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Abstract
In recent years, data-driven approaches have become the predominant paradigm

in the field of natural language processing. These approaches mostly rely on

statistical patterns inferred from large collections of textual data. Since such

systems achieve impressive results on a variety of NLP tasks and because they

exhibit high levels of formal and syntactic correctness, it is often assumed that

these systems understand language in a human-like way. While this might ap-

pear to be the case, these systems primarily focus on the form side of language,

since they are mostly learned from textual data that is not grounded in the

world. It can therefore be argued that they deal with language in a way that is

fundamentally different than the way in which humans do, i.e. by constructing

meaning through interactions with each other and their environment.

In this thesis, I investigate how aspects of human-like language understanding

can be modelled by building systems, each focussing on different parts of

human-like language understanding. This research resulted in three concrete

contributions. A first contribution relates to the assumption that language

cannot be separated from the environment in which it is used. Concretely, I

present a system that is able to ground language in its environment andmemory

by introducing a procedural semantics that integrates these elements. This novel

methodology achieves state-of-the-art results on two benchmark datasets for

the task of visual dialogue. A second contribution consists in a model that starts

from the idea that language is inherently connected to individual knowledge,

since personal experiences shape how humans interpret language. This system

integrates language with an agent’s personal and dynamic knowledge system.

Here, a proof-of-concept implementation demonstrates how agents can come to

different interpretations of the same linguistic utterance through their individual

knowledge. A third contribution starts from the assumption that language

understanding becomes truly human-like when systems can reflect on their

own language understanding and signal when they might fail to understand, for
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instance due to a lack of knowledge. It concerns the development of a system

that allows an agent to monitor its own process of language understanding.

This allows an agent to estimate how well it has understood a given text and to

identify and signal when it has misunderstood certain aspects. This monitoring

system is applied on case studies from two different tasks: a visual dialogue

task and a recipe understanding task. These systems illustrate how certain

aspects of human-like language understanding can be computationally modelled

and thereby provide a more human-like alternative to today’s data-driven NLP

systems.



Samenvatting
De laatste jaren zijn datagedreven methoden het centrale paradigma binnen

het veld van natuurlijketaalverwerking geworden. Deze methoden steunen

voornamelijk op statische patronen die ze hebben afgeleid uit grote collecties

van tekstuele data. Aangezien deze systemen impressionante resultaten behalen

op bepaalde natuurlijketaalverwerkingtaken en omdat ze een hoog niveau van

formele en syntactische correctheid vertonen, wordt vaak aangenomen dat deze

systemen taal begrijpen op een mensachtige manier. Hoewel dit het geval lijkt,

vatten deze modellen voornamelijk enkel de vorm kant van taal, aangezien ze

meestal enkel geleerd hebben van tekstuele data die niet verankerd zijn in de

wereld. Het is daarom mogelijk om te beargumenteren dat deze modellen op

een fundamenteel andere manier omgaan met taal dan hoe mensen ermee

omgaan, die betekenis opbouwen door te interageren met elkaar en met hun

omgeving.

In deze thesis onderzoek ik hoe bepaalde aspecten van mensachtig taalbegrip

gemodelleerd kunnen worden door systemen te bouwen die elk op verschillende

delen van mensachtig taalbegrip focussen. Dit onderzoek heeft geleid tot drie

concrete contributies. Een eerste contributie gaat over de veronderstelling

dat taal niet gescheiden kan worden van de omgeving waarin het gebruikt

wordt. Ik introduceer namelijk een systeem dat taal kan verankeren in de

omgeving en het geheugen door een procedurele semantiek voor te stellen

die deze elementen integreert. Deze nieuwe methodologie behaalt state-of-the-

art resultaten op twee datasets voor de taak van visual dialogue. Een tweede

contributie bestaat uit een model dat begint van het idee dat taal inherent

verbonden is met individuele kennis, aangezien persoonlijke belevingen de

manier waarop mensen taal interpreteren, vormen. Dit systeem integreert taal

met het persoonlijke en dynamische kennissysteem van een agent. Een proof-

of-concept implementatie toont aan hoe verschillende agenten tot verschillende

interpretaties van dezelfde talige uiting komen op basis van hun individuele
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kennis. Een derde contributie start van het idee dat taalbegrip echt mensachtig

wordt als systemen kunnen reflecteren over hun eigen taalbegrip en wanneer ze

kunnen aangeven wanneer dit fout gaat, bijvoorbeeld omdat ze kennis missen.

Concreet gaat het over de ontwikkeling van een systeem dat ervoor zorgt dat

een agent zijn eigen proces van het begrijpen van taal kan monitoren. Dit zorgt

ervoor dat een agent kan inschatten hoe goed hij een tekst heeft begrepen en dat

hij kan identificeren en signaleren wanneer hij bepaalde aspecten niet begrepen

heeft. Dit monitorsysteem is toegepast op gevalstudies uit twee verschillende

taken, een visual dialogue taak en een taak met betrekking tot het begrijpen

van een recept. Deze systemen tonen hoe bepaalde aspecten van mensachtig

taalbegrip computationeel gemodelleerd kunnen worden en daardoor bieden

ze een meer mensachtig alternatief dan de huidige datagedreven systemen voor

natuurlijketaalverwerking.
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Chapter 1
Introduction
1.1 Towards human-like language understanding . . . . . . . . . . . . 1

1.2 Objective and contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Contribution: A system for grounding language in the world

and memory of an agent . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Contribution: A system for grounding language in the per-

sonal dynamic memory of an agent . . . . . . . . . . . . . . 6

1.2.3 Contribution: A system for monitoring the understanding

process of an agent . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Towards human-like language understanding
During the last years, the field of natural language processing (NLP) adopted the

use of data-driven, statistical approaches as its main method. This methodology

entails extracting statistical patterns from enormous amounts of textual data

and use those patterns to solve a wide variety of tasks. In particular generative

pre-trained language models or so-called large language models are trained to

generate text, thereby producing language that reaches an impressive level of

fluency and human-likeness. These approaches achieve impressive results on a

variety of tasks, for example summarisation, question-answering (see e.g. Zhao

et al., 2023, for an overview). Rapid advancements in this field have resulted in

1



2 CHAPTER 1. INTRODUCTION

the release of new large-scale models every few months such as GPT-3 (Brown

et al., 2020), PaLM (Chowdhery et al., 2022) and LLaMA (Touvron et al., 2023).

Also outside of the academic world, large language models have accumulated an

immense popularity. Especially ChatGPT, a chatbot introduced by OpenAI that

relies on the GPT-3.5 model, has gained a lot of attention. ChatGPT has found

its way into society and is adopted by the general public, who use it in a variety

of ways, for example as a writing or coding assistant, search engine or chat

companion. Moreover, current research investigates how these systems can be

applied in fields such as healthcare (see e.g. Sallam, 2023) or education (see e.g.

Kasneci et al., 2023), giving them an important role in society and trusting these

systems to make crucial decisions that have an impact on human lives.

Given that data-driven, statistical models achieve impressive results on tasks

and due to the high level of fluent language that they produce, it is often as-

sumed that these systems are able to understand language in a human-like

way. However, it can be argued that the way these systems learn language is

fundamentally different from the way humans do (Bender and Koller, 2020).

First, these systems are often only given enormous amounts of textual data

as input, from which they are trained to extract statistical patterns, thus only

capturing the form side of language. Humans, on the other hand, learn language

through interactions in the world. For example, children acquire language by

interacting with their caregivers in situated environments (Tomasello, 1995),

talking and referring to the objects around them in the world. Human language

is thus grounded in the world it is used in. Because these large neural models

mainly focus on the form side of language and since they do not take the sit-

uational context into account, it has been argued that they will not be able to

understand language in a human-like way (Bender and Koller, 2020). Second,

these systems often overlook a crucial aspect of language: meaning. Meaning is

inherently connected with language since the basic function of language is to

transfer a meaning from a speaker to a listener by means of linguistic utterances

(Grice, 1967). In order to make sense of what has been said, the hearer uses

all available knowledge to reconstruct the meaning that the speaker wanted

to convey. Not only linguistic knowledge can be used in this process, but it

can be necessary to use, for example, vision or common-sense knowledge in

order to make sense of what has been said. In short, humans are always trying

to make sense of a situation and meaning is thus inherently connected with

language. Although it may seem that pre-trained language systems capture

some sort of semantic knowledge, the semantics are not sufficient to achieve

truly intelligent systems, because meaning cannot be learned from textual data
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alone, but requires grounding in the world (Bender and Koller, 2020). Therefore,

intelligent systems need to be adept with mechanisms for grounding linguistic

utterances in other knowledge sources such as knowledge or vision in order

to achieve human-like language understanding. Another aspect in which it be-

comes visible that these large neural systems handle language in a different way

than humans are the errors that these models produce. By analysing the output

of the models, it becomes clear that the systems make mistakes that humans

would never make (Mitchell, 2019). These systems make, for example, mistakes

against common-sense knowledge (see e.g. Li et al., 2022; Ettinger, 2020) or

are not capable of making pragmatic inferences (Ruis et al., 2023). Lastly, it

is often believed within the data-driven NLP community, that the more data

that the system is trained on, the better the system will perform. However,

training on these large amounts of data has several repercussions, with limited

interpretability being one of them. Not only is it hard to understand the model

in itself, the data on which it is trained is so large that it becomes impossible

to comprehend what is in the training data of the model (Bender et al., 2021;

Kaddour et al., 2023), thereby making it a real challenge to control the input data

of the model. In contrast, humans are able to learn language from a relatively

small amount of data, needing significantly less data than what is required to

train a large language model (Frank, 2023).

In short, there are several reasons to assume that large language models do

not understand language in a human-like way. However, if these systems are

to be used in society as systems that work together with humans for example

to support education, or even as systems that make decisions in healthcare,

it is crucial that human-like language capabilities are modelled. By building

more human-like systems, humans will be able to understand the output and

behaviour of the systems better. Moreover, if the systems are interpretable, the

decisions of the models can be explained, thereby making it possible to rectify

the potential mistakes and maybe even adjust the model, which is certainly

necessary in high-risk settings.

In this thesis, I investigate how more human-like systems can be built that, in

contrast to statistical, data-driven approaches, are able to understand language

in a human-like way. In order to build such systems, three aspects, related

to the problems with the systems described earlier, need to be considered,

namely grounding, meaning and self-reflection. First of all, language systems

cannot be seen independently from the world. They need to be integrated with

other sources of knowledge that ground the language into the environment,

for example the vision system or knowledge system (Steels, 2023). Secondly,
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these systems need to be able to handle meaning, preferably by using explicit

meaning representations. Taking inspiration from intelligent systems such as

SHRDLU (Winograd, 1972) or LUNAR (Woods et al., 1972) and by building further

on more recent systems such as the one introduced in Nevens et al. (2019a),

I use procedural semantics as a meaning representation underlying linguis-

tic observations. As introduced by Winograd (1972), Johnson-Laird (1977) and

Woods et al. (1972) procedural semantics are meaning representations that are

directly executable. These semantics can thus be executed computationally. In

order to map linguistic utterances onto their meaning representations, I rely

on computational construction grammar, which is an operationalisation of con-

structionist approaches to language (Fillmore, 1988; Goldberg, 1995, 2003; Croft,

2001). Specifically, I use Fluid Construction Grammar (Steels, 2011, 2017; van

Trijp et al., 2022; Beuls and Van Eecke, 2023) to extract the meaning representa-

tions underlying the linguistic observations by designing grammars for this task.

Once the meaning is retrieved, it can be executed, due to the procedural nature

of procedural semantics. By using explicit meaning representations, the systems

become more interpretable. Thirdly, human-like language understanding needs

a way of reflecting on the understanding process to enable an agent to identify

and signal failures in understanding. By modelling the ability to reflect on the

understanding process, the systems are capable of indicating when they are not

certain of a decision. This is crucial when working together with humans since

humans need to be able to trust the output of the systems.

Concretely, this thesis introduces two case studies on modelling human-like

language understanding systems using procedural semantics and one additional

system that monitors the understanding process. Since the topic of human-

like language understanding is quite broad, I limit the scope of this thesis to a

selection of aspects of language understanding (discussed in 1.2). Specifically, I

focus in the two case studies on (i) grounding linguistic utterances in the memory

and vision of an agent and (ii) grounding utterances in the personal knowledge of

an agent. The monitoring systems monitors the contribution of the knowledge

sources that were consulted during the language understanding process. One

of the two case studies introduced in this thesis focusses on building a system

that achieves state-of-the-art results on benchmark tasks. The other system

focusses on introducing a novel methodology by means of a proof-of-concept

implementation, not competing on tasks, but laying the foundations of a model

that can model crucial aspects of human-like language understanding. It is also

necessary that the monitoring system is applicable on multiple tasks, therefore

I apply this system on two widely different systems. All these systems are
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integrated within the broader Babel framework (Loetzsch et al., 2008; Steels

and Loetzsch, 2010; Nevens et al., 2019b), which provides a solid foundation for

research and experiments in the field of language games.

Next, I will elaborate on the main objective of this thesis as well as the three

concrete contributions.

1.2 Objective and contributions
The main aim of this thesis is to investigate how intelligent systems that perform

human-like language understanding can be built. Since language understanding

is a broad term, I focus on a selection of aspects of human-like language under-

standing as requirements for the systems. A first requirement relates to using

meaning representations, as meaning is a central component to human-like

language understanding. More specifically, I use procedural semantics, which

has the advantage of being directly executable, making it an ideal choice of

meaning representation in intelligent systems. Second, in contrast to data-

driven approaches that are, for the most part, based on textual information,

the systems in this thesis need to be able to ground language in the world

as well as in their previously acquired knowledge. Concretely, I introduce two

systems that can ground linguistic utterances in the situational environment and

previously acquired knowledge using procedural semantics. These systems are

discussed in Chapter 4 and 5 respectively. Moreover, I investigate how a system

that models the human-like capability of reflecting on its own understanding

process can be made. Humans are able to signal when they fail to understand

and can ask for further explanation if necessary. This system is introduced in

Chapter 6. A last requirement is the interpretability of the systems. All systems

are preferably human-interpretable, thereby making the systems explainable.

The research towards modelling these requirements in language understanding

systems resulted in three concrete contributions.

1.2.1 Contribution: A system for grounding language in the
world and memory of an agent

A first contribution of this thesis consists in a system that is able to ground

language in the world and memory. This relates to the human-like aspect that

linguistic utterances cannot be separated from the environment that they are

not uttered in. To achieve this, a case study on challenging NLP benchmarks

datasets for the task of visual dialogue (Das et al., 2017) was set up. This task
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requires an agent to ground the questions both in the image that is provided

as well as in the history of the dialogue. The goal is to build a system that has

human-like language understanding capabilities while being able to compete

with statistical, data-driven approaches on the visual dialogue challenge.

The visual dialogue task as introduced by Das et al. (2017) requires an agent to

answer a series of questions about an image. The questions require the agent

to be able to ground the question into the image. Moreover, since the task is

to answer a series of questions, each question needs to be embedded into the

larger context of the dialogue, which requires grounding the language in the

memory of the agent. To solve the task, I introduce a procedural semantics

that integrates language, the image and the memory. Moreover, the procedural

semantics can be executed in a neuro-symbolic way, combining the strengths of

both the neural and symbolic approaches. In order to retrieve the procedural

semantics, I designed a grammar that can map between the linguistic utterances

in the dataset (i.e. the captions and questions) to their meaning representations.

This contribution is discussed in detail in Chapter 4, and is supported by a web

demonstration (Verheyen et al., 2022b), which can be found here: https://ehai.
ai.vub.ac.be/demos/visual-dialog/. The research resulted in the following
papers:

• Verheyen, L., Botoko Ekila, J., Nevens, J., Van Eecke, P., and Beuls, K. (2023).

Neuro-symbolic procedural semantics for reasoning-intensive visual dia-

logue tasks. In Gal, K., Nowé, A., Nalepa, G. J., Fairstein, R., and Rădulescu, R.,

editors, Proceedings of the 26th European Conference on Artificial Intelligence

(ECAI 2023), pages 2419–2426, Amsterdam, Netherlands. IOS Press

• Verheyen, L., Botoko Ekila, J., Nevens, J., Beuls, K., and Van Eecke, P. (Un-

der review). Neuro-symbolic procedural semantics for explainable visual

dialogue

1.2.2 Contribution: A system for grounding language in the
personal dynamic memory of an agent

A second contribution of the thesis is a system that can ground language in the

personal dynamic memory of an agent. As a result, different agents can interpret

the same utterance differently, coming to different conclusions. Concretely, I

introduce a system that is able to ground language into a knowledge and belief

system, through a procedural semantics representation that is based on frames

(Fillmore, 1976; Fillmore and Baker, 2001). This frame-based meaning represen-

https://ehai.ai.vub.ac.be/demos/visual-dialog/
https://ehai.ai.vub.ac.be/demos/visual-dialog/
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tation can straightforwardly be integrated with the knowledge in the personal

dynamic memory of an agent. The procedural nature of the representation

comes from the fact that it is used by a reasoning engine to reason over the

knowledge of the agent. The meaning representation underlying the linguistic

utterances is retrieved by a designed grammar. During the interpretation of

the language with regards to an agent’s knowledge system, a narrative is con-

structed. This narrative is a personal view of the linguistic observation at hand

and is rooted in the agent’s knowledge system. By integrating language with

a personal dynamic memory of an agent, the narratives that are constructed

become truly individual and personal. In contrast to the previous contribu-

tion, the contribution of this system lies not in a system that can compete with

state-of-the-art models on benchmark challenges. Instead, it lies in a proof-of-

concept system that is able to combine crucial aspects of human-like language

understanding, thereby laying the foundations of how such a system would be

achieved.

I expand on this contribution in Chapter 5. The research resulted in the following

paper:

• Van Eecke, P., Verheyen, L., Willaert, T., and Beuls, K. (2023a). The Candide

model: How narratives emerge where observations meet beliefs. In Akoury,

N., Clark, E., Iyyer, M., Chaturvedi, S., Brahman, F., and Chandu, K., editors,

Proceedings of the 5th Workshop on Narrative Understanding (WNU), pages

48–57. Association for Computational Linguistics

1.2.3 Contribution: A system formonitoring the understand-
ing process of an agent

The last contribution lies in a monitoring system that tracks the understanding

process of an agent. It relates to the human-like capability of reflecting on their

own understanding process. When humans are trying to understand the sit-

uation at hand, they can identify when the understanding goes sideways and

even identify where the understanding went wrong, sometimes even by identify-

ing which type of knowledge was missing. During the language understanding

process, different knowledge sources need to be consulted.

Concretely, I introduce a novel data structure, the Integrative Narrative Network

(INN), which captures all information in the form of narrative questions and

answers that come from the different knowledge sources that are consulted

during the understanding process. The INN thus represents what the agent
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understood during the understanding process. Through this network, the agent

can identify possible knowledge gaps, which occurs when there are crucial

narrative questions that are left unanswered. Moreover, the INNs at the end

of the understanding process can be used to quantify how much an agent

understood during a task.

Chapter 6 discusses this contribution in detail. It resulted in the following papers:

• Steels, L., Verheyen, L., and van Trijp, R. (2022a). An experiment in measur-

ing understanding. In Workshop on semantic techniques for narrative-based

understanding: Workshop at IJCAI-ECAI 2022, pages 36–42

• Steels, L., Verheyen, L., and van Trijp, R. (2022b). An experiment in mea-

suring understanding. In Schlobach, S., Pérez-Ortiz, M., and Tielman, M.,

editors, HHAI2022: Augmenting Human Intellect. Proceedings of the First Inter-

national Conference on Hybrid Human-Artificial Intelligence, pages 241–242.

Frontiers in Artifical Intelligence and Applications

• Steels, L., Verheyen, L., and van Trijp, R. (Under Review). Integrative narra-

tive networks. Journal of Artificial Intelligence Research

1.3 Structure of the thesis
The remainder of the thesis is structured as follows. Chapter 2 discusses the

background on the topics of language understanding, procedural semantics and

construction grammar. The technical foundations that underlie the thesis are

introduced in Chapter 3. In Chapter 4, I introduced a neuro-symbolic procedural

semantics to tackle a visual dialogue task (see contribution 1). Chapter 5 focusses

on the second contribution that consists in a system that introduces a frame-

based procedural semantics grounded in the knowledge system of an agent. The

last contribution of a monitoring system through the use of Integrative Narrative

Networks is discussed in Chapter 6. Lastly, the conclusions and future work are

discussed in Chapter 7.
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2.1 Introduction
In this chapter, I lay out the conceptual foundations underlying this thesis. The

literature discussed here provides the background that is shared among the

chapters. Each of the individual chapters (i.e. Chapter 4, 5 and 6) has its own

background section, discussing the literature that is relevant for the research

9
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presented in that chapter.

In Section 2.2, I discuss the literature on human-like language understanding.

I start the discussion by briefly touching upon some well-known language un-

derstanding systems. Then, I discuss what human-like language understanding

entails. I argue that it is the process of interpreting language in which mean-

ing is built up by consulting relevant sources of knowledge. To operationalise

this process, it is necessary to keep several crucial components in mind. First,

truly human-like language understanding systems need to be able to represent

meaning. Second, these intelligent systems need a way of accurately modelling

their knowledge and context. Lastly, the systems need a way of parsing the

linguistic utterances to their respective meaning representations. In Section 2.3,

I discuss one of these meaning representations, namely procedural semantics,

in more detail. Crucially, procedural semantics are meaning representations that

can be executed computationally. Due to this direct executability, the meaning

representations can be integrated in intelligent systems in a straightforward

way, without first needing to transform the meaning representations into an

executable format. In Section 2.4, I discuss construction grammar, which is a

linguistic theory that starts from the assumption that all linguistic knowledge is

captured in form-meaning mappings called constructions. Due to this focus on

meaning, construction grammar, in contrast to more generative approaches to

language that often exclude semantics, is well-suited to operationalise language

processing in human-like language understanding systems. Both procedural

semantics as well as construction grammar are two theoretical frameworks that

exhibit well-suited properties to operationalise the language processing in truly

intelligent systems. Therefore, I use both approaches as a theoretical foundation

as well as the operationalisation (discussed in Chapter 3) of these approaches in

the remainder of the thesis.

2.2 Human-like language understanding
Ever since the beginning of the field of AI, building systems that can communicate

with humans has had a central position. In particular, the Turing test (Turing,

1950) is one of the first and arguably most important challenges introduced in

the field. This test was proposed as a way to measure intelligence, and in the

test a human evaluator needs to hold a conversation with both an AI system

and another human.1 The AI system is said to pass the Turing test if the human

evaluator cannot tell the difference between its two interlocutors. Although

1Originally, the test was described to be about distinguishing a man and a woman.
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this test is arguably one of the most well-know and impactful tests in AI, there

has been a lot of debate on what this test actually measures. The question

is whether the test measures the capacities of intelligence, involving language

understanding, or the capability of mimicking language use (see e.g. Pinar Saygin

et al., 2000, for an overview of the debate). Indeed, is it necessary to understand

language to hold a conversation and pass for a human, or is it sufficient to

be able to mimic language use based on the patterns derived from human

language?

During these first years, many interesting systems for human-like language

understanding were developed. Winograd (1972) introduced SHRDLU, a system

that takes requests in natural language to perform actions in a blocks world and

answer questions about the state of the world. Woods et al. (1972) introduced a

system that could answer questions by retrieving information from a database

on moon rocks. One of the first systems that was able to chitchat with humans

was ELIZA (Weizenbaum, 1983). ELIZA took the role of a psychologist and was

able to hold a conversation with a human. The system was remarkably impres-

sive, and many believed that ELIZA has human capabilities, such as language

understanding or emotion detection. This was, however, not the case. The

system was cleverly designed and made use of mechanisms such as keyword

detection as well as a script to respond to the user, which made the users feel

like the system actually understood them. The tendency of humans to attribute

human capacities to an AI system is called the ELIZA-effect.

Nowadays, large language models are often said to perform human-like lan-

guage understanding. Transformer-based models (Vaswani et al., 2017) such

as GPT (Radford et al., 2018), BERT (Devlin et al., 2018) and their descendants,

are trained on incredibly large amounts of textual data and are able to generate

language that resembles human language to an expressive extent. However,

partly due to the ELIZA-effect, people now attribute human capacities such as

understanding and even consciousness to these models (Mitchell and Krakauer,

2023), thereby anthropomorphising these systems and crediting them with capa-

bilities than they don’t necessarily have (Shanahan, 2022). It is argued by Bender

and Koller (2020) that these systems are not capable of understanding in a truly

human-like way, since they learn language in a fundamentally different way from

the way humans do. These systems are trained on enormous amounts of textual

data for the task of next-word prediction. After these large-scale models are

trained, techniques such as fine-tuning or zero- or few-shot learning (Wei et al.,

2022a; Brown et al., 2020) are applied to these models so that they can ‘tackle’

other types of tasks, such as question-answering or machine translation. More-
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over, chain-of-thought prompting (Wei et al., 2022c) is used to elicit the model

to reason. It is believed that these models have human reasoning capacities

(Bisk et al., 2020b; Wei et al., 2022c; Cobbe et al., 2021). It is, however, impor-

tant to keep in mind that the underlying task that these models were trained

on is still next-word prediction. Moreover, by analysing the output of these

models, it becomes clear that they lack crucial human-like aspects, for example

common-sense knowledge (see e.g. Li et al., 2022; Ettinger, 2020), reasoning ca-

pabilities (see e.g. McKenna et al., 2023; Bender and Koller, 2020; Gendron et al.,

2023), the ability to make implications (Ruis et al., 2023), consistency over factual

knowledge (Elazar et al., 2021), logical deduction (Berglund et al., 2023) and

grounding (Collins et al., 2022). There is, on the other hand, a large support for

these systems, saying that they are capable of human-like language and claiming

that these systems even shown ‘emergent’ abilities (i.e. abilities that show up in

large models that were not attested for in smaller models) (Wei et al., 2022b),

for example the ability to answer questions through prompting techniques. Lu

et al. (2023) dispute these capabilities by stating that it is just in-context learning.

Indeed, how would it be possible that a system that is trained to generate text

suddenly have the capability of truly understanding? Of course, due to the many

statistical patterns that are present in text and due to the syntactic patterns,

that, to a large extent, resemble semantic patterns, it seems like these systems

are able to understand language (Titus, forthcoming).

The question thus rises whether these systems perform human-like language

understanding or whether they are merely mimicking language use. In order to

answer this question, it is necessary to understand what human-like language

understanding entails. In what follows, I will first discuss how we can come to

a definition of human-like language understanding (Section 2.2.1). In Section

2.2.2, I will discuss how this process can be operationalised.

2.2.1 Towards a definition of human-like language understand-
ing

Although language understanding comes naturally to humans, it is not hard

to define. Several definitions of language understanding have been proposed

throughout the years. Recently, based on their respective literature reviews,

Blaha et al. (2022) and Hough and Gluck (2019) define understanding as follows:

“Understanding is an ongoing cognitive activity of acquiring, integrat-

ing and expressing knowledge according to the task or situation at

hand.” (Blaha et al., 2022, p. 3)
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“The acquisition, organization, and appropriate use of knowledge to

produce a response directed towards a goal, when that action is taken

with awareness of its perceived purpose.” (Hough and Gluck, 2019,

p. 23).

From these definitions, it becomes clear that language understanding involves

many aspects. I want to highlight a few of them.

First, language understanding is a process, and not only an end result. It is the

process of interpreting language, while trying to make sense of the language at

hand. That is, language is uttered with the purpose of conveying a particular

intention to a listener in a specific context (Grice, 1967) and the listener is tasked

to reconstruct this intention. Crucially, this is done based on the available context

and the personal knowledge of a human, leading to a personal and individual

interpretation.

Second, the ‘appropriate use of knowledge’ is needed to enable language un-

derstanding since language understanding is about the process of constructing

meaning based on the relevant information, knowledge, common sense and

beliefs of an individual. It is thus necessary to use these types of knowledge

to come to an interpretation. During this language understanding process, a

rich model of the utterance is constructed which integrates the information

extracted from the observation itself, with information from the other sources

that were consulted during the process (Steels, 2022b). Steels (2022a) argues

that both ‘fast’ and ‘slow’ thinking (Kahneman, 2011) are required in the lan-

guage understanding process. Fast thinking is a form of reactive intelligence.

This type of thinking is a reaction to a stimulus, a response that is given without

thinking. Slow thinking on the other hand is deliberative. During this type of

thinking, a rich model of the situation is built up and from this model, inferences

and conclusions can be made. Thus, the deliberative mode builds up a rich

model of the observed utterance during language understanding. The reactive

mode contributes to this process by providing information from cues that evoke

a fast response, for example, perception (e.g. a fast recognition of a visual

stimulus). It is thus necessary to combine more reactive techniques to AI (e.g.

neural networks) together with more deliberative techniques (e.g. knowledge

representation and reasoning) (Steels, 2022a). Neuro-symbolic techniques are

well-suited for this type of integration (see e.g. Hitzler and Sarker, 2022, for an

overview of the state-of-the-art).

Third, it is necessary to interpret the language with respect to the context, i.e. the

situational context as well as the discourse context, it is uttered in. Language is
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grounded in the world and is learned through the experiences and interactions

of humans (Bisk et al., 2020a; Tomasello, 2003). Grounding the language in the

world is thus crucial. For example, when someone calls out “Duck!”, it depends

on the situational context whether the speaker meant to call an animal or to

warn someone to duck. Moreover, in addition to considering the situational

context, discourse must also be considered (Winograd, 2001), for example to dis-

ambiguate utterances. Again, it is necessary to consult the necessary knowledge

sources to interpret the context. In discourse, the ambiguity may lay in the use

of pronouns. If a speaker says, “He is fine now!” after a conversation in which

two persons were mentioned, with one of them being ill, the “he” will most likely

refer back to the person that was previously mentioned to be ill.

Fourth, an aspect that is not captured explicitly in the definitions above is that

the process of understanding is personal. It is based on an individual’s own

knowledge, beliefs and perception of the situation. Therefore, it is often the case

that humans come to different interpretation, based on their own views on the

situation. Crucially, this interpretation process involves narratives (Bruner, 1991).

Narratives are based on the personal experiences of the individual and describe

a specific situation or event and are used to make sense on the situation at hand.

Recently, there has been a focus on formalising narratives based on the task

and system at hand (Porzel, 2021). This enables the modelling of narratives in

language understanding systems. However, due to the personal and individual

nature of this understanding process, it is hard to evaluate. Because there is no

ground truth, it is the consistency of the interpretation that needs to be taken

into account.

To summarise, human-like language understanding thus involves the process

of interpreting language using the appropriate knowledge sources based on

both the situational and the discourse context, thereby building up meaning.

Certainly, humans are always trying to make sense of the situation at hand in

their own personal and individual way. This sense-making process often requires

the consultation of several knowledge sources and flows in many directions.

It can for example be the case that the interpretation of a situation requires

common sense knowledge which in its turn requires knowledge from the visual

context.

2.2.2 Operationalising human-like language understanding
Language understanding for humans is a complex process in which different

types of information need to be consulted with information flowing in many
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directions. To operationalise this process in intelligent systems, it becomes

necessary to break it down into several sub-processes. As a first step, a language

processing system parses the utterances to their meaning representation. Then,

these meaning representations are executed or ‘interpreted’, thereby consulting

knowledge sources when necessary. To operationalise these processes, three

components are required. First, meaning needs to be represented in a way

that it can be used and executed by intelligent systems. Second, it is necessary

to model the knowledge of the system. Lastly, it is necessary to implement

a language processing system that can parse linguistic utterances into their

meaning.

Meaning representations
In language understanding systems, the semantics underlying the form side of

language are often modelled through meaning representations. These mean-

ing representations can broadly be divided in two categories: formal meaning

representations and distributional meaning representations. Formal mean-

ing representations focus on representing the logical meaning of sentences,

while distributional approaches capture the meaning of words in terms of their

distribution. I will briefly discuss well-known examples of both approaches.

Formal meaning representations capture the meaning of sentences in the form

of logical statements. Well-known formal meaning representations include

Abstract Meaning Representation (AMR; Banarescu et al., 2013), Discourse Rep-

resentation Theory (DRT; Kamp and Reyle, 2013), frame semantics (Fillmore,

1976) and procedural semantics (Winograd, 1972; Woods, 1968; Woods et al.,

1972). First, Abstract Meaning Representation (AMR; Banarescu et al., 2013) is

a meaning representation that captures the semantics of English sentences in

rooted, labelled, directed, acyclic graphs. It makes use of the PropBank framesets

(Palmer et al., 2005) which include frames and their arguments. AMR does not

capture tense, aspect and does not go beyond the sentence level. Dialogue-AMR

(Bonial et al., 2019) is an extension of the standard AMR designed to facilitate

human-robot dialogue. It captures the illocutionary force of language through

speech acts and takes into account tense and aspect. Another meaning rep-

resentation that goes beyond the sentence level is Discourse Representation

Theory (DRT; Kamp and Reyle, 2013). DRT is an approach to semantics with a

focus on representing the discourse structure. It is a logic representation repre-

senting a mental representation of the discourse. It starts from the discourse

referents, which are the entities that are introduced in the discourse. These

referents are subject to certain conditions, which represent the information
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that has been given throughout the discourse. Throughout the sentences, dis-

course referents can be made equal, building up the information that is gained.

Next, frame semantics (Fillmore, 1976; Fillmore and Baker, 2001) capture the

meaning in terms of frames and slots. A frame can be seen as a schematic

representation capturing a perspective on a situation. A frame is accompanied

by its participants. Frames are ‘evoked’ by words, meaning that when a certain

lexical item is heard, a frame is raised mentally. The idea of semantic frames

led to the FrameNet project (Baker et al., 1998), in which they are trying to

identify semantic frames together with an annotated corpus. Lastly, procedural

semantics (Winograd, 1972; Woods, 1968; Woods et al., 1972) can be seen as

an umbrella term for meaning representations that are directly executable. The

meaning can take the form of the steps that are needed to find a solution to the

utterance, for example in the systems introduced by Winograd (1972); Woods

et al. (1972); Nevens et al. (2019a). Meaning representations can also consists

of logical statements that can then be executed. Winograd (1975) discusses

the procedural aspects of frame semantics, and in Chapter 5, I will introduce

a frame-based meaning representation that can be executed through a logic

inference system, which can thus be seen as a procedural semantics.

Distributional semantics starts from the assumption that the meaning of a word

is based on the distribution it occurs in. “You shall know a word by the company it

keeps.” (Firth, 1957) is often cited in this context. These ‘statistics-of-occurrence’

(Titus, forthcoming) approaches follow the distributional hypothesis, namely that

the meaning of a word comes from its occurrence. These meanings consists in

the embeddings that are learned by training a model to predict the next word(s)

based on large text corpora. Examples of such word embeddings include CBOW,

Skip-gram and GloVe (Mikolov et al., 2013a,b; Pennington et al., 2014). Moreover,

models such as GPT (Radford et al., 2018) or BERT (Devlin et al., 2018) can be

attributed to this category. These models are able to take into account more

context into the embedding, called ‘contextual embeddings’, thereby achieving

impressive results on a variety of tasks (see Liu et al., 2020, for an overview).

