
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Advances in Justification Theory

Simon Marynissen

Dissertation presented in partial
fulfilment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

January 2022

Supervisors:
Prof. dr. M. Denecker (KU Leuven)
Prof. dr. B. Bogaerts (Vrije Universiteit Brussel)

Advances in Justification Theory

Simon MARYNISSEN

Examination committee:
Prof. dr. ir. R. Puers, chair
(KU Leuven)

Prof. dr. M. Denecker, supervisor
(KU Leuven)

Prof. dr. B. Bogaerts, supervisor
(Vrije Universiteit Brussel)

Prof. dr. ir. G. Janssens
(KU Leuven)

Prof. dr. ir. B. Jacobs
(KU Leuven)

Prof. dr. G. A. Wiggins
(Vrije Universiteit Brussel)

Prof. dr. P. Cabalar
(University of Corunna)

Prof. dr. P. Rondogiannis
(National and Kapodistrian University of

Athens)

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

January 2022

© 2022 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Simon Marynissen, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Today marks the end of a chapter of my life. The past four years and a bit, I
have had a wonderful time, filled with tackling challenging research questions,
meeting new people, and travelling abroad.1 Nevertheless, I feel relieved that I
can close this chapter and start a new one. During this period, many people
contributed to making this thesis possible. Therefore, I would like to take a
moment to thank some people.

First of all, I would like to thank my supervisors. I started this PhD with
just one supervisor, Marc. Over the course of the past four years, he has been
a non-stop source of research ideas, too many to work them all out. Therefore,
it is not surprising that much of the research in this thesis originated from his
ideas. Marc, thank you for turning me into a researcher and for the countless
interesting discussions and coffee breaks (chocolate milk in my case)!

A few months after I started my PhD, I got a second supervisor, Bart. In the
first year, we worked in the same office2. This allowed me to quickly absorb all
the new computer science material. When he went to become a professor at the
Vrije Universiteit Brussel, my PhD became a joint PhD. While my conversations
with Marc were usually about high-level stuff, my discussion with Bart also
went into the intricate details of proofs and methods. Without these discussions,
most of the results in this thesis would still be left unproven, thank you for
that! I would also like to thank you for improving my English language skills
by providing numerous feedback on preliminary texts.

Next, my gratitude goes to the members of my examination committee for
finding the time to read this thesis. Your constructive remarks and suggestions
were greatly appreciated.

Over the past four years, I have also had the pleasure to work with fantastic
colleagues. In no particular order, I would like to thank them as well for

1Not as much as I would have wanted. Damn you, coronavirus!
2I still remember you messing with my computer. ;)

i

ii PREFACE

the wonderful time in the office (and online): Joachim, Jo, Ingmar, Ruben,
Matthias, Pierre, Ðorđe, and Linde.

I would also like to thank my friends for the entertainment during the past
four years. I would especially like to thank the members of the catanclan for
the fun weekends.

At last, I want to thank my family, in particular my parents for the
unconditional support they provide. It is always a joy to return home.3 I
would also like to thank my sister Marleen and my brothers Thomas, Matthijs,
Jonah, and Johannes. It is nice to have a big family.

Last, but foremost, I would like to dedicate this text to one special person.
Joke, thanks for being there for me! I couldn’t have done this without you!

3And return with hands full of stuff.

Abstract

To practice knowledge representation, it is paramount that knowledge
representation languages have formal semantics. However, since there are
numerous different languages all with a formalisation, it is valuable to have
unifying frameworks that can capture the semantics of families of languages
and logics. One such framework is justification theory, in which the semantics
are defined by the use of explanations, called justifications in our terminology.
Intuitively, a justification is a graph that explains the truth values of certain
facts. However this introduces a potential problem: the justification status of
a fact and its negation can be inconsistent. So, for justification semantics to
be well-defined, these statuses should be opposite. Such semantics are called
consistent.

In the first part of this thesis we prove that the main semantics of justification
theory are in fact consistent. Moreover, we prove useful results for justifications,
such as the ability to compose together justifications. An other issue with
justification semantics is that there are different flavours of justifications, which
could result in distinct semantics. We show that these two seemingly unrelated
issues are actually deeply connected.

After that, we establish a connection between justification theory and game
theory, which allows for justifications to be seen as strategies in a two-player
game. This connection provides a resolution of the two issues in justification
theory by providing a general condition on the semantics in case the system is
finite.

Justification theory is not the only unifying framework for semantics of non-
monotonic logics. Another well-known framework is approximation fixpoint
theory, which is more algebraic in nature. We establish a connection between
justification theory and approximation fixpoint theory. The notion of ultimate
semantics of approximation fixpoint theory can be transferred into the realm of
justification semantics. This allows for justification semantics to capture more

iii

iv ABSTRACT

semantics than previously.

As the final topic of this thesis, we look into the nesting of justifications, which
can be used to define modular semantics. In previous definitions of nesting, a
significant amount of information is lost because a compression operation is used.
We provide an alternative and more general definition without this disadvantage.
This allows for more intuitive modular semantics based on justifications. We
prove that this is equivalent to the compression for tree-like justifications and
in special cases for graph-like justifications. We investigate the consistency of
both approaches as well and as an added bonus we solve the consistency for
tree-like justifications.

In summary, this thesis gathers a number of advances in justification theory
and illustrates them with examples.

Beknopte Samenvatting

Om kennisrepresentatie te beoefenen is het belangrijk dat kennisrepresenta-
tietalen een formele semantiek hebben. Omdat er echter talloze verschillende
talen zijn, allemaal met een formalisatie, is het waardevol om overkoepelende
kaders te hebben die de semantiek van families van talen en logica’s kunnen
vastleggen. Een voorbeeld van zo’n unificerend kader is justificatietheorie,
waarin de semantiek wordt gedefinieerd door het gebruik van verklaringen, in
onze terminologie justificaties genoemd. Intuïtief is een justificatie een grafe
die de waarheidswaarden van bepaalde feiten verklaart. Dit introduceert echter
een potentieel probleem: de justificatiestatus van een feit en de ontkenning
ervan kunnen inconsistent zijn. Dus om de justificatiesemantiek correct te
definiëren, moeten deze statussen tegengesteld zijn. Een dergelijke semantiek
wordt consistent genoemd.

In het eerste deel van dit proefschrift bewijzen we dat de belangrijkste
semantieken van de justificatietheorie in feite consistent zijn. Bovendien bewijzen
we bruikbare resultaten voor justificaties, zoals de mogelijkheid om justificaties
samen te stellen. Een ander probleem met justificatietheorie is dat er twee
soorten van justificaties zijn, wat kan resulteren in verschillende semantieken.
We laten zien dat deze twee ogenschijnlijk niet-gerelateerde problemen in feit
nauw met elkaar verbonden zijn.

Daarna leggen we een verband tussen justificatietheorie en speltheorie, waardoor
justificaties kunnen worden gezien als strategieën in een spel met twee spelers.
Deze verbinding biedt een oplossing voor de problemen die zich voordoen in
justificatietheorie door een algemene voorwaarde op de semantiek te geven in
het geval van een eindig systeem.

Justificatietheorie is niet het enige unificerend kader voor de semantiek van niet-
monotone logica’s. Een ander bekend kader is benaderende vastepuntstheorie,
dat een meer algebraïsch karakter heeft. We leggen een verband tussen
justificatietheorie en benaderende vastepuntstheorie. De notie van ultieme

v

vi BEKNOPTE SAMENVATTING

semantiek van benaderende vastepuntstheorie kan overgebracht worden naar
het domein van justificatietheorie. Hierdoor kan de justificatiesemantiek meer
semantieken vastleggen dan voorheen.

Als laatste onderwerp van dit proefschrift kijken we naar het nesten van
justificaties, dat gebruikt dan worden om modulaire semantieken te definiëren.
In eerdere definities van nesten gaat een aanzienlijke hoeveelheid informatie
verloren omdat er een compressiebewerking wordt gebruikt. We geven een
alternatieve en meer algemene definitie zonder dit nadeel. Dit zorgt voor een
meer intuïtieve modulaire semantiek op basis van justificaties. We bewijzen dat
dit equivalent is aan de compressie voor boomachtige justificaties en in speciale
gevallen voor grafeachtige justificaties. We onderzoeken ook de consistentie van
beide benaderingen en als een toegevoegde bonus lossen we consistentie op voor
boomachtige justificaties.

Samengevat, dit proefschrift verzamelt een aantal vorderingen in de justificatie-
theorie en illustreert deze met voorbeelden.

List of Abbreviations

AF Argumentation Framework.

AFT Approximation Fixpoint Theory.

AI Artificial Intelligence.

ASP Answer Set Programming.

FO first-order logic.

FO(ID) First-order logic extended with Inductive Definitions.

KRR Knowledge Representation and Reasoning.

NMR Non-Monotonic Reasoning.

ZFC Zermelo–Fraenkel set theory with the axiom of Choice.

vii

List of Symbols

AJF The approximator corresponding to JF

B A branch evaluation

b A branch

BJ(x) The set of J-branches starting with x

C(JF) The complement of JF

CC(JF) complementation of JF

Compress(JS) The compression of JS

B The dual branch evaluation of B

JF The dual justification frame of JF

`(b) The length of b

Expand(J) The expansion of J

J ↑ K The extension of justification J with justification K

F A fact space

f The truth value false

Fd The set of defined facts

Flat(JS) The flattening of JS

F− The set of negative facts

Fo The set of open facts

F+ The set of positive facts

ix

x LIST OF SYMBOLS

G A game

GPY Gale-Stewart game on Y with payoff set P

GJS,I The justification game associated with JS and I

GJF The game graph corresponding to JF

I An interpretation

JF A justification frame

〈F ,Fd, R〉 A justification frame

JS A justification system

〈F ,Fd, R,B〉 A justification system

J(x) The set of locally complete justification that have x as internal node

val(J, x, I) The value of a justification J for a fact x with respect to an
interpretation I

≤p The precision order

≤t The truth order

L The set of logical facts

F(Y) The collection of infinite sequence all of whose finite initial segments
belong to Y

Merge(JS) The merge of JS〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
A nested justification system

OJF The operator corresponding to JF

PathG The set of finite paths in G

F The false player

PlayG The set of plays in G

pG(s, σ, τ) The play consistent starting with s consistent with σ and τ

vP The preference relation for player P

T The true player

R A set of rules

LIST OF SYMBOLS xi

sgn(x) The sign of x

Shrink(J) The shrinking of J

σ A strategy for T

SP The states owned by a player P

Sg(P) The set of general strategies for P

Sp(P) The set of positional strategies for P

SJS The support operator associated with JS

SV(x, I) The supported value of x with respect to an interpretation I

τ A strategy for F

∼ The negation operator

t The truth value true

U(O) The ultimate approximator of O

U(JF) The ultimate frame of JF

UJF The ultimate approximator associated to the justification frame JF

u The truth value unknown

Unfold (JS) The unfolding of JS

Jσ(x) The justification corresponding to the strategy σ

L2 The bilattice on L

M∗ The set of paths obtained by finite iterations of loops in M

Mω The set of paths obtained by infinite iterations of loops in M

u(x, σ, τ) The value of the play starting with x consistent with σ and τ

x← A A rule with head x and body A

Contents

Preface i

Abstract iii

Beknopte Samenvatting v

List of Abbreviations vii

List of Symbols xi

Contents xiii

1 Introduction 1
1.1 Background . 1
1.2 Justifications in KRR . 3
1.3 Research Aims and Motivation 5
1.4 Structure of Thesis . 8

2 Justification Theory 11
2.1 Introduction . 11
2.2 Definitions . 11
2.3 Consistency of Justification Systems 21

2.3.1 Equivalent Justification Frames 22
2.3.2 Complementarity of Rules 24

2.4 Graph-Reducibility . 30
2.4.1 Relation between Consistency and Graph-Reducibility . 31

2.5 Branch Evaluation Types . 32
2.5.1 Dual Branch Evaluations 34

2.6 Pasting Justifications . 36
2.7 Applications . 44

2.7.1 Logic Programming . 44

xiii

xiv CONTENTS

2.7.2 Differences between answer-set programming 48
2.7.3 Abstract Argumentation 48

2.8 Conclusion . 51

3 Basic Properties of Justification Theory 53
3.1 Introduction . 53
3.2 Consistency Revisited . 53
3.3 Consistency of Well-Founded Semantics 59
3.4 Alternative Branch Evaluations 65
3.5 Links between Different Justification Models 69
3.6 Conclusion . 72

4 Exploiting Game Theory for Analysing Justifications 75
4.1 Introduction . 75
4.2 Game Theory . 76
4.3 Justifications as Strategies . 79

4.3.1 Games Associated to justifications 80
4.3.2 Strategies are Justifications 81

4.4 Consistency Revisited . 87
4.4.1 Minimax . 87
4.4.2 Existence of Optimal Pairs of Positional Strategies . . . 89

4.5 Infinite Games . 96
4.6 Conclusion . 100

5 Embedding Justification Theory in Approximation Fixpoint Theory 103
5.1 Introduction . 103

5.1.1 Approximation Fixpoint Theory 104
5.1.2 Correspondence . 104

5.2 Approximation Fixpoint Theory 105
5.3 The Embedding . 106

5.3.1 The Approximator . 106
5.3.2 Semantic Correspondence 108

5.4 Application: Ultimate Semantics 116
5.5 Conclusion . 121

6 Nested Justification Systems 123
6.1 Introduction . 123
6.2 Basic Definitions . 124
6.3 Alternative View on Nested Systems 135

6.3.1 Shrinking Justifications 138
6.3.2 Expanding Justifications 143
6.3.3 Kripke-Kleene Case . 149
6.3.4 Well-Founded Case . 151

CONTENTS xv

6.4 Consistency of Nested Systems 155
6.5 Applications . 163

6.5.1 FO system . 165
6.5.2 Aggregates . 167
6.5.3 First-Order Definitions: FO(ID) 168
6.5.4 Fixpoint Definitions: FO(FD) 171

6.6 Conclusion . 176

7 Conclusion 177
7.1 Contributions . 177
7.2 Future Directions . 178

7.2.1 Challenges and Open Questions 178
7.2.2 Applications of Justification Theory 181
7.2.3 Extensions of Justification Theory 181

Bibliography 183

Chapter 1

Introduction

1.1 Background

This thesis is situated in the field of Artificial Intelligence (AI), in particular
the Knowledge Representation and Reasoning (KRR) subfield. The primary
concern of KRR is to define languages and logics to represent knowledge, and
conceive tools and techniques to reason with this knowledge. Of course, this
is an oversimplified view, but it allows us to look at the bigger picture. To
have a perfect reasoner, one should first capture the knowledge in the problem
domain and then unleash the reasoning power at hand. We should contrast this
with function-fitting methods in other parts of artificial intelligence, such as
deep learning. These methods, although very useful for other problems (e.g.,
speech recognition), are not always able to reason 100% logically correct due to
their approximating nature. Darwiche (2018) defines this dichotomy of AI as
model-based vs. function-based AI. Model-based AI has a distinct advantage
over function-based techniques: the internal mechanisms are usually captured
as well, in contrast to function-based techniques which behave like black boxes.
Therefore, these methods lean better towards explainable systems as opposed to
more opaque function-based methods.1 Moreover, function-based AI is usually
tailored for one specific goal. A major part of model-based AI is Knowledge
Representation and Reasoning (KRR). Represented knowledge can be used to
solve multiple problems; hence it is multi-goal oriented. This idea is central in
the knowledge base paradigm (Cat et al., 2014; Denecker and Vennekens, 2008).

1There are efforts to add explanations to function-based methods, but these are often of a
rudimentary form, e.g., highlighting specific parts of an image that led to the recognising of
an object (Darwiche, 2018).

1

2 INTRODUCTION

As such, these techniques are better to handle novel scenarios, for example
in causal reasoning. The higher degree of explainability of the model-based
approach is ever more important due to AI regulations and policies, for example
the right to explanation2. Embracing explanations would be a perfect starting
point for practising contemporary Knowledge Representation and Reasoning
(KRR).

In KRR, many languages and logics are invented for varying purposes ranging
from semantic web ontology languages (Antoniou and van Harmelen, 2009;
Baader et al., 2005) to robotics (Paulius and Sun, 2019), legislation and law
(Jones, 1990). Often, these logics are based on the same principles, but are
worked out in slightly different ways, or they are addressed from a different angle.
To see the bigger picture, it is paramount that we can establish relations between
the different languages and logics: are they distinct dialects with the same
underlying principles or are they inherently different. One technique available
to study these relationships is to define transformations between languages. In
particular, one can find an embedding of one language into another. However,
this is impractical due the sheer amount of knowledge representation languages
available. Another, more feasible, way is to conceive frameworks unifying the
semantics of a large group of logics.

Luckily, justification theory tackles both the issue of explainability and that of
unification. The semantics (meaning) of justification theory are based on the
notion of a justification, which is a graph3 explaining why something holds. For
example, the justification (it is not important to completely understand these
pictures at this point)

tasty

sweet good shape

firm no spots

serves as an explanation why an apple is tasty (your definition of tasty can vary
of course).

Justification semantics work by giving a rating to each justification indicating
if it is good or not. By varying the way we rate the justifications we can vary
the semantics of the same domain. To change domains, justification theory

2As manifested for example in the European Union General Data Protection Regulation.
3Not a graph of a function, but the mathematical structure representing relations between

objects.

JUSTIFICATIONS IN KRR 3

uses a set of rules as a basis to construct explanations. Therefore, it is not
difficult to see that justification theory acts as a unifying framework. Combined
with the fact that justifications (explanations) are the major constituent of the
semantics, justification theory is an excellent study object for KRR.

1.2 Justifications in KRR

Justification theory as detailed in this thesis originated in the PhD thesis of
Denecker (1993) and was further formalised by Denecker, Brewka, and Strass
(2015). Justifications – albeit not always in the exact formal form as described
by Denecker (1993); Denecker et al. (2015) – have appeared in different ways in
different areas in KRR. Justification theory has its origin in logic programming,
where the concept of justifications has been around for quite a while. According
to Fandinno and Schulz (2019), the concept of a justification originates from
work on debugging by Shapiro (1983); Sterling and Lalee (1986). Building on
that work, Lloyd (1987) introduced the notions of incorrect rules and uncovered
atoms for a declarative error diagnoser. These notions indicate when a structure
is not a model of the given logic program. The next year, Sterling and Yalçinalp
(1989) explained Prolog expert systems with a meta-interpreter. In 1990, Fages
(1990) defined the stable semantics for logic programs in terms of justifications,
which in this case are sets of atoms. A lot of justification approaches use the
notion of a supported set/value, which was first introduced by Pereira et al.
(1992, 1993). This was around the same time Denecker and Schreye (1993)
introduced the early version of justification theory. In 2000, Roychoudhury
et al. (2000) justified tableau-based proofs by providing justifications for logic
programs.

Fandinno and Schulz (2019) listed several prominent justification approaches
for Answer Set Programming (ASP) besides justification theory:

• off-line justifications (Pontelli and Son, 2006)

• labelled assumption-based argumentation based answer set (LABAS)
justifications (Schulz and Toni, 2016)

• causal justifications (Cabalar and Fandinno, 2016; Cabalar et al., 2014)

• why-not provenance (Damásio et al., 2013)

• rule-based justifications (Béatrix et al., 2016)

The first three approaches are similar to justification theory since justifications
are also dependency graphs between literals or rules.

4 INTRODUCTION

Off-line justifications (Pontelli and Son, 2006) are graph structures that describe
the truth value of an atom with respect to a given answer set. Because off-line
justifications only use atoms as nodes, nodes have to be labelled with + or −
indicating if it is true or false. Similarly, edges have to be labelled with + and
− as well to indicate positive or negative dependence. The truth of negative
literals are assumed to be true and are not further explained.

LABAS justifications (Schulz and Toni, 2016) are very similar to off-line
justification, but they abstract away from intermediate rule applications. So
they only point out the literal in question and the facts occurring in rules used
in the derivation. Additionally, the truth of negative literals is not assumed,
but is further explained in terms of the truth value of the underlying atom.

Causal graph justifications (Cabalar and Fandinno, 2016, 2017; Cabalar et al.,
2014), contrary to off-line and LABAS justifications, are used to formalise and
reason with causal knowledge, which is its main focus. They can also be used
to explain why a literal is contained in an answer set. Additionally, an algebra
for combining justifications was defined.

Why-not provenance (Damásio et al., 2013) is based on database literature.
Justifications here are not graph-based and are used to explain the truth value
of an atom.

Rule-based justifications (Béatrix et al., 2016) are defined in the context of
rule-based answer set computation (Lefèvre et al., 2017): the search algorithm
guesses on the application or non-application of a rule instead of the truth value
of atoms. The ASP-solver ASPeRiX uses these justifications for backjumping.

Readers interested in the intricate differences between the different justification
approaches should take a look at the excellent work from Fandinno and Schulz
(2019). Besides these approaches, there are a number of applications where
justifications are used. The work on inductive definitions by Mariën (2009);
Mariën et al. (2005, 2007, 2008) uses justifications as a semantical basis for
inference techniques in inductive definitions. Justifications are used to perform
non-clausal local search (Järvisalo et al., 2008). Data structures similar to
justifications are also used in implementations of answer set solvers (they form
the basis of the so-called source-pointer approach in the unfounded set algorithm
(Gebser et al., 2009)). Moreover, justifications turned out to be key in analysing
conflicts in the context of lazy grounding (Bogaerts and Weinzierl, 2018). Very
recently, Lapauw et al. (2020) used justifications to improve parity game solvers.

RESEARCH AIMS AND MOTIVATION 5

1.3 Research Aims and Motivation

In broad terms, our aim is to advance justification theory. In particular, two
properties with associated research questions are extensively studied throughout
this text.

The first property is concerned with the soundness of justification semantics.
A benefit of justification theory is that it provides a lot of freedom to create
new semantics by means of branch evaluations. These evaluations give values
to paths in an explanation graph and thus determine whether a justification
is considered good or not. In justification theory, there is no real distinction
between a fact and its negation. This means that both a fact and its negation
can have good justifications, which in normal circumstances4 is considered a
contradiction. For example, if you have a good reason why x holds and a
good reason why x does not hold, then we obtain a contradiction. If such
contradictions do not occur, we say that its justification semantics is consistent.

Justification theory was originally developed to capture the semantics of
inductive definitions. Inductive definitions are extremely important in
mathematics as they are used to generate mathematical objects such as the
subgroup generated by a subset, Borel sets, the natural numbers, recursive
formulae, truth relations in logics, etc (Buchholz et al., 1981). To quote Gandy
(1974, page 265)

Mathematical logic is certainly permeated with inductive definitions.

For example, we can inductively define the ancestor relation given the parent
relation with the following rules.

• A person p is an ancestor of q if p is a parent of q.

• A person p is an ancestor of q if there is a person r so that p is a parent
of r and r is an ancestor of q.

Intuitively, it is clear what this should mean. However, the formal semantics
of a set of inductive rules is not immediately clear. Generally, there are two
approaches to provide formal semantics to inductive definitions. The first
approach is constructive and builds the relation from the bottom up: you start
with the empty relation and iteratively apply rules in the inductive definition
until the relation stops increasing. The second approach is defining the relation

4Paraconsistent logics handle contradictions in a tolerant way. We are not concerned with
paraconsistent logics in this text.

6 INTRODUCTION

as the smallest relation that satisfies the induction rules. Both approaches
provide the same result if negation does not occur in the induction rules, however
this breaks down when negation is involved. Justification theory follows the
constructive approach, but extends it to a broader class of constructions.5 In
that sense, we can see justifications as a construction of why a fact belongs to
a set/relation. Going back to the ancestor relation, the following justification
respresents the construction process of why Alice is an ancestor of Bob.

Alice is ancestor of Bob

Alice is parent of Charlie Charlie is ancestor of Bob

Charlie is parent of Bob

The justification above describes the process by which Alice is an ancestor of
Bob: which induction rules are needed.

It still remains the question what a justification for a fact such as Bob is not an
ancestor of Alice means. Such a justification provides a witness of why Bob
is an ancestor of Alice is not constructible. The notion of constructability
is of course classical: something cannot be both in a relation and not in a
relation. This means that investigating the consistency of justification semantics
is paramount.

The second property is more concerned about what shape our explanation
can be. In more technical terms, justifications are directed graphs. However,
we allow two forms, one in which always the same ‘choice’ is made, and one
where multiple choices can be made. Let us take a look at an interlocking gear
example.

a

b

c

In this situation, we have the following two justifications:
5Approximation Fixpoint Theory (AFT) follows and extends the second approach.

RESEARCH AIMS AND MOTIVATION 7

a b a b a c . . .

On the left side, you see a circular reasoning6 where the clockwise turning of
the first cog is justified by the counter-clockwise turning of the second cog
and vice versa. While, on the right side, the clockwise turning of the first
cog is first justified by the counter-clockwise turning of the second cog, which
is later on justified by the clockwise turning of the third cog. Since writing
down the right type of graph, leaves us with a tree-like structure (or root-like
structure depending on the orientation), we say that the right type are tree-like
justifications. To contrast between tree-like justifications, the first type are
called graph-like justifications. Initially, Denecker and Schreye (1993) invented
tree-like justifications, but later on Denecker et al. (2015) invented graph-like
justifications.

Now we have enough information to state the second central question of this
thesis: when are the two types of justification equivalent; meaning a fact has a
good graph-like justification if and only if it has a good tree-like justification.
This property is called graph-reducibility, the reason why it is called that way is
explained in Chapter 2.

Investigating both properties is the central aim of this thesis. In particular,
we aim to find restrictions on branch evaluations such that these properties
hold. Additionally, these properties are future guidelines for new justification
semantics. If new justification semantics are devised, it should satisfy both
properties to be of practical use as the first property ensures that the semantics
are not contradictory, while the second property allows for the compression
of tree-like justification into graph-like justifications. This has important
ramifications in real computer applications, as most of the time, a tree-like
justification is an infinite structure and consequentially does not fit in memory.
So if there is an equally good graph-like justification, this can then be used
instead. Justifications are used for example in parity game solvers, see the work
by Lapauw et al. (2020).

Somewhat unexpectedly, these properties are intrinsically related to each other:
if graph-like justifications are consistent, then graph-reducibility holds and
tree-like justifications are also consistent.

Apart from these two properties, we have two additional lines of research. As
mentioned before, justification theory aims to be a unifying framework. Another
framework with origins in logic programming is AFT. The foundations of AFT
lie in Tarksi’s fixpoint theory (Tarski, 1955); hence the fundamental objects

6In some semantics, such as co-well-founded semantics, as we see later, this is actually a
valid argument.

8 INTRODUCTION

in AFT are operators and their fixpoints. Since there is an overlap between
the logics justification and AFT capture, it begs the question of what is the
relation between the two formalisms.

Our last line of research is about modularity in knowledge representation.
In order to have efficient knowledge representation, it is paramount that if
new logical constructs are added, that the semantics does not have to be
completely overhauled to get it working. That is, knowledge representations
should be composable. Denecker et al. (2015) provided a way to compose
different justification semantics by nesting of justification frames. However, to
give meaning to the nesting, it is compressed to regular justification semantics.
By doing this, a lot of information is lost in the justifications, which has the effect
that justifications do not have a proper explaining characteristics. Therefore, it
begs the question whether we can improve on this by providing an alternative
way to look at nestings without losing information in the justifications.

1.4 Structure of Thesis

In the next chapter, we establish the preliminaries for justification theory, which
includes detailed definitions for justification theory as well as the four main
branch evaluations. We do some ground work for the next chapters such as
results concerning pasting-together of justifications as well as formally defining
our two research questions and goals. This chapter finishes by showing that
justification theory can capture logic programming semantics and abstract
argumentation frameworks.

In the third chapter, we take a deeper look into the consistency of the four main
justification semantics and prove some relations between the models of these
main justification semantics.

The fourth chapter further investigates the consistency problem, but does so
from a different angle by embedding justification theory into game theory. This
embedding effectively shows that justifications can be seen as strategies in some
two-player game. Using game theoretic results, we find two additional properties
for branch evaluations that imply its consistency in a finite setting.

Previously, we talked about justification theory being a unifying framework.
Another unifying framework that tries to capture similar semantics is AFT.
In Chapter 5, we explore the relation between both unifying frameworks. As
an added bonus, we transfer ultimate semantics, a concept from AFT, to
justification theory; further expanding the number of semantics being able to
be captured by justification theory.

STRUCTURE OF THESIS 9

One benefit of justification theory that we have not discussed yet is its modularity.
Justification theory achieves this by nesting. Intuitively, this can be viewed as
justifications inside justifications. This is further explored in Chapter 6. As
an unexpected consequence we find a property that implies the satisfaction of
graph-reducibility. Moreover, we settle the consistency for tree-like justifications.
We end this chapter with a number of applications that use nested justification
systems.

The seventh and final chapter provides a conclusion and possible future directions
for this line of research.

Most chapters are a stand-alone topic, except for Chapter 2 as it lays the ground
work for the subsequent chapters. Each chapters has a conclusion in which
future directions are laid out for that line of research.

Chapter 2

Justification Theory

2.1 Introduction

This chapter first introduces the basic notions of justification theory. After
that, we discuss the consistency problem in detail. Equivalence of justification
frames and complementarity of rules are also discussed. We give an important
counterexample that does not have the consistency property. Incidentally, it
is also a counterexample for graph-reducibility, which is then discussed next.
The relation between consistency and graph-reducibility is then explained and
elaborated. Next, a number of branch evaluation types are given, as well as dual
justification semantics. One interesting set of branch evaluations are splittable
and they allow us to paste justifications together to obtain an explanation
for everything at once. The chapter ends by showing how logic programming
semantics and abstract argumentation framework semantics can be captured by
justification theory.

The content of this chapter is an amalgamation of four papers (Marynissen et al.,
2018a,b, 2020, 2021) with myself as first author. Most proofs and examples are
unpublished.

2.2 Definitions

In the introduction we saw a few simple examples of justifications. The nodes
in justifications are the basic elements for forming justifications. These are
called facts. Each fact has its corresponding negative fact. For instance, if fly

11

12 JUSTIFICATION THEORY

means a certain object can fly, then ∼fly means that that object cannot fly.
Here we take the classical convention that ∼∼x = x for any x.1 Usually we
make an asymmetric distinction between x and ∼x. Apart from regular facts,
there are a few special facts corresponding to the logical values true, false, and
unknown. They are denoted by respectively t, f , and u. Following classical
three-valued logic (Belnap, 1977) we get that ∼t = f , ∼f = t and ∼u = u. The
set L denotes the set {f ,u, t}. We have two orders on L: the truth order ≤t
for which f ≤t u ≤t t and the precision order ≤p for which u ≤p f and u ≤p t.
This captures that when something is u, we do not have information on its
value, while f and t are as precise as can be. All of this is summarised in the
definition of a fact space.

Definition 2.2.1. A fact space is any set F containing L together with a
function ∼ : F → F and a partitioning F+ ∪ F− of F \ L such that

• ∼ is an involution, i.e. a bijection that is its own inverse (∼∼x = x for
all x ∈ F);

• ∼t = f , ∼f = t, and ∼u = u;

• for all x ∈ F \ {u} the facts x and ∼x are different;

• x ∈ F+ if and only if ∼x ∈ F− for all x ∈ F \ L.

Elements in F+ (respectively F−) are called positive (respectively negative)
facts. Sometimes, the partition in positive and negative facts is given by a sign
function, which is a function sgn : F \ L → {+,−} such that sgn(x) 6= sgn(∼x)
for all x ∈ F \L. This corresponds to the partition as follows: F+ = sgn−1({+})
and F− = sgn−1({−}).

When a fact space F is mentioned, the function ∼ and the partition F+ and F−
are often implicitly given. If A is a subset of F , then by ∼A the set {∼a | a ∈ A}
is meant.

When speaking about facts, usually we say that some facts are true and others
are false, or even unknown. In a consistent world, if x is true, then of course
∼x is false because our negation ∼ is classical. This is represented by an
interpretation.

Definition 2.2.2. For a fact space F , a (three-valued) interpretation of F is a
function I : F → L that

• commutes with ∼, i.e. I(∼x) = ∼I(x) for all x ∈ F ;
1People familiar with Answer Set Programming (ASP) tend to work in different logics

such as Gödels G3 logic in which ∼∼x is not equivalent with x.

DEFINITIONS 13

• is the identity on L, i.e. I(`) = ` for ` ∈ L.

Interpretations assign logical values to facts so that the value for a fact and its
negation are opposite. They represent a possible state of affair of the fact space.
Sometimes, interpretations are called structures, especially in the context of first-
order logic. The order ≤p extends to interpretations by piecewise comparison.
That is, I1 ≤p I2 if for all x ∈ F , I1(x) ≤p I2(x). The order ≤t extends to
interpretations by piecewise comparison of positive facts, i.e. I1 ≤t I2 if for all
x ∈ F+, I1(x) ≤t I2(x).

Example 2.2.3. Let F = L ∪ {bird,∼bird, wounded,∼wounded, bat,∼bat}
be a fact space with F+ = {bird, wounded, bat}. If we have a certain animal a,
then the informal meaning of the facts above should be clear. An interpretation
I with I(bird) = t represents a state of affair in which a is a bird. N

A fact space is the main ingredient for constructing justifications. The following
justification however shows we need some extra structure:

fly

sun is radioactive

We know that the sun is radioactive, however, that is not a good explanation of
why something can fly and these facts are not even remotely related to each
other. What we need is some way to describe the relations between facts. This
is done by providing rules for certain facts. For example, one rule could be

fly← bird,∼wounded

where the comma between the facts can be read as ‘and’. This rule describes
that if the animal is a bird and not wounded, then the animal can fly. Another
rule could for example be

fly← bat,∼wounded

However, not all facts have such rules. It could be that the value of a fact is
determined from the outside, not described by our system. For example, we
could have established with measurements that the sun is radioactive, but there
is no good rule for this (in the fact space we are working with). Facts that
do have rules are called defined and facts that do not have rules are called
open. Sometimes, open facts are called parameters. It should be obvious that
the logical facts t, f and u are open. We assume that if a fact x is defined,

14 JUSTIFICATION THEORY

that ∼x is also defined. This is evident by noting that if you can describe why
something holds, then you can also describe why something does not hold. That
is why, usually, there is a relation between the rules for x and ∼x. The exact
correspondence is postponed to Section 2.3.2. The discussion on justification
frames is summarised in the definition below.

Definition 2.2.4. A justification frame JF is a tuple 〈F ,Fd, R〉 such that

• F is a fact space and Fd is a subset of F ;

• no logical fact is defined: L ∩ Fd = ∅;

• R ⊆ Fd ×
(
2F \ {∅}

)
;

• for each x ∈ Fd there is at least one element (x,A) ∈ R.

The third point says that we cannot have a rule (x, ∅). This means that in
every case x should hold. However, such a situation can be described by a rule
(x, {t}). The last point of the definition says that every defined fact x has at
least one rule (x,A). This makes sense, otherwise x is not described by the
justification frame, and thus would have been an open fact instead. We say
(x,A) is a rule for x. The set A is called the body of the rule and a case of x.
We write JF(x) for the set of cases of x in JF . The set Fo denotes F \ Fd
and naturally represents the set of open facts. Rules in a justification frame
are technically a tuple (x,A) but we usually denote them by x← A. If A is an
enumerable set {y1, . . . , yn}, then we write x← y1, . . . , yn instead of the more
formal x← {y1, . . . , yn}.

We are now ready to formally define justifications. The underlying structure
of a justification is a directed graph. For the sake of completion we give the
definition of a directed graph we use.

Definition 2.2.5. A directed (unlabelled) graph is a tuple 〈N,E〉 where N is
a set of nodes and E ⊆ N ×N is a set of edges. A directed labelled graph is a
quadruple 〈N,L,E, `〉 where N is a set of nodes, L a set of labels, E ⊆ N ×N
is a set of edges, and ` : N → L is a function called the labelling.

A node with outgoing edges is called an internal node. If a node does not have
outgoing edges, we call it a leaf 2. When there is an edge from x to y, then x is
a parent of y and y is a child of x. In previous examples of justifications, we
observed that the children of a node should be a case of that node. Or in other
words, the justification should reflect the structure of the justification frame.

2The more common terminology for graphs is a sink. However, the work by Denecker
(1993) only considered justifications which were trees, in which this terminology is customary.
We tried not to break too much with existing terminology of early justification theory.

DEFINITIONS 15

Definition 2.2.6. Let JF = 〈F ,Fd, R〉 be a justification frame. A graph-
like justification is a directed graph 〈N,E〉 with N ⊆ F such that for all
internal nodes x ∈ N we have that {y ∈ N | (x, y) ∈ E} is a case of x in JF ,
i.e. x← {y ∈ N | (x, y) ∈ E} ∈ R.

A tree-like justification is a directed labelled graph 〈N,F , E, `〉 that is acyclic
(considered as an undirected graph) and for all internal nodes x ∈ N we have that
{`(y) | (x, y) ∈ E} is a case of `(x) in JF , i.e. `(x)← {`(y) | (x, y) ∈ E} ∈ R.

Slightly abusing notation, for a node n with label x in a tree-like justification,
we usually refer to x instead of n.

We have gone through enough preliminaries to explain how justifications are
rated, i.e. when a justification is considered a good explanation.

Example 2.2.7. Take a look at the following justification:

fly

bat ∼wounded

If the underlying justification frame also has a rule ∼wounded← ∼scratched,
then the justification is not a complete explanation of why the animal can
fly. N

In the previous example, we see that there is a leaf that is in Fd. This means
that the justification is only a partial explanation. Therefore, to complete it,
this fact should also be explained. So we tend to only consider justifications
that do not have defined facts in their leaves.3

Definition 2.2.8. A justification is locally complete if it has no defined leaves.
For x ∈ F the set J(x) is the set of locally complete justifications that have x
as an internal node.

Since open facts are determined from the outside, we only look at justifications
as explanations for defined facts. So take a defined fact x and let J be a locally
complete graph-like justification. The only ‘relevant’ part of the justification is
the part of J reachable from x. One way to do this is by looking at paths in J
starting with x. In particular, justification theory considers all maximal paths
of J starting with x, called J-branches.

3Non locally complete justifications can also be evaluated, see Definition 2.6.3.

16 JUSTIFICATION THEORY

Definition 2.2.9. For a justification J , a J-branch is a path of facts x0 →
x1 → . . . in J that is either infinite or finite and ending in a leaf of J . The set
of J-branches starting with x is denoted as BJ(x).

To provide meaning to a justification, we need to evaluate these branches. We
could have a different evaluation for each justification, but we think of the
meaning as something universal; being applicable to any justification frame.
Therefore, it is useful to define what a branch is with respect to a justification
frame JF .

Definition 2.2.10. A JF-branch is either an infinite sequence in Fd or a finite
non-empty sequence in Fd followed by an element in Fo.

