which mean that the cloud point
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(a) Gain method (b) Combination of the 3 methods

Figure 5.3: Metrics ranks based on either gain analysis or the 3 methods avail-
able for the XGB model. The metrics are ranked based on the trained model
for each fold and then classified according to the average rank across all folds.

is smaller than for AF recordings.
The SHAP score has been extended to explain the gradient activation of the

DNN. In future work, this SHAP score could also be used to analyse the score
obtained by CNN and understand which part of the ECG the model is using
to make the prediction. This could provide a feedback loop from the internal
representation of the DNN to the clinician.

5.4.2 Clinical implication

The development of new Artificial Intelligence (AI) models could have clinical
implications for both inpatient and outpatient settings. Holter monitoring is
still widely used for AF screening in Belgium and worldwide. If the perfor-
mance of a model convinces health authorities and medical professionals to
use it for AF screening, the workload for cardiologists, nurses and technicians
could be reduced. In the next few years, the reimbursement system could be
questioned to include these new technologies using short-term recordings. In
addition, AI models have now started to be used in clinical practice for AF
detection in 1-lead wearables (Tison et al. 2018; Perez et al. 2019). If this use
could be extended to identify the AF signature in the NSR recording, it could
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(a) Importance of top 5 features

(b) Beeswarm plot

Figure 5.4: SHAP analysis results (a) top 5 features ranking and (b) beeswarm
plot. Each row of the beeswarm plot consists of one point for each predic-
tion. The y position of a point is related to the influence of the feature on the
prediction, i.e. a prediction towards the positive (right) side indicates that the
features influenced the prediction towards AF, and a prediction towards the
negative (left) side indicates that the features influenced the prediction towards
NSR. Next, the colour of each point indicates whether the feature value is high
(red) or low (blue). The relationship between the position of the points and
the colour helps us to understand the impact of the feature on the prediction.
E.g. for the first feature, RMSSD, the points on the right are more red and
the points on the left are more blue. This means that if the recordings contain
more RMSSD (red dots), the recording contains more short-term variability and
therefore the model is more likely to predict AF.
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help to detect the disease earlier.
Once accepted by medical professionals, the next challenge will be to get

older generations to adopt and use these new technologies. Indeed, older gen-
erations are more difficult to convince, and unfortunately the prevalence of AF
is highest in these patients.

The positive predictive value obtained by our retrospective study from our
sample is very good for patients over 60 years of age and excellent for patients
older than 80, with a PPV value of 95% for patients aged 80 years and older.
These are precisely the patients most at risk of developing AF, and Sekelj et
al. (2021) validated in a prospective study the usefulness of an ML approach,
achieving a high PPV in older patients. The sensitivity of our models is better in
older patients and specificity is better in younger patients, which is ultimately
good news. The low specificity for this group can be linked to the low number
of patients of that age with normal Holter recordings. Alternative measure-
ments may also be useful in this population. Yan et al. (2020) demonstrated
the possibility of detecting AF using non-contact facial PhotoPlethysmoGra-
phy (PPG). This type of measurement could be extended to identify AF risk in
selected populations.

Conversely, the low sensitivity in patients younger than 60 years can be
interpreted as a result of the lower number of AF recordings in this age group.
The performance of the model in patients younger than 60 years should be
extended in the future, as in IRIDIA-AF version 2 some NSR recordings are
from patients younger than 35 years and even children, with the lowest age
being 7 years. This was related to the limited number of recordings as we
wanted to keep the most recordings, but in practice this could introduce a bias
into the model as such young patients will not be screened for AF in everyday
clinical practice. In the future, we should limit this class to 35 to 60 years to
match the age range present in the selection of AF patients and to have a similar
age distribution between AF and NSR patients.

On a larger scale, ML models could be used for improved analysis of the
Holter monitoring database. In this study, we used temporal 10-fold cross-
validation. In this case, a model trained on the first nine folds and tested on
the last fold corresponds to a real-world application where a model is trained
on existing data and tested on new data. In this case, the model could be
used as an adjunct to existing risk scores and cardiologist assessment. A pa-
tient could have a 1-hour Holter and the models could predict the risk score of
having atrial fibrillation in the next 24 hours. If the score is high, the patient
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continues with the 24-hour Holter. If the score is low, the full Holter is not
required, as the likelihood of finding AF is low. As with the task of forecasting
the onset of AF presented in the previous chapter, the choice of threshold to
discriminate between low and high risk patients is critical and should be based
on discussions with cardiologists to better understand the need for the medi-
cal application and the impact of false positive and false negative predictions.
A prospective study would be required to further develop and validate this
methodology.

Finally, we investigated if Holter recordings had already an impact in cardi-
ology practice, as reported by the IRIDIA-AF version 2 database. We measured
the AF burden evolution in our database, which correspond to the percentage
of the recording the patient spent in AF compared to NSR. The results are pre-
sented in Figure 5.5. AF burden does not seem to decrease between the first
and the following AF recordings, and in fact the tendency is that the mean AF
burden is higher in hours and in ratio. The extreme value in the number of
AF episodes are no longer present. The patients seem to have less but longer
episodes in the following Holter recordings.

5.5 Summary

In this chapter, we investigate the performance of ML models for the identi-
fication of patients who are at risk of developing AF episodes in the next 22
hours. We selected 1-hour windows at the start of the record to understand if
this windows contains information about the incoming AF crisis.

We found that the use of a 1-hour ECG recording is already sufficient to
give a good predictive value, especially in older patients. We compare the
performance obtained by 4 different ML and DL techniques, namely the RF,
XGB, CNN and CNN-RNN. The analysis of the XGB model suggests that the
important information enabling AF prediction is contained in the HRV and in
particular in the short-term variability.