The learned embeddings are often believed to contain semantic information. It

can be argued, however, that these embeddings cannot contain true semantic

information and they only seem to capture meaning, since they are learned from

textual data alone (Bender and Koller, 2020; Wu et al., 2021), the generation is

not driven by semantic properties (Titus, forthcoming) and they are not linked to

beliefs, perception and the world (Lake and Murphy, 2023).

In the remainder of the thesis, I use formal semantics and more specifically

procedural semantics as the meaning representation underlying the can be
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argued that distributional approaches appear to capture meaning since they

only take the form side of language into account. Formal semantics start from

a more human-like perspective on meaning. They capture the semantics in

the form of logical statements that can be used for reasoning. Moreover, due

to the directly executability of procedural semantics, it is highly adequate to

use in intelligent systems. While other formal semantics are very successful

in capturing and representing the meaning, they often need another step to

operationalise them in the systems. By using procedural semantics, the need

for such a step is removed. In Section 2.3, I will dive deeper into detail on this

meaning representation. In Chapter 4 and 5, I introduce procedural semantics

representations for the tasks of visual dialogue and narrative construction.

Representing knowledge and context
Beside meaning representations, it is necessary to model the knowledge of a

system as well as the context. As Porzel (2010) argues, it is necessary to account

for formal models of knowledge and context in order to build systems that

have the same robustness of human languages, which includes the ability to

resolve ambiguities, underspecification and noise. Knowledge is thus a crucial

component of human-like language understanding systems since the systems

need to be able to consult this knowledge during the interpretation process. I

use ‘knowledge’ is a very broad sense, ranging from factual knowledge about

the world, to common sense, beliefs, concepts and procedures that are able to

ground the language into the world.

In general, a distinction can be made between semantic knowledge and episodic

knowledge (Tulving, 1972). Semantic knowledge is about the commonly known

facts, about the factual information. Episodic knowledge (Tulving, 1972) on the

other hand is a form of ‘remembering’ the past experiences of an individual.

This type of knowledge is about the events that a person has experienced,

often containing perceptual and temporal information. One of the ways in

which this information is represented is in terms of frames as introduced by

Minsky (1974) and later developed by Fillmore (1976); Fillmore and Baker (2001)

as a linguistic theory. Frames are schemas that contain slots that represent

the frame’s participants. Often, frames are the data structure that is used to

represent the knowledge of a system. The goal of modelling semantic memories

led to the development of large knowledge bases and ontologies that aim to

capture on the one hand the information that is available on the web, such as

Wikidata (Vrandečić and Krötzsch, 2014) and DBpedia (Lehmann et al., 2015)

and on the other hand common sense knowledge, such as Cyc (Lenat, 1995).
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However, evaluating these ontologies is a hard task, and often human experts

are consulted (see e.g. Gómez-Pérez, 1999). Porzel and Malaka (2004) propose

a way of quantitatively evaluating ontologies. The challenge is here that these

knowledge bases need to be complete and correct in their representation of

knowledge. The knowledge bases can then be consulted by query languages

such as SPARQL and SQL to enable the use of this knowledge in the language

understanding system. Crucially, the knowledge of humans is not fixed, as they

learn over time. The memory of humans is dynamic (Schank, 1983), by adding

new information over time as new experiences come in.

Furthermore, context cannot be separated from the process of language un-

derstanding, since language is grounded in the world as well as the discourse.

It is thus necessary that the context is taken into account when dealing with

language. Early language understanding systems such as SHRDLU (Winograd,

1972) model the context (i.e. a blocks world) in a symbolic way. The discourse

is modelled through a list that keeps the entities that are mentioned. In later

neural approaches, grounding is often done through the use of a part of the

model that encaptures the information in the context. This is then integrated

with the remainder of the model. For example, models that are introduced for

the task of visual dialogue (Das et al., 2017), which involves answering a series

of questions about visual input, use encoder-decoder based models to capture

both the discourse as well as the image (see e.g. Das et al. (2017); Lu et al. (2017);

Wu et al. (2018). Also the recent transformer-based systems are taking into

account the context, for example by training on a dataset that contains both

language as well as visual input, resulting in the so-called large vision-language

models, for example, the well-known DALL-E system (Ramesh et al., 2022) (see

e.g. Du et al., 2022, for an overview of other systems).

It is thus essential to accurately model both the knowledge that a system pos-

sesses as well as the context that the language is uttered in. In this thesis,

modelling these two aspects and consulting them during the execution of the

procedural semantics representation takes a central role. In Chapter 4, Imodel

both the situational (i.e. an image) as the discourse context in a symbolic way.

Both these representations can be consulted during the execution of the proce-

dural semantics. In Chapter 5, I introduce the concept of a personal dynamic

memory that stores all knowledge that an agent holds, including factual knowl-

edge and beliefs, in the form of a frame-based representation. This is consulted

through the logic inference that takes place during the execution of the meaning

representation. In Chapter 6, I introduce the Integrative Narrative Networks, a

data structure that captures the understanding process of the agent by integrat-
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ing the contributions from the different knowledge sources that are needed to

understand the language at hand.

Parsing
In order to build systems for language understanding, adequate parsing sys-

tems are needed. Systems for parsing language can be divided into two broad

categories: (i) syntactic parsing systems, which mainly focus on retrieving the

syntactic structure underlying a natural language utterance and (ii) semantic

parsing systems, which focus on retrieving the semantic representation underly-

ing a natural language utterance. Since meaning representation are a central

component of this thesis, I focus on semantic parsing techniques. In particu-

lar, systems that are able to map natural language queries onto an executable

meaning representation are of interest. In what follows, I will give an overview

of parsing techniques, with a specific focus on systems that are able to retrieve

a meaning representation underlying the natural language utterances.

Parsing language has known a long history with a variety of approaches. One of

the most well-known approaches is generative grammar, pioneered by Chomsky

(1956). This approach focuses on designing grammars that capture the innate

grammatical structure of well-formed linguistic expressions. This grammatical

structure is captured in terms of a hierarchical tree structure built through the

application of rules that combine constituents. These rules allow to generate

and parse only the well-formed, grammatical utterances of a language. These

grammars are also called constituency grammars or phrase structure grammars.

On a computational level, this process is operationalised through context-free

grammars. Context-free grammars consist of (i) a lexicon that defines the words

and symbols in the language and (ii) a set of rewrite rules that determine how

symbols can be combined. For example, the lexical elements “the” (DETERMINER)

and “cat” (NOUN) can be combined through the rules NOMINAL → NOUN and
NP → DETERMINER NOMINAL. Although the main focus of context-free gram-
mars is on syntactic parsing, variations on context-free grammars have been

introduced throughout the years to map natural language onto their meaning

representations (see e.g. Wong and Mooney, 2007; Huang et al., 2008).

Throughout the years, generative grammar has evolved into different approaches

which can largely be divided into transformational and non-transformational

generative approaches. Transformational approaches introduce the concept of

transformations to go from the deep structure of a sentence (i.e. the phrase

structure) to the surface structure which corresponds to the actual sentence.
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Theories such as government and binding theory (Chomsky, 1993a) and mini-

malism theory (Chomsky, 1993b) belong to the transformational approaches.

Again, the focus is on the syntactic parse of a sentence from which, if needed,

semantic relations can be derived.

The non-transformational approaches such as Head-Driven Phrase Structure

Grammar (HPSG; Pollard and Sag, 1994) and Sign-based Construction Grammar

(SBCG; Boas and Sag, 2012) introduce a constraint-based formalism to analyse

sentences. They use attribute-value matrices to describe the rules and lexical

elements in the grammar and rely in unification to build up phrase structures.

This approach is heavily lexicalised since it starts from the lexical elements in the

grammar on which abstract rules can apply. Meaning is thus built up composi-

tionally from themeaning of the lexical items. HPSG has been used as a semantic

parsing engine to map natural languages onto their meaning representation

(see e.g. McFetridge et al., 1996; Frank et al., 2007). The generative approach of

Tree-Adjoining Grammar (TAG; Joshi and Schabes, 1997) starts from trees as the

basic element in the syntactic structure. These trees can be combined through

operations such as adjunction or substitution. Since the minimal element is a

tree structure, TAG grammars are tree generation systems. Extensions of TAG

have been used for semantic parsing (Lichte and Kallmeyer, 2017; Arps and Pe-

titjean, 2018; Bladier et al., 2023). Further, Lexical-Functional Grammar (Bresnan,

1978, 1985) can be seen as a generative approach that analyses utterances on

distinct levels. Mainly, a distinction is made between the level that captures

the syntactic constituent structure of a sentence and a level that captures the

grammatical functions.

Another influential approach based on phrase structure grammars is Combina-

tory Categorial Grammar (CCG; Steedman, 1987). This approach starts from the

assignment of categories, which are either atomic or single-argument functions,

to lexical elements. Through a set of minimal operators, such as application,

composition and type-raising, sentences can be parsed. Simultaneously, a

meaning representation in terms of lambda calculus can be built. In this way,

Combinatory Categorial Grammar can be used as a semantic parsing engine

that maps natural language utterances into logical forms, e.g. Zettlemoyer and

Collins (2005, 2007); Artzi and Zettlemoyer (2011); Kwiatkowski et al. (2010);

Krishnamurthy and Mitchell (2012); Berant et al. (2013); Cai and Yates (2013);

Reddy et al. (2014); Pasupat and Liang (2015).

While the approaches discussed above play a prominent role in parsing natural

language, they all primarily focus on the compositional aspects of language.
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However, there are non-compositional aspects to language, for example in the

case of idioms. Indeed, the meaning underlying idioms cannot be derived from

the combination of the meaning of the lexical items. Construction grammar, as

pioneered by Fillmore (1968, 1988) and Goldberg (1995), is a linguistic approach

that starts from this non-compositionality of language. Construction grammar

states that all linguistic knowledge is captured in form-meaning mappings called

constructions. These constructions can contain information from all levels of

linguistic analysis (e.g. phonology, morphology, syntax, pragmatics). Moreover,

constructions can range from fully instantiated (e.g. a lexical item), partially

instantiated (e.g. the X-LET-ALONE-Y-CXN analysed by Fillmore et al., 1988) to fully

abstract constructions (e.g. an intransitive construction). Construction gram-

mar thus takes as basic element the construction which maps between form

and meaning. This analysis makes it straightforward to analyse idioms as con-

structions that map between the form of the idiom and its non-compositional

meaning. For example, the PIECE-OF-CAKE-CXN is a mapping between the form “a

piece of cake" and the meaning that something is easy. In this example, it is clear

that the meaning cannot be derived from the lexical elements, which would

result in a slice of some delicious, sweet dessert. Thus, construction grammar

gives semantics a central role in linguistic analysis since it views meaning as

an integral part of a construction. In contrast to most generative approaches,

meaning does not need to be derived from the syntactic analysis, which makes

construction grammar ideal for retrieving meaning representations underly-

ing linguistic utterances. Fluid Construction Grammar (Steels, 2004; van Trijp

et al., 2022; Beuls and Van Eecke, 2023), a computational implementation of

construction grammar, has been used as a semantic parsing system to map

between linguistic utterances and their meaning representation (see e.g. Nevens

et al., 2019a; Doumen et al., 2023, respectively for the design and the learning

of such grammars). For a more detailed discussion on construction grammar,

see Section 2.4.

Besides grammar-based approaches, other techniques have been used to map

natural language onto meaning representations. Indeed, the task of semantic

parsing has also been tackled in a more probabilistic approach. Specifically

neural approaches are commonly used to parse language to a meaning repre-

sentation. For example, RNNs have been used to map questions onto meaning

representations (Andreas et al., 2016a; Dong and Lapata, 2016; Zhong et al.,

2017; Cheng et al., 2019). Recently, large language models have been used as a

semantic parsing technique (see e.g. Drozdov et al., 2022; Shin and Van Durme,

2021; Gao et al., 2023; Chen et al., 2022; Cheng et al., 2023; Subramanian et al.,
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2023).

Grammar-based approaches generally have the advantage of being accurate and

interpretable. Neural approaches can be more broadly used and can achieve

impressive results, but require more training data. In general, using a parser that

maps language to a meaning representation has the advantage of making the

system more interpretable since the grammar that is used can be observed and

interpreted. In terms of the grammar-based approaches, construction grammar

is a good fit, since it uses the notion of a construction (i.e. a mapping between

form and meaning containing information from all levels of linguistic analysis)

as its most fundamental unit. Therefore, construction grammar is useful for

handling the non-compositionality of language. For these reasons, I will adopt

this approach and specifically its computational implementation in terms of

Fluid Construction Grammar as a parsing engine throughout the thesis.

In this thesis, I will use computational construction grammar as a way of parsing

from linguistic utterances to their meaning representations. In Section 2.4, I will

discuss construction grammar in more detail. In Chapter 3, I will describe the

technical foundations of Fluid Construction Grammar, which is the computa-

tional construction grammar implementation that I will use in the remainder of

the thesis.

2.2.3 Discussion
Human-like language understanding is thus a process in which the appropriate

knowledge sources are consulted in order to build up a rich model of the lan-

guage at hand. This is a process that comes natural to humans since humans are

always trying to make sense of the situation. While current data-driven, statisti-

cal natural language understanding systems are often believed to understand

language, there are some aspects of human language understanding that are

missing mostly due to how these systems are implemented. First of all, these

models are not able to capture meaning in a way that is similar to humans. The

models start from modelling meaning by looking at occurrences and thereby

only taking into account the form side of language (Bender and Koller, 2020;

Lake and Murphy, 2023). Moreover, the systems are not truly grounded in the

situational or discourse context (Bender and Koller, 2020). It is often believed

that these system will eventually achieve to handle context and meaning in a

human-like way by providing these models with more data, however, it is argued

by, amongst others, Bender and Koller (2020) that it will not be possible to

capture the situational context and grounding the systems just by providing
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more textual data. Winograd (2001, p. 403) already addressed this by stating

that “Context is not just more text.”

Furthermore, the evaluation of these types of techniques considers for the most

part only the result of the model (i.e. the generated language). This can be

mainly attributed to the focus on benchmarking in NLP (Raji et al., 2021). Many

benchmarks have been introduced, and the personal nature of the language

understanding process is hard to cast in an annotation scheme. Therefore, the

benchmarks often focus on the result and not the process itself. Furthermore,

the focus on benchmarking brings the problem of drifting away from the re-

search on building systems that can truly understanding to building systems that

performwell on a specific task (Bowman and Dahl, 2021). Focusing on the results

also takes away from the aspect that language understanding is an individual

experience to a human. Language is grounded in the personal knowledge of a

human, which can even change over time as new experiences and knowledge

come in. Thus, the evaluation of language understanding models should take

this into account.

To operationalise truly human-like language understanding, it becomes nec-

essary to accurately model the semantics underlying linguistic observations

through meaning representations. I discussed commonly used meaning rep-

resentations, including procedural semantics. In Section 2.3, I will discuss this

meaning representation in more detail. Next, accurately modelling context as

well as knowledge is needed since both these sources of knowledge need to

be consulted during the understanding process. Moreover, due to the central

position of meaning representations, it is necessary to explore parsing tech-

niques that can parse from the language to the meaning representations. In

this context, I discussed grammar-based and neural parsing techniques. In

Section 2.4, I will discuss computational construction grammar as a framework

for mapping between linguistic observations and their meaning representations.

2.3 Procedural semantics
In this section, I discuss procedural semantics as a meaning representation that

is adequate for modelling the semantics underlying linguistic utterances in truly

intelligent systems.

Procedural semantics was introduced by Woods (1968), Woods et al. (1972)

and Winograd (1972). Both authors introduced procedural semantics as part of

language processing systems, namely SHRDLU and LUNAR. In these question-



24 CHAPTER 2. BACKGROUND

answering systems, it was needed to parse natural language utterances to a

logical representation that could be understood by a computer. This adheres

to the need for a representation as explained by Winograd (1972, p. 28): “In

practical terms, we need a transducer that can work with a syntactic analyzer,

and produce data which is acceptable to a logical deductive system.” Specif-

ically, by parsing a question into an executable meaning representation, an

answer can then be computed in a straightforward manner. The application in

question-answering systems immediately shows the benefit of the approach,

namely that the meaning can be executed and an answer can be computed.

Thus, procedural semantics consists in programs that can be executed com-

putationally. More strictly speaking, the semantics consists in the procedures

that need to be executed. These procedures are called primitives or primitive

operations, and represent the smallest procedure that can be executed. These

primitives are then combined into a meaning network. Later, Johnson-Laird

(1977) described the term procedural semantics through a compile-and-execute

metaphor. Specifically, he describes that language can be compiled into a pro-

gram that can then be executed, in a similar way as computer programs are

first compiled and then executed. The difficulty is the complicated nature of

natural languages as opposed to programming languages and adequate parsing

systems are thus required (Johnson-Laird, 1977).

In the remainder of this thesis, I will follow the compile-and-execute metaphor of

Johnson-Laird (1977) and use the definition of procedural semantics as meaning

representations that can be executed algorithmically.

2.3.1 Systems operationalised through procedural semantics
SHRDLU introduced by Winograd (1972) is a system for language understanding

that answers questions and commands in a dialogue with a human user. The sys-

tem is situated in a virtual blocks world and has a ‘robotic arm’ that can execute

these commands. Crucially, SHRDLU uses a procedural semantic representation

to easily integrate language with knowledge about the world and language. Con-

cretely, a grammar parses the utterances to a semantic representation, which is

given to a planner system that processes the representation and deduces facts

and knowledge. Moreover, SHRDLU is a dialogue system and is thus capable

of handling non-trivial co-references. Once a pronoun is encountered, the sys-

tem uses a heuristic to find the referent either in the same sentence or in the

previous sentences, assigning a value to the possible referent(s).

The three first sentences from the example dialogue introduced in Winograd



2.3. PROCEDURAL SEMANTICS 25

(1971, p. 35) are shown below:

“pick up a red block.”

“OK.”

“grasp the pyramid.”

“I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.”

“find a block which is taller than the one you are holding and put it

into the box.”

“BY “IT”, I ASSUME YOUMEAN THE BLOCKWHICH IS TALLER THAN THE

ONE I AM HOLDING.”

Even though the system is quite brittle (the questions and utterances need to be

well-chosen in order for the system to be able to handle them), it revolutionised

the field of AI by introducing the concept of using procedures as an underlying

meaning. Due to the procedural semantics, the integration of knowledge and

language becomes more feasible. That is to say, the procedures that the parser

provides can be executed immediately since the knowledge of the system also

consists in procedures.

Woods (1968) introduced a system that is able to answer questions concerning

information stored in a database of airline information. The parser of the

system translated the language into a meaning representation consisting of

primitives. The primitives are the functions, predicates and commands with

which all information in the database can be retrieved. The question-answering

system can answer questions such as “Does American have a flight which goes

from Boston to Chicago?” and “What American Airlines flights arrive in Chicago

from Boston before 1:00 p.m.?”. This set of primitives is easily expendable by

implementing new operations. Furthermore, the LUNAR system introduced by

Woods et al. (1972) is a question-answering system that can answer questions

about chemical data concerning moon rocks and soil composition of the moon.

This system was developed to provide scientists with an easy interface to the

database through natural language. An example sentence is “Give me all analyses

of S10046”. This system also uses a parser to translate the natural language

utterances to a meaning representation that is able to query the database.

From these foundational systems such as SHRDLU and LUNAR, different ap-

proaches to meaning representations that can be executed algorithmically have

been explored. In current research, four classifications of procedural semantics

systems can be distinguished. A first type of meaning representations consists

in representations that contain the steps or primitives that need to be executed,

following the approach introduced by Winograd (1972). First, the neural module
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network approach introduced by Andreas et al. (2016b) and further developed

by Johnson et al. (2017b) and Kottur et al. (2018) captures the meaning in a

program from which a neural model predicts an answer. These networks consist

of primitive operations representing the steps that need to be executed to come

to an answer. Then, the whole network is given to a neural network that is

trained over these networks to predict answers. Furthermore, neuro-symbolic

approaches to visual question answering (Yi et al., 2018; Mao et al., 2019), visual

dialogue (Abdessaied et al., 2022) and video question answering (Yi et al., 2020)

make use of programs consisting in primitive operations. In contrast to the neu-

ral module network approach, the primitives in these networks are implemented

in a symbolic way. The primitives operate over a symbolic representation of the

world that is retrieved in a neural way. Similarly, the purely symbolic approach

introduced by Nevens et al. (2019a) introduces a set of symbolic primitives that

operate over the symbolic representation of images. Other approaches have ex-

plored the use of semantics that can query databases, in a similar way as Woods

(1968); Woods et al. (1972). These approaches include parsing natural language

to SQL (Zhong et al., 2017), FunQL (Cheng et al., 2019) or SPARQL (Yahya et al.,

2012). Each of these are languages that can operate over a database and it

starts from the hypotheses that the meaning of questions coincide with the

query to retrieve the information from the database. A third type of meaning

representation are based on logic representation which can then be executed

using a deductive system, often in the form of lambda calculus (Zettlemoyer and

Collins, 2005; Kwiatkowski et al., 2010; Krishnamurthy and Mitchell, 2012; Berant

et al., 2013; Cai and Yates, 2013; Reddy et al., 2014; Pasupat and Liang, 2015).

However, it is often necessary to first transform these meaning representations

into forms over which the system can reason. Thereby, they lack the advan-

tage of the direct executability that the other representations possess. There

are, however, systems that use a logic representation that can immediately be

given to a deductive system (see e.g. Krishnamurthy and Kollar, 2013). A last

kind of meaning representations consists in representing the utterance using

code, which can then be executed directly. Gao et al. (2023) introduces Program-

Aided Language models (PAL) and Chen et al. (2022) Program-of-Thoughts (PoT)

prompting paradigm, both of these approaches use a large language model to

generate code that is then given to an interpreter. Following these paradigms,

Subramanian et al. (2023) introduces a system that uses a large language model

to generate Python code to solve visual question answering questions and the

model introduced by Cheng et al. (2023) generates SQL or Python code to access

databases based on language models. Gupta and Kembhavi (2023) shows that

the approach of prompting a large language model to generate a program can
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be applied on multiple tasks. Moreover, robotic systems use a similar approach

of using language models to generate code (Liang et al., 2023). These systems

rely on large pre-trained language models to generate code on the basis of a

few example prompts.

2.3.2 Operationalising procedural semantics
The operationalisation of procedural semantics can be done in a straightforward

manner by implementing the primitive operations that a meaning representa-

tion can contain. This implementation can be done in several ways. The primitive

operations can be queries to a database. In this case, they can be implemented

through neural networks or purely symbolically as operations over a representa-

tion of the world. Another way of operationalising these procedural semantics

is by giving them to a logical deductive system. Many of these systems thus use

their own implementation framework. There exists, however, an open-source

framework for operationalising procedural semantics: Incremental Recruitment

Language (IRL; Van den Broeck, 2008; Spranger et al., 2012). IRL consists in a

framework for representing, interpreting and composing procedural semantic

networks. The primitive operations are represented through predicates with

arguments. Interpreting the network then consists in executing each of the

primitives and finding bindings for the variables. There is no prerequisite of

primitives that need to be used and the implementation is also completely free.

The primitive operations can, for example, be implemented through a call to a

neural network or through logic operations such as counting or filtering a set.

Moreover, the system is completely open-ended. This framework is used to

interpret the semantic representation in a variety of experiments, mostly on the

evolution of language (see e.g. Bleys (2016) for language games on the emer-

gence of colour lexicons, Spranger (2016) for experiments on the evolution and

emergence on spatial constructions, Pauw and Hilferty (2012) for the emergence

of quantifiers). In these experiments, IRL is used to compose meaning networks

and to interpret them. In Nevens et al. (2019a) IRL is used as a framework for

interpreting the procedural semantic representations underlying the natural

language questions in a visual question answering task.

2.3.3 Discussion
Procedural semantics is an ideal type of meaning representations to use in

language understanding systems. Following the compile-and-execute metaphor,

this type of semantics captures the meaning of a linguistic utterance in a repre-
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sentation that is directly executable. Moreover, some systems, such as SHRDLU

(Winograd, 1972) or the neural module networks (Andreas et al., 2016b), describe

the procedures that are needed to interpret the sentence, thereby showing the

truly procedural aspect of procedural semantics. These minimal operations that

can be executed are called primitive operations or primitives.

In this chapter, I discussed some systems using procedural semantics. By exe-

cuting the meaning representation, it becomes possible to ground the language

in the situational and discourse context. For example, the SHRDLU system con-

sists in primitive operations that can access the representation of the world as

well as primitives that can access the representation of the discourse. More-

over, I discussed Incremental Recruitment Language (IRL) as a framework for

operationalising procedural semantics. It consists in a toolkit for representing,

interpreting and composing procedural semantics. In Chapter 3, I will discuss IRL

in more detail and in Chapter 4 I use IRL as a way of representing and executing

the neuro-symbolic procedural semantics.

2.4 Construction grammar
Construction grammar originally started as an alternative approach for the more

generative approaches to language, as introduced by Chomsky (Chomsky, 1956)

(see Section 2.2.2). Traditionally, in generative approaches to language, language

is modelled through a lexicon and a set of grammar rules. The lexicon and the

grammar combined are able to cover the ‘core’ of the language. Utterances

that cannot be covered, for example, idiomatic expressions, are viewed as the

‘periphery’. Construction grammar as introduced by Fillmore (1988, 1968); Gold-

berg (1995) on the other hand starts from the principle that these idiomatic

expressions are interesting phenomena worth investigating, starting with the ‘let

alone’ construction analysed by Fillmore et al. (1988). Nowadays, construction

grammar contains many different ‘flavours’, such that it is now often referred to

as constructionist approaches (Goldberg, 2003). Even though all these construc-

tionist approaches have their own research foci and frameworks, they all agree

on the principle that constructions form the basis of linguistic analysis. These

constructions are form-meaning mappings and constitute a relation between

some sort of form and some sort of semantic information. Moreover, construc-

tionist approaches aim to model all linguistic usage, removing the distinction

between the core and periphery of language.

Many theories on Construction Grammar (CxG) exist, each with a different
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‘flavour’. Following van Trijp (2024); Ungerer and Hartmann (2023), I briefly

introduce the main constructionist approaches: Berkeley Construction Gram-

mar, Cognitive Construction Grammar, Sign-based Construction Grammar and

Fluid Construction Grammar. For an in-depth discussion on the constructionist

approaches to language, see amongst others van Trijp (2024) and Ungerer and

Hartmann (2023).

Berkeley Construction Grammar (Fillmore et al., 1988; Kay and Fillmore, 1999)

focusses on the grammatical description of linguistic phenomena. This ap-

proach forms the foundation of current constructionist approaches. Cognitive

Construction Grammar (Goldberg, 1995, 2006, 2019) puts psychological plau-

sibility central. It is a usage-based approach and also focusses on language

learning. Cognitive Construction Grammar want to formalise as less as possible

and use informal notations to describe constructions. Methodologically, they

focus on corpus-based methods as well as psychological experiments. Radical

Construction grammar (Croft, 2001) is a more typological-oriented approach,

focusing on describing linguistic knowledge in the form of language-specific and

construction-specific constructions. Moreover, these constructions are related

to each other. As Cognitive Construction Grammar, this approach make use of

less formal descriptions. Sign-based Construction Grammar (Sag, 2012) finds its

roots in Head-driven Phrase Structure Grammar (Pollard and Sag, 1994). The

approach is highly formalised and focusses on detailed descriptions of construc-

tions, describing them in the form of attribute-value matrices. Due to its high

precision and formalisation, it can be used to investigate the preciseness of

constructions. It can, however, be argued that this approach focusses more on

form than on meaning. Although Fluid Construction Grammar is sometimes

categorised as a flavour of construction grammar, it is not a linguistic theory in

itself, but rather a technical operationalisation of the basic tenets underlying

construction grammar. Using this framework, it is possible to operationalise

construction grammars. This way, linguistic theories (i) can be tested on internal

consistency and precision, (ii) they can be validated on corpus data, and (iii)

these insights can be used to develop language technologies (van Trijp et al.,

2022).

Beuls and Van Eecke (2024) provide an in-depth discussion on the similarities

between AI and construction grammar. Due to the development of both frame-

works during the same period in time, as well as the influence that they had

on each other, construction grammar is an ideal framework to operationalise

human-like language understanding. Concretely, construction grammar starts

from many of the principles that are required in human-like language under-
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standing systems. These similarities are discussed by Beuls and Van Eecke (2024)

and can be summarised in the light of the requirements of human-like language

understanding systems as follows: Construction grammar sees communica-

tion as the basic function of language. Communication is the process in which

information is transferred from a speaker to a listener. This listener can, in

their turn, communicate information back to the original speaker. Language

is thus a bi-directional process and it entails both comprehension (i.e. the pro-

cess of going from form to meaning) as well as production (i.e. the process of

going from meaning to form). The bi-directionality is modelled in construction

grammar through the use of the same construction inventory in both processes.

Construction grammar starts from the principle that meaning and form are

inherently connected, which becomes clear through the basic tenet that all lin-

guistic knowledge should be captured through form-meaning mappings called

constructions. Certainly, truly intelligent systems require to handle meaning

since building up meaning is inherently connected to the process of language

understanding. Moreover, construction grammar adheres to the principle that

language is grounded in the world. Language serves a communicative purpose,

and since language is uttered in the world, it is necessary to ground it in this

same world. In order to do so, knowledge about the world, both in terms of

factual knowledge as well as common-sense knowledge is required. Lastly, lan-

guage is acquired, not innate and language can change over time. Therefore, it

is necessary to keep in mind that language understanding systems need to be

able to be adaptive over time.

2.4.1 Basic tenets
Even though many flavours to construction grammar exist, constructionist ap-

proaches to language adhere, for the most part, to a few principles that are laid

out by amongst others (Fillmore, 1988; Goldberg, 1995; Kay and Fillmore, 1999;

Croft, 2001). van Trijp et al. (2022) and Beuls and Van Eecke (2023) summarise

the basic tenets of construction grammar as follows:

• Constructions are form-meaning mappings. All linguistic knowledge of

a language user is captured in these constructions. These constructions

constitute the basic elements of both production and comprehension.

• All constructions are situated on a lexicon-grammar continuum, meaning

that there exists no distinction between the lexicon or grammar rules as is

often the case in traditional approaches to grammar. Constructions can of

course contain more lexical information, such as a the BREAK-A-LEG-CXN or
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can be more grammatical such as the RESULTATIVE-CXN. Constructions can

also be partially instantiated, for example the X-TAKE-Y-FOR-GRANTED-CXN.

All constructions are thus situated somewhere on this continuum.

• Constructions can capture information from all levels of linguistic analysis.

They can contain information from phonetics, phonology, morphology,

syntax, semantics and pragmatics. Constructions can also be multi-modal,

for example in the case of gesture constructions. Typically, the form side of

a construction includes information from phonetics, phonology, morpho-

syntax, while the meaning side contains semantic or pragmatic informa-

tion.

• Language is a dynamic system, there is no fixed set of constructions. Con-

structions can change over time and become more or less entrenched.

Constructions are acquired and represent the linguistic knowledge of an

individual language user.

2.4.2 Computational construction grammar
Computational construction grammar aims to operationalise the basic tenets

of construction grammar. There are a few approaches that aim to computa-

tionally model construction grammar, amongst which Embodied Construction

Grammar and Fluid Construction Grammar are probably the most well-known.

Embodied Construction Grammar (ECG; Bergen and Chang, 2005; Feldman et al.,

2009) is a computational operationalisation of constructional parsing, focusing

on embodiment and the neural foundations of linguistic analysis. It concen-

trates on comprehension, by providing a processing engine for parsing through

constructions. It is, however, not able to model language production.

Fluid Construction Grammar (FCG; Beuls and Van Eecke, 2023; van Trijp et al.,

2022; Steels, 2011, 2017) is a framework for representing, processing and learn-

ing construction grammars. It starts from the basic tenets described above,

thereby providing an ideal framework to operationalise any of the construc-

tionist approaches (van Trijp et al., 2022). It is not a linguistic theory in itself,

but can be used to verify and test the linguistic analyses. It operationalises

the constructional approaches by providing a representation for constructions,

consisting in feature-value pairs. The features that are used are completely free

and can contain features from all levels of linguistic analyses. Moreover, the

same set of constructions can be used in both comprehension and formulation,

making language a truly bi-directional process. FCG also provides support for

learning grammars through the mechanisms of intention reading and pattern
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finding. Throughout the years, FCG has been used in many facets, for example

in grammar learning experiments (van Trijp and Steels, 2012; Beuls and Steels,

2013; Van Eecke, 2018; Nevens et al., 2022; Doumen et al., 2023), as a grammar

that models linguistic analyses (see e.g. van Trijp (2017) for a grammar on En-

glish, Van Eecke (2017) for a grammar covering the Dutch verb phrase, Beuls

(2017) for a model of Spanish verbs, van Trijp (2011) for argument structure

constructions, Beuls (2011) for Hungarian verbal agreement, Marques and Beuls

(2016) for evaluation strategies of the designed grammars), as well as in lan-

guage technology applications (Willaert et al., 2020, 2021, 2022; Beuls et al., 2021;

Nevens et al., 2019a; Verheyen et al., 2022b, 2023). Due to the possibility of both

comprehension and production processes and due to the many applications

and analyses that were possible through FCG, it can be argued that FCG is the

most advanced computational construction grammar approach that nowadays

exists.

2.4.3 Discussion
Construction grammar and in particular computational construction grammar is

a useful framework to implement language processing in systems for human-

like language understanding since it relies on many of the same principles

that are required in truly intelligent systems. This can be traced back to the

similar attitude towards language that both fields of Artificial Intelligence and

construction grammar exhibit as well as to the continued influence that these

two fields have had on each other (Beuls and Van Eecke, 2024). Construction

grammar starts from the principle that all linguistic knowledge is captured in

form-meaning mappings, thereby taking into account meaning representations

which are required in truly intelligent systems. Moreover, they start from the

principle that language is grounded in the world, which makes it necessary to

model the knowledge of the world so that the systems can interpret it.

Computational construction grammar aims to operationalise the basic tenets

underlying construction grammar. Specifically, Fluid Construction Grammar

provides a framework for representing, processing and learning computational

construction grammars, thereby provides an ideal basis for building human-like

language understanding systems. In Chapter 3, I will discuss Fluid Construction

Grammar in more detail.
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2.5 Conclusion
In this chapter, I have reviewed the literature on language understanding, pro-

cedural semantics and construction grammar, thereby laying the conceptual

foundations for the remainder of the thesis.