It is straightforward that J-branches are JF-branches if J is locally complete.
A branch b is almost always denoted as b : x0 → x1 → · · · . The negation ∼b
of b is defined as ∼x0 → ∼x1 → · · · . Despite of the ‘· · · ’, it can also denote
a finite branch. A tail of b is any branch xi → xi+1 → · · · for i ≥ 0. When
saying a positive branch, we mean a branch having only positive elements.

To evaluate branches we need a mapping from branches to facts. This is exactly
what a branch evaluation is.

Definition 2.2.11. A branch evaluation B is a mapping that maps any JF-
branch to an element in F for all justification frames JF . A justification system
JS is a tuple 〈F ,Fd, R,B〉 such that 〈F ,Fd, R〉 is a justification frame and B
is a branch evaluation.

The condition that a branch evaluation should be simultaneously defined for all
justification frames is important. This condition ensures that branch evaluations
can only use the structure of the underlying fact space. For example, an
evaluation that evaluates a branch to f if it contains the fact secret is not
allowed since secret is not an element in all fact spaces. Therefore, if you
want to define a new branch evaluation, then this should not take the specific
justification frame into account and should be applicable to all justification
frames, and not only a few specific ones. Even though, leaving out this restriction
would theoretically still work and all results in thesis will still hold. However, if
the semantics belonging to a new branch evaluation adheres to proper knowledge
representation principles, it should be broadly applicable. Therefore, branch
evaluations are only allowed to use the structure in the given fact space. However,
if the new branch evaluation only works on specific fact spaces, then it is advised
to put additional structure onto the fact space and allow the branch evaluation
only to be used on such fact spaces. We will see an example of that in Chapter 6,
when we see nestings of justification systems.

DEFINITIONS 17

We will provide plenty of examples of branch evaluations later on, but let us
first show how branch evaluations are used to rate justifications. Consider the
following justification:

apple is tasty

apple is sweet apple has good shape

This might seem like a good explanation why an apple is tasty, but if apple
is sweet is not true, then the whole explanation collapses. This shows
that the value of a justification depends on the interpretation of its facts.
So let us take an interpretation I. This justification has two very simple
branches apple is tasty→ apple has good shape and apple is tasty→
apple is sweet. Assume, for the sake of the argument, that our branch
evaluation maps finite branches to their last element. Hence, we get the facts
apple is sweet and apple has good shape. By interpreting them with I
we get two logical facts. Intuitively, we say that the worst value of these is then
our value of the justification. If one of them is false, then our explanation has
to be false. If they both hold, then it is a good explanation. This underlies the
intuition of the value of a justification.

Definition 2.2.12. Let JS = 〈F ,Fd, R,B〉 be a justification system, I an F-
interpretation, J a locally complete justification in JS, and x ∈ Fd an internal
node of J . The value of J in x under I is defined as:

valB(J, x, I) = min
b∈BJ (x)

I(B(b)),

where min is with respect to ≤t.

One of the simplest branch evaluations one can think of is just taking the second
element of the branch as its evaluation.

Definition 2.2.13. The supported (completion) branch evaluation Bsp maps
x0 → x1 → · · · to x1.

By using this branch evaluation, every justification corresponds to a single rule.
Indeed, the children of x in J form a case A of x by the definition of justifications
and all J-branches starting with x are mapped to their second element, which
is inside A. Therefore, the value of the justification depends solely on the
interpretation of the elements in A. Everything else in the justification is
ignored to compute the value of J in x.

18 JUSTIFICATION THEORY

Example 2.2.14. Let Fd∩F+ = {x, y, z, v} and let R contain the rules x← y
and y ← z, v. The only locally complete justification for x is

x

y

z v

The branches x→ y → z and x→ y → v are mapped to y under Bsp. Therefore,
the branch evaluation Bsp only looks at the part x→ y; and thus only the rule
for x is important to evaluate the justification under Bsp. N

Sometimes, you do not want to allow infinite sequences of reasoning.
Definition 2.2.15. The Kripke-Kleene branch evaluation BKK maps finite
branches to their last element and infinite branches to u.
Example 2.2.16. Let Fd ∩F+ = {x, y, z} and let R contain the rules x← y, z
and z ← z. Suppose I is an interpretation with I(y) = t. The only locally
complete justification for x is

x

y z

This justifications has two branches: x→ y and x→ z → z → The former
is mapped to y under BKK and the latter is mapped to u; hence the value of
the justification for x is min≤t {t,u} = u. N

The previous branch evaluations did not make use of the partition of Fd into
positive and negative facts. We can use this partition to introduce an asymmetry
between x and ∼x.
Definition 2.2.17. The well-founded branch evaluation Bwf maps finite
branches to their last element. Under Bwf , infinite branches are mapped
to t if they have a negative tail, to f if they have a positive tail and to u
otherwise. The stable (answer set) branch evaluation Bst maps a finite branch
x0 → x1 → · · · → xn with all of x0, . . . , xn−1 having the same sign, to xn; a
branch x0 → x1 → · · · to the first element that has a different sign than x0 if it
exists, otherwise to t if all xi are negative and f if all xi are positive.

DEFINITIONS 19

Example 2.2.18. Let Fd ∩ F+ = {x, y} and let R contain the rules x ←
∼y and y ← ∼x and their complementary rules ∼x ← y and ∼y ← x (see
Definition 2.3.9). The only locally complete justification containing x is

x

∼y

Under Bst, this represents a choice rule between x and y. If I(y) = f , then the
value of this justification is t and vice versa. N

The names of these branch evaluations are not random, since they can be used
to capture similarly-named semantics in logic programming, see Section 2.7.1.

Consider the following two justifications:

fly

bird ∼wounded

fly

bat ∼wounded

Suppose we know the animal is not wounded and that it is not a bird. However,
we have no information about whether the animal is a bat in the interpretation
(I(bat) = u). For simplicity sake, assume we use Bsp, then the left justification
evaluates to f and the right one to u. Therefore we could say that we do not
know fly and we do not know that fly is not false. This would mean that
I(fly) = u. So if there are multiple justifications, we tend to consider only
the best one. Such a best justification (of which there could be more than one)
supports the fact up to the value of that justification, just as we have seen that
fly is supported to be u by the right justification above. This idea is called
the supported value.

Definition 2.2.19. Let JS = 〈F ,Fd, R,B〉 be a justification system, I an
F-interpretation, and x ∈ Fd. The supported value of x in JS under I is
defined as:

SVJS(x, I) = max
J∈J(x)

val(J, x, I),

where max is with respect to ≤t. By abuse of notation, if JS is clear from
context, we write SVB(x, I) or SV(x, I).

In principle you do not have to take into account all locally complete justifications
with x as internal node. The value of a justification J in x is determined solely

20 JUSTIFICATION THEORY

by the set BJ(x). Therefore, the only part of J that is of interest is the set of
nodes in J reachable from x.

Definition 2.2.20. A node x is a root of J if every node of J is reachable from
x in J .

Proposition 2.2.21. For any locally complete graph-like (respectively tree-like)
justification J and x ∈ Fd a label of an internal node, there is a locally complete
graph-like (respectively tree-like) justification J ′ such that x is a root of J ′ and
val(J, x, I) ≤t val(J ′, x, I) for all interpretations I.

Proof. Take a node n labelled x. Let J ′ be the subgraph of J spanned by the
nodes that are reachable from n. By definition J ′ is connected. Since J is
locally complete, J will have no leaves with a defined fact as label, and so
J ′ is locally complete. By construction BJ′(x) ⊆ BJ(x), which means that
val(J, x, I) ≤t val(J ′, x, I) for all interpretations I.

Corollary 2.2.22. To determine the supported value of a defined fact x, it
suffices to look at the justifications that have x as root.

It makes sense that open facts do not have a supported value since they are
determined from the outside. We can however, extend the supported value to
the whole of F by just taking the same value as the interpretation for open
facts.

Definition 2.2.23. Let JS be a justification system. For any F -interpretation
I, SJS(I) is the function F → L which maps x ∈ F to

• SVJS(x, I) if x ∈ Fd;

• I(x) if x ∈ Fo.

The function SJS is called the support operator. If JS consists of JF and B,
then we write SBJF for SJS .

Assume we have an interpretation I such that I(x) = f , but there is a
justification J with valB(J, x, I) = t. Then this interpretation seems to be
incomplete by not utilising all the good explanations. Similarly, if I(x) = t,
but the best justification for x has only the value f , then I has unsupported
claims. This brings us to models in justification theory.

Definition 2.2.24. Let JS = 〈F ,Fd, R,B〉 be a justification system. An F-
interpretation I is a JS-model if for all x ∈ Fd, SVJS(x, I) = I(x). If JS
consists of JF and B, then a JS-model can be referred to as a B-model of JF .

CONSISTENCY OF JUSTIFICATION SYSTEMS 21

In some cases, you might be interested only in models.

Definition 2.2.25. Two justification systems JS1 and JS2 are equivalent if the
set of JS1-models and the set of JS2-models are equal. Two branch evaluations
B1 and B2 are equivalent if for all justification frames JF , the set of B1-models
of JF and the of B2-models of JF are equal.

In some cases, one can also be concerned what the supported value is in a
non-model.

Definition 2.2.26. Two justification systems JS1 and JS2 are strongly
equivalent if SJS1 = SJS2 .

It is clear that strong equivalence implies equivalence since JS-models are the
fixpoints of SJS .

2.3 Consistency of Justification Systems

Models can be thought of as fixpoints of the support operator, in the sense that
SJS(I) = I. However, we should note that the domain and range of the support
operator are not equal: the range of the support operator is the set of functions
from F to L, while the domain is the set of F-interpretations, which are
functions from F to L with some additional properties such as I(∼x) = ∼I(x)
for all x ∈ F . Therefore, standard techniques of finding fixpoints by iterating
the support operator do not work. This actually brings us to our first problem
we try to solve in this thesis. Assume for some x we have a justification with
value t. This justification serves as an explanation of why x is true. This
begs the question which semantic structure can explain why x is false. From
the definition of supported value, it can be seen that x is false if there are no
justifications for x with a value greater than f . The question that then remains
is: how to show that there are no such justifications for x. The most obvious
solution is considering a justification of ∼x. Indeed, intuitively, an explanation
why the negation of x is true should explain why x is false. However, this
method implicitly assumes that SV(∼x, I) = ∼SV(x, I). This is a fundamental
property, otherwise justification semantics is unsound: we have a justification
explaining x is `, while there is no justification that explains that ∼x has value
∼`.

Definition 2.3.1. A justification system JS is consistent if SVJS(∼x, I) =
∼SVJS(x, I) for all x ∈ Fd and F-interpretations I.

22 JUSTIFICATION THEORY

Consistency is a reasonable assumption that, unfortunately, is not always
satisfied. An obvious way to not satisfy it is by having unrelated rules for x
and ∼x.

{
x← t
∼x← t

}
Of course, in this example we cannot expect that the justifications for x and
∼x are related because their rules are contradictory.

The first and most important research question of this thesis is the following.

Consistency problem

When is a justification system consistent? In particular, what properties
do branch evaluations and justification frames need to have to ensure that
the justification system is consistent?

2.3.1 Equivalent Justification Frames

Let us first look at the conditions on the justification frames. We will see that in
a lot of formalisms captured by justification theory, rules are only given for one
of x or ∼x and the rules for the other are implicitly constructed. For example,
if we have the following rules:{

fly← bird,∼wounded
fly← bat,∼wounded

}
then it is obvious that the animal does not fly if it is either wounded or both
not a bird and not a bat. This provides the following rules:{

∼fly← wounded
∼fly← ∼bird,∼bat

}
What happens is that these rules are constructed by taking a fact from the body
of each rule for fly and negating them. So you will also get the redundant rules{

∼fly← ∼bird, wounded
∼fly← ∼bat, wounded

}
With redundant we mean the following.

Definition 2.3.2. A rule x ← A is redundant in a justification frame JF if
there is a rule x← B with B (A.

CONSISTENCY OF JUSTIFICATION SYSTEMS 23

Adding redundant rules to a justification frame will not alter any justification
model. Adding a redundant rule will allow for more justifications, but such
justification will not be better than without redundant rules. If a justification
uses a redundant rule, this rule can be replaced by a ‘better’ rule to get a new
justification that is a subgraph of the original justification; hence will be as
good as the original one.

This insensitivity to redundant rules is captured by an equivalence relation on
justification frames with the same underlying fact space.

Definition 2.3.3. Two justification frames JF = 〈F ,Fd, R〉 and JF ′ =
〈F ,Fd, R′〉 are equivalent4 if for every rule x ← A ∈ R, there is a rule
x ← B ∈ R′ such that B ⊆ A, and likewise for every rule x ← B ∈ R′,
there is a rule x← A ∈ R such that A ⊆ B.

Note that the underlying fact space and set of defined facts should be the same
to be able to speak about equivalence. Equivalent frames have the same models
because their justifications are related.

Proposition 2.3.4. If JF and JF ′ are equivalent, then for every branch
evaluation B we have that SBJF = SBJF ′ .

Proof. For the purpose of simplicity, we only prove this for graph-like
justifications. The proof is similar for tree-like justifications. A graph-like
justification is just a set of rules. Therefore, by equivalence, any justification
J in JF can be transformed to a justification J ′ in JF , by choosing5 for
each rule x ← A in J a rule x ← B in R′ such that B ⊆ A. This
justification J ′ is a subgraph of J . This means that BJ′(x) ⊆ BJ(x); hence
valB(J, x, I) ≤t valB(J ′, x, I). So for every best justification for x in JF ,
we can find a justification for x in JF ′ that is at least as good. Therefore,
SVBJF (x, I) ≤t SVBJF ′(x, I). By swapping JF with JF ′ in what we proved above
we get that SVBJF (x, I) = SVBJF ′(x, I); hence SBJF = SBJF ′ , which concludes our
proof.

We have seen that by adding redundant rules we stay in the same equivalence
class. Sometimes, however, it is not possible to remove all redundant rules, as
shown by Denecker et al. (2015, Example 3).

4This is an equivalence relation: it is reflexive, symmetric and transitive.
5This is possible by the Axiom of Choice.

24 JUSTIFICATION THEORY

2.3.2 Complementarity of Rules

We have seen in Section 2.3.1 that usually only one of x or ∼x has explicit rules
and that rules for the other can be constructed from the other. We now make
this formal. Rules are constructed by taking an element of each case. This is
exactly what a selection function does.

Definition 2.3.5. Let F be a fact space and R ⊆ F × (2F \ ∅) be a set of rules.
For x ∈ F , let R[x] denote the set {A | x← A ∈ R}. Let Fd be the subset
of F for which R[x] 6= ∅. A selection function of x ∈ Fd in R is a function
S : R[x]→ F such that S(A) ∈ A for all A ∈ R[x].

A selection function for x selects an element of each case of x. In general, selection
functions exist when you assume the Axiom of Choice (which we do throughout
this text). For a given selection function S of x, the set {S(A) | A ∈ R[x]}
is denoted by Im(S). Once you have a selection function, it can be used to
construct new rules.

Definition 2.3.6. Let F , R, and Fd be as before. Define the complement
C(R) of R as the set of elements of the form ∼x← ∼ Im(S) for x ∈ Fd and S
a selection function of x in R. For a justification frame JF = 〈F ,Fd, R〉, the
complement C(JF) is defined as 〈F ,Fd,C(R)〉.

This construction allows to construct rules for ∼x from rules for x. For
example, in logic programming, only rules for positive facts are given, while in
abstract argumentation, only rules for negative facts are given. Using the above
construction, we can transform logic programs and abstract argumentation
frames into justification frames. We will come back to both of these applications
later on in Sections 2.7.1 and 2.7.3.

Going back to the consistency problem, we saw that the rules for x and ∼x
need to be related. If every rule is constructed by using selection functions,
then the rules for x and ∼x are definitely related. To make it more broadly
applicable, we will only demand equivalence to the complement.

Definition 2.3.7. A justification frame JF is complementary if it is equivalent
to C(JF).

By exploiting the equivalence in the definition of complementarity, we get the
following characterisation.

Proposition 2.3.8. Let JF = 〈F ,Fd, R〉 be a justification frame. Then JF
is complementary if and only if for every x ∈ Fd the following hold:

CONSISTENCY OF JUSTIFICATION SYSTEMS 25

1. for every selection function S of x in R, there exists an A ∈ JF(∼x) such
that A ⊆ ∼ Im(S);

2. for every A ∈ JF(x), there exists a selection function S of ∼x in R such
that ∼ Im(S) ⊆ A.

Proof. This follows directly from writing out the equivalence in the definition
of complementary.

The complement above does not keep the original rules.

Definition 2.3.9. The complementation6 CC(JF) of JF = 〈F ,Fd, R〉 is
defined as the justification frame 〈F ,Fd, R ∪ C(R)〉.

Complementation can also be applied to any set of rules R. Most examples
will only explicitly mention the rules for one of x or ∼x. In that case, the
complementation of those rules is implicitly assumed.

Example 2.3.10. Take Fd = {a, b, c,∼a,∼b,∼c}, Fo = L, and

R =


a← b
a← c
b← t
c← t

 .

The complementation of R gives a complementary justification frame JF =
〈F ,Fd, R ∪ C(R)〉, where

C(R) =

 ∼a← ∼b,∼c∼b← f
∼c← f

 .

N

The justification frame obtained in the example above is also complementary.
This can be generalised to the following proposition.

Proposition 2.3.11. Let F be a fact space and let Fd be a subset of F closed
under ∼ that does not contain logical facts. Let {F1,F2} be a partition of Fd
such that ∼F1 = F2. Let R be a subset of F1×(2F \∅) such that for each x ∈ F1,
there is an (x,A) ∈ R. Then JF = 〈F ,Fd, R ∪ C(R)〉 is complementary.

6Denecker et al. (2015) call this complement closure, however this is not a closure operator
since CC(CC(JF)) = CC(JF) is not always true. Therefore, we gave it a different name.

26 JUSTIFICATION THEORY

Proof. We use the characterisation in Proposition 2.3.8. By construction of
C(R), (1) trivially holds for x ∈ F1 and (2) for x ∈ F2. We first prove (2)
for x ∈ F1. Take x ∈ A ∈ R ∪ C(R); hence x ∈ A ∈ R since x ∈ F1. We
construct a selection function S of ∼x such that ∼ Im(S) ⊆ A. For any ∼x← C
we have that C = ∼ Im(TC) for some selection function TC of x. Now define
S(C) = ∼TC(A) ∈ ∼A ∩ C. Therefore, ∼ Im(S) ⊆ A, proving (2) for x ∈ F1.
We now prove (1) for x ∈ F2. So take a selection function S of x in JF .
Suppose by contradiction that for all A ∈ JF(∼x) it holds that A 6⊆ ∼ Im(S);
hence there exists a yA ∈ A \ Im(S). Define T : JF(∼x)→ F : A 7→ yA, which
constitutes a selection function of ∼x in JF , and Im(T) ∩ ∼ Im(S) = ∅. Since
∼x ∈ F1, we have that (1) holds for ∼x, so there exists a C ∈ JF(x) such that
C ⊆ ∼ Im(T). This means that C ∩ Im(S) = ∅. This, however, contradicts that
S(C) ∈ C; hence (1) holds for x ∈ F2.

The partition {F1,F2} is usually the partition {F+,F−}. In general the
complementation of a justification frame is not always complementary.

Example 2.3.12. Let JF = 〈F ,Fd, R〉 with Fd = {a,∼a}, Fo = L, and

R =
{
a← t
∼a← t

}
.

The complementation of JF adds the following rules:{
a← f
∼a← f

}
,

while the complement of the complementation of JF has the additional rules{
a← t, f
∼a← t, f

}
.

These two justification frames are not equivalent; hence the complementation
of JF is not complementary. This is to be expected because the rules for a and
∼a are contradictory. N

Luckily, complementation of a complementary justification frame does what
you expect.

Proposition 2.3.13. Let JF be a complementary justification frame. Then
JF is equivalent with CC(JF) and CC(JF) is complementary.

Proof. If JF is complementary, then complementation only adds redundant
rules by (1) of Proposition 2.3.8. Therefore, JF is equivalent with CC(JF).

CONSISTENCY OF JUSTIFICATION SYSTEMS 27

Take x ← A ∈ C(CC(JF)). So there is a selection function S of ∼x in
CC(JF) such that A = ∼ Im(S). We can restrict this selection function to a
selection function T of ∼x in JF . Because JF is complementary, there is a
C ∈ JF(∼x) such that C ⊆ ∼ Im(T). We have that C ∈ CC(JF) and thus
C ⊆ ∼ Im(T) ⊆ ∼ Im(S) = A.

Take x ∈ A ∈ CC(JF). Therefore, by equivalence, there is a B ∈ JF(x)
such that B ⊆ A. Since JF is complementary, there is a C ∈ C(JF)(x) by
construction of complementation. Therefore, we proved that C(CC(JF)) and
CC(JF) are equivalent; hence CC(JF) is complementary.

In principle, we can keep taking the complementation of a complementary
justification frame. Because this operation is monotone, it halts at some point
into a fixed point, i.e. a justification frame that is equal to its complementation.

Lemma 2.3.14. Any complementary justification frame is equivalent to a
complementary justification that is fixed under complementation.

Proof. Complementation is a monotone operation with respect to the subset
order, hence by the Knaster-Tarski fixpoint theorem (Tarski, 1955), there is an
ordinal α such that the frame CCα(JF) is fixed under complementation. By
Proposition 2.3.13, this frame is complementary and equivalent to the original
frame.

The supported value stays the same when you evaluate in an equivalent frame.
Therefore, to prove the consistency it suffices to look at justification frames that
are fixed under complementation. This fact is further exploited in Chapter 4.

In complementary justification systems, cases of a fact and its negation are
intrinsically related.

Lemma 2.3.15. If a justification frame is complementary, then for every rule
x← A and ∼x← B, we have A ∩ ∼B 6= ∅.

Proof. Take A ∈ JF(x) and B ∈ JF(∼x). By complementarity, there exists a
selection function S of ∼x such that ∼ Im(S) ⊆ A. Therefore, ∼S(B) ∈ A. On
the other hand, S(B) ∈ B; hence ∼S(B) ∈ A ∩ ∼B.

This lemma actually expands to justifications.

Lemma 2.3.16. Let JF = 〈F ,Fd, R〉 be a complementary justification frame
and x ∈ Fd. If J and K are locally complete justifications in J(x) and J(∼x)
respectively, then there exists a J-branch b starting with x such that ∼b is a
K-branch starting in ∼x.

28 JUSTIFICATION THEORY

Proof. For simplicity sake, we only prove this for graph-like justifications. The
proof for tree-like justifications is similar. We incrementally define J-paths bi
and K-paths b∗i of length i such that bi = ∼b∗i . Define b1 and b∗1 as the node
x and ∼x respectively. Now assume that we obtained bi and b∗i . Let y be the
end node of bi. If y is not defined, so is ∼y and then bi is the desired J-branch.
So assume y is defined. We want to find a fact z such that z is a child of y
in J and ∼z is a child of ∼y in K. By using the rules for y ← A in J and
∼y ← B in K we can use Lemma 2.3.15 to obtain that A∩∼B 6= ∅ because JF
is complementary. Choose a z in A ∩ ∼B. Then we construct bi+1 = bi → z
and b∗i+1 = b∗i → ∼z. Our required branch is then the limit of bi for i going to
infinity.

This lemma has an important consequence. If x has a good justification J ,
i.e. val(J, x, I) = t, then every justification K for ∼x has the negation of a
J-branch starting with x in K. To get consistent justification semantics, we
want that every justification for ∼x has a branch that evaluates to f under I. A
good candidate can be this shared negated branch obtained from Lemma 2.3.16.
Therefore, it is not too far-fetched to demand that our branch evaluation has
the following property.

Definition 2.3.17. A branch evaluation B respects negation if for all
justification frames JF and all JF-branches b it holds that B(∼b) = ∼B(b).

For a branch evaluation that has this property, if x has a t justification, then
every justification for ∼x will have value f . This observation solves one direction
of the consistency problem.

Theorem 2.3.18. Let JS = 〈F ,Fd, R,B〉 be a complementary justification
system with B respecting negation. Then

SVJS(x, I) ≤t ∼SVJS(∼x, I)

for any x ∈ Fd and F-interpretation.

Proof. Take x with SVJS(x, I) = ` for some ` ∈ L. This means there is a
justification J such that valJS(J, x, I) = `. Take a justification K for ∼x.
Therefore, by Lemma 2.3.16, there is a J-branch b starting with x such that
∼b is a K-branch starting in ∼x. If ` = t, then I(B(b)) = t; hence K has a
branch that is evaluated to f . Therefore, valJS(K,∼x, I) = f . Since K was
taken arbitrarily, we have that SVJS(∼x, I) = f .

If ` = u, we need to prove that u ≥t SVJS(∼x, I). Similarly, every justification
K for ∼x has a branch ∼b starting in ∼x such that b is a J-branch and
I(B(b)) ≥t u. This shows that I(B(∼b)) ≤t u. Therefore, SVJS(∼x, I) ≤t u.

CONSISTENCY OF JUSTIFICATION SYSTEMS 29

For ` = f , nothing has to be proven.

We now define a branch evaluation that will serve as a counterexample
throughout this thesis.
Definition 2.3.19. The branch evaluation Bex is defined as follows:

• Bex(x0 → x1 → · · · → xn) = xn;

• Bex(x0 → x1 → · · ·) = f if ∃i0 ∈ N : ∀i, j > i0 : xi ∈ F+ and if xi = xj ,
then xi+1 = xj+1;

• Bex(x0 → x1 → · · ·) = t if ∃i0 ∈ N : ∀i, j > i0 : xi ∈ F− and if xi = xj ,
then xi+1 = xj+1;

• Bex(x0 → x1 → · · ·) = u otherwise.

Using this branch evaluation we see that the converse of Theorem 2.3.18 is not
always true as illustrated by the following example.
Example 2.3.20. Take Fd = {a,∼a, b,∼b, c,∼c}, Fo = L, F+ = {a, b, c}, and
F− = {∼a,∼b,∼c}. The set of rules is the complementation of

a← b
a← c
b← a
c← a

 .

Under the branch evaluation Bex, we have that SVg(a, I) = f , while
SVg(∼a, I) = u for any interpretation I of F , i.e., graph-like consistency is not
satisfied here. This can easily be checked by noting that the only connected
graph-like justifications with a or ∼a as internal node are the following:

a b a c ∼a∼b ∼c

Additionally, it can also be seen that SVt(a, I) = u and SVt(∼a, I) = u for each
interpretation I, and thus that the graph-like supported value can differ from
the tree-like supported value. A tree-like justification J with val(J, a, I) = u is
given below:

a b a c a b a c · · ·

A tree-like justification J with val(J,∼a, I) = u is given by unfolding (see below)
of the graph-like justification for ∼a with value u to a tree-like justification. N

30 JUSTIFICATION THEORY

2.4 Graph-Reducibility

Example 2.3.20 touches upon our second research question. We have two
different kinds of justification. Both induce justification semantics. This raises
the question how they are related. When you have a graph-like justification J ,
we can unroll it into a tree-like justification T such that BJ(x) = BT (x) for a
given internal node x of J .

Definition 2.4.1. Let J be a graph-like justification with an internal fact x.
Define the sequence of trees Ti as follows

• T0 is the rule for x in J .

• Ti+1 is Ti plus for each leaf y in Ti the rule for y in J .

• For a limit ordinal α, Tα is the union of all Ti with i < α

The unrolling of J with respect to x is Tβ for some ordinal β such that Tβ = Tβ+1.
This is well-defined (such a β exists) by the Knaster-Tarski fixpoint theorem
(Tarski, 1955) since Ti is contained in Ti+1 for all ordinal numbers i.

Proposition 2.4.2. Let J be a graph-like justification with an internal fact x
and let T be the unrolling of J with respect to x. Then BJ(x) = BT (x).

Proof. Follows directly from the construction of T .

Since the value of justifications only depends on the branches starting with x
we get the following proposition.

Proposition 2.4.3. Take a locally complete graph-like justification J and an
internal node x in J . Then there is a locally complete tree-like justification
T such that valB(J, x, I) = valB(T, x, I) for all branch evaluations B and F-
interpretations I.

Proof. The justification T is the unrolling of J with respect to x.

This has the following consequence.

Corollary 2.4.4. For any justification system JS, we have for all x ∈ Fd and
all F-interpretations I that SVg

JS(x, I) ≤t SVt
JS(x, I).

Proof. This follows directly from the definition of supported value.

GRAPH-REDUCIBILITY 31

This result states that tree-like justifications are more powerful than graph-like
justifications. In Example 2.3.20, we see that the opposite direction is not
always true: SVg(a, I) = f , while SVt(a, I) = u.

Definition 2.4.5. A justification system JS = 〈F ,Fd, R,B〉 is graph-reducible
if for all x ∈ Fd and F -interpretations I it holds that SVg

JS(x, I) = SVt
JS(x, I).

A branch evaluation is graph-reducible if for all complementary justification
frames JF = 〈F ,Fd, R〉 the system 〈F ,Fd, R,B〉 is graph-reducible.

This raises the following question.

Graph-reducibility

Which justification systems are graph-reducible? In particular, what
properties do branch evaluations need to have to be graph-reducible?

This is an important property for real-life applications that use justification
theory. Tree-like justifications are almost always infinite, but if they are
equivalent to graph-like justifications, they have a finite representation that can
be used in computer programs.

2.4.1 Relation between Consistency and Graph-Reducibility

In Example 2.3.20, the branch evaluation Bex manages to break both consistency
and graph-reducibility. This is not a coincidence as the two properties are related.
For a complementary justification frame JF , we have by Theorem 2.3.18 that

SVt(x, I) ≤t ∼SVt(∼x, I).

On the other hand, by Corollary 2.4.4 we have that

SVg(x, I) ≤t SVt(x, I) and SVg(∼x, I) ≤t SVt(∼x, I).

This gives us the following chain of inequalities.

Proposition 2.4.6. For a complementary justification frame JF we have the
following chain of inequalities for any x ∈ Fd and F-interpretation I

SVg(x, I) ≤t SVt(x, I) ≤t ∼SVt(∼x, I) ≤t ∼SVg(∼x, I).

Proof. This is a combination of Theorem 2.3.18 and Corollary 2.4.4.

32 JUSTIFICATION THEORY

If the left side and the right side are equal (graph-like consistency), then
everything else is equal as well.

Corollary 2.4.7. Let JS be a justification system with an underlying
complementary justification frame. Then JS is graph-like consistent if and
only if it is tree-like consistent and graph-reducible.

This result has important implications for our research goals: it suffices to prove
that a system is graph-like consistent to get all the other properties. Therefore,
in the next chapter we only prove graph-like consistency for the main branch
evaluations.

The main goal of this thesis (see previous two research questions) is to identify
properties of branch evaluations that imply consistency or graph-reducibility.
Therefore, it is important to look at some basic types of branch evaluations.

2.5 Branch Evaluation Types

We already have encountered branch evaluations that respect negation. Branch
evaluations can map branches to any fact. This fact then has to be interpreted
in an interpretation. The simplest type of facts are the logical facts since they
always have the same interpretation.

Definition 2.5.1. A branch evaluation is logical if every branch is mapped to
a logical fact in L.

A contrived example is the following.

Example 2.5.2. Define B as follows. If a branch is positive, it is mapped to t,
if it is negative to f , and to u otherwise. N

The next simplest type of facts are the open facts, as they are determined from
the outside.

Definition 2.5.3. A branch evaluation is parametric if every branch is mapped
to an open fact.

The prototypical examples are BKK and Bwf . The branch evaluation Bex is also
parametric.

Since open facts are determined from the outside it is customary to have the
interpretation of the open facts fixed. If this is done, then parametric branch
evaluations have only one model.

BRANCH EVALUATION TYPES 33

Proposition 2.5.4. Let JF be any justification frame and B a parametric
branch evaluation. Let Io be an interpretation of Fo. There is at most one
B-model of JF that extends Io, i.e., I(x) = Io(x) for x ∈ Fo. If JF together
with B form a consistent system, then there is exactly one such model.

Proof. The value of a justification only depends on the interpretation of the
open facts; hence valB(J, x, I) = valB(J, x, I ′) for every two interpretations I
and I that agree on the open facts. This means that SVB(x, I) = SVB(x, I ′).
Therefore, if JF has a B-model, then it is equal to SJS(I) for any interpretation
I that extends Io. If JF together with B form a consistent system, then SJS(I)
is the desired model.

Consider the following justification.

a

b

c

d

In a Bsp-model, this is a good justification for a if d is true. Because if d is
true, it is a good justification for c; hence c is true. Therefore, this is a good
justification for b; hence b is true in a model and thus it is a good justification
for a. The information of the branch was actually contained in the tail. This
can be extended to infinite branches as well.

Definition 2.5.5. A branch evaluation B is transitive if for all branches x0 →
x1 → x2 → · · · , B(x0 → x1 → · · ·) = B(x1 → x2 → · · ·).

The prototypical examples are BKK and Bwf . The branch evaluation Bex is also
transitive. Transitive branch evaluations will be important in Chapter 6. An
interesting observation to make is that in transitive branch evaluations, the
information is in the tail of a branch.

Somewhat opposite to this, the information could be contained in the beginning
of the branch. To be able to say what this means we have to introduce some
concepts. For a finite branch b : x0 → · · · → xn, denote `(b) = n. If b is
infinite, we say `(b) =∞. Two branches x0 → x1 → · · · and y0 → y1 → · · · are
identical up to n if for all 0 ≤ i ≤ n, we have xi = yi. A JF-branch is decided
under B at 0 < n < `(B) + 1 if for every JF-branch b′ identical to b up to n,
we have B(b) = B(b′). In this case, we call the JF -path x0 → · · · → xn decided
under B. This means that in order to determine the value of b under B, we

34 JUSTIFICATION THEORY

only need the first n+ 1 elements, so all relevant information is located at the
beginning of the branch. This allows us to extend B to paths that are decided.
For example, in Bst, branches with sign switches are mapped to the first sign
switch, and thus the path up to and including the sign switch is decided. This
also means that every fact after the sign switch does not determine the value of
the branch.

Definition 2.5.6. A branch evaluation is decided if every branch b is decided
at all n with 0 < n < `(b).

This is the same as demanding that every branch is decided at 1, see Lemma 2.6.9.
The only branch evaluation seen so far that is decided is Bsp.

2.5.1 Dual Branch Evaluations

Non-logical facts are partitioned into positive and negative facts. Branch
evaluations can make use of the sign of such facts to introduce asymmetries
between positive and negative facts. Switching the roles of positive and negative
facts reverses the asymmetry. This type of concept is usually called duality in
mathematics.

Definition 2.5.7. Let F be a fact space. The dual fact space F is defined
to be F but with F+ and F− swapped, i.e. F+ = F− and F− = F+. For
a justification frame JF = 〈F ,Fd, R〉, JF is the dual justification system
〈F ,Fd, R〉.

Each JF -branch b is also a JF -branch. To make explicit the justification frame
JF that we regard a branch b in, we denote b as bJF .

Definition 2.5.8. Let b be a branch evaluation. The dual branch evaluation
B of b is defined as follows:

B(bJF) = B(bJF)

for any justification frame JF and JF-branch b.

The dual branch evaluation of Bwf was already defined by Denecker et al. (2015).

Definition 2.5.9. The co-well-founded branch evaluation Bcwf maps finite
branches to their last element, branches with a positive tail to t, branches with
a negative tail to f , and all other branches to u.

BRANCH EVALUATION TYPES 35

Note, that there aready exist some work on coinduction in logic programming,
notably the work by Gupta et al. (2007); Min and Gupta (2009). There, the
authors define coinductive SLDNF resolution. Moreover, the recent system
s(ASP) for non-ground ASP (Arias et al., 2018) provides justification capabilities
(Arias et al., 2020) and relies on a dual program transformation very similar to
the operation of complementation (Definition 2.3.9).

Let us provide an example with the co-well-founded branch evaluation.

Example 2.5.10. Let S be a set of infinite lists on the set {a, b}. Such a
list is represented using head/tail notation as [H|T], where H is the head
and T is the tail. Let F be the fact space with F+ = {p(s) | s ∈ S}. Define
`s1=s2 to be t if s1 = s2 and f otherwise. Let R be the complementation of
{p([H|T])← p(T), `H=a | [H|T] ∈ S}. The unique Bcwf-model will assign t to
p(s) iff and only if s is the infinite list consisting solely out of as. The unique
Bwf -model, on the other hand, will assign f to p(s) for all s ∈ S. N

Branch evaluations, such as Bsp and BKK, that do not depend on the signs are
self-dual. Apart from the co-well-founded branch evaluation, we constructed a
new semantics: the co-stable branch evaluation Bcst := Bst. It differs with Bst
only on infinite branches that have the same sign throughout. In this case, it
is the negation of Bst. Where stable semantics gives a default value of false to
atoms, co-stable semantics gives a default value of true to atoms. We have seen
that Bcwf is useful for coinductive reasoning in the same manner that Bwf is
useful for inductive reasoning. Therefore, Bcst can have be used in a similar
role as Bst for Bwf . Hence, co-stable semantics could be useful in the context of
stream reasoning (Beck et al., 2017).

Example 2.5.11. Take the same fact space as in Example 2.5.10. Let R be
the complementation of {p([H|T])← `H=a,∼p(T) | [H,T] ∈ S}. A Bcst-model
is an interpretation that maps p(s) to t if and only if s is the alternating infinite
list [a, b, a, b, . . .]. N

As usual with duality, taking the dual of the dual returns the original one.
Similarly, we get the following lemma.

Lemma 2.5.12. The justification systems 〈F ,Fd, R,B〉 and 〈F ,Fd, R,B〉 have
the same support operator.

Proof. The set of facts are the same in both systems and they have the same
set of rules. This means that the set of justifications is equal as well. Moreover,
the value of a justification is also the same since branches are evaluated equally.
This proves that the supported values are equal and thus that both systems
have the same support operator.

36 JUSTIFICATION THEORY

While the proof of this lemma is (almost) trivial, it has important consequences
for our two research questions.
Corollary 2.5.13. If B is graph-like (respectively tree-like) consistent, then
B is graph-like (respectively) consistent. If B is a graph-reducible, then B is
graph-reducible.

Proof. It follows directly by noting that if JF is complementary, then JF is
complementary as well.

Most properties that branch evaluations have, are also transferred to their dual
branch evaluations. This holds for logical, parametric, transitive, and decided
branch evaluations.

2.6 Pasting Justifications

Most of the time, we take a separate justification for each fact. If we have two
graph-like justifications that have no nodes in common, we can take the union
of the two to get a justification for both facts. If the justifications overlap, this
is a more difficult question. In this section, we define what it means to paste
justifications together and what the value of the pasting is. The pasting results
given in this section are only for graph-like justifications. Similar results can be
proven for tree-like justifications, but we do not need them in the rest of the
text; hence the restriction to graph-like justification. Therefore, when we write
justification, we mean a graph-like justification.