This opens up perspectives that can be used by cardiology monitoring tech-
niques and wearables. Prospective studies are needed to confirm the encour-
aging potential offered by these results.
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(a) Number of recordings (b) Number of AF crisis

(c) AF burden ratio AF/NSR (d) AF burden in hours

Figure 5.5: Evolution of the AF burden in follow-up Holter monitorings





Chapter 6

Conclusions and perspectives

Conclusions

The objective of this thesis is twofold: to forecast the onset of Atrial Fibrillation
(AF) episodes and to identify the risk of AF in sinus rhythm. To forecast AF
onset, Electrocardiogram (ECG) windows close to the onset are compared with
ECG windows distant from the onset. The objective is to determine whether
Machine Learning (ML) models can differentiate between the two types of win-
dows and to obtain a trained model capable of detecting early signs of AF. To
identify AF risk, we compare normal sinus rhythm ECG windows from pa-
tients with and without AF. Our aim is to determine whether ML models can
distinguish between the two types of windows to better identify patients at
risk of AF. We focus on the use of ML models, using 1-dimensional ECG data
as input. We also extend the representation of the ECG to ECG Morphology
Variability (ECGMV), RR and Heart Rate Variability (HRV). This thesis relies
on the hypothesis that ECG data prior to AF onsets and ECG sinus rhythm
data from AF patients contain information about AF.

Following the introduction in Chapter 1, we discuss the state-of-the-art in
Chapter 2. First, we introduce selected HRV measurements, with a particu-
lar focus on geometrical measurements. We then review the existing publicly
available ECG databases related to AF and show that there is a need for new
publicly available materials for the task of AF onset forecast. The final part of
the state-of-the-art chapter introduces the three types of AF predictions in the
literature, AF detection, AF onset forecast and AF identification during sinus
rhythm, with a particular and extensive focus on the AF onset forecast and AF
identification. For AF onset forecast, the results tend to use more HRV feature
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extraction with different ML models, while Deep Learning (DL) models were
used more frequently in the results for AF risk identification.

Based on the results of the state-of-the-art review, we have created a new
database of long-term electrocardiograms in paroxysmal AF. The database is
presented in Chapter 3. We present version 1, which consists of 167 record-
ings from 152 AF patients selected retrospectively in an outpatient clinic. This
version of the database has been published on Zenodo. We then present the
extended database: IRIDIA-AF version 2. This second version consists of 988
records from 928 patients. This version contains recordings from patients with
and without AF. The total duration of the database is 100 million seconds, mak-
ing it, to our knowledge, the largest open-access database of long-term atrial
fibrillation recordings. A total of 964 AF episodes were annotated by a cardi-
ologist and a cardiac nurse. This database construction work was necessary
before the contributions in AF onset forecast and AF risk identification could
be built.

Chapter 4 presents our contribution to AF onset forecast. First, we discuss
the reproducibility of the models presented in the state-of-the-art. We selected
three published ML approaches and reproduced the described methods. We
found that the results were not reproducible. We then studied the ECG at AF
onsets available in the IRIDIA-AF database. Furthermore, we found that both
ECG morphology and HRV varied significantly before AF onset, suggesting
that these features may be suitable for AF onset forecast. We evaluate the
performance of a Random Forest (RF) model using HRV features from 5-minute
pre-AF windows, i.e. close to AF onset, and HRV features from 5 minutes away
from AF onset. We found that the closer the window to the AF onset, the better
the results, supporting that the ECG closer to the AF onset contains information
about the incoming crisis. At the onset, the RF model achieves an Area Under
the Receiver Operating Characteristic Curve (AUROC) of 0.714 and an Area
Under the Precision-Recall Curve (AUPRC) of 0.697.

Finally, we evaluated various ML and DL models in an extensive experi-
mental benchmark based on selected 30-minute pre-AF and 30-minute Normal
Sinus Rhythm (NSR) windows. The NSR windows were separated by at least
2 hours from any AF onset. We evaluated four classes of models using four
types of input: ECG, ECGMV, RR and HRV. Models using RR and HRV gave
the best results, suggesting that most of the information for predicting AF is
contained in heart rate variability. The Convolutionnal Neural Network (CNN)
model using RR intervals achieves the best performance with an AUROC of
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0.604 and an AUPRC of 0.595. We evaluate the features selected by the model
to construct a feedback loop back to cardiology. We create the HRV features
from cardiological knowledge and use ML to understand meaningful features
for AF onset prediction.

In Chapter 5 we present our contribution to the identification of AF risk in
sinus rhythm. We selected recordings from AF patients with no evidence of AF
in the first two hours and all recordings from healthy patients. We compare the
performance of the ML model using HRV and the DL model using ECG. The
best model achieved an AUROC of 0.90 and an AUPRC of 0.94. In the feature
importance analysis, we found that the short-term features contain the most
information for the ML model.

Limitations and future work

The results of this study are based on limited Holter data from a mixed patient
population. Some of these patients were prescribed antiarrhythmic therapy.
This introduces a relative inhomogeneity in the sample, but on the other hand
it is more representative of a real clinical situation that our model will have to
deal with.

The Holter recordings labelled NSR are those without rhythm disturbances,
which does not necessarily mean that there is no associated pathology, as clin-
ical characteristics were not available for all subjects, introducing some bias.
Patients were not selected for the study, but were selected retrospectively from
hospital archives. However, it is likely that the results would have been even
better if healthy volunteers had been recruited for the study. Bias could have
an important effect on model performance. In this work, we did not investigate
the effect of other potential biases such as race and gender.

Dataset expansion and publication

We have released version 1 of the database. Version 2 has already been com-
pleted with the addition of about 750 records and 3 new centres. This second
version should be published so that other researchers can build new results and
models. The database should be promoted through challenges such as those
proposed on Kaggle or at scientific conferences.

A version 3 of the database could be the next step and there are several
directions. The first is to continue to work with the centres to start prospec-
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tive studies. The second is to recruit new centres where further retrospective
studies could be conducted. Holter annotation is a time-consuming task and
automatic annotation and semi-supervised learning are methods that should be
explored in the future. This will require collaboration between academics and
Holter monitoring companies. Finally, the use of synthetic data as suggested
by Guillaudeux et al. (2023) could be explored.

Towards better model performance

The results we obtained for forecasting the onset of AF were surprising and
disappointing. From the first benchmark with a limited number of patients and
only RR intervals, to the latest results with an expanded database and different
models with different inputs, we have not seen an increase in performance.
One hypothesis about these results is that we still do not have enough data to
fully train a DL model. We are now in some intermediate data, which is still
not enough.