Language understanding can be seen as a process in which knowledge is used

to make sense of the situation at hand. During this process, a rich model is

built up. To operationalise language understanding in intelligent systems, it is

necessary to represent the meaning underlying linguistic utterances, as well as

to represent the context (i.e. both the situational context to ground the language

in the environment as the discourse context to ground the language in the

conversation). Moreover, adequate parsing techniques are required to map the

utterances to their respective meaning representations.

In Section 2.3, I introduced procedural semantics as a meaning representa-

tion that can be executed computationally, following the compile-and-execute

metaphor introduced by Johnson-Laird (1977). Natural language can be parsed

into a meaning representation that is then executed in some way. Procedu-

ral semantics was introduced by pioneers such as Winograd (1972); Woods

(1968); Woods et al. (1972). Later development led to systems that use query

languages such as SQL or SPARQL or programming languages such as Python

as the basis for the underlying meaning representations. Other approaches

include neural module networks, neuro-symbolic approaches or purely sym-

bolic approaches. I briefly discussed Incremental Recruitment Language as a

framework for operationalising procedural semantics. Throughout this thesis,

meaning representations that can be executed algorithmically have a central po-

sition. In Chapter 4, I introduce a neuro-symbolic approach that uses procedural

semantics operationalised through the IRL framework, I will introduce the IRL

framework in Chapter 3. Chapter 5 introduces a novel frame-based procedural

semantics representation that can be executed by a Prolog reasoning engine.

I have outlined the basic principles of construction grammar and discussed

how they can be operationalised computationally. Furthermore, I discussed

why construction grammar and, more specifically, computational construction

grammar is a suitable framework to use in systems that understand language in

a human-like way. Moreover, I have also briefly introduced FCG as a framework

for computational construction grammar. In the next chapter, I will elaborate

on the technical aspects of FCG since it will be used as the language processing

backbone of the human-like language understanding systems that I introduce in

this thesis. Concretely, in Chapter 4 and 5, I introduce hand-written grammars
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to map between linguistic utterances and their meaning representation.
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3.1 Introduction
This chapter outlines the technical foundations that underlie this thesis. Specifi-

cally, I will discuss two components of the Babel toolkit (Loetzsch et al., 2008;

Steels and Loetzsch, 2010; Nevens et al., 2019b) that are used in the systems

introduced in the next chapters: Incremental Recruitment Language and Fluid

Construction Grammar. First, I will describe Incremental Recruitment Language

35
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(IRL; Van den Broeck, 2008; Spranger et al., 2012), a framework for representing,

interpreting and composing procedural semantic representations. In Chapter 4

and 6, the IRL framework is used to execute procedural semantic representa-

tions. Second, I will discuss the framework of Fluid Construction Grammar (FCG;

Steels, 2011, 2017; van Trijp et al., 2022; Beuls and Van Eecke, 2023), a language

processing engine for representing, processing and learning construction gram-

mars by operationalising the ideas of construction grammar. In Chapter 4, 5 and

6, I describe how I used FCG as a language processing engine to map utterances

to their respective meaning representations. In this chapter, I will give a brief

introduction to IRL and FCG and I will focus on the parts that are necessary to

understand the remainder of the thesis. The discussions of IRL and FCG are

based on Nevens (2022) and Van Eecke (2018) respectively and I refer the reader

to those sources for a more detailed discussion on the two systems.

Both the IRL and FCG frameworks are part of the Babel toolkit (Loetzsch et al.,

2008; Steels and Loetzsch, 2010; Nevens et al., 2019b). Babel is designed to

operationalise language game experiments, in which agents develop and learn

their own communicative systems from the ground up (see e.g. Beuls and Steels,

2013; Beuls and Höfer, 2011). It consists of an experiment framework, which

provides a framework to set up language game experiments in which FCG can

be used as a language processing engine and IRL as a framework to execute

semantic networks. Furthermore, Babel consists of a robot interface to conduct

experiments in the real world using physical embodiments (Nevens et al., 2019b).

Babel can be found at https://emergent-languages.org/. Babel is currently in
active development and as well as using Babel as a toolkit to operationalise the

experiments, Imade several contributions, which I highlighted in the respective

chapters. All experiments conducted in this thesis are integrated in the Babel

framework.

Recently, the FCG editor, a user-friendly standalone environment for FCG, was

released (van Trijp et al., 2022). Originally, the FCG editor was designed to be an

environment for FCG, but the FCG editor now includes both FCG and IRL. This

way, users have one freely accessible environment for processing language using

FCG and executing procedural semantics with IRL. The FCG editor is available at:

https://www.fcg-net.org/download/.

https://emergent-languages.org/
https://www.fcg-net.org/download/
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3.2 Incremental Recruitment Language
Incremental Recruitment Language (IRL) is a framework for representing, exe-

cuting and composing procedural semantic networks (Van den Broeck, 2008;

Spranger et al., 2012).

IRL operationalises the ideas underlying procedural semantics (Woods et al.,

1972; Winograd, 1972), which states that the meanings of utterances are rep-

resented as programs that are directly executable. IRL was designed in the

context of the language game paradigm, which investigates how communicative

systems can emerge in populations of agents (Steels, 1995, 2012; Nevens et al.,

2019b). In these language game experiments, IRL serves as the bridge between

the language and the agent’s sensorimotor experience, by representing the

meaning of the utterances in procedural semantic networks and by executing

these meaning networks in the environment of the agent. Furthermore, IRL

supports the composition of semantic networks, which occurs in a language

game when a speaker is conceptualising what it wants to express or during the

intention reading process during learning of construction grammars. In what

follows, I will focus on the representation and the execution processes, I refer

the reader interested in IRL’s composition process to Nevens (2022).

IRL represent the meaning as a semantic network composed of primitive op-

erations. The primitive operations represent the basic cognitive capacities of

an agent (e.g. segmenting a scene into objects, filtering an object on a colour),

but it is completely up to the user to choose the primitive operations. These

primitives are represented as predicates consisting of a primitive name and a

list of arguments that are variables. The predicates in the network are linked

through the variables.

The execution of an IRL program, (i.e. the primitive application process), is a

problem-solving process that looks for bindings for each of the variables in the

network. Executing an IRL program thus means executing each of the primitives

in the network so that a binding for each of the variables is found. This set

of bindings needs to be consistent and complete. The implementation of the

IRL primitives is completely up to the user. The primitives can, for example, be

operationalised symbolically, or subsymbolically, by calling neural networks or

other web services.

Figure 3.1 shows an example of a procedural semantics network, which will be

used as an example throughout this chapter. The network in this figure could

be the underlying meaning of sentences as “How many cubes are there in image
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(segment-scene ?segmented-scene ?scene)

(filter ?cubes ?segmented-scene ?cube)

(count ?number ?cubes) 

(bind shape-category ?cube cube)

(bind scene-id ?scene 1)

Figure 3.1: A meaning representation in terms of procedural semantics which

consists of three primitive operations (i.e. segment-scene, filter and count) and

two bind statements.

1?” or “What number of cubes are present in image 1?”. To answer these types of

questions, the following steps need to be executed: first, the scene needs to

be segmented into the objects, then, these objects need to be filtered based

on the shape cube, resulting in a set of cubes, then the elements in this set

need to be counted. The result of this counting operation is the answer to the

question. These steps are represented in the meaning network as the primitives

(SEGMENT-SCENE ?SEGMENTED-SCENE ?SCENE), (FILTER ?CUBES ?SEGMENTED-SCENE

?CUBE) and (COUNT ?NUMBER ?CUBES). It also has two bind statements: (BIND

SCENE-ID ?SCENE 1) and (BIND SHAPE-CATEGORY ?CUBE CUBE). In the first bind

statement the scene-index 1 is bound to the ?SCENE variable and the second

bind statement binds the concept of CUBE to the ?CUBE variable.

3.2.1 Bind operators and semantic entities
The bind operators in IRL are special operators that add semantic entities to

an IRL network by binding semantic entities to variables. Semantic entities

represent (i) the concepts or (ii) the representations of the environment of the

agent. The concepts include categories, prototypes, relations that an agent

stores in its conceptual inventory. These concepts are grounded in the environ-

ment by the agent’s sensorimotor experiences. IRL does not impose a specific

grounding process. For example, it is possible to learn the concepts through

a discriminative-based approach (Nevens et al., 2020) and use these learned

concepts as bindings. (BIND COLOUR-CATEGORY ?COLOUR BLUE) is an example of

a binding where a concept is bound, namely the concept of BLUE is bound to

the variable ?COLOUR. Next to concepts, the bind operators can also be used

to bind representations (e.g., a world model) or partial representations of the
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environment (e.g. a world model manipulated by the primitive operations) to a

variable. For example, in the beginning of the execution of the network shown

in Figure 3.1 a world model of the scene is bound to the variable ?SEGMENTED-

SCENE. Later, the world model is filtered on the concept of cubes and this entity

is bound to the ?CUBES variable. The semantic entities are typed.

Bindings in an IRL network are added through executing the network or by bind

statements. A bind statement is a binding that is explicitly stated in the semantic

network. In Figure 3.1 two bind statements can be found: (BIND SCENE-ID ?SCENE

1) and (BIND SHAPE-CATEGORY ?CUBE CUBE)

3.2.2 Primitives
The primitive operations represent the basic cognitive capacities of an agent.

This set of operators can be seen as the instruction set of the brain, namely all

operations that can be executed by this agent. For example, the basic operation

of counting can be represented by a COUNT primitive. It is completely up to the

user to choose and design the primitive operators, since IRL does not require any

certain primitive operation to be present in the program. The implementation is

also completely up to the user. Depending on what is needed, a primitive can

have a symbolic or subsymbolic implementation. For example, in chapter 4, I

introduce a neuro-symbolic procedural semantics for the task of visual dialogue

where a combination of symbolic and subsymbolic primitives is designed.

A primitive consists of a primitive name followed by one or more arguments.

Each of these arguments is typed and is represented by a variable that is ei-

ther bound or unbound. For example, in (FILTER ?CUBES ?SEGMENTED-SCENE

?CUBE), the primitive name is FILTER, and the arguments are the variables ?CUBES,

?SEGMENTED-SCENE and ?CUBES. Depending on which of the arguments are bound

or unbound, the primitive will be executed differently. These different execu-

tions are the different cases of a primitive, which make the evaluation of the

IRL program multidirectional. For example, if the ?CUBE and ?SEGMENTED-SCENE

variables in the FILTER primitive are bound, then the execution of this primitive

will lead to a binding for ?CUBES containing the set of cubes from the segmented

scene. If all arguments of a primitive are bound, then the primitive typically

performs a consistency check to make sure that all bindings are consistent with

each other.

Figure 3.2 shows the multidirectionality of the FILTER-BY-COLOR primitive. Four

different cases are shown. Figure 3.2a shows the case that is mostly used during

execution of the primitive in a semantic network during interpretation. The
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filter-by-
color

?source-set

{o1, o2, o3}

?color RED

?target-set

{o2}

(a)

filter-by-
color

?source-set

{o1, o2, o3}

?color RED

?target-set

{o2}

(b)

filter-by-
color

?source-set

{o1, o2, o3}

?color RED, BLUE

?target-set
{o2}, {o1, o3}

(c)

filter-by-
color

?source-set

{o1, o2, o3}

?color RED

?target-set

{o2}

(d)

Figure 3.2: An example of the multidirectionality of the primitive operation

(FILTER-BY-COLOR ?SOURCE-SET ?TARGET-SET ?COLOR). The direction of the arrows

indicate whether the arguments are bound (incoming arrows) at the beginning

of execution or whether the execution binds values to arguments (outgoing

arrows). Figure adapted from Nevens (2022)

given source set with objects is filtered on a certain color leading to a target set

containing objects with that color. In this case, the source set and the color on

which to filter on are bound (i.e. o1, o2, o3 is bound to ?SOURCE-SET and RED is

bound to ?COLOR) and the execution of the primitive leads to a binding for the

target set (i.e. o2 binds to ?TARGET-SET). The second case starts from bindings for

?SOURCE-SET and ?TARGET-SET and binds the color RED to ?COLOR, meaning that

the set of objects bound to ?TARGET-SET are of the color red. This case is typically

used during learning in language game experiments. The third case is relevant

during the composition process in experiments, in which the agent gets a set

of objects as input to the filter operation and composes different combinations

of objects based on the concepts that can be used for filtering. Lastly, Figure

3.2d shows the case of the FILTER primitive in which all the arguments are bound.

In this case, the primitive performs a consistency check, making sure that the

values of the bindings are consistent with each other.

3.2.3 Primitive application process
The execution in IRL is a problem-solving process, which is characterised by

Russell and Norvig (2009) as the process in which operators contribute to the
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state representation until all the goal tests are satisfied and a solution is found.

The process starts from an initial state representation. In IRL, the initial state

consists in the set of bindings at the beginning of processing. Then, the primitive

operations that are available in the primitive inventory are checked whether

they can apply, and if a primitive can apply, the set of bindings is updated. This

process goes on until the set of bindings is consistent and complete and a

solution is thus found. The state representation is the set of bindings at a given

point in time and the initial state contains the bind statements that were in the

network at the beginning of processing. The operators are the primitives, which

can apply if the preconditions are satisfied. The preconditions are the bound

and unbound variables in the different cases of the primitive. Thus, IRL checks

whether the bindings that a primitive requires to be bound (specified in the

different cases of that primitive) are indeed bound in the set of bindings in the

state representation. If a case of a primitive requires certain variables to be

bound, that primitive can apply if the state representation holds those bindings.

If the preconditions are met, IRL tries to apply that primitive, which can either

succeed or fail. If the application succeeds, IRL returns either new bindings or it

returns no bindings (in case of a consistency check). These postconditions are

the new bindings set. The application of a primitive fails if the variables that

were bound are inconsistent with each other. If this occurs, IRL backtracks over

the other nodes in the search tree. The goal tests are satisfied when all variables

in the network are bound (i.e. the network is consistent) and all primitives are

executed (i.e. the execution is complete).

Figure 3.3 shows the execution of the semantic network shown in Figure 3.1.

The execution starts with an initial node with bindings for the ?SCENE and ?CUBE

variable (the two bind statements in the IRL network). The primitive inven-

tory consists of three primitive operations: (FILTER ?TARGET ?SOURCE ?CONCEPT),

(COUNT-SET ?NUMBER ?SOURCE) and (SEGMENT-SCENE ?SEGMENTED-SCENE ?SCENE).

Starting from the initial node, three nodes are created, and IRL checks which

nodes can be executed based on the current bindings and the different cases

of the primitives. The FILTER and COUNT-SET primitives cannot be executed (indi-

cated by the blue colour of the node), since every case of the FILTER primitive

expects a binding for ?SOURCE, and every case of the COUNT-SET primitive also

expects a binding for the ?SOURCE variable. These expectations are modelled

by the different cases of the primitive (see Figure 3.2 for the FILTER primitive).

It would thus in theory be possible to add a case in which the ?SOURCE is un-

bound. In practice, however, this is nearly impossible. How would it be feasible

to account for all possible sources based on a certain colour or target set?
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Thus, the FILTER and COUNT-SET primitive cannot apply at the first node. The

SEGMENT-SCENE primitive, however, can be applied which results in a binding for

the ?SEGMENTED-SCENE variable, namely OBJECT-SET-1. Now, due to this binding,

the FILTER primitive can be executed. It binds OBJECT-SET-2 to ?CUBES. Lastly, the

COUNT-SET primitive finds a binding 2 for the ?NUMBER variable. In this last step,

a solution is found since the set of bindings is consistent and complete. The

dark green colour of the node indicates that it is a solution node.

3.2.4 Discussion
In this section, I gave a short introduction on Incremental Recruitment Language

(IRL), a language that is designed to represent, execute and compose semantic

networks. IRL is an operationalisation of procedural semantics and an IRL pro-

gram is thus an executable program consisting of primitive operations. Each of

the primitive operations can then be implemented in its own way. The execution

in IRL is a problem-solving process in which bindings for each of the variables

in the primitive operations is found. The choice of and the implementation of

the primitive operations is up to the user. In chapter 4, I introduce a set of

neuro-symbolic primitives to solve the task of visual dialogue.

Although I introduced IRL as a language to represent, execute and compose

semantic networks, I mainly focussed on the representations and execution

of IRL networks, since these are the components of IRL that are used in the

remainder of this thesis. I refer the reader that is interested in learning more

about composing semantic networks to chapter 2.4.5 in Nevens (2022).

3.3 Fluid Construction Grammar
Fluid Construction grammar (FCG) (Steels and De Beule, 2006; Steels, 2011, 2017;

van Trijp et al., 2022; Beuls and Van Eecke, 2023) is an operationalisation of the

ideas of constructionist approaches to language, which I introduced in Chapter

2. FCG provides a framework to study the emergence, evolution, acquisition and

processing of language and it can be used to build intelligent systems that have

human-like language systems (Beuls and Van Eecke, 2023). Specifically, Fluid

Construction Grammar is a framework for representing, processing and learning

construction grammars.

The notion of communication as a bidirectional system is central to FCG, mainly

due to its roots in the language game paradigm, which models how communica-
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tion systems in agents can emerge. Communication is the process in which a

speaker aims to convey a meaning or intention to a listener through linguistic

utterances. The listener in their turn tries to reconstruct the meaning from the

utterance. Crucially, communication is a bidirectional process, since a person

can both be a speaker and a hearer. It is thus important that both these pro-

cesses can be modelled through one system. FCG facilitates this by providing

the opportunity to both comprehend an utterance (i.e. mapping the form to a

meaning) and formulate a meaning (i.e. mapping a meaning to a form) using

the same set of constructions.

FCG is a approach to language following the linguistic theory of construction

grammar, and aims to operationalise the basic tenets of construction grammar

as laid out in Chapter 2.4. According to constructionist approaches to language,

constructions (i.e. form-meaning mappings) are the basic units of language

and capture all linguistic knowledge. FCG provides a data structure for con-

structions, which serves as a skeleton. The information that can be added to

the constructions is completely up to the grammar designer and can contain

information from all levels of linguistic analysis. A construction can thus contain

features that are phonetic, morpho-syntactic, semantic or pragmatic. Typically,

the form features contain phonetical or morpho-syntactical information and

the meaning features contain semantic or pragmatic information. Moreover,

FCG follows the tenet that states that all constructions are on a lexicon-grammar

continuum, meaning that there is no difference between a construction that

captures a word or a grammatical rule. FCG uses the same data structure for all

types of constructions, making no distinction between lexical or grammatical

constructions. The set of constructions is not fixed, constructions can be added

over time for example during the process of learning of constructions (Nevens

et al., 2022; Doumen et al., 2023).

FCG does not impose any restrictions on the representation of the form and

the meaning. Typically, a string is given as form. However, form features

can consists of multimodal information, which can be useful when analysing

sign languages (van Trijp, 2015). The choice of meaning representation is up

to the user, with procedural semantics (Winograd, 1972; Woods et al., 1972)

and Abstract Meaning Representation (Banarescu et al., 2013) as commonly

used meaning representations. In particular, procedural semantics is used as a

meaning representation for the fully operational grammar introduced in Chapter

4.

I will use the utterance “What size is the red cube?” as an example throughout this
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(segment-scene ?segmented-scene ?scene)

(filter ?cubes ?segmented-scene ?cube)

(filter ?red-cubes ?cubes ?red)

(bind color-category ?red red)(unique ?unique ?red-cubes)

(bind shape-category ?cube cube)

(query ?answer ?unique ?size)

(bind attribute-category ?size size)

Figure 3.4: A procedural semantics representation underlying the utterance

“What size is the red cube?”. The meaning consists of the primitive SEGMENT-SCENE,

followed by two FILTER operations, a UNIQUE and a QUERY primitive.

chapter. The meaning representation of this sentence is in terms of procedural

semantics and consists of five primitives and three bind statements. Figure 3.4

shows the meaning network underlying the question.

The basic building blocks of Fluid Construction Grammar are discussed in the

next section. First, I will expand on constructions, which are form-meaning map-

pings, followed by transient structures, which capture the linguistic information

at a certain moment during language processing. Lastly, the construction appli-

cation process, the interaction between constructions and transient structures,

will be addressed.

3.3.1 Constructions
Construction grammar starts from the idea that the constructions are the basic

building block of language. Each construction is a form-meaning mapping. FCG

provides a data structure for constructions consisting of feature-value pairs.

The choice of the feature-value pairs is completely up to the grammar designer,

FCG has no requirements for certain features to be part of a construction. The

constructions are stored in the construction inventory.

A construction contains pre- and postconditions, where the preconditions are

the features that are required for a construction to apply and the postconditions

are the features that are added after a construction applies. An example con-

struction is shown in Figure 3.5. A typical construction consists of a conditional

part and a contributing part. The units in the conditional part are divided in
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example-cxn

?unit-1

formulation lock

comprehension lock

?unit-2

formulation lock

comprehension lock

?unit-1

contributor

?unit-3

contributor

Figure 3.5: A schematic representation of a construction. Image adapted from

Van Eecke (2018, p. 41).
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Figure 3.6: An example of a construction in FCG. The CUBE-CXN maps between

the form “cube” and the meaning (BIND SHAPE-CATEGORY ?CUBE CUBE) and consists

of a conditional part (right of the arrow) and a contributing part (left of the

arrow).

preconditions for formulation (found in the formulation lock) and preconditions

for comprehension (found in the comprehension lock). The features in the

contributing part are the features that are added when a construction applies.

Figure 3.6 shows an example of an FCG construction, namely the CUBE-CXN. The

CUBE-CXN is a lexical construction that looks for the string “cube” in compre-

hension and the meaning (BIND SHAPE-CATEGORY ?CUBE CUBE) in formulation. If

the features in the lock are found, the features from the other lock are added,

together with the features in the contributing part. In the example construction,

the features in the contributing part are ARGS, SYN-CLASS and SEM-CLASS with as

values ?CUBE, NOUN and SHAPE respectively. These features are chosen for illus-

trative purposes and other features can be used depending on the need. The

features that are added can then be used as information for other constructions

to apply on. For example, the NOMINAL-CXN can have as precondition that the

SYN-CLASS needs to be a noun.
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(a) Initial transient structure during com-
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(b) Initial transient structure during for-

mulation of the meaning representation

consisting of two FILTER primitives, a

SEGMENT-SCENE primitive, a QUERY prim-

itive, a UNIQUE primitive and two bind

statements.

Figure 3.7: Initial transient structure during comprehension of the sentence

“What size is the red cube?” (left) and formulation of the meaning underlying the

sentence (right).

3.3.2 Transient structures
The transient structure is the data structure in FCG that holds the information

that is added during the construction application process. It is the structure to

which the postconditions are added and the preconditions of the constructions

are checked against. As constructions, the transient structure consists of units

with feature-value pairs.

The language processing starts with de-rendering the input into the initial tran-

sient structure. The de-rendering process depends on the direction of processing.

In comprehension, the utterance that was given as input is first tokenised and

each word is given a unique identifier. In formulation, the de-rendering process

takes the meaning representation as a set of predicates and adds it to the initial

transient structure. An example of the initial transient structure, which is the

result of the de-rendering process when comprehending the sentence “What

size is the red cube?” can be found in figure 3.7a. This initial transient structure

consists of string and meets predicates stored in the root.

The initial transient structure serves as a starting point for the construction

application process. During this process, the transient structure is used to check

whether constructions can apply. The transient structure is updated as new

information from the postconditions of applied constructions comes in. The

updated transient structure is then the basis for checking the preconditions of

other constructions.
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3.3.3 Construction application process
The construction application process in FCG is a problem solving process (Bleys

et al., 2011; Van Eecke, 2018; Van Eecke and Beuls, 2017; Steels and Van Eecke,

2018). A problem solving process is characterized by (i) operators, (ii) state

representations (including the initial state) and (iii) goal tests (Russell and Norvig,

2009). The process starts from an initial state. The operators - if they can apply -

change the state representation, and each time a state is changed, a goal test

checks whether the current state satisfies the goal test. The process of applying

operators goes on until the goal test is satisfied and a solution is found. For

a detailed comparison between the construction application process and the

8-queens problem, an iconic example of a problem solving process in AI, I refer

the reader to Van Eecke (2018); Steels and Van Eecke (2018) and Nevens (2022).

During the construction application process, the operators are the constructions

and the state representations are the transient structures. In the comprehension

process, the goal is to find a meaning representation that corresponds to the

input form. In the formulation process, a form needs to be found for a given

meaning representation. The transient structures capture the information dur-

ing processing and the constructions operate on these transient structures. An

example of a construction application process during comprehension of the

question “What size is the red cube?” is shown in Figure 3.8. In this figure, the

green nodes are the steps in the application process. The name of the construc-

tion that applied is shown in the node. The dark green colour of the last node

indicates that a solution has been found. In each of the nodes, the transient

structure that results from the application of the construction is shown.

Constructions consist of preconditions and postconditions. In order for a con-

struction to apply, the preconditions need to be satisfied. In the comprehension

process, the preconditions are found in the comprehension lock of the con-

struction and if they match with the transient structure, the features in the

formulation lock and the postconditions in the contributing part are merged

into the transient structure. Both thematching andmerging operations in FCG

are unification algorithms (Steels and De Beule, 2006; De Beule, 2012). After

matching and merging, the transient structure is updated and the goal tests are

checked. In FCG, the hash operator is a special operator which checks whether

the feature is in the root, if the feature is found, it is taken out of the root.

The goal test checks whether a node is a solution. The commonly used goal

tests for comprehension are: (i) no-applicable-cxns, which checks whether there

are no more constructions that can apply, (ii) no-strings-in-root, which checks
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Figure 3.9: The transient structure at the end of comprehending the sentence

“What size is the red cube?”.
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whether there are no more strings in the root, (iii) connected-semantic-network,

which checks whether the semantic network is connected and (iv) connected-

structure, which checks whether the transient structure is connected. For formu-

lation, the goal tests typically are: (i) no-applicable-cxns, similar to the goal test

in comprehension, (ii) no-more-meaning-in-root, which checks whether there

are no more meaning predicates in the root, (iii) connected-structure, which

checks whether the structure is connected.

3.3.4 Learning constructions
Up until now, this chapter mainly addressed the representation of constructions

and transient structure and the construction application process. However,

I did not yet discuss how the constructions are obtained. In FCG, there are

two ways to acquire grammars: they can either be designed (i.e. written by

a grammar designer) or they can be learned. In what follows, I discuss the

learning of construction grammars through the mechanisms of intention reading

and pattern finding as introduced by Nevens (2022), Nevens et al. (2022) and

Doumen et al. (2023).

Recent major breakthroughs by Nevens (2022), Nevens et al. (2022) and Doumen

et al. (2023) have introduced a set of generally applicable learning operators

in FCG. Of course, these insights build further on a long tradition, starting with

the learning of constructions for specific linguistic phenomena, for example a

grammar for Russian aspect (Gerasymova and Spranger, 2010, 2012), English

spatial expressions (Spranger and Steels, 2015; Spranger, 2015, 2017) and Hun-

garian agreement (Beuls et al., 2010). Later experiments have introduced more

general learning operators applied to the English noun phrase (Van Eecke, 2018).

These experiments have led to the development of the more generally applica-

ble learning operators of Nevens (2022), Nevens et al. (2022) and Doumen et al.

(2023) that enable the learning of grammars through situated communicative

interactions.

The learning of construction grammars in FCG takes inspiration from child lan-

guage acquisition which, according to Tomasello (2003, 2009), relies on two

cognitive mechanisms: intention reading and pattern finding. Intention reading

refers to the process of reconstructing the intended meaning of the observed

utterance. Pattern finding is finding syntactico-semantic generalisations over

form-meaning pairings. Intention reading and pattern finding are both oper-

ationalised in the Babel framework. On a technical level, the pattern finding

operators are implemented in the meta-layer architecture of FCG (Van Eecke
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and Beuls, 2017) and intention reading uses the composer in IRL (Van den

Broeck, 2008). During the process of pattern finding, a network of grammatical

categories that links the categories of the constructions emerges.

Currently, there are two main approaches to learn construction grammars in

FCG. First, it is possible to learn from semantically annotated corpora using

the pattern finding mechanism (Doumen et al., 2023). Second, a grammar can

be learned through situated interactions where the meaning is not observed,

but where a hypothesis of the meaning is created through intention reading,

which the pattern finding mechanism then uses to make generalisations (Nevens

et al., 2022). I will discuss both the pattern finding mechanism and the intention

reading processes.

Learning constructions through pattern finding The goal of pattern finding

is to learn syntactico-semantic generalisations (i.e. constructions) from semanti-

cally annotated corpora. Learning through pattern finding is integrated in the

meta-layer architecture of FCG (Van Eecke, 2018; Van Eecke and Beuls, 2017).

The meta-layer consists of a set of diagnostics and repairs (Beuls et al., 2012) that

are able to construct constructions by finding the similarities and differences

between previously learned constructions and the observation consisting of

both a form and (the gold standard or reconstructed) meaning. The process

starts when a diagnostic is triggered in the meta-layer, indicating that a linguistic

observation cannot be comprehended. Then, a repair enables the learning of a

holophrase construction, which consists of a mapping between an entire linguis-

tic observation and its meaning. Other repairs are able to detect differences and

similarities between the observation and previously learned constructions using

anti-unification algorithms, in order to find generalisations and differences from

which constructions can be learned. Figure 3.10 gives an example of the pattern

finding process. The observation is the utterance “How many spheres are there?”

and its meaning representation. The set of previously learned constructions

contains, among others, the HOW-MANY-CUBES-ARE-THERE-CXN. However, with

these constructions it is not possible to comprehend the utterance, so the meta-

layer becomes active and the repair is triggered. Then, the repair anti-unifies

the utterance and the form of the construction and finds the differences (i.e.

“cubes” and “spheres”) and the similarities (i.e. “how many ?x are there?”). Then,

on the meaning side, the meaning of the observation is compared against the

meaning of the construction and a generalisation and differences are found.

From this generalisation, an item-based construction HOW-MANY-X-ARE-THERE-

CXN can be made, which contains a slot that can be filled by the constructions
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1. O
bservation

“Are there any blue cubes?”

yes

4. P
artial analysis

(bind shape-category ?cube cube)
(bind color-category ?blue blue)

“cubes”
“blue”

cubes-cxn

?cubes-unit

# m
eaning: {bind(shape-category, ?cube, cube)}

# form
: {string(?cubes-unit, “cubes”)}

?cubes-unit

gram
-cat: cube

args: form
: ?cubes-unit

         m
eaning: ?cube

blue-cxn

?blue-unit

# m
eaning: {bind(color-category, ?blue, blue)}

# form
: {string(?blue-unit, “blue”)}

?blue-unit

gram
-cat: blue

args: form
: ?blue-unit

         m
eaning: ?blue

cubes

how
-m
any-x-are-

there(x)

spheres

3. P
reviously acquired constructions and categorial netw

ork

5. Intention R
eading 

(exist ?boolean ?source)
(bind shape-category ?cube cube)
(bind color-category ?blue blue)

Initial
(bind shape-category ?cube cube)
(bind color-category ?blue blue)

(segm
ent-scene ?segm

ented-scene ?scene)
(filter ?cubes ?segm

ented-scene ?cube)
(filter ?blue-cubes ?cubes ?blue)
(exist ?boolean ?blue-cubes)
(bind shape-category ?cube cube)
(bind color-category ?blue blue)

(count ?num
ber ?source)

(bind shape-category ?cube cube)
(bind color-category ?blue blue)

…

…

are-there-any-x-y-cxn

?are-there-any-x-y-unit

# m
eaning: {segm

ent-scene(?segm
ented-scene, ?scene),

                    filter(?filtered-set-1, ?segm
ented-scene, ?x),

                    filter(?filtered-set-2, ?filtered-set-1, ?y),
                    exist(?boolean, ?filtered-set-2)}

# form
: {string(?are-unit, “how

”),
             string(?there-unit, “m

any”),
             string(?any-unit, “are”),
             m

eets(?are-unit, ?there-unit),
             m

eets(?there-unit, ?any-unit),
             m

eets(?any-unit, ?x-unit),
             m

eets(?x-unit, ?y-unit)}

?are-there-any-x-y-unit

gram
-cat: are-there-any-x-y

?x-unit

gram
-cat: are-there-any-x-y

args: form
: ?x-unit

         m
eaning: ?x

?y-unit

gram
-cat: are-there-any-x-y

args: form
: ?y-unit

         m
eaning: ?y

6. Learned constructions and updated categorial netw
ork

cubes

how
-m
any-x-are-

there(x)

spheres

are-there-any-x-
y(y)

Pattern finding
2. Feedback

blue

are-there-any-x-
y(x)
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that are learned from the differences on the form and the meaning side (i.e.

the CUBES-CXN and the SPHERES-CXN). Crucially, these three constructions are

linked to each other in the categorial network (Van Eecke, 2018, Ch. 4). For

a detailed discussion on learning construction grammars through the pattern

finding mechanism, I refer the reader to Doumen et al. (2023).

Learning constructions through intention reading and pattern finding A

second way of learning construction grammars removes the need of starting

from semantically annotated corpora. Due to the operationalisation of the pro-

cesses of intention reading and pattern finding, grammars can be learned from

the ground up, without observing the underlying meaning representation. In

this case, the intention reading mechanism is integrated with the pattern finding

operators. In these experiments, the meaning is not directly observed, but only

a form of feedback (i.e. the answer to the question) is provided, from which a

hypothesis of the meaning underlying the observed utterance is created. Specif-

ically, intention reading is the process that is responsible for reconstructing the

meaning representation and pattern finding then finds generalisations over the

form-meaning pairs. As in the pattern finding experiment, the meta-layer is

triggered if no solution is found when comprehending the observed utterance.

When there is no success, a form of feedback is provided, which is the answer to

the observed question in the case of the experiments in Nevens et al. (2022). The

intention reading mechanism uses the feedback to reconstruct a meaning repre-

sentation that leads to the answer. Then, pattern finding will use the composed

meaning representation to generalise over the utterance and meaning. In some

cases, the comprehension process in FCG already provides a partial analysis from

constructions that could apply. Figure 3.11 shows the interplay between the

intention reading and pattern finding processes. From the observation “Are there

any blue cubes?”, the feedback YES and the previously acquired constructions, the

comprehension process in FCG provides a partial analysis. Two constructions

(i.e. the CUBES-CXN and the BLUE-CXN) applied and added two bind statements to

the meaning. Intention reading starts from this partial analysis and composes

a meaning representation that leads to the answer YES. Then, pattern finding

will create an item-based construction namely the ARE-THERE-ANY-X-Y-CXN that

has two slots which could be filled with the existing BLUE-CXN and SPHERES-CXN.