Any graph-like justification J can be seen as a partial function from Fd to R
such that when x is in the domain of J , J(x) is a rule for x. Write dom(J) for
the domain of J . This is just the set of internal nodes of J .
Definition 2.6.1. A justification K is an extension of a justification J if K
coincides with J on the domain of J seen as partial functions.

An easy way to extend a justification is by taking parts from another justification.

Definition 2.6.2. For any two justifications J and K, the justification J ↑ K
is defined as the justification J on dom(J) and K on dom(K) \ dom(J). We
say J ↑ K is the extension of J with K.

It is obvious that J ↑ K is an extension of J . This construction can be used to
broaden the definition of the value of a justification to justifications that are
not locally complete.

PASTING JUSTIFICATIONS 37

Definition 2.6.3. Let J be a non locally complete justification. Define
valB(J, x, I) as the minimum of valJS(K,x, I) for every locally complete
extension K of J with respect to ≤t.

This definition is compatible with the original definition by the following lemma.

Lemma 2.6.4. If J is locally complete, then valJS(J, x, I) is the minimum of
valJS(K,x, I) for every locally complete extension K of J with respect to ≤t.

Proof. Since J is locally complete, any extension of J does not add branches
starting in x for internal nodes x in J . The result then follows immediately.

This implies that for determining the supported value, you can also look at non
locally complete justifications. This will be useful in the next chapter.

Going back to extending a justification with another justification, the following
lemma serves to be useful.

Lemma 2.6.5. If J and K are two locally complete justifications, then J ↑ K
is locally complete. Moreover, every (J ↑ K)-branch is either a K-branch or a
concatenation of a K-path with a J-branch.

Proof. A defined leaf of J ↑ K is a defined leaf of J or K. Hence J ↑ K is locally
complete because J and K are. Take a (J ↑ K)-branch b : x0 → x1 → · · · such
that b is not a K-branch. This means there is a least i such that xi+1 /∈ K(xi).
This means that xi+1 ∈ J(xi). And if xj ∈ dom(J), then xj+1 ∈ dom(J) or
xj+1 is a leaf of J . Therefore, by induction we proved that xi → xi+1 → · · · is
a J-branch. The result then follows since i was taken smallest.

The branches that have the form p → b with p a non-empty K-path and
b a J-branch are important to calculate the value of J ↑ K. If the branch
evaluation is transitive, then it would have the same value as b. But it could be
that this particular branch has its information in the beginning. This amounts
to being decided somewhere in p. Similar to the definition of decided, we
can say a branch b : x0 → x1 → · · · is transitive under B at 0 ≤ n < `(b) if
B(b) = B(xn → xn+1 → · · ·).

Definition 2.6.6. A branch b is splittable under B at 0 ≤ n < `(b) + 1 if it is
either decided or transitive at n under B.7 A branch evaluation B is splittable
if for every justification frame JF and JF-branch b, b is splittable at i under
B for all i with 0 ≤ i < `(b) + 1.

7Note that decided at 0 is not defined, so splittable at 0 means transitive at 0.

38 JUSTIFICATION THEORY

Intuitively, if a branch is splittable at n, then the information needed to
evaluate the branch is either in the tail or start, but not in both. In formula
form, b : x0 → x1 → · · · is splittable at n if either B(b) = B(xn → xn+1 → · · ·)
or B(b) = B(x0 → · · · → xn) for the decided path x0 → · · · → xn. We already
have seen a few splittable branch evaluations, such as Bsp, BKK, Bwf , and Bex.

Proposition 2.6.7. Any decided or transitive branch evaluation is splittable.

Proof. Follows directly from the definitions.

All important branch evaluations seen so far are splittable.

Proposition 2.6.8. The branch evaluations Bsp, BKK, Bst, Bwf , Bex, and their
duals are splittable.

Proof. By Proposition 2.6.7, it is left to prove that Bst is splittable. On positive
or negative branches, Bst is everywhere transitive. So it suffices to prove that
mixed branches are everywhere splittable. Take a branch b : x0 → x1 → · · ·
with a first sign switch at i. It is straightforward that b is decided at j ≥ i and
transitive at j < i; hence b is everywhere splittable.

There is an alternative characterisation of splittable that might be more intuitive.
But before we get to that, we need some lemmas and terminology.

Lemma 2.6.9. If a branch b is decided at n, then it is also decided at m for
n ≤ m < `(b) + 1.

If a branch is decided, this means there is a first point in which it is decided.

Definition 2.6.10. A branch b is first decided at 0 < i < `(b) + 1 if b is
decided at i = 1 or b is decided at i > 1 and b is not decided at i− 1.

Under Bst, this point is on the first sign switch. For a general branch evaluation,
any branch b : x0 → x1 → · · · has a least initial segment b∗ that is decided.
Indeed, if b is first decided at i, then x0 → · · · → xi is this segment. If b is
nowhere decided, then b itself is this segment. Using this segment, we can give
an equivalent characterisation of splittable.

Proposition 2.6.11. A branch evaluation B is splittable if and only if for
every branch b, we have that every final segment of b∗ is decided and has the
same evaluation as b.

PASTING JUSTIFICATIONS 39

Proof. Suppose first that B is splittable. Take a branch b. If b is nowhere
decided, then b∗ = b and b is totally transitive. Thus, every final segment of
b∗ has the same evaluation as b. So suppose b is somewhere decided; hence
there is a minimal j so that b is decided at j. In this case b∗ is equal to
x0 → · · · → xj . Take 0 ≤ i < j. Since b is totally splittable, b is transitive at i
by minimality of j. Take any path p so that xi → · · · → xj → p is a branch.
Since b is decided at j, we get that

B(b) = B(x0 → · · · → xi → · · · → xj → p).

The branch in the right-hand side cannot be decided at i, otherwise b would
also be decided at i. By splittability, this branch is transitive at i; hence we get
that

B(b) = B(xi → · · · → xj → p).

Therefore, xi → · · · → xj is a decided path with the same evaluation as b.

Suppose conversely that for every branch b, it holds that every final segment
of b∗ is decided and has the same evaluation as b. Take a branch b. If b∗ is
infinite, then every final segment of b∗ is a tail of b. So if every final segment of
b∗ has the same evaluation as b, we get that b is totally transitive, i.e. totally
splittable. So suppose b∗ is finite. Let j = `(b∗). Then b is decided at j ≥ i by
Lemma 2.6.9. So we only need to prove that b is transitive at 0 ≤ i < j. We
have that

B(xi → xi+1 → · · ·) = B(xi → · · · → xj) = B(b),

which shows that b is transitive at 0 ≤ i < j.

As a consequence, the information of a decided branch under a splittable branch
evaluation is condensed to a decided path of length 1.

Corollary 2.6.12. Let B be a splittable branch evaluation. If a branch b is
first decided at j. Then for all 0 ≤ i < j the path xi → · · · → xj is decided and
has the same evaluation as b. This includes the path xj−1 → xj.

The opposite also holds.

Lemma 2.6.13. Let B be a splittable branch evaluation. If a JF-branch
b : x0 → x1 → · · · is not decided at i > 0, then the path xi−1 → xi is not
decided.

Proof. There is a JF-branch b∗ : x0 → · · · → xi → p with p a path, such
that B(b) 6= B(b∗). Since b is not decided at i, then it is also not decided at
i− 1 and thus it is transitive at i− 1. It also means that b∗ is not decided at

40 JUSTIFICATION THEORY

i − 1. Therefore if xi−1 → xi is decided, then B(b) = B(xi−1 → xi → · · ·) =
B(xi−1 → xi) = B(xi−1 → xi → p) = B(b∗), which is a contradiction; hence
xi−1 → xi is not decided.

Even though, the requirement for splittability seems stringent, our counter-
example branch evaluation Bex is splittable since it is transitive.

The splittability of Bsp, BKK, Bst, and Bwf will be used in Chapter 3 to prove
that these evaluations are graph-like consistent, and in Chapter 5 to prove the
correspondence between justification theory and approximation fixpoint theory.

For the rest of this section, we show that for a B-model there is a single
justification that explains the whole model if B is splittable. This is done by
carefully pasting justifications together.

In transitive branch evaluations, if we have two internal nodes x and y in a
justification and we can reach y from x in J , then it holds that valB(J, y, I) ≥t
valB(J, x, I). This is fairly straightforward to see, any J-branch b starting
with y can be extended to a J-branch p → b starting with x. Then by
the transitivity of B, we see that I(B(b)) = I(B(p → b)) ≥t valB(J, x, I).
Therefore, valB(J, y, I) ≥t valB(J, x, I).

This does not hold for splittable branch evaluations.

Example 2.6.14. Let JS = 〈F ,Fd, R,Bsp〉 be the justification system with
Fd = {a,∼a, b,∼b}, Fo = L ∪ {c,∼c}, and

R =


a← b
b← c
∼a← ∼b
∼b← ∼c

 .

Take the interpretation I with I(a) = t, I(b) = t, and I(c) = f . The single
locally complete justification J for a is equal to

a→ b→ c.

Even though b is reachable from a, f = valBsp(J, b, I) < valBsp(J, a, I) = t. N

The values of a and b in this example are different. With splittable branch
evaluations we have a similar property when we limit ourselves to equally valued
facts.

Definition 2.6.15. Let ` ∈ L. A justification J is `-domain supporting in I if
valB(J, y, I) ≥t ` for all internal nodes y of J .

PASTING JUSTIFICATIONS 41

Not every justification J with SVB(x, I) = valB(J, x, I) is `-domain supporting:
in Example 2.6.14, the justification is not t-domain supporting. In this example,
it is not possible to have such a justification for a that is locally complete.
The justification with the node c removed is, however, a t-domain supporting
justification. In general, if B is splittable such `-domain supporting justifications
exist for any x ∈ Fd with ` ≤t SVB(x, I).

Lemma 2.6.16. Let B be a splittable branch evaluation, I an interpretation,
` ∈ L, and take x ∈ Fd with SVB(x, I) ≥t `. There is an `-domain supporting
justification J with x as internal node.

Proof. Take a locally complete justificationK with valB(K,x, I) = SVB(x, I) ≥t
`. Let D be the set of internal nodes y in K such that there exists a K-path
x→ · · · → y that is not decided at y. Note that we have x ∈ D. Define J to
be the restriction of K with domain D. The internal nodes of J are exactly
the elements of D. Take y ∈ D and a locally complete extension M of J . Let
b : y → y1 → y2 → · · · be an M -branch. We prove that valB(M,y, I) ≥t ` by
proving that I(b) ≥t ` for all b ∈ BM (y). Since M is chosen arbitrary, this
means that valB(J, y, I) ≥t `.

Assume first that b is a J-branch, then it is also a K-branch. If y = x, then
I(B(b)) ≥t valB(K,x, I) ≥t `. If y 6= x, then there is a K-path x → · · · → y
that is not decided at y. Hence, x→ · · · → y → y1 → y2 → · · · is transitive at
y by splittability of B. Therefore, B(b) = B(x → · · · → y → y1 → y2 → · · ·).
The latter is a K-branch starting with x, thus I(B(b)) ≥t `.

Therefore, we can assume that b is not a J-branch; hence there is a least
i such that yi is not an internal node of J . This means that yi is a leaf
of J . Since J is a subgraph of K, this means that yi is either a leaf or
an internal node of K. In the former case, yi is open, thus that b is a J-
branch, which contradicts our assumption. Hence, yi is an internal node of
K. If y = x, then yi is an internal node of K outside of D. Therefore, b is
decided at yi, so the evaluation of b is equal to the evaluation of a K-path
starting from x. This means that I(B(b)) = I(B(b′)) for some K-branch b′
starting at x; hence I(B(b)) ≥t `. If y 6= x, then there exists a K-branch
b′ : x → x1 → · · · → xm → y → y1 → y2 → · · · that is not decided at y. By
splittability of B, b′ is transitive at y: B(b′) = B(b). Since b′ is a K-branch
starting at x, we have that I(B(b)) ≥t `.

Note that these justifications do not need to be locally complete.

Example 2.6.17. In the justification system from Example 2.6.14, the t-
domain supporting justification for a is equal to a→ b. It cannot contain b as
internal node because b has supported value equal to f . N

42 JUSTIFICATION THEORY

The interesting part about these justifications is that they can be pasted together
without losing any power with respect to any of their internal nodes as shown
in the next lemma.

Lemma 2.6.18. Let J and K be two `-domain supporting justifications. The
justification J ↑ K is also `-domain supporting.

Proof. Take a locally complete extension M of J ↑ K and an internal node
y of J ↑ K. We prove that valB(M,y, I) ≥t `. If y is an internal node of J ,
then valB(M,y, I) ≥t valB(J, y, I) ≥t ` because M is also a locally complete
extension of J . So we can assume that y is not an internal node of J ; hence y
is an internal node of K. We prove for every M -branch b starting with y that
I(B(b)) ≥t `. If b is a K-branch, then I(B(b)) ≥t valB(K, y, I) ≥t `. So we
can assume that b is not a K-branch; hence there is a least i such that yi is
not an internal node of K.

Assume first that yi is an internal node of J . If b is transitive at i, then
B(b) = B(yi → yi+1 → · · ·). The latter branch is an M -branch starting with
yi, which is an internal node of J . Hence, by the result above we have that
I(B(b)) = I(B(yi → yi+1 → · · ·) ≥t valB(M,yi, I) ≥t `. Therefore, we can
assume that b is decided at i; hence the evaluation of b depends on the evaluation
of a K-path starting at y. This implies that I(B(b)) ≥t valB(K, y, I) ≥t `.

Finally, we can assume that yi is not an internal node of J . If for every j, yj
is not an internal node of J , then b is a (K ↑M)-branch. Since K ↑M is an
extension of K, we have that I(B(b)) ≥t valB(K, y, I) ≥t `. Therefore, we can
assume there is a least j such that yj is an internal node of J . If b is transitive
at j, then I(B(b)) ≥t valB(M,yj , I) ≥t ` by a result we proved above. If b
is decided at j, then B(b) is decided by a (K ↑ M)-path; hence I(B(b)) ≥t
valB(K ↑M,y, I) ≥t valB(K, y, I) ≥t `. This concludes that valB(M,y, I) ≥t `.
Since M is taken arbitrary, this proves that valB(J ↑ K, y, I) ≥t `.

Using the previous two lemmas, we can construct a justification J that contains
all elements with a given supported value as internal nodes. This justification can
also contain elements with a higher supported value though. This construction
is formalised in the next lemma.

Lemma 2.6.19. Let I be an interpretation and ` ∈ L. There is a justification
J (not necessarily locally complete) such that

• SVB(x, I) ≥t ` if and only if x is an internal node of J ;

• valB(J, x, I) ≥t ` for all internal nodes x of J .

PASTING JUSTIFICATIONS 43

Proof. Let X = {x ∈ Fd | SVB(x, I) ≥t `}. If X = ∅, take the empty
justification. By Lemma 2.6.16, for all x ∈ X, there is a justification Jx
with x as internal node such that valB(Jx, y, I) ≥t ` for all internal nodes y of
Jx. By the well-ordering theorem8, fix a well-order on X = {xi | i ≤ β}. Define

1. K0 = Jx0 ;

2. Ki+1 = Ki ↑ Jxi+1 for any ordinal i < β;

3. Kα =
⋃
i<αKi for any limit ordinal α ≤ β.

This is an increasing sequence of justifications. We prove for all i ≤ β that
valB(Ki, y, I) ≥t ` for all internal nodes y of Ki. We do this by transfinite
induction. The base case is trivial by Lemma 2.6.16. The successor case follows
immediately from Lemma 2.6.18. Take a limit ordinal α ≤ β, a locally complete
extension M of Kα, and an internal node y of Kα. There is an i < α so that y
is an internal node of Ki. Since valB(Ki, y, I) ≥t ` and M is also an extension
of Ki, we have that valB(M,y, I) ≥t `. Since M is taken arbitrary, we have
that valB(Kα, y, I) ≥t `.

By construction Kβ contains exactly the elements in X as internal nodes,
completing the proof, by setting J = Kβ .

These three justifications can also be pasted together to form one justification
that explains everything. Since the internal nodes of these justifications is
exactly Fd, the resulting justification is necessarily locally complete.

Theorem 2.6.20. If B is splittable, then for every interpretation I there is
a locally complete justification J such that valB(J, x, I) = SVB(x, I) for all
x ∈ Fd.

Proof. By Lemma 2.6.19, there are justifications Jt, Ju, and Jf such that

• J` is `-domain supporting

• SVB(x, I) ≥t ` if and only if y is an internal node of J`.

Define K to be equal to Jt ↑ Ju, which is an extension of Jt. This means that for
all x ∈ Fd with SVB(x, I) = t, we have that valB(K,x, I) ≥t valB(Jt, x, I) = t.
Hence, valB(K,x, I) = t = SVB(x, I). Take x ∈ Fd with SVB(x, I) = u.
By Lemma 2.6.18, we have that valB(K,x, I) ≥t u because Jt and Ju are

8The well-ordering theorem is equivalent to the axiom of choice, which we assume in this
thesis.

44 JUSTIFICATION THEORY

u-domain supporting. By the definition of supported value, we have that
valB(K,x, I) ≤t SVB(x, I) = u; hence valB(K,x, I) = u = SVB(x, I). Define
J to be equal to K ↑ Jf . Take x ∈ Fd such that SVB(x, I) ∈ {u, t}. Since J
is an extension of K, we have that valB(J, x, I) ≥t valB(K,x, I) = SVB(x, I);
hence valB(J, x, I) = SVB(x, I) by definition of supported value. Take x ∈ Fd
with SVB(x, I) = f . Therefore valB(J, x, I) = f = SVB(x, I).

It is straightforward that J is locally complete since it contains all x ∈ Fd as
internal nodes.

Splittability is necessary as shown in the following example.
Example 2.6.21. Let B be the branch evaluation that maps x0 → x1 →
x2 → · · · to x2 if it exists and to ∼x1 otherwise. Let Fd = {a, b,∼a,∼b} and
Fo = L ∪ {c, d,∼c,∼d}. Let R be the complementation of a← b

b← c
b← d

 .

Define JS = 〈F ,Fd, R,B〉 and let I be the interpretation such that I(c) = t
and I(d) = f . The only connected justifications that contain a and b as internal
nodes are

a

b

c

a

b

d

Let I be an interpretation such that I(c) = f , and I(d) = t. Then the left
justification supports b, while the right justification supports a. But neither
justification supports both a and b. This is because these two justification cannot
be put together without ruining the good values of a and b. If B was splittable,
this was possible. However, B is not splittable: every branch with more than
two elements is neither decided or transitive at the second element. N

2.7 Applications

2.7.1 Logic Programming

Syntactically, logic programs are very similar to justification frames. There are
a few important differences. Justification theory allows for parameters to exist,

APPLICATIONS 45

while regular logic programming does not. The second distinction is that logic
programs do not allow negation in the head and thus only rules for atoms are
given. In this section, we only consider normal logic programs.

Definition 2.7.1. A (propositional) normal logic program Π over a set of atoms
Σ is a set of rules having the form

a← b1, . . . , bm,¬c1, . . . ,¬cn

where a and all bi and cj are in Σ. A logic program is called positive if no rule
has a negative literal in its body.

An interpretation I of the set of atoms Σ is a subset of Σ. Intuitively, a ∈ I
means that a is true in I and a /∈ I means a is false in I. Therefore, an
interpretation is two-valued. For any literal ` over Σ, `I denotes the truth value
of ` in I, that is, for an a ∈ Σ, aI = t if a ∈ I and aI = f if a /∈ I. This
can extended to any set B of literals over Σ: BI = t if for all b ∈ B, bI = t;
otherwise BI = f .

With each logic program Π, we associate a (two-valued) immediate consequence
operator (van Emden and Kowalski, 1976) TΠ that maps a structure I to

TΠ(I) =
{
a ∈ Σ

∣∣ ∃r ∈ Π: head(r) = p ∧ body(r)I = t
}
.

This operator is used to define supported models.

Definition 2.7.2. The supported models of Π are the fixpoints of TΠ.

Example 2.7.3. Take the logic program Π over Σ = {p, q}{
p← p
q ← ¬p

}
.

The operator TΠ does the following on the Σ-interpretations.

{p} {q}

{p, q} ∅

Therefore Π has two supported models: {p} and {q}. N

A thee-valued (or partial) interpretation I of a set of atoms Σ is a function from
Σ to L = {f ,u, t}. Again, for any literal ` over Σ, `I denotes the truth value of

46 JUSTIFICATION THEORY

` in I. This can be extended to sets of literals over Σ by using Kleene’s strong
three-valued logic (Kleene, 1952). The negation maps f to t, t to f , and u to
u. A conjunction is true if all conjuncts are true, it is false if some conjunct
is false, and it is unknown otherwise. The disjunction is defined dually to the
conjunction. The two-valued immediate consequence operator TΠ defined by
van Emden and Kowalski (1976) can be extended to be three-valued as done by
Fitting (2002).

Definition 2.7.4. The three-valued immediate consequence operator associated
with normal logic program Π is the function ΦΠ that maps a three-valued
interpretation I to

ΦΠ(I)(a) = max
{r∈Π | head(r)=a}

body(r)I ,

where max is with respect to ≤t.

This operator is monotone with respect to ≤p and thus by a generalisation
of the Knaster-Tarski fixpoint theorem (Cousot and Cousot, 1979), it has a
≤p-least fixpoint, which is called the Kripke-Kleene fixpoint of Π (Fitting, 1985,
1986, 1991).

Definition 2.7.5. The ≤p-least fixpoint of ΦΠ is the Kripke-Kleene fixpoint of
Π.

Example 2.7.6. Let Π be the logic program over Σ = {p, q}{
p← ¬q
q ← ¬p

}
.

The ≤p-least fixpoint of ΦΠ is equal to {pu, qu}. N

Definition 2.7.7. A three-valued Σ-interpretation is a model of Π if for all
x← B ∈ Π we have that xI ≥t BI .

Proposition 2.7.8 (Przymusinski, 1990, Theorem 3.1). Every positive logic
program Π has a unique ≤t-least three-valued model.

The Gelfond-Lifschitz transformation (Gelfond and Lifschitz, 1988) can be
extended to three-valued interpretation to define three-valued stable models
(sometime called stationary models), see the work by Przymusinski (1990).

Definition 2.7.9. Let Π be a normal logic program and I a three-valued
Σ-interpretation. The program ΠI is the logic program obtained from Π where
each negative literal ¬a in a body is replaced by ∼aI . The program ΠI is
positive and thus has a unique ≤t-least model, let Γ(I) be this model. A
fixpoint of Γ is a three-valued stable model of Π.

APPLICATIONS 47

Usually, only two-valued stable models are considered, so when we say stable
model we mean a two-valued stable model. For our purposes, well-founded
semantics is defined using three-valued stable models.

Definition 2.7.10. The well-founded model of Π is the ≤p-least three-valued
stable model of Π.

Now we come to the point that we construct a justification frame associated
to a normal logic program. Negative literals do not appear in the head of a
rule in a normal logic program. In Section 2.3.2, we have seen that by using
complementation we get rules for negative literals. Another discrepancy between
justification theory is that in normal logic programs every atom has a rule,
either explicitly, or implicitly. If no rules are supplied for an atom a, then we
assume an implicit rule a ← f . If the body of a rule for the head a is empty,
this corresponds to a rule a← t. Taking this into account, we have enough to
define a justification frame that represents the normal logic program at hand.

Definition 2.7.11. Let Π be a propositional logic program over a set of atoms
Σ. The fact space FΠ associated with Π is the set of all literals over Σ plus the
set L with F+ = Σ and the negation as usual. The justification frame JFΠ
associated with Π is equal to 〈FΠ,FΠ \ L, R〉, where R is the complementation
of the rules in Π after potentially adding rules of the form x← f when there
are no rules with x as the head and replacing rules for x with empty body with
the rule x← t.

Similar things can be done for non-propositional logic programs by first
grounding since justification theory can handle infinite fact spaces, infinitely
many rules for a certain head, and infinite bodies.

Justification theory always works with three-valued interpretations. If I is
a FΠ-interpretation, then it corresponds to three-valued interpretation I of
Σ by stating I(a) = I(a) for all a ∈ Σ. If I only maps u to u, then I is
essentially two-valued and corresponds to a two-valued Σ-interpretation as
follows: I = {a ∈ Σ | I(a) = t}. This correspondence is implicitly used in the
following theorem that shows that the main logic programming semantics can
be captured with justification theory.

Theorem 2.7.12. Let Π be a propositional logic program, then we have the
following correspondences.

• A two-valued interpretation I is a Bsp-model of JFΠ if and only if I is a
supported model of Π.

• An interpretation I is the unique BKK-model of JFΠ if and only if I is
the Kripke-Kleene model of Π.

48 JUSTIFICATION THEORY

• A two-valued interpretation I is a Bst-model of JFΠ if and only if I is a
stable model of Π.

• An interpretation I is the unique Bwf-model of JFΠ if and only if I is
the well-founded model of Π.

Proof. Follows from the correspondence from Chapter 5 and the characterisation
of the various logic programming semantics with AFT as done for example by
Denecker et al. (2012).

2.7.2 Differences between answer-set programming

In contrast to ASP, our framework does not allow disjunction in the head,
but allows parameters. On top of that, the intuition behind the negation is
different. In justification theory, negative literals are treated as completely
symmetric to positive ones, so that double negation ∼∼p is just equal to p.
This is because, ∼ is classical three-valued logic. This is rooted in the idea
that justifications capture construction processes (or at least generalisations
thereof). But there are other logics such as Gödel’s G3 logic (Gödel, 1932),
where this does not hold. In particular, G3 is equivalent to the intermediate
logic of Here-and-There (Bochman, 2012; Cabalar and Ferraris, 2007; Lifschitz
et al., 1999, 2001), used by a part of the ASP community both for foundations
and as a reference for popular tools such as Clingo. In G3, double negation
∼∼p has quite a different meaning than p. There, the rule operator ← becomes
regular implication in the logic of Here-and-There, while negation is classical. In
justification theory, negation is classical and the rule operator ← is not classical
implication but some logical connective intimately tied to the construction
processes that justifications represent.

2.7.3 Abstract Argumentation

Argumentation Frameworks (AFs) (Dung, 1995) are a simple formalism for
representing arguments and attacks between these arguments. In AFs, the
contents of the arguments do not matter and are thus abstracted away. This
section is inspired by the work of Strass (2013).

Definition 2.7.13. An argumentation framework A is a pair (A,X) where A
is a set of atomic arguments and X ⊆ A×A is a relation representing attacks
on arguments, i.e. if (a, b) ∈ X, then the argument a attacks b.

APPLICATIONS 49

The goal of argumentation frameworks is to determine a set of arguments
that are accepted to some standard (cf. a model in justification theory). This
acceptance depends on which semantics are used. For example, if a set of
arguments is consistent (no argument in the set attack each other) and if it can
defend against any argument from outside, then we can consider it to be a good
set of arguments. It is reasonable to assume that good sets have no internal
conflicts.

Definition 2.7.14. A set S ⊆ A is conflict-free in A if there are no a, b ∈ S
with (a, b) ∈ X.

For the rest of the discussion it is useful to define the following two sets.

Definition 2.7.15. For a ∈ A, AttackersA(a) is the set {b ∈ A | (b, a) ∈ X}.
We define AttackedA(S) = {a ∈ A | ∃b ∈ S : (b, a) ∈ X}. A set S defends a in
A if AttackersA(a) ⊆ AttackedA(S).

Definition 2.7.16. A set S is a stable extension of A if S = A \AttackedA(S).

All semantics defined by Dung (1995) can be captured using two operators.
The first one is the characteristic function CA for an argumentation framework
A = (A,X), which is the function:

2A → 2A : S 7→ {a ∈ A | S defends a in A} .

Fixpoints are of special interest.

Definition 2.7.17. A complete extension of A is a conflict-free set S such that
S = CA(S). A preferred extension of A is a ⊆-maximal complete extension of
A.

The characteristic function is monotone with respect to ⊆; therefore by the
Knaster-Tarski fixpoint theorem (Tarski, 1955), it has a ⊆-least fixpoint.

Definition 2.7.18. The grounded extension of A is the ⊆-least fixpoint of CA.

If S ⊆ CA(S), then every a ∈ S is defended by S.

Definition 2.7.19. A conflict-free set S is admissible if S ⊆ CA(S).

The second operator is the unattacked function UA, which is the function

2A → 2A : S 7→ A \AttackedA(S).

Fixpoints of this function are exactly the stable extensions of A. Strass (2013)
defined a single function that captures both the operator CA and UA.

50 JUSTIFICATION THEORY

Definition 2.7.20. Define FA : 2A×2A → 2A×2A : (S, T) 7→ (UA(T), UA(S))

Similar to ≤p on interpretations, we can define ≤p on 2A × 2A.9 We say that
(S1, S2) ≤p (T1, T2) if S1 ⊆ T1 and S2 ⊇ T2. The operator FA can be used to
characterise every type of model we have seen so far (Strass, 2013).

Proposition 2.7.21. Let A = (A,X), then S ⊆ A is

• a stable extension of A if and only if (S, S) is a fixpoint of FA.

• a complete extension of A if and only if there exists a T ⊆ A so that
(S, T) is a fixpoint of FA.

• a grounded extension of A if and only if there exists a T ⊆ A so that
(S, T) is ≤p-least fixpoint of FA.

• a preferred extension of A if and only if there exists a T ⊆ A so that
(S, T) is fixpoint of FA where S is ⊆-maximal.

• admissible if and only if (S,UA(S)) ≤p FA(S,UA(S))

Correspondence

Each argument b that attacks a is a reason why a does not hold. Therefore, we
could represent this by a rule ∼a← b. This means that only negative elements
occur in the head of rules. Taking the complement of these rules, we get rules
of the form a ← ∼AttackersA(a). Intuitively, such rules state that a holds if
every argument b attacking a does not hold.

Definition 2.7.22. Let A = (A,X) be an argumentation framework. The
fact space FA corresponding to A is the set A ∪ ∼A ∪ L, with (FA)+ = A.
The justification frame JFA is the frame 〈FA,FA \ L, R〉 where R is the
complementation of the set

{∼a← b | (b, a) ∈ X} ∪ {∼a← f | AttackersA(a) = ∅} .

This justification frame has some extra properties. Positive facts have a single
rule, where each body element is negative (or t) On the other hand, every rule
for a negative element has a body with a single element that is positive (or
f). This means that every branch of a justification alternates between positive
and negative elements (possibly with f or t as its last element). Therefore, Bsp

9This similar becomes apparent in Chapter 5, where we decompose interpretations as pairs
of sets of positive facts.

CONCLUSION 51

and Bst are equal. Similarly, BKK and Bwf are equal since they only differ on
non-mixed loops and every infinite branch is mixed.

The correspondence between justification theory and AF is similar to that of
Proposition 2.7.21.

Theorem 2.7.23. Let A = (A,X) be an argumentation framework. A subset
S of A is

• a stable extension of A if and only if there is a two-valued Bsp-model I of
JFA with S = {x ∈ F+ | I(x) = t};

• a complete extension of A if and only if there is a Bsp-model I of JFA
with S = {x ∈ F+ | I(x) = t};

• the grounded extension of A if and only if there exists BKK-model I of
JFA with S = {x ∈ F+ | I(x) = t};

• a preferred extension of A if and only if there exists a ≤p-maximal Bsp-
model I of JFA with S = {x ∈ F+ | I(x) = t};

• admissible if and only if for the interpretation I defined by S =
{x ∈ F+ | I(x) = t} and UA(S) = {x ∈ F+ | I(x) ≥t u} it holds that
I ≤p S

Bsp
JFA(I).

Proof. We first prove that FA is equal to the approximator AJFA associated to
the justification JFA (see Chapter 5 for definitions). Take a ∈ A. Assume first
that AttackersA(a) 6= ∅. Then a ∈ AJFA(I1, I2)1 iff for all b ∈ AttackersA(a)
we have I(b) = f iff AttackersA(a) ∩ I2 = ∅ iff a ∈ UA(I2) iff a ∈ FA(I1, I2)1.
Similarly, a ∈ AJFA(I1, I2)2 iff for all b ∈ AttackersA(a) we have I(a) ≤t u iff
AttackersA(a) ∩ I1 = ∅ iff a ∈ UA(I1) iff a ∈ FA(I1, I2). If AttackersA(a) = ∅,
then JFA contains the rule a ← t. Then a ∈ AJFA(I1, I2)1 and a ∈ UA(I2),
hence a ∈ FA(I1, I2)1. This proves that FA = AJFA . The rest of the proof
then follows from the correspondence in Chapter 5 and Proposition 2.7.21.

2.8 Conclusion

In this chapter, we explained how justification semantics work and provided
precise definitions to work with. Then we discussed consistency of justification
systems by noting that not all justification semantics are sound. The consistency
problem we posed in that section will be the driving force for the following
chapters, especially Chapters 3 and 4. We examined how rules for a fact and its

52 JUSTIFICATION THEORY

negation are related and worked out some details surrounding complementarity.
In the next section our second research question popped up: when are graph-
like and tree-like justifications equivalent? We were able to reduce this back
to the consistency problem. A few basic branch evaluation types are given
as well, while we will encounter a few more in coming chapters. We took a
brief look at dual branch evaluations and showed a few results for pasting
justifications together. This chapter is closed off by giving two well-known
formalisms expressed through justification theory.

In the following chapter, we will take a deeper look into the consistency problem
for the main branch evaluations Bsp, BKK, Bst, and Bwf .

Chapter 3

Basic Properties of
Justification Theory

3.1 Introduction

Most applications known so far of justification theory use the four main branch
evaluations Bsp, BKK, Bst, Bwf , and their duals. In this chapter, we start by
proving the consistency of these branch evaluations. This consistency is then
used to relate models of these evaluations with each other. When justification
theory was first formalised for graph-like justification by Denecker et al. (2015),
variants for Bsp and Bst were given instead. We prove that they give rise to
the same models as our definitions. Since graph-like consistency implies tree-
like consistency, it suffices to focus ourselves on graph-like consistency. Every
justification in this chapter is a graph-like justification.

The text of this chapter is mainly from (Marynissen et al., 2018a,b) but updated
to fit in the current formalisation. The section on relations between different
models and branch evaluations is taken from (Marynissen et al., 2021).

3.2 Consistency Revisited

We have seen in the previous chapter that for one side of the consistency:
SV(x, I) ≤t ∼SV(∼x, I), we need complementarity. Similarly, to prove the
other direction we will demand complementarity as well. One special kind of

53

54 BASIC PROPERTIES OF JUSTIFICATION THEORY

complementary justification frames are the ones closed under complementation.
By Lemma 2.3.14, it suffices to consider justification frames that are closed
under complementation. Let us first give a few stronger properties that do
not always hold in every complementary justification frame. The following
proposition is a stronger result than Lemma 2.3.15.

Proposition 3.2.1. If a justification frame JF is fixed under complementation,
then for every rule x← A and y ∈ A, there is a rule ∼x← B such that ∼y ∈ B.

Proof. Take a selection function S of x so that S(A) = y. Then B := ∼ Im(S) is
an element in JF(∼x) so that∼y ∈ B since JF is closed under complementation.

This has as a consequence that if x → y is a path in some justification, that
∼x → ∼y is also path in some justification. Branch evaluations can also be
applied to branches that cannot occur in a justification as they are independent
of the given justification frame. This is why the following lemma does not have
the fixed under complementation restriction.

Lemma 3.2.2. Let B be a branch evaluation that respects negation and JF
a complementary justification frame. If a JF-path p is decided, then ∼p is
decided as well. Moreover, B(∼p) = ∼B(p).

Proof. Take any JF-path ∼p → b. Then B(∼p → b) = ∼B(p → ∼b) =
∼B(p) since p is decided. This means that ∼p is decided and B(∼p) =
∼B(p).

The one direction for the consistency we have not yet proven is SV(x, I) ≥t
∼SV(∼x, I). This is the same as ∼SV(x, I) ≤t SV(∼x, I). If SV(x, I) = f ,
i.e. there is no good justification for x, then SV(∼x, I) = t, i.e. there is a good
justification for ∼x. There are similar consequences if SV(x, I) 6= f . However,
the condition with SV(x, I) = f is enough according the following proposition
(which is the contraposition of that statement).

Proposition 3.2.3. Let JF be a complementary justification frame. If for all
x ∈ Fd it holds that SV(∼x, I) ≤t u implies that SV(x, I) ≥t u, then we have
graph-like consistency.

Proof. By Theorem 2.3.18, it suffices to prove for all x ∈ Fd that∼SV(∼x, I) ≤t
SV(x, I), or that SV(∼x, I) ≥t ∼ SV(x, I).

We make a case distinction on the value of SV(∼x, I). If SV(∼x, I) = t, then
we have a vacuous claim.

CONSISTENCY REVISITED 55

If SV(∼x, I) = u, then we have on the one hand that SV(∼x, I) ≤t u;
hence SV(x, I) ≥t u. On the other hand, u = ∼SV(∼x, I) ≥t SV(x, I)
by Theorem 2.3.18. This proves that SV(x, I) = u.

If SV(∼x, I) = f , then we have that SV(x, I) ≥t u since SV(∼x, I) ≤t u.
If SV(x, I) = u, then SV(∼x, I) ≥t u, which is a contradiction. Therefore,
SV(x, I) = t, completing the proof.

This characterisation shows us that we should find consequences of SV(∼x, I) 6=
t. The following result shows that there is a rule x← A with some properties.
In the results after this, we will use this rule to construct a good justification
for x.

Lemma 3.2.4. Let B be a splittable branch evaluation that respects negation.
Let JF = 〈F ,Fd, R〉 be a complementary justification frame. Take x ∈ Fd. If
SV(∼x, I) 6= t, then there is an A ∈ JF(x) such that for all y ∈ A at least one
of the following holds:

• the path x→ y is decided and I(B(x→ y)) ≥t u;

• the path x→ y is not decided, and SV(y, I) ≥t u or SV(∼y, I) 6= t.

Proof. Define mI to be the subset of Fd such that x ∈ mI if and only if for all
A ∈ JF(x), there is a y ∈ A such that both the following holds:

• if the path x→ y is decided, then I(B(x→ y)) = f ;

• if the path x→ y is not decided, then SV(y, I) = f and SV(∼y, I) = t.

The lemma states that if SV(∼x, I) 6= t, then x /∈ mI . We prove
the contraposition: if x ∈ mI , then SV(∼x, I) = t. Let X = mI \
{x | SV(∼x, I) = t}. Suppose by contradiction that X 6= ∅. For any x ∈ mI ,
there is a selection function Tx that maps A ∈ JF(x) to a y ∈ A as provided in
the definition of mI .