We should continue to explore new models and layers in DL models, such as
Attention (Vaswani et al. 2017), which has shown great performance in health-
care applications in recent years (Hu et al. 2022; Nguyen et al. 2022). We should
also continue to explore data representation, such as spectrogram analysis us-
ing 2D CNN. HRV parameters could be further explored, as new parameters
can always be added as input to the model. We can think of the P-P variability,
recurrence plots (Marwan et al. 2007) or the heart rate n-variability proposed
by (Liu et al. 2019). The effect of ECG pre-processing should also be measured,
and other pre-processing steps and filters should be tested. Time of day may
also have an effect on these parameters. This was not considered in this work,
but should be further investigated.

The models could be trained in alternative ways. A first pre-training step
using AF detection could be used to make an initial optimisation of the weights.
We could then use this pre-trained model to retrain the model for AF onset
prediction and AF detection to understand if this improves model performance.

Another direction is to move from general models to patient models. In this
work, a model is trained on selected patients and tested on unseen patients.
We should test the performance of training a model on selected patients and
fine-tuning the model on the first recordings or AF episodes of that patient to
understand if a specialised model achieves better performance.
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Prospective study, proof of concept and applications

The results we obtained for the identification of AF are encouraging, as the
results we obtained for the identification of the AF signature in sinus rhythm
using ML are higher than those obtained with the risk score in a large cohort.
Prospective studies should be conducted to understand whether ML models
could identify AF in a larger and more general population and improve AF
screening. For this, we can rely on the rapid development of new connected
Holter monitoring devices that allow analysis of results during recording. This
allows a better and continuous workflow for patient management.

If the sensitivity is high enough to detect all cases and reduce the workload
of analysing recordings from patients without AF, we must be careful not to
lower the threshold too much for any reason, especially financial reasons. A
stroke is more expensive to society than anticoagulant treatment for AF. On a
macro level, there will always be false negatives in the statistics, but on a micro
level, a stroke can be life-threatening and life-changing for a patient.

Perspectives

The three AF-related tasks, corresponding scores and therapeutic strategies
are summarised in Table 6.1. For AF detection, we can assume that humans
achieve the perfect score because they define the annotation used as ground
truth by the models. We have shown in Chapter 3 that ML models achieve
high performance for AF detection.

AF onset forecast is difficult and even impossible for humans, hence the
0% score, but ML models achieve a score of 71%, as shown in Chapter 4. The
pill-in-pocket strategy should also be considered, as it can help optimise the
medication taken by the patient.

Finally, risk scores, such as CHARGE-AF, allow cardiologists to identify
patients at risk of AF. We have shown in Chapter 5 that ML models are able to
achieve up to 90% performance, which opens the way for better AF screening
using smart Holter monitors, smartwatches and wearables. They could make
this screening strategy more easily accessible to the general population.

Ultimately, ML predictions can be used as an extension of the risk score to
assist and support the work of the cardiologist. ML is unlikely to completely
replace the cardiologist, but cardiologists using ML tools could work more
effectively and some specific workloads, such as ECG annotation, could be
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Task Prediction score Therapeutic strategies
Human ML

AF detection 100% 99% Treatment, e.g. anticoagulant

AF onset forecast 0% 70% PITP
Forecasting algorithm in CIED

AF risk identification 75% 90% Screening optimization
Lifestyle changes

Table 6.1: AF-related tasks with corresponding approximate scores and thera-
peutic strategies and perspectives

drastically reduced.

It is important to note that while human errors and ML errors may be sim-
ilar, the key difference is that ML errors are consistent unless the model is
corrected and retrained. It is therefore crucial to maintain human oversight to
prevent persistent and potentially biased false predictions. The medical field
should prioritise medicine and utilise technology as a tool rather than becom-
ing overly reliant on it.

The decision to use ML models is not always straightforward. The con-
struction of meaningful features requires technical knowledge of the problem
and can therefore be a barrier in some cases, which is not necessary for Deep
Neural Network (DNN). However, DL models require significantly more data
and computing power to optimise their weights and to be able to learn from
the data. Depending on the requirements of the solution, one may be preferred
over the other. Energy consumption should also be considered. The footprint
for training and running DL models has increased in recent years as the models
have grown in size (Vries 2023).

In this work, ML proved to be as effective as DL models, but the results
could not reflect the final clinical applicability. Nevertheless, this is a positive
result in the long run, as these models have a lower resource requirement and
simpler inputs, such as PhotoPlethysmoGraphy (PPG) proposed by wearables,
are sufficient for a high quality prediction. In addition, understanding the use
of features by the model can be a significant advantage for the acceptance of
new ML-based tools, rather than DL-based methods where the internal rep-
resentation of the data is not clear. In this work, we have shown that the DL
models are not always the magic solution that gives the best results.
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AF screening in the general population using ML predictions from smart-
watches and wearables could mean that there are many false positives, as the
prevalence in the general population is lower compared to selected population,
e.g. CIED patients or older patients. This should be avoided as it could lead to
mistrust from healthcare professionals (Reyna et al. 2022; Shah et al. 2022). In-
stead, older patients and especially those with Cardiac Implantable Electronic
Device (CIED) have a higher prevalence of AF. They could therefore be a better
focus, as they are the perfect beneficiaries of an AF identification algorithm.
In addition, forecasting the onset of AF could be facilitated if a device is al-
ready in place, as it can deliver a cardiac overdrive sequence as a treatment.
We hope that this work and our contributions will help to improve the results
of the models over the next years, so that one day they can be used in practical
clinical applications to help and treat patients.





Appendix A

Atrial fibrillation onset forecast

A.1 HRV evolution before AF onset

In this section, we present the evolution of HRV features before the onset of
paroxysmal AF, as only selected features are presented in Chapter 4. The fea-
tures are grouped into the following categories.

• HRV temporal features: Figure A.1, Figure A.3 and Figure A.2.