The link between the x slot in the ARE-THERE-ANY-X-Y-CXN and the BLUE-CXN and

the link between the ‘y’ slot in the ARE-THERE-ANY-X-Y-CXN and the SPHERES-CXN

are added in the categorial network, resulting in a network in which categories

emerge. I refer the interested reader to (Nevens et al., 2022; Nevens, 2022) for a

detailed overview on the intention reading and pattern finding mechanisms in
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FCG.

3.3.5 Discussion
In this section, I discussed Fluid Construction Grammar as a framework for

representing, processing and learning computational construction grammars.

I focussed on the parts that are fundamental to understand the remainder of

the thesis. Therefore, many features, such as the meta-layer (Van Eecke and

Beuls, 2017), footprints, expansion operators, the categorial network (Van Eecke,

2018), construction sets, hashing or scoring constructions or neural heuristics

(Van Eecke et al., 2022) could not be discussed in detail. For a more elaborate

explanation of Fluid Construction Grammar, I refer the reader to the chapters

on FCG in Van Eecke (2018) and Nevens (2022).

Furthermore, I discussed how computational construction grammar can be

learned. Although it is a possibility to learn grammars, the grammars in this

thesis (see Chapter 4, 5) are written by hand. The reason is that the main focus

of the thesis is on designing adequate meaning representations and finding

mechanisms to execute those meaning representations. Therefore, learning the

grammars falls outside the scope of this thesis.

3.4 Conclusion
This chapter introduced the technical foundations underlying the remaining

chapters of this thesis. Specifically, I introduced Incremental Recruitment Lan-

guage (IRL) as a system for representing, processing and composing procedural

semantic networks and Fluid Construction Grammar (FCG) as a framework for

representing, processing and learning computational construction grammars.

The processing of procedural semantics and construction grammars in IRL and

FCG respectively, is operationalised through a search process. Both systems are

part of the larger Babel framework and can thus seamlessly work together. FCG

can be used as a way of mapping linguistic utterances onto a meaning repre-

sentation that can then be executed by IRL, which is how the order of execution

in the systems introduced in the next chapters (specifically Chapter 4 and 5).

This process can also be reversed, so that IRL can be used to compose meaning

representations that can then be produced through the production process in

FCG. I want to note that this two-step process is a necessary simplification of

the way the language understanding process of humans. Indeed, human-like

language understanding is a process in which meaning is built up through inter-
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preting the language at hand while consulting the necessary knowledge sources.

In Chapter 4, I introduce an architecture that first maps linguistic utterances

to a meaning representation by means of a hand-written grammar, then the

meaning representation is executed by IRL. Again, in Chapter 5, I use a designed

grammar to map linguistic utterances to meaning representations.
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4.1 Introduction
This chapter is based on Verheyen et al. (2023) and Verheyen et al., (Under Re-

view). The web demonstration discussed in Verheyen et al. (2022b) accompanies

this chapter and can be found at: https://ehai.ai.vub.ac.be/demos/visual-
dialog/. I was the main contributor to the research presented here.

In this chapter, I introduce a system that models the human-like capacity of

grounding language into the environment and the discourse. The methodology

presented here is designed to tackle the task of visual dialogue, in which an

agent needs to hold a meaningful and coherent conversation with a human

interlocutor discussing an image. To solve this task, it is thus needed to ground

the linguistic utterances in both the situational context (i.e. the image) and the

discourse context. Specifically, I validate the introduced methodology on two

datasets: CLEVR-Dialog (Kottur et al., 2019) and MNIST Dialog (Seo et al., 2017).

The system consists in a hand-written computational construction grammar op-

erationalised through the Fluid Construction Grammar framework that can map

questions and statements from the two datasets to a procedural semantics rep-

resentation. This meaning representation can be executed in a neuro-symbolic

way using the Incremental Recruitment Language framework. Further, I intro-

duce a novel data structure, i.e. the conversation memory, which represents

the information conveyed in the dialogue in an incremental and explicit way.

Moreover, the system is interpretable by design, which I illustrate through a

number of examples.

In what follows, I first give an introduction to the task of visual dialogue and

the proposed methodology (Section 4.2). Then, I discuss the background and

related work (Section 4.3), situating the contribution of this work with respect to

earlier work on visual dialogue (Section 4.3.1) and procedural semantics (Section

4.3.2). In Section 4.4, the novel methodology for solving visual dialogue tasks

using a neuro-symbolic procedural semantic representation that integrates with

a conversation memory is discussed in detail. Section 4.5 presents two exper-

iments in which the method is applied to the MNIST Dialog and CLEVR-Dialog

benchmark challenges. Finally, Section 4.6 reflects on the results, contributions

and impact of the work.

https://ehai.ai.vub.ac.be/demos/visual-dialog/
https://ehai.ai.vub.ac.be/demos/visual-dialog/
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4.2 A novel methodology for the task of visual dia-
logue

Visual dialogue refers to the task in which an artificial agent and a human hold a

meaningful and coherent conversation that is grounded in visual input (Das et al.,

2017). Typically, an agent needs to answer a sequence of questions about a

given image, where the questions can only be understood in relation to previous

question-answer pairs. In many respects, the task of visual dialogue is similar

to the task of visual question answering (Antol et al., 2015), with the additional

difficulty that the question-answer pairs are not independent from each other.

A schematic depiction of a typical visual dialogue task is shown in Figure 4.1. In

this example, an agent is presented with the image on the left, and needs to an-

swer the sequence of questions Q1 to Q4 on the right. The four question-answer

pairs constitute a coherent dialogue, in which Q1 (“Are there any triangles?”) can

be answered based on the image alone, but in which Q2 to Q4 (“How many?”, “Is

there an object to its left?”, “What is its colour?”) can only be answered based on

the combination of the image and the previous question-answer pairs.

In this chapter, I introduce the use of neuro-symbolic procedural semantic

representations for solving visual dialogue tasks. This method builds further

on earlier work in the area of visual question answering, in which procedural

semantic representations, as pioneered by amongst others Winograd (1972),

Woods et al. (1972) and Johnson-Laird (1977), have already been successfully

used for representing the meaning of questions in the form of executable

queries (Andreas et al., 2016a; Johnson et al., 2017b; Nevens et al., 2019a). Such

procedural semantic representations capture the logical structure underlying a

question, and can be executed on a given image to compute an answer.

An example of a procedural semantic representation for the question “Are there

more squares than circles?”, asked about the image in Figure 4.1, is shown in

Q1: Are there any triangles?
A1: Yes

Q2: How many?
A2: One

Q3: Is there an object to its left?
A3: Yes

Q4: What is its colour?
A4: Red

Figure 4.1: Schematic representation of a typical visual dialogue task, in which

an artificial agent needs to answer a sequence of follow-up questions about an

image.
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Figure 4.2. The query is composed of six operations that need to be performed

by an artificial agent in order to retrieve the answer to the question. First

of all, the SEGMENT-SCENE operation segments the image that it received as

input (bound to the variable ?SCENE) and binds the set of foreground objects

to the ?SEGMENTED-SCENE variable. Then, two FILTER operations take this set

of objects as input and bind the set of squares and the set of circles to the

variables ?SQUARES and ?CIRCLES respectively. Then, the set of squares and the

set of circles are counted by COUNT operations and the cardinality of each set is

computed. Finally, the GREATER-THAN operation checks whether the cardinality

of the first set is larger than the cardinality of the second set. The result of this

last operation (in this case NO) is at the same time the answer to the question as

a whole.

The operations, which are also called primitive operations or primitives, corre-

spond to atomic actions that an artificial agent can perform. Depending on the

techniques used for implementing these operations, procedural semantic repre-

sentations can be subsymbolic, cf. the neural module networks used by Andreas

et al. (2016a), or symbolic, cf. the set operations used by Nevens et al. (2019a).

Here, I combine the strengths of both subsymbolic and symbolic operations

through the introduction of neuro-symbolic procedural semantic representations,

cf. the approach used by Manhaeve et al. (2021).

When moving from visual question answering to visual dialogue, the two-step

process of first mapping a question to its logical structure and then executing

the corresponding query on an image becomes more challenging. As individual

questions are no longer independent from each other, they no longer map onto

queries that are directly executable on an image alone. For example, in the

question “What is its colour?”, the possessive anaphoric pronoun “its” refers to

an object that was introduced by an earlier question-answer pair, and which

must be retrieved in order to be able to answer the question. As opposed to

visual question answering systems, visual dialogue systems thus need to be able

to keep track of the information that has been conveyed during earlier dialogue

turns, as well as to use this information for answering questions in later turns.

In order to overcome this challenge, I introduce the use of a conversation memory

as a data structure that explicitly and incrementally stores the information that

is expressed in the subsequent turns of a dialogue. Additionally, I present a

procedural semantic representation for visual dialogue tasks, which is able

to query both visual input and the conversation memory. Due to its neuro-

symbolic nature, this semantic representation can exploit the strengths of both
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segment-scene ?scene

filter ?segmented-scene square?squares

count ?circles?nr-of-circles

2

greater-than ?nr-of-circles?nr-of-squares?answer

no

?segmented-scene

filter ?segmented-scene circle?circles

count ?squares?nr-of-squares

1

1 2

Figure 4.2: Example of a procedural semantic representation for the question

“Are there more squares than circles?”, executed on the image in Figure 4.1. The

answer to the question given this image is NO.

subsymbolic systems for interacting with perceptual data, in this case the image,

and of symbolic systems for reasoning based on previously acquired knowledge,

in this case by retrieving structured information from the conversation memory.

The evaluation of the novel methodology on the standard MNIST Dialog bench-

mark (Seo et al., 2017) and the more challenging CLEVR-Dialog benchmark (Kot-

tur et al., 2019) shows that through the introduction of a conversation memory

and the design of a compatible neuro-symbolic procedural semantic represen-

tation, I have been able to transfer the success of using procedural semantics

in the field of visual question answering to the much more challenging field of

visual dialogue. Presenting a methodology that tackles visual dialogue tasks

by reasoning over both structured (memory) and unstructured (image) data,

contributes to the growing body of research in artificial intelligence that tackles

tasks that involve both low-level perception and high-level reasoning using a

combination of neural and symbolic techniques (Manhaeve et al., 2021; Evans

et al., 2021; Badreddine et al., 2022). It thereby bears the promise of leading

to the development of artificial agents with more explainable, consistent and

human-like cognitive capacities.
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4.3 Background and related work
This section sketches the background and prior work that forms the backbone

of the research. In particular, I focus on the state of the art in the fields of visual

dialogue (4.3.1) and procedural semantics (4.3.2).

4.3.1 Visual dialogue
Agents holding coherent conversations with humans about the scenes they

observe has been a central topic in the field of artificial intelligence since its

inception in the 1950s, with SHRDLU (Winograd, 1972) and Shakey (Nilsson,

1984) being the most notable early systems developed. More recently, also

the machine learning community has become increasingly interested in the

topic of artificial agents holding coherent conversations with humans about

visual content. This has led to the establishment of the standardised task

of visual dialogue as introduced by Das et al. (2017), and subsequently to a

number of dedicated datasets and benchmark challenges, including VisDial

(Das et al., 2017), MNIST Dialog (Seo et al., 2017) and CLEVR-Dialog (Kottur

et al., 2019). The task of visual dialogue can be seen as an extension of the

task of visual question answering (Antol et al., 2015). While both tasks involve

answering questions about images, the questions in a visual dialogue task are

organised in a coherent conversation and can involve reference to entities

introduced by earlier question-answer pairs. The additional challenge faced by

visual dialogue systems amounts thus to taking into account earlier dialogue

turns when answering later questions.

The state of the art in visual dialogue is dominated by attention-based neural

network approaches, which mainly differ in how they deal with co-references

between question-answer pairs. In general, these approaches use an encoder-

decoder architecture (Sutskever et al., 2014), which learns to attend to those

regions of the image and/or previous question-answer pairs that are most rele-

vant to answering a given question. Das et al. (2017) introduce encoders based

on late fusion, hierarchical encoding (Serban et al., 2017) and memory networks

(Bordes et al., 2017). These encoders encode the question, textual history and

image, and identify those parts of the textual history that are most relevant to

answering the question. A discriminative decoder can then be used to rank

candidate answers, or a generative decoder can be used to produce an answer.

Lu et al. (2017) present history-conditioned image attentive encoders which do

not only encode the question, textual history and entire image, but also attend

over specific regions in the image that played a role in the dialogue history.
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Jain et al. (2018) integrate answer options as early input to the model, as to

maximally exploit their informativeness. Building further on this approach, Guo

et al. (2019) introduce a two-stage process, in which the candidate answers are

first scored by a co-attention network. This ranking is then passed as input to a

second co-attention network during a so-called synergistic stage. Wu et al. (2018)

propose a co-attention encoder which jointly reasons over the input image, the

question and the previous question-answer pairs. This encoder is in turn part of

a larger architecture for adversarial learning, which learns to approximate hu-

man answers using a reinforcement learning-based discriminator. Schwartz et al.

(2019) extend this work by presenting a more general co-attention-based model

that can include any number of input modalities. Kang et al. (2019) propose

the use of dual attention networks for resolving visual co-references. Linguistic

co-references are resolved by a first attention module, and the corresponding

entities are then grounded in the image by a second attention module. Gan et al.

(2019) introduce a recurrent dual attention network that performs multi-step

reasoning, integrating visual and textual reasoning in an iterative process. Niu

et al. (2019) introduce an algorithm that recursively traverses earlier question-

answer pairs based on co-references, in order to retrieve visual attentions for the

relevant entities. Zheng et al. (2019) propose a graph neural network approach

to visual dialogue, where the nodes are dialogue turns and the edges repre-

sent co-reference links between these turns. Answering a question amounts

then to inferring unknown node values. Yang et al. (2019) present a history-

aware co-attention network that is robust against imperfect history input. Their

learning approach, called history-advantage sequence training, is inspired by

actor-critic methods in reinforcement learning in the sense that it includes an

adversarial critic which intentionally introduces wrong answers with the goal

of improving robustness. Zhang et al. (2019) propose a weighted likelihood

estimation method for training generative decoders, with the goal of making

them less biased towards frequent answers such as “I don’t know”. Wang et al.

(2020) integrate pre-trained BERT language models into a transformer-based

encoder. Li and Moens (2021) extend this approach by integrating soft linguistic

constraints, encoding preference for specific part-of-speech tags and closeness

between pronouns and their antecedents.

A next line of research focusses on more explicitly keeping track of the entities

that were evoked in earlier dialogue turns, both visually and textually, and on

resolving co-references and ambiguities with respect to these entities. Starting

from the observation that the proportion of follow-up questions with non-trivial

co-references in existing visual dialogue datasets, in particular VisDial, is limited
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(Massiceti et al., 2018; Agarwal et al., 2020), Seo et al. (2017) introduce the MNIST

Dialog dataset with the specific purpose of evaluating to what extent visual

dialogue models are actually capable of reasoning about previously introduced

discourse entities. MNIST Dialog is characterised by a large proportion of inter-

dependent questions that are highly ambiguous with respect to synthetically

generated scenes, unless co-references are adequately resolved. As the scenes

and questions are bias-free, the questions cannot be answered without reason-

ing about both the scene and dialogue history. In the same paper, the authors

introduce a model that explicitly represents the dialogue history as a combina-

tion of previous question-answer pairs and their associated attentions. From

this associative memory, the model is able to retrieve the relevant attention for a

given question. Building further on this work, Kottur et al. (2018) also represent

the dialogue history in the form of an associative memory, but the keys are here

more fine-grained entity-level descriptions instead of question-answer pairs. The

authors introduce a neural module network architecture (Andreas et al., 2016b)

in which the meaning representation includes two dedicated modules (REFER

and EXCLUDE) for interacting with the associative memory. Cho and Kim (2021)

extend Kottur et al. (2018)’s model with a separate treatment of personal and

impersonal pronouns. Kottur et al. (2019) introduce the CLEVR-Dialog dataset

for studying and benchmarking multi-turn reasoning in visual dialogue. This

dataset was developed as a more challenging alternative to MNIST Dialog, where

questions cannot only depend on the previous question-answer pair, but also

on any combination of earlier question-answer pairs. Shah et al. (2020) intro-

duce three extensions of memory, attention and composition (MAC) networks

(Hudson and Manning, 2018) that deal with the conversational nature of visual

dialogue tasks. A first extension consists in passing information across dialogue

turns by initialising the memory state of the first MAC-cell of each turn with the

value of the memory state of the last MAC-cell of the previous turn. A second

extension concerns a context-aware attention mechanism that implements a

transformer-like self-attention mechanism on the previous control states. A

final extension consists in appending the entire dialogue history to the current

question. They report that all three techniques lead to important improvements

with respect to the state of the art. Finally, the neuro-symbolic approach of Ab-

dessaied et al. (2022) keeps track of the mentioned entities by using a dynamic

knowledge base which can be queried by their fetch operation.
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4.3.2 Procedural semantics
Procedural semantic representations, as pioneered by Woods (1968), Winograd

(1972) and Johnson-Laird (1977) capture the meaning of linguistic expressions in

the form of programs that can be executed algorithmically. The use of procedural

semantics is of particular interest to conversational agents, especially when

these agents need to be able to truly understand linguistic expressions as

uttered by a human, for example in the case of instructions to be carried out

in the world or questions to be answered in natural language. The procedural

semantics paradigm was indeed the result of a number of ambitious research

projects in this direction in the 1960s and 1970s. The SHRDLU system (Winograd,

1972) was able to hold coherent conversations with a human about a blocks

world. It could move blocks as instructed by the human, reason about actions

and affordances, and answer questions about both actions and the state of

the world. SHRUDLU’s rule-based grammar and reasoning system were not

only able to understand and produce English utterances, but could also ask for

clarifications when the systemwas unable to disambiguate input utterances. The

LUNAR system (Woods et al., 1972) enabled lunar geologists to query chemical

analysis data on lunar rock and soil composition using natural language, without

having to learn a formal query language or the structure of NASA’s databases.

English utterances were analysed by an augmented transition network (ATN)-

based parser and then mapped onto queries that could be executed on the

databases. Steedman and Johnson-Laird (1978) took this approach further, by

introducing semantic transition networks (STNs). As compared to ATNs, STNs are

able to directly build up a semantic representation, instead of needing to pass

through an intermediate syntactic structure. Since then, this pioneering work

has given rise to a broad spectrum of procedural semantics-based question

answering systems. While the coverage and applicability of these systems have

drastically improved over time, the conversational aspects that were once the

hallmark of SHRDLU, have gradually moved away from the focus of attention.

Over the last decades, procedural semantic representations have been exten-

sively used in systems for querying databases using natural language, in com-

bination with a variety of grammar formalisms. Warren and Pereira (1982)

introduce the use of an extension of definite clause grammars (Pereira and

Warren, 1980), called extraposition grammars, to parse natural language ques-

tions into logic-based executable queries. Zelle and Mooney (1996) introduce an

inductive logic programming approach to learn definite clause grammars and

Kanazawa (2007) uses definite clause grammars to parse natural language ques-

tions into efficient datalog queries. A large body of work embraces combinatory
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categorial grammar (CCG; Steedman, 1987) as a semantic parsing engine that

maps natural language utterances onto logical forms expressed in the lambda

calculus (Zettlemoyer and Collins, 2005; Kwiatkowski et al., 2010; Krishnamurthy

and Mitchell, 2012; Berant et al., 2013; Cai and Yates, 2013; Reddy et al., 2014;

Pasupat and Liang, 2015). Other work adopts Head-Driven Phrase Structure

Grammar (HPSG) (McFetridge et al., 1996; Frank et al., 2007), computational

construction grammar (Nevens et al., 2019a), dependency parsing (Andreas et al.,

2016b) or variations on context-free grammars (Wong and Mooney, 2007; Huang

et al., 2008). Apart from grammar-based approaches, also neural approaches

have been used to map questions onto executable queries, in particular using re-

current neural networks such as LSTMs (Andreas et al., 2016a; Dong and Lapata,

2016; Zhong et al., 2017; Cheng et al., 2019).

When it comes to the properties of the procedural semantic representations

themselves, three different approaches can be distinguished. A first class of

models represent the meaning of utterances as queries expressed in a database

querying language, such as SQL (Zhong et al., 2017), FunQL (Cheng et al., 2019)

or SPARQL (Yahya et al., 2012). The main advantage of this approach is that the

expressiveness of the semantic representation coincides with the expressiveness

of the query language, and that the semantic representations can be directly

executed on a database. The main disadvantages of this approach are that only

questions can be represented straightforwardly and that the structure of the

queries is often far removed from the way in which information is represented in

natural language. A second class of models represent the meaning of questions

using logical forms, often defined in terms of variations on the lambda calculus

(see e.g. the work cited above in the context of CCG). Such representations are

more expressive, can represent more sentence types, and more closely mirror

the compositional nature of linguistic utterances. However, an additional step is

needed to transform the logical forms to executable queries. The third class of

models use formalisms that were especially designed to represent the mean-

ing of natural language utterances using procedural semantic representations.

These formalisms typically provide a way to define so-called primitive opera-

tions, which correspond to functions or predicates that can be implemented

computationally. These primitive operations can be compositionally combined

into larger programs, often called semantic networks, through shared input and

output arguments. These programs can then be evaluated by executing the

individual primitive operations while propagating the appropriate arguments

from one operation to the other. Examples of models of this class include

meaning representations expressed in Incremental Recruitment Language (IRL;
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Van den Broeck, 2008; Spranger et al., 2012), as used for example by Pauw and

Hilferty (2016) and Nevens et al. (2019a), or the meaning representations used

by Andreas et al. (2016a), Johnson et al. (2017a) and Andreas et al. (2020). While

the primitive operations used in these special-purpose procedural semantics lan-

guages need to be implemented or learnt, this approach has the advantage that

the languages are open-ended and directly executable. Moreover, this means

that the procedural semantic languages can be tailored towards the task at hand,

and that the primitive operations and their combination can be designed to

better reflect the compositional nature of natural language utterances.

Primitive operations in procedural semantics can be operationalised symboli-

cally or subsymbolically. Subsymbolic primitives perform operations over nu-

meric representations such as scalars, vectors or tensors. They usually deal

with the categorisation of sensor values observed in the world, often extracted

from images. Symbolic primitives on the other hand perform operations over

meaningful symbols, typically implementing higher-level reasoning processes.

Neuro-symbolic procedural semantic systems allow to combine symbolic and

subsymbolic primitives in semantic networks. In these networks, subsymbolic

primitives typically deal with perception tasks, while symbolic primitives typically

deal with reasoning tasks. Procedural semantic representations of all three

types have been proposed. Neural module networks have been introduced by

Andreas et al. (2016b) as an operationalisation of fully subsymbolic procedural

semantic representations applied to visual question answering tasks. Kottur

et al. (2018) extend this approach to visual dialogue by adding primitive opera-

tions that perform multi-turn co-reference resolution. Yi et al. (2018), Mao et al.

(2019), Abdessaied et al. (2022) and Nevens et al. (2019a) present a symbolic

approach where the procedural semantic representations are not executed on

the image directly, but on a scene graph representation that is generated first.

Finally, Manhaeve et al. (2018, 2021) propose a neuro-symbolic procedural se-

mantic engine which integrates neural predicates in probabilistic logic programs

and Badreddine et al. (2022) present a framework aimed at representing fully

differentiable logic representations.

4.4 Methodology
The novel approach to visual dialogue operationalises two main ideas. First,

the history of a dialogue is represented explicitly, incrementally and in a struc-

tured way. I refer to the data structure holding this information by the term

conversation memory. Second, the meaning of linguistic utterances is repre-
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sented using a neuro-symbolic procedural semantic representation that combines

subsymbolic and symbolic primitive operations. The conversation memory and

neuro-symbolic procedural semantic representation are presented in Section

4.4.1 and 4.4.2 respectively. The full methodology is as follows. Each utterance of

a dialogue goes through the same process. First, the utterance is mapped onto

a procedural semantics representation using computational construction gram-

mar (see 4.4.4). Then, this procedural semantics is executed in a neuro-symbolic

way (see Section 4.4.2). The primitive operations that perform co-reference reso-

lution or require reasoning are executed symbolically, the primitive operations

that perform perception are executed subsymbolically, relying on a set of neural

modules (see Section 4.4.3). In case of a question, the execution leads to an

answer. In case of a caption, the procedural semantics is just executed. In both

cases, the conversation memory is updated based on the procedural semantic

representation (see Section4.4.5).

4.4.1 Conversation memory
The conversation memory captures all information about the dialogue history

that can be relevant for interpreting later dialogue turns. It represents this infor-

mation in an explicit, human-interpretable way, and is incrementally extended

after each dialogue turn. Per turn, the conversation memory stores:

• a timestamp capturing the turn number.

• the utterance observed during the turn.

• the sentence type of this utterance, indicating for example the question

type for questions.

• the reply that was produced, if applicable.

• the topic of the conversation from an information structure point of view.

• a symbolic representation of the set of all entities evoked during the dia-

logue up to this turn, including all their properties that were mentioned.

• for each entity, a pointer to an attention over the image that highlights its

grounding in the input.

As an example, Figure 4.3 shows the state of the conversation memory after

processing the dialogue introduced in Figure 4.1. For now, I only briefly introduce

the conversation memory data structure. Section 4.4.5 will then describe in
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more detail the information captured in the conversation memory, how this in-

formation is extracted from the dialogue, and how it is added. The conversation

memory in the figure holds information about four subsequent dialogue turns.

In the first turn, the question “Are there any triangles?” of type QUESTION-EXIST

is observed and the answer “Yes” is returned. The topic of the conversation at

this point is the entity OBJECT-1. Both the grounding of entity OBJECT-1 in the

input image and its mentioned shape property are stored in the conversation

memory. In the second turn, the question “How many?” of type QUESTION-COUNT

is asked about the current topic of the conversation and the answer “One” is

returned. The topic of the conversation does not change and no additional

information is added. In the third turn, the question “Is there an object to its left?”

of type QUESTION-EXIST is processed and the answer “Yes” is returned. A new

entity OBJECT-2 is added to the conversation memory with as only information

its grounding in the input image. The topic of the conversation now shifts to

entity OBJECT-2. Finally, at the fourth turn, the question “What is its colour?” is

processed. The topic of the conversation, namely OBJECT-2, is inferred from the

previous turn and the answer “Red” is returned. The colour property of OBJECT-2

is added to the representation of this entity in the conversation memory.

In general, the conversation memory should store after each dialogue turn all

discourse information that might be relevant for interpreting later dialogue turns.

The information that is included in the implementation of the conversation

memory reflects the information that is relevant in the visual dialogue tasks

that are tackled in Section 4.5. I do not claim in any way that this information

is sufficient to model everyday conversations between human interlocutors,

which fall outside the scope of these benchmark challenges. Further research

in pragmatics is needed in order to construct more accurate models of the role

that discourse information plays in human conversation.

4.4.2 Neuro-symbolic procedural semantics
In tandem with the conversation memory, I introduce a neuro-symbolic pro-

cedural semantic representation that is designed to represent the meaning of

utterances in their discourse context. The set of primitive operations that is part

of the semantic representation is an extension of the set of predicates used in

the annotation of the CLEVR VQA dataset (Johnson et al., 2017a). On the one

hand, this extension was made for the procedural semantic representation to

be applicable to a larger number of datasets, and on the other hand to be able

to deal with the conversational aspects of dialogue through the consultation of

information stored in the conversation memory.
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The neuro-symbolic procedural semantic representation combines subsymbolic

primitives that implement operations over unstructured data, in particular input

images or attentions, with symbolic primitives that implement operations over

structured data, in particular information contained in the conversation memory.

Primitives that can operate on both structured and unstructured input have

both a symbolic and a subsymbolic implementation. At runtime, the adequate

implementation is then chosen based on the type of the input arguments.

The neuro-symbolic procedural semantic representation makes use of 16 prim-

itive operations, which can combine to represent the meaning of statements

and questions about objects in an image. The statements and questions can

be about the existence and number of objects in the image, their attributes

and the spatial relationships between the objects. The primitive operations are

defined and implemented as described below. A schematic representation of

the internal architecture of each primitive operation is also provided in Figure

4.4 and an overview of the different primitive operations as categorised by their

symbolic or subsymbolic nature is shown in Table 4.1.

• The SEGMENT-SCENE(?SEGMENTED-SCENE, ?SCENE) primitive operation binds

a segmentation of the input image bound to ?SCENE to the ?SEGMENTED-

SCENE variable, i.e. a set of attentions in which each attention highlights

one of the objects in the image. This primitive operation is implemented

subsymbolically as a Mask R-CNN-based neural network that performs

instance segmentation (He et al., 2017). The SEGMENT-SCENE primitive is

used in the representation of the meaning of each statement or question

about an image. For example, it serves as a starting point for computing

an answer to the question “Are there any green cylinders?”.

• The FILTER(?TARGET-SET, ?SOURCE-SET, ?SCENE, ?CATEGORY) primitive opera-

tion binds ?TARGET-SET to the set of all instances of ?CATEGORY present in

?SOURCE-SET. ?CATEGORY needs to be bound to a conceptual category to

filter by, such as GREEN, CUBE or LARGE. The filter operation is implemented

both symbolically and subsymbolically. The symbolic implementation is

used to filter entities from the conversation memory by binding the set of

all entities from the ?SOURCE-SET set that have ?CATEGORY among their sym-

bolic attributes to ?TARGET-SET. The subsymbolic implementation classifies

each attention in ?SOURCE-SET according to whether it fits best the class

?CATEGORY in ?SCENE or a different class of the same attribute category. The

set of attentions that are predicted to belong to class ?CATEGORY are bound

to ?TARGET-SET. This classification process is implemented on top of the
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shared inventory of neural modules discussed later in this section. The

subsymbolic implementation of the filter primitive is for example used to

compute the set of green objects when processing the utterance “Are there

any green objects?”. The symbolic implementation is for example used to

compute the set of green objects when processing the utterance “How

many cubes are there among the aforementioned green objects?”.

• The RELATE(?TARGET-SET, ?SOURCE-OBJECT, ?SEGMENTED-SCENE, ?SCENE, ?SPA-

TIAL-RELATION) primitive operation binds ?TARGET-SET to the set of all atten-

tions in ?SEGMENTED-SCENE for which ?SPATIAL-RELATION holds with respect

to ?SOURCE-OBJECT. For example, if ?SPATIAL-RELATION is bound to RIGHT,

?TARGET-SET will be bound to the set of all attentions over objects that are

located to the right of ?SOURCE-OBJECT. This primitive operation is imple-

mented on top of the shared inventory of neural modules discussed later

in this section. It classifies each attention in ?SEGMENTED-SCENE according

to whether it is ?SPATIAL-RELATION with respect to ?SOURCE-OBJECT in ?SCENE.

The primitive is used for example to compute the set of objects located

to the right of a green sphere when processing the utterance “How many

objects are to the right of the green sphere?”.

• The EXTREME-RELATE(?TARGET-OBJECT, ?SOURCE-SET, ?SCENE, ?SPATIAL-DIREC-

TION) primitive operation binds ?TARGET-OBJECT to the attention in ?SOURCE-

SET over the object that is located most towards the spatial direction de-

scribed by ?SPATIAL-DIRECTION. For example, if ?SPATIAL-DIRECTION is bound

to RIGHT, ?TARGET-OBJECT will be bound to the attention over the rightmost

object present in ?SOURCE-SET. This primitive operation is implemented

on top of the shared inventory of neural modules discussed later in this

section. The primitive is used for example to compute the rightmost object

when processing the utterance “What is the colour of the rightmost object?”.

• The IMMEDIATE-RELATE(?TARGET-OBJECT, ?SOURCE-OBJECT, ?SEGMENTED-SCENE,

?SCENE, ?SPATIAL-RELATION) primitive operation binds ?TARGET-OBJECT to the

attention in ?SEGMENTED-SCENE over the object in ?SCENE that is located

most closely to ?SOURCE-OBJECT according to ?SPATIAL-RELATION. For exam-

ple, if ?SPATIAL-RELATION is bound to RIGHT, ?TARGET-OBJECT will be bound to

the attention over the object in ?SCENE that is located most closely to the

right of ?SOURCE-OBJECT. This primitive operation is implemented on top of

the shared inventory of neural modules discussed later in this section. The

primitive is used for example to compute the object that is located most

closely to the right of the green sphere in the utterance “What is the shape
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of the object right of the green sphere?”.

• The UNIQUE(?TARGET-OBJECT, ?SOURCE-SET) primitive operation checks whe-

ther the set bound to ?SOURCE-SET contains only one attention. If this is the

case, it binds ?TARGET-OBJECT to this attention. If ?SOURCE-SET is empty, the

primitive signals failure. If ?SOURCE-SET contains more than one attention,

it triggers a search process with as many branches as there are attentions

in ?SOURCE-SET. Each attention in ?SOURCE-SET is bound to ?TARGET-OBJECT

in exactly one branch with the average confidence score of the attention

accumulated over any previous primitives taken as the heuristic value of

the branch. The UNIQUE primitive is implemented through symbolic set

operations. It is for example used for processing utterances that contain

articles, such as “What is the material of the green sphere?” or “There is a

green object left of a red object.”.

• The QUERY(?TARGET-CATEGORY, ?SOURCE-OBJECT, ?SCENE, ?ATTRIBUTE-CATEGORY)

primitive operation queries the ?ATTRIBUTE-CATEGORY of ?SOURCE-OBJECT

and binds the resulting value to ?TARGET-CATEGORY. ?ATTRIBUTE-CATEGORY

needs to be bound to the name of an attribute category, such as SHAPE,

COLOUR or SIZE. The resulting values are conceptual categories such as

BLOCK, RED or LARGE. This primitive operation is implemented on top of the

shared inventory of neural modules discussed later in this section. Based

on ?ATTRIBUTE-CATEGORY (e.g. size), a subset of binary classifiers associated

to this ?ATTRIBUTE-CATEGORY is selected (e.g. large, small). The category

associated to the binary classifier yielding the highest confidence score

(for a positive result) is bound to ?TARGET-CATEGORY. The query primitive is

used to query properties of objects, for example the material of the green

sphere in the utterance “What is the material of the green sphere?”.

• The COUNT(?TARGET-NUMBER, ?SOURCE-SET) primitive operation binds the

cardinality of ?SOURCE-SET to ?TARGET-NUMBER. This primitive operation is

implemented through a symbolic set operation. An example utterance

that requires the COUNT primitive is the question “How many spheres are

there?”.

• The EXIST(?TARGET-BOOLEAN, ?SOURCE-SET) primitive operation checks whe-

ther the set bound to ?SOURCE-SET contains at least one element. If so,

?TARGET-BOOLEAN is bound to YES, otherwise to NO. This primitive oper-

ation is implemented through symbolic set operations. An example of

an utterance requiring the EXIST primitive is the question “Are there any

spheres?”.
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• The MORE-THAN-ONE(?TARGET-BOOLEAN, ?SOURCE-SET) primitive operation

checks whether the set bound to ?SOURCE-SET contains multiple elements

(i.e. at least two). If so, ?TARGET-BOOLEAN is bound to YES, otherwise to NO.