Take a t-domain supporting justification J∗ with the internal nodes of J∗
exactly the elements y with SV(y, I) = t. Take J a locally complete extension
of J∗ such that J(∼x) ⊆ ∼ Im(Tx) for all x ∈ X. This is possible since JF is
complementary and because no element of X is an internal node of J∗. Take any
x0 ∈ X. Take a J-branch b : ∼x0 → ∼x1 → · · · . We prove that I(B(b)) = t.

Assume that b does not lie completely in ∼X. Let ∼xi be the first such that
xi /∈ X. Note that i > 0. Suppose b is first decided at j ≤ i; hence by
Corollary 2.6.12 the path ∼xj−1 → ∼xj is decided. By Lemma 3.2.2, the path

56 BASIC PROPERTIES OF JUSTIFICATION THEORY

xj−1 → xj is also decided and B(∼xj−1 → ∼xj) = ∼B(xj−1 → xj). Since
xj−1 ∈ X, it holds that xj ∈ Im(Txj−1). Therefore, by construction of Txj−1 it
holds that I(B(xj−1 → xj)) = f ; hence I(B(b)) = I(B(∼xj−1 → ∼xj)) = t.
This means we can assume that b is not decided at j for j ≤ i. Therefore,
∼xi−1 → ∼xi is not decided by Lemma 2.6.13. Moreover, xi−1 → xi is not
decided by Lemma 3.2.2. Since xi−1 ∈ mI , we get that SV(xi, I) = f and
SV(∼xi, I) = t. By splittability, b is transitive at i. Therefore, I(B(b)) =
I(B(∼xi → ∼xi+1 → · · ·)) = t since SV(∼xi, I) = t and val(J,∼xi, I) =
val(J∗,∼xi, I) = t.

Therefore, we can assume that b lies completely in ∼X. If b is first decided
at some k, then the path ∼xk−1 → ∼xk is decided as well. This means that
I(b(xk−1 → xk)) = f and that I(B(b)) = t. So we can assume that b is
nowhere decided. This means that the path xk−1 → xk is not decided; hence
SV(xk, I) = f and SV(∼xk, I) = t. This contradicts that xk ∈ X.

This proves that val(J,∼x0, I) = t; hence SV(∼x0, I) = t. This is a
contradiction; hence X = ∅.

If B is graph-like consistent, then for each defined x with SV(x, I) = f , we have
that SV(∼x, I) = t. A somewhat weird way to state this is the following.

Fd = {x ∈ Fd | SV(x, I) ≥t u} ∪ ∼{x ∈ Fd | SV(x, I) = t} .

The following lemma exploits this property by constructing a weird branch
when this equality does not hold.

Lemma 3.2.5. Let JS = 〈F ,Fd, R,B〉 be a justification system and B splittable.
Let X = Fd \ ({x ∈ Fd | SV(x, I) ≥t u} ∪ ∼{x ∈ Fd | SV(x, I) = t}). If X is
non-empty, there is a locally complete justification J such val(J, x, I) ≥t u for
all x with SV(x, I) ≥t u so that for any x ∈ X and for any J-branch b starting
with x such that I(B(b)) = f , it holds that b is nowhere decided and all elements
of b are in X. Moreover, such a branch always exists for any such x internal
in J .

Proof. By Lemma 3.2.4, for every x ∈ Fd with SV(∼x, I) 6= t there is an
A ∈ JF(x) such that for all y ∈ A, we have that either

• x→ y is decided and I(B(x→ y)) ≥t u or

• x→ y is not decided, and SV(y, I) ≥t u or SV(∼y, I) 6= t.

We call Ax the set of these rule bodies.

CONSISTENCY REVISITED 57

Take an u-domain supporting justification J∗ such that its internal nodes are
exactly the elements y with SV(y, I) ≥t u. This is possibly due to Lemma 2.6.19.
Take any locally complete extension J of J∗ such that J(x) ∈ Ax for all x ∈ X.
Remark that val(J, y, I) = val(J∗, y, I) for internal nodes y of J∗.

Take any x0 ∈ X. Since SV(x0, I) = f , there is a J-branch b : x0 → x1 → · · ·
such that I(B(b)) = f .

We first prove that SV(xi, I) = f for all xi. Take by contradiction the lowest
i such that SV(xi, I) ≥t u. Remark that i > 0. If b is transitive at i, then
I(B(xi → xi+1 → · · ·)) = B(b) = f ; contradicting that val(J, xi, I) ≥t u since
xi is an internal node of J∗.

Therefore, by splittability, b is decided at i. Let j be the lowest at which b is
decided; hence b is transitive at j−1. Remark that j > 0 since branches cannot
be decided at 0. So B(b) = B(xj−1 → xj → · · ·). By Corollary 2.6.12, the
path xj−1 → xj is decided. Suppose SV(∼xj−1, I) 6= t. Then xj ∈ J(xj−1) ∈
Axj−1 . Therefore, I(B(b)) = I(B(xj−1 → xj)) ≥t u, which contradicts that
I(B(b)) = f . Therefore, SV(∼xj−1, I) = t. Take k to be the lowest such that
SV(∼xk, I) = t. Since k < j, b is not decided at k, so also xk−1 → xk is not
decided by Lemma 2.6.13. Remark that k > 0 since SV(∼x0, I) 6= t. Since
SV(∼xk−1, I) 6= t, it holds that xk ∈ J(xk−1) ∈ Axk−1 and thus SV(xk, I) ≥t u
or SV(∼xk, I) 6= t. Since SV(∼xk, I) = t, we get that SV(xk, I) ≥t u, which
contradicts the minimality of i.

Secondly, we prove that SV(∼xi, I) 6= t for all i. Take the lowest i such that
SV(∼xi, I) = t. Note that i > 0. If xi−1 → xi is not decided, then, since
SV(∼xi, I) = t and xi ∈ J(xi−1) ∈ Axi , it holds that SV(xi, I) ≥t u, which is a
contradiction. Therefore, xi−1 → xi is decided and thus I(B(xi−1 → xi)) ≥t u.
If b is first decided at j < i, then xj−1 → xj is decided and thus I(B(b)) =
I(B(xj−1 → xj)) ≥t u, which is a contradiction; hence b is transitive in i− 1.
Therefore, I(B(b)) = I(B(xi−1 → xi → · · ·)) = I(B(xi−1 → xi)) ≥t u, which
is a contradiction.

Thirdly, we prove that b is nowhere decided. Suppose b is first decided
at i. Note that i > 0. Then by Corollary 2.6.12, the path xi−1 → xi is
decided and I(B(b)) = I(B(xi−1 → xi)) ≥t u since SV(∼xi−1, I) 6= t and
xi ∈ J(xi−1) ∈ Axi−1 . This is a contradiction, so b is nowhere decided.

The existence of a false branch nowhere decided with all elements inside

Fd \ ({x ∈ Fd | SV(x, I) ≥t u} ∪ ∼{x ∈ Fd | SV(x, I) = t})

58 BASIC PROPERTIES OF JUSTIFICATION THEORY

is enough to get a contradiction for Bsp, BKK, and Bst. Note that a branch
that is nowhere decided is infinite since finite branches are decided at their last
element.

Theorem 3.2.6. The evaluations Bsp, BKK, and Bst are graph-like consistent.

Proof. By the contraposition of Proposition 3.2.3, it suffices to prove that
if SV(x, I) = f , then SV(∼x, I) = t. Suppose by contradiction that
SV(∼x, I) 6= t. Then by Lemma 3.2.5, there is a JF-branch starting with
x such that I(B(b)) = f , nowhere decided and all elements of b lie in
Fd \ ({x ∈ Fd | SV(x) ≥t u} ∪ ∼{x ∈ Fd | SV(x) = t}).

If B = Bsp, this is a contradiction since every branch is decided at the first
element. If B = BKK, then B(b) = u since b is infinite, which is a contradiction.
If B = Bst, then b has everywhere the same sign, otherwise, it would have been
decided somewhere; hence b is everywhere positive because B(b) = f .

Take y ∈ Fd \ ({x | SV(x, I) ≥t u} ∪ ∼{x | SV(x, I) = t}) and A ∈ JF(y). If
A ∈ Ay, then there is a branch as provided by Lemma 3.2.5. Define zA to be
the second element of this branch. If A /∈ Ay, then there is a zA ∈ A such that
y → zA satisfies the conditions for mI . Define Ty : JF(y)→ F : A 7→ zA. Take a
t-domain supporting justificationK such that the internal nodes ofK are exactly
the elements y such that SV(y, I) = t. This is possible due to Lemma 2.6.19.
Let J be a locally complete extension of K such that J(∼y) ⊆ ∼ Im(Ty) for all
y ∈ Fd \ ({x | SV(x) ≥t u} ∪ ∼{x | SV(x) = t}). This is possible because ∼y
is not internal in K because SV(∼y, I) 6= t.

Take a J-branch b′ : ∼x0 → ∼x1 → · · · with x0 = x. We prove that I(B(b′)) =
t. Suppose first that all elements of b′ lie in

∼ (Fd \ ({x ∈ Fd | SV(x, I) ≥t u} ∪ ∼{x ∈ Fd | SV(x, I) = t})) .

This means that ∼xi+1 ∈ J(∼xi) ⊆ ∼ Im(Txi) for any i ≥ 0. If b′ is first
decided at i > 0, then by Corollary 2.6.12 and Lemma 3.2.2, the path xi−1 → xi
is decided. Thus, I(B(b′)) = ∼I(B(xi−1 → xi)) = t. So we can assume that
b′ is nowhere decided and thus infinite. This means that b′ has everywhere
the same sign and a different sign than b. Therefore I(B(b′)) = ∼I(B(b)) =
t. This means that val(J,∼x0, I) = t, which is in contradiction with our
assumption.

CONSISTENCY OF WELL-FOUNDED SEMANTICS 59

3.3 Consistency of Well-Founded Semantics

Transitive branch evaluations have the nice property that if a justification is
good for x, then it is also good for any y reachable from x in that justification.
The following lemma is a continuation of this property.

Lemma 3.3.1. Let B be a transitive branch evaluation such that finite branches
are mapped to their last element. Let JF be a complementary justification frame.
Then for any F-interpretation and x ∈ Fd

• SV(x, I) = t if and only if there is an A ∈ JF(x) such that for all a ∈ A
SV(a, I) = t if a is defined and I(a) = t if a is open.

• SV(∼x, I) 6= t if and only if there is an A ∈ JF(x) such that for all
a ∈ A, SV(∼a, I) 6= t if a is defined and I(a) ≥t u if a is open.

Proof. If SV(x, I) = t, then there is a locally complete justification J with
val(J, x, I) = t. Then by transitivity and the fact that finite branches are
mapped to their last element we have the result.

Now, take such a case A. Let J−1 be the justification consisting only of the
rule x ← A. Let Y be the set A ∩ Fd. For all y ∈ Y , we have SV(y, I) = t;
hence there is a locally complete justification Jy with val(Jy, y, I) = t. Fix a
well-order on Y = {yi | i ≤ β}. Define inductively justifications Ji for 0 ≤ i ≤ β:

• Ji+1 := Ji ↑ Jyi+1 for any ordinal i < β;

• Jα := ∪i<αJi for a limit ordinal α ≤ β.

Any Jβ-branch starting with x is either of the form x→ a with a ∈ A ∩ Fo or
x → b with b a Jy-branch for some y ∈ A ∩ Fd. By our assumptions, both
types are mapped to t by I under B; hence val(Jβ , x, I) = t, which shows that
SV(x, I) = t.

If SV(∼x, I) 6= t, then by the above, for all B ∈ JF(∼x) there is a defined
zB ∈ B such that SV(zB , I) 6= t or an open zB ∈ B such that I(zB) 6= t.
Define T : JF(∼x) → F : B 7→ zB. Since JF is complementary, there exists
an A ⊆ ∼ Im(T). This means that for every defined a ∈ A, SV(∼a, I) 6= t and
for every open a ∈ A, I(∼a) 6= t, i.e. I(a) ≥t u.

Now assume that there is such an A ∈ JF(x) and suppose by contradiction
that SV(∼x, I) = t. Then there is a B ∈ JF(∼x) such that every defined fact
in B has true supported value and every open in B is true under I. Therefore,
by Lemma 2.3.15, A ∩ ∼B 6= ∅, which is a contradiction.

60 BASIC PROPERTIES OF JUSTIFICATION THEORY

This lemma motivates the following definition.

Definition 3.3.2. A subset P of F is compositional on X ⊆ Fd if for all x ∈ X
it holds that x ∈ P if and only if there is an A ∈ JF(x) such that A ⊆ P.

Intuitively, a property is compositional on X if that property propagates to all
the elements of the body of at least one rule and vice versa.

In compositional property terms, Lemma 3.3.1 becomes the following corollary.

Corollary 3.3.3. Let B be a transitive branch evaluation mapping finite
branches to their last element and JF a complementary justification frame.
The following sets are compositional on any subset of Fd:

• {x ∈ Fd | SV(x, I) = t} ∪ {x ∈ Fo | I(x) = t},

• {x ∈ Fd | SV(∼x, I) 6= t} ∪ {x ∈ Fo | I(x) ≥t u}.

In complementary justification frames, we can transform a compositional
property on a set X to a dual compositional property on the set ∼X.

Lemma 3.3.4. Let JF be a complementary justification frame. If P is
compositional on X, then d(P) := F \ ∼P is compositional on ∼X.

Proof. Let ∼x ∈ ∼X. First, assume ∼x ∈ d(P), that is, x /∈ P ; hence for every
A ∈ JF(x), there is a zA ∈ A \ P . Therefore, ∼zA ∈ d(P). Define the selection
function T of x as T : JF(x)→ F : A 7→ zA. Then by complementarity, there
is a B ∈ JF(∼x) such that B ⊆ ∼ Im(T) ⊆ d(P).

We prove the converse by contraposition, i.e. if ∼x /∈ d(P), then for all B ∈
JF(∼x) it holds that B * d(P). So assume that ∼x /∈ d(P), thus that x ∈ P;
hence there exists an A ∈ JF(x) such that A ⊆ P. Take a B ∈ JF(∼x). By
Lemma 2.3.15, ∼A ∩B 6= ∅. If B ⊆ d(P), then

∅ 6= ∼A ∩B ⊆ ∼P ∩ d(P) = ∅,

which is a contradiction, concluding the proof.

Compositional properties are excellent tools to construct justifications with nice
properties as shown by the following lemma.

Lemma 3.3.5. If P is compositional on X ⊆ Fd, then for each x ∈ P ∩X,
there is a justification J with x as internal node such that

• The internal nodes of J are in P ∩X;

CONSISTENCY OF WELL-FOUNDED SEMANTICS 61

• The leaves of J are in P;

• The defined leaves of J do not lie in X.

Proof. Start with the justification J0 with a single rule x← A so that A ⊆ P.
We construct justifications Ji+1 by induction. For every defined leaf y of Ji
that lies in X, there exists a rule y ← A such that A ⊆ P. Define Ji+1 as the
extension of Ji that adds these rules. Then J = ∪i≥0Ji.

In the proof that Bwf is consistent, we will paste together justifications that
are formed as in the previous lemma. However, these justifications are not
necessarily locally complete. Therefore, we need a result stating how the
branches are formed, similar to Lemma 2.6.5.

Proposition 3.3.6. Let K be any justification and J a locally complete
justification such that J ↑ K is locally complete. Then every (J ↑ K)-branch
either is a K-branch or has a tail that is a J-branch.

Proof. Take a (J ↑ K)-branch b : x0 → x1 → · · · that is not a K-branch
and not a J-branch. Then there is an i such that xi is internal in K, but
xi+1 /∈ K(xi). This means that xi is internal in J . In general if xj is internal in
J , then xj+1 ∈ J(xj) = (J ↑ K)(xj). So xj+1 is either an open leaf of J or xj+1
is internal in J since J is locally complete. Then by induction xi → xi+1 → · · ·
is a J-branch and a tail of b.

Extending a justification with no infinite branches with another justification
with no infinite branches can create a justification with infinite branches. This
can happen when both justifications are not locally complete. For example,
extending the justification x→ y with the justification y → x would create a
justification with the branch x → y → x → y → · · · . The following lemma
states a sufficient condition for which this cannot happen.

Lemma 3.3.7. Let J and K be any two justifications without infinite branches
such that there is an X ⊆ Fd so that the internal nodes of J and K are in X
and J and K have no defined leaves in X. Then J ↑ K has no infinite branches
as well.

Proof. By contradiction, take an infinite (J ↑ K)-branch b : x0 → x1 → · · · .
Every element in b is defined and thus an internal node of J or K; hence every
element in b lies in X. This means that xi is not a leaf of J and K since defined
leaves lie outside X. Since K has no infinite branches, we have that b is not
a K-branch. So take the least i such that xi+1 /∈ K(xi); hence xi+1 ∈ J(xi).

62 BASIC PROPERTIES OF JUSTIFICATION THEORY

If xi+1 is not internal in J , then we have that xi+1 is a leaf of J , but this
contradicts that xi+1 ∈ X. Hence xi+2 ∈ J(xi+1). By an induction argument,
b has a tail that is a J-branch, contradicting that b is infinite.

The conditions on the justifications in this lemma are very similar to the
properties that justifications constructed from Lemma 3.3.5 have. This will be
a crucial point in proving that the following property is compositional.

Lemma 3.3.8. The set P defined as

• P ∩ Fo = {x ∈ Fo | I(x) ≥t u};

• P ∩ F− = {x ∈ F− | SV(∼x, I) ≤t u};

• for x ∈ F+, x ∈ P if and only if there is a justification J with x as
internal node such that

– J does not have infinite branches;
– the internal nodes of J are in F+;
– defined leaves of J lie in F−;
– all leaves of J lie in P.

We call such a justification a ∗-justification for x.

is compositional on F+.

Proof. Take x ∈ F+. First, assume that x ∈ P . So there exists a ∗-justification
J for x. We show that any y ∈ J(x) lies in P . If y is a leaf of J , then y ∈ P . If
y is not a leaf, then y ∈ F+. In this case, J is also a ∗-justification for y. So we
can conclude that J(x) ⊆ P.

Conversely, assume there is an A ∈ JF(x) such that A ⊆ P . Suppose first that
A∩F+ = ∅. In that case, the justification J consisting of only the rule x← A is
a ∗-justification for x. So we can assume that A∩F+ 6= ∅. For any y ∈ A∩F+,
there is a ∗-justification Jy for y. Fix a well-order on A ∩ F+ = {yi | i ≤ β}.
Define J0 to be the justification consisting only of the rule x← A. Inductively
define

• Ji+1 = Ji ↑ Jyi for any ordinal i < β;

• Jα = ∪i<αJi for any limit ordinal α ≤ β.

CONSISTENCY OF WELL-FOUNDED SEMANTICS 63

We prove that Jβ is a ∗-justification for x.

We only prove that Jβ has no infinite branches. The other properties should
be straightforward. By Lemma 3.3.7, it suffices to prove for any limit ordinal
α ≤ β that Jα has no infinite branches if Ji has no infinite branches for all i < α.
Suppose that Jα contains an infinite branch x0 → x1 → · · · . Then xj ∈ F+
for all j since xj is internal of Ji for some i < α. By construction, there is a
γ < α such that Jα(x0) = Jγ(x0). Since x1 ∈ F+, x1 ∈ dom(Jγ); otherwise x1
is a leaf of Jγ and thus x1 ∈ F−. By induction all xi’s lie in dom(Jγ); which
contradicts that Jγ has no infinite branches.

We proved that Jβ is a ∗-justification for x. Therefore, x ∈ P, which ends the
proof that P is compositional on F+.

Now, we have accumulated the necessary results to prove that Bwf is graph-like
consistent.

Theorem 3.3.9. The branch evaluation Bwf is graph-like consistent.

Proof. Because of Proposition 3.2.3, it suffices to prove that if SV(∼x, I) ≤t u,
then SV(x, I) ≥t u. We first show that there exists a justification Jx with x
internal in Jx such that

• all internal elements have the same sign as x;

• all open leaves y have I(y) ≥t u;

• all defined leaves y have SV(∼y, I) ≤t u and a different sign than x;

• all infinite branches have a negative tail.

We first prove it for x ∈ F−. By Corollary 3.3.3, the set

{y ∈ Fd | SV(∼y, I) 6= t} ∪ {y ∈ Fo | I(y) ≥t u}

is compositional on F−. Then by Lemma 3.3.5 such a justification Jx exists.

So assume x ∈ F+. It suffices to prove that there is a ∗-justification for x, i.e.
x ∈ P with P the compositional set of Lemma 3.3.8. Assume by contradiction
that x /∈ P, i.e. ∼x ∈ d(P). By Lemma 3.3.4, d(P) is compositional on F−.
Therefore, by Lemma 3.3.5, there is a justification J with ∼x internal in J
such that all internal nodes of J are in F−, all defined leaves are positive,
and all leaves lie in d(P). This means that for all open leaves y, it holds that
I(y) = t. For positive defined leaves y, we have that ∼y /∈ P , which means that
SV(y, I) = t. Take a locally complete justification Jy such that val(Jy, y, I) = t.

64 BASIC PROPERTIES OF JUSTIFICATION THEORY

Remark that we can take Jy so that every element in Jy is reachable from y by
removing unreachable elements.

Define Q to be the set of positive defined leaves of J . There is a locally complete
justification J∗ such that val(J∗, y, I) = t for all y ∈ Q and the set of internal
nodes of J∗ is exactly the union of the internal nodes of Jy for y ∈ Q. Such
a justification can be constructed by pasting together Jy for y ∈ Q. Define
K = J∗ ↑ J . Suppose K is not locally complete: it has a defined leaf z. Since
J∗ is locally complete, z is a leaf of J . Therefore, z ∈ Q, which contradicts the
construction of K; hence K is locally complete.

Then by Proposition 3.3.6, every K-branch is either a J-branch or has a tail
that is a J∗-branch. In the first case, every infinite branch consists solely
out of negative defined facts, hence is evaluated to t by I under B. Every
finite branch is mapped to an open element y in d(P), i.e. I(y) = t. In the
second case, for every such branch b, I(B(b)) = I(B(b′)) for a J∗-branch b′
by transitivity of Bwf . Since val(J∗, y, I) = t for any internal node y of J∗, we
have that I(B(b)) = t. Therefore, we proved that val(K,∼x, I) = t; hence
SV(∼x, I) = t. This is a contradiction, hence there is a justification Jx for
x ∈ F+.

By pasting the justifications Jx together for all x ∈ Fd with SV(∼x, I) 6= t, we
get a locally complete justification K∗ such that any internal nodes y in K, we
have that K∗(y) = Jx(y) for some defined x with SV(∼x, I) 6= t. Take a finite
K∗-branch x0 → · · · → xn. Since xn is an open leaf of K∗, xn is an open leaf of
some Jx, i.e. I(xn) ≥t u. Therefore, I(B(x0 → · · · → xn)) ≥t u. Suppose there
is an infinite K∗-branch x0 → x1 → · · · with a positive tail. Without loss of
generality, we can take all the xi’s to be positive. There is a defined z such that
K∗(x0) = Jz(x0). Now, let j be the smallest index such that K∗(xj) 6= Jz(xj).
Such an index exists since Jz has no infinite branches with a positive tail. This
means that xj is a defined leaf of Jz. Therefore, it has a different sign than
x0, which is negative. This is a contradiction, so we can conclude that K∗
has no infinite branches with a positive tail. Therefore, we have for an infinite
K∗-branch b that I(B(b)) ≥t u. This proves that val(K∗, x, I) ≥t u for all x
with SV(∼x, I) ≤t u. This concludes the proof that SV(x, I) ≥t u.

The proof for Bwf is a lot more complex than for the other branch evaluations.
This is because we construct a justification J with val(J, x, I) ≥t u, while for
the other branch evaluations, it was sufficient to get a contradiction when such
a justification does not exist. We must note, however, that the construction is
not exactly deterministic; both in the choice of some justifications as well as
the order in which justifications are pasted together. The latter is not really
a problem since any total order would suffice. The former, however, is more

ALTERNATIVE BRANCH EVALUATIONS 65

troublesome as one would need to find small good justifications for a bunch of
elements. Searching for such justifications will certainly take more time than
directly searching for a justification for ∼x. Now that we proved that Bsp, BKK,
Bst, and Bwf are graph-like consistent, we get the following consequence.

Corollary 3.3.10. Any evaluation in {Bsp,BKK,Bst,Bwf ,Bcst,Bcwf} is graph-
like consistent, tree-like consistent, and graph-reducible.

Proof. This is a combination of Theorems 3.2.6 and 3.3.9 and Corollaries 2.4.7
and 2.5.13.

In the next section, we will use the consistency to show relations between the
various models.

3.4 Alternative Branch Evaluations

In 2015, Denecker et al. (2015) gave an alternative definition for Bst. In a similar
manner, Bsp can have an alternative as well.

Definition 3.4.1. The branch evaluation B′sp is equal to Bsp on infinite branches
and maps finite branches to their last element. The branch evaluation B′st is
equal to Bst on infinite branches and maps finite branches to their last element.

In this section, we prove that Bsp and B′sp are equivalent and that Bst and B′st
are equivalent. Recall that equivalent means they have the same models in each
justification frame.

The reason why we prefer Bsp and Bst is that they have better qualities, such
as splittability. The branch evaluation B′sp is not splittable because an infinite
branch is neither decided nor transitive at the second element. Similarly, B′sp is
not splittable because an infinite branch is neither decided nor transitive at its
first sign.

The following lemma provides a simpler way to determine if an interpretation
is a model.

Lemma 3.4.2. Let JF be any justification frame and B a branch evaluation
that respects negation. An F-interpretation I such that SVB(x, I) ≥t I(x) for
all x ∈ Fd, is a B-model of JF .

Proof. For all x ∈ Fd we have that SVB(∼x, I) ≥t I(∼x). By Theorem 2.3.18,
we have SVB(∼x, I) ≤t ∼SVB(x, I). Therefore, I(∼x) ≤t ∼SVB(x, I), or that

66 BASIC PROPERTIES OF JUSTIFICATION THEORY

SVB(x, I) ≤t ∼I(∼x) = I(x). This completes the proof that SVB(x, I) = I(x),
i.e., I is a B-model of JF .

To prove that the alternative branch evaluations for Bsp and Bst are equivalent,
we need a result similar to Theorem 2.6.20. But before we do that, we provide
a different characterisation of true facts in B′sp-models.

Proposition 3.4.3. Let I be a B′sp-model. For x ∈ Fd, I(x) = t if and only
if there exists a rule x← A such that for all a ∈ A, I(a) = t.

Proof. If I(x) = t, we have that SVB′sp(x, I) = t; hence there is a justification
J such that valB′sp(J, x, I) = t. Let A be the case J(x). Take y ∈ A. If x→ y is
part of an infinite branch in BJ (x), then it is obvious that I(y) = t. So assume
this is not the case, then we have that valB′sp(J, y, I) = t since every branch in
BJ(y) is part of a finite branch in BJ(x) that maps to t under I. Therefore,
SVB′sp(y, I) = t. Since I is a B′sp-model, we get that I(y) = t.

Assume now that there exists such a rule x← A. Since I(y) = t for all y ∈ A.
We have by the above proof that we have a true rule for y. By iteratively
adding these rules we get a locally complete justification J . We prove that
valB′sp(J, x, I) = t. Since every element of this justification is mapped to t under
I, this is straightforward. Now since I is a B′sp-model, we get that I(x) = t.

The right hand condition is exactly the same as SVBsp(x, I) = t. A similar
thing can be proven for false facts in B′sp-models.

Proposition 3.4.4. Let I be a B′sp-model. For x ∈ Fd, I(x) = f if and only
if for every rule x← A there is an a ∈ A such that I(a) = f .

Proof. The right-hand side is equivalent to SVBsp(x, I) = f . By consistency
of Bsp, this is equivalent to SVBsp(∼x, I) = t. By Proposition 3.4.3, this is
equivalent to I(∼x) = t; hence I(x) = f , which completes the proof.

These two propositions actually imply that every B′sp-model is a Bsp-model,
which is one direction of the equivalence.

Corollary 3.4.5. Every B′sp-model is a Bsp-model.

Proof. Take a B′sp-model I. Take any x ∈ Fd. We prove that SVBsp(x, I) =
I(x). If I(x) = t or I(x) = f , this follows from Propositions 3.4.3 and 3.4.4. So
assume I(x) = u. If SVBsp(x, I) = f , then by Proposition 3.4.4, we have that
I(x) = f . If SVBsp(x, I) = t, then by Proposition 3.4.3, we have that I(x) = t.
Both are not possible, hence SVBsp(x, I) = u.

ALTERNATIVE BRANCH EVALUATIONS 67

We can now prove a similar result to Theorem 2.6.20 for B′sp, but only in
B′sp-models.

Theorem 3.4.6. For every B′sp-model I, there is a locally complete justification
J such that valB′sp(J, x, I) = SVB′sp(x, I) for all x ∈ Fd.

Proof. Every x with SVB′sp(x, I) = t has a true rule x ← A. By combining
all these rules, we get a locally complete justification Jt such that for every
internal node y of Jt we get that valB′sp(Jt, y, I) = t. By a similar construction
we get a justification Ju. This is not a locally complete justification. However,
the justification Jt ↑ Ju is locally complete. For every internal node y of Jt we
have that valB′sp(Jt ↑ Ju, y, I) = valB′sp(Jt, y, I) = t. For every internal node
y of Ju we have that valB′sp(Jt ↑ Ju, y, I) = u. By extending the justification
Jt ↑ Ju to a complete justification, we do not change the value of the internal
nodes of Jt ↑ Ju; hence this provides a justification J such that valB′sp(J, y, I) =
SVB′sp(y, I) for all y ∈ Fd.

The existence of such a justification will not be used to prove the equivalence,
but for some later results. We can, however, prove the equivalence at this point.

Proposition 3.4.7. The two supported branch evaluations Bsp and B′sp are
equivalent.

Proof. By Corollary 3.4.5, it suffices to prove that any Bsp-model is a B′sp-
model. Take a Bsp-model I. By Theorem 2.6.20 and splittability of Bsp,
there is a justification J such that valBsp(J, x, I) = SVBsp(x, I) = I(x) for
all x ∈ Fd. For any rule x ← D in J , we have that I(x) ≤t I(z) for all
z ∈ D. Therefore, by iteratively applying this result, it holds that for all
leaves z in J reachable from x, we have that I(x) ≤t I(z). This means that
valB′sp(J, x, I) ≥t valBsp(J, x, I) = I(x), which implies that SVB′sp(x, I) ≥t I(x).
This holds for all x ∈ Fd; hence by Lemma 3.4.2 we have that I is a B′sp-model.

Also for B′st, a result similar to Theorem 2.6.20 holds, except only in B′st-models.

Theorem 3.4.8. For every B′st-model I, there is a locally complete justification
J such that valB′st(J, x, I) = SVB′st(x, I) for all x ∈ Fd.

Proof. Take ` ∈ L. Take x ∈ Fd such that SVB′st(x, I) = `; hence there is a
locally complete justification Jx such that valB′st(Jx, x, I) = `. Let J∗x be the
justification J restricted to the domain of elements y reachable from x through
a Jx-path of the same sign (this also means that x and y have the same sign).

68 BASIC PROPERTIES OF JUSTIFICATION THEORY

Note that leaves can have different signs. Every internal node y of J∗x has
valB′st(Jx, y, I) ≥t `. Indeed, the evaluation of every branch in BJx(y) is equal
to the evaluation of a path from x to y with the same sign concatenated with
this branch; hence this branch is evaluated to ≥t valB′st(Jx, x, I) ≥t `; hence
valB′st(Jx, y, I) ≥t `. Therefore, I(y) ≥t ` because I is a B′st-model. For every
leaf y of J∗x , we have I(y) ≥t ` as well. Indeed, if y is part of an infinite Jx-path
starting with x, then this is obvious. If y is not, then BJx(y) only contains
finite branches, and the result follows.

If we paste together all these J∗x for all x ∈ Fd such that SVB′st(x, I) = `, we
get a not necessarily locally complete justification J` such that every node y in
J` has I(y) ≥t `.

Moreover, Jt is locally complete. Our final justification is then Jt ↑ Ju ↑ Jf . By
construction everything works out.

In contrast with the completion equivalence, the proof of the stable equivalence
makes use of such a justification.
Proposition 3.4.9. The two stable branch evaluations Bst and B′st are
equivalent.

Proof. Take a Bst-model I. By Theorem 2.6.20 and splittability of Bst, there is
a justification J such that valBst(J, x, I) = SVBst(x, I) = I(x) for all x ∈ Fd.
For any finite branch b in J starting with x, we have for the first sign switch y,
that I(x) ≤t I(y) since valBst(J, x, I) = I(x). Therefore, by applying induction,
we have that I(x) ≤t I(last element of b). This means that J is a justification
for x with valB′st(J, x, I) ≥t I(x); hence SVB′st(x, I) ≥t I(x). Then I is a
B′st-model by Lemma 3.4.2.

Take a B′st-model I. By Theorem 3.4.8, there is a justification J such that
valB′st(J, x, I) = SVB′st(x, I) = I(x) for all x ∈ Fd. Take a finite branch b with
a first sign switch y. We prove that I(y) ≥t I(x) since that would prove that
valBst(J, x, I) ≥t I(x), and by Lemma 3.4.2 this proves that I is Bst-model.
If y is the first sign switch of an infinite branch b∗ starting with x, then
I(x) = valB′st(J, x, I) ≤t I(B′st(b∗)) = I(y). So we can assume that this is not
the case. It suffices to prove that I(B′st(b∗)) ≥t I(x) for every b∗ in BJ(y)
since it implies that I(y) = valB′st(J, y, I) ≥t I(x). The branch b∗ cannot be
infinite since then the infinite J-branch x→ · · · → b∗ has y as first sign switch.
If b∗ is finite, then there is a finite branch b′ in BJ (x) so that B′st(b∗) = B′st(b′)
and thus I(B′st(b∗)) ≥t valB′st(J, x, I) = I(x).

Both of these equivalences show that we can choose which branch evaluation to
use to find models.

LINKS BETWEEN DIFFERENT JUSTIFICATION MODELS 69

3.5 Links between Different Justification Models

In the previous chapter, we have already proved that BKK and Bwf have a single
model if the interpretation of the opens is fixed. In this section, we show the
relation between the models of the main justification semantics. Many results
in this section rely on Theorem 2.6.20. To get started, we have that every
BKK-model is a Bsp-model.

Proposition 3.5.1. A BKK-model is a Bsp-model.

Proof. Let I be a BKK-model of JF . By Theorem 2.6.20 and splittability of
BKK, there is a justification J such that valBKK(J, x, I) = SVBKK(x, I) = I(x).
By Lemma 3.4.2, it suffices to prove that valBsp(J, x, I) ≥t I(x) for all x ∈ Fd.

Since BKK is transitive, we have for every node y reachable from x in J
that I(x) = valBKK(J, x, I) ≤t valBKK(J, y, I) = I(y). The branch evaluation
Bsp always maps to a node reachable from the start node. Therefore,
valBsp(J, x, I) ≥t I(x), which concludes the proof.

If the interpretation of the opens is fixed, the unique BKK-model is the least
precise Bsp-model.

Proposition 3.5.2. If the interpretations of the opens is fixed, the unique
BKK-model is the ≤p-least Bsp-model.

Proof. Let IBKK be the unique BKK-model. Take a Bsp-model I and assume
by contradiction that IBKK 6≤p I. This means there is an x ∈ Fd such
that IBKK(x) 6= u and IBKK(x) 6= I(x). Because the supported value
under BKK only depends on the interpretation of the opens, we have that
u 6= IBKK(x) = SVBKK(x, IBKK) = SVBKK(x, I). If SVBKK(x, I) = t, then
there is a justification J with x as internal node without infinite branches. This
means that SVB′sp(x, I) = t. Then by Proposition 5.3.5, I(x) = SVBsp(x, I) = t,
which is a contradiction. So we can assume that SVBKK(x, I) = f . In that case,
any justification has a false branch, which under BKK means a finite branch
ending in a false branch. Again, this proves that SVB′sp(x, I) = f . Then by
Proposition 5.3.5, I(x) = SVBsp(x, I) = f , which is a contradiction. This proves
that IBKK ≤p I.

All Bst-models are Bsp-models.

Proposition 3.5.3. Every Bst-model is a Bsp-model.

70 BASIC PROPERTIES OF JUSTIFICATION THEORY

Proof. Take a Bst-model I. By Theorem 2.6.20 and splittability of Bst, there is a
justification J such that valBst(J, x, I) = SVBst(x, I) = I(x). Let y be a child of
x in J . We prove that I(x) ≤t I(y). If y ∈ Fo, then by definition of J , we have
that I(x) ≤t I(y). If y ∈ Fd, there are two possibilities: If y has a different sign
than x, then by definition of J , we have I(x) ≤t I(y). If y has the same sign as x,
then for every b ∈ BJ (y) we have that x→ b is in BJ (x) with B(b) = B(x→ b).
Therefore, I(y) = valBst(J, y, I) ≥t valBst(J, x, I) = I(x). Therefore, we have
proved that valBsp(J, x, I) ≥t I(x); hence SVBsp(x, I) ≥t I(x). Then, by
Lemma 3.4.2, I is a Bsp-model.

Well-founded models are also stable models as shown by the following
proposition.

Proposition 3.5.4. Any Bwf-model of JF is a Bst-model of JF .

Proof. Let I be a Bwf-model of JF . By Theorem 2.6.20 and splittability of
Bwf , there is a justification J such that valBwf (J, x, I) = SVBwf (x, I) = I(x).
By Lemma 3.4.2, it suffices to prove that SVBst(x, J, I) ≥t I(x) for all x ∈ Fd.

For any internal node y reachable from x in J we have that I(x) ≤t I(y). Indeed,
since Bwf is transitive, we have that for every b ∈ BJ(y) there is a branch
b′ in BJ(x) so that B(b) = B(b′). This means that I(y) = valBwf (J, y, I) ≥t
valBwf (J, x, I) = I(x).

For every b in BJ (x) we have that Bst(b) is mapped to an element in b or that
Bst(b) = Bwf(b). In both cases, we know that I(x) ≤t I(Bst(b)). This means
that I(x) ≤t valBst(J, x, I) ≤t SVBst(x, I). This concludes the proof that I is
a stable model of JF .

Of course, this means that well-founded models are supported models.

Corollary 3.5.5. Any Bwf-model is a Bsp-model.

Proof. Follows from Propositions 3.5.3 and 3.5.4.

If the interpretation of the opens is fixed, then there is only one well-founded
model, which is also a stable model. The following results states that in a stable
model, the well-founded supported value is the same in some cases.

Lemma 3.5.6. Let I be a Bst-model. If SVBwf (x, I) = f , then I(x) = f . If
SVBwf (x, I) = t, then I(x) = t.