• HRV histogram features: Figure A.4

• Poincaré plot features: Figure A.5

• Second Order Difference Plot (SODP) features: Figure A.6 and Figure A.7

• Acceleration (AC) and Deceleration (DC) features: Figure A.8

• Heart Rate Fragmentation (HRF) features: Figure A.9

• HRV frequency analysis features: Figure A.10

153
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(a) mean RR interval (b) median RR interval

(c) min RR interval (d) max RR interval

Figure A.1: Evolution of HRV temporal features before AF onset (1/3). The
analysis was performed with a sliding window of 5 minutes and a step of 30
seconds. The main line corresponds to the mean of all selected windows. The
95% confidence interval is shown around the line. The baseline (black dotted
line) represents the average value of the features in the 2-hour period preceding
the analysed 30-minute window.
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(a) RMSSD (b) SDNN

(c) SDSD (d) CVNN

(e) CVSD

Figure A.2: Evolution of HRV temporal features before AF onset (2/3). The
analysis was performed with a sliding window of 5 minutes and a step of 30
seconds. The main line corresponds to the mean of all selected windows. The
95% confidence interval is shown around the line. The baseline (black dotted
line) represents the average value of the features in the 2-hour period preceding
the analysed 30-minute window.
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(a) RR intervals 20% percentile (b) RR intervals 50% percentile

(c) RR intervals 80% percentile (d) pNN10

(e) pNN20 (f) pNN50

Figure A.3: Evolution of HRV temporal features before AF onset (3/3). The
analysis was performed with a sliding window of 5 minutes and a step of 30
seconds. The main line corresponds to the mean of all selected windows. The
95% confidence interval is shown around the line. The baseline (black dotted
line) represents the average value of the features in the 2-hour period preceding
the analysed 30-minute window.
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(a) HRVi (b) TINN

Figure A.4: Evolution of HRV histogram features before AF onset. The analysis
was performed with a sliding window of 5 minutes and a step of 30 seconds.
The main line corresponds to the mean of all selected windows. The 95%
confidence interval is shown around the line. The baseline (black dotted line)
represents the average value of the features in the 2-hour period preceding the
analysed 30-minute window.
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(a) Poincaré SD1 (b) Poincaré SD2

(c) Poincaré SD1/SD2 (d) Poincaré Surface

(e) Poincaré Cardiac Sympathetic Index
(CSI)

(f) Poincaré Cardiac Vagal Index (CVI)
Parasympathetic Nervous System

Figure A.5: Evolution of HRV Poincaré plot features before AF onset. The
analysis was performed with a sliding window of 5 minutes and a step of 30
seconds. The main line corresponds to the mean of all selected windows. The
95% confidence interval is shown around the line. The baseline (black dotted
line) represents the average value of the features in the 2-hour period preceding
the analysed 30-minute window.
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(a) SODP Q2 (b) SODP Q1

(c) SODP Q3 (d) SODP Q4

Figure A.6: Evolution of HRV SODP features before AF onset The analysis was
performed with a sliding window of 5 minutes and a step of 30 seconds. The
main line corresponds to the mean of all selected windows. The 95% confidence
interval is shown around the line. The baseline (black dotted line) represents
the average value of the features in the 2-hour period preceding the analysed
30-minute window.
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(a) SODP origin (b) SODP CTM 20

(c) SODP CTM 50 (d) SODP CTM 100

Figure A.7: Evolution of HRV SODP quadrant features before AF onset. The
analysis was performed with a sliding window of 5 minutes and a step of 30
seconds. The main line corresponds to the mean of all selected windows. The
95% confidence interval is shown around the line. The baseline (black dotted
line) represents the average value of the features in the 2-hour period preceding
the analysed 30-minute window.
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(a) AC (b) DC

(c) ACmod (d) DCmod

(e) ACk (f) DCk

Figure A.8: Evolution of HRV AC and DC features before AF onset The analysis
was performed with a sliding window of 5 minutes and a step of 30 seconds.
The main line corresponds to the mean of all selected windows. The 95%
confidence interval is shown around the line. The baseline (black dotted line)
represents the average value of the features in the 2-hour period preceding the
analysed 30-minute window.
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(a) Percentage of Inflection Points of the
RR intervals series (PIP)

(b) Inverse of the Average Length of the ac-
celeration/deceleration Segments (IALS)

(c) Percentage of short segments (PSS)
(d) Percentage of RR intervals in Alterna-
tion Segments (PAS)

Figure A.9: Evolution of HRF features before AF onset. The analysis was per-
formed with a sliding window of 5 minutes and a step of 30 seconds. The main
line corresponds to the mean of all selected windows. The 95% confidence in-
terval is shown around the line. The baseline (black dotted line) represents
the average value of the features in the 2-hour period preceding the analysed
30-minute window.
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(a) LF (b) HF

(c) LFnu (d) HFnu

(e) LF/HF (f) Total Power

Figure A.10: Evolution of HRV frequency features before AF onset. The anal-
ysis was performed with a sliding window of 5 minutes and a step of 30 sec-
onds. The main line corresponds to the mean of all selected windows. The 95%
confidence interval is shown around the line. The baseline (black dotted line)
represents the average value of the features in the 2-hour period preceding the
analysed 30-minute window.
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A.2 Features correlation

In this section, we present the correlations matrices for AF onset forecast. The
first matrix, Figure A.11, is the correlation matrix for HRV parameters, the
second matrix, Figure A.12 is the correlation matrix for ECGMV parameters.

Figure A.11: Pairwise correlation matrix between HRV features used for AF
onset forecast. Correlation coefficients were computed using Spearman corre-
lation coefficient.
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Figure A.12: Pairwise correlation matrix between ECGMV features used for
AF onset forecast. Correlation coefficients were computed using Spearman
correlation coefficient.



166 APPENDIX A. ATRIAL FIBRILLATION ONSET FORECAST

A.3 AF onset forecast evolution using HRV

The AUROC metric used in Figure 4.16 is presented in Tables A.1 to A.3. The
AUPRC is added as a second metric, showing the same trend.
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Table A.1: Results of model predictions between pre-AF windows and NSR
windows. Each line represents the mean results of 10 repetitions of 10-fold
cross-validation, for each repetition a new dataset was created by randomly
selecting NSR windows to balance the dataset with pre-AF windows. Results
for experiments between 0 and 20 minutes before AF onset.