This primitive operation is implemented through symbolic set operations.

An example of an utterance that requires the MORE-THAN-ONE primitive is

the statement “There are multiple spheres in the image.”.

• The EXIST-OR-COUNT(?TARGET, ?SOURCE-SET, ?CONVERSATION-MEMORY) primi-

tive operation calls either the EXIST primitive operation or the COUNT prim-

itive operation on ‘?source-set’ and binds the result to ‘?target’. Whether

the exist or count operation is called, depends on the sentence type of

the previous turn in ‘?conversation-memory’. This primitive operation is

implemented through symbolic operations on the conversation memory

and through calls to other primitive operations. For example, if a question

‘and to its right?’ follows a count-type question such as ‘How many objects

are there to the left of the green cube?’, the count primitive will be used to

count the objects to the right of the green cube. If the same question

follows an exist-type question such as ‘Are there any objects to the left of the

green cube?’, the exist primitive will be called to determine whether there

are any objects to the right of that green cube.

• The GET-TOPIC(?TARGET-TOPIC, ?CONVERSATION-MEMORY) primitive operation

binds ?TARGET-TOPIC to the current topic of the conversation as stored

in ?CONVERSATION-MEMORY, i.e. the set of objects that is the topic of the

conversation after processing the previous turn. This primitive operation

is implemented symbolically. It is used to resolve anaphora in questions

such as “and its colour?”, following questions such as “What is the shape of

the small object left of the green cube?”, which shifted the topic to the small

object left of the green cube.

• The GET-PREVIOUS-TOPIC(?TARGET-TOPIC, ?CONVERSATION-MEMORY) primitive

operation binds ?TARGET-TOPIC to the previous topic of the conversation,

i.e. the set of objects that was the topic before processing the last turn.

This primitive operation is implemented symbolically. It is used to resolve

anaphora in questions such as “and to its left?” following questions such as

“Are there any objects to its right?”, which follow themselves questions such

as “Is there a green cube?”. In this case, the question “and to its left?” refers

to the green cube and not to the objects to the right of the green cube.

• The GET-ATTRIBUTE-CATEGORY(?TARGET-CATEGORY, ?CONVERSATION-MEMORY)

primitive operation binds ‘?TARGET-CATEGORY’ to the attribute category that
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was queried most recently in the conversation. This primitive operation is

implemented symbolically and is used to resolve anaphora in utterances

such as “and that of the green sphere?” following utterances such as “What

is the material of the grey cylinder?”.

• The FIND-IN-SCENE(?TARGET-OBJECT-SET-SCENE, ?SOURCE-OBJECT-SET-SCENE,

?SOURCE-OBJECT-SET-MEMORY) primitive operation relates one or more ob-

jects from the conversation memory with their counterparts in the input

image. Concretely, this operation takes as input a set of entities stored in

the conversation memory, bound to ?SOURCE-OBJECT-SET-MEMORY, and the

attentions bound to ?SOURCE-OBJECT-SET-SCENE. It then finds the attentions

of the entities from the conversation memory in the scene and binds this

set to ?TARGET-OBJECT-SET-SCENE. This primitive is implemented symbolically

as a straightforward lookup function. The FIND-IN-SCENE primitive is used

to resolve anaphora in utterances such as “What is its material?” following

utterances such as “Is there a green cube?”. Here, the FIND-IN-SCENE prim-

itive relates the representation of the green cube as retrieved from the

conversation memory with the green cube as observed in the image.

• The SET-DIFFERENCE(?TARGET-OBJECT-SET-SCENE, ?SOURCE-OBJECT-SET-SCENE,

?SOURCE-OBJECT-SET-MEMORY) primitive operation binds ?TARGET-OBJECT-SET-

SCENE to the subset of ?SOURCE-OBJECT-SET-SCENE that contains all attentions

over objects that are not part of ?SOURCE-OBJECT-SET-MEMORY. It does this

by first using the find-in-scene primitive to retrieve the attentions over the

objects in ?SOURCE-OBJECT-SET-MEMORY and then subtracting these from

?SOURCE-OBJECT-SET-SCENE. This primitive is implemented through symbolic

functions. The SET-DIFFERENCE primitive is used to process utterances that

explicitly refer to objects that were not previously mentioned, for example

in the utterance “Are there other objects sharing its colour?”. Here, the word

“other” refers to the set of objects in the scene that do not appear in the

conversation memory.

The subsymbolic primitive operations that query attributes of objects (QUERY),

that filter objects based on their attributes (FILTER), and that spatially relate

objects to each other (RELATE, EXTREME-RELATE and IMMEDIATE-RELATE) are all im-

plemented on top of a shared inventory of neural modules. These modules are

implemented as binary classifiers that are trained to predict whether a specific

conceptual categorisation holds for a given object or set of objects in a scene.

They should be interpreted as atomic distinctions that underlie the conceptual

reasoning of an agent operationalised through a variety of primitive operations.
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Table 4.1: Overview of primitive operations categorised by their symbolic or

subsymbolic implementation.

symbolic subsymbolic

FILTER FILTER

UNIQUE SEGMENT-SCENE

COUNT RELATE

EXIST EXTREME-RELATE

MORE-THAN-ONE IMMEDIATE-RELATE

EXIST-OR-COUNT QUERY

GET-TOPIC

GET-PREVIOUS-TOPIC

GET-ATTRIBUTE-CATEGORY

FIND-IN-SCENE

SET-DIFFERENCE

Table 4.2: Overview of the shared inventory of neural modules on top of which

the subsymbolic primitive operations are built. All modules are implemented as

binary classifiers adopting the SqueezeNet architecture (Iandola et al., 2016).

Shared inventory of neural modules

colour-blue? relate-behind? extreme-relate-

right?

style-

stroke?

colour-red? relate-left? extreme-relate-

front?

style-flat?

colour-brown? relate-right? extreme-relate-

middle?

number-0?

colour-green? relate-front? size-small? number-1?

colour-cyan? immediate-relate-

behind?

size-large? number-2?

colour-grey? immediate-relate-

left?

bgcolour-white? number-3?

colour-purple? immediate-relate-

right?

bgcolour-cyan? number-4?

colour-yellow? immediate-relate-

front?

bgcolour-salmon? number-5?

colour-violet? immediate-relate-

above?

bgcolour-silver? number-6?

shape-cube? immediate-relate-

below?

bgcolour-yellow? number-7?

shape-cylinder? extreme-relate-

behind?

material-metal? number-8?

shape-sphere? extreme-relate-left? material-rubber? number-9?
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Using a shared inventory of highly-specialised neural modules across different

primitive operations, as opposed to training a dedicated neural module for each

subsymbolic primitive operation, has two main advantages. First, it enhances

the consistency of the overall reasoning process, as the different reasoning steps

make use of the same conceptual representations and inferences (see Section

4.6). Second, it facilitates the addition of new primitive operations as they can

maximally reuse cognitive capacities that have previously been acquired. All

binary classifiers are convolutional neural networks that adopt the SqueezeNet

architecture (Iandola et al., 2016). An overview of the neural modules is shown

in Table 4.2 and full details on their implementation and evaluation are provided

in the following Section.

4.4.3 Neural modules
This section provides full details on the architecture and training regime of the

neural modules underlying the subsymbolic primitive operations. The neural

modules perform either instance segmentation (those used by the SEGMENT-

SCENE operation) or binary classification (those used by the QUERY, FILTER, RELATE,

EXTREME-RELATE and IMMEDIATE-RELATE operations).

Modules performing instance segmentation
The instance segmentation module is implemented through a Mask R-CNN

model (He et al., 2017). This module takes as input an image and returns a

set of as many visual attentions as there are objects in the scene, with each

attention highlighting one of the objects. The instance segmentation module is

implemented using the Detectron2 framework (Wu et al., 2019). It consists in a

model for instance segmentation pretrained on the COCO images dataset (Lin

et al., 2014), which is then finetuned on the CLEVR mini dataset (Yi et al., 2018).

For finetuning, a batch size of 8, a learning rate of 0.00025 and 10,000 iterations

are used.

While the same architecture could also be used for processing the MNIST Dialog

images, instance segmentation is not really an issue when it comes to this

dataset. As all images consist of the same 4x4 grid layout, it is straightforwardly

dividable into 16 visual attentions. As a consequence, the instance segmentation

module is not needed.
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Modules performing binary classification
The binary classification modules are trained to predict whether a specific con-

ceptual categorisation holds for a given object or set of objects in a scene. The

binary classifiers are each implemented by a convolutional neural network (CNN)

adopting the SqueezeNet architecture (Iandola et al., 2016) in its 1.1 version1. As

the SqueezeNet architecture expects a single RGB image as input, the modules

first combine their different inputs into a single tensor using a pre-encoding

layer, as illustrated in Figure 4.5a for modules with two inputs (i.e. the colour,

material, style, size, shape, number, bgcolour and extreme-relate modules) and

in Figure 4.5c for modules with three inputs (i.e. the relate and immediate-relate

modules). Both pre-encoding layers make use of a DoubleConv operation, which

is shown in Figure 4.5b. A DoubleConv operation consists in two Conv operations,

which each consist in a convolutional layer with kernel size 3 and padding 1,

followed by a batch normalisation operation (Ioffe and Szegedy, 2015) and a rec-

tified linear unit (ReLU). In general, the first Conv operation in this DoubleConv

operation changes the number of channels while the second Conv operation

keeps the number of channels the same.

When pre-encoding two inputs, each of the inputs first passes through a Dou-

bleConv layer. If the input is an attention, the first Conv in this DoubleConv

layer increases the number of channels from 1 tot 3. If the input is an image,

the number of channels does not change. Then, the resulting feature maps are

combined using element-wise multiplication, which results in a 3xWxH tensor.

When pre-encoding three inputs, the image and the two attentions each pass

through a distinct DoubleConv layer, which increases the number of channels

from 1 to 3 for the attentions and keeps the number of channels the same for

the image. Each of these DoubleConv operations is followed by a max pooling

operation, which halves the width and height dimensions of the feature maps.

Then, the resulting feature maps of the image are concatenated with the result-

ing feature maps of the first attention. The concatenation then passes through

another DoubleConv layer, which doubles the number of channels from 6 to 12.

The same steps apply for the image and the second attention. The two resulting

tensors are then concatenated and passed a final time through a DoubleConv

layer, which reduces the number of channels to three, resulting in a 3xW/2xH/2

tensor.

The result of the pre-encoding layer is then passed to the SqueezeNet archi-

tecture, followed by a LogsSoftMax layer. The output is binary and consists of

1https://github.com/forresti/SqueezeNet/tree/master/SqueezeNet_v1.1

https://github.com/forresti/SqueezeNet/tree/master/SqueezeNet_v1.1


4.4. METHODOLOGY 87

At
te
nt
io
n

Im
ag

e

3x
W
xH

3x
W
xH

1x
W
xH

3x
W
xH

3x
W
xH

El
em

en
t-w

ise
M
ul
tip

lic
at
io
n

Do
ub

le
C
on

v

Do
ub

le
C
on

v

(a
)
T
h
e
a
r
c
h
it
e
c
tu
r
e
o
f
th
e
p
r
e
-e
n
c
o
d
in
g
la
y
e
r
w
it
h
tw
o
in
p
u
ts
.

C
on

v
C

on
v

3x
3 

C
on

vo
lu

tio
n

Ba
tc

h 
N

or
m

Re
LU

Do
ub

le
C
on

v

(b
)
A
D
o
u
b
le
C
o
n
v
la
y
e
r
c
o
n
s
is
ts
in
tw
o
C
o
n
v
la
y
e
r
s
,
e
a
c
h
c
o
n
s
is
ti
n
g

in
a
3
x
3
c
o
n
v
o
lu
ti
o
n
,
fo
ll
o
w
e
d
b
y
a
b
a
tc
h
n
o
r
m
a
n
d
a
R
e
L
U
.

At
te
nt
io
n

At
te
nt
io
n

Im
ag

e

… …

3x
W
xH

…

3x
W
xH

3x
W
xH

3x
W

/2
xH

/2

3x
W

/2
xH

/2

3x
W

/2
xH

/2
1x

W
xH

3x
W
xH

1x
W
xH

6x
W

/2
xH

/2

6x
W

/2
xH

/2

12
xW

/2
xH

/2

12
xW

/2
xH

/2

24
xW

/2
xH

/2
3x

W
/2
xH

/2

C
on

ca
te
na

tio
n

C
on

ca
te
na

tio
n

M
ax
Po

ol
/2

M
ax
Po

ol
/2

M
ax
Po

ol
/2

Do
ub

le
C
on

v

Do
ub

le
C
on

v

Do
ub

le
C
on

v

Do
ub

le
C
on

v

Do
ub

le
C
on

v

C
on

ca
te
na

tio
n

Do
ub

le
C
on

v

(c
)
T
h
e
a
r
c
h
it
e
c
tu
r
e
o
f
th
e
p
r
e
-e
n
c
o
d
in
g
la
y
e
r
w
it
h
th
r
e
e
in
p
u
ts
.

F
ig
u
r
e
4
.5
:
S
c
h
e
m
a
ti
c
o
v
e
r
v
ie
w
o
f
th
e
p
r
e
-e
n
c
o
d
in
g
o
p
e
r
a
ti
o
n
s
.



88 CHAPTER 4. NEURO-SYMBOLIC PROCEDURAL SEMANTICS

Pre-encoder SqueezeNet LogSoftMax OutputInput

Figure 4.6: The architecture of the modules. The input goes through a pre-

encoder, then through the SqueezeNet architecture, followed by a LogSoftMax

layer.

predictions for the labels ‘yes’ and ‘no’. The overall architecture of the modules

is shown in Figure 4.6.

In order to train and evaluate the neural modules, one dataset per module

per benchmark is generated. For CLEVR-Dialog, I have used images 0-59,999

of the original training set as training data and images 60,000-69,999 of the

original training set as validation data. Then, the instance segmentation module

described above was used to find all instances of objects in these images. The

Euclidean distance between the coordinates specified in the metadata and the

coordinates of the predicted instances is then computed in order to link the

object instances to their symbolic description in the metadata of the dataset.

The result is a dataset in which each predicted instance (in the form of a visual

attention) is accompanied by a symbolic description of its attributes. Based

on this dataset, one dataset per module was then generated, which consists

of instances annotated with a label ‘yes’ or ‘no’. The correct label is found via

the symbolic meta-data. A total of 28 datasets were generated, one for each

CLEVR-Dialog module.

For MNIST Dialog, the dataset generation process was similar. The 30,000 images

from the training set are used as training data and the 10,000 images from the

validation set as validation data. First, all instances in the images are found by

dividing the image into 16 attentions. Then, these instances are linked to their

symbolic description using the index provided in the meta-data. This resulted

in a dataset with all instances paired with their symbolic description. Based on

this dataset, one dataset per module was generated, with consists in all the

instances accompanied by a label that indicates whether the instance has the

attribute or not. A total of 26 datasets were generated, one for each of the

MNIST Dialog modules.

The hyperparameters used for training the CLEVR-Dialog modules are the fol-

lowing: batch size 128, learning rate 0.0001, and negative log likelihood (NLL) as

the loss function. For the MNIST Dialog modules, a batch size of 256, a learning

rate of 0.0001, and negative log-likelihood (NLL) as the loss function were used.

In total, 28 modules for CLEVR-Dialog and 26 modules for MNIST Dialog were
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Table 4.3: Overview of the loss and accuracy of the CLEVR-Dialog and MNIST

Dialog modules.

CLEVR-Dialog Modules Loss Acc. MNIST Dialog Modules Loss Acc.

colour-blue? 0.0011 99.99 colour-blue? 0.0020 99.97

colour-brown? 0.0033 99.95 colour-red? 0.0072 99.93

colour-cyan? 0.0019 99.98 colour-green? 0.00 100.0

colour-grey? 0.0039 99.97 colour-violet? 0.0013 99.98

colour-green? 0.0027 99.97 colour-brown? 0.0060 99.81

colour-purple? 0.0011 99.98 style-stroke? 0.00 100.00

colour-red? 0.0038 99.96 style-flat? 0.00 100.00

colour-yellow? 0.0061 99.95 bgcolour-white? 0.00 100.00

shape-cube? 0.0089 99.88 bgcolour-cyan? 0.00 100.00

shape-cylinder? 0.0093 99.80 bgcolour-salmon? 0.00 100.00

shape-sphere? 0.0072 99.90 bgcolour-yellow? 0.00 100.00

size-small? 0.0079 99.92 bgcolour-silver? 0.00 100.00

size-large? 0.0101 99.91 number-0? 0.0130 99.95

material-metal? 0.0089 99.90 number-1? 0.0049 99.85

material-rubber? 0.0084 99.91 number-2? 0.0040 99.95

relate-behind? 0.0050 99.91 number-3? 0.0009 99.98

relate-left? 0.0014 99.97 number-4? 0.0080 99.90

relate-right? 0.0021 99.97 number-5? 0.0101 99.66

relate-front? 0.0034 99.92 number-6? 0.0019 99.92

immediate-relate-behind? 0.0091 99.82 number-7? 0.0075 99.88

immediate-relate-left? 0.0037 99.89 number-8? 0.0016 99.97

immediate-relate-right? 0.0034 99.91 number-9? 0.0037 99.94

immediate-relate-front? 0.0068 99.84 immediate-relate-above? 0.00 100.0

extreme-relate-behind? 0.0114 99.78 immediate-relate-below? 0.00 100.0

extreme-relate-left? 0.0029 99.93 immediate-relate-left? 0.00 100.0

extreme-relate-right? 0.0047 99.95 immediate-relate-right? 0.00 100.0

extreme-relate-front? 0.0009 99.98

extreme-relate-middle? 0.0835 97.59

trained. An overview of the loss and the accuracy on the validation set is given

in table 4.3.

For training the modules, the HPC infrastructure provided by the Vlaams Su-

percomputer Center (VSC) with modern CPU (Intel Xeon) and GPU (Nvidia Tesla

P100, Nvidia A100, Nvidia Volta V100) platforms was used.

4.4.4 Visual dialogue grammar
In order to map the utterances from the datasets to their meaning represen-

tation, a computational construction grammar-based approach is used. This

approach is responsible for mapping the utterances onto their meaning rep-

resentation composed of the primitive operations described in the previous

section. The grammar is based on the grammar described in Nevens et al.

(2019a), extending it with constructions that are able to handle co-references.

For example, co-references can either be signalled through a lexical item such as
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“it”, “aforementioned” or “previous”. In other cases, the co-reference is indicated

with “the”. This leads to constructions such as the IT-CXN, which is a mapping

between the form “it” and the meaning GET-TOPIC, UNIQUE and FIND-IN-CONTEXT

and the THE-ANAPHORIC-NP-CXNmaps between the form “the” followed by a noun

phrase and the meaning consisting of the primitives GET-TOPIC, UNIQUE and

FIND-IN-CONTEXT. Another extension that needed to be made is handling the

declarative sentences. Indeed, the dialogues contain captions that are state-

ments about the objects in the image. In contrast to the questions, the meaning

of these captions does not contain an open variable that leads to the answer. The

meaning representations of captions are straightforwardly modelled through

declarative constructions that add a bind statement to the meaning network.

For example, the meaning of the caption “There is a red object.” contains a YES

that is bound to the EXIST primitive. The grammar is operationalised through the

Fluid Construction Grammar framework introduced in Chapter 3. The grammar

covers all the utterances from the CLEVR-Dialog dataset and the MNIST Dialog

dataset. It consists in total of 268 constructions that are either morphological,

lexical or grammatical. Morphological and lexical constructions cover the lexical

items such as the colours, sizes, materials, spatial relationships, shapes etc. The

other constructions capture the more grammatical structures such as nominals,

noun phrases, prepositional phrases, interrogative and declarative structures

etc. The grammar is validated through executing the resulting meaning repre-

sentation and checking whether the computed answer is correct (see Section

4.5.1 and 4.5.2), thereby achieving 100% accuracy in the symbolic evaluation.

As discussed in Chapter 3, language processing in FCG is a search process in

which the constructions operate over the transient structure. This process starts

from the initial transient structure. Then, the preconditions of the constructions

in the grammar are checked against the transient structure. If the preconditions

of a certain construction are met, then this construction applies, resulting in a

new transient structure. Then, the goal tests are checked, if no solution is found,

the search process continues.

Next, I demonstrate the grammar in comprehension using an example utterance

of the CLEVR-Dialog dataset: “What material is the aforementioned red object?”.

The meaning representation that underlies this question is shown in Figure 4.7.

An example of the application of a construction
Comprehending the sentence “What material is the aforementioned red object?”

consists in building a meaning representation for this sentence. The search
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(filter-by-attribute   ?red-objects   ?objects   ?scene   ?color) 

(filter-by-attribute ?objects ?memory ?scene ?object) 

(segment-scene ?segmented-scene ?scene) 

(find-in-scene ?red-objects-in-scene ?segmented-scene ?red-objects) 

(unique ?red-object ?red-objects-in-scene) 

(bind   attribute-category  ?attribute     material) 

(bind shape-category ?object ?thing) 

(bind   color-category   ?color   red) 

(query    ?material   ?red-object   ?scene   ?attribute) 

Figure 4.7: Meaning network of the question ‘What material is the aforemen-

tioned red object?’, consisting of a SEGMENT-SCENE primitive, followed by two

FILTER-BY-ATTRIBUTE operations, followed by a FIND-IN-SCENE, a UNIQUE operation

and lastly a QUERY operation.

process starts with obtaining the initial transient structure through the de-

rendering process. The standard FCG de-rendering during comprehension splits

the utterance into tokens with an identifier. The initial transient structure after

de-rendering the utterance “What material is the aforementioned red object?” is

shown in Figure 4.8. Next, the pre-conditions of the constructions are checked

against this transient structure. If the pre-conditions of a construction match,

the post-conditions are merged into the transient structure. The pre-conditions

during comprehension of the MATERIAL-CXN check whether there is a string

predicate (STRING ?MATERIAL-UNIT “MATERIAL”) in the root of the transient structure.

In this case, the string predicate can be found indicated in blue). The pre-

conditions are thus satisfied and the postconditions (in this case, the meaning,

the ARGS, SEM-CAT and SYN-CAT features, are merged into the transient structure

(indicated in green). Figure 4.8 shows the initial transient structure and the

transient structure, which is the result of the application of the MATERIAL-CXN.

First, the features in the comprehension lock of the conditional part are matched

against the initial transient structure. Then, the features of the formulation lock

and the contributing part are merged into the ?MATERIAL-UNIT, resulting in the

new transient structure shown in figure 4.8. This process of matching and

merging continues until a solution is found.
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material-cxn

?material-unit

# meaning: {bind(attribute-category, ?attribute, material)} 

# form: {string(?material-unit, "material")}

?material-unit

args:
    {target(?attribute)}
sem-cat:
    sem-class: attribute  
syn-cat: 
    syn-class: noun  
    leftmost-unit:
        ?material-lex-unit  
    rightmost-unit:
        ?material-lex-unit  

transient structure

form:  {string(what-11, "what"),
          string(material-4, "material"),
          string(is-11, "is"),
          string(the-28, "the"),
          string(aforementioned-6, "aforementioned"),
          string(red-1, "red"),
          string(object-9, "object"),
          meets(what-11, material-4),
          meets(material-4, is-11),
          meets(is-11, the-28),
          meets(the-28, aforementioned-6),
          meets(aforementioned-6, red-1),
          meets(red-1, object-9)}
subunits:  {scene-unit, memory-unit}

root

scene-unit

scene: ?scene

memory-unit

memory: ?memory

transient structure

form:  {string(what-11, "what"),
          string(is-11, "is"),
          string(the-28, "the"),
          string(aforementioned-6, "aforementioned"),
          string(red-1, "red"),
          string(object-9, "object"),
          meets(what-11, material-4),
          meets(material-4, is-11),
          meets(is-11, the-28),
          meets(the-28, aforementioned-6),
          meets(aforementioned-6, red-1),
          meets(red-1, object-9)}
subunits:  {scene-unit, memory-unit}

root

scene-unit

scene: ?scene

memory-unit

memory: ?memory

meaning: {bind(attribute-category, ?attribute-27533, material)}
form: {string(material-4, "material")}
sem-cat:
    sem-class: attribute  
args: {target(?attribute-27533)}
syn-cat: 
    syn-class: noun  
    leftmost-unit: material-4  
    rightmost-unit: material-4   

material-4

Initial transient structure

Resulting transient structure

Construction application

Figure 4.8: Construction application of the MATERIAL-CXN. Matching operations

are indicated with a blue box, merging operations in green.
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exist-cxn

?exist-unit

args: {context(?segmented-scene)}
sem-cat: 
    sem-class: exist-question
syn-cat: 
    syn-class: exist-question
# meaning: {segment-scene(?segmented-scene, ?scene)} 

args: {context(?segmented-scene)}
sem-cat: 
    sem-class: exist-question
syn-cat: 
    syn-class: exist-question

scene-unit

∅

scene: ?scene

Figure 4.9: Schematic representation of the exist-cxn construction, in which the

‘?scene’ variable is taken from the root (highlighted in pink).

Accessing the scene and memory from the root
In order to execute the meaning network, the current scene and memory should

be included in the meaning network. The primitive operations SEGMENT-SCENE,

FILTER, RELATE, EXTREME-RELATE, IMMEDIATE-RELATE take a scene-pathname that

points to the current scene as one of their arguments. The GET-TOPIC, GET-

PREVIOUS-TOPIC and in some cases the FILTER operation take as input the current

memory. In these cases, constructions take variables directly from the root. For

example, in the exist-construction, the meaning contains the primitive operation

SEGMENT-SCENE(?SEGMENTED-SCENE, ?SCENE). The variable ?SCENE is found in the

scene-unit in the root of the transient structure.

After the language processing, when the meaning network is passed to IRL,

two bind statements are added to the meaning network. A bind statement

BIND(PATHNAME-ENTITY, ?SCENE, PATHNAME-ENTITY-1) is added, where pathname-

entity-1, which refers to the pathname of the image that is currently under con-

sideration, is bound to the ?SCENE variable. Also a bind statement BIND(WORLD-

MODEL, ?MEMORY, WORLD-MODEL-1) is added, where WORLD-MODEL-1 is the con-

versation memory at that point in the dialogue, which is then bound to the

?MEMORY variable. This way, the primitive operations have access to the current

image and memory.
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4.4.5 Extending the conversation memory
The conversation memory is extended with new information after each dialogue

turn. Concretely, after each turn, a new turn representation is created for the

current timestep (see the four boxes in Figure 4.3). The timestep, utterance and

reply slots of the turn representation are straightforwardly filled based on the

available information. The sentence type is inferred from the final primitive op-

eration executed during the evaluation of the semantic network for the current

utterance. The topic corresponds to the set of objects that was bound to the

input argument of the same primitive operation call. Finally, entities are added

or updated based on the properties of the objects that were mentioned during

the current turn.

For example, in the first turn of Figure 4.3, the question “Are there any triangles?”

is asked and the response is “Yes”. It can be inferred that the question is of type

QUESTION-EXIST based on the fact that the semantic network representing the

meaning of the question ends with the EXIST primitive (the semantic network is

not shown in the figure). The topic corresponds to the set containing the only

triangle that was present in the input image, and which served as the input set

to be processed by the EXIST primitive. A representation of this object is added

to the list of entities with its mentioned TRIANGLE property and an attention that

grounds the object in the image. In the third turn, the question “Is there an object

to its left?” of type QUESTION-EXIST is asked and the answer “Yes” is returned.

The topic now shifts to the set containing the only object that was to the left of

the previous topic, as this was the input to the EXIST primitive. No information

apart from its grounding in the world is added to the entity representation, as

no additional information was mentioned. In the final turn, the question “What

is its colour?” of type QUESTION-QUERY is asked and the answer Red is given. The

property COLOUR: RED is added to the representation of the topic entity. The

topic does not shift, as it was again the same object that was the input to the

final QUERY primitive.

4.5 Experiments
I now validate the novel methodology using two standard benchmark challenges

in the field of visual dialogue, in particular MNIST Dialog (Seo et al., 2017) and

CLEVR-Dialog (Kottur et al., 2019). Both benchmarks were explicitly designed to

be bias-free and to include a large proportion of non-trivial co-references across

dialogue turns. Due to these two characteristics, answering the questions in
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Q1: Are there brown digits?
A1: Five

Q2: Are there digits in a yellow background among them?
A2: One

Q3: What is the number of the digit above it?
A3: 1

Q4: What is the background color of the 1?
A4: White

Q5: What is the color of the digit below it?
A5: Brown

Q6: Are there more brown digits?
A6: Four

Q7: Are there 0’s among them?
A7: One

Q8: What is the style of it?
A8: Stroke

Q9: What is the color of the digit below it?
A9: Red

Q10: What is the number of the digit above it?
A10: 0

Figure 4.10: Example dialogue from the MNIST Dialog dataset.

the datasets cannot be done based on any statistical properties of the scenes,

questions and answers, but requires actual reasoning about both the visual

content and the discourse context.

4.5.1 MNIST Dialog
Data
The MNIST Dialog dataset consists of 50,000 images, which are each accom-

panied by three dialogues. Each dialogue is in turn composed of 10 question-

answer pairs. Each image consists in a synthetically generated 4x4 grid of hand-

drawn digits with four randomly sampled attributes: colour (RED, GREEN, BLUE,

PURPLE or BROWN), background colour (CYAN, YELLOW, WHITE, SILVER or SALMON),

number (from 0 to 9) and style (FLAT or STROKE). A symbolic description of the

scene is also provided as meta-data, but is not part of the actual benchmark.

The questions and answers are automatically generated. The questions can

either query attributes of a single digit (e.g. “What is the colour of the digit below

it?”) or count digits based on one or more of their attributes (“Are there brown

digits?”2). They can also include references to the spatial relations between the

digits. The answers always take the form of a single word. An example dialogue

from the MNIST Dialog dataset is shown in Figure 4.10. Seo et al. (2017) estimate

that 94% of the questions involve co-references, either in the form of pronouns

or in the form of definite noun phrases.

Operationalisation and experimental set-up
There are three main challenges involved in the operationalisation of the pro-

posed methodology for the MNIST Dialog benchmark. First of all, it is necessary

2Somewhat counterintuitively, the answer to this question is a number and not a boolean value.
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to find a way to map the MNIST questions to semantic networks that are com-

posed of the primitive operations that are introduced in Section 4.4.2. This is a

highly non-trivial task, as the MNIST dataset does not come with any semantic

annotation of the questions. Second, the neural modules that are used by these

primitive operations need to be trained on the MNIST dataset images. Finally, it

is necessary to be able to evaluate the process of mapping from questions to

semantic networks, the execution of these networks, and the neural modules

themselves independently from each other.

In order to operationalise the process of mapping from the MNIST questions to

their semantic representations, a computational construction grammar-based

approach (Van Eecke and Beuls, 2018; Beuls et al., 2021; van Trijp et al., 2022)

was adopted. Concretely, I extended the computational construction grammar

developed by Nevens et al. (2019a) for the CLEVR VQA dataset (Johnson et al.,

2017a) so that it is able to handle constructions involving co-referential expres-

sions. The meaning predicates contributed by these additional constructions are

expressed in terms of the primitive operations defined above. Other approaches

for mapping from natural language utterances to semantic networks, such as

LSTM-based techniques, have also been proposed in the literature (see Section

4.3), but require a gold standard annotation of the semantic networks in the

dataset. The grammar that is used in this approach is discussed in Section

4.4.4. The execution of the semantic networks is modelled using the Incremental

Recruitment Language (IRL) framework (Van den Broeck, 2008; Spranger et al.,

2012; Nevens et al., 2019b), a procedural semantics implementation.

In order to verify the aptness of the semantic representations resulting from

the language processing process, I have in a first phase made symbolic imple-

mentations of the primitive operations that work on the noise-free metadata

that describe the images rather than on the images themselves. By doing this, it

was possible to verify whether the predicted semantic networks would in theory

always lead to the correct answer given a question and a scene. Indeed, the

semantic networks achieved a 100% accuracy when applied to the metadata of

the images. This proves on the one hand that the primitive operations presented

in Section 4.4.2 are indeed sufficient to represent the meaning of the questions

in the dataset, and on the other hand that the grammar covers the dataset

completely. It is obviously the temporary noise-free condition of the synthetic

dataset that makes the 100% figure possible.

The neural modules underlying the primitives described in Section 4.4.2 were

then trained on the training section of the MNIST dataset and their accuracy was
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evaluated on the validation set. All individual primitive operations achieved an

accuracy of over 99.80% on the image data. The details of the training process

and the evaluation results of the individual neural primitives were described in

4.4.3.

An operational example of the methodology as applied to a question and scene

from the MNIST Dialog dataset is shown in Figure 4.11. The figure shows the

execution of the semantic network corresponding to the question “What is its

colour?”. This question is asked as the second turn in a dialogue, following

the question-answer pair “How many 3’s are there? One.”. The semantic rep-

resentation is composed of five primitive operations: segmenting the image

(SEGMENT-SCENE), retrieving the topic of the conversation from the conversation

memory (GET-TOPIC), retrieving the topic in the scene (FIND-IN-SCENE), checking

whether the retrieved topic corresponds to a single object (UNIQUE) and query-

ing the colour of this object (QUERY). When it comes to the execution of this

network, the GET-TOPIC primitive extracts the topic from the last turn of the con-

versation memory and binds the retrieved topic to the variable ?TARGET-TOPIC.

The SEGMENT-SCENE primitive binds a segmentation of the entire scene to the

?SEGMENTED-SCENE variable. The FIND-IN-SCENE primitive uses the bindings of

?TARGET-TOPIC and ?SEGMENTED-SCENE to compute the topic of the previous turn

in the current scene. The resulting attention, in this case highlighting a single cell

in the second row on the third column, is bound to the variable ?TOPIC-IN-SCENE.

The UNIQUE primitive operation checks whether there is a single attention in the

set bound to ?TOPIC-IN-SCENE and binds the attention to the variable ?TARGET-

OBJECT. Finally, the QUERY primitive queries the colour attribute of the target

object and binds the answer GREEN to the ?answer variable. In terms of the

classification of primitives introduced in Section 4.4.2, the SEGMENT-SCENE and

QUERY operations have a subsymbolic implementation, whereas the UNIQUE,

GET-TOPIC and FIND-IN-SCENE operations have a symbolic implementation. It is

the FIND-IN-SCENE operation that bridges between the symbolic and subsymbolic

domains.