LINKS BETWEEN DIFFERENT JUSTIFICATION MODELS 71

Proof. For the first, it suffices to prove that I(x) ≥t u implies SVBwf (x, I) ≥t u.
By Theorem 2.6.20 and splittability of Bst, there is a justification J such that
valBst(J, y, I) = SVBst(y, I) = I(y) for all defined facts y.

So take a defined x with I(x) ≥t u. The only way that we have valBwf (J, x, I) =
f is when BJ(x) contains a branch b with a positive tail. Let y1, . . . , yn be
the sign switches in b and y0 = x. It is easy to see that valBst(J, yn, I) = f
since BJ(yn) contains a positive branch. For i with 0 ≤ i < n we have that
I(yi) = SVBst(yi, I) = valBst(J, yi, I) ≤t I(yi+1). Therefore, we obtained that
I(x) = f , which is a contradiction. Therefore, we have that I(x) ≥t u implies
that SVBwf (x, I) ≥t u.

The second statement follows by the consistency of Bwf : if SVBwf (x, I) = t,
then SVBwf (∼x, I) = f . By the first statement, this means that I(∼x) = f ;
hence I(x) = t.

This results implies that the unique well-founded model with a given
interpretation of the opens is the least precise stable model with the same
interpretation of the opens.

Proposition 3.5.7. If the interpretation of the opens is fixed, the unique
Bwf-model is the ≤p-least Bst-model.

Proof. Let IBwf be the unique Bwf-model and let I be any Bst-model.
Lemma 3.5.6 states that if SVBwf (x, I) 6= u, then I(x) = SVBwf (x, I). Therefore,
IBwf (x) = SVBwf (x, I) ≤p SVBst(x, I) = I(x). Hence, IBwf ≤p I for all stable
models I. Then Proposition 3.5.4 finishes the proof.

This shows that justification theory can capture least fixpoint semantics. Similar
results exist for Bcst and Bcwf .

Proposition 3.5.8. Every Bcwf-model is a Bcst-model. Every Bcst-model is a
Bsp-model. If the interpretation of the opens is fixed, then the unique Bcwf-model
is the ≤p-least Bcst-model.

Proof. The proof that every Bcst-model is a Bsp-model is exactly the same as
the proof of Proposition 3.5.3. The proof of Proposition 3.5.4 is also a valid for
proving that every Bcwf -model is a Bcst-model. Lemma 3.5.6 also holds for Bcst
and Bcwf . And the proof of Proposition 3.5.7 also carries to Bcst and Bcwf .

Proposition 3.5.9. If the interpretation of the opens is fixed, then Bst-models
are ≤t-minimal Bsp-models.

72 BASIC PROPERTIES OF JUSTIFICATION THEORY

Proof. Let I be a Bst-model. Assume by contradiction that there is a Bsp-
model I ′ with I ′ <t I. This means that for all y ∈ F+, I ′(x) ≤t I(x) and
for all y ∈ F−, I ′(x) ≥t I(x). Since I ′ 6= I, there exist an x ∈ F− ∩ Fd with
I ′(x) >t I(x). Let ` = I ′(x). Since I ′ is a Bsp-model, there is a rule x← A so
that for all a ∈ A, I ′(a) ≥t `. Similarly, such rules exists for a ∈ A. By induction,
these rules can be combined into a justification J so that for all facts y in J
we have I ′(y) ≥t `. This justification does not have infinite positive branches
starting with x, since x is negative. Therefore, valBst(J, x, I ′) ≥t ` = I ′(x).
All branches of J are either mapped to a positive fact or an open fact. For
positive facts y, we know that I ′(y) ≤t I(y) and for open facts, I ′(y) = I(y).
This means that valBst(J, x, I) ≥t valBst(J, x, I ′). Now, I is a Bst-model; hence
I(x) ≥t valBst(J, x, I) ≥t valBst(J, x, I ′) ≥t I ′(x), that is, I(x) ≥t I ′(x). This
contradicts that I ′(x) >t I(x); hence there is no Bsp-model I ′ with I ′ <t I.

Proposition 3.5.10. If the interpretation of the opens is fixed, then Bcst-models
are ≤t-maximal Bsp-models.

Proof. Let I be a Bcst-model. Assume by contradiction that there is a Bsp-
model I ′ with I ′ >t I. This means that for all y ∈ F+, I ′(x) ≥t I(x) and
for all y ∈ F−, I ′(x) ≤t I(x). Since I ′ 6= I, there exists an x ∈ F+ ∩ Fd with
I ′(x) >t I(x). Let ` = I ′(x). Since I ′ is a Bsp-model, there is a rule x← A so
that for all a ∈ A, I ′(x) ≥t `. Similarly, such rules exists for a ∈ A. By induction,
these rules can be combined into a justification J so that for all facts y in J
we have I ′(y) ≥t `. This justification does not have infinite negative branches
starting with x since x is positive. Therefore, valBcst(J, x, I ′) ≥t ` = I ′(x). All
branches of J are either mapped to a negative fact or an open fact. For negative
facts y, we know that I ′(y) ≤t I(y) and for open facts I ′(y) = I(y). This
means that valBcst(J, x, I) ≥t valBcst(J, x, I ′). Now, I is a Bcst-model; hence
I(x) ≥t valBcst(J, x, I) ≥t valBcst(J, x, I ′) ≥t I ′(x), that is, I(x) ≥t I ′(x). This
contradicts that I ′(x) <t I(x); hence there is no Bsp-model I ′ with I ′ >t I.

3.6 Conclusion

Proving that a particular branch evaluation is graph-like consistent is a difficult
task. This is even true for tree-like justifications as shown by the length of the
proofs in the PhD thesis of Denecker (1993). There are many different ways
to go about proving it. One way is to directly construct a good justification
for x if SV(∼x, I) = f . It requires a great deal of care to make sure everything
works out with your construction. We used the pasting result from the previous
chapter numerous times for proving that the main branch evaluations are graph-
like consistent. And we used it even more in the sections on the relations

CONCLUSION 73

between the various semantics. These results, however, are important for the
significance of justification semantics. We have seen that splittable branch
evaluations have a great deal of interesting properties that can be exploited to
construct justifications. However, as illustrated by Bex, splittability does not
imply consistency or graph-reducibility. In particular, we have not yet identified
properties on branch evaluations that imply consistency. In the next chapter,
we take a look at a few properties that do this, but only in a finite setting,
which for practical applications often suffices.

In this chapter, we also settled the differences between alternative definitions
of supported and stable branch evaluations. Apart from that, we showed a
number of relations between different justification semantics. Most of these
results are already known in other fields such as logic programming. However,
we should note that these relations in justification theory are deeper. This is
because justification theory is more general than any semantics it can capture
due to the presence of open facts, and because justification theory allows for
an infinite number of rules for a fact with potentially an infinite number of
elements in the body.

Many of the proofs were very similar, so some future work might analyse these
proofs and extract some properties between two branch evaluations B1 and B2,
so that every B1-model is a B2-model. Something else that can be investigated
is if B1 is parametric, then when fixing the interpretation of the opens will the
unique B1-model be a ≤p-least B2-model, akin to the relation between Bsp and
BKK, between Bst and Bwf , and between Bcst and Bcwf .

Chapter 4

Exploiting Game Theory for
Analysing Justifications

4.1 Introduction

In the previous chapter, we proved the graph-like consistency of some important
branch evaluations. The proofs, however, are rather complex. This means that
if a new branch evaluation is invented, quite a bit of work has to be done to
ensure the associated semantics is consistent. What we would like instead is
an easy to check condition on the branch evaluation such that consistency is
ensured. The results in this chapter build on existing work in the context of
antagonistic games over graphs (Gimbert and Zielonka, 2005). We establish
a connection between justification theory and game theory, and exploit it to
transfer existing results on antagonistic games over graphs to justification theory.
The main contributions of this chapter are as follows: We show that justifications
induce games in the sense of Gimbert and Zielonka (2005), thereby bridging a
gap between non-monotonic reasoning and game theory. Inspired by Gimbert
and Zielonka (2005), we develop two criteria for branch evaluations, namely
monotonicity and selectivity, and we show for branch evaluations satisfying
these conditions in finite justification systems, graph-like consistency holds.
While this means that our results do not apply, e.g., to infinitary semantics,
for practical applications finiteness usually suffices. Finally, we show that all
branch evaluations corresponding to the major semantics of logic programming
are indeed selective and monotone. As a consequence, with our results, proving
that a branch evaluation is graph-like consistent is much easier: all that is

75

76 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

needed is to show that it is monotone and selective. This is in sharp contrast
with the proofs of graph-like consistency of Chapter 3 and the work on tree-like
justification by Denecker (1993), which span at least a couple of pages for each
semantics.

As justification theory has its root in logic programming, this chapter establishes
a link between logic programming and game theory. This chapter is not the first
time that a relation between logic programming and game theory is established.
However, the relation in this chapter is different than existing results. The
discussion on related work is postponed to the conclusion of this chapter.

The text of this chapter is solely based on (Marynissen et al., 2020), but the
proofs and a few examples are new material. A few results in case of infinite
games are also added.

4.2 Game Theory

Game theory is a very versatile field. Many different types of games are
considered. In this section, we define the games we are considering: antagonistic
games over graphs (Gimbert and Zielonka, 2005). Our formalisation slightly
differs from the one of Gimbert and Zielonka (2005), but the differences are
minor and non-fundamental. Intuitively a game unfolds as follows: There are
two players T and F, with opposite interests. These players are called the true
and false player. Let G be a directed graph in which each vertex is owned either
by T or by F. Initially, a stone is placed on some vertex in G. At each step,
the player owning the vertex with the stone moves the stone along an outgoing
edge. The players interact in this way ad infinitum or until the stone is on a
vertex without outgoing edges.

Definition 4.2.1. A game graph is a quadruple G = (S, ST, SF, E) where ST
and SF form a partition of the set of states S, and E ⊆ S × S. For a transition
e = (s, t) ∈ E, the states s and t are respectively called the source and target of
e (denoted source(e) and target(e)). For a state s ∈ S, sE is the set of outgoing
edges from s. A path in G is a non-empty finite or infinite sequence of states
p = s0s1s2 . . . such that for all i ≥ 0, (si, si+1) ∈ E. We define source(p) to be
equal to s0. If p is finite, then target(p) is the last state of p. If a path consists
of a single state s, we call it empty. We denote the empty path in s by λs. The
set of finite paths in G (including the empty paths) is denoted by PathG.

Players do not necessarily alternate plays, but in what follows we will assume
that. Note that paths of a game graph are reminiscent of branches in a

GAME THEORY 77

justification frame. When this game is played, the trajectory of the stone is a
path of special interest.
Definition 4.2.2. Let G be a game graph. A play in G is either an infinite
path in G or a finite path in G that ends in a state without outgoing edges.
The set of plays in G is denoted by PlayG.

Note that a play of this game can be infinite and thus cannot be played in real
life. In its most general form, games of this form do not have a winner, but
instead, each player has a preference relation indicating which plays they prefer
over others. We will see later that plays correspond to branches. The true
player would like branches to be evaluated to t and the false player would like
branches to be evaluated to f .
Definition 4.2.3. Let G be a game graph. A preference relation for a player
P is a total preorder (i.e., a reflexive and transitive relation such that for all
plays p and q, p vP q or q vP p holds) over PlayG.

Intuitively, if p vP q, then the player P prefers the play q over p. If both p vP q
and q vP p hold, then we say that p and q are equivalent with respect to vP .
Since the players T and F have opposite interests, we will assume that p vT q
if and only if q vF p. A game graph combined with the preference relation for
the players is setup for our games.
Definition 4.2.4. A game is a tuple G = (G,vT), where G is a game graph
and vT is a preference relation for T. We define vF to be the inverse relation
of vT.

Two-player games in which the players have exactly opposite goals are called
antagonistic. When playing, players usually follow some strategy to try getting
a play that is as preferable as possible. That is, their incentive is to get a
play that is most preferable. In game theory, many different type of strategies
exist. We are interested in just two types of strategies. The first type takes into
account the entire play history to determine the next move. These strategies
are called general. For the second type of strategy, the next move is made solely
on the information where the stone is currently at. Since the strategy only
depends on the position of the stone, they are called positional strategies. To
execute such a strategy you do not need to remember the previous states the
stone has been. Therefore, they are also called memoryless strategies. Note
that a positional strategy is also a general strategy, but a less ‘smart’ one since
it just does not use the memory of the previous states the stone has visited.

The difference between these two types of strategies is very similar to the
distinction between graph-like and tree-like justifications. Indeed, every graph-
like justification is also a tree-like justifications. Also, storing the strategy in

78 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

memory, the positional ones will take much less space just as with graph-like
justifications. Let us now formalise these strategies.

Definition 4.2.5. Let G = (S, ST, SF, E) be a game graph. A general strategy
for a player P in G is a function σP : {p ∈ PathG | target(p) ∈ SP } → E such
that σP (p) ∈ target(p)E. The set of general strategies for player P is denoted by
Sg(P). A positional (or memoryless) strategy for a player P in G is a mapping
σP : SP → E such that σP (s) ∈ sE for all s ∈ SP . The set of positional
strategies for P is denoted by Sp(P).

As mentioned before a positional strategy can be seen as a general strategy. In
formal terms, it goes as follows. We can embed Sp(P) into Sg(P) by mapping a
positional strategy σ to a general strategy that maps s0 . . . sn to σ(sn). Slightly
abusing notation, we thus have that Sp(P) ⊆ Sg(P).

When a player sticks to a strategy, many different plays can result because of
the other player. Such plays are called consistent with that strategy. This is
formalised below.

Definition 4.2.6. Let G = (S, ST, SF, E) be a game graph. A finite or infinite
path p = s0s1s2 . . . in G is consistent with a general strategy σP for a player P
if σP (s0 . . . si) = (si, si+1) whenever si ∈ SP . It is consistent with a positional
strategy σP for player P if σP (si) = (si, si+1) whenever si ∈ SP .

If both players stick to their strategy, then there is only one play that is
consistent with both strategies. This is because strategies are deterministic.
Given a state s and strategies σ and τ for players T and F, there exists a unique
play in G starting with s consistent with both σ and τ . We denote this play by
pG(s, σ, τ). If we look at all the plays starting with a state s consistent with a
strategy, then they form interesting structures.

Definition 4.2.7. Let σ be a general strategy for a player P . The play tree for
σ in x is the tree with nodes labelled by states whose maximally long branches
correspond to the plays starting with x consistent with σ.

Let σp be a positional strategy for a player P . The play graph for σp in x is the
subgraph of the game graph consisting of all edges occurring in plays starting
with x consistent with σp.

The observant reader might already have noticed that this is very similar to
the distinction between tree-like and graph-like justifications. This is further
worked out in the next section.

Under the assumption that T and F are rational agents, trying to maximise
the value of the resulting play in their preference relation (vT respectively vF),

JUSTIFICATIONS AS STRATEGIES 79

some strategies will not be followed. For example, if player T follows a strategy
σ that is good if F follows strategy τ , but very bad if F follows strategy τ ′,
then T will not follow that strategy because he knows that F will follow τ ′.
Taking this idea to the next level, the players tend toward strategies such that
neither player has an incentive to unilaterally deviate from their strategy. In
game theoretic terms, these are called Nash equilibria and are often regarded as
solutions to games. Note that the strategies we consider completely determine
how the game is played. In regular game theory, these are called pure strategies.
Often, Nash equilibria are so-called mixed strategies, which are assignments of
probabilities to pure strategies. In this text, we only consider pure strategies.
These pure Nash equilibria are formally defined as follows.

Definition 4.2.8. Let G = (S, ST, SF, E) be a game graph and let σ∗ and τ∗
be general strategies for respectively T and F. The pair (σ∗, τ∗) is optimal if
for all states s ∈ S and all general strategies σ and τ for respectively T and F
it holds that

pG(s, σ, τ∗) vT pG(s, σ∗, τ∗) vT pG(s, σ∗, τ).

As already mentioned, in an optimal pair (σ∗, τ∗) of strategies, no player can
benefit by changing only their strategy. So if T changes their strategy σ∗

to σ, then pG(s, σ, τ∗) vT pG(s, σ∗, τ∗), or that pG(s, σ, τ∗) wF pG(s, σ∗, τ∗);
hence F has an advantage. Similarly, if F changes their strategy τ∗ to τ , then
pG(s, σ∗, τ∗) vT pG(s, σ∗, τ), and thus T has an advantage.

Finding optimal pairs has been a common thread in game theory. This is no
different for us. In this chapter, we are most interested in the existence of
such pairs, not per se the actual values of the strategies. In particular, we are
interested whether an optimal pair of positional strategies exist. We mean an
optimal pair (σ∗, τ∗) of strategies like the definition above such that σ∗ and τ∗
are positional (recall that every positional strategy is a general one as well).

4.3 Justifications as Strategies

In this section, we show how to derive an antagonistic game from a justification
system. We first introduce a construction and then show how strategies in the
constructed game correspond to justifications of the original system. This then
translates to the relation between supported values and the value of the play
determined by an optimal pair of strategies, which serves as a tool to shed light
on the consistency problem from a different angle.

The following serves as a running example for this section.

80 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

Example 4.3.1. Let JF = 〈F ,Fd, R〉 with Fd = {p, q,∼p,∼q}, Fo = L ∪
{r,∼r}, and R the complementation of p← ∼q

q ← ∼p
p← r

 .

N

4.3.1 Games Associated to justifications

Let JF be a justification frame. For any x ∈ Fd and rule x ← A ∈ R,
we introduce new symbols rx←A, which we call rule symbols. In the game
associated with a justification system, T owns the defined facts and F owns the
rule symbols.

Definition 4.3.2. The game graph GJF = (S, ST, SF, E) corresponding to the
justification frame JF is defined by ST = F , SF = {rx←A | x ∈ Fd, x← A ∈ R},
S = ST ∪ SF, and for any x ∈ Fd, x ← A ∈ R, and y ∈ A we have edges
(x, rx←A) and (rx←A, y).

Notice that the open facts are also owned by T, but these do not have outgoing
edges in the game graph, so essentially they are not owned by any player.

Example 4.3.3. For the justification frame from Example 4.3.1, the game
graph (without isolated nodes) is visualised below.

p

rp←∼q

rp←r

r∼q

r∼q←p ∼p

r∼p←q,∼r∼r q

rq←∼p

N

It is worth noting that any play in such a game will alternate between rule
symbols and elements in F , and so the players T and F alternate turns. The
outgoing edges of a defined fact x will go to rule symbols with x as head.
Similarly, the outgoing edges of a rule symbol rx←A goes to elements in the
body of the corresponding rule.

Therefore, a strategy for T chooses a rule for every defined fact and a strategy
for F chooses for each rule an element from its body. When the strategies

JUSTIFICATIONS AS STRATEGIES 81

for both T and F are chosen, essentially the true player will be choosing a
justification, while the false player chooses a branch in that justification.

Any play in the game graph corresponds to a JF -branch as follows: Let s0s1 . . .
be a play in GJF . By removing the rule symbols, we get a sequence in F , which
is a JF-branch. Therefore, any play p ∈ PlayGJF corresponds to a JF-branch
bp. We can use these branches to define a preference relation for the player T,
which together with the game graph defines a game.

Definition 4.3.4. Let JS = 〈F ,Fd, R,B〉 be a justification system and I an F -
interpretation. The justification game GJS,I is the antagonistic game (GJF ,v)
such that for all p, q ∈ PlayG, p v q if and only if I(B(bp)) ≤t I(B(bq)).

So far, we have shown only that a justification system can be transformed into
an antagonistic game. Next, we establish semantic relations.

4.3.2 Strategies are Justifications

We have seen that strategies give rise to play graphs or trees. These structures
are very similar to justifications except for the presence of rule symbols. This
relation is explored in this section. We start by the correspondence of strategies
for T and justifications.

Strategies for T Are Justifications

Intuitively, a strategy for T chooses a rule for every defined fact, which is exactly
what a justification does. The following propositions make the relation between
strategies for T and justifications precise.

Proposition 4.3.5. Let σ be a positional (respectively general) strategy for T
in the game graph GJF . Take x ∈ Fd. The play graph (respectively play tree) of
σ in x where all the rule symbols are filtered out1 is a locally complete graph-like
(respectively tree-like) justification with x as root in the justification frame JF .
We use the symbol Jσ(x) for this justification.

Proof. Every leaf node of Jσ(x) is not defined, because plays never stop in
defined nodes; hence it is locally complete. We take an arbitrary internal node
n with label y in Jσ(x). This means that y ∈ Fd. We prove that the set of

1By construction, there are no edges between rule symbols. Therefore, filtering is removing
all edges to and from rule symbols and adding edges (y, z) if in the original graph there are
edges (y, r) and (r, z) for some rule symbol r.

82 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

labels of the children of n are a case of y. By definition, y ∈ ST, hence there
is only one outgoing transition from n in the play graph. This transition goes
to a node m with a rule symbol ry←A ∈ SF as label. This means that for all
a ∈ A that there is an edge in the play graph from m to a node na labelled a.
This means for all a ∈ A that (n, na) is an edge in Jσ(x) and that these are the
only edges starting with n, which proves that Jσ(x) is a justification. Since the
play graph/tree has a node labelled x as root, so does Jσ(x).

Example 4.3.6. Let JF be the justification frame from Example 4.3.1 and
let σ be a positional strategy for T that maps p to rp←∼q. The justifications
Jσ(p) and Jσ(∼p) are depicted below from left to right.

p ∼q ∼pq ∼r

N

The opposite also holds.

Proposition 4.3.7. Any locally complete graph-like (respectively tree-like)
justification J with root x is equal to some Jσ(x) for a positional (respectively
general) strategy σ for T.

Proof. We define a strategy σ for T. Let p be a finite path in GJF such that
source(p) = x and target(p) ∈ ST. Then by filtering out the rule symbols, we
get a path p∗ in JF . It suffices to define σ(p) only for paths p such that p∗ is a
path in J . Since J is a justification, the set of labels of the children of target(p)
form a case A for the label y of target(p). We define σ(p) = ry←A. It is clear
that Jσ(x) is equal to J .

Before continuing let use note that the preference relations in games induced
by justification systems, only have three equivalence classes. One for each value
in L. Therefore, to simply notation, we introduce a utility function defined as
follows:

u(x, σ, τ) := I(B(bpG(x,σ,τ))).

If u(x, σ, τ) = t, then we say that T has won the game. If u(x, σ, τ) = f , then
F wins the game. And the game ‘ends’ in a draw when u(x, σ, τ) = u.

The correspondence of justifications and strategies for T raises the question
what the role of F is. Intuitively, T chooses for each node in the justification a
set of children corresponding to a rule and F then chooses for each such node a
single child. This means that F actually chooses a branch in the justification
determined by a strategy of T. Moreover, the value of that branch is equal to

JUSTIFICATIONS AS STRATEGIES 83

u(x, σ, τ). The reverse is also true, any branch in Jσ(x) corresponds to a strategy
for F. An important remark is that branches in graph-like justifications need
not be positional (they can contain both y → u and y → v for u 6= v; in this
case, u and v must be elements of the same case). Taking these considerations
into account, we can rephrase the value of a justification in terms of strategies,
where T has to play positionally to obtain graph-like justifications but F is
always allowed to use general strategies.

Lemma 4.3.8. Let σ be a positional (respectively general) strategy for T.
For any interpretation I and x ∈ Fd, it holds that val(Jσ(x), x, I) =
minτ∈Sg(F) u(x, σ, τ), where min is with respect to ≤t.

Proof. Follows from the correspondence between general strategies for F and
branches of Jσ(x).

Remark 4.3.9. Even for a positional strategy σ, it is the minimum over all
general strategies τ . N

By Proposition 2.2.21, the supported value of x only depends on the value
of locally complete justifications with x as root. Therefore, if every locally
complete justification with x is of the form Jσ(x) for some strategy σ for T,
then we can calculate the supported value of x only using the values of x in
Jσ(x) for strategies σ for T. This is exactly what Proposition 4.3.7 states.
As a consequence, the supported value can be computed using play values of
strategies.

Theorem 4.3.10. For any x ∈ Fd and interpretation I, the following holds

SVt(x, I) = max
σ∈Sg(T)

min
τ∈Sg(F)

u(x, σ, τ)

SVg(x, I) = max
σ∈Sp(T)

min
τ∈Sg(F)

u(x, σ, τ)

where max and min are with respect to ≤t.

Proof. By Proposition 2.2.21 the supported value of x is equal to the maximum
of the values of locally complete justifications with root x. By Proposition 4.3.7,
these are exactly the justifications of the form Jσ(x) with σ a strategy for T.
By using Lemma 4.3.8, we then conclude the proof.

Strategies for F Are Also Justifications

We have seen how strategies for T correspond to justifications and that strategies
for F correspond to branches in those justifications. We used this information

84 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

to calculate the supported value using play values. However, in this section we
show that also strategies for F correspond to justifications, but for negation of
facts. This is a crucial step towards proving the consistency property, because
we can then relate the supported values of x and ∼x. In order to do so, our
justification frames needs to be complementary, which, as mentioned before, is
a condition satisfied in all practical applications of justification theory. But in
this case, we will demand the stronger property that our justification frames
are fixed under complementation. Every complementary frame is equivalent
to a justification frame fixed under complementation by Proposition 2.3.13.
Therefore, demanding this will not reduce the strength of the result below.

Let τ be a strategy for F. This means that τ chooses for every rule symbol
ry←A an element from A. This corresponds to a selection function S for y. Since
our justification frame is fixed under complementation, this selection function
provides a rule for ∼y: ∼y ← ∼ Im(S). Therefore, the strategy τ indirectly
chooses a rule for every ∼y, which thus again induces a justification.
Proposition 4.3.11. Let JF be a justification frame fixed under complement-
ation and τ a positional (respectively general) strategy for F in the game graph
GJF and take x ∈ Fd. The play graph (respectively play tree) of τ in x where all
the rule symbols are filtered out and all node’s labels are inverted (y replaced by
∼y, note that ∼(∼y) = y), is a locally complete graph-like (respectively tree-like)
justification with ∼x as root in the justification frame JF . We write Jτ (x) for
this justification.

Proof. By construction, Jτ (x) is locally complete. Take an internal node n of
Jτ (x) with label y, hence y ∈ Fd ∩ ST. This node corresponds to a node n∗
with label ∼y. This means that in the play tree of τ there is an edge from n∗

to a node m∗∼y←A with label r∼y←A for all rules of the form ∼y ← A. Since
r∼y←A ∈ SF, in the play tree of τ there is exactly one outgoing edge from
m∗∼y←A to a node labelled a ∈ A. This defines a selection function S for ∼y.
Therefore, in Jτ (x) the set of labels of the children of n is exactly ∼ Im(S).
Since JF is a complementary justification frame, it means that Jτ (x) is a
justification. That Jτ (x) has ∼x as root follows directly from the fact that x is
a root of the play graph/tree.

Example 4.3.12. Let JF be the justification frame from Example 4.3.1. Let
τ be the positional strategy for F that maps r∼p←q,∼r to ∼r. The justifications
Jτ (p) and Jτ (∼p) are given below from left to right.

∼pq ∼r p r

N

JUSTIFICATIONS AS STRATEGIES 85

Again, this raises the question of what is the role of the strategy of T in this
justification Jτ (x). In this correspondence, a strategy τ for F chooses for each
x a rule ∼x← A. A strategy σ for T on the other hand chooses for each ∼x a
rule ∼x ← B. Since JF is fixed under complementation, there is a selection
function S of x such that Im(S) = ∼B. Hence σ chooses an element from B for
every x← B. In contrast, for every y ∈ A, we have by Proposition 3.2.1 that
there is a rule x← B such that ∼y ∈ B. So the appropriate strategy σ for T
will choose ∼y from B. Hence we can view σ as choosing the negation of an
element of the body of each rule ∼x← A. Therefore, any general strategy σ
for T correspond to the negation of a branch in Jτ (x) as formally shown by the
following two lemmas.

Lemma 4.3.13. Let JF be a justification frame fixed under complementation
and τ a positional (respectively general) strategy for F, and let σ be a general
strategy for T. The branch corresponding to the play pG(x, σ, τ) is the negation
of a branch in Jτ (x).

Proof. Take a general strategy σ for T. Let p = s0s1s2 . . . be the play pG(x, σ, τ).
Since rule symbols in p occur at the odd indices, we need to prove that s0s2s4 . . .
is the negation of a Jτ (x) branch. Take an even i. Then si = y and si+2 = z
for some y, z ∈ Fd. It suffices to prove that ∼y → ∼z is a path in Jτ (x). The
strategy τ chooses for each rule symbol ry←A an element a ∈ A. This is the
same as a selection function S of y. Since JF is fixed under complementation,
this means that ∼y ← ∼ Im(S) is a rule. This is exactly the rule for ∼y in
Jτ (x). Therefore, it suffices to prove that ∼z ∈ ∼ Im(S). The strategy σ maps
s0 . . . si to a rule y ← B, and the strategy τ maps s0 . . . siry←B to z; hence
z ∈ S(y ← B). This means that ∼z ∈ ∼ Im(S), finishing the proof.

The negation of each branch in Jτ (x) can be constructed using plays consistent
with τ .

Lemma 4.3.14. Let JF be a justification frame fixed under complementation
and τ a positional (respectively general) strategy for F. Every branch in Jτ (x)
starting with ∼x is the negation of a branch corresponding to the play pG(x, σ, τ)
for some general strategy σ for T.

Proof. Take a Jτ (x)-branch b : ∼x0 → ∼x1 → · · · with x0 = x. This
corresponds to a path p = x0rx0←A0x1rx1←A1 . . . in the play graph (tree)
of τ . Note that τ(x0rx0←A0 . . . xirxi←Ai) = xi+1. Take any general strategy σ
for F such that σ(x0rx0←A0 . . . xi−1rxi−1←Ai−1xi) = rxi←Ai . Then p is equal
to pG(x, σ, τ), finishing the proof.

86 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

These results allow us to view the value of Jτ (x) with respect to ∼x in terms of
strategies.

Lemma 4.3.15. Let JF be a justification frame fixed under complementation
and τ a positional (respectively general) strategy for F. For any x ∈ Fd and in-
terpretation I, it holds that val(Jτ (x),∼x, I) = minσ∈Sg(T) I(B(∼bpG(x,σ,τ))).

The value of I(B(∼bpG(x,σ,τ))) cannot be simplified further in general. However,
when our branch evaluation respects negation we can simplify.

Lemma 4.3.16. Let JF be a justification frame fixed under complementation,
B a branch evaluation that respects negation, and τ a positional (respectively
general) strategy for F. For any x ∈ Fd and interpretation I, it holds that
val(Jτ (x),∼x, I) = ∼maxσ∈Sg(T) u(x, σ, τ).

Proof. Since B respects negation, we have I(B(∼bpG(x,σ,τ))) = ∼u(x, σ, τ). The
result follows by Lemma 4.3.15 and by noting that ∼maxσ∈Sg(T) u(x, σ, τ) =
minσ∈Sg(T)∼u(x, σ, τ).

This result allows to view the supported value in yet a different light using the
justification induced by strategies for F. However, we first need to following
result.

Proposition 4.3.17. Let JF be a justification frame fixed under complement-
ation. Any locally complete graph-like (respectively tree-like) justification with
∼x as root is equal to Jτ (x) for some positional (respectively general) strategy
τ for F.

Proof. The proof is completely similar to the proof of Proposition 4.3.7.

Completely analogously to Theorem 4.3.10, we thus obtain a method to compute
the supported value of the negation of a fact in terms of strategies.

Theorem 4.3.18. Let JF be a justification frame fixed under complementation
and B a branch evaluation that respects negation. For any x ∈ Fd and
interpretation I, the following holds

SVt(∼x, I) = ∼ min
τ∈Sg(F)

max
σ∈Sg(T)

u(x, σ, τ)

SVg(∼x, I) = ∼ min
τ∈Sp(F)

max
σ∈Sg(T)

u(x, σ, τ)

CONSISTENCY REVISITED 87

Proof. By Proposition 2.2.21 the supported value of ∼x is equal to the
maximum of the values of locally complete justifications with ∼x as root.
By Proposition 4.3.17, these are exactly the justifications of the form
Jτ (x) with τ a strategy for F. Using Lemma 4.3.16 and by noting
that maxτ∈S(F)∼maxσ∈Sg(T) u(x, σ, τ) = ∼minτ∈S(F) maxσ∈Sg(T) u(x, σ, τ)
concludes the proof.

4.4 Consistency Revisited

4.4.1 Minimax

In the previous section we related the supported value to play values. In
particular, Theorem 4.3.10 provides a characterisation for SV(x, I) in terms of
play values. On the other hand, Theorem 4.3.18 provides a characterisation for
∼SV(∼x, I). The consistency of a justification system is exactly the equality
between the two characterisations.

Corollary 4.4.1. Let JF be a justification frame fixed under complementation.
If for all x ∈ Fd

max
σ∈Sg(T)

min
τ∈Sg(F)

u(x, σ, τ) = min
τ∈Sg(F)

max
σ∈Sg(T)

u(x, σ, τ),

then JS is tree-like consistent. If for all x ∈ Fd

max
σ∈Sp(T)

min
τ∈Sg(F)

u(x, σ, τ) = min
τ∈Sp(F)

max
σ∈Sg(T)

u(x, σ, τ),

then JS is graph-like consistent.

Such equalities in game theory are called minimax problems. A famous theorem
by John Nash states that every zero-sum two-player game satisfies such equalities.
With zero-sum, we mean that one player’s gain is equivalent to the other player’s
loss. Because the preference relation of T and F are opposite, our games can be
considered zero-sum games. However, this theorem was proved in the context of
mixed strategies. Furthermore, the equation for graph-like consistency above is
not exactly a minimax problem due to slight differences between the index sets
(Sp vs Sg). One direction of the minimax is a fairly well-known mathematical
identity:

max
a∈A

min
b∈B

f(a, b) ≤ min
b∈B

max
a∈A

f(a, b).

This is analogous with the easy direction of the consistency problem, see
Theorem 2.3.18. Minimax problems in game theory are equivalent to the

88 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

existence of optimal strategies. This is also the case for our games. Let us first
show what the values of optimal plays are.

Proposition 4.4.2. If a pair (σ∗, τ∗) of general strategies is optimal, then

u(x, σ∗, τ∗) = max
σ∈Sg(T)

min
τ∈Sg(F)

u(x, σ, τ) = min
τ∈Sg(F)

max
σ∈Sg(T)

u(x, σ, τ),

where max and min are with respect to the order ≤t. If (σ∗, τ∗) is also positional,
then

u(x, σ∗, τ∗) = max
σ∈Sp(T)

min
τ∈Sg(F)

u(x, σ, τ) = min
τ∈Sp(F)

max
σ∈Sg(T)

u(x, σ, τ).

Proof. Assume (σ∗, τ∗) is an optimal pair of strategies. By optimality we have
that for all general strategies τ that pG(x, σ∗, τ∗) vT pG(x, σ∗, τ). This is the
same as u(x, σ∗, τ∗) ≤t u(x, σ∗, τ). Therefore,

u(x, σ∗, τ∗) ≤t min
τ∈Sg(F)

u(x, σ∗, τ) ≤t max
σ∈Sg(T)

min
τ∈Sg(F)

u(x, σ, τ).

On the other hand, by optimality we have for all general strategies σ
that pG(x, σ, τ∗) vT pG(x, σ∗, τ∗), which is the same as u(x, σ, τ∗) ≤t
u(x, σ∗, τ∗). Therefore, maxσ∈Sg(T) u(x, σ, τ∗) ≤t u(x, σ∗, τ∗). We also have
that minτ∈Sg(F) u(x, σ, τ) ≤t u(x, σ, τ∗); hence that

max
σ∈Sg(T)

min
τ∈Sg(F)

u(x, σ, τ) ≤t max
σ∈Sg(T)

u(x, σ, τ∗) ≤t u(x, σ∗, τ∗).

So we proved that u(x, σ∗, τ∗) = maxσ∈Sg(T) minτ∈Sg(F) u(x, σ, τ).

By optimality we have that u(x, σ, τ∗) ≤t u(x, σ∗, τ∗) for all general strategies
σ. This means that maxσ∈Sg(T) u(x, σ, τ∗) ≤t u(x, σ∗, τ∗). We have that

min
τ∈Sg(F)

max
σ∈Sg(T)

u(x, σ, τ) ≤t max
σ∈Sg(T)

u(x, σ, τ∗) ≤t u(x, σ∗, τ∗).

Again by optimality we have for all general strategies τ that u(x, σ∗, τ∗) ≤t
u(x, σ∗, τ). This means that u(x, σ∗, τ∗) ≤t minτ∈Sg(F) u(x, σ∗, τ). We also
have that u(x, σ∗, τ) ≤t maxσ∈Sg(T) u(x, σ, τ). Therefore,

u(x, σ∗, τ∗) ≤t min
τ∈Sg(F)

u(x, σ∗, τ) ≤t min
τ∈Sg(F)

max
σ∈Sg(T)

u(x, σ, τ).

This proves that u(x, σ∗, τ∗) = minτ∈Sg(F) maxσ∈Sg(T) u(x, σ, τ).

Now suppose (σ∗, τ∗) is a positional pair of optimal strategies.

CONSISTENCY REVISITED 89

By optimality, we have that maxσ∈Sp(T) u(x, σ, τ∗) ≤t u(x, σ∗, τ∗) because
Sp(T) embeds into Sg(T). Therefore,

max
σ∈Sp(T)

min
τ∈Sg(F)

u(x, σ, τ) ≤t max
σ∈Sp(T)

u(x, σ, τ∗) ≤t u(x, σ∗, τ∗).

By optimality, u(x, σ∗, τ∗) ≤t minτ∈Sg(F) u(x, σ∗, τ). Since σ∗ is positional, we
have that

u(x, σ∗, τ∗) ≤t min
τ∈Sg(F)

u(x, σ∗, τ) ≤t max
σ∈Sp(T)

min
τ∈Sg(F)

u(x, σ, τ),

which proves that u(x, σ∗, τ∗) = maxσ∈Sp(T) minτ∈Sg(F) u(x, σ, τ).

By optimality, maxσ∈Sg(T) u(x, σ, τ∗) ≤t u(x, σ∗, τ∗). Since τ∗ is positional, we
have

min
τ∈Sp(F)

max
σ∈Sg(T)

u(x, σ, τ) ≤t max
σ∈Sg(T)

u(x, σ, τ∗) ≤t u(x, σ∗, τ∗).

Again by optimality we have that u(x, σ∗, τ∗) ≤t minτ∈Sp(F) u(x, σ∗, τ) since
Sp(F) embeds into Sg(F). Therefore,

u(x, σ∗, τ∗) ≤t min
τ∈Sp(F)

u(x, σ∗, τ) ≤t min
τ∈Sp(F)

max
σ∈Sg(T)

u(x, σ, τ),

which proves that u(x, σ∗, τ∗) = minτ∈Sp(F) maxσ∈Sg(T) u(x, σ, τ)

These equations are exactly the equations from Corollary 4.4.1, so as a result
we get that the existence of optimal pairs implies consistency.