Selected pre-AF windows ending AUROC AUPRC
(seconds before AF onset)

0 -30 0.714 (0.692–0.735) 0.697 (0.671–0.724)
-30 -60 0.693 (0.668–0.717) 0.675 (0.649–0.701)
-60 -90 0.681 (0.660–0.701) 0.663 (0.641–0.686)
-90 -120 0.665 (0.649–0.682) 0.648 (0.631–0.665)

-120 -150 0.664 (0.644–0.685) 0.647 (0.624–0.669)
-150 -180 0.658 (0.640–0.675) 0.637 (0.616–0.657)
-180 -210 0.649 (0.632–0.667) 0.631 (0.612–0.650)
-210 -240 0.640 (0.622–0.659) 0.622 (0.600–0.644)
-240 -270 0.635 (0.621–0.650) 0.615 (0.597–0.633)
-270 -300 0.634 (0.618–0.650) 0.617 (0.597–0.637)
-300 -330 0.631 (0.615–0.647) 0.615 (0.595–0.634)
-330 -360 0.628 (0.610–0.645) 0.611 (0.590–0.632)
-360 -390 0.630 (0.611–0.648) 0.617 (0.595–0.639)
-390 -420 0.631 (0.611–0.652) 0.619 (0.597–0.640)
-420 -450 0.623 (0.604–0.643) 0.607 (0.589–0.626)
-450 -480 0.623 (0.606–0.640) 0.610 (0.591–0.629)
-480 -510 0.616 (0.598–0.635) 0.601 (0.581–0.622)
-510 -540 0.610 (0.592–0.629) 0.596 (0.576–0.615)
-540 -570 0.612 (0.594–0.630) 0.602 (0.584–0.621)
-570 -600 0.607 (0.583–0.631) 0.597 (0.577–0.617)
-600 -630 0.610 (0.588–0.633) 0.598 (0.577–0.618)
-630 -660 0.608 (0.586–0.630) 0.589 (0.568–0.611)
-660 -690 0.603 (0.581–0.625) 0.586 (0.563–0.609)
-690 -720 0.604 (0.580–0.629) 0.587 (0.561–0.613)
-720 -750 0.613 (0.588–0.638) 0.594 (0.570–0.619)
-750 -780 0.607 (0.583–0.632) 0.583 (0.560–0.606)
-780 -810 0.615 (0.591–0.639) 0.594 (0.570–0.617)
-810 -840 0.610 (0.587–0.633) 0.595 (0.572–0.617)
-840 -870 0.611 (0.589–0.632) 0.595 (0.574–0.617)
-870 -900 0.607 (0.585–0.630) 0.590 (0.568–0.612)
-900 -930 0.609 (0.587–0.631) 0.590 (0.567–0.613)
-930 -960 0.610 (0.583–0.637) 0.587 (0.559–0.616)
-960 -990 0.616 (0.591–0.641) 0.590 (0.561–0.618)
-990 -1020 0.618 (0.591–0.645) 0.597 (0.568–0.626)

-1020 -1050 0.607 (0.581–0.634) 0.587 (0.559–0.614)
-1050 -1080 0.599 (0.571–0.628) 0.585 (0.556–0.613)
-1080 -1110 0.605 (0.579–0.631) 0.588 (0.564–0.612)
-1110 -1140 0.608 (0.582–0.634) 0.586 (0.560–0.612)
-1140 -1170 0.608 (0.583–0.633) 0.587 (0.561–0.612)
-1170 -1200 0.616 (0.595–0.636) 0.587 (0.566–0.607)
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Table A.2: Results of model predictions between pre-AF windows and NSR
windows (continued 2/3). Results for experiments between 20 and 40 minutes
before AF onset.

Selected windows ending AUROC AUPRC
(seconds before AF onset)

-1200 -1230 0.617 (0.596–0.638) 0.588 (0.568–0.608)
-1230 -1260 0.609 (0.591–0.627) 0.582 (0.563–0.602)
-1260 -1290 0.608 (0.591–0.625) 0.583 (0.565–0.601)
-1290 -1320 0.610 (0.591–0.629) 0.581 (0.561–0.601)
-1320 -1350 0.607 (0.587–0.626) 0.582 (0.560–0.604)
-1350 -1380 0.603 (0.581–0.625) 0.581 (0.559–0.603)
-1380 -1410 0.600 (0.577–0.623) 0.578 (0.556–0.600)
-1410 -1440 0.593 (0.570–0.615) 0.571 (0.549–0.593)
-1440 -1470 0.594 (0.572–0.616) 0.574 (0.553–0.595)
-1470 -1500 0.594 (0.573–0.616) 0.577 (0.558–0.596)
-1500 -1530 0.600 (0.577–0.623) 0.583 (0.562–0.604)
-1530 -1560 0.595 (0.572–0.618) 0.580 (0.558–0.602)
-1560 -1590 0.596 (0.569–0.623) 0.585 (0.560–0.610)
-1590 -1620 0.598 (0.571–0.626) 0.584 (0.555–0.612)
-1620 -1650 0.613 (0.585–0.641) 0.597 (0.567–0.626)
-1650 -1680 0.620 (0.602–0.637) 0.603 (0.581–0.625)
-1680 -1710 0.616 (0.591–0.640) 0.598 (0.573–0.623)
-1710 -1740 0.600 (0.566–0.633) 0.577 (0.546–0.608)
-1740 -1770 0.600 (0.566–0.633) 0.578 (0.548–0.607)
-1770 -1800 0.605 (0.578–0.631) 0.586 (0.560–0.613)
-1800 -1830 0.602 (0.580–0.623) 0.582 (0.559–0.604)
-1830 -1860 0.595 (0.575–0.615) 0.582 (0.563–0.601)
-1860 -1890 0.597 (0.574–0.620) 0.577 (0.555–0.600)
-1890 -1920 0.595 (0.571–0.619) 0.577 (0.552–0.602)
-1920 -1950 0.591 (0.573–0.609) 0.576 (0.557–0.595)
-1950 -1980 0.584 (0.548–0.620) 0.568 (0.535–0.601)
-1980 -2010 0.586 (0.559–0.613) 0.571 (0.547–0.595)
-2010 -2040 0.582 (0.556–0.609) 0.563 (0.542–0.585)
-2040 -2070 0.590 (0.559–0.621) 0.567 (0.538–0.595)
-2070 -2100 0.585 (0.564–0.607) 0.566 (0.542–0.590)
-2100 -2130 0.592 (0.570–0.613) 0.569 (0.546–0.592)
-2130 -2160 0.588 (0.567–0.609) 0.568 (0.549–0.587)
-2160 -2190 0.592 (0.561–0.622) 0.574 (0.547–0.602)
-2190 -2220 0.589 (0.565–0.613) 0.573 (0.553–0.592)
-2220 -2250 0.589 (0.568–0.610) 0.571 (0.554–0.589)
-2250 -2280 0.579 (0.549–0.610) 0.566 (0.540–0.592)
-2280 -2310 0.594 (0.566–0.621) 0.577 (0.554–0.599)
-2310 -2340 0.595 (0.572–0.618) 0.575 (0.551–0.600)
-2340 -2370 0.587 (0.566–0.607) 0.562 (0.546–0.579)
-2370 -2400 0.586 (0.566–0.605) 0.564 (0.544–0.585)
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Table A.3: Results of models predictions between pre-AF windows and NSR
windows (continued 3/3). Results for experiments between 40 and 60 minutes
before AF onset.