When it comes to evaluating the performance of the overall system on the test

portion of the MNIST Dialog benchmark dataset, two different experimental

set-ups are included. First of all, in the ‘standard’ setting, the accuracy of the

answers provided by the execution of the semantic networks that result from

language processing is evaluated. In the ‘guessing’ setting, the system is allowed

to make an educated guess when the execution of a semantic network fails and

therefore does not lead to an answer. The educated guess is made based on the

question type as identified by the grammar and the distribution of answers per
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question type in the training set. For example, if the question “What is the colour

of the 6?” is asked and the conversation memory does not contain a reference

to any 6s, for example due to a previous classification error, the execution of the

semantic network fails and a guess is made based on the distribution of colours

as answers in the training data. The ‘guessing’ setting is provided in order to

be able to straightforwardly compare the results of the methodology to neural

approaches which always provide an answer even if its probability is low. The

experimental results obtained on the MNIST Dialog dataset are provided in Table

4.4 and will be discussed in Section 4.6.

4.5.2 CLEVR-Dialog
Data
The CLEVR-Dialog dataset consists of 85,000 images, which are each accom-

panied by five dialogues. Each dialogue starts with a caption that makes a

statement about the contents of the image (e.g. “There is a grey object right of a

large object”). The caption is then followed by 10 question-answer pairs. The im-

ages depict synthetically generated scenes consisting of 3D geometrical objects

with randomly sampled attributes: shape (CUBE, SPHERE or CYLINDER), size (SMALL

or LARGE), colour (GREEN, RED, GREY, BLUE, BROWN, YELLOW, PURPLE or CYAN) and

material (RUBBER or METAL). The questions involve querying an attribute of an

object in the scene (e.g. “What shape is it?”), counting objects based on one or

more of their attributes (e.g. “How many green spheres are there?”), and querying

whether a set of objects satisfies a given description (e.g. “Are there any green

spheres?”). The questions can involve reference to different kinds of spatial rela-

tions between objects (e.g. “the left block” and “the block left of the green cylinder”).

In contrast to MNIST Dialog questions, anaphora in CLEVR-Dialog questions can

refer to entities mentioned in any of the previous dialogue turns. Moreover,

resolving history-dependent questions can require taking into account the entire

dialogue history, as is for example the case in questions such as “Howmany other

objects are present in the image?”. An example dialogue from the CLEVR-Dialog

dataset is shown in Figure 4.12.

Operationalisation and Experimental Set-up
The challenges involved in operationalising the introduced methodology for the

CLEVR-Dialog benchmark are the same as those discussed above in the context

of the MNIST Dialog benchmark: (i) mapping the CLEVR-Dialog questions to

semantic networks that are composed of the primitive operations introduced
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Q1: If there is an object left of it, what size is it?
A1: Large

Q2: How about material?
A2: Metal

Q3: What about shape?                                                                       
A3: Cube

Q4: And that of the above blue object?
A4: Cube

Q5: How many objects does that metallic object 
have to its behind?                                               
A5: Two

There is a blue object in the scene.

Q6: What number of other objects share similar shape with 
the aforementioned big object?
A6: One

Q7: If there is an object to the right of the earlier big object, 
what material is it?
A7: Metal

Q8: Does it have objects to behind itself in the scene?
A8: No

Q9: What color is the above large object?
A9: Red

Q10: What number of other objects in the picture are of same 
shape with the previous blue object?  
A10: One

Figure 4.12: Example dialogue from the CLEVR-Dialog dataset.

in Section 4.4.2, (ii) training the neural modules underlying these operations

on the CLEVR-Dialog images, and (iii) evaluating the accuracy of the language

processing system and the neural modules.

In order to map from utterances to procedural semantic networks, the exact

same construction grammar as the one used for the MNIST Dialog benchmark

is used. In order to verify the aptness of the programs and language processing

system, a temporary symbolic implementation of the primitives was created to

evaluate the programs that resulted from language processing on the noise-free

metadata that describe the images in the dataset. An accuracy of 99.99% was

achieved. After an exhaustive error analysis, I could conclude that the non-

perfect accuracy was due to scenes that contained an even number of objects

and in which a question relied on reference to the object ‘in the middle’3. As the

dataset was constructed in such a way that these questions are impossible to

answer reliably, even for a human, I concluded that the primitives are sufficient

to solve the task of CLEVR-Dialog, and that the grammar achieves maximum

coverage on the CLEVR-Dialog questions.

The neural modules underlying the primitive operations described in Section

4.4.2 were trained on the training portion of the CLEVR-Dialog dataset and

their accuracy was evaluated on a held-out validation set of 10,000 images. All

modules except the ‘extreme-relate-middle?’ module achieved an accuracy of

over 99.7%. The lower accuracy of this module (97.59%) is probably due to the

previously described problem in which a question can refer to the ‘middle’ object

in a scene with an even number of objects. The details of the training process

and the evaluation results of each individual module were described in 4.4.3.

An operational example of the execution of a semantic network underlying a

question from the CLEVR-Dialog dataset on an image is shown in Figure 4.13. In

3This information was communicated to and acknowledged by the creators of the dataset.
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this example, the same question as in Figure 4.11 is asked, namely “What is its

colour?”. However, in this case the question follows the caption “There is a large

sphere.”. Also, the question is now asked about a 3D rendered image rather than

about a 2D 4x4 grid. The grammar maps the question to the same underlying

procedural semantic program consisting of five primitive operations. However,

the implementations of these primitives now make use of the neural modules

trained on the CLEVR-Dialog images. The primitive operations are executed and

the answer “cyan” is returned.

In order to evaluate the performance of the overall system on the test portion

of the CLEVR-Dialog benchmark dataset, the two same experimental set-ups

as for the MNIST Dialog dataset are used. In particular, I provide the ‘standard’

and ‘guessing’ settings. The experimental results obtained on the CLEVR-Dialog

dataset are provided in Table 4.4 and will be discussed in Section 4.6.

4.6 Results and Discussion
An overview of the evaluation results of the system on the MNIST Dialog and

CLEVR-Dialog benchmark datasets is shown at the bottom of Table 4.4. In the

best-performing experimental setting, i.e. the ‘guessing’ setting, where the sys-

tem makes an educated guess when the execution of a semantic network fails,

this system achieves a question-level accuracy of 99.8% on the MNIST Dialog

benchmark and of 99.2% on the more challenging CLEVR-Dialog benchmark. In

the ‘standard’ setting, i.e. without guessing, it achieves a question-level accuracy

of 99.8% and 99.0% respectively. The table also reports on the system’s perfor-

mance on the standard CLEVR VQA benchmark, with a question-level accuracy

of 99.7%. CLEVR VQA is not a visual dialogue benchmark, but has been included

for reference as it has been a very popular benchmark in the literature.

The table also compares the results against previous approaches, namely the

encoder-decoder-based approaches presented by Das et al. (2017) and Seo et al.

(2017), the neural module networks-based approaches by Andreas et al. (2016b),

Johnson et al. (2017b), Hu et al. (2017), Mascharka et al. (2018) and Kottur et al.

(2019), the MAC network-based approaches by Hudson and Manning (2018) and

Shah et al. (2020), and the neuro-symbolic scene-graph-based approach by Yi

et al. (2018) and Abdessaied et al. (2022). The introduced system outperforms

the state-of-art on MNIST Dialog, and obtains near-state-of-the-art performance

4The evaluation of the model of the CLEVR dataset is reported by Mao et al. (2019).
5The evaluation of the model on the MNIST Dialog dataset is reported by Kottur et al. (2018) and of

CLEVR-Dialog by Kottur et al. (2019).
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Table 4.4: Overview of results for MNIST Dialog, CLEVR-Dialog and CLEVR VQA

MNIST

Dialog

CLEVR-

Dialog

CLEVR

VQA

Encoder-decoder approaches

LF (Das et al., 2017) 45.1 55.9 /

HRE (Das et al., 2017) 49.1 63.3 /

MN (Das et al., 2017) 48.5 59.6 /

AMEM (Seo et al., 2017) 96.4 / /

Neural module networks ap-

proaches

NMN4(Andreas et al., 2016b) / / 72.1

IEP (Johnson et al., 2017b) / / 96.9

N2NMN5(Hu et al., 2017) 23.8 56.6 83.7

TbD (Mascharka et al., 2018) / / 99.1

corefNMN (Kottur et al., 2019) 99.3 68.0 /

MAC network approaches

MAC (Hudson and Manning,

2018)

/ / 98.9

MAC-CQ-CAA-MTM (Shah et al.,

2020)

/ 98.3 /

Neuro-symbolic approaches

NS-VQA (Yi et al., 2018) / / 99.8
NSVD (Abdessaied et al., 2022) / 99.7 /

Ours - Neuro-symbolic proce-

dural semantics

standard 99.8 99.0 99.7

guessing 99.8 99.2 99.7
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on CLEVR-Dialog and CLEVR VQA. While other approaches that tackle both

visual dialogue benchmark challenges typically perform much better on the

easier MNIST Dialog benchmark as compared to more challenging CLEVR-Dialog

benchmark, our novel approach obtains consistently good results across both

datasets.

While the reported benchmark accuracies are definitely important to validate

the methodology in comparison to existing approaches, the more prominent

contribution of the methodology that I present lies in four main characteristics

that distinguish it from the state of the art in visual dialogue. First of all, the

methodology is explainable in human-interpretable terms. Input utterances are

mapped onto procedural semantic representations, which correspond to logic

programs. These programs, which reveal the logical structure underlying an in-

put utterance, are composed of human-interpretable primitive operations, such

as COUNT, QUERY and FILTER. This means that the result of the initial language

processing step can be inspected and understood by the user. The conversation

memory of the system also stores information about the history of a dialogue in

a structured and human-interpretable way, thereby being fully transparent about

what is remembered by the system. The input and output of each primitive oper-

ation can be traced and interpreted, as they consist in either meaningful symbols

(human-interpretable categories) or visual attentions over images. Given that

these visual attentions are the input and output of human-interpretable opera-

tions, humans are able to judge whether an attention corresponds to what is

expected or not. As the symbolically implemented primitives can be traced on a

meaningful level, the only aspect of the system where the interpretability of the

computation is limited is situated in the subsymbolic primitives that deal with

perception on the lowest level. By pushing the neuro-symbolic boundary so far

down, it is ensured that any reasoning capabilities that exceed the perception of

basic categories is explainable in human-interpretable terms.

A related advantage of this approach is that it avoids inconsistencies in reasoning

by implementing its subsymbolic primitive operations on top of a shared inven-

tory of highly-specialised neural modules. Keeping consistency across reasoning

operations is a highly desirable property of intelligent systems, which at the

same time leads to a more human-like behaviour. For example, it is obvious that

the human capabilities of recognising objects and counting objects rely on the

same conceptual distinctions. This is reflected in the system by implementing

the COUNT primitive in terms of computing the cardinality of a set of objects

returned by a FILTER operation, which is itself implemented based on the same

set of binary classifiers as the QUERY operation. The answer to the question “How
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many red blocks are there?” is as a consequence guaranteed to be consistent

with the answers to the question “What is the colour of the block?” asked for each

block in the scene.

A third asset of the approach is that it can effectively monitor its own perfor-

mance. This has become a topic of high interest in the AI community, since

deep neural networks often provide confidence scores of poor quality, especially

when it comes to out-of-distribution data (Nguyen et al., 2015; Goodfellow et al.,

2015). Concretely, in this case, the system knows that it has not been able to

answer a question based on sound logic reasoning if the execution of a semantic

network fails. While it can still make an educated guess in such cases, the system

then indicates that the result should be interpreted with extra care. In fact, the

execution of a semantic network fails in 65.7% of the CLEVR-Dialog errors (i.e.

errors in the ‘standard’ setting) and in 41.7% of the MNIST Dialog errors (in the

‘standard’ setting as well). The remaining 34.3% and 58.3% of errors respectively

remain undetected by the system. This amounts to only 0.3% of the questions

in CLEVR-Dialog and 0.1% of the questions in MNIST Dialog.

A final advantage resides in the modularity of the approach. New primitive

operations can be added to the system in order to accommodate new tasks

or to model new cognitive capabilities acquired by an artificial agent. These

new primitives can add to both the logical and perceptive reasoning capabili-

ties of the agent. Where appropriate, they can reuse neural modules used by

existing primitives without needing to retrain them. Neural modules can also

dynamically be added, but these might affect the performance of other modules

and therefore require retraining some of them. For example, adding a binary

classifier for a new colour will likely affect the performance of existing binary

classifiers for other colours, as these were trained in the absence of the new

colour category.

Figure 4.14 and 4.15 illustrate the interpretability of the introduced approach

by providing two examples of questions from the CLEVR-Dialog dataset that

were wrongly answered. Concretely, these examples show how the system

supports the tracking of the source of errors by providing insight into the logical

structure underlying the question, and into the input and output of the different

primitive operations that were performed. Figure 4.14 shows the execution

of the semantic network underlying the utterance ‘How many brown objects

are there?’ on a given CLEVR scene. The question has been analysed into

three primitive operations: segmenting the scene (SEGMENT-SCENE), filtering the

segmented scene for the colour brown (FILTER) and counting the number of the
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resulting set of brown objects (COUNT). The result of the counting operation,

which is at the same time returned as the answer to the question, is TWO.

However, this answer does notmatch the gold standard answer from the dataset,

which is ONE. In fact, when scrutinising the execution trace of the semantic

network on the scene, it becomes clear that the filter operation has retrieved

two brown objects. After a visual inspection of the attentions, the human

observer can see that the leftmost object in the scene was wrongly classified as

being brown and the source of the error has been found. If we would now query

the colour of the leftmost object in the scene, the system is also guaranteed to

answer BROWN, as the FILTER and QUERY primitives internally rely on the same

neural classifiers. Thus, while the answer to the question is wrong, it is logically

consistent with the overall perception and reasoning skills of the system.

Figure 4.15 traces back the source of the erroneous answer THREE to the question

“How many other objects are there?”. The question is analysed into four primitive

operations: segmenting the scene (SEGMENT-SCENE), filtering the conversation

memory for objects (FILTER), taking the set difference between the objects in

the segmented scene and those retrieved from the conversation memory, and

counting the resulting set (COUNT). In this case, the conversation memory spans

two turns in which only a single object has been mentioned. Indeed, the scene

contains three objects apart from the one that has been mentioned already.

All aspects of the construction and execution of the semantic network seem to

be flawless, but the answer THREE does not match the gold standard answer

TWO. This tells us that the problem does not occur while processing the current

dialogue turn, but that it must stem from an error in processing a previous

dialogue turn that had as a consequence that a second mentioned object was

not recognised and therefore does not appear in the conversation memory.

The user can then continue analysing the previous turns to retrieve the original

source of the problem.

4.7 Conclusion
This chapter has introduced a novel methodology to solve visual dialogue tasks,

based on the use of neuro-symbolic procedural semantic representations. Con-

cretely, this methodology encompasses (i) the use of a conversation memory

as a data structure that explicitly and incrementally represents the information

that is expressed during the subsequent turns of a dialogue, and (ii) the repre-

sentation of natural language expressions as neuro-symbolic semantic networks

that are grounded in both visual input and the conversation memory. These
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networks are composed of a combination of subsymbolic primitive operations

that model the perceptual capacities of an agent and symbolic primitive opera-

tions that model its reasoning capabilities. The evaluation of the methodology

on the MNIST Dialog and CLEVR-Dialog benchmarks shows that the system

achieves competitive results with a question-level accuracy of 99.8% and 99.2%

respectively.

The methodology presents four main advantages with respect to the state of

the art in visual dialogue, which is dominated by attention-based neural network

approaches. First of all, the methodology is to a great extent explainable in

human-interpretable terms. The semantic networks that represent the meaning

of natural language utterances are composed of human-interpretable primitive

operations, their input and output arguments are either meaningful symbols

or interpretable visual attentions, and the conversation memory represents

information conveyed in earlier dialogue turns using a transparent symbolic

data structure. This enables the human observer to verify whether an answer

returned by the system is indeed the result of sound logic reasoning, as well as

to trace back the exact source of any perception or reasoning errors that might

occur. Second, the methodology avoids potential reasoning inconsistencies by

implementing the primitive operations on top of a shared inventory of highly-

specialised neural modules. This ensures at least that the results of different

primitive operations are guaranteed to be consistent with each other, whether

the neural modules have made correct predictions or not. Third, the system can

effectively monitor its own performance, as errors that result from language

processing or from the execution of individual primitive operations lead in many

cases to an automatically detectable failure in the execution of a semantic

network. Finally, the modularity of the approach ensures that new primitive

operations can be dynamically added in order to accommodate new tasks or

in order to model new cognitive capacities acquired by an agent. These new

primitive operations can thereby build further on existing primitive operations

or neural modules where appropriate.

Finally, the research contributes to the growing body of research in artificial

intelligence that tackles tasks that involve both low-level perception and high-

level reasoning using a combination of neural and symbolic techniques. Neural

techniques are used to deal with low-level perception tasks and thereby give rise

tomeaningful symbols that can then be used as a basis for higher-level reasoning

operations. It thereby bears the promise of leading to the development of

artificial agents with more explainable, consistent and human-like cognitive

capacities.
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5.1 Introduction
This chapter is based on Van Eecke et al. (2023a). I contributed to the implemen-

tation of the Candide model and mapping out the conceptual foundations.

In the previous chapter I introduced a procedural semantics that is adequate

for reasoning over visual input and discourse. I showed that state-of-the-art

111



112 CHAPTER 5. FRAME-BASED NARRATIVE CONSTRUCTION

results on two visual dialogue tasks can be achieved using this representation.

Next, I will show how procedural semantics can be used for reasoning with

regard to previously acquired knowledge. In contrast to the previous chapter, I

will not focus on tackling benchmark tasks, but I will introduce the conceptual

foundations that underlie this idea as well as discuss a proof-of-concept imple-

mentation. Concretely, I will present the Candidemodel, a model for human-like,

narrative-based language understanding. The model starts from the idea that

narratives emerge when individuals are confronted with an utterance. They will

interpret this utterance by reasoning over their personal knowledge. This inter-

pretation process is personal since each agent has its own personal knowledge

base. Therefore, agents can come to different conclusions when confronted

with the same utterance. The chain of reasoning operations that the agent goes

through to draw a conclusion, is what I will call the narrative of an agent. This

narrative is interpretable, making the agent able to explain its reasoning process.

Similar to humans, this methodology makes agents able to (i) reason over per-

sonal knowledge, thereby constructing a narrative and (ii) explain this reasoning

process. The research presented here is a step towards building systems for

language understanding that are personal, interpretable and human-like.

In this chapter, I will first focus on the background. Next, I will discuss the overall

architecture of the Candide model and its technical operationalisation. Lastly, I

will discuss the contribution of the model and the avenues of future research.

5.2 Narrative-based language understanding
Recently, neural machine learning techniques have taken over the field of NLP,

achieving impressive results on several tasks such asmachine translation, speech

recognition, text summarisation, semantic role labelling and sentiment analy-

sis. These models are fit to exploit statistical properties in large amounts of

texts by capturing co-occurrences of characters, words and sentence. By only

using textual input to train these models and not taking into account meaning

or grounding in the world, these models fail at truly understanding (Bender

and Koller, 2020). Moreover, this research focusses on building models that

perform well on benchmark datasets, instead of building models that truly un-

derstand (Bowman and Dahl, 2021), which results in research that focusses on

performance instead of modelling understanding.

One of the main limitations of current NLP systems is the lack of capability to

model human-like, narrative-based language understanding. Crucially, narrative-
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based language understanding uses personal knowledge and beliefs to interpret

a linguistic observation. Narratives are thus rooted in the experiences of an

individual and different individuals can have different interpretations of the same

linguistic observation Steels (2022a) reflecting the nature of human language and

cognition. This capacity of divergent interpretations is hard to capture in current

NLP systems, since there is not one ‘ground truth’ interpretation. Moreover, the

narratives that emerge are not captured in text, but are construed through an

interpretation process over the observation and the personal knowledge and

beliefs of an individual agent. It is thus hard to cast this narrative-based language

understanding in the annotation schemes required for the machine learning

paradigm. Modelling this capacity is a crucial challenge for the computational

linguistics community.

The primary objective of this research is to introduce a novel approach to

narrative-based language understanding that starts from the idea that nar-

ratives emerge through the process of interpreting novel observations with

respect to previously acquired knowledge and beliefs. Concretely, I present a

computational model of this interpretation process. The model integrates three

main components: (i) a personal dynamic memory that holds a frame-based

representation of the knowledge and beliefs of an individual agent, (ii) a construc-

tion grammar that maps between linguistic observations and a frame-based

representation of their meaning, and (iii) a reasoning engine that performs logic

inference over the information stored in the personal dynamic memory.

“Government experts vividly recommend vaccination: the vaccines are safe and effective”

agent-1 agent-2

- “The government 
experts have done the 
necessary research.”

- “The government experts 
have done the necessary 
research.”
- “Needles scare me.”

agent-3

- “The government 
experts are naive.”
- “Vaccines cause 
autism.”

I’ll get vaccinated I’m hesitating I won’t get vaccinated

Figure 5.1: Informal sketch of the Candide model. Narrative-based language un-

derstanding is conceived as the interpretation process of a linguistic observation

with respect to an agent’s individual belief system. Three agents observe the

same observation that the government experts recommend vaccination. Based

on their personal belief system, each agent draws their own personal conclusion

and construes their own narrative.

Figure 5.1 shows the conceptual ideas of the Candide model. In this figure,
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three agents observe the same utterance “Government experts vividly recommend

vaccination: the vaccines are safe and effective.” When they are asked whether or

not they will get vaccinated, they interpret the utterance with regard to their own

personal knowledge and beliefs and each agent comes to a different conclusion.

The first agent draws the conclusion that they will get vaccinated, based on

their belief that the government experts have done the necessary research.

The second agent is hesitating, since they believe that the experts have done

their research, but they are also scared of needles. The last agent refuses to

get vaccinated. They believe that the experts are naive and that vaccines can

cause diseases. Each of the agents construes their own personal narrative that

justifies their conclusion. These narratives are personal and the example clearly

shows that different agents construe different narratives and come to different

conclusions, even when confronted with the same observation.

Personal, dynamic and interpretable models of narrative-based language un-

derstanding are of great interest to the fields of computational linguistics and

artificial intelligence alike. To the field of computational linguistics, they con-

tribute a perspective that emphasises the individual and contextualised nature

of linguistic communication, which contrasts with the static and perspective-

agnostic models that dominate the field of NLP today. In the field of artificial

intelligence, they respond to the growing interest in the development of artificial

agents that combine human-like language understanding with interpretable,

value-aware and ethics-guided reasoning (see e.g. Steels, 2020; Montes and

Sierra, 2022; Abbo and Belpaeme, 2023).

The model highlights properties that are crucial to narrative-based language

understanding. First of all, a model of analysis can only be adequate if it captures

the personal nature of narratives. Whether or not a conclusion is justified does

not depend on its truth or falsehood from an external perspective, but only on

whether it is supported by the beliefs held by an agent. Second, narratives are

not captured as such in linguistic artefacts. While authors convey messages that

are grounded in their belief systems, these messages do not encode the belief

systems themselves. The intended meaning underlying a message needs to

be reconstructed inferentially based on the belief system of the receiver Grice

(1967); Sperber and Wilson (1986). Finally, it is essential that the interpretation

process that is modelled is transparent and human-interpretable. The goal is not

merely to draw conclusions given linguistic input, but to reveal the background

knowledge, beliefs and reasoning processes that underlie the conclusions that

are drawn.
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In the next section, I will discuss the overall architecture of the model, followed

by its technical operationalisation and a number of illustrative examples. Section

5.5 reflects on the contributions of the model.

5.3 The Candide model
The Candide model relies on the idea that narratives are construed through the

personal interpretation process over a personal and dynamic memory of an

agent. The agents maps the utterance to a meaning representation and then

executes the meaning by reasoning over it and its knowledge and beliefs. Each

of the following elements is crucial to the model:

The Personal Dynamic Memory of an agent is a data structure that stores
the knowledge and beliefs of an agent in a logic representation that supports

automated reasoning. The knowledge and beliefs are stored in terms of frames

and roles. This information can either be a ‘fact’ (e.g., I am scared of needles.) or

a ‘rule’ (e.g., I only trust the government if the government experts have done the

necessary research.). The memory is personal since the knowledge and beliefs

are individual. The knowledge and beliefs are not fixed and can be expanded

when the agent is encountered with novel observations and experiences. The

PDM is thus conceived of as a dynamic entity to which new knowledge and beliefs

can be added at any point in time. Reasoning over the PDM is non-monotonic,

as updated beliefs can alter conclusions.

The Belief System of an agent at a given point in time equals all information
that is stored in the agent’s PDM at that moment in time. Each entry in the

PDM carries a confidence score, which reflects the degree of certainty of the

agent with respect to that entry. However, there exists no formal or conceptual

distinction between entries based on their epistemological status, avoiding

the need to distinguish between ‘knowledge’, ‘facts’, ‘opinions’ and ‘beliefs’ for

example.

A Conclusion is a piece of information that logically follows from a reasoning
operation over the belief system of an agent. A typical example would be the

answer to a question.

Language Comprehension is the process of mapping an utterance to a logic
representation of its meaning. The meaning representation is in procedural

semantics and consists of predicates in a frame-based representation. Crucially,

the predicates that are used in the meaning representation are the same format
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as the knowledge and beliefs in the PDM. While language comprehension is

primarily concerned with retrieving the information captured in the linguistic

input, rather than its integration with respect to the personal dynamic memory,

it is heavily intertwined with other aspects of the interpretation process as well.

Indeed, the linguistic knowledge needed to support language comprehension

is personal and dynamic, and thereby unavoidably constitutes a first layer of

individual interpretation.

Reasoning is the engine that performs logic operations that are conducted over
the knowledge and beliefs in the PDM of an agent. It is operationalised using

the Prolog engine.

A Narrative is defined by the chain of reasoning operations to prove the conclu-
sion based on the knowledge and beliefs in the PDM of an agent. This chain of

operations is explicit and thus interpretable. In the example of the vaccinations,

the narrative of the agents are the arguments that they made to come to the

conclusion whether or not they would get vaccinated. For example, agent-1

constructs the narrative that they will get vaccinated since they trust the govern-

ment experts. Crucially, the narrative that an agent builds is personal, since it is

routed on its personal knowledge.

Interpretation is the process of interpreting an utterance and consists of all
aspects described above. It comprises both language comprehension and

reasoning over the PDM of an agent to draw a conclusion. The interpretation

process thus comprises all steps that an agent goes through starting from

hearing the observation to drawing a conclusion.

This model for narrative-based language understanding is named after Voltaire’s

“Candide ou l’optimisme” (Voltaire, 1759). It is inspired by one of the main themes

of the novel, namely that a character’s belief system and history of past expe-

riences shape the way in which they interpret the world in which they live. As

such, different characters in the novel represent different philosophical positions

and thereby construe different narratives to explain the same situations and

events. The main protagonist, Candide, starts out as a young, naive ‘blank slate’.

Through conversations with the Leibnizian optimist Pangloss and the fatalistic

pessimist Martin, and as a result of long travels that make him experience the

hardships of the world, Candide gradually develops his own belief system in light

of which he ever more wisely interprets the situations and events he witnesses.

Following the main theme of the novel, the aim is not to model a single ‘true’

interpretation of an observation, but to show that different beliefs can lead to
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different interpretations. Moreover, the belief system of an agent is considered

to be dynamic, with the interpretations and conclusions of an agent shifting

as more experience and knowledge are gathered. In order to formalise these

high-level ideas, I introduce the following operational definitions:

5.4 Technical operationalisation
Next, I will discuss how each of the different parts discussed above is opera-

tionalised. I will use a first proof-of-concept implementation for this. Two agents

encounter the statement “Sam sent a postcard to Robin” and then are both asked

the same question “What did Robin receive from Sam?”, to which they both an-

swer differently. The first agent will answer “a postcard” while the second agent

will answer “nothing”. These different conclusions are reached because some of

the beliefs of the agents differ. Using this example, I will explain how the PDM,

the language processing and the reasoning engine are operationalised.

5.4.1 Language comprehension
The language comprehension component is responsible for mapping between

linguistic input, in particular utterances, paragraphs and texts, and a formal

representation of their underlying meaning. The language comprehension

component is operationalised using the Fluid Construction Grammar framework

(FCG – https://fcg-net.org; Steels, 2004; van Trijp et al., 2022; Beuls and Van
Eecke, 2023).

The choice for FCG as the backbone of the language comprehension component

of the model is motivated by four main reasons. First of all, in line with its

theoretical grounding in usage-based construction grammar, FCG offers a uni-

form way to represent and process linguistic phenomena, whether or not they

can be analysed compositionally (Beuls and Van Eecke, 2023). Second, FCG is

compatible with a wide variety of meaning representations (van Trijp et al., 2022),

including the frame-semantic representation that will be used to represent the

knowledge and beliefs captured in the personal dynamic memory of the agents.

Third, FCG’s symbolic learning operators are especially designed to facilitate the

one-shot learning of constructions given new linguistic observations, thereby

maximally reflecting the personal and dynamic nature of an agent’s linguistic

capacities (Van Eecke, 2018; Nevens et al., 2022; Doumen et al., 2023). Finally, the

symbolic data structures and unification-based processing algorithms employed

by FCG ensure that the representation of an agent’s linguistic knowledge, as

https://fcg-net.org
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well as its language comprehension, production and learning processes, are

transparent and human-interpretable (Van Eecke and Beuls, 2017).

The semantic representation that is chosen captures the meaning underlying

linguistic expressions in the form of semantic frames (Fillmore, 1976; Fillmore

and Baker, 2001). As such, the meaning of the utterance “Sam sent Robin a post-

card” could be represented through a SENDING frame, with “Sam”, “Robin” and

“a postcard” respectively taking up the roles of SENDER, RECIPIENT and THEME. In

terms of data structures, I represent instances of semantic frames through two

types of predicates: entities and roles. Entity predicates are used to represent

referents, i.e. objects, people, events and situations that can be referred to. In

this example, Sam, Robin, the postcard, the sending event and the transfer situa-

tion serve as entities. Role predicates are used to represent relations between

entities. Each role predicate expresses a relation between a frame role (e.g.

SENDER), the frame to which that role is associated (SENDING), the entity that is

taking up the role (Sam), the entity that represents the frame instance (the send-

ing event) and the entity that represents the situation about which the frame is

expressed (the transfer situation). There exists a subtle yet important distinction

between frame instances and situations. A situation is defined in terms of an

agent’s world model, while a frame instance assumes a linguistically expressed

perspective on a situation. In this example, the transfer situation is linguistically

expressed as a sending event, while the same situation could also have been

expressed as a receiving event (e.g. “Robin received a postcard from Sam”). Note

that both the frame instance and the situation are reified as entities and can thus

be referred to. The entity and role predicates follow the FrameNet conventions

(https://framenet.icsi.berkeley.edu) and are represented in standard Prolog
syntax (ISO/IEC 13211), as exemplified in Listing 5.1. The predicates take the

form of ROLE(ROLE, FRAME, ENTITY, FRAMEINSTANCE, SITUATION). The predicate

name is ROLE, the first and second arguments are the name of the role and the

frame in which the entity playing the role participates respectively. The third

argument is the instance of the entity that plays the role in the frame. The

last arguments are the entity that represents the instance of the event and the

entity that represents the instance of the situation. These last two refer to the

instantiation of a specific event or frame.

5.4.2 Personal dynamic memory
The Personal Dynamic Memory stores the knowledge and beliefs of an agent.

There is no distinction between knowledge or beliefs, every piece of information

of an agent is stored in the PDM. The knowledge and beliefs are stored as

https://framenet.icsi.berkeley.edu
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% Entity p r ed i c a t e s

en t i t y ( sam) .
en t i t y ( rob in ) .
e n t i t y ( postcard ) .
e n t i t y ( sending_event ) .
e n t i t y ( t r an s f e r_ s i t u a t i o n ) .

% Role p r ed i c a t e s

r o l e ( sender , sending , sam , sending_event , t r an s f e r_ s i t u a t i o n ) .
r o l e ( r e c i p i e n t , sending , robin , sending_event , t r an s f e r_ s i t u a t i o n ) .
r o l e ( theme , sending , postcard , sending_event , t r an s f e r_ s i t u a t i o n ) .

Code fragment 5.1: Frame-semantic representation underlying the utterance

“Sam sent Robin a postcard” as a combination of entity and role predicates

expressed in standard Prolog syntax.

Prolog facts and rules and express relations between entities, roles, frames

and situations. Crucially, the information stored in the PDM takes the same

form as the meaning provided by the language processing, making it possible to

dynamically merge the beliefs provided by the language into the PDM.

For the purposes of this section, I will assume that the agents observe the

utterance “Sam sent Robin a postcard”, comprehend it into the frame-based

semantic representation shown in Listing 5.1, and add this representation to

their personal dynamic memory. It will be assumed that the agents already hold

a number of previously acquired beliefs, in particular about the relation between

the semantic frames of SENDING and RECEIVING. As such, they believe that the

DONOR role in an instance of the RECEIVING frame, cast over a particular situation,

is taken up by the same entity that takes up the SENDER role in an instance

of the SENDING frame cast over the same situation. However, this alignment

only holds under the condition that the postal services are operational. In

other terms, each sending event corresponds to a receiving event if the postal

services are operational, and the sender of the sending event corresponds to the

donor of the receiving event. At the same time, the agents believe that a similar

alignment can be made for the other roles of the SENDING and RECEIVING frames.

Moreover, they believe that the postal services are operational if no general

strike is taking place. A formal encoding of these beliefs is shown in Listing 5.2.

The Listing shows six beliefs regarding the relations between the entities playing

roles in the RECEIVING and SENDING frame. Following Prolog syntax, variables

are written with a capital letter. In each of the rules, the same variable is used
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% Be l i e f about the op e r a t i o n a l i t y o f the mail

mai l_operat iona l :− not ( g ene ra l_s t r i k e ) .

% B e l i e f s about the r e l a t i o n between the sending
% frame and the r e c e i v i n g frame

r o l e ( donor , r e c e i v i ng , Entity ,_, S i tua t i on ) :−
r o l e ( sender , sending , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

r o l e ( r e c i p i e n t , r e c e i v i ng , Ent ity ,_, S i tua t i on ) :−
r o l e ( r e c i p i e n t , sending , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

r o l e ( theme , r e c e i v i ng , Entity ,_, S i tua t i on ) :−
r o l e ( theme , sending , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

r o l e ( sender , sending , Entity ,_, S i tua t i on ) :−
r o l e ( donor , r e c e i v i ng , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

r o l e ( r e c i p i e n t , sending , Entity ,_, S i tua t i on ) :−
r o l e ( r e c i p i e n t , r e c e i v i ng , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

r o l e ( theme , sending , Entity ,_, S i tua t i on ) :−
r o l e ( theme , r e c e i v i ng , Entity ,_, S i tua t i on ) ,
! , mai l_operat iona l .