Corollary 4.4.3. Let JF be a justification frame fixed under complementation
and B a branch evaluation that respects negation. The system JS is tree-
like (graph-like) consistent if there is an optimal pair (σ∗, τ∗) of (positional)
strategies.

Proof. Follows directly from Proposition 4.4.2 and Corollary 4.4.1.

4.4.2 Existence of Optimal Pairs of Positional Strategies

At the end of the previous section, we showed that if an optimal pair of positional
strategies exist, then the justification system is graph-like consistent. Since
graph-like consistency implies tree-like consistency and graph-reducibility, the
existence of an optimal pair of positional strategies is paramount to solving our

90 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

research problems. In particular, we want conditions on our branch evaluation
that guarantee the existence of positional optimal pairs. Inspired by Gimbert and
Zielonka (2004, 2005), we will introduce two properties that branch evaluations
should have. The first property is monotonicity. We are looking for positional
strategies. In particular, we are looking for good positional strategies. For such
a strategy to decide what to do in a state, it should not matter what happened
before. So if the play so far was bad or good should not matter in the choice,
i.e. if the play so far is good, then the decision should ruin this advantageous
play and if the play so far is bad, the decision should not make it worse. This
is exactly what monotonicity is about. In terms of branches it means that
whenever one branch is better than another branch, it does not matter how
one arrived there: by adding any single path leading to the start of these two
branches in front of the two branches, the quality of the branches are respected.
In formal terms, it goes as follows.

Definition 4.4.4. A branch evaluation B is monotone if for every two branches
b1 and b2 starting with the same fact x and all finite paths p the following
holds:

I(B(b1)) ≤t I(B(b2)) ⇒ I(B(p→ b1)) ≤t I(B(p→ b2)).

Intuitively, this is some sort of locality principle: the branch evaluation can
decide the value of the two extended branches (p→ b1, p→ b2) based on their
joint start (p; in which case they have the same value) or based on their tail (b1,
b2; in which case the value of the tail indicates how the value of the extended
branches relates).

Attentive readers might see a correlation with splittable branch evaluations. In
fact, splittability implies monotonicity.

Proposition 4.4.5. A splittable branch evaluation is monotone.

Proof. Take branches b1 and b2 starting with x such that I(B(b1)) ≤t I(B(b2)).
Let p be any finite path. If p→ b1 is decided at x, then p→ x is decided and
I(B(p → b1)) = I(B(p → x)) = I(B(p → b2)). So assume it is not decided
at x. Then by splittability, p → b1 is transitive at x. Similarly, p → b2 is
transitive at x as well. Therefore I(B(p → b1)) = I(B(b1)) ≤t I(B(b2)) =
I(B(p→ b2)).

This means that we already have a number of monotone branch evaluations.

Corollary 4.4.6. The branch evaluations Bsp, BKK, Bst, Bwf , Bex, and their
duals are monotone.

CONSISTENCY REVISITED 91

The second property we introduce is selectivity. The defining property of
positional strategies is that they always make the same choice. For example,
a positional strategy of T always moves the stone to the same rule symbol.
Basically, it makes the same choice over and over, no matter how it got there.
So to ensure that good positional strategies exist, we want that if always the
same choice is made, the strategy does not become worse. So if a choice was
made to go from s1 to s2 and later the stone returned back to s1, we need that
moving to s2 remains the best choice. Similarly, we want that if a strategy is
not positional we can improve it by making it positional.

In order to formally define selective branch evaluations, we need some extra
notation. A finite loop starting with x is a finite path p starting with x such
that every element is defined. If M is a set of loops starting with the same x,
then M∗ denotes the set of (finite) paths obtained by a finite iteration of loops
in M ; Mω denotes the set of infinite paths obtained by infinite iterations of
loops in M .

Definition 4.4.7. A branch evaluation B is selective with respect to I if for all
finite paths p, all facts x ∈ Fd, for all sets M , N of finite loops starting with x,
for all sets K of branches starting with x we have that for all branches b of the
form p(M ∪N)∗K or p(M ∪N)ω there exist branches b∗,b∗ ∈ pMω∪pNω∪pK
such that I(B(b∗)) ≤t I(B(b)) ≤t I(B(b∗)).

One might expect to only see the existence of the branch b∗. However, in
justification theory we have a partition of positive and negative elements. In
branch evaluations that respect negation (all examples so far) we would get the
following: I(B(∼b)) ≥t I(B(∼b∗)).

Intuitively, selectivity means that the best strategy can be consistent with it
choices. This is most easily seen in case M , N and K are singletons. In that
case the branch b makes (at most) three different choices for x: the one leading
to the loop in M , the one leading to the loop in N and the one leading to K.
Selectivity then states that the choice for x can be made consistently, to obtain
a branch that is at least as good (b∗) and one that is at least as bad (b∗).

All the branch evaluations we proved to be consistent so far are selective.

Proposition 4.4.8. The branch evaluations Bsp, BKK, Bst, Bwf , and their
duals are selective.

Proof.

Bsp We only need to look at the case that p is an empty path because Bsp
is decided on the second element. So take a branch b ∈ (M ∪ N)∗K ∪

92 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

(M ∪N)ω. Since Bsp(b) is the second element of b, the value I(Bsp(b))
is already determined when choosing M , N or K. This proves that Bsp is
selective.

BKK Take b ∈ p(M ∪N)∗K ∪ p(M ∪N)ω. If b is infinite, then BKK(b) = u.
If K contains infinite branches, then for any branch b∗ in pK it holds
that I(BKK(b∗)) = I(BKK(b)). If K does not contain infinite branches,
then either pMω or pNω is not empty. Therefore, there is a branch
b∗ ∈ pMω ∪ pNω such that I(BKK(b∗)) = I(BKK(b)).
Assume now that b is finite. This means that the tail of b is contained in
K. Then by transitivity of BKK, the result follows.

Bwf Take b ∈ p(M ∪N)∗K ∪ p(M ∪N)ω. If b is finite, then a tail b′ of b lies
in K. This means that Bwf(b) = Bwf(b′) = Bwf(p→ b′) by transitivity.
So we can assume that b is infinite. We can also assume by reasoning like
above, that no tail of b lies in K. This means that b ∈ p(M ∪N)ω. If
b has a tail of equal signs, then there is a loop in either M or N with
the same sign. Therefore, there is a branch b∗ in either pMω or pNω

with the same value as b. It rests us now the case that Bwf(b) = u. We
distinguish three cases.

Case 1 Either M or N contains a mixed element. This means that there is
an element in pMω or in pNω that is mapped to u under Bwf .

Case 2 Every element in M and N is completely positive or completely
negative. Not all elements in M and N can be completely negative,
since b ∈ p(M ∪N)ω and Bwf(b) = u. Therefore, there is a positive
loop q+ and a negative loop q− in M ∪ N . This means that f =
I(Bwf(p(q+)ω)) ≤t I(Bwf(b)) ≤t I(Bwf(p(q−)ω)) = t.

Bst Take a branch b ∈ p(M ∪N)∗K ∪ p(M ∪N)ω.

Case 1 The branch b is infinite and every element of b has the same sign.
Then b has a tail in K, or there are loops in M or N with the
same sign. Thus we have a branch b∗ ∈ pMω ∪ pNω ∪ pK such that
I(Bwf(b∗)) = I(Bwf(b)).

Case 2 The branch b is finite and every element except maybe the last
has the same sign. This means that b has a tail b′ in K such that
I(Bwf(b)) = I(Bwf(p→ b′)). It holds that p→ b′ ∈ pK.

Case 3 The branch b has a first sign switch before the last element. Assume
y is the first sign switch in b. Then either y is in a loop qM in M ,
a loop qN in N , or in a element qK of K. In all cases, we get that
I(Bwf(b)) = I(y) = I(Bwf(p → (qM →)ω)) = I(Bwf(p → (qN →
)ω)) = I(Bwf(p→ qK)).

CONSISTENCY REVISITED 93

The branch evaluation Bex from Definition 2.3.19 is not selective. In
Example 2.3.20, if we take M = {a→ b}, N = {a→ c} and K = ∅, then
every branch in Nω and Mω is mapped to f , while there are branches in
(M ∪N)ω that are mapped to u, e.g., (a→ b→ a→ c→)ω.

The following proposition states if B is monotone and selective, then to find an
optimal pair of positional strategies, it suffices to find optimal pairs of positional
strategies in certain subgames, which breaks our problem down into smaller
parts. These subgames are formed by splitting the outgoing edges of an state
owned by T into two.

Proposition 4.4.9. Let x ∈ ST such that |xE| > 1. Let xE = A1 ∪ A2 a
partition of non-empty sets. Let E1 = E \A2 Let E2 = E \A1. Let G1 and G2 be
the subgames of GJS,I with the same states as GJF and edges E1 respectively E2.
If B is monotone and selective and there are positional optimal pairs (σ∗i , τ∗i) in
the games Gi for i ∈ {1, 2}, then there is an optimal pair (σ∗, τ∗) in GJS,I such
that σ∗ is positional.

Proof. The proof is heavily based on the proof by Gimbert and Zielonka (2004).

Without loss of generality, we can assume that u(x, σ∗2 , τ∗2) ≤t u(x, σ∗1 , τ∗1). We
prove that σ∗ := σ∗1 is optimal for T in G, i.e. there is a τ∗ such that (σ∗1 , τ∗)
is optimal. We now construct a strategy τ∗ for F such that for all strategies σ
in G and all vertices y we have

u(y, σ, τ∗) ≤t u(y, σ∗1 , τ∗1). (4.1)

Define a mapping b : PathG → {1, 2}. Let p ∈ PathG be a finite path in G. Set
b(p) = 1 if either p does not contain any edge with the source x or the last edge
of p with source x belongs to G1 (A1). Set b(p) = 2 if the last edge of p with
the source v belongs to G2 (A2). Define τ∗(p) = τ∗i (target(p)) if b(p) = i.

A finite or infinite path p is called homogeneous if p never visits x, or if each
edge in p with source x belongs to E1, or if each edge in p with source x belong
to E2.

The proof of Eq. (4.1) happens in 4 cases.

Case 1 y = x and the play pG(y, σ, τ∗) is of the form p0p1 . . . pnq, where pi are
finite non empty homogeneous paths with source x and q is a homogeneous
play with source x.

94 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

Since p is consistent with τ∗ and pi are homogeneous, each play pωi is either
consistent with τ∗1 (if pi contains only edges of G1) or with τ∗2 (if pi contains
only edges of G2). Assume without loss of generality that pωi is consistent
with τ∗2 . This means there is a σ′ such that pωi = pG1(x, σ′, τ∗2); hence
u(pωi) = u(x, σ′, τ∗2). By optimality, we get that u(pωi) ≤t u(x, σ∗2 , τ∗2). By
assumption, we have that u(pωi) ≤t u(x, σ∗2 , τ∗2) ≤t u(x, σ∗1 , τ∗1).
In the case that pωi is consistent with τ∗1 , we also get that u(pωi) ≤t
u(x, σ∗1 , τ∗1). Similarly, u(q) ≤t u(x, σ∗1 , τ∗1). By selectivity, we have that
u(x, σ, τ∗) is smaller or equal to some u(pωi) or u(q). Then by the results
above, we have that u(x, σ, τ∗) ≤t u(x, σ∗1 , τ∗1).

Case 2 y = x and the play pG(y, σ, τ∗) is of the form p0p1p2 . . ., where
pi is homogeneous non-empty path with source x and pipi+1 is not
homogeneous.
Let M be the set of plays pi1pi2 . . . such that i1, i2, . . . are even. Let N
be the set of plays pi1pi2 . . . such that i1, i2, . . . are odd. All plays in M
are homogeneous and are either all consistent with τ∗1 or all consistent
with τ∗2 . If all plays in M are all consistent with τ∗i , then all plays in N
are all consistent with τ∗3−i. The plays in N are all homogeneous.
Assume without loss of generality that M is consistent with τ∗2 . By
optimality of τ∗2 , we have that u(q) ≤t u(x, σ∗2 , τ∗2) ≤t u(x, σ∗1 , τ∗1). By
optimality of τ∗1 , we have that u(q) ≤t u(x, σ∗1 , τ∗1). By selectivity, we
know that u(x, σ, τ∗) is smaller than or equal to u(q) for some q ∈M ∪N .
Therefore, u(x, σ, τ∗) ≤t u(x, σ∗1 , τ∗1).

Case 3 y 6= x and the play p := pG(y, σ, τ∗) never passes through x. Let σ1
be the restriction of σ to G1. Then p is consistent with σ1 and τ∗1
since b(q) = 1 for any initial segment of p. By optimality of τ∗1 we get
u(p) = u(y, σ1, τ

∗
1) ≤t u(y, σ∗1 , τ∗1).

Case 4 y 6= x and the play p := pG(y, σ, τ∗) passes at least once the vertex x.
We can factorise p as rq where r is the initial segment of p that does not
contain x and the source of q is x. Let q∗ be the play pG1(x, σ∗1 , τ∗1). Of
course u(q∗) = u(x, σ∗1 , τ∗1). The play q is consistent with τ∗ with source x,
and thus by applying case 1 or case 2, we know that u(q) ≤t u(x, σ∗1 , τ∗1).
This means that u(q) ≤t u(q∗). By monotonicity, we get that u(p) =
u(rq) ≤t u(rq∗).
The play rq∗ starts in y and is consistent with τ∗1 . By optimality of τ∗1 ,
we get that u(rq∗) ≤t u(y, σ∗1 , τ∗1). This proves that u(p) ≤t u(y, σ∗1 , τ∗1).

So we have proven that u(y, σ, τ∗) ≤t u(y, σ∗1 , τ∗1) for all σ. The play pG(y, σ∗, τ∗)
does not have a transition in A2 and thus is in G1; hence pG(y, σ∗, τ∗) =

CONSISTENCY REVISITED 95

pG(y, σ∗1 , τ∗1). So we have proven that u(y, σ, τ∗) ≤t u(y, σ∗, τ∗) for all σ. This
is the left-hand side of the optimality equation.

Take a general strategy τ . Let τ1 be the restriction of τ to G1. Since the play
pG(y, σ∗, τ) does not have a transition in A2 since σ∗ = σ∗1 , we have that this play
is in G1. Therefore, u(y, σ∗, τ) = u(y, σ∗1 , τ1). Now, by optimality of (σ∗1 , τ∗1)
we have that u(y, σ∗1 , τ∗1) ≤t u(y, σ∗1 , τ1), which shows that u(y, σ∗, τ∗) ≤t
u(y, σ∗, τ). This concludes the proof that (σ∗, τ∗) is an optimal pair of strategies,
where σ∗ is positional.

Completely analogous to Proposition 4.4.9 for outgoing edges of a state owned
by F holds as well.

Proposition 4.4.10. Let x ∈ SF such that |xE| > 1. Let xE = A1 ∪ A2 a
partition of non-empty sets. Let E1 = E \A2 Let E2 = E \A1. Let G1 and G2 be
the subgames of GJS,I with the same states as GJF and edges E1 respectively E2.
If B is monotone and selective and there are positional optimal pairs (σ∗i , τ∗i) in
the games Gi for i ∈ {1, 2}, then there is an optimal pair (σ∗, τ∗) in GJS,I such
that τ∗ is positional.

These two results can then be used to prove that the game GJS,I has an optimal
pair of positional strategies if B is monotone and selective. If every state owned
by T has at most one outgoing transition, then there is only one strategy σ
for T. This strategy is positional and there is a general strategy τ for F such
that (σ, τ) is optimal. So we can assume there is a state x ∈ ST with more
than one outgoing transition. If we take a partition {A1, A2} of non-empty sets
of xE, then we can form the game graphs G1 and G2 with the states of the
original graph and E \A2 respectively E \A1 for the edges. Using the preference
relation of the original game, we get two smaller games G1 and G2. Assume by
induction that Gi has an optimal pair (σ∗i , τ∗i) of positional strategies for each
i ∈ {1, 2}. Without loss of generality, we have that u(x, σ∗2 , τ∗2) ≤t u(x, σ∗1 , τ∗1).
It turns out that if B is monotone and selective, then σ∗1 is also an optimal
strategy for the original game, meaning that there is a general strategy τ for
F such that (σ∗1 , τ) is an optimal pair of strategies. Therefore, if the game is
finite, we can perform finite induction to obtain that there exists a positional
strategy σ∗ for T and a general strategy τ for F such that (σ∗, τ) is optimal.
By a similar reasoning, there is a positional strategy τ∗ for F and a general
strategy σ for T such that (σ, τ∗) is optimal. This means that (σ∗, τ∗) is also
an optimal pair, and both strategies are positional. This paragraph essentially
sketched the proof of the following theorem.

Theorem 4.4.11. If GJS,I is finite (a finite amount of edges) and B is
monotone and selective, then there is a positional optimal pair.

96 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

Proof. We prove this by induction on the number edges. As base case we have
games where every state has at most one outgoing edge. Because then every pair
of strategies for T and F is optimal and positional. So assume now by induction
that every subgame with fewer edges has an optimal pair of positional strategies.
If every state owned by T has at most one outgoing edge, then there is only
one strategy σ∗ for T. This strategy is positional and there exists a general
strategy τ such that (σ∗, τ) is optimal. If there is a state x owned by T such
that |xE| > 1, then by using the induction assumption and Proposition 4.4.9
there exist a positional strategy σ∗ and a general strategy τ such that (σ∗, τ) is
optimal.

A similar reasoning can be done using Proposition 4.4.10, to get a general
strategy σ and a positional strategy τ∗ such that (σ, τ∗) is optimal. Therefore,
also (σ∗, τ∗) is optimal, which concludes the proof.

Corollary 4.4.12. If JS is finite (F finite) and B is monotone and selective,
then JS is graph-like consistent, tree-like consistent and graph-reducible.

Proof. The underlying justification frame is equivalent to a justification frame
fixed under complementation. This frame is also finite. Then the result follows
from Theorem 4.4.11 and Corollaries 4.4.3 and 2.4.7.

These results do not immediately prove for some known branch evaluation to
be graph-like consistent as we already proved that Bsp, BKK, Bst, Bwf , and
their duals are consistent and graph-reducible. However, when new branch
evaluations arise, it can be an easy check to see if they behave correctly in a
finite setting. For practical problems, the finiteness requirement does not pose
any problem.2

4.5 Infinite Games

In this section we take a different look at the existence of optimal pairs, but limit
ourselves to general optimal pairs. Let us first provide a different characterisation
of optimal pairs.

Lemma 4.5.1. A pair (σ∗, τ∗) of general strategies is optimal if and only if
maxσ∈Sg(T) u(x, σ, τ∗) = u(x, σ∗, τ∗) = minτ∈Sg(F) u(x, σ∗, τ).

2Finitists would even consider both of our research questions solved

INFINITE GAMES 97

Proof. This follows directly by noting that (σ∗, τ∗) is an optimal pair if and
only if u(x, σ, τ∗) ≤t u(x, σ∗, τ∗) ≤t u(x, σ∗, τ) for all strategies σ and τ for T
and F.

Let us now introduce Gale-Stewart games (Gale and Stewart, 1953) as done by
Martin (1975).

Definition 4.5.2. Let A be a set and Y a set of finite sequences in A such
that every initial segment (including the empty one) of an element of Y belongs
to Y . Let F(Y) be the collection of infinite sequences all of whose finite initial
segments belong to Y . For each P ⊆ F(Y) we define a two-player game GPY .
Two players, I and II, take turns by choosing an a ∈ A such that all time, the
elements chosen form a sequence in Y . This determines a sequence s in F(Y).
If s ∈ P , then player I wins, otherwise player II wins (there are no draws). The
set P is called the payoff set.

Compared to the games associated with justification systems, Gale-Stewart
games do not allow for a finite plays. However, this restriction can be alleviated,
which we will discuss in a moment.

Since Gale-Stewart games are two-valued, it is customary to talk about winning
strategies. A winning strategy for a player is a function that dictates which
element from A the player has to choose at each point in the game in order
to always win. That is, no matter what the other player does, the strategy
guarantees the player to win.

Definition 4.5.3. A Gale-Stewart game GPY is determined if some player has
a winning strategy. In that case P is also said to be determined.

A famous result by Martin (1975, 1985) provides a condition for a payoff set to
be determined. In order to be able to state this result, we need to introduce
some terminology. We can endow the set F(Y) with a topology3.

Definition 4.5.4. A subset of F(Y) is a basic open set if it is of the form
{s | s ∈ F(Y) : p is an initial segment of s}. An open set in F(Y) is an arbitrary
union of basic open sets in F(Y).

The set of Borel sets of F(Y) is the smallest set containing open sets of F(Y)
that is closed under

• complement (with respect to F(Y));
3If we let A have the discrete topology, then the topology F(Y) is the subset topology of

Aω with the product topology.

98 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

• countable unions.

Theorem 4.5.5 (Borel determinacy (Martin, 1975, 1985)). If P is Borel in
F(Y), then GPY is determined.

This is the strongest determinacy result for Gale-Stewart games that is provable
in Zermelo–Fraenkel set theory with the axiom of Choice (ZFC) since the
determinacy of the next higher Wadge class is not provable in ZFC (Kechris
et al., 2012).

To be able to use these results, we need to transform our games to Gale-Stewart
games. However, since our games are three-valued, we will need more than
one Gale-Stewart game to capture our games. Let us first bring the notion of
determinacy to our games.

Definition 4.5.6. A game GJS,I is determined in x by A ⊆ L if one of the
following holds:

• There is a σ∗ ∈ Sg(T) such that for all τ ∈ Sg(F) we have that
u(x, σ∗, τ) ∈ A.

• There is a τ∗ ∈ Sg(F) such that for all σ ∈ Sg(T) we have that
u(x, σ, τ∗) /∈ A.

Remark 4.5.7. At most one of the two sentences hold. N

The notion of determinacy allows us to look at our games as a pair of two-valued
games.

Proposition 4.5.8. If GJS,I is determined in x by {t} and {t,u}, then there
is an optimal pair of general strategies.

Proof. Assume first there is a σ∗ ∈ Sg(T) such that for all τ ∈ Sg(F) we have
that u(x, σ∗, τ) = t. This means that minτ∈Sg(F) u(x, σ∗, τ) = t. Now for any
τ ∈ Sg(F) we have that t = u(x, σ∗, τ) ≤t maxσ∈Sg(T) u(x, σ, τ). Therefore,
maxσ∈Sg(T) u(x, σ, τ) = t. By Lemma 4.5.1, (σ∗, τ) is optimal.

Assume now that there is a τ∗ ∈ Sg(F) such that for all σ ∈ Sg(T) we have that
u(x, σ, τ∗) = f (/∈ {t,u}). This means that maxσ∈Sg(T) u(x, σ, τ∗) = f . For any
σ ∈ Sg(T), we have that f = u(x, σ, τ∗) ≥t minτ∈Sg(F) u(x, σ, τ). Therefore,
minτ∈Sg(F) u(x, σ, τ) = f . By Lemma 4.5.1, (σ, τ∗) is optimal.

There is only one case left: there is a τ∗ ∈ Sg(F) such that for all σ ∈
Sg(T) it holds that u(x, σ, τ∗) 6= t and there is a σ∗ ∈ Sg(T) such that for
all τ ∈ Sg(F) it holds that u(x, σ∗, τ) 6= f . We prove that (σ∗, τ∗) is an

INFINITE GAMES 99

optimal pair. We know that maxσ∈Sg(T) u(x, σ, τ∗) <t t because max is a
maximum. Likewise, minτ∈Sg(F) u(x, σ∗, τ) >t f because min is a minimum.
Since f 6= u(x, σ∗, τ∗) 6= t, we have that u(x, σ∗, τ∗) = u. We also have
that f <t minτ∈Sg(F) u(x, σ∗, τ) ≤t u(x, σ∗, τ∗) ≤t maxσ∈Sg(T) u(x, σ, τ∗) <t t;
hence minτ∈Sg(F) u(x, σ∗, τ) = maxσ∈Sg(T) u(x, σ, τ∗) = u(x, σ∗, τ∗) = u. By
Lemma 4.5.1, the proof is concluded.

Our plan is thus to prove that our games are determined by {t} and {t,u}. We
do this by mapping our games to Gale-Stewart games. The games associated
with a justification system alternate between two players T and F. Therefore,
I is T and II is F. Take Y ′ = PathGJS,I . Let Y be Y ′ where we added paths
that repeat the last open fact a finite number of times. There is a one-to-one
correspondence between elements in F(Y) starting with x and plays in GJS,I
starting with x. This constructs a Gale-Stewart game XJS,I corresponding to
JS and I. This game is equivalent to GJS,I .

Proposition 4.5.9. The game GJS,I is determined in x by A ⊆ L if and only
if {b | B(b) ∈ A} is determined in F(Y).

Proof. Winning strategies can easily be transferred from one game to the
other.

We can also put a similar topology on the set of branches that follow the
structure of JF . This allows us to state the following proposition.

Proposition 4.5.10. If the sets {b | I(B(b)) = t} and {b | I(B(b)) 6= f} are
Borel, then there is a optimal pair of strategies.

Corollary 4.5.11. If the sets {b | I(B(b)) = t} and {b | I(B(b)) 6= f} are
Borel, then JS is tree-like consistent.

Corollary 4.5.12. If the sets {b | b is nowhere decided, I(B(b)) = t} and
{b | b is nowhere decided, I(B(b)) 6= f} are Borel, then JS is tree-like consist-
ent.

Proof. For each decided path p with I(B(p)) = t, the set of branches starting
with p is an basic open set. Therefore, the set

{b | b is somewhere decided and I(B(b)) = t}

is an open set. Therefore, the set of branches that have value t is a Borel set
since it is the union of two Borel sets. A similar reasoning can be made for
6= f .

100 EXPLOITING GAME THEORY FOR ANALYSING JUSTIFICATIONS

4.6 Conclusion

In this chapter, we studied the relation between justification theory and game
theory to answer both of our research problems: consistency and graph-
reducibility. All of our work was developed in a general setting except for
one (crucial) result: in order to prove the existence of an optimal pair of
positional strategies, we assumed, following game theory tradition, finiteness.
This means for instance that while our results can be applied directly to finite
ground logic programs, they are not directly applicable to non-ground programs
with an infinite grounding.

Hence, the most obvious direction for future work is generalizing this theorem
to the infinite case, thereby possibly extending the definition of selectivity. For
inspiration to achieve such result, we think that game theory can again provide
valuable directions. At the end of this chapter we have established the relation
between our games and Gale-Stewart games (Gale and Stewart, 1953; Soare,
2016). Using the Borel-determinacy result (Martin, 1975, 1985), we have a
potential way to prove tree-like consistency. However, for graph-like consistency
this result will not help, as strategies considered in Gale-Stewart games have
perfect information. There have been results on memoryless determinacy of
parity games (Emerson and Jutla, 1991; Roux, 2019; Zielonka, 1998) and of
ω-automata (Jutla, 1997). Some work capturing parity games with justification
theory has already been done by Lapauw et al. (2020, 2021). Therefore, future
work could try to generalise this results to our type of games. Another possibility
is to find a condition on the branch evaluation for which the justification game
is equivalent to a parity game.

Several earlier papers have already established connections between logic
programming and games to study properties of logic programs. One of the
earliest results is by van Emden (1986), in which a probabilistic version of
logic programming is worked out whose proof theory is described using a two-
person game. In 1995, Blair (1995) presented a family of simple two-player
games, where the players are represented as almost independent logic programs.
This allowed for complexity results to transfer from game theory to logic
programming. Later on, a game semantics was developed by Cosmo et al. (1998)
where to each logic program a simple game is associated in which one player
tries to prove the goal, while the opponent tries to disprove it. Loddo and
Cosmo (2000) then showed that the alpha-beta algorithm can also be applied
to constraint logic programming. So far, these results only consider positive
logic programs. Vos and Vermeir (1999, 2001) showed that stable models of
choice programs correspond to Nash equilibria of strategic games. Galanaki
et al. (2008) presented a game semantics for well-founded negation. Galanaki
et al. (2013, 2017) developed a game semantics for non-monotonic intensional

CONCLUSION 101

logic programming. Tsouanas (2013) made a game semantics for disjunctive
logic programming.

By establishing a bridge between game theory and justification theory, we
developed a mechanism to transfer game-theoretic results to all application
domains of justification theory. Furthermore, by using justification theory, the
translation immediately works for all common semantics of logic programs.
Indeed, the branch evaluation, which determines the semantics, is only used
for determining the resulting preference relation. While we used our results
here to get results on consistency and coincidence of graph-like and tree-like
justifications, the full impact of this connection still remains to be explored.

Chapter 5

Embedding Justification
Theory in Approximation
Fixpoint Theory

5.1 Introduction

In the introduction and the second chapter, we have seen that justification theory
is a versatile semantic framework. However, justification theory is not the only
unifying framework for non-monotonic logics. Another framework, invented by
Denecker, Marek, and Truszczyński (2000), is Approximation Fixpoint Theory
(AFT). In this chapter, we take a look at how justification theory can fit into
this framework. In contrast to justification theory, AFT is mainly focused on
completion, Kripke-Kleene, stable, and well-founded semantics.1 Therefore, in
most of this chapters, we are focussed on on these semantics. We will show that
justification theory for these semantics can be embedded into approximation
fixpoint theory. Consequentially, we bring ultimate semantics, a concept from
AFT, to justification theory. This is done in such a way, that is actually
applicable to any conceivable justification semantics.

The text of this chapter is solely based on (Marynissen et al., 2021). Full proofs
are added, plus additional results for Bcst and Bcwf are added as well.

1Groundedness is another important category in AFT.

103

104 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

5.1.1 Approximation Fixpoint Theory

In the 1980s and 90s, the area of Non-Monotonic Reasoning (NMR) saw fierce
debates about formal semantics. In several subareas, researchers sought to
formalise common-sense intuitions about knowledge of introspective agents. In
these areas, appeals to similar intuitions were made, resulting in the development
of similar mathematical concepts. Despite the obvious similarity, the precise
relation between these concepts remained elusive. AFT was founded in the
early 2000s by Denecker, Marek, and Truszczyński (2000) as a way of unifying
semantics that emerged in these different subareas. The main contribution of
AFT was to demonstrate that, by moving to an algebraic setting, the common
principles behind these concepts can be isolated and studied in a general way.
This breakthrough allowed results that were achieved in the context of one
of these languages to be easily transferred to another. In the early stages,
AFT was applied to default logic (Reiter, 1980), auto-epistemic logic (Moore,
1985), and logic programming (Denecker et al., 2000, 2003; van Emden and
Kowalski, 1976). In recent years, interest in AFT has gradually increased, with
applications in various other domains, encompassing abstract argumentation
(Strass, 2013), extensions to deal with inconsistencies (Bi et al., 2014), higher-
order logic programs (Charalambidis et al., 2018), and active integrity constraints
(Bogaerts and Cruz-Filipe, 2018).

The foundations of AFT lie in Tarski’s fixpoint theory of monotone operators
on a complete lattice (Tarski, 1955). AFT demonstrates that by moving from
the original lattice L to the bilattice L2, Tarski’s theory can be generalised into
a fixpoint theory for arbitrary (i.e., also non-monotone) operators. Crucially, all
that is required to apply AFT to a formalism and obtain several semantics is
to define an appropriate approximating operator L2 → L2 on the bilattice; the
algebraic theory of AFT then takes care of the rest. For instance, to characterise
the major logic programming semantics using AFT, it suffices to define Fitting’s
four-valued immediate consequence operator (Fitting, 2002). The (partial)
stable fixpoints of that operator (as defined by AFT) are exactly the partial
stable models of the original program; the well-founded fixpoint of the operator
is the well-founded model of the program, etc.

5.1.2 Correspondence

AFT and justification theory were designed with similar intentions in mind,
namely to unify different (mainly non-monotonic) logics. One major difference
between them is that justification theory is defined logically while AFT is
defined purely algebraically. This makes justification frameworks less abstract
and easier to grasp, but also in a certain sense less general, as demonstrated by

APPROXIMATION FIXPOINT THEORY 105

the fact that logics such as autoepistemic logic have no justification semantics
(yet). On the other hand, justification theory has a larger freedom to define
semantics by providing a branch evaluation, as well as the notion of nesting
(see Chapter 6) to integrate the semantics of nested least and nested greatest
fixpoint definitions.

Despite the differences, certain correspondences between the theories show up:
several definitions in justification frameworks seem to have an algebraical
counterpart in AFT. This is evident from the fact that many results on
justifications are formulated in terms of fixpoints of the support operator
(see Definition 2.2.23) that happens, for the case of logic programming, to
coincide with (Fitting’s three-valued version (Fitting, 2002) of) the immediate
consequence operator for logic programs (see Section 2.7.1). Of course, now the
question naturally arises whether this correspondence can be made formal, i.e.,
whether it can formally be shown that semantics induced by justification theory
will always coincide with their equally-named counterpart in AFT.

Correspondence between AFT and Justification Theory

How are AFT and justification theory related? Is the support operator in
justification theory a (consistent) approximator in AFT.

If we can answer this question, then it will allow us to translate results between
the two theories. Formalising this correspondence is the key contribution of
this chapter.

5.2 Approximation Fixpoint Theory

Given a complete lattice 〈L,≤〉, AFT Denecker et al. (2000) uses the bilattice
L2 = L×L. We define projection functions as usual: (x, y)1 = x and (x, y)2 = y.
Pairs (x, y) ∈ L2 are used to approximate elements in the interval [x, y] =
{z | x ≤ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y; i.e., if [x, y] is not
empty. The set of consistent elements is denoted Lc. Pairs (x, x) are called
exact since they approximate only the element x. The precision order ≤p on
L2 is defined as (x, y) ≤p (u, v) if x ≤ u and y ≥ v. If (u, v) is consistent,
this means that [u, v] ⊆ [x, y]. If 〈L,≤〉 is a complete lattice, then so is〈
L2,≤p

〉
. AFT studies fixpoints of operators O : L → L through operators

approximating O. An operator A : L2 → L2 is an approximator of O if it is
≤p-monotone and has the property that A(x, x) = (O(x), O(x)) for all x ∈ L.
Approximators are internal in Lc (i.e., map Lc into Lc). We often restrict our
attention to symmetric approximators: approximators A such that, for all x

106 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

and y, A(x, y)1 = A(y, x)2. Denecker et al. (2004) showed that the consistent
fixpoints of interest of a symmetric approximator are uniquely determined by
an approximator’s restriction to Lc and hence, that it usually suffices to define
approximators on Lc. Such a restriction is called a consistent approximator. As
mentioned before, AFT studies fixpoints of O using fixpoints of A. The main
type of fixpoints that concern us are given here.

• A partial supported fixpoint of A is a fixpoint of A.

• The Kripke-Kleene fixpoint of A is the ≤p-least fixpoint of A; it
approximates all fixpoints of A.

• A partial stable fixpoint of A is a pair (x, y) such that x = lfp(A(·, y)1) and
y = lfp(A(x, ·)2), where A(·, y)1 denotes the function L→ L : z 7→ A(z, y)1
and analogously A(x, ·)2 stands for L→ L : z 7→ A(x, z)2.

• The well-founded fixpoint of A is the least precise partial stable fixpoint
of A.

Other type of fixpoints do exist, such as grounded fixpoints Bogaerts et al.
(2015a), but we do not consider them. We add two new type of fixpoints for
our purposes

• A partial co-stable fixpoint of A is a pair (x, y) such that x = gfp(A(·, y)1)
and y = gfp(A(x, ·)2).

• The co-well-founded fixpoint of A is the least precise partial co-stable
fixpoint of A.

5.3 The Embedding

We now turn our attention to the main topic of this chapter, namely, a formal
proof of the correspondence between justification theory and AFT. We start by
showing how to obtain an approximator out of a justification frame.

5.3.1 The Approximator

Let JF = 〈F ,Fd, R〉 be a justification frame, fixed throughout this section.
Our first goal is to define, from a given justification frame, an approximator
on a suitable lattice. Following the correspondence with how this is done

THE EMBEDDING 107

in logic programming, we will take as lattice the set of exact interpretations
(interpretations that map no facts to u except for u itself). It is easy to see
that such interpretations correspond directly to subsets of F+. In other words,
we will use the lattice 〈L = 2F+ ,⊆〉. Now, the set Lc is isomorphic to the
set of three-valued interpretations of F ; under this isomorphism, a consistent
pair (I, J) ∈ Lc corresponds to the three-valued interpretation I such that for
positive facts x ∈ F+, I(x) = t if x ∈ I, I(x) = f if x 6∈ J , and I(x) = u
otherwise.

Definition 5.3.1. The operator OJF : L→ L of JF maps a subset I of F+ to

OJF (I) = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : (I, I)(a) = t} .

The approximator AJF of JF is defined as follows

AJF (I)1 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) = t} ;

AJF (I)2 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) ≥t u} .

Proposition 5.3.2. If no rule body in JF contains u, then AJF is a consistent
approximator of OJF .

Proof. It is clear that AJF coincides with OJF on exact interpretations. It
suffices to prove that AJF (I)(x) 6= u if I is exact. This follows directly from
the fact that no rule body in JF contains u.

The requirement that rule bodies cannot contain u is an immediate consequence
of the fact that approximators in AFT ought to be symmetric. Quoting Denecker
et al. (2004, page 14)

While it is possible to develop a generalisation of the theory presented
in this paper without the symmetry assumption, we chose to adopt
it because the motivating examples, that is, operators occurring in
knowledge representation, are symmetric.

Similarly, we are not aware of practical examples with bodies containing u in
unnested justification systems.2 However, in nested systems, as we will see in
Chapter 6, bodies containing u can occur quite easily due to the construction of
the compression (Definition 6.2.17). No proof, except for Proposition 5.3.2, in
this chapter makes use of the fact that u does not appear in bodies of rules. This
means that once consistent AFT is worked out for asymmetric operators, we

2You and Yuan (1990) argue that u itself is needed only for a very special type of logic
programs.

108 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

can remove this restriction. For this chapter, we assume that every justification
frame does not have u in a rule body. It turns out that in case our justification
frame is complementary, the approximator is the same as the support operator
of Bsp.

Lemma 5.3.3. For a complementary justification frame JF , the function AJF
and the support operator SBsp

JF are equal.

Proof. Take an interpretation I. For any x ∈ F+, it is obvious that AJF (I)(x) =
SBsp
JF (I)(x). Take x ∈ F−. We have that AJF (I)(x) = ∼AJF (I)(∼x) =
∼SBsp
JF (I)(∼x) = SBsp

JF (I)(x), where the last step is by the consistency of Bsp
(Theorem 3.2.6).