Selected windows ending AUROC AUPRC
(seconds before AF onset)

-2400 -2430 0.587 (0.564–0.611) 0.566 (0.545–0.587)
-2430 -2460 0.587 (0.556–0.618) 0.567 (0.541–0.593)
-2460 -2490 0.588 (0.568–0.608) 0.562 (0.543–0.580)
-2490 -2520 0.592 (0.562–0.622) 0.566 (0.541–0.591)
-2520 -2550 0.583 (0.566–0.600) 0.560 (0.542–0.578)
-2550 -2580 0.583 (0.564–0.602) 0.562 (0.545–0.580)
-2580 -2610 0.588 (0.571–0.604) 0.570 (0.551–0.588)
-2610 -2640 0.583 (0.566–0.600) 0.567 (0.549–0.585)
-2640 -2670 0.590 (0.567–0.612) 0.570 (0.545–0.594)
-2670 -2700 0.584 (0.556–0.612) 0.568 (0.540–0.596)
-2700 -2730 0.584 (0.561–0.608) 0.566 (0.543–0.590)
-2730 -2760 0.575 (0.552–0.598) 0.562 (0.541–0.583)
-2760 -2790 0.571 (0.546–0.596) 0.556 (0.531–0.582)
-2790 -2820 0.571 (0.552–0.590) 0.556 (0.535–0.576)
-2820 -2850 0.566 (0.540–0.592) 0.549 (0.525–0.573)
-2850 -2880 0.573 (0.547–0.599) 0.555 (0.531–0.580)
-2880 -2910 0.576 (0.555–0.597) 0.563 (0.540–0.586)
-2910 -2940 0.574 (0.551–0.597) 0.557 (0.534–0.579)
-2940 -2970 0.578 (0.556–0.600) 0.560 (0.537–0.584)
-2970 -3000 0.576 (0.553–0.599) 0.559 (0.535–0.583)
-3000 -3030 0.576 (0.553–0.598) 0.561 (0.537–0.585)
-3030 -3060 0.567 (0.531–0.604) 0.550 (0.518–0.583)
-3060 -3090 0.579 (0.554–0.603) 0.558 (0.534–0.582)
-3090 -3120 0.576 (0.550–0.601) 0.556 (0.536–0.577)
-3120 -3150 0.570 (0.542–0.598) 0.552 (0.525–0.578)
-3150 -3180 0.561 (0.535–0.586) 0.545 (0.523–0.568)
-3180 -3210 0.574 (0.544–0.604) 0.552 (0.524–0.581)
-3210 -3240 0.579 (0.551–0.607) 0.564 (0.540–0.587)
-3240 -3270 0.568 (0.543–0.594) 0.549 (0.526–0.572)
-3270 -3300 0.569 (0.545–0.592) 0.548 (0.526–0.570)
-3300 -3330 0.566 (0.545–0.588) 0.549 (0.532–0.565)
-3330 -3360 0.566 (0.546–0.587) 0.549 (0.529–0.568)
-3360 -3390 0.561 (0.535–0.587) 0.547 (0.526–0.567)
-3390 -3420 0.561 (0.543–0.580) 0.544 (0.529–0.560)
-3420 -3450 0.564 (0.544–0.584) 0.544 (0.523–0.564)
-3450 -3480 0.567 (0.542–0.592) 0.551 (0.527–0.575)
-3480 -3510 0.558 (0.526–0.590) 0.544 (0.518–0.571)
-3510 -3540 0.565 (0.543–0.586) 0.550 (0.530–0.571)
-3540 -3570 0.556 (0.531–0.580) 0.545 (0.524–0.566)
-3570 -3600 0.562 (0.539–0.586) 0.555 (0.534–0.576)
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A.4 Model benchmark: threshold-based metrics

Threshold based metrics for:

• XGB model using HRV features computed from the 30-minute window -
Table A.4,

• CNN model using 300 RR as input - Table A.5,

• RF model using HRV features computed from the 5-minute window -
Table A.6.

Table A.4: Metrics for the XGB model using HRV features computed from the
30-minute window. Evaluation is at episode level.