Code fragment 5.2: The beliefs of the example agents concerning the

operationality of the mail and the conditional alignment between the SENDING

and RECEIVING frames.

for Entity and Situation, meaning that it is the same entity participating in
the role of the different related frames and that the frames relate to the same

situation. The underscore is used to denote variables which are not further

specified. In the rules, the underscore is used to indicate that the frame instance

is underspecified. Indeed, the frame instances of the RECEIVING and SENDING

frame are different, the situation, however, is the same, which is indicated by

the variable Situation.

While the agents hold the same beliefs about the relation between the SENDING

and RECEIVING frames, as well as the conditions under which the postal services

are operational, they hold different beliefs about the current state of social
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% Be l i e f about the s t a t e o f s o c i a l unres t

g ene ra l_s t r i k e :− f a l s e .

Code fragment 5.3: Agent 1’s belief that there is no general strike.

% Be l i e f about the s t a t e o f s o c i a l unres t

g ene ra l_s t r i k e :− t rue .

Code fragment 5.4: Agent 2’s belief that there is a general strike.

% Query

?− r o l e ( theme , r e c e i v i ng ,What , Event , S i tua t i on ) ,
r o l e ( r e c i p i e n t , r e c e i v i ng , robin , Event , S i tua t i on ) ,
r o l e ( donor , r e c e i v i ng , sam , Event , S i tua t i on ) .

% Answer by Agent 1 :

What = postcard ,
S i tua t i on = t r an s f e r_ s i t u a t i o n .

% Answer by Agent 2 :

f a l s e .

Code fragment 5.5: Frame-semantic representation underlying the question

“What did Robin receive from Sam?” with two different answers as computed by

the Prolog engine based on the PDMs of Agent 1 and Agent 2.
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unrest. As such, Agent 1 believes that there is no general strike, while Agent

2 believes that a general strike is going on at the moment. These beliefs are

formally encoded in Listing 5.3 and 5.4 respectively.

I define the PDM of Agent 1 to be the combination of the facts and rules specified

in Listings 5.1, 5.2 and 5.3, and the PDM of Agent 2 to consist of the facts and

rules specified in Listings 5.1, 5.2 and 5.4. The proof-of-concept implementation

does not address the issue of modelling the confidence of an agent with respect

to its individual beliefs. The most straightforward way to operationalise this in

the current proof of concept would be to use probabilistic logic programming,

e.g. through ProbLog (De Raedt et al., 2007).

The model does not make any assumptions about the origin of the beliefs

captured in the personal dynamic memory of an agent. Beliefs can result from

the language comprehension process, from abductive reasoning processes, or

could even by designed by a knowledge engineer.

5.4.3 Reasoning and narrative construction
As the beliefs stored in the personal dynamic memory of an agent and the

meaning of natural language utterances as comprehended by an agent are

both represented as a collection of Prolog facts and rules, logical reasoning

can naturally be operationalised through SLD-resolution-based inference. This

means that agents can be asked to prove logic formulae that correspond to

natural language questions. The conclusion of the proof then constitutes the

answer to the question, while the proof itself corresponds to the narrative that

explains the reasoning behind it.

Suppose that the two example agents are asked to answer the question “What

did Robin receive from Sam?”. The agents first use their grammar to comprehend

this question into its frame-semantic representation, as shown at the top of

Listing 5.5. The interrogative nature of the question is reflected by the presence

of variables in the semantic representation, denoted by symbols starting with a

capital letter. In this case, the interest is in the entity taking up the role of THEME

in the receiving event, represented by the variable What. The agents are then
asked to find a proof for the meaning representation of the question, given the

beliefs stored in their respective personal dynamic memories.

Agent 1 reasons that the transfer_situation that was previously described (see
Listing 5.1) can be viewed as an instance of the RECEIVING frame, given the facts

(i) that there is no general strike, (ii) that the mail service is therefore operational,
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and (iii) that the transfer_sitation is already believed to be an instance of the
SENDING frame in which robin takes up the role of RECIPIENT and sam the role of
SENDER. The agent concludes that this reasoning process is (only) valid under

the condition that the variables What and Situation are bound to the values
postcard and transfer_situation respectively. In other terms, Agent 1 comes
to the conclusion that Robin received the postcard that was sent to them by

Sam.

Agent 2 on the other hand reasons that it knows of no situation that could be

viewed as a receiving event in which sam and robin take up the roles of DONOR
and RECIPIENT respectively. Although this agent holds the same beliefs as Agent 1

when it comes to the link between the sending and receiving frames, Agent 2’s
belief that a general strike is going on leads to the belief that the postal services

are dysfunctional, which in turn leads to the belief that the sending event cast

over transfer_situation does not correspond to any receiving event. In other
terms, Agent 2 beliefs that, while a postcard was sent by Sam to Robin, it was

never received at Robin’s end because of a general strike that paralysed the

postal services.

Figures 5.2 and 5.3 show a schematic overview of the different steps involved in

the respective reasoning processes of Agent 1 and Agent 2 when asked to answer

the question “What did Robin receive from Sam?”. The meaning representation

of the question is shown in the yellow boxes at the top of the figures and

corresponds to a Prolog query. The facts and rules that can be used to prove

the query are those stored in the personal dynamic memories of the agents and

correspond to those presented in Listings 5.1, 5.2 and 5.3 (Agent 1) and Listings

5.1, 5.2 and 5.4 (Agent 2).

The conjunction of three clauses that constitutes the query can indeed be proven

by Agent 1 through a chain of subproofs that establish the link between there not

being a general strike, the operationality of the postal services and the alignment

of the SENDING and RECEIVING frames. The solid arrows denote the subproofs

that were used to prove the top-level query. The labels on the arrows denote

the variable bindings that resulted from the subproofs. While the set of bindings

that result from proving the top-level query can be considered the conclusion of

the reasoning process, it is the chain of subproofs that constitutes the narrative

of the agent with respect to this conclusion. The same query cannot be proven

by Agent 2, where the proof already fails at the first conjunct. in fact, Agent 2

fails to prove the alignment between instances of the RECEIVING and SENDING

frames, as its belief that a general strike is going on leads to a failure to prove



124 CHAPTER 5. FRAME-BASED NARRATIVE CONSTRUCTION

RECEIVING

SENDING

?- role(them
e,receiving,W

hat, Event,Situation), role(recipient,receiving,robin,Event,Situation), role(donor,receiving,sam
,Event,Situation).

role(them
e, sending, postcard, sending_event, transfer_situation).

m
ail_operational :- 

   not(general_strike).

role(recipient, sending, robin, sending_event, transfer_situation).

role(donor, receiving, Entity, _,Situation) :-
   role(sender, sending, Entity, _, Situation),!,
   m

ail_operational.

role(sender, sending, sam
, sending_event, transfer_situation).

role(recipient, receiving, Entity, _,Situation) :-
   role(recipient, sending, Entity, _, Situation),!,
   m

ail_operational.

role(them
e, receiving, Entity, _,Situation) :-

   role(them
e, sending, Entity, _, Situation),!,

   m
ail_operational.

 

general_strike :- false.

m
ail_operational :- 

   not(general_strike).

general_strike :- false.

m
ail_operational :- 

   not(general_strike).

general_strike :- false.

{Entity = postcard,
 Situation = transfer_situation}

{Entity = robin,
 Situation = transfer_situation}

{Entity = sam,
 Situation = transfer_situation}

{What = Entity = postcard, Situation = transfer_situation}
{Situation = transfer_situation}

{Situation = transfer_situation}
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RECEIVING

SENDING

              ?- 

role(theme, sending, postcard, sending_event, transfer_situation).

mail_operational :- 
   not(general_strike).

role(theme, receiving, Entity, _,Situation) :-
   role(theme, sending, Entity, _, Situation),!,
   mail_operational.
 

general_strike :- true.

{Entity = postcard,
 Situation = transfer_situation}

false.

role(theme,receiving,What, Event,Situation), 
role(recipient,receiving,robin,Event,Situation), 
role(donor,receiving,sam,Event,Situation).

Figure 5.3: Narrative constructed by Agent 2 for responding to the question

“What did Robin receive from Sam?” based on the frame-semantic information

captured in its PDM (cf. Listings 5.1, 5.2 and 5.4).
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that the postal services are operational, which is a precondition for the link

between the two frames to be established. Note that when a conclusion cannot

be proven, the narrative needs to be constructed abductively. Indeed, it consists

here in finding a minimal explanation for why a conclusion does not follow from

a collection of facts and rules.

5.5 Discussion
In this chapter, I introduced the Candide model as a computational architecture

for modelling human-like, narrative-based language understanding. As such,

I have presented an approach that radically breaks with today’s mainstream

natural language processing paradigm. Rather than modelling the co-occurrence

of characters and words in enormous amounts of textual data, this approach fo-

cusses on the logic reasoning processes that may justify different interpretations

of the same linguistic observations. While this forces us to take an enormous

leap back, it bears the promise of contributing a perspective that emphasises the

individual and contextualised nature of linguistic communication to the fields of

computational linguistics and artificial intelligence.

I have defined narratives to be chains of reasoning operations that underlie the

conclusions drawn by an individual based on their belief system. This belief

system is personal and dynamic in nature, as it is continuously being shaped by

new linguistic and non-linguistic experiences. Narratives are thus not captured

in texts as such, but need to be construed through a personal interpretation

process. A narrative thereby reflects the perspective of an individual on the

world, as the process of narrative construction necessarily takes one’s entire

belief system into account.

The construction of a narrative is a means rather than an end. While the end is to

reach a conclusion, for example to answer a question, to resolve a co-reference,

or to make sense of a novel observation or experience, the means to reach that

end is to construe a narrative that is consistent with one’s belief system. In this

view, the construction of a narrative is not a task in itself, but serves the purpose

of solving an external task through human-interpretable reasoning processes.

As narratives highly depend on external tasks and individual belief systems,

they are hard to annotate in linguistic resources, since whether a narrative is

justified or not only depends on whether it is consistent with the input that is

observed in combination with the beliefs held by an individual. Narrative-based

language understanding therefore largely coincides with the use of explainable
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methods for solving a variety of NLP tasks, including question answering, text

summarisation and sentiment analysis, with the difference that the focus in

evaluation shifts from the task accuracy to the soundness of the reasoning

processes involved.

The Candide model operationalises this vision through a combination of frame-

based constructional language processing and logic reasoning. As such, the

belief system of an agent is represented as a collection of facts and rules that

support automated reasoning through logic inference. The Fluid Construction

Grammar-based language comprehension component is used to map between

natural language utterances and a frame-based representation of their meaning.

This semantic representation makes use of the same format as the one used to

represent the agent’s belief system, facilitating the straightforward integration

of new beliefs into the agent’s personal dynamic memory. The Prolog-based

reasoning component can be leveraged to solve external tasks by proving logic

formulae based on the facts and rules stored in the agent’s personal dynamic

memory. It is during this process of logic inference that narratives emerge

as logical explanations that justify the conclusions drawn by an agent. I have

illustrated the proof-of-concept implementation of the Candide model by means

of a didactic example that shows how two agents who hold slightly different

beliefs interpret the same linguistic observation differently, as they construe

different narratives that lead to substantially different conclusions.

While I have laid the conceptual foundations of a novel approach to narrative-

based language understanding, I left the issue of operationalising the approach

on a larger scale unaddressed. An agent could start out as a blank slate, with

an empty belief system and grammar. Through experience, an agent would

then gradually build up linguistic and non-linguistic beliefs in a constructivist

manner through the processes of intention reading and pattern finding. These

processes have abundantly been attested in children (see e.g. Pine and Lieven,

1997; Tomasello, 2003) and have more recently been operationalised at scale in

artificial agents through abductive reasoning processes (see e.g. Nevens et al.,

2022; Doumen et al., 2023; Beuls and Van Eecke, 2023). These preliminary results

could be considered to be modest yet promising steps towards the moon-shot of

building personal, dynamic and human-interpretable models of narrative-based

language understanding.
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5.6 Conclusion
This chapter introduced a procedural semantics for frame-based narrative con-

struction. Concretely, I introduced the Candide model, which relies on three

foundations. First, a personal dynamic memory that stores all knowledge and

beliefs of an agent using a frame-based procedural semantics. Second, a lan-

guage processing engine that maps between linguistic observations and their

frame-based meaning representations. Third, a reasoning engine that reasons

over the meaning representation and the knowledge in the personal dynamic

memory to come to a conclusion. During this process, narratives emerge. Nar-

ratives are defined as the chain of reasoning operations that were needed to

come to a conclusion.

The methodology presented here models the human-like capacity of grounding

language in knowledge. Moreover, it models a personal interpretation process.

Indeed, different humans can come to different interpretations based on their

own personal interpretation of the situation. Again, procedural semantics play

a crucial role. By using the same frame-based representation for both the

knowledge and beliefs of the agent as well as the meaning underlying the

utterances, reasoning over the meaning based on the knowledge becomes

straightforward. The narratives that emerge from this process are interpretable,

since they consist in the chain of reasoning steps that were needed to come to a

conclusion, which is explicit and thus interpretable.
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6.1 Introduction
Part of the research reported on in this chapter has been published in Steels

et al. (2022a) and Steels et al. (2022b) and other parts are currently under review

at the Journal of Artificial Intelligence Research. It concerns joint work with Luc

Steels and Remi van Trijp. The implementation of the experiments was my work.

In the previous chapters, I illustrated how procedural semantics can be used

as a methodology to tackle language understanding tasks in a human-like way.

Since human-like language understanding is grounded in an environment, the

systems introduced in the previous chapters integrate language understanding

with vision, memory and knowledge. Another essential aspect of human-like

language understanding is that humans can monitor their own understanding

process and can identify knowledge gaps when they occur. In this chapter, I

will introduce a way of monitoring the understanding process of an agent so

that the agent can recognise and signal its own lack of understanding. In order

to do so, I introduce the Integrative Narrative Network (INN), a data structure

that combines narrative questions (i.e. the expectations that arise during the

understanding process) and answers to these questions. By looking at the

interaction between the questions and answers in the INN, the agent gets

insight in its own understanding process. This way, it can identify its lack of

understanding, showing a human-like capacity. I will illustrate the use of the

INN with experiments on two different language understanding tasks: a visual

dialogue task and a recipe execution task.

In the remainder of the chapter, I first tackle the question of how understanding

can be monitored (see Section 6.2), by looking at the definition of language

understanding as well as the terms narrative questions and answers. In Section

6.3, I introduce the data structure of Integrative Narrative Networks (INN), that

capture the understanding process of an agent in terms of narrative questions

and answers. In sections 6.4 and 6.5 I apply the INN as a monitoring system on

the tasks of visual dialogue and a recipe execution task respectively. Section 6.6

discusses the contributions and concludes this chapter.
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6.2 How to monitor understanding?
Understanding is a concept that has interested various fields of research includ-

ing, among others, philosophy, psychology, linguistics and artificial intelligence.

As a result many definitions of understanding have been proposed (see Chapter

2 for an overview). There is, however, not a clear cut definition of what un-

derstanding includes. Nevertheless, it is argued that it relies on both reactive

and deliberative intelligence Steels (2023). Reactive intelligence is ‘fast’ think-

ing, providing an immediate response (Kahneman, 2011). Deliberative thinking

on the other hand is a slow process (Kahneman, 2011), it concerns building

a rich model of the situation at hand based on language, knowledge, vision,

mental simulation, inference etc. Coming up with this rich model that integrates

information from all sorts of knowledge is called understanding Steels (2023).

Blaha et al. (2022) emphasises that understanding is a process. It is an “ongoing

cognitive activity of acquiring, integrating and expressing knowledge according to

the task or situation at hand” (Blaha et al., 2022). For example, understanding a

recipe is not only about the outcome of the recipe, i.e. the dish. It is also about

finding out how this dish is made and what the different steps are to achieve

the end result. Understanding a recipe includes understanding the language in

the recipe and it is also about imagining how one would cook the recipe, either

in mental simulation or in a real kitchen environment. Furthermore, it involves

being able to recover when something goes wrong, for example when a certain

ingredient is not in the kitchen or when the cooking process does not go the way

as planned. Understanding thus involves going through the process of solving a

task.

Hough and Gluck (2019) came to a set of eight common features of understand-

ing among different research fields by reviewing the literature concerning this

topic. One of these features is metacognitive monitoring which “allows iden-

tification of knowledge gaps or faulty processing based on detection of discrepan-

cies between knowledge or expectations and the environment.” (Hough and Gluck,

2019, p. 23). Monitoring metacognition (see Cox (2005) for an overview) con-

cerns observing and analysing cognitive processes or in this case, the process

of understanding. Monitoring this process is necessary to detect gaps which

can then be resolved. For example, when reading a story and a certain word is

unknown, the reader can look up the word in a dictionary to learn the meaning

of the word. Thus, monitoring and in some cases regulating the understanding

process is needed to come to full understanding of the situation.

Following Steels et al. (2022a), I define understanding as the dynamic process in
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which different sources of knowledge generate and answer questions. Indeed,

when we are trying to understand, certain questions and expectations arise. For

example, when reading a ‘whodunit’ the question ‘who is the killer?’ immediately

pops up and the reader expects that this question will be answered at the end.

When a knife is mentioned in the novel, the reader asks him or herself how

the knife is related to the story, maybe even expecting that it is the murder

weapon. Crucially, it is the knowledge that the reader has about ‘whodunits’ that

provides these questions. Other sources of knowledge, such as language or

vision, can provide and answer further questions. Answering these questions

plays a crucial role in the degree of understanding that is reached. In the

‘whodunit’, full understanding is only reached when the murderer is found, but

other questions, such as ‘what is the motive of the murderer?’ may also need to

be answered to come to understanding. The state in which the reader feels that

all key questions are satisfactorily answered is called narrative closure (Carroll,

2007). This is when the understanding of the situation is reached. A recipe is

understood when the main question of how to prepare the dish is answered.

However, this is only possible when the sub-questions that arise during the

intermediate steps in the recipe are solved.

The dynamic between questions popping up and the need to answer them is

continually going on during understanding. Monitoring this process and keeping

track how many questions are unanswered, gives an indication how well the

understanding process is going. In fact, if key questions are not solved, narrative

closure cannot be reached. Moreover, it is possible to steer the process, since

the questions that are not answered signify that there is a knowledge gap, which

then may get solved by other processes.

In order to keep track of the narrative questions and answers that arise during

the process, a novel data structure is introduced: the Integrative Narrative

Network (INN). The INN acts as a kind of blackboard to which different knowledge

sources can write information. Moreover, I introduce a novel way of measuring

the process of understanding by using meta-level monitors to monitor the

dynamics in the INNs. The more questions remain unsolved during a task, the

less understanding there is. This allows for a quantification of the understanding

by measuring the amount of solved questions.

In what follows, I will discuss the Integrative Narrative Networks as a data

structure that allows to monitor the understanding process. I will illustrate how

the INNs are built up during this process, how they can be monitored and how

this information can be used to analyse the understanding by applying the INNs
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on two tasks: a visual dialogue task and a recipe execution task.

6.3 Defining Integrative Narrative Networks
An Integrative Narrative Network is a network that integrates all questions and

answers that arise during the understanding process of an agent. During this

process, many different knowledge sources are consulted, which either pose

or answer questions. In Section 6.3.3, I will discuss in detail how the different

knowledge sources of language, discourse modelling, perception, reasoning,

mental simulation and ontology contribute to the INN. I focus on these knowl-

edge sources since these are the ones that are consulted in the experiments

that I will later present. It is however not the case that the knowledge sources

that can contribute to the INN are limited to these six.

During the execution of a task, the relevant knowledge sources are monitored

using the monitor system in the Babel architecture 3. This system provides a

way to define monitors that become active when certain triggers such as new

questions or answers, are detected by the knowledge sources. The monitors

then collect relevant information by observing the state of understanding at

that point, including which knowledge source was responsible and update the

INN with this information. So, when for example the language introduces a

questions, a node representing this question is added to the INN. When this

question is later answered, a node and a link between this answer and the

question nodes are added.

6.3.1 Formal definition
In definition 6.3.1, I introduce a formal definition for the Integrative Narrative

Networks. The components of INNs are entities, constants, questions, primitives

and frames. The questions are represented by variables. Answers can either be

other questions, entities or constants. Frames are responsible for introducing

questions from the ontology, while primitives are the source of questions from

mental simulation. These components can be linked in various ways. For

example, the arguments of a primitive are linked to that primitive and the

questions that are evoked by a frame are connected to that frame. Questions

can be answered by other questions, thus providing a link between two variables.

Executing a primitive leads to bindings, which are entities or constants, linked to

the arguments of the primitives.
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Definition 6.3.1. An Integrative Narrative Network (INN) consists of 5 types of
elements and links between those elements:

• E is the set of entities,

• C is the set of constants,

• Q is the set of questions,

• P is the set of primitives,

• F is the set of frames,

• M ⊆ P × Q, called themeaning network, is the set of relations between the
primitive operations and their arguments,

• N ⊆ F × Q is the set of relations between the frames and the questions
that they raise,

• O ⊆ Q × Q is the set of relations between questions and questions,
• R ⊆ Q × E is the set of relations between questions and the entities that
answer these questions,

• S ⊆ Q × C is the set of relations between questions and the constants that
answer these questions.

6.3.2 Visualisation
The visual representations of the nodes and edges in the INN reveals the type

of element or relation that they represent. The questions are all represented

by diamonds. Their colour indicates whether the question is open (green) or

answered (red). Blue nodes are used to represent the answers. The nodes are

hexagons when they are entities and squares if they are constants. The primitive

operations are represented as purple triangles. The colour of the links between

the nodes indicates the source of the questions or answers. The link between a

primitive operation and its arguments is purple, since the primitive operation

raises the question. This question (green node) is then linked through a green

link to its answer. The questions that are raised by a frame are linked to the

frame via a blue link, indicating that it is the frame that is responsible for asking

the questions.

Figure 6.1 shows an example of an INN after execution the utterance “A sphere

is present in the scene.” followed by “What is the shape of the aforementioned red

cube?”. The execution is performed using the methodology introduced in Chap-

ter 4. Notice how this is a suboptimal dialogue, since there is no “aforementioned

red cube”. Thus, the dialogue cannot be understood completely and questions

remain unanswered. The 10 primitive operations of the meaning network under-

lying the utterance are indicated by purple triangles. The questions are indicated
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by either green (solved questions) or red diamonds (unanswered questions).

These red diamonds are the questions that remain unanswered due to the

impossibility of finding the referent of “the aforementioned red cube”. Answers

to questions are entities represented as blue hexagons. In this example, the

entities are not raising other questions, therefore, there are no links starting

from the entity nodes.

Figure 6.1: An example of an Integrative Narrative Network as part of the visual

dialogue about geometric objects. Many questions remain unanswered.

6.3.3 Knowledge sources
Next, I will briefly discuss several possible knowledge sources and how each of

them contributes to the INN by either raising or answering questions.

Language A first knowledge source is language, which can raise and answer

questions. Language processing is responsible for mapping utterances onto a

procedural semantics representation. This means that the meaning consists
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of primitive operations, connected through shared arguments. Each of these

arguments are variables and are thus narrative questions that are introduced by

the language processing. In the experiments, Fluid Construction Grammar (FCG)

(see Chapter 3) is used to operationalise language processing. Construction

application can either add primitive operations and/or link primitive operations

through their arguments. Each new variable that gets added to the meaning is

a new narrative question. When two variables are linked to each other, this is

considered one narrative answer. Indeed, by linking two variables, we know that

these questions are in fact the same, and thus one of those questions is already

solved. In the integrative narrative network, a link between the two variables is

added.

Discourse model Another source of information is the discourse model. I
discuss two different ways of how a discourse model can contribute to the

INN. Depending on the implementation of the discourse model, the knowledge

source can either (i) pose and answer questions or (ii) only answer questions.

When a referent is introduced in the discourse, it can be seen as a question

that needs to be solved. Each time the discourse model solves a co-reference,

a narrative answer is added to the network. For example, the ingredients in a

recipe are entities that will be referred to later on. The introduction of these

entities are thus narrative questions and can be seen as the question ‘what do

you need to do with this ingredient?’. Later, when the recipe refers to “the butter”,

the discourse model solves the co-reference by linking “the butter” to the butter

from the ingredients and thus solving a narrative question.

Qualitative simulation The qualitative or mental simulation is a knowledge

source that is responsible for executing the meaning representations. Since the

meaning representation is in procedural semantics, each primitive operations

is an action that can be taken in the world. In the experiments, Incremental

Recruitment Language (IRL) (see Chapter 3) is used for mental simulation. IRL

thus executes the meaning representation provided by the language knowledge

source by finding bindings for each of the variables in the semantic network.

Each of these bindings, either an entity or a constant, is then a narrative answer

provided by the qualitative simulation.

Perception Another knowledge source is perception. This knowledge source is

responsible for answering questions related to the visual input that is given. For

example, the execution of the primitive operation QUERY answers the question
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?WHICH-ATTRIBUTE by looking at the input object bound to ?SOURCE and the

image bound to ?SCENE and querying the attribute category bound to ?ATTRIBUTE-

CATEGORY.

Reasoning The reasoning knowledge source consists of the primitive opera-

tions that perform reasoning operations. This knowledge source is responsible

for answering questions that can only be answered using logic reasoning opera-

tions. For example, the primitive operation COUNT counts the elements in the

input and binds the result to ?NUMBER, thereby answering this question.

Ontology A last knowledge source that I will discuss here is the ontology. The

ontology defines the frames that exist in the world as well as the slots of these

frames. Entities are instances of these frames. When an entity is introduced

during the understanding process, the slots associated with the frame of which

the entity is an instance, become narrative questions. When a default or another

knowledge source provides a value for a slot, a question gets answered. For

example, when a BOWL entity is encountered, the questions of ?COVERED and

?CONTENTS are posed. Immediately, the default values of NOT-COVERED and

NO-CONTENTS will be added as answers. During mental simulation, entities are

introduced or values of entities are changed. When an entity is introduced, all

slots associated with the frame are raised as questions. When the value of a slot

changes or when the value of an unbound slot is set, only that slot is considered

a question; since the other slots were already answered before.

6.3.4 Quantifying understanding using INNs
It is highly interesting to investigate the contribution of different knowledge

sources in the understanding process. For example, one text may rely a lot on

common sense knowledge and inference whereas another may rely heavily on

an image next to the text. Identifying contributions is not only a function of

the text, it also says something about the effectiveness of different knowledge

sources. For example, an understanding system could be weak in language

processing so that it has to rely more on other knowledge sources such as

common sense inference, ontologies and world models. This is like a person

who is less familiar with a foreign language but nevertheless tries to make sense

of what is being said through the context and background knowledge. Moreover,

by being able to pinpoint where the understanding fails, the system can steer its

understanding process, either by consulting other knowledge sources, jumping

to a meta-level to solve a problem or asking a human for feedback. For example,
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in human-machine dialogues, the understanding system can ask targeted help

based on which questions in the INN are open at some point in time and could

not be answered through other knowledge sources (Thomason et al., 2020).

The information from the INNs makes it possible to find out the contributions of

the different knowledge sources and quantify these contributions. This is done

via the meta-level monitors in the Babel system that monitor the information of

the nodes in the INN. Furthermore, it is possible to identify how well the task

is understood by analysing how many questions remain at a certain point in

processing. Narrative closure is reached when there are no remaining open

questions in the INN.

Next, I will apply the methodology of the INNs on two different tasks. I will

illustrate in detail how the relevant knowledge sources build up the INN during

these tasks. Further I will discuss the dynamics between the questions and

answers of the sources. Lastly, I will show how this information can be used to

quantify the understanding process in the task.

6.4 Monitoring understanding in a visual dialogue
task

The first experiment I will present is on the task of visual dialogue. This task

involves modelling an agent that can hold a meaningful and coherent conversa-

tion about visual input (Das et al., 2017). More specifically, an agent needs to

answer a series of questions about an image. In Chapter 4, I introduced a novel

methodology using neuro-symbolic procedural semantics to solve the visual

dialogue task. Solving this task requires a variety of knowledge sources: lan-

guage processing for comprehending the utterances, perception for finding the

necessary information in the image that accompanies the dialogue, a discourse

model for solving the co-references in the dialogues and reasoning operations

operationalised through primitive operations. In the understanding process of

the visual dialogue task, narrative questions are mainly invoked by language

processing, while perception, discourse and reasoning typically provide narrative

answers.

6.4.1 Contributions from different knowledge sources
To illustrate how the different knowledge sources contribute to building the INN,

I use the example dialogue shown in Figure 6.2. Figure 6.3 shows the INN after
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Caption: A sphere is present in the scene. 
If there is an object in front of it, what color is it? - Green
And material? - Metal
How about the aforementioned round object? - Metal
What is the shape of the above green object? - Cylinder
Does the above round object have objects to its behind? - Yes
What number of other objects in the picture share similar material with the above cylinder? - 2
Any other objects? - Yes
If there is an object in front of that cylinder, what color is it? - Cyan
What is the size of the earlier cylinder? - Large
What is the count of objects to its front in the picture? - 3

Figure 6.2: An example dialogue from the CLEVR-Dialog dataset accompanied by

an image.

the execution of this dialogue using the methodology described in 4.

Language processing The constructional language processing contributes to

the INN by raising and solving questions. The constructions that apply can either

introduce variables or link variables. For example, when comprehending the

utterance “A sphere is present in the scene”, the X-IS-PRESENT-CXN shown in Figure

6.4a adds the primitive (EXIST ?YES ?SOURCE) to the meaning, thereby raising

two questions ?YES and ?SOURCE. Furthermore, the construction adds the bind

statement (BIND BOOLEAN-CATEGORY ?YES YES) to the meaning. Notice that the

?YES variable is the same, so this construction immediately answers the question

?YES that it raised before by connecting the variable to the bind statement. Of

course the question ?SOURCE remains. Figure 6.4b shows the INN after the

construction applies. There is a primitive operation EXIST indicated by a purple

triangle, two diamond shaped nodes, indicating questions and a constant, which

is a square.

Perception, reasoning and discourse The knowledge sources of discourse

and perception are consulted as part of the execution in IRL through primitives

that consult the discourse model, trigger perception or perform reasoning

operations. In Figure 6.5a the primitive GET-LAST-TOPIC consults the discourse

model to find the topic of the previous turn. The primitives SEGMENT-SCENE, FIND-

IN-CONTEXT and QUERY are perception operations and respectively (i) segment

the scene into the set of objects, (ii) find the previous topic in the scene and (iii)

query the object for a shape. The UNIQUE primitive performs a logical operation

to check whether there is only one object in its input. These different knowledge

sources thus contribute 5 answers, with 1 answer provided by the discourse

model (the answer WORLD-MODEL-3 for the question ?OBJECT-149), 3 answers

provided by perception (the answer CONTEXT for ?CONTEXT-538 and ?OBJECT-SET-

113, and SPHERE for ?SPECIFIC-ATTRIBUTE-227) and 1 answer provided by reasoning
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Figure 6.3: The Integrative Narrative Network after executing the dialogue shown

in Figure 6.2.

(the answer WORLD-MODEL-4 for ?UNIQUE-474). The bindings of CONVERSATION-

MEMORY to ?MEMORY, PATHNAME-ENTITY-2 to ?SCENE and SHAPE to ?ATTRIBUTE-

225 were already solved by language processing. The Integrative Narrative

Network in Figure 6.5b shows the network after execution. The five primitives

are instantiated and visualised by purple triangles. The arguments that were

posed as questions are visualized by green diamonds. Each of the questions is

answered by an entity, represented with a blue square since these entities are

not further associated with a frame here.
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x-is-present-cxn

?x-is-present-unit
# meaning: {exist(?yes, ?source),  
                    bind(boolean-category, ?yes, yes)}

# form: {meets(?right-x-unit, ?is-unit), 
              meets(?is-unit, ?present-unit)}

?x-unit
args: {target(?source),
          source(?original-source)}
syn-cat: 
    syn-class: np
    leftmost-unit: ?left-x-unit
    rightmost-unit: ?right-x-unit

?x-is-present-unit

subunits: {?x-unit, ?is-unit, ?present-unit}
syn-cat: 
    syn-class: caption

args: {target(?source),
          source(?original-source)}
syn-cat: 
    syn-class: np
    leftmost-unit: ?left-x-unit
    rightmost-unit: ?right-x-unit

?is-unit

# form: {string(?is-unit, “is”)}

?present-unit

# form: {string(?present-unit, “present”)}

∅

∅

(a) A schematic representation of the construction named X-IS-PRESENT-CXN.

(b) The INN after the X-IS-PRESENT-CXN has applied.

Figure 6.4: Contributions from language to the INN
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(a) The execution of the IRL network as part of the visual dialogue example shown in

Figure 6.2. The primitive GET-LAST-TOPIC consults the discourse model, the primitives

FIND-IN-CONTEXT, SEGMENT-SCENE, QUERY consult the perception knowledge source and

the UNIQUE primitive performs a reasoning operation.

(b) The INN after the execution of the IRL network. The primitives are indicated by purple

triangles, their arguments by green nodes. The questions raised by the primitives are

solved by consulting the discourse model, performing perception, and reasoning. The

answers are represented as blue hexagons or squares.

Figure 6.5: Contributions from discourse, perception and reasoning to the INN
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6.4.2 Building the INN
Figure 6.6 shows the INN at four different steps of the execution of the dialogue

shown in Figure 6.2. The first network is a snapshot during the execution of

the semantic representation underlying the caption “A sphere is present in the

scene.”, which was obtained after language processing. Four primitive operations,

represented by purple triangles, are in the INN, and the SELECT-ONE primitive

is currently being executed. This primitive is connected to one red question,

which is the only question that remains before successfully understanding the

caption. Next, the questions from the dialogue are eachmapped onto ameaning

representation by language processing and then executed with IRL. The second

figure is a snapshot of the execution of the meaning representation underlying

“How about the aforementioned round object?”. Again, this is moments before fully

understanding this question, since only two nodes remain unanswered. The

third figure shows the INN right after the execution of the two last primitives, all

narrative questions have been answered, which is necessary in order to answer

the question from the task, before going further in the dialogue. The last figure

is the INN later in the dialogue, again during IRL. The INN has grown significantly

and a few questions remain unanswered. At the end of the dialogue, the INN

will look like the one shown in Figure 6.3.

6.4.3 Quantifying the contributions of knowledge sources
It is possible to monitor the number of questions and answers that arise during

the understanding process. For example, Figure 6.7 shows how much each of

the knowledge sources contributed during the execution of the dialogue shown

in Figure 6.2. The black line shows the total number of questions that were

introduced. The stacked areas are the different knowledge sources that were

used during the understanding process: language, perception, inference and

the discourse model. Each time a question from the dialogue is executed, the

stacked area and the black line come together. Thus, after solving a question

from the dialogue, all narrative questions that were raised were answered. At the

end, narrative closure is reached, since all questions in the INN are answered.