5.3.2 Semantic Correspondence

The central result of this section is the following theorem, which essentially
states that for all major semantics, the branch evaluation in justification theory
corresponds to the definitions of AFT.

Theorem 5.3.4. Take a complementary justification frame JF . If the
interpretation of the open facts is fixed, then the following results hold.

• The partial supported fixpoints of AJF are exactly the Bsp-models of JF .

• The Kripke-Kleene fixpoint of AJF is the unique BKK-model of JF .

• The partial stable fixpoints of AJF are exactly the Bst-models of JF .

• The well-founded fixpoint of AJF is the unique Bwf-model of JF .

• The partial co-stable fixpoints of AJF are exactly the Bcst-models of JF .

• The co-well-founded fixpoint of AJF is the unique Bcwf-model of JF .

These points are proven independently; the first follows directly from our
observation that AJF and SBsp

JF are in fact the same operator.

Proposition 5.3.5. The partial supported fixpoints of AJF are exactly the
supported models of JF .

Proof. Follows directly from Lemma 5.3.3.

THE EMBEDDING 109

Given the correspondence between supported semantics, the result for Kripke-
Kleene semantics follows quite easily.

Proposition 5.3.6. The Kripke-Kleene fixpoint of AJF is equal to the unique
BKK-model of JF .

Proof. Let IBKK be the unique BKK-model of JF . By Propositions 3.5.1
and 3.4.7, it suffices to prove that IBKK is the least precise fixpoint of AJF .
Assume there is a fixpoint I of AJF such that IBKK 6≤p I. This means there
exists an x ∈ Fd such that IBKK(x) 6≤p I(x). There are exactly four cases

1. IBKK(x) = t and I(x) = f ;

2. IBKK(x) = f and I(x) = t;

3. IBKK(x) = f and I(x) = u;

4. IBKK(x) = t and I(x) = u.

A fact x satisfies the first case if and only if ∼x satisfies the second case. The
same holds for the third and fourth case. Therefore, it suffices to look at the
following two cases:

1. IBKK(x) = f and I(x) = t;

2. IBKK(x) = f and I(x) = u.

In both cases, we have that IBKK(x) = f ; hence every justification J with x
as internal node has a finite branch starting with x mapped to an open fact
y with IBKK(y) = I(y) = f . Therefore, I(x) = SVB′sp(x, I) = f , contradicting
both cases; hence IBKK ≤p I, proving that IBKK is the least precise fixpoint of
AJF .

The proof of the third point of Theorem 5.3.4 is split in two parts, proven
separately in the following propositions.

Proposition 5.3.7. Each Bst-model of JF is a partial stable fixpoint of AJF .

Proof. Let I = (I1, I2) be a Bst-model of JF . We prove that lfp(AJF (·, I2)1) =
I1 and that lfp(AJF (I1, ·)2) = I2. By Proposition 3.5.3, it holds that AJF (I) =
SBsp
JF (I) = I. Therefore, we have that AJF (I1, I2)1 = I1 and AJF (I1, I2)2 = I2.

Take I ′1 (I1 and assume by contradiction that AJF (I ′1, I2)1 = I ′1. Define
I ′ = (I ′1, I2). Therefore, I ′ <p I and I(x) = t and I ′(x) = u for all x ∈ I1 \ I ′1.

110 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

By Theorem 2.6.20 and splittability of Bst, there is a justification J so that
valBst(J, x, I) = SVBst(x, I) = I(x) for all x ∈ Fd. Define the partial order �J
on I1: y �J x if y is reachable in J from x through positive facts. Since J
does not contain infinite positive branches starting in a fact x ∈ I1, we have
that �J does not have infinitely descending chains; hence �J is well-founded.
The set I1 \ I ′1 is not empty, hence has a minimal element x with respect to
�J . Take a child y of x in J . We prove that I ′(y) = t. If y is open, then
t = I(x) = valBst(J, x, I) ≤t I(y) = I ′(y). If y has a different sign than
x, then t = I(x) = valBst(J, x, I) ≤t I(y). This means that ∼y /∈ I2 since
y ∈ F−; hence I ′(y) = t. If y has the same sign as x, then t = I(x) =
valBst(J, x, I) ≤t valBst(J, y, I) = I(y). Therefore, y ∈ I1, which implies that
y ≺J x. This means that y /∈ I1 \ I ′1. We can conclude that y ∈ I ′1; hence
I ′(y) = t. This shows that valBsp(J, x, I ′) = t, hence SVBsp(x, I ′) = t. This
implies that x ∈ AJF (I ′1, I2)1 = I ′1, which contradicts that x /∈ I ′1; hence
I1 = lfp(AJF (·, I2)1).

Take I1 ⊆ I ′2 (I2 and assume by contradiction that AJF (I1, I ′2)2 = I ′2. Define
I ′′ = (I1, I ′2). Therefore, I <p I ′′ and I(x) = u and I ′′(x) = f for all x ∈ I2 \I ′2.

Define the partial order �′J on I2 the same as before. This order is also well-
founded for a similar reason. The set I2 \ I ′2 is not empty, hence has a minimal
element x with respect to �′J . Take a child y of x in J . We prove that I ′′(y) ≥t u.
If y is open, then u = I(x) = valBst(J, x, I) ≤t I(y) = I ′′(y). If y has a different
sign as x, then u = I(x) = valBst(J, x, I) ≤t I(y). This means that ∼y /∈ I2
or ∼y ∈ I2 \ I1. Therefore, ∼y /∈ I ′2 or ∼y ∈ I ′2 \ I1, thus I ′′(y) ≥t u. If y has
the same sign as x, then u = I(x) = valBst(J, x, I) ≤t valBst(J, y, I) = I(y).
Therefore, y ∈ I2, which implies that y ≺′J x. This means that y /∈ I2 \I ′2, hence
y ∈ I ′2. We conclude that I ′′(y) ≥t u. This shows that valBsp(J, x, I ′′) ≥t u,
hence SVBsp(x, I ′′) ≥t u. This implies that x ∈ AJF (I1, I ′2)2 = I ′2, which
contradicts that x /∈ I ′2, concluding that I2 = lfp(AJF (I1, ·)2). This finishes the
proof that I is a partial stable fixpoint of AJF .

For the other direction, we first need the following lemma.

Lemma 5.3.8. Let I be a Bsp-model and x ∈ F+ with SVBsp(x, I) = f . It
holds that SVBst(x, I) = f .

Proof. Take an arbitrary justification J with x as internal node. There is a child
y of x with I(y) = f . If y has a different sign than x, then valBst(J, x, I) = f .
Otherwise, we can construct either a finite branch ending in a z with I(z) = f
or an infinite branch such that every element z in b has I(z) = f and z has the
same sign as x. Since x is positive, this means that valBst(J, x, I) = f . This
concludes the proof that SVBst(x, I) = f .

THE EMBEDDING 111

Proposition 5.3.9. Each partial stable fixpoint of AJF is a Bst-model of JF .

Proof. Let I = (I1, I2) be a partial stable fixpoint of AJF . We prove that
SVBst(x, I) = I(x) for x ∈ F+. By consistency of Bst (Theorem 3.2.6), this
proves that I is a Bst-model of JF . We prove our claim in three parts.

Part 1: SVBst(x, I) = I(x) = t for all x ∈ I1. Since I1 is lfp(AJF (·, I2)1),
there is an increasing sequence (Ki)i≤β for some ordinal number β so that

• K0 = ∅;

• Ki+1 = AJF (Ki, I2)1 for all i < β;

• Kα =
⋃
i<αKi for all limit ordinals α ≤ β;

• Kβ = I1.

Such a sequence exists by a constructive version of the Knaster-Tarski fixpoint
theorem (Cousot and Cousot, 1979). Now, for every x ∈ I1, there is a least
ordinal ix such that x /∈ Kix , while x ∈ Kix+1. This means that there is a
rule x ← Ax such that for all y ∈ Ax we have that (Kix , I2)(y) = t. Since
(Kix , I2) ≤p I, we have that I(y) = t for all y ∈ Ax.

We now define J to be the justification with exactly the rules x← Ax for x ∈ I1.
For a y ∈ F+ ∩ Ax, we have that y ∈ Kix ; hence iy < ix. This means that
every infinite J-branch x = x0 → x1 → · · · implies the existence of strictly
decreasing sequence of ordinals (ix0 , ix1 , . . .). Therefore, every J-branch is finite
and ending in an element in F− ∪ Fo. Consequently, the value of any J-branch
starting from x is an element of J , hence valBst(J, x, I) = t.

Part 2: SVBst(x, I) = I(x) = u for all x ∈ I2 \I1. Since I2 is lfp(AJF (I1, ·)2),
there is an increasing sequence (Mi)i≤β for some ordinal number β so that

• M0 = I1;

• Mi+1 = AJF (I1,Mi)2 for i < β;

• Mα =
⋃
i<αMi for limit ordinal α ≤ β;

• Mβ = I2.

For every x ∈ I2 \ I1, there is a least ordinal jx such that x /∈ Mjx , while
x ∈Mjx+1. Therefore, there is a rule x← Cx such that for all y ∈ Cx we have
that (I1,Mjx)(y) ≥t u. Since I ≤p (I1,Mjx) we have that I(y) ≥t u for all
y ∈ Cx. Define J ′ to be the justification with exactly the rules x ← Cx for

112 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

x ∈ I2 \ I1. By a similar reasoning as in the first part, we have that every
J ′-branch is finite and ending in I1 ∪ F− ∪ Fo. Define J∗ as J ′ ↑ J , with J
the justification from the first part. A J∗-branch is either a J ′-branch or a
concatenation of a J ′-branch with a J-branch. This means that J∗ does not
have infinite branches. By construction, we have for every element y in J∗ that
I(y) ≥t u. The evaluation of a J∗-branch is equal to an element in J∗; hence
valBst(J∗, x, I) ≥t u.

However, every justification for x has a branch b such that I(Bst(b)) ≤t u;
hence SVBst(x, I) = u = I(x). Indeed, for every y with I(y) ≤t u and rule
y ← C there is a c ∈ C with I(x) ≤t u. This constructs a branch b such that
for every element y in b we have that I(y) ≤t u. We know that Bst(b) 6= t;
otherwise b is completely negative or ending in t. Therefore, Bst maps b to an
element in b or to f or u. This proves that I(Bst(b)) ≤t u.

Part 3: SVBst(x, I) = I(x) = f for all x ∈ F+ \ I2. This is immediate from
Lemma 5.3.8.

Example 5.3.10. Let F = {x,∼x, y,∼y, z,∼z} ∪ L and let R be the
complementation of  x← y

y ← ∼z
z ← ∼x,∼y

 .

The approximator AJF has three partial stable fixpoints: ({x, y} , {x, y}),
({z} , {z}), and (∅, {x, y, z}).

Let us take a look at the fixpoint ({x, y} , {x, y}). Since it is a stable fixpoint, we
know that ({x, y} , {x, y}) is a least fixpoint of AJF (·, {x, y}). This operator is
monotone with respect to ⊆; hence we can construct the fixpoint by iteratively
applying the operator on (∅, {x, y}). This produces the following sequence.

(∅, {x, y})→ ({y} , {x, y})→ ({x, y} , {x, y})

The first step uses the rule y ← ∼z, while the second step uses the rule
x ← y. Combining the two we get the justification x → y → ∼z, which has
only true nodes in the model ({x, y} , {x, y}), only positive internal nodes and
every defined leaf is negative. This illustrates the first step of the proof of
Proposition 5.3.9. By extending the found justification, we get a locally complete
justification with the same value as the supported value. N

The proof of the fourth point of Theorem 5.3.4 follows directly from the third
point and Proposition 3.5.7.

THE EMBEDDING 113

The correspondence for co-stable is proven similarly as for the stable
correspondence. First, we show that every Bcst-model is a partial co-stable
fixpoint.

Proposition 5.3.11. Each Bcst-model of JF is a partial co-stable fixpoint of
AJF .

Proof. Take I = (I1, I2) to be a Bcst-model of JF . We prove that
gfp(AJF (·, I2)1) = I1 and gfp(AJF (I1, ·)2) = I2. By Proposition 3.5.8, it
holds that AJF (I) = SBsp

JF (I) = I. Therefore, we have that AJF (I1, I2)1 = I1
and AJF (I1, I2)2 = I2.

Take I ′2 with I2 (I ′2 and assume by contradiction that AJF (I1, I ′2)2 = I ′2.
Define I ′ = (I1, I ′2). By Theorem 2.6.20 and splittability of Bcst, there is a
locally complete justification J so that SVBcst(x, I) = valBcst(J, x, I) = I(x)
for all x ∈ Fd. Define the relation ≺J on F− \ ∼I1 as follows: y ≺J x holds
if y is reachable from x in J through negative facts. The relation ≺J is well-
founded, since F− \ ∼I1 is the set of negative facts not false in I, and for
those facts, J has no infinite negative branches. Since ∼I ′2 \ ∼I2 is a subset
of F− \ ∼I1, ∼I ′2 \ ∼I2 has a minimal element z for the relation ≺J . Note
that I(z) = t and I ′(z) = u. Take a child y of z in J . We prove that
I ′(y) = t. If y is open, then I ′(y) = I(y) ≥t I(z) = t. If y has a different
sign than z, then I(y) ≥t valBcst(J, z, I) = I(z) = t. Therefore, I(y) = t
and thus y ∈ I1, which means that I ′(y) = t as well. If y has the same sign
as z, then I(y) = valBcst(J, y, I) ≥t valBcst(J, z, I) = I(z) = t. This means
that ∼y /∈ I2; hence y ∈ F− \ ∼I2 ⊆ F− \ ∼I1. Consequently, we have that
y ≺J z. However, since z is minimal, we should have that y /∈ ∼I ′2 \ ∼I2. Thus,
I(y) = I ′(y). Because y was taken arbitrary, we have that valBsp(J, z, I ′) = t
and thus SVBsp(∼z, I ′) = f . This means that ∼z /∈ AJF (I1, I ′2)2 = I ′2, which is
in contradiction with z ∈ ∼I ′2 \ ∼I2. Therefore, I2 = gfp(AJF (I1, ·)2).

Take I ′1 with I1 (I ′1 ⊆ I2 and assume by contradiction that AJF (I ′1, I2)1 = I ′1.
Define I ′ = (I ′1, I2). By Theorem 2.6.20 and splittability of Bcst, there is a
locally complete justification J so that SVBcst(x, I) = valBcst(J, x, I) = I(x)
for all x ∈ Fd. Let ≺J be the same relation on F− \ ∼I1 as defined above.
Take a minimal element z of ∼I ′1 \ ∼I1 with respect to ≺J . This means
that I(z) ≥t u and I ′(z) = f . Take a child y of z in J . We prove that
I ′(y) ≥t u. If y is open, then I ′(y) = I(y) ≥t valBcst(J, z, I) = I(z) ≥t u. If
y has a different sign than z, then I(y) ≥t valBcst(J, z, I) = I(z) ≥t u. This
means that y ∈ I2 and thus I ′(y) ≥t u as well. If y has the same sign as
z, then I(y) = valBcst(J, y, I) ≥t valBcst(J, z, I) = I(z) ≥t u. This means
that ∼y ∈ F+ \ I1 or that y ∈ F− \ ∼I1. Since z is minimal, we should have
that y /∈ ∼I ′1 \ ∼I1. Therefore, I(y) = I ′(y). Because y was taken arbitrary,

114 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

we have that valBsp(J, z, I ′) ≥t u and thus SVBsp(∼z, I ′) ≤t u. This means
that ∼z /∈ AJF (I ′1, I2)1 = I ′1, which is in contradiction with z ∈ ∼I ′1 \ ∼I1.
Therefore, I1 = gfp(AJF (·, I2)1). This finishes the proof that I is a partial
co-stable fixpoint of AJF .

To prove the other direction, we need the following lemma.

Lemma 5.3.12. Let I be a Bsp-model and x ∈ F− with SVBsp(x, I) = f . It
holds that SVBcst(x, I) = f .

Proof. Take an arbitrary justification J with x as internal node. There is a child
y of x with I(y) = f . If y has a different sign than x, then valBcst(J, x, I) = f .
Otherwise, we can construct either a finite branch ending in a z with I(z) = f
or an infinite branch such that every element z in b has I(z) = f and z has the
same sign as x. Since x is negative, this means that valBcst(J, x, I) = f . This
concludes the proof that SVBcst(x, I) = f .

Now, we are able to prove that every partial co-stable fixpoint is a Bcst-model.

Proposition 5.3.13. Each partial co-stable fixpoint of AJF is a Bcst-model of
JF .

Proof. Let I = (I1, I2) be a partial co-stable fixpoint of AJF . We prove that
SVBcst(x, I) = I(x) for x ∈ F−. By consistency of Bcst (Corollary 3.3.10), this
proves that I is a Bcst-model of JF . We prove our claim in three parts.

Part 1: SVBcst(x, I) = I(x) = t for all x ∈ F− \ ∼I2. Since I2 is
gfp(AJF (I1, ·)2), there is a decreasing sequence (Mi)i≤β for some ordinal number
β so that

• M0 = F+;

• Mi+1 = AJF (I1,Mi)2 for i < β;

• Mα =
⋂
i<αMi for limit ordinal α ≤ β;

• Mβ = I2.

Such a sequence exists by a constructive version of the Knaster-Tarski fixpoint
theorem (Cousot and Cousot, 1979). For every x ∈ F− \ ∼I2, there is a least
ordinal jx such that ∼x ∈Mjx , while ∼x /∈Mjx+1 = AJF (I1,Mjx)2. Therefore,
there is a rule x← Cx such that for all y ∈ Cx, we have that (I1,Mjx)(y) = t.

THE EMBEDDING 115

Define J to be the justification with exactly the rules x← Cx for x ∈ F− \ ∼I2.
For a y ∈ F− ∩ Cx, we have that ∼y /∈ Mjx . This means that jy < jx. This
means that every infinite J-branch implies the existence of a strictly decreasing
sequence of ordinals. Therefore, every J-branch is finite and ending in an
element in F+ ∪Fo. Consequently, the value of any J-branch starting with x is
an element of J , hence valBcst(J, x, I) = t.

Part 2: SVBcst(x, I) = I(x) = u for all x ∈ ∼I2 \ ∼I1. Since I1 is
gfp(AJF (·, I2)1) and by a constructive version of the Knaster-Tarski fixpoint
theorem (Cousot and Cousot, 1979), there is a decreasing sequence (Ki)i≤β for
some ordinal number β so that

• K0 = I2;

• Ki+1 = AJF (Ki, I2)1 for all i < β;

• Kα =
⋂
i<αKi for all limit ordinals α ≤ β;

• Kβ = I1.

Now, for every x ∈ ∼I2 \ ∼I1, there is a least ordinal ix such that ∼x ∈ Kix ,
while ∼x /∈ Kix+1 = AJF (Kix , I2)1. This means that there is a rule x ← Ax
such that for all y ∈ Ax we have that (Kix , I2)(y) ≥t u. Since, (Kix , I2) ≥p I,
we have that I(y) ≥t u for all y ∈ Ax.

Define J ′ to be the justification with exactly the rules x← Ax for x ∈ ∼I2 \∼I1.
For a y ∈ F− ∩ Ax, we have that ∼y /∈ Kix ; hence iy < ix. This means that
every infinite J ′-branch implies the existence of a strictly decreasing sequence
of ordinals. Therefore, every J ′-branch is finite and ending in an element in
F− \ ∼I2 ∪ F+ ∪ Fo. Define J∗ as J ′ ↑ J with J the justification from the first
part. A J∗-branch is either a J ′-branch or a concatenation of a J ′-branch with
a J-branch. This means that J∗ has no infinite branches. By construction, we
have for every element y in J∗ that I(y) ≥t u. The evaluation of J∗-branch
is equal to an element in J∗ because it has no infinite branches. Therefore,
valBcst(J∗, x, I) ≥t u.

Every justification for x has a branch b such that I(Bcst(b)) ≤t u; hence
SVBcst(x, I) = u = I(x). Indeed, for every y with I(y) ≤t u and rule y ← C
there is a c ∈ C with I(x) ≤t u. This construct a branch b such that for every
element y in b we have that I(y) ≤t u. We know that Bcst(b) 6= t; otherwise b
is completely positive or ending in t. Therefore, Bcst maps b to an element in
b or to f or u. This proves that I(Bcst(b)) ≤t u.

Part 3: SVBcst(x, I) = I(x) = f for all x ∈ ∼I1. This is immediate from
Lemma 5.3.12.

116 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

The proof of the sixth point of Theorem 5.3.4 follows directly from the fifth
point and Proposition 3.5.8.

5.4 Application: Ultimate Semantics

When applying AFT to new domains, there is not always a clear choice of
approximator to use; the operator on the other hand is often more clear.
Denecker et al. (2004) studied the space of approximators and observed
that consistent approximators can naturally be ordered according to their
precision, where more precise approximator also yield more precise results (e.g.,
if approximator A is more precise than B, then the A-well-founded fixpoint
is guaranteed to be more precise than B’s). They also observed that the
space of consistent approximators of O has a most precise element, called the
ultimate approximator, denoted U(O). This induces ultimate versions of the
various AFT fixpoints.3 In the context of logic programming, the step from
the standard approximator (which is Fitting’s partial immediate consequence
operator (Fitting, 2002)) to the ultimate approximator roughly boils down
to using supervaluations (Fitting, 1994; van Fraassen, 1966). The ultimate
approximator of an operator O : L→ L has the following form (Denecker et al.,
2004):

U(O) : Lc → Lc : (x, y) 7→

 ∧
x≤z≤y

O(z),
∨

x≤z≤y

O(z)

 ,

where
∧

(respectively
∨
) are the greatest lower (respectively least upper) bound

with respect to ≤. If an approximator A approximates an operator O, then we
abuse notation by defining U(A) := U(O).

In the context of justification theory, the justification frame uniquely determines
the approximator at hand. Still, we show that it is possible to obtain ultimate
semantics here as well. To do so, we will develop a method to transform a
justification frame JF into its ultimate frame U(JF). We will then show that
the approximator associated to U(JF) is indeed the ultimate approximator of
OJF . The result is a generic mechanism to go from any semantics induced by
justification theory (for arbitrary branch evaluations – not just for those that
have an AFT counterpart) to an ultimate variant thereof. Our construction is
as follows:

3This added precision has an increased computational cost (Denecker et al., 2004, Theorems
6.12 and 6.13).

APPLICATION: ULTIMATE SEMANTICS 117

Definition 5.4.1. Let JF be a complementary justification frame. Let X
be the set of rules with a positive head. Let X∗ be the least (w.r.t. ⊆) set
containing X that is closed under the addition of rules x← A

• if there is a rule x← B with B ⊆ A, or

• if there are rules x← {y} ∪A and x← {∼y} ∪A.

Let Y be the complementation of X. Then U(JF) is defined to be the
complementary justification frame 〈F ,Fd, Y 〉. We call U(JF) the ultimate
frame of JF .

Let us look at an example.

Example 5.4.2. Let Fd = {x,∼x} and Fo = {a,∼a, b,∼b} ∪ Fo. Take R to
be the complementation of {

x← a, x
x← b,∼x

}
,

which adds the following rules
∼x← ∼a,∼b
∼x← ∼a, x
∼x← b,∼x
∼x← x,∼x

 .

To determine the supported value, it suffices to take non-redundant rules
into account. Recall that a rule x ← A is non-redundant if there is no rule
x← B with B (A. The justification frame U(JF) has exactly the following
non-redundant rules: 

x← a, x
x← b,∼x
x← a, b
∼x← ∼a,∼b
∼x← ∼a, x
∼x← ∼b,∼x


.

Of course, it contains many redundant rules, for example x ← a, b, x. The
justifications in the original system containing x as root are exactly the following:

118 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

x

a

x

b ∼x

∼a∼b

x

b ∼x

∼a

x

b ∼x

∼b

x

b ∼x

Assume from now on we are working under Bst. The value of the upper
left justification for x is f in every interpretation. The values of the other
justifications for x are at most u in Bst-models. If it would be t, then the value
of these justifications for x is equal to the value of ∼x, which is f .

By taking the ultimate justification frame, the non-redundant rule x← a, b is
added and the non-redundant rule ∼x← x,∼x is removed. This allows for the
justification

x

a b

If the interpretation of a and b is t, then the value of this justification for
x is t. Therefore, ({a, b, x} , {a, b, x}) is an ultimate stable model, while not
a stable model. Note that the lower justification is not a justification in
U(JF). If it would be, then this is a true justification for ∼x contradicting the
consistency. N

It can be seen that the construction adds rules to JF in two cases. For the first
type, if x ← B is a rule in R with B ⊆ A, then if B is sufficient to derive x,
clearly so is A. The second type of rule addition essentially performs some sort
of case splitting. It states that if a set of facts A can be used with either y or
∼y to derive x, then the essence for deriving x is the set A itself. In that case,
the rule x← A is added to the ultimate frame. This case splitting is actually a
bit more general as shown in the following proposition.
Proposition 5.4.3. U(JF) can also be constructed using the following
variation: closed under the addition of

• a rule x← A if there is a rule x← B with B ⊆ A, or

APPLICATION: ULTIMATE SEMANTICS 119

• a rule x← A ∪B if there are rules x← A ∪ {y} and x← B ∪ {∼y}.

Proof. It suffices to prove that the second type is implied by the standard rules.
Take two rules x ← A ∪ {y} and x ← B ∪ {∼y}. This means that the rules
x ← A ∪ B ∪ {y} and x ← A ∪ B ∪ {∼y} are also in the frame. Therefore,
x← A ∪B is also in the frame.

It turns out that this rule of case splitting is indeed sufficient to reconstruct
the ultimate semantics in justification theory. This is formalised in the main
theorem of this section, for which the proof will be postponed a bit.

Theorem 5.4.4. For any complementary frame JF , AU(JF) = U(OJF).

An immediate corollary is, for instance that the set of stable models of U(JF)
equals the set of ultimate stable fixpoints of OJF , and similarly for other
semantics.

Recall that, in the context of lattices with the subset order, which is what we
are concerned with here, the ultimate approximator is equal to (Denecker et al.,
2004):

U(O)(I1, I2) =

 ⋂
I1⊆K⊆I2

O(K),
⋃

I1⊆K⊆I2

O(K)

 . (5.1)

The proof of Theorem 5.4.4 makes use of the following intermediate results.

Lemma 5.4.5. Let I be an interpretation and x ∈ Fd. If OJF (I ′)(x) =
t (respectively f) for all exact interpretations I ′ with I ′ ≥p I, then
AU(JF)(I)(x) = t (respectively f).

Proof. Let I = (I1, I2). We first prove this for the case t. Define X =
{y ∈ Fd | I(x) = u}. We prove for all Y ⊆ X and all complete consistent
subsets A overX\Y that the rule x← {t}∪I1∪∼(F+\I2)∪A is a rule in U(JF).
A complete consistent subset A of Z is a subset such that for each z ∈ Z exactly
one of z and ∼z is in A. If Y = X, then we get that x← {t}∪I1∪∼(F+ \I2) is
a rule in U(JF) with every element y in its body we have I(y) = t, completing
our proof. We prove our claim by transfinite induction. Assume Y = ∅. Take a
complete consistent set A over X. Define K = I1∪(A∩F+). Since I ≤p (K,K),
we have a rule x← B in JF with (K,K)(b) = t for all b ∈ B. The true facts
under B are equal to {t} ∪ I1 ∪∼(F+ \ I2)∪A. Take b ∈ B. Therefore, we can
extend this rule to x← I1 ∪ ∼(F+ \ I2) ∪A in U(JF).

120 EMBEDDING JUSTIFICATION THEORY IN APPROXIMATION FIXPOINT THEORY

Take Y 6= ∅. Assume by induction the claim holds for all Y ′ (Y . Take any
y ∈ Y and a complete consistent set A over X \Y . Then A∪{y} and A∪{∼y}
are complete consistent sets over X \ (Y \ {y}). So by induction, there are rules
x← I1 ∪ (F+ \ I2)∪A∪ {y} and x← I1 ∪ (F+ \ I2)∪A∪ {y} in U(JF). This
means that x← I1 ∪ (F+ \ I2) ∪A is a rule in U(JF).

The case for f follows easily from the t case. We have for all exact interpretations
I ′ with I ≤p I ′ that AJF (I ′)(x) = f . Then by consistency, AJF (I, I)(∼x) = t.
By Lemma 5.4.5, we have that AU(JF)(I)(∼x) = t; hence AU(JF)(I)(x) = f .

Combining this lemma with Eq. (5.1) of the ultimate approximator immediately
yields that the operator AU(JF)(I) is as least as precise as the ultimate
approximator of OJF .

Lemma 5.4.6. For all interpretations I we have U(OJF)(I) ≤p AU(JF)(I).

Proof. Take x ∈ F+. If UJF (I)(x) = u, then it is obvious that AU(JF)(I)(x) ≤p
u = UJF (I)(x).

If UJF (I)(x) = t, then x ∈ ∩I1⊆K⊆I2AJF (K,K)1; hence AJF (K,K)(x) = t
for all exact interpretations (K,K) ≥p I. Therefore, by Lemma 5.4.5, we have
that AU(JF)(I)(x) = t = UJF (I)(x).

If UJF (I)(x) = f , then x /∈ ∪I1⊆K⊆I2AJF (K,K)1; hence AJF (K,K)(x) = f
for all exact interpretations (K,K) ≥p I. By Lemma 5.4.5 it follows that
AU(JF)(I)(x) = f = UJF (I)(x).

Similarly, we can prove for all x ∈ F− that UJF (I)(x) ≤p AU(JF)(I)(x).

Since the ultimate approximator is the most precise approximator of any given
operator, all that is left to prove, to indeed obtain Theorem 5.4.4 is that AU(JF)
indeed approximates OJF . That is the content of the last lemma.

Lemma 5.4.7. AU(JF) is an approximator of OJF .

Proof. Take I ⊆ F+. Adding a rule x ← B to JF if x ← A is in JF with
A (B, does not change AJF (I, I). Similarly, adding a rule x ← A to JF if
x ← A ∪ {y} and x ← A ∪ {∼y} are in JF does not change AJF (I, I). This
means that OJF (I) = AJF (I, I) = AU(JF)(I, I).

CONCLUSION 121

5.5 Conclusion

In this chapter, we presented a general mechanism to translate justification
frames into approximating operators and showed that this transformation
preserves all semantics the two formalisms have in common. The correspondence
we established provides ample opportunity for future work and in fact probably
generates more questions than it answers.

By embedding justification theory in AFT, justification theory gets access to a
rich body of theoretical results developed for AFT, but of course said results
are only directly applicable to branch evaluations that have a counterpart in
AFT. A question that immediately arises is whether results such as stratification
results also apply to other branch evaluations, and which assumptions on branch
evaluations would be required for that. Another question that pops up on the
justification theory side is whether concepts such as groundedness Bogaerts et al.
(2015a) can be transferred.

On the AFT side, this embedding calls for a general algebraic study of
explanations. Indeed, for certain approximators, namely those that “come
from” a justification frame, our results give us a method for answering certain
why questions in a graph-based manner (with justifications). Lifting this notion
of explanation to general approximators would benefit domains of logics that
are covered by AFT but not by justification theory.

A last question that emerges is how nesting of justification frames (see Chapter 6)
fits into this story, and whether it can give rise to notions of nested operators
on the AFT side.

Chapter 6

Nested Justification Systems

6.1 Introduction

An important property in knowledge representation is modularity. Being able
to compose different semantics is key to achieving modularity. In justification
theory, composition is obtained by nesting systems, which was introduced by
Denecker et al. (2015), but not extensively discussed. This chapter further
explores nested justification systems. Denecker et al. (2015) defined the
semantics of nested systems by compressing to an unnested system. One
shortcoming of this approach is that we consider justifications in the compressed
system, and thus information is lost. We introduce an alternative view on nested
systems that avoids this loss of information. We prove that this alternative view
is strongly equivalent to the compression approach when we are dealing with
tree-like justifications, and we provide some partial results in case of graph-like
justifications. The consistency of the compression has interesting relations
between graph-reducibility and tree-like consistency. As a bonus, we completely
solve the tree-like consistency. The chapter is closed by showing how aggregates,
first-order logic definitions and fixpoint definitions can be captured with nested
justification systems.

Apart from the recalling of the definitions of nested systems and their
compression (Denecker et al., 2015), the text of this chapter is entirely new and
unpublished work.

123

124 NESTED JUSTIFICATION SYSTEMS

6.2 Basic Definitions

In order to understand the need for nested systems, we need to take a look at
some inductive definitions. Essentially facts are propositional in nature, but
because we allow infinitely many in rule bodies, we can use compound formulae.
Suppose we want to inductively define the reachability relation of graph over a
set of nodes N . A fairly well-known representation as an inductive definition is
given below.

∀x ∈ N, y ∈ N : reachable(x, y)← edge(x, y).

∀x ∈ N, y ∈ N : reachable(x, y)← ∃z : edge(x, z) ∧ reachable(z, y).

Intuitively, the first rule states the base state for the induction: if there is an edge
from x to y, then y is reachable from x. The second rule states the induction step:
if there is an edge from x to a z such that y is reachable from z, then surely y must
be reachable from x. We can represent this in a justification frame as follows:
Take F+∩Fd = {reachable(x, y) | x, y ∈ N}, Fo∩F+ = {edge(x, y) | x, y ∈ N}.
Then the justification frame is the complementation of the set

{reachable(x, y)← edge(x, y) | x, y ∈ N}

∪ {reachable(x, y)← edge(x, z), reachable(z, y) | x, y, z ∈ N} .

The universal quantifications are actually transformed into a number of rules.
Note that the facts edge(x, y) (and ∼edge(x, y)) are open facts and thus serve
as parameters. This means that depending on the interpretation of the opens,
it represents the reachability definition of a different graph; hence the graph
is a parameter of this system. Since induction is associated with well-founded
semantics (Denecker, 1998; Denecker and Vennekens, 2014), we can use Bwf .
If the interpretation of Fo is fixed and two-valued, that is, the graph on N
is known, then the unique Bwf-model is two-valued since our rules do not
allow for mixed loops. In that case, the unique Bwf-model can be computed
by iteratively applying the approximator AJF until fixpoint starting from the
interpretation that is u on all defined facts. This corresponds neatly to applying
the different rules in the inductive definition. So because of our AFT connection
from Chapter 5, any inductive definition that can be faithfully represented as a
propositional inductive definition can be captured by justification theory, see
Section 6.5.3.

Justification theory handles inductive definitions well if the body is a set of
literals. This begs the question at what happens if the bodies contain complex

BASIC DEFINITIONS 125

formulae. Let us now look at when the edges are not determined from outside,
but from the inside. Suppose we want to look at the following graph1 on N:

• (x, x/2) if x is even

• (x, 3x+ 1) if x is odd.

Let `(x,y) be t if (x, y) is in this graph and f otherwise. The graph can be
represented by the complementation of the following rule set{

edge(x, y)← `(x,y)
∣∣ x, y ∈ N

}
.

Adding this rule set to the justification system above will produce a system
that captures this definition correctly. This technique also works for any graph
and no matter how the graph is defined (as long its definition can be captured
with well-founded semantics). Two problems exists with this approach. First, it
does not make a distinction between the definition of the reachability relation
and the definition of the graph; the two are mushed together and the knowledge
representation is not modular. Second, if the definition of the graph cannot be
captured with well-founded semantics, then this might not work.

We illustrate these problems in another related area: predicate introduction
(Vennekens et al., 2007b). Predicate introduction is the act of replacing a
complex formula by a newly defined predicate. This can be used to simplify or
eliminate redundancy of a theory. However, predicate introduction might not
be equivalence preserving.

Example 6.2.1. Suppose you have a justification frame with the rule p← p.
If we now want to introduce a new predicate T representing ∼p, then it will
introduce a rule T ← ∼p. Because p is equal to ∼∼p, we can replace p with
∼T , so we replace the rule p← p with p← ∼T . So our predicate introduction
produces the justification frame{

p← ∼T
T ← ∼p

}
Under Bwf , this will have the model in which p is u instead of f in the original
system. N

This situation is analogous to the graph reachability definition. The definition of
p corresponds to the definition of graph reachability itself, while the definition of
T corresponds to the definition of the graph. Putting together both definitions

1This is the graph for the Collatz conjecture, a famous unsolved mathematical problem
stating for every x ∈ N, (x, 1) is in the reachability relation of this graph.

126 NESTED JUSTIFICATION SYSTEMS

does not provide the desired effect. Instead, we want a way that makes the
definition of T inferior to p, first evaluating what the value of T is and then filling
it in. If we can achieve this, then we can perform any predicate introduction in
an equivalence preserving manner.

We have seen that introducing a new predicate might not be equivalence-
preserving, see Example 6.2.1. We have hinted that we can solve this by having
a local (the definition for the newly introduced predicate) justification frame
for which we find the model and then substitute the predicate with the value of
the found model in the main justification frame. Stretching this idea further, it
might be that the local justification frame has a different semantics than the
main justification frame, allowing for predicate introduction with a different
semantics. This brings us to the definition of nested justification systems,
which were invented by Denecker et al. (2015). Nested justification systems are
essentially a tree structure of justification systems, meaning that some systems
are local to certain others.

Definition 6.2.2. Let F be a fact space. A nested justification system on F
is a tuple

〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
such that

1. 〈F ,Fdl, R,B〉 is a parametric justification system;

2. for each i, JSi is a nested justification system 〈F i,F id,F idl, Ri,Bi, . . .〉 (we
write F io for F i \ F id as usual);

3. Fd is partitioned into
{
Fdl,F1

d , . . . ,Fkd
}
;

4. F = ∪ki=1Fk;

5. F io = Fo ∪ Fdl, where Fo = F \ Fd as usual.

This defines a tree of nested justification systems, where the leaves have Fdl = Fd
and k = 0, which corresponds to an unnested justification system. Every fact
is either defined locally in the top system (Fdl), or in one of the subsystems
F id. The open facts in JSi are the open facts of the root augmented with the
locally defined facts (defined in the root). This has the consequence that facts
defined in JSi do not appear as open facts in JSj if i 6= j.

Lemma 6.2.3. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a nested

justification system. If i 6= j, then F id ∩ F j = ∅.

Proof. Take i 6= j. Because Fd is partitioned into
{
Fdl,F1

d , . . . ,Fkd
}
, it suffices

to prove that F id ∩ F jo = ∅. This follows from (5) in Definition 6.2.2.

BASIC DEFINITIONS 127

To make the nesting structure more apparent, nested systems can also be viewed
as a tree of unnested justification systems.