Threshold Accuracy Sensitivity Specificity PPV NPV F1-score

0.1 0.518 1.000 0.000 0.518 nan 0.682
0.2 0.531 0.987 0.043 0.525 0.750 0.685
0.3 0.568 0.933 0.175 0.548 0.710 0.691
0.4 0.606 0.846 0.349 0.582 0.678 0.690
0.5 0.608 0.706 0.504 0.604 0.615 0.651
0.6 0.587 0.466 0.716 0.638 0.555 0.538
0.7 0.524 0.167 0.907 0.658 0.504 0.266
0.8 0.486 0.016 0.992 0.667 0.484 0.030
0.9 0.482 0.000 1.000 nan 0.482 nan

Table A.5: Metrics for the CNN model using 300 RR as input. Evaluation is at
episode level.

Threshold Accuracy Sensitivity Specificity PPV NPV F1-score

0.1 0.516 0.998 0.000 0.517 0.000 0.681
0.2 0.516 0.993 0.005 0.517 0.400 0.680
0.3 0.518 0.986 0.015 0.518 0.500 0.679
0.4 0.548 0.922 0.147 0.537 0.637 0.679
0.5 0.589 0.620 0.555 0.599 0.577 0.610
0.6 0.538 0.289 0.806 0.615 0.514 0.393
0.7 0.494 0.088 0.930 0.572 0.487 0.152
0.8 0.486 0.029 0.977 0.578 0.484 0.055
0.9 0.484 0.008 0.994 0.583 0.483 0.015
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Table A.6: Metrics for the RF model using HRV features computed from the
5-minute window. Evaluation is at episode level.

Threshold Accuracy Sensitivity Specificity PPV NPV F1-score

0.1 0.518 1.000 0.000 0.518 nan 0.682
0.2 0.517 0.999 0.000 0.517 0.000 0.682
0.3 0.516 0.989 0.008 0.517 0.412 0.679
0.4 0.538 0.930 0.118 0.531 0.611 0.676
0.5 0.568 0.688 0.440 0.568 0.568 0.622
0.6 0.527 0.276 0.797 0.593 0.506 0.376
0.7 0.485 0.026 0.977 0.548 0.483 0.049
0.8 0.483 0.004 0.996 0.571 0.483 0.009
0.9 0.482 0.001 0.999 0.500 0.482 0.002
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A.5 Top ranked parameters for AF onset forecast

In Figure A.13 and Figure A.14 we present the top features selected by the RF
and XGB models for forecasting AF onset.
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(a) CVSD (b) SDNN (c) Mean RR

(d) CVNN (e) RMSSD (f) Min RR

(g) SODP CTM 100 (h) SODP CTM 20

(i) pNN50 (j) HF

Figure A.13: Top ranked HRV features for AF onset forecast (1/2)
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(a) CVSD (b) SDNN (c) Mean RR

(d) % ectopic beats (e) RR std (f) RR mean

(g) SODP CTM 100 (h) SODP CTM 20 (i) pNN50

Figure A.14: Top ranked ECG features for AF onset forecast (2/2)



Appendix B

Atrial fibrillation identification

B.1 Model benchmark: threshold-based metrics

Table B.1: Metrics for XGB model using HRV parameters from 5-minute ECG
window. The evaluation is done at the recording level.

Threshold Accuracy Sensitivity Specificity PPV NPV F1-score

0.1 0.585 0.998 0.003 0.585 0.500 0.738
0.2 0.702 0.982 0.307 0.666 0.926 0.794
0.3 0.791 0.938 0.584 0.760 0.869 0.840
0.4 0.840 0.893 0.764 0.842 0.835 0.867
0.5 0.844 0.829 0.866 0.897 0.782 0.861
0.6 0.801 0.695 0.951 0.952 0.688 0.803
0.7 0.737 0.566 0.978 0.973 0.616 0.716
0.8 0.646 0.399 0.995 0.990 0.540 0.569
0.9 0.478 0.107 1.000 1.000 0.443 0.193
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Table B.2: Metrics for XGB model using HRV parameters from 30-minute ECG
window. The evaluation is done at the recording level.

Threshold Accuracy Sensitivity Specificity PPV NPV F1-score

0.1 0.772 0.934 0.545 0.743 0.854 0.828
0.2 0.797 0.905 0.647 0.783 0.828 0.839
0.3 0.812 0.879 0.718 0.814 0.809 0.846
0.4 0.817 0.844 0.778 0.843 0.780 0.844
0.5 0.827 0.813 0.847 0.882 0.763 0.846
0.6 0.824 0.778 0.888 0.907 0.740 0.838
0.7 0.815 0.739 0.921 0.929 0.715 0.823
0.8 0.792 0.683 0.945 0.946 0.679 0.793
0.9 0.760 0.611 0.970 0.966 0.639 0.749
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B.2 Features correlation

In this section, we present the correlation matrix for AF risk identification. The
matrix, Figure A.11, is the correlation matrix for HRV parameters for 1-hour
windows.

Figure B.1: Pairwise correlation matrix between HRV features used for AF
risk identification. Correlation coefficients were computed using Spearman
correlation coefficient.





Appendix C

Choice of hyperparameters

In this thesis, mainly in Chapters 3 to 5, the training of Machine Learning (ML)
and Deep Learning (DL) algorithms required the choice of hyperparameters.
In this appendix, we have grouped the hyperparameters to provide a summary
of the hyperparameters across the work.

All the experiments in this work were done using Python 3.10 and 3.11. The
experiments are listed below with their main hyperparameters for the Electro-
cardiogram (ECG) window selection and model. The random seed chosen in
experiments is 42, and is used to seed Python random, NumPy, Scikit-learn,
PyTorch and TensorFlow libraries.

We evaluated the models using cross-validation. The reported metrics were
computed on all test sets from each fold. The 95% confidence intervals were
computed on the test values.

C.1 IRIDIA-AF version 1 annotation evaluation

In Section 3.2.4, we evaluated the performance of a XGBoost (XGB) model and a
Convolutionnal Neural Network (CNN) for the AF detection on the IRIDIA-AF
version 1 annotations.

XGB

Window selection

• Database: IRIDIA-AF v1

• Window size: 300 RR
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• Training window step: 100 RR (200 RR overlap)

• Testing window step: 10 RR (290 RR overlap)

XGB model

• XGBoost and Scikit-learn python library

• Objective function: binary logistic

• Number of trees: 150

• Maximum depth: 5

Evaluation

10-fold cross validation at patient level. Each fold is composed of a train set
and a test set.