Language is the largest contributor of answers when executing the dialogue.

Perception, inference and the discourse model are almost equally important,

with inference (reasoning) being the knowledge source that answers slightly

more questions.
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(a) Snapshot of the INN during the

execution of the semantic network

underlying the caption.
(b) Snapshot of the INN during the

execution of the semantic network

underlying the third question in the

dialogue: “How about the aforemen-

tioned round object?”.

(c) Snapshot of the INN just after the

execution of the semantic network

underlying the third question in the

dialogue: “How about the aforemen-

tioned round object?”.

(d) Snapshot of the INN at the end

of execution of the entire dialogue.

Figure 6.6: The INN at four different stages of the execution of the visual dia-

logue.
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Figure 6.7: The contribution of the different knowledge sources when executing

the visual dialogue shown in Figure 6.2. Notice that at certain steps, the stacked

bars and the black line meet, corresponding to a single question in the dialogue,

meaning that all narrative questions raised so far are answered.

6.5 Monitoring understanding in a recipe execution
task

The recipe execution task as defined by Nevens et al. (2023); De Haes (2023)

consists of the task of mapping between recipes and a procedural semantics

representation that can be executed in a simulated kitchen environment. The

procedural semantics representation consists of a set of primitive operations. I

will take as an example the almond crescent cookies recipe from this dataset, for

which a computational construction grammar was developed to map between

the recipe and the semantic representation. A solution for the execution of the

semantic representation is provided by the benchmark. Concretely, understand-

ing the recipe goes as follows. The first instruction is taken and mapped onto its

meaning representation using a construction grammar operationalised through

FCG. Then the resulting meaning is executed in mental simulation using IRL. This

process continues until each of the utterances in the recipe is executed. Map-

ping between the language and the meaning is not trivial, since the language

in recipes is often fragmented and underspecified. For example, an instruction

could be “mix thoroughly”, in which it is not explicitly stated what needs to be

mixed. Further, recipes contain several co-references, such as “the butter” or “the
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mixture”. To handle these challenges, the grammar contains constructions that

can consult the discourse model and the ontology during comprehension.

The web demonstration https://ehai.ai.vub.ac.be/demos/recipe-understanding/

shows the execution of the almond crescent cookies recipe.

Recipe for almond crescent cookies:

Ingredients: 226 grams butter, room temperature. 116 grams sugar. 4 grams

vanilla extract, 4 grams almond extract, 340 grams flour, 112 grams almond

flour, and 29 grams powdered sugar

Instructions:

1. Beat the butter and the sugar together until light and fluffy.

2. Add the vanilla and almond extracts and mix.

3. Add the flour and the almond flour.

4. Mix thoroughly.

5. Take generous tablespoons of the dough and roll it into a small ball, about an

inch in diameter, and then shape it into a crescent shape.

6. Place onto a parchment paper lined baking sheet.

7. Bake at 175 degrees Celsius for 15 - 20 minutes.

8. Dust with powdered sugar.

During the execution of the recipe, several knowledge sources are consulted. The

language, discoursemodel and ontology raise and answer questions. Themental

simulation (i.e., the execution of the semantic representation in a simulated

environment), only provides answers. Figure 6.8 shows the INN after executing

the almond crescent cookies recipe. Now I will discuss in detail how the different

knowledge sources contributed to building the INN.

6.5.1 Contributions from different knowledge sources
Language processing Consider comprehending the utterance “226 grams but-

ter, room temperature.” While comprehending this instruction, several construc-

tions apply, including the QUANTITY-UNIT-INGREDIENT-CXN (shown in Figure 6.9a).

The QUANTITY-UNIT-INGREDIENT-CXN looks for units with a numeral for the quan-

tity, a noun for the unit and a noun for the ingredient. It also accesses the

kitchen-state, which is the symbolic representation of the kitchen in which the

recipe is executed. When these units are found and the construction applies,

the instantiated primitive (FETCH-AND-PROPORTION-1 ?INGREDIENT-OUT ?KITCHEN-

STATE-OUT ?KITCHEN-STATE-IN ?TARGET-CONTAINER ?INGREDIENT-IN ?QUANTITY ?UNIT)

is added to the INN, thereby introducing 7 narrative questions. The construction

also solves 4 four questions by linking the variables ?INGREDIENT-IN, ?QUANTITY,

https://ehai.ai.vub.ac.be/demos/recipe-understanding/
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Figure 6.8: The INN after executing the almond crescent cookies recipe.

?UNIT and ?KITCHEN-STATE-IN to variables from the linguistic units. The INN after

application of the QUANTITY-UNIT-INGREDIENT-CXN is shown in Figure 6.9b). The

primitive FETCH-AND-PROPORTION-1 is represented as a triangle. Its arguments,

the 7 questions, are represented as red diamonds. 3 of these arguments were

linked to constants that were introduced earlier. Since these questions are thus

solved, the nodes are green. The other 4 red nodes remain open questions at

the moment. They can become green later on, either by linking them to other

questions, or by binding them in mental simulation.

Qualitativemental simulation Qualitativemental simulation is implemented

through the IRL system. Executing the semantic representation thus involves

finding consistent and complete bindings for the primitives in the meaning

representation. Executing a primitive operation either creates a new entity,

changes the properties of an entity or introduces a constant. Each binding is

an answer to a question. For example, the network in Figure 6.10a consists

of two primitives FETCH-AND-PROPORTION and BRING-UP-TO-TEMPERATURE. The

FETCH-AND-PROPORTION finds a certain ingredient of a certain quantity and unit

in the kitchen state, proportions this ingredient and returns a new kitchen state

with the proportioned ingredient. The execution started from the initial bindings
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(a) During comprehension, the QUANTITY-UNIT-INGREDIENT-CXN looks for a kitchen-state,

quantity, unit and ingredient. It introduces the primitive FETCH-AND-PROPORTION together

with its arguments.

(b) The Integrative Narrative Network that is the result of the QUANTITY-UNIT-INGREDIENT-

CXN. It consists of the primitive FETCH-AND-PROPORTION-1 (indicated by the triangle) and its

arguments ?UNIT-1, ?QUANTITY-1, ?INGREDIENT-IN-1, ?INGREDIENT-OUT-1, ?TARGET-CONTAINER-

1, ?KITCHEN-STATE-IN-1, ?KITCHEN-STATE-OUT-1, some indicated by red diamonds, meaning

that the questions have not yet been resolved, some with green diamonds, meaning that

they have been solved.

Figure 6.9: Contributions from language processing to the INN
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of BUTTER-4-1 to ?VAR-1, QUANTITY-2-1 to ?VAR-2, G-2-1 to ?VAR-3 and KITCHEN-

STATE-2-1 to ?KITCHEN-STATE-1 provided in the language processing and bound the

entity MEDIUM-BOWL-16-1 to ?INGREDIENT-OUT-13, MEDIUM-BOWL-16-1 to ?TARGET-

CONTAINER-13 and KITCHEN-STATE-2-1 to ?KITCHEN-STATE-OUT-44, thereby providing

3 answers. Then, the BRING-UP-TO-TEMPERATURE primitive makes sure that this

ingredient in the new kitchen state is brought up to room temperature and

then returns the ingredient and another kitchen state. The primitive binds the

entity MEDIUM-BOWL-16-1 to ?INGREDIENT-AT-ROOM-TEMPERATURE-8 and the entity

KITCHEN-STATE-2-1 to ?OUTPUT-KITCHEN-STATE-54, thereby providing two answers.

The bindings QUANTITY-4-1 to ?VAR-4 and DEGREES-CELSIUS-2-1 to ?VAR-5 were

already provided during the language processing. The bindings MEDIUM-BOWL-

16-1 to ?INGREDIENT-OUT-13 and KITCHEN-STATE-2-1 to ?KITCHEN-STATE-OUT-44 were

made during the execution of the previous primitive. In short, executing these

two primitive operations answered 5 questions. The INN in Figure 6.10b shows

the two primitives in the form of purple triangles, linked to their arguments rep-

resented as diamonds. All the arguments are bound to an entity, thus indicating

that all questions are answered by the simulation.

Discourse model In the recipe execution task, the discourse model is respon-

sible for raising questions and answering questions. It is implemented through a

list of accessible entities, which are the entities that are accessible or under con-

sideration at that moment in processing. These entities result from the mental

simulation. For example, if a certain ingredient is mentioned in a recipe, this in-

gredient becomes accessible at that moment, meaning that instructions later on

can refer back to it. Concretely, the bindings that results from mental simulation

are added to the list of accessible entities. Each of these entities is a question

that is raised by the discourse model. For example, executing the meaning

representation underlying the instruction “116 grams sugar” yields a bowl with

the proportioned sugar in it. Then, the question of ‘what to do with this bowl?’

is raised by putting the entity on the list of accessible entities. The information

on the list consists of the binding variable of the entity, its ontological class and

types and the slots of the entity. This list is then added to the transient structure

(see 6.11a), so that constructions, such as the THE-X-CXN shown in Figure 6.11b,

can access it during comprehension. These types of constructions match with

the units in the accessible entities. For example, if the utterance contains “the

sugar”, it refers to the sugar that was mentioned before. So, the construction

needs to find this sugar in the list of accessible entities by comparing the onto-

logical class that rises from the word ‘sugar’ with the ontological classes of the

elements in the list of accessible entities. Concretely, the ?X-UNIT-IN-WORLD-UNIT
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(a) Qualitative mental simulation solving the IRL network.

(b) The Integrative Narrative Network after the qualitative mental simulation. It consists of

the primitives FETCH-AND-PROPORTION-1 and BRING-UP-TO-TEMPERATURE-1. These primitives

pose different questions (the arguments of the primitives), which are all solved during

the mental simulation (indicated by the blue nodes).

Figure 6.10: Contributions from qualitative mental simulation to the INN
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in the THE-X-CXN looks for a unit with a similar ontological-class as the ?X-UNIT-IN-

UTTERANCE-UNIT, thereby ensuring that the ontological class of the entity in the

accessible entities (bound to the ?ONTOLOGICAL-CLASS-WORLD variable) and the

ontological class of the utterance (bound to the ?ONTOLOGICAL-CLASS-UTTERANCE

variable) is the most similar.1 Since the entity that is raised as a question by

the discourse model was already in the INN, the node that refers to the binding

variable belonging to the entity becomes green. Once the question is solved, a

link from the binding variable of the entity to the answer in the INN is added.

Then, the red node becomes green again.

Ontology The ontology defines the slots for an entity based on the frame with

which it is defined. Using an example from recipe understanding, consider the

entity BUTTER-1 shown in Figure 6.12a. This entity is a frame-instance of the

BUTTER frame, and has the slots ‘melted’, ‘beaten’, ‘mixed’, ‘keep-refrigerated’.

Each of these slots has a default value given in the ontology, either ‘t’ or ‘nil’.

Thus, by introducing this entity, four questions are posed and immediately

answered. During qualitative mental simulation, entities are created and added

to the INN (see Figure 6.12b). The entity itself is visualised by a blue hexagon

node, connected with blue lines to the four questions raised by the frame

associated with this entity. The names of the questions for each of the slots

are a combination of the name of the slot and the entity the slot belongs to:

?MELTED-BUTTER-1, ?BEATEN-BUTTER-1, ?MIXED-BUTTER-1, and ?KEEP-REFRIGERATED-

BUTTER-1. The questions are visualised as diamonds. They are green since they

have been answered with default values (‘t’ or ‘nil’). The answers ‘t’ and ‘nil’ are

visualised with blue squares because there is no frame associated with these

values. These default values can be overwritten later.

6.5.2 Building the INN
Next, I will show how the different knowledge sources interact to build up the

Integrative Narrative Network. Figure 6.13 shows the INN at four different stages

during the execution of a small recipe:

226 grams butter, room temperature. 116 grams sugar.

Beat the butter and the sugar together until light and fluffy.

The first figure shows the INN during the mental simulation of the semantic

representation underlying the instruction “226 grams butter, room temperature”.

1The THE-X-CXN uses an expansion operator that allows for procedural attachment (see Van Eecke

(2018, p. 44), to compare the ontological classes bound to the variables ?ONTOLOGICAL-CLASS-WORLD

and ?ONTOLOGICAL-CLASS-UTTERANCE.
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transient structure

accessible-
entitiesroot

medium-bowl-1-1

binding-variable: ?ingredient-out-1
ontological-class: medium-bowl
properties: 
    id: medium-bowl-1-1
    persistent-id: medium-bowl-1
    contents: 
        {
        {
          ontological-class: white-sugar
          properties: 
              id: white-sugar-1-1
              persistent-id: white-sugar-1
         }
         }

medium-bowl-2-1

(a) An example of the transient structure with two accessible entities MEDIUM-BOWL-1-

1 and MEDIUM-BOWL-2-1. Some properties of the medium bowl were left out due to

illustrative purposes.

the-x-cxn

?the-x-unit

# form: {meets(?the-unit, ?x-unit-in-utterance-left)}

∅

?the-unit

# form: {string(?the-unit, “the”)}

∅

?the-x-unit

referent: 
    args: {?container-with-x}
ontology: 
    ontological-class: ?ontological-class-utterance
    ontological-types: ?ontological-types

?x-unit-in-utterance

boundaries: 
    left: ?x-unit-in-utterance-left
    right: ?x-unit-in-utterance-right
ontology: 
    ontological-class: ?ontological-class-utterance
    ontological-types: ?ontological-types

∅

?x-unit-in-world

binding-variable: ?container-with-x
properties: 
    contents: 
        {
        {
         ontological-class: ?ontological-class-world
        }
        }

∅

(b) The THE-X-CXN that solves co-references by accessing the accessible entities with the

X-UNIT-IN-WORLD-UNIT.

Figure 6.11: Contributions from qualitative mental simulation to the INN
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RLLW�YLMYPNLYH[LK!�[
I\[[LY

YLZL[(a) The BUTTER-1 entity,

which is an instance

of the BUTTER frame

with the slots ‘melted’,

‘beaten’, ‘mixed’ and

‘keep-refrigerated’.

(b) The Integrative Narrative Network of the BUTTER-

1 entity. Four questions are posed (?MELTED-

BUTTER-1, ?BEATEN-BUTTER-1, ?MIXED-BUTTER-1, ?KEEP-

REFRIGERATED-BUTTER-1) and are answered (so far) by

their default values.

Figure 6.12: Contributions from the ontology to the INN

The semantic representation consists of two primitive operations (FETCH-AND-

PROPORTION and BRING-UP-TO-TEMPERATURE), represented in the network as pur-

ple triangles. The arguments of the primitives are connected via purple links.

Once a primitive is executed, the entities that are bound to the arguments

appear in the INN, with a green link from the argument to the entity. The ques-

tions that the frame associated with an entity raises are visualised by diamonds

connected to the entity with a blue line. These questions can be answered

immediately by a constant value (a blue square) or an entity (a blue hexagon),

which can raise even more questions. Then, the second instruction “116 grams

sugar” is mapped onto its semantic representation, consisting of one primitive

operation: FETCH-AND-PROPORTION. The INN in Figure 6.13b now consists of

three primitive operations visualised by purple triangles. This figure is a snap-

shot during the mental simulation of the FETCH-AND-PROPORTION primitive. One

diamond connected to a purple triangle is still red, namely the argument of

the FETCH-AND-PROPORTION primitive that will be bound once the primitive is

executed. The third figure is again a snapshot during the execution of a primitive,

now the BEAT primitive. Three questions still need to be solved, indicated by

the red diamonds. The last figure shows the INN at the end of the execution of

the recipe, all questions are solved, and all red diamonds have become green.

Narrative closure is reached.
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(a) The INN after comprehending

the first instruction “226 grams but-

ter, room temperature.” and men-

tally simulating the primitive oper-

ations FETCH-AND-PROPORTION and

BRING-UP-TO-TEMPERATURE .

(b) The INN after comprehending

the second instruction “116 grams

sugar.” and mentally simulating the

FETCH action.

(c) The INN with three remaining

questions (indicated by red nodes)

during the execution of the BEAT

primitive in the semantic network

underlying “Beat the butter and the

sugar together until light and fluffy.”

(d) The INN at the end of executing

a small recipe, all questions have

been solved.

Figure 6.13: The INN at four different stages of the recipe execution.
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6.5.3 Quantifying the contributions of knowledge sources
Next to collecting the questions and answers into the INN, it is also possible to

keep track how many questions and answers are provided by each knowledge

source. Figure 6.14 shows an example of a stack plot showing the contribution

of the different knowledge sources in providing answers during the execution

of the almond crescent cookies recipe. The black line shows the number of

questions that were raised during the execution. The stacked areas show the

number of answers from each knowledge source that was used during the

execution. At the end, the stacked area meets the black line, meaning that all

questions have been answered and narrative closure has been reached. The

stacked areas follow the black line very closely, since most of the questions

are all almost immediately answered. In the middle of the execution the gap

between the questions and answers is the largest. This is after the execution of

the ingredients, and these ingredients are all questions that were raised by the

discourse model. They are answered later when the instructions refer back to

the ingredients list.
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Figure 6.14: The contribution of the language, mental simulation, ontology and

discourse model during the execution of the almond cookies recipe.

In this experiment, the contributions of the mental simulation and the ontology

are larger than the contributions from the discourse model and the language.

Indeed, the ontology provides a large number of answers by filling in slots with

default values. The mental simulation is also responsible for a large number of
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answers, by filling and changing values of the entities. The language provides a

smaller number of answers by linking the questions in the meaning networks.

The discoursemodel is also a small contributor in terms of number of answers. It

is important to note however that the importance of a knowledge source cannot

be judged solely on the total number of answers it provides. The discourse

model is in terms of total number of answers the smallest contributor, but

the answers that it does provide are crucial to the execution of the recipe.

Specifically, it is essential that the co-references in the recipe are solved, so that

all ingredients and instructions are processed correctly. Not solving a question

that was raised by a frame, could, in contrast, be less crucial to the understanding

process.

6.6 Conclusion
In this chapter I introduced a way of monitoring the understanding process by

introducing a novel data structure: Integrative Narrative Networks (INN). The

INN captures the narrative questions and answers that are raised during the

understanding process. The INNs are thus rich models of the situation at hand

that integrates information from different sources of knowledge. I applied the

methodology on two different task, showing the applicability of the methodology.

I explained in detail how the INNs are built up by the knowledge sources and how

the understanding process of the two tasks can be quantified and analysed. As

shown, INNs can be used to study and understand the understanding processes.

I focussed on the following aspects of the INNs:

• I discussed how the INNs can be used to identify when something is fully

understood and thus whether narrative closure is reached. By counting

the number of questions that are unsolved at the end of processing, it can

be analysed whether closure is achieved. Ideally, this number is zero. If

not, the questions that are unsolved can be identified, showing where the

understanding went wrong. This demonstrates the insights that the INNs

provide in the understanding process and the interpretability of the INNs

themselves.

• I discussed how the contributions of each of the knowledge sources to-

wards understanding can be quantified, making it possible to identify which

knowledge sources were crucial towards understanding. Furthermore, it

can be useful to find out which knowledge sources are not performing

adequately, by analysing which knowledge source is responsible for the
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most unanswered questions.

• Imentioned how the INNs could be used when understanding fails. Indeed,

their structure, dynamics and quantitative characterisations can be used

to steer the understanding process itself. In particular it can guide the

agent to actions that accelerate or improve understanding by focusing on

certain questions and activating or giving more computational resources

to knowledge sources that can help to resolve them.

The work I presented is a step towards building systems that can track and

evaluate their own understanding process. Future research can investigate how

the methodology can be used to steer the understanding process more actively,

either by allowing the agent to ask for feedback or by using meta-level operators

so that the system can resolve the questions itself. The INNs allow for the

system to monitor its own understanding process, thereby showing a human-

like, interpretable capacity that is needed during language understanding.
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7.1 Introduction
In this thesis, I investigated how systems that perform human-like language

understanding can be built, focussing on certain aspects of human-like language

understanding, namely grounding, meaning and self-reflection. Nowadays, the

main paradigm in the field of NLP lies in statistical, data-driven approaches. Fol-

lowing Bender and Koller (2020), I discussed how these data-driven systems are

not designed to achieve true human-like language understanding, primarily due

to their focus on the form side of language by learning from large amounts of

textual data. Therefore, they do not take into account meaning or grounding in

the environment, which are both inherently connected to human-like language

159
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understanding. In order to investigate how human-like language understanding

systems can be built, I limited the scope of the broad field of human-like lan-

guage understanding to three requirements which the systems introduced in

this thesis should meet. First, the systems are required to have adequate mech-

anisms for representing and processing meaning. Meaning is a crucial aspect of

language since communication is the process of transferring a (non-observable)

meaning from a listener to a speaker by conveying linguistic utterances. To

enable language understanding systems to handle meaning, it is necessary to

find and design adequate meaning representations that capture the semantics

underlying linguistic utterances. In this thesis, procedural semantics is chosen

as meaning representation. It is a highly useful meaning representation to

operationalise the semantics in intelligent systems since the meaning represen-

tation is directly executable, removing the need for an extra step that translates

the meaning representation in something that the intelligent system can use.

Second, the systems needed to be able to ground linguistic utterances in the

environment. Language is not an independent system that can be disconnected

from the environment that it is used in. Crucially, other sources of knowledge

such as vision systems or knowledge bases need to be consulted during the lan-

guage understanding process. Third, the capability of humans to monitor their

understanding process needed to be modelled. This provides the possibility

for an agent to reflect on its own language understanding process. This can be

useful, for example, in situations where humans work together with intelligent

agents since it is crucial that systems can signal their lack of understanding and

maybe even ask humans for feedback.

Concretely, in this thesis I introduced three systems (discussed in detail in Section

7.2) that operationalise these requirements. The systems that are introduced in

this thesis are interpretable by design, which is an important aspect of intelligent

systems. When these systems are used in our society, it is key that humans

can interpret their decisions. A goal of the thesis was to show that systems

that are perform more human-like language understanding are capable of

competing with more data-driven approaches on benchmark datasets to show

the possibility of scaling such systems. This was achieved with the introduction

of the neuro-symbolic procedural semantics that achieved competitive results

on two benchmarks datasets for the task of visual dialogue. This thesis also

laid out the foundations of human-like language understanding systems. This

resulted in a proof-of-concept implementation of these foundational ideas in

the form of the Candide model.
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7.2 Achievements
This thesis provides insights on how intelligent systems that perform human-like

language understanding can be built. In order to do so, I introduced three

systems that model aspects of human-like language understanding. Each of

these systems provide insights on both the conceptual as methodological level,

resulting in the concrete achievements that are discussed below.

7.2.1 A neuro-symbolic procedural semantics for visual dia-
logue tasks

A first achievement consists in the introduction of a neuro-symbolic procedural

semantics that is able to ground linguistic utterances in the image and dialogue

history. This system models the human-like capacity of being able to (i) inte-

grate linguistic utterances with the environment in which they are used and (ii)

integrate linguistic utterances with the history of the conversation. This novel

methodology is validated on two benchmark datasets for the task of visual

dialogue.

Concretely, the achievement is the introduction of a novel methodology, which

consists of (i) a neuro-symbolic procedural semantics that integrates symbolic

and subsymbolic primitive operations and (ii) a conversation memory that stores

the history of the dialogue in an incremental and explicit way. Symbolic oper-

ations perform reasoning operations and extract knowledge from the conver-

sation memory. The subsymbolic primitives on the other hand are related to

perception and rely on a shared set of neural modules. Each of these modules is

a neural network specialised in a specific task (e.g. recognising a specific colour

or shape, image segmentation ...). The combination makes it possible to exploit

the strengths of both approaches and contributes to the growing literature that

shows that neuro-symbolic approaches are well-suited to solve tasks that involve

both structured and unstructured data. Moreover, the system is flexible and

easily expandable, due to the possibility of adding new primitive operations.

Concretely, when the dataset is extended with, for example, new colours, it is

only necessary to train modules for those colours. These modules can then be

added to the set of modules, but there is no need to retrain the whole system.

Due to the shared set of neural modules underlying the primitive operations,

the reasoning becomes consistent. For example, the primitive operations that

filter or query for a certain colour both rely on this colour-recognising module,

so both primitives will be consistent in their recognition of that colour. Both the
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modularity and the consistency of the systems are two major advantages of the

introduced approach.

This model achieves competitive results on two benchmark datasets in the field

of NLP, thereby showing that systems that model human-like aspects can in-

deed compete with more data-driven approaches. Moreover, I showed that this

methodology is interpretable by design. I demonstrated the interpretability by

interpreting the result of the execution process of the procedural semantics un-

derlying incorrectly answered questions. By interpreting the reasoning process

of the system, it possible to identify which operation led to the wrong answer.

This gives then the opportunity to reimplement, retrain or adjust these primitive

operations, to avoid that the mistake happens again. In short, the answers of

the systems can be easily explained and interpreted by users.

7.2.2 A frame-based procedural semantics for narrative con-
struction

A second achievement consists in the introduction of the Candide model, a

model for narrative construction. It consists of a frame-based procedural seman-

tics that enables an agent to construct narratives by interpreting an utterance

in the light of its personal dynamic memory (PDM). This system aims to model

the human-like capability of interpreting a situation in a personal and dynamic

way by grounding linguistic utterances in personal knowledge. This can lead to

different interpretations of the same observation across the population. It can

even be the case that the interpretation of the same individual changes over

time due to new information that the individual has acquired.

Methodologically, a language understanding system that relies on a novel frame-

based procedural semantics was introduced. The interpretation process starts

by using the agent’s grammar to comprehend a linguistic observation resulting

in a frame-based procedural semantics representation. Next, this meaning rep-

resentation is executed by reasoning over the personal dynamic memory of an

agent using a Prolog-based inference engine. Each aspect of the interpretation

process is thus individual to the agent and can result in the construction of

different narratives across a population of agents. Crucially, the meaning that

is provided by the language processing is represented in the same way as the

knowledge and beliefs stored in the personal dynamic memory of an agent. The

frame-based meaning representation of both the meaning and the knowledge

of an agent allows for the seamless integration of the language processing and

the personal dynamic memory. This way, the result of the language processing
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can be easily added to the personal dynamic memory and can then be used as

knowledge to interpret subsequent utterances. Moreover, the reasoning process

becomes straightforward since the meaning representation corresponds to the

query for the inference engine.

Conceptually, the research resulted in a definition of narratives as the chain of

reasoning operators that led to a conclusion. This facilitates the interpretability

of the narratives that are constructed by an agent given that the reasoning

process can be traced back, making it possible to identify which beliefs led to

an interpretation. This way, the human working together with the system can

understand why the system made a certain decision. Moreover, the system

could be used to identify which pieces of knowledge led to a certain narrative or

to identify what beliefs are missing to interpret a situation in a certain way.

7.2.3 A monitoring system using Integrative Narrative Net-
works

A last achievement discussed in this thesis is the introduction of the integrative

narrative networks (INN), which allow agents to monitor their own understand-

ing process. The INNs model the human-like capability of reflecting on their own

understanding. Humans are able to signal when something is not clear or well

understood, and they can even, in some cases, identify where the misunder-

standing occurred. Moreover, humans rely on multiple sources of knowledge

during language understanding. The INNs reflect these capacities by combining

narrative questions and answers that are raised by different sources of knowl-

edge in one network. The narrative questions can be seen as the expectations

that a certain knowledge source raises, which can then be answered later on

by information provided by either the same knowledge source or others. Full

understanding or narrative closure is reached when all questions are solved and

remaining questions can be signalled, indicating the knowledge gaps of an agent.

The INNs make it possible to gain insights in the understanding process of an

agent. For example, they allow the detection of the knowledge sources that

played a crucial role during understanding or to indicate the knowledge sources

that are not optimal. Moreover, quantifying the understanding process through

the INNs becomes useful when systems are working together with humans since

the systems can then indicate how certain they are of a given answer. Then,

humans could provide the necessary feedback to integrate missing knowledge,

thereby filling the knowledge gap.

Methodologically, the INN constitutes a data structure that gathers information
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from the different knowledge sources that are required to understand an utter-

ance. This is achieved through a monitoring system that detects changes in each

of the different knowledge sources and adds them in the form of narratives

questions or answers to the INNs. Lastly, the understanding process can be

quantified by measuring the amount of answered and unanswered questions

in the INN. I illustrated the use of the INNs by monitoring intelligent systems

tackling one of dialogues from the visual dialogue task introduced in Chapter

4 and a recipe from a recipe understanding challenge. This way, I showed that

this system can be applied on different tasks. Moreover, the integration of the

monitoring system in the Babel architecture allows for future systems to easily

make use of the INNs. Specifically, it enables the tracing and quantification of

the understanding processes of intelligent agents operationalised through this

framework.

7.3 Challenges and avenues for future research
While the systems in this thesis show that crucial aspects of human-like language

understanding can indeed be modelled, several challenges remain, which for

the most part relate to scalability of the approaches introduced in the thesis.

This can be achieved in different areas.

First, the computational construction grammars introduced in Chapter 4 and 5

are written by hand. However, as discussed in Chapter 3, Nevens et al. (2022)

and Doumen et al. (2023) provide initial results on how computational construc-

tion grammars can be learned. The learning operators that they developed are

integrated in the Fluid Construction Grammar framework and are based on the

two cognitive processes of intention reading and pattern finding (Tomasello,

2003, 2009). Intention reading is the process of reconstructing a meaning repre-

sentation underlying linguistic utterances based on the provided feedback and

pattern finding is responsible for finding generalisations over form-meaning

pairs. While pattern finding allows to learn computational construction gram-

mars from semantically annotated corpora (Doumen et al., 2023), the integration

with intention reading enables the learning of grammars through communicative

interactions in the world Nevens et al. (2022). In future work, these mechanisms

could be extended to handle the visual dialogue datasets discussed in Chapter

4, thereby lifting the limitation of needing to write the grammar by hand. The

challenge lies extending the learning operators that were developed for single-

turn utterances to multi-turn dialogues. A first step would be to start from the

semantically annotated datasets and investigate how the learning operators of
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pattern finding need to be extended to handle dialogue settings. Specifically, the

challenge lies in extending the operators to allow the learning of generalisations

that take into account dialogue-specific information both on the form side and

the meaning side. A second step would be to add the integration with intention

reading, thereby removing the need for semantically annotated datasets. This

way, the agent can learn a grammar from communicative interactions alone. In

particular, this requires to integrate the introduced conversation memory in the

intention reading process.

Second, an interesting avenue for scaling the Candide model introduced in

Chapter 5 consists in endowing the agents with operators that allow them to

learn their knowledge and beliefs as well as their grammar, thereby lifting the

limitation of predefining these components. Again, this can be achieved by

extending the developed mechanisms of intention reading and pattern finding.

However, the challenge here is to allow for the build-up of knowledge and

beliefs. In such an experiment the grammar and knowledge would be learned

simultaneously as agents interact with the world. The agents start without any

knowledge, extracting frames from the observations that they encounter and

integrating them with their personal dynamic memory. The pattern finding

mechanism could be used to find generalisations and learn mappings between

the utterances and the frame-based meaning representations. Intention reading

would be needed to construct the frame-based meaning representations. This

way, the agents can build up their beliefs and linguistic knowledge through

experience.

Another possibility for scalability relates to the neuro-symbolic procedural se-

mantics approach introduced in Chapter 4. The methodology is applied on two

visual dialogue tasks, showing that the methodology can achieve state-of-the-art

results on multiple datasets. However, these datasets are diagnostic and are

specifically designed to test the ability of models to solve tasks without using

short cuts. The datasets are therefore specifically designed without biases that

occur in the real world. The images in the datasets are synthetically gener-

ated and the questions are template-based. Although the performance of the

methodology on these diagnostic datasets shows that it is adequate for solving

this task, the question now remains how the methodology would scale to more

realistic settings. For example, how does the methodology need to be extended

to work on real-world images or natural language questions. In order to test this,

other datasets that contain either real-world images such as GQA-VD (Zhang

et al., 2022) or crowd-sourced natural language questions such as VisDial (Das

et al., 2017) could be explored. Of course, several extensions to the model need
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to be made. First, relating to the perception, the set of neural modules need to

be extended to contain modules that can perceive the objects and attributes in

these datasets. Secondly, relating to the reasoning and specifically reasoning

over the dialogues, the conversation memory as well as the primitives need to

be extended to work with other types of co-references. Lastly, going to larger

and more diverse natural language datasets, the grammar will need be learned

through intention reading and pattern finding.

Finally, both in the case of the neuro-symbolic approach to visual dialogue

and the frame-based approach to narrative construction, the challenge is to

define the set of primitive operations or frames that is needed to further scale

the systems. Further research and experiments are needed to identify the

minimal set of primitive operations to solve tasks. This set could then be used

as the starting point for the intention reading process, to learn to compose and

build meaning networks. As a first step towards defining the minimal set of

frames, the FrameNet dataset (https://framenet.icsi.berkeley.edu) could be
explored. In this project, researchers are attempting to describe all frames that

occur in language. This is a highly non-trivial task. However, by analysing this

set, it could be possible to find the minimal set of frames that is required to

learn the frames over time. In any case, FrameNet gives an indication of which

frames occur in languages, and the Candide model should be able to integrate

or learn these frames. Other datasets that are semantically annotated such as

the dataset introduced in Remijnse et al. (2022) should also be investigated. This

dataset consists of utterances annotated with entities, roles and frames following

the FrameNet convention. Moreover, the entities that play a certain role in a

frame are grounded in the WikiData knowledge graph. A first experiment of the

Candide model could be applied on this dataset with the aim of validating the

methodology on a larger scale dataset. Intention reading and pattern finding

experiments could then be set up to investigate how the beliefs in the form of

frames are acquired.

In short, the main challenge in scaling up the systems in this thesis largely lies in

enabling the agent to learn both the computational construction grammars as

well as their knowledge and beliefs. Future research can explore the potential of

the mechanisms of intention reading and pattern finding for this task.

https://framenet.icsi.berkeley.edu
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7.4 Final remarks
In this thesis, I have introduced three systems that each model aspects of

human-like language understanding such as grounding, meaning and reflection.

Concretely, in Chapter 4, I have introduced a procedural semantic representa-

tion that is adequate to ground language in the environment and discourse.

The neuro-symbolic execution of this representation leads to state-of-the-art

results on the task of visual dialogue. Furthermore, in Chapter 5, I have intro-

duced a frame-based procedural semantics that is able to ground language in

the knowledge and beliefs of an agent. Here, I have demonstrated through

examples how different agents can come to different interpretations. Finally, in

Chapter 6, I have presented a monitoring system that can be used to quantify

an agent’s language understanding process, enabling the agent to reflect on its

own language understanding. Each of these systems contributes in its own way

to the growing literature on building more human-like language understanding

systems. I discussed how future work needs to focus on integrating and scaling

these systems. Together, the systems introduced in this thesis are a small but

important step towards the ultimate goal of modelling systems capable of true

human-like language understanding.
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