CNN

Window selection

• Database: IRIDIA-AF v1

• Window size: 8192 samples

• Training window step: 4096 samples

• Testing window step: 8192 samples

CNN model

• PyTorch library

• Architecture: Figure 3.9

• Epochs: 100

• Early stopping patience: 5 epochs

• Adam optimizer

• Learning rate: 10−4
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• Batch size: 32

• Binary cross-entropy loss function

Evaluation

Boostraping with 5 repetitions. Each repetition is composed of a train set, a
validation set and a test set.

C.2 IRIDIA-AF version 2 annotation evaluation

In Section 3.4, we evaluated the performance of four ML models and a CNN
for the AF detection on the IRIDIA-AF version 2 annotations.

Models using HRV

Windows selection

• Database: IRIDIA-AF v2

• Window size: 300 RR

• Training window step: 100 RR

Logistic Regression

• Scikit-learn library

Decision Tree

• Scikit-learn library

• No max depth

Random Forest

• Scikit-learn library

• Number of trees: 200

• Maximum depth: 10
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XGBoost

• XGBoost and Scikit-learn library

• Number of trees: 100

• Maximum depth: 5

Evaluation

The models were evaluated using 10-fold cross-validation at patient level, with
patient sorted by recording date. Random Forest (RF) and XGB were also eval-
uated using a 4-fold spacial cross-validation, with the four centres. For both
cross-validation, each fold is composed of a train and a test split.

CNN

Window selection

• Database: IRIDIA-AF v2

• Window size: 8192 samples

• Window step: 8192 samples

CNN model

• PyTorch library

• Architecture Figure 3.9

• Epochs: 100 (with 1500 steps per epoch)

• Early stopping patience: 3 epochs

• Adam optimizer

• Learning rate: 10−4

• Learning rate decay patience: 2 epochs

• Batch size: 128

• Binary cross-entropy loss function
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Evaluation

The model was evaluated using 10-fold cross-validation at patient level, with
patient sorted by recording date. Each fold is composed of a train set, a valida-
tion set for early stopping and a test split.

C.3 Evolution of predictions before AF onset

In Section 4.4, we evaluated the performance of a RF model in the binary classi-
fication between windows close to the AF onset and distant from the AF onset.

Window selection

• Database: IRIDIA-AF v2

• Window size: 5-minute ECG window

• pre-AF window distance: 0 to 1 hour

• pre-AF window distance step: 30 seconds

• NSR window distance from AF: 2 hours

RF Model

• Scikit-learn library

• Number of trees: 100

• Maximum depth: 10

Evaluation

For each distance, the model was evaluated using 10 repetitions for each 10-
fold cross-validation at patient level. Each fold is composed of a train set and
a test split.

C.4 Comparison of models for AF onset forecast

In Section 4.5, we evaluated multiple ML and DL models on four types of input:
ECG, ECGMV, RR intervals and HRV.
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Window selection

• Database: IRIDIA-AF v2

• Window size: 30 minutes

• AF window distance: 0

• NSR window distance: 2 hours

ECG model

CNN and ResNet models

• PyTorch library

• Architecture CNN Figure 4.19

• Architecture ResNet Figure 4.20

• Epochs: 100

• Early stopping patience: 5 epochs

• Adam optimizer

• Learning rate: 10−5

• Learning rate decay patience: 2 epochs

• Batch size: 32

• Binary cross-entropy loss function

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set, a validation set for the early stopping and a test set.
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C.4.1 ECGMV model

RF model

• Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

XGB

• XGBoost and Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set and a test set.

RR interval model

CNN, ResNet and CNN-RNN models

• PyTorch library

• Architecture CNN Figure 4.19

• Architecture ResNet Figure 4.20

• Architecture CNN-RNN Figure 4.21

• Epochs: 100

• Early stopping patience: 5 epochs

• Adam optimizer

• Learning rate: 10−5

• Learning rate decay patience: 2 epochs
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• Batch size: 32

• Binary cross-entropy loss function

EfficientNet models

• Window size: 1 minute

• Window step: 30 seconds

• Embedding dimension: 3

• Embedding lag: 2

• Image: 224×224

• Keras and Tensorflow library

• Architecture EfficientNetV2S

• Epochs: 100

• Early stopping patience: 5 epochs

• Adam optimizer

• Learning rate: 10−4

• Learning rate decay patience: 2 epochs

• Batch size: 32

• Binary cross-entropy loss function

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set, a validation set for the early stopping and a test set.
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HRV

RF model

• Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

XGB

• XGBoost and Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set and a test set.

C.5 AF onset forecast on complete recording

In Section 4.5.3, we evaluated the performance of a XGB model on complete
recording. A new model is trained for each patient in the dataset. The train set
is composed of all other patient in the database.

Window selection

• Database: IRIDIA-AF v2

• Window size: 5 minutes

• Window step: 30 seconds

XGB

• XGBoost and Scikit-learn library

• Number of trees: 200
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• Maximum depth: 10

C.6 AF identification

In Section 5.2, we evaluated the performance of ML and DL model for AF
identification.

HRV models

Window selection

• Database: IRIDIA-AF v2

• Window size: 5 minutes

• Window step: 5 minutes

Random Forest

• Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

XGB

• XGBoost and Scikit-learn library

• Number of trees: 200

• Maximum depth: 10

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set and a test set.
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ECG Model

Window selection

• Window size: 6144 samples

• Window step: 2048 samples

CNN-RNN and CNN models

• PyTorch library

• Architecture CNN Figure 3.9

• Architecture CNN-RNN Figure 4.21

• Epochs: 100

• Early stopping patience: 3 epochs

• Adam optimizer

• Learning rate: 10−4

• Learning rate decay patience: 2 epochs

• Batch size: 32

• Binary cross-entropy loss function

Evaluation

Temporal 10-fold cross-validation at patient level. Each fold is composed of a
train set, a validation set for the early stopping and a test set.
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