Proposition 6.2.4. A nested justification system

JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
corresponds to a tree of justification systems, called the nesting tree of JS, such
that

1. The root of the tree is 〈F ,Fdl, R,B〉;

2. Each element in Fd is a defined fact in exactly one system;

3. Each element in Fo is an open fact in every system;

4. A fact defined in a system JS1 occurs as open fact in another system JS2
if and only if JS2 is an ancestor or descendant of JS1;

5. The root has k children and for each 1 ≤ i ≤ k the subtree rooted in the
ith child of the root is the nesting tree of JSi.

Proof. By combining the first and last point, the tree is uniquely determined.
The rest of the conditions follow from the definition of nested justification
systems.

Most of the time, we will refer to the unnested systems in the nesting tree,
instead of the subsystems JSi from the definition of nested systems. A system
that is closer to the root than another system is said to have a higher level. The
depth of a nested system is the depth of the nesting tree, that is, the length of
the longest path in the nesting tree. For a unnested system, this is one. Let us
look at a simple example of a nested justification system.

Example 6.2.5. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1,JS2}〉 be a nested system

with F+ = {x, a, b, c, d}, Fdl = {x,∼x}, B = BKK, and R equal to the
complementation of {

x← a, b
}
.

The inner system JS1 is equal to the unnested system with F1
dl = {a,∼a},

B1 = Bcwf , and R1 equal to the complementation of{
a← a

}
.

The inner system JS2 is a nested system
〈
F ,Fd,Fdl, R,B,

{
JS3,JS4}〉 with

F2
+ = {b, c, d}, F2

dl = {b,∼b}, B2 = BKK, and R2 equal to the complementation
of {

b← c, d
}
.

128 NESTED JUSTIFICATION SYSTEMS

The system JS3 is unnested with F3
dl = {c,∼c}, B3 = Bwf , and R3 equal to the

complementation of {
c← c

}
.

The system JS4 is the unnested system with F4
dl = {d,∼d}, B4 = Bcwf , and

R4 equal to the complementation of{
d← d

}
.

The system JS has depth 3 and its nesting tree is equal to

〈{x, a, b, c, d,∼x,∼a,∼b,∼c,∼d} ∪ L, {x,∼x} ,BKK, R〉

〈
{x, a,∼x,∼a} ∪ L, {a,∼a} ,Bcwf , R

1〉

〈
{x, b, c, d,∼x,∼b,∼c,∼d} ∪ L, {b,∼b} ,BKK, R

2〉

〈
{x, b, c,∼x,∼b,∼c} ∪ L, {c,∼c} ,Bwf , R

3〉

〈
{x, b, d,∼x,∼b,∼d} ∪ L, {d,∼d} ,Bcwf , R

4〉
N

Using the nesting tree to represent nested systems graphically is a bit unwieldy.
A lot of information in this tree is superfluous. For example, the set of defined
facts can be extracted from the set of rules. The open facts are exactly the
defined facts of ancestor or descendant nodes plus the facts that are open
everywhere. In principle, just the set of rules is enough to represent a nested
system. If we are working with complementary rule sets, then we can also
leave out the rules for one of x and ∼x. This is illustrated in the following two
examples

BASIC DEFINITIONS 129

Example 6.2.6. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1}〉 be a nested justification

system with F+ = {z, x, w, v}, Fdl = {z, w,∼z,∼w}, and R equal to the
complementation of {

z ← x
w ← x

}
.

The inner system has F1 = F , F1
dl = F1

d = {x, v,∼x,∼v}, R1 the
complementation of {

x← v, w
v ← v

}
.

We can represent this as follows:
z ← x
w ← x{
x← v, w
v ← v

}


The corresponding nesting tree is a graph with two nodes, where the top level
system has the rules for (∼)z and (∼)w, while the leaf system has the rules for
(∼)x and (∼)v. Here, we see that x is an open fact in the top level. Similarly,
w is an open fact in the lowest level. N

In the example above, the information of the branch evaluations is left out.
This can be implicit or can be made explicit by adding ‘B : ’ before the braces.

Example 6.2.7. The graphical representation of the nested system of
Example 6.2.5 is as follows:

BKK :


x← a, b
Bcwf :

{
a← a

}
BKK :


b← ∼c, d
Bwf :

{
c← c

}
Bcwf :

{
d← d

}



N

Nesting so far has been syntactically, and we still need to attach meaning to
it. The way Denecker et al. (2015) do this, is by transforming it to a regular
justification system. Essentially, the transformation compresses the nested
system into a normal one, by starting from the leaves of the nesting tree.

Since every branch evaluation in a nested justification system is parametric, we
know that there is an unique model if the interpretation of the open facts is
fixed (see Proposition 2.5.4). The value of a fact in this model depends solely

130 NESTED JUSTIFICATION SYSTEMS

on the values of the open facts. Therefore, we can represent the model by a
set of rules for which the body only contains open facts. This representation is
formed by transforming each justification into a single rule, by an operation
called flattening.

Definition 6.2.8. Let JS = 〈F ,Fd, R,B〉 be a justification system. The
flattening Flat(JS) is the justification system 〈F ,Fd, Rf ,B〉, where

Rf = {x← A | x ∈ Fd, J ∈ Jx, A = {B(b) | b ∈ BJ(x)}} .

This is called flattening because every locally complete justification is reduced
to a single rule, and because justifications in this new system have, when B is
parametric, only branches of length two.

Example 6.2.9. Take the leaf system of the nesting tree of Example 6.2.6 and
evaluate in Bwf . The only connected locally complete justifications are

x

wv
∼x

∼w

∼x

∼v

The left justification gives use the rules x ← f , w and v ← f , the middle one
∼x← ∼w, and the right one ∼x← t and ∼v ← t. N

Lemma 6.2.10. If B is parametric, then every justification in Flat(JS) only
has branches of length two.

Proof. Take x ∈ Fd. If x→ y is the start of a J-branch, then there is a locally
complete justification J∗ in JS with x as internal node such that y = B(b) for
some J∗-branch starting with x. Since b is parametric, B(b) is open; concluding
our proof.

If these simple branches are mapped to their last element, then the flattening is
strongly equivalent to the original system.

Proposition 6.2.11. If B is parametric and maps branches x→ y to y, then
SJS = SFlat(JS), i.e. JS is strongly equivalent to Flat(JS).

Proof. Take an F-interpretation I and x ∈ Fd. Let J be a JS-justification
such that SVJS(x, I) = val(J, x, I). Then by construction of Flat(JS), this

BASIC DEFINITIONS 131

J corresponds to a rule x ← A in Flat(JS) such that A ⊆ Fo and for all
y ∈ A it holds that b(x → y) ≥t val(J, x, I). The rule x ← A is a locally
complete justification in Flat(JS). Therefore, SVFlat(JS)(x, I) ≥t val(J, x, I) =
SVJS(x, I). Similarly, every locally complete justification in Flat(JS) with x as
root is a single rule x← A such that A = {B(b) | b ∈ BJ(x)} for some locally
complete justification J in JS. Therefore, SVJS(x, I) ≥t SVFlat(JS)(x, I).

As a consequence, flattening preserves the properties of the justification at
hand. We should note, however, that the structure of the justification is lost:
justifications in Flat(JS) are condensed down. We will come back to this later.

Proposition 6.2.12. Let JS1 and JS2 be two parametric justification systems
that map x→ y to y. Then JS1 and JS2 are (strongly) equivalent if and only
if Flat(JS1) and Flat(JS2) are (strongly) equivalent.

Proof. The strong equivalence result follows from Proposition 6.2.11 and by
looking at the diagram below.

SJS1 SFlat(JS1)

SJS2 SFlat(JS2)

Proposition 6.2.11 implies that the models of JS and Flat(JS) are equal, i.e.
JS and Flat(JS) are equivalent. The regular equivalence result follows then by
looking at the diagram above by interpreting the equality signs as equivalences
between the underlying systems instead.

Because of these nice properties, we will actually demand that finite branches
should be mapped to their last element by all branch evaluations involved
in nested systems. Denecker et al. (2015) did not require this because they
demanded that the flattening2 was to be evaluated using Bsp, which maps
finite branches x→ y to y. This suggest that they understood the issue that
the flattening is not always strongly equivalent to the original system. By
introducing the property that finite branches should be mapped to their last
element, we circumvent this problem. Moreover, this property will also be
important in Section 6.3, when we introduce an alternative view on nested
systems.

2The flattening construction was only implicitly used in that paper.

132 NESTED JUSTIFICATION SYSTEMS

So far, we have a way to evaluate inner definitions, but not a way to eliminate
the inner symbols from the outside definitions. The following example shows
how to do that.

Example 6.2.13. Let us take another look at Example 6.2.6. By replacing
the inner system with its flattening, we get

z ← x
w ← x
∼z ← ∼x
∼w ← ∼x

x← f , w
v ← f
∼x← t
∼x← ∼w
∼v ← t




.

In the inner system, we see that the value of x is determined by the value of a
case of x. By replacing x in the top level by a case of x, we eliminate x from the
the top level. For example, z ← x becomes z ← f , w. Doing this for all rules
and all cases for defined facts in the lower level we get the following system:

z ← f , w
w ← f , w
∼z ← t
∼z ← ∼w
∼w ← t
∼w ← ∼w


.

Note that the rules for ∼z and ∼w are doubled since ∼x has two cases. The
newly formed system will take the facts of the lowest level implicitely into
account. If you want this to be explicit, the inner system can be added as
well. N

The construction in this example where rules are transformed by replacing facts
of a lower level by a case for that fact is called unfolding and is formally defined
below.

Definition 6.2.14. Let R be a set of rules, and R` a set of rules for the facts
X (the elements of X are the heads of the rules in R`). Take a rule x ← A
in R. Let f be any function with domain A ∩X such that for all y ∈ A ∩X,
y ← f(y) is a rule in R` (the function f chooses a rule for each y ∈ A ∩X).
The unfolding of x← A with respect to f is the rule

Unff (x← A) = x← (A \X) ∪
⋃

y∈A∩X
f(y).

BASIC DEFINITIONS 133

Let Fx←A be the set of such functions f . Then the unfolding of x ← A with
respect to R` is the set

UnfR` (x← A) = {Unff (x← A) | f ∈ Fx←A} .

The unfolding of R with respect to R` is

Unfold(X,R`) (R) =
⋃

x←A∈R
UnfR` (x← A) .

In Example 6.2.13, the last set of rules is the unfolding of the inner set of rules
on the outer set of rules. In that example, a nested justification system is
transformed to an unnested one by unfolding, so we can define unfolding also
on systems with a single nesting. However, in order to keep the set of defined
facts the same, we keep the rules of the inner systems.

Definition 6.2.15. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a two-

level nested justification system. The unfolding of JS is

Unfold (JS) = 〈F ,Fd, Rs ∪Unfold(Fd\Fdl,Rs) (R) ,B〉,

where Rs = ∪ki=1R
i.

Intuitively, it unfolds the rules of the child systems into the top system and
keeps the rules for the lower level facts (Rs).

Example 6.2.16. The unfolding of the nested system from Example 6.2.13 is
given below (the rules for negative facts are left out for brevity).

z ← f , w
w ← f , w
x← f , w
v ← f


N

This operation reduces the depth of the nesting tree and thus will serve as a
basis for defining the compression of a nested justification system.

Definition 6.2.17. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a nested

justification system. The compression Compress(JS) is defined inductively to
be the justification system

Unfold
(〈
F ,Fd,Fdl, R,B,

{
Flat(Compress(JS1)), . . . ,Flat(Compress(JSk))

}〉)
.

134 NESTED JUSTIFICATION SYSTEMS

Note that this definition is well-defined since the subsystems JSi will have a
smaller depth than JS. The compression starts by flattening the leaf systems
and unfolding them onto their parents. This is repeated until there is no nesting.
Denecker et al. (2015) demand that all branch evaluations involved should be
parametric, but in principle, the top level justification system does not need
to be parametric. Denecker et al. (2015) use the compression to give meaning
to nested justification systems: to get notions such as justification, supported
value, and models into nested systems realm. Let us take a look at an example.

Example 6.2.18. Let us look at Example 6.2.1, where we used an auxiliary
symbol for ∼p. We can use the following nested system:{

p← ∼T{
T ← ∼p

} } .
The compression of this system is{

p← p
T ← ∼p

}
.

By evaluating the compression under Bwf , we get the intended model in which
p is f . The justification for p will not contain any trace of T . In this case,
this is fine, but in more complicated predicate introductions or reifications,
understanding the justifications becomes difficult. N

Example 6.2.19. Let JS be the nested system from Example 6.2.5 (the
graphical representation is shown in Example 6.2.7). The compression starts by
flattening the leaf systems of the nesting tree. So we obtain the system

BKK :


x← a, b
Bcwf :

{
a← t

}
BKK :


b← ∼c, d
Bwf :

{
c← f

}
Bcwf :

{
d← t

}


 .

Then we unfold the inner system

BKK :


b← ∼c, d
Bwf :

{
c← f

}
Bcwf :

{
d← t

}


to get the system

BKK :

 b← t
c← f
d← t



ALTERNATIVE VIEW ON NESTED SYSTEMS 135

So far, we have

BKK :


x← a, b
Bcwf :

{
a← t

}
BKK :

 b← t
c← f
d← t



 .

Since both inner systems are already flattened, we unfold this system to get the
compression of JS:

BKK :


x← t
a← t
b← t
c← f
d← t

 .

The single justification with x as root is equal to

x

t

The only thing this justification explains is that x has to be true in a model,
but it gives no reason why this is the case. This information is lost because we
have compressed the nested system. One can expect to lose more information if
there is a large nesting depth. N

6.3 Alternative View on Nested Systems

Example 6.2.19 shows that the justifications in Compress(JS) completely lost
their use to serve as explanations. However, we identified this to be one of
the motivating properties for why to use justification theory. Therefore, it
raises the question if we can evaluate nested justification systems differently,
without compressing and losing details in the process. If we want all the possible
details available in the justifications, we should put all the rules of each system
together in a single unnested justification frame. This new frame, then, should
be evaluated with a new branch evaluation. This brings us to our final research
question.

Nested Justification Semantics without Quality Loss

By combining all the rules in a nested system, we get a single unnested
justification frame. The question remains if there is a branch evaluation

136 NESTED JUSTIFICATION SYSTEMS

such that this new system is strongly equivalent with the compression. If
such a branch evaluation exists, then nested systems can be looked at from
an alternative standpoint without the loss of quality in justifications which
the compression suffers from.

Let us go back to Example 6.2.18. If all the rules are thrown together, we get
the complementation of {

p← ∼T
T ← ∼p

}
.

In the compression, p has supported value f . But now we get branches p →
∼T → p → ∼T → · · · , which is evaluated to u under Bwf . The well-founded
semantics tries to minimise truth. It becomes unclear if we want to minimise the
truth of p or T . Well-founded semantics cannot make such a distinction. The
nesting, however, makes it clear which symbol is more important to minimise
truth for: the fact that is closest to the root system is minimised first. In order
to simulate the compression in the new branch evaluation, we can leave out all
the occurrences of ∼T to get the branch p→ p→ · · · .

A similar idea can be achieved in arbitrary nestings.

Definition 6.3.1. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a nested

justification system. Take an F -branch b. We define themerge branch evaluation
B∗ so that

• if b is finite, then B∗(b) is equal to the last element of b.

• if b is infinite, then let JS ′ be the highest level justification system in
the nesting tree of JS such that b contains infinitely many elements of
locally defined facts of JS ′ (Such a system JS ′ exists, see discussion below
definition). Let b′ be the branch obtained from b by removing all facts
outside JS ′. Then B∗(b) = B′(b′), where B′ is the branch evaluation of
JS ′.

The merge Merge(JS) of JS is the justification system 〈F ,Fd, R∗,B∗〉, where
R∗ is the union of all the rules in JS.

Technically, this does not constitute a branch evaluation as in Definition 2.2.11.
However, by demanding that the fact space has a nesting tree structure of
defined facts attached to it, it is just as general. We can say that branches in a
nested justification system are sequences of facts x0 → x1 → · · · such that the
level of xi is equal to, a descendant, or ancestor of the level of xi+1. With this
restriction, the highest level in the definition of the merge branch evaluation

ALTERNATIVE VIEW ON NESTED SYSTEMS 137

always exist. If two such levels exist that are not descendant or ancestor of each
other, then the branch will have a higher level that occurs infinitely often. This
level will be a common ancestor of the two.

Note that the definition of merge does not have the limitation that the underlying
branch evaluations are parametric as in the compression.

Example 6.3.2. Take a nested justification system where the inner system is
not parametric.

Bwf :


r ← x
s← y

Bst :
{
x← ∼y
y ← ∼x

}


The inner system has three models I with I(x) = ∼I(y), where I(x) ∈ {t,u, f}.
Intuitively, you would expect that each model of the inner system gives rise
to a model of the nesting by substituting the values of x and y into the outer
system. When taking the merge, this is exactly what happens, even though the
inner system is not parametric: The only justification for r in the merge is

r → x→ ∼y → x→ ∼y → · · ·

The merge branch evaluates this to Bst(x→ ∼y → x→ ∼y → . . .) = ∼y; hence
SVMerge(JS)(r, I) = ∼I(y). Similarly, SVMerge(JS)(s, I) = ∼I(x). This shows
that each model of the merge is produced by substituting a model of the inner
system into the outer system. N

As of now, we do not have any applications for nestings of non-parametric
branch evaluations. So for the remainder of this text, we will assume that all
branch evaluations involved are parametric.

Note that the merge can also be seen as a recursive definition like the compression.

Lemma 6.3.3. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a nested

system. Then Merge(JS) and

Merge(
〈
F ,Fd,Fdl, R,B,

{
Merge(JS1), . . . ,Merge(JSk)

}〉
)

are equal (not just strongly equivalent).

Our research question then becomes, when are Merge(JS) and Compress(JS)
strongly equivalent.

138 NESTED JUSTIFICATION SYSTEMS

6.3.1 Shrinking Justifications

To prove the strong equivalence between Compress(JS) and Merge(JS) we
need a way to convert justifications from one system to the other. Going from
Merge(JS) to Compress(JS) should be relatively easy since justifications in
Merge(JS) contain more information. By removing this extra information, we
can reduce the justification. This is illustrated in the next example.
Example 6.3.4. Take the nested system

z ← x, y
y ← w{
x← x
w ← a, b

}
 ,

where both levels are evaluated with Bwf . Let us look at the following
justification for z in the merge system.

z

xy

w

a b

The loop on the right side is evaluated to f . So to eliminate x from the
justification, we can replace this loop with the fact f . On the left side, w can
be replaced by a and b. This will produce the justification

z

fy

a b

This is a justification of the compression{
z ← f , y
y ← a, b

}
.

A justification in the merge also contains justifications in the unnested systems
of the nesting tree. In the example above, these are

ALTERNATIVE VIEW ON NESTED SYSTEMS 139

y

a b

x

These justifications can be reduced to a single set, by evaluating their branches,
in the same manner as in the flattening. Then replacing facts of lower systems
by such a set, we get a justification in compression as above. N

The idea in this example is formalised in the shrinking of a justification. In the
example above, we evaluated certain subjustifications.

Definition 6.3.5. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
and J a locally

complete justification in Merge(JS). Let JS∗ be a node of the nesting tree of
JS that has children, but no grandchildren. Let JS1, . . . ,JSm be the children
of JS∗ and let X be the set of internal nodes of J that are defined in some JSi.
For each x ∈ X defined in JSi, let P (x) be the set of maximal J-paths starting
with x that consist of

• an infinite number of defined facts of JSi, or

• a finite number of defined facts of JSi and an open fact in JSi.

This means that P (x) forms a justification Jx inside JSi. The justification Jx
is called the subjustification for x in J .

In correspondence with the flattening in the compression, each of the
subjustifications can be reduced to a single rule.

Definition 6.3.6. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
and J a locally

complete justification in Merge(JS). Let JS∗ be a node of the nesting tree of
JS that has children, but no grandchildren. Let JS1, . . . ,JSm be the children
of JS∗ and let X be the set of internal nodes of J that are defined in some JSi.
Each subjustification Jx for x in J corresponds to a rule x← Bx in Flat(JSi).
Define ShrinkJS∗(J) to be the justification obtained from J where

• every rule y ← A in J is retained if y is defined outside JS∗ or its children.

• every rule y ← A in J with y defined in JS∗ is replaced by y ← A \X ∪
∪x∈A∩XBx;

• together with the rules x← Bx.

140 NESTED JUSTIFICATION SYSTEMS

The construction of Shrink follows the construction of compression: the
evaluation of the subjustifications is in line with the flattening, while the
shrinking itself is like the unfolding. The addition of the rules x ← Bx
corresponds to adding the rules of the flattening in the compression.

When shrinking we start with a locally complete justification, and so we would
like to end up with a locally complete justification. If the shrinking is not
locally complete, then there is a subjustification Jx that has a branch b starting
with x that is mapped to a defined fact that is not internal in ShrinkJS∗(J).
If b is finite, then by locally completeness of J , the last element of b is also
internal in J . Therefore, it is only possible that b is infinite. All branch
evaluations considered are parametric, and thus b is mapped to an open fact.
Branch evaluations tend to map branches to some element in the branch (or
the negation) or some logical fact. For a branch evaluation to map to another
fact requires for that fact to have a special status in the given justification
frame, by adding extra structure on the underlying facts space. This is because
branch evaluations are defined independent of justification frames. Since we are
dealing with parametric branch evaluations, we cannot map to elements of an
infinite branch since they are all defined. Therefore, the only feasible image of
an infinite branch is a logical fact.

Lemma 6.3.7. If the branch evaluation of the children of JS∗ map infinite
branches into L, then ShrinkJS∗(J) is locally complete.

Proof. If ShrinkJS∗(J) has a defined leaf, then there is a finite branch b∗ in
ShrinkJS∗(J) ending in a defined leaf. This means that there is either a finite
J-branch ending in the same leaf, or an infinite J-branch for which the highest
level with an infinite number of elements is a child of JS∗ and evaluating the
restriction of this branch to these elements will produce this defined leaf. The
former is not possible since J is locally complete and the latter is not possible
by our assumptions.

This property will also be needed when we do the reverse construction of
shrinking. Let us provide another example.

Example 6.3.8. Take the following nested system
z ← y
w ← x{
y ← x
x← w, y

}
 ,

where every level is evaluated under Bwf . Take the following justification for z
in the Merge:

ALTERNATIVE VIEW ON NESTED SYSTEMS 141

z

y

x

w

The subjustifications for x and y are the same and equal to

y

x

w

By evaluating the branches starting with y (respectively x), we get rules y ← f , w
and x← f , w in the flattening of the inner system. Shrinking the justification
for z will produce (the rules for x and y are left out for clarity)

z

w f

N

In both examples above, we had a single nesting. If multiple nesting occur, it is
not directly clear in which system the shrunken justification is in. For example,
if our nesting tree looks like

142 NESTED JUSTIFICATION SYSTEMS

JS1

JS2

JS4 JS5

JS8

JS10 JS11

JS9

JS3

JS6 JS7

and we want to shrink with respect to JS8, then the shrinking brings us in the
merge of the nested system with the nesting tree

JS1

JS2

JS4 JS5

JS ′8 JS9

JS3

JS6 JS7

where JS ′8 is the compression of the system with the nesting tree

JS8

JS10 JS11

Shrinking a justification will not produce a justification with a worse value if
we demand that every finite branch should be mapped to its last element by all
branch evaluations involved.

Proposition 6.3.9. Let JS be a nested justification system with all branch
evaluations involved parametric, mapping infinite branches to logical facts, and
finite branches to their last element. Let JS∗ be a justification system in the
nesting tree of JS for which we can shrink. Let ShrinkJS∗(JS) be the nested
justification system after shrinking. Take a justification J for x in Merge(JS).
Then valMerge(JS)(J, x, I) = valMerge(ShrinkJS∗ (JS))(ShrinkJS∗(J), x, I) for all
F-interpretations I.

ALTERNATIVE VIEW ON NESTED SYSTEMS 143

Proof. There is a correspondence between branches of J and ShrinkJS∗(J).
Every J-branch b can be shrunk to a ShrinkJS∗(J)-branch b∗. Likewise, every
ShrinkJS∗(J)-branch b∗ comes from a J-branch b. Moreover, B(b) = B∗(b∗).
Indeed, take an arbitrary J-branch b. For finite branches, this is obvious; so
assume it is infinite. If it contains infinite facts from a system higher than the
children of JS∗, then equality is also obvious. Therefore, we can assume that b
contains infinite facts from some child JSi of JS∗. This means b∗ is finite and
its evaluation under B∗ is equal to B(b).

So far, we only shrink a single level, but by applying the shrink operation
iteratively, a justification in Merge(JS) is transformed to a justification in
Compress(JS).

Definition 6.3.10. Let J be a justification in Merge(JS). Choose a
justification system JS∗ with children, but not grandchildren in the nesting
tree of JS. Then ShrinkJS∗(JS) will have a smaller nesting tree than JS.
By iterating this procedure until the nesting tree is a single node, we get a
justification in Compress(JS), which we will denote by Shrink(J).

The above definition is well-defined since the order of the local shrinking
operations does not matter. This is because the local shrinking operation only
affects the rules for facts defined in JS∗ or its children. By Proposition 6.3.9,
the value of J and Shrink(J) are equal. This solves one side of the strong
equivalence.

Corollary 6.3.11. SVMerge(JS)(x, I) ≤t SVCompress(JS)(x, I) for all defined
facts x and interpretations I.

Proof. For every justification J in Merge(JS), we can construct an equally
good justification in Compress(JS): Shrink(J).

6.3.2 Expanding Justifications

The other direction is not as straightforward since we have to start from a
justification in Compress and we have to ‘inflate’ it to a justification of Merge.
One way to achieve this, is by ‘pasting’ in subjustifications. However, this can
lead to problems when working with graph-like justifications as illustrated by
the next example.

144 NESTED JUSTIFICATION SYSTEMS

Example 6.3.12. Take the nested system
x← a
y ← b a← x

a← t
b← a



 .

The compression is equal to 
x← x
x← t
y ← x
y ← t

 .

Take the following justification for y in the compression:

y

x

t

The rule for y in J comes from the rule z ← b in the top level and the
subjustification

b

a

x

On the other hand, the rule for x in J comes from the rule x← a in the top
level and the subjustification

a

t

These subjustifications are not compatible: the rules for a are different. So
putting the subjustifications into the justification for y in the compression
produces a tree-like justification in the merge.

ALTERNATIVE VIEW ON NESTED SYSTEMS 145

y

b

a

x

a

t

In this example, we can still produce an equally good justification by pasting
the subjustifications together in the correct order to get the subjustification

b

a

t

Pasting this subjustification for the rule y ← x we get the justification in the
merge

y

b x

a

t

Shrinking this justification produces an equally good justification as J

y x

t

N

As shown in the previous example, for a justification J in Merge(JS), it suffices
to construct a justification J∗ in Merge(JS) such that Shrink(J∗) = J . This

146 NESTED JUSTIFICATION SYSTEMS

would imply that valCompress(JS)(J, x, I) = valMerge(JS)(J∗, x, I) and solve the
missing part of the strong equivalence between Compress(JS) and Merge(JS).
We have illustrated how it can work in Example 6.3.12, but found that in
general the construction only works for tree-like justifications. However, it is
sufficient to construct a justification J∗ such that valCompress(JS)(J, x, I) ≤t
valCompress(JS)(Shrink(J∗), x, I).

But let us first work with tree-like justifications. As with Shrink, we will first
define the operation locally. So let JS be a nested justification system so that
the unnested leaves of its nesting tree are compressions of nested justification
systems.3 Let JS∗ be such a leaf which is a compression of a nested system
with depth > 1. Take a justification J in Merge(JS). Suppose JS∗ is the
compression of

〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
. We define Expand(J) to be

a justification in Merge of the system obtained from JS with JS∗ replaced by
the nested system with nesting tree

JSt

JS1′ . . . JSk′

where JSt is the top level of JS∗ and JSi′ is the compression of JSi.

Any z ← A in J with z defined in JS∗ corresponds to a rule z ← B in JSt
such that for a subset X of B and all x ∈ X, there is a justification Jx in
some JSi for x such that A = B \ X ∪ {{B(b) | b ∈ BJx(x)} | x ∈ X}. By
replacing z ← A with z ← B and putting Jx under x ∈ X, we get a justification
ExpandJS∗(J).

Remark that the property that infinite branches are mapped to logical facts is
necessary here. If not, then the construction above can put an infinite branch
in between an infinite branch. This is will not create a branch, but a sequence
with a higher ordinal number than ω.

Shrinking the obtained justification returns the original justification.
Proposition 6.3.13. Let J be a tree-like justification and let JSt and JS∗ be
defined as above. Then ShrinkJSt(ExpandJS∗(J)) = J .

Proof. Shrinking ExpandJS∗(J) corresponds to removing the justifications Jx
and replacing z ← B with z ← A as in the construction above.

Corollary 6.3.14. Let J be a tree-like justification. Then val(J, x, I) =
val(ExpandJS∗(J), x, I).

3These are exactly the systems one can get from shrinking a nested justification system.

ALTERNATIVE VIEW ON NESTED SYSTEMS 147

Proof. This follows directly from Propositions 6.3.9 and 6.3.13.

If multiple nestings are present, it can become confusing in which system
Expand(J) is a justification. The following example provides some clarification.

Example 6.3.15. Let JS be the nested justification system with nesting tree

JS1

JS2

JS4 JS ′5

JS3

where JS ′5 is the compression of the system with nesting tree

JS5

JS6

JS8 JS9

JS7

JS10 JS11

JS12 JS13

Expanding a justification in Merge(JS) gets us in the Merge of the system with
nesting tree

JS1

JS2

JS4 JS5

JS ′6 JS ′7

JS3

where JS ′6 is the compression of the system with nesting tree

148 NESTED JUSTIFICATION SYSTEMS

JS6

JS8 JS9

and JS ′7 is the compression of the system with nesting tree

JS7

JS10 JS11

JS12 JS13

N

Similarly to Shrink, applying Expand iteratively, we can transform a justification
in Compress(JS) to a justification in Merge(JS).

Definition 6.3.16. Let J be a justification in Compress(JS). By iteratively
applying expand we get a justification in Merge(JS), which we will denote by
Expand(J).

By Corollary 6.3.14, the value of J and Expand(J) are equal. This solves the
other side of the strong equivalence between Merge(JS) and Compress(JS),
but only for tree-like justifications.

Corollary 6.3.17. SVt
Compress(JS)(x, I) ≤t SVt

Merge(JS)(x, I) for all defined
facts x and interpretations I.

This implies that we have solved our last research question for tree-like
justifications.

Theorem 6.3.18. For tree-like justifications, Compress(JS) and Merge(JS)
are strongly equivalent.

Proof. This is proven by combining Corollaries 6.3.11 and 6.3.17.

In order for the expansion construction to work for graph-like justifications, we
need a way to paste the subjustifications so that their values do not deteriorate.
In previous chapters, we have seen splittable branch evaluations have good
properties regarding this aspect. In combination of our other properties,
splittability simplifies to transitivity.

ALTERNATIVE VIEW ON NESTED SYSTEMS 149

Proposition 6.3.19. If B is splittable and it maps finite branches to their last
element, then B is transitive.

Proof. No branch can be decided (except at the last element of a finite branch)
since you can always add different finite branches after it because finite branches
are mapped to their last element. By splittability, every branch is everywhere
transitive; hence B is transitive.

Together with the other demands for branch evaluations in nested system, we
get a new branch evaluation type.

Definition 6.3.20. A branch evaluation B is nestable if it is parametric,
transitive (splittable), maps finite branches to last element, and infinite branches
into L.

In Example 6.3.12, we have seen that we can paste together the subjustifications
and then put this in the justification of the compression. This will produce a
justification that if shrunken is as good as the original justification, but not
equal. However, as we will see later, it is sufficient that Shrink(J∗) only adds
branches that are better than the value of J .

To prove SVCompress(JS)(x, I) ≤t SVMerge(JS)(x, I), we can split it up into three
cases, depending on the value of SVCompress(JS)(x, I) = `. If ` = f , nothing has
to be proved. If ` = u, then we need to prove that SVMerge(JS)(x, I) ≥t u. If
` = t, then we need to prove that SVMerge(JS)(x, I) = t as well. Before, we
look more into the more general case, let us try to prove it for a few specific
cases in system having a single nesting.

6.3.3 Kripke-Kleene Case

Let us start with BKK, the simplest nestable branch evaluation. In the case that
` = t, it means that there exist a justification without infinite branches and all
leaves interpreted t in I. By pasting the subjustifications from the leaves up,
we can get a good justification in Merge.

Proposition 6.3.21. Take a nested system JS of depth 2 with BKK at
the top level, and nestable branch evaluations in the lower levels. If
SVCompress(JS)(x, I) = t, then SVMerge(JS)(x, I) = t.

Proof. By Lemma 2.6.16 and transitivity of BKK, there is a locally complete
justification J such that valCompress(JS)(J, y, I) = t for all the internal nodes y
of J and x is an internal node of J . This means that J has no infinite branches.

150 NESTED JUSTIFICATION SYSTEMS

We define the relation y ≺ z if y is a descendant of z in J . This relation is
well-founded since it has no infinite descending chains because J does not have
infinite branches. By the axiom of choice, this relation can be extended to a well-
order, i.e. the set of internal nodes of J is equal to {xi | i ≤ β} for some ordinal
β. For any xi with i ≤ β, the rule xi ← Ai in J corresponds to a rule xi ← Bi
in the top level and a set Ci ⊆ Bi such that for all y ∈ Ci, there is a justification
of a lower level Ki,y such that Ai = Bi \Ci ∪

⋃
y∈Ci

{
B(b)

∣∣ b ∈ BKi,y (y)
}
. Let

Ki be a pasting of the justifications Ki,y for all y ∈ Ci. Any order of pasting
is valid. This is possible by fixing a well-order on Ci. Define Ji inductively as
follows.

• J0 = K0;

• Ji+1 = Ji ↑ Ki+1 for i < β;

• Jα = (∪i<αJi) ↑ Kα

The justification Jβ is a ‘justification’ of all the lower systems combined. By
replacing xi ← Ai with xi ← Bi in J and pasting Jβ on to it, we get a
justification J∗ in Merge(JS). Compared to J , Shrink(J∗) will have extra edges
and some edges removed. The edges that are removed will have no detrimental
effect on the value of the justification. For each ordinal i and y ∈ Ci, we have
that

{
B(b)

∣∣ b ∈ BJβ (y)
}
⊆ {B(b) | b ∈ BKi(y)} ∪

⋃
j<i

{
B(b)

∣∣ b ∈ BJj (y)
}
.

Therefore, the new edges will be from xi to xj with i > j. Hence, Shrink(J∗) will
also have no infinite branches, because that would imply the existence of a infinite
descending chain. The justification Shrink(J∗) might have new finite branches
compared to J , but they will have a final element equal to a final element of
some finite branch in J . This means that valCompress(JS)(Shrink(J∗), x, I) = t.
By Proposition 6.3.9, valMerge(JS)(J∗, x, I) = t, which complete this proof.

If the value of the justification is u, then it does not matter if infinite branches
are added or not.

Proposition 6.3.22. Take a nested system JS of depth 2 with BKK at
the top level, and nestable branch evaluations in the lower levels. If
SVCompress(JS)(x, I) = u, then SVMerge(JS)(x, I) ≥t u.

Proof. The proof is almost the same as the proof of Proposition 6.3.21, except,
here we can take any well-order on the internal nodes of J . The branches
that are added are infinite branches or finite branches to a final element that
was already in At most, some infinite branches are added after shrinking J∗
compared to J ; hence SVMerge(JS)(x, J∗, I) ≥t u.

ALTERNATIVE VIEW ON NESTED SYSTEMS 151

Corollary 6.3.23. For a nested system JS of depth 2 with BKK at the top level,
and nestable branch evaluations in the lower levels, we have that Compress(JS)
and Merge(JS) are strongly equivalent for graph-like justifications.

Proof. This follows from Propositions 6.3.21 and 6.3.22.

The general idea in the above two propositions, is to find an order for pasting
the subjustifications.

6.3.4 Well-Founded Case

Let us try this idea for Bwf now. Again, we do it in two steps, depending on if
SVCompress(JS)(x, I) is t or u.

Proposition 6.3.24. Take a nested system JS of depth 2 with Bwf at
the top level, and nestable branch evaluations in the lower levels. If
SVCompress(JS)(x, I) = u, then SVMerge(JS)(x, I) ≥t u.

Proof. There is a locally complete u-domain supporting justification J in
Compress(JS) with x as internal node. Without loss of generality, we
can assume that x is a root of J . For each node y in J we say that
val(y) = lubz∈J(y)∩F+(val(z) + 1); so every node is assigned an ordinal number.
Note that leaves y of J have val(y) = 0, but also internal nodes can have a
value 0. This is well-defined since J does not contain an infinite positive branch
since valCompress(JS)(J, x, I) = u. By taking the least upper bound of all the
ordinals, we get an ordinal β. Let Xα = {y ∈ J | val(y) = α} for α ≤ β.

For each ordinal α ≤ β we define a graph Jα in the lowest level such that
Ji ⊆ Jj for i ≤ j ≤ β. We prove that the positive leaves of Jα are contained in
∪i<αXi.

• Take y ∈ X0. Either y ∈ Fo or not. If not, then the rule y ← J(y) is a
compressed rule, so it corresponds to a rule y ← A in the highest level and
a number of justifications in the lower level. Pasting all these justifications
together gives the justification Jy (in any order). Then define J0 to be the
pasting-together of Jy for y ∈ X0 \ Fo (in any order). The justification J0
has no positive leaves.

• Take any non-zero ordinal α. If Xα = ∅, then define Jα = ∪i<αJi. Of
course, the positive leaves of Jα are contained in ∪i<αXi by induction.
So assume Xα is not empty. Again, each y ∈ Xα has a compressed rule

152 NESTED JUSTIFICATION SYSTEMS

y ← J(y), which corresponds to a rule y ← A in the highest level and a
number of justifications in the lower level. Pasting all these justifications
together gives the justification Jy. Pasting these Jy together produces Jα.
Since the positive leaves of Jy have a lower val than val(y) by definition,
we get that the set of positive leaves of Jα is contained in ∪i<αXi.

Now pasting into J and replacing the upper level edges with Jβ produces the
justification J∗. By Shrinking J∗ and comparing with J we notice

• Some edges are removed (we don’t care about them, removing them only
increases the justification value)

• Some edges are added:

– Edges to negative elements
– Edges to positive elements of a lower val

Adding edges towards negative elements will not produce positive loops. Adding
edges towards positive elements can produce positive loops, but it will give rise
to an infinite descending chain of ordinal numbers, which is not possible due to
the well-foundedness of ordinals.

Note that Jβ does not have infinite branches evaluated to f (otherwise J would
have a rule containing f). Therefore, valCompress(JS)(Shrink(J∗), x, I) ≥t u,
which proves that valMerge(JS)(J∗, x, I) ≥t u.

Similarly, we have the following result.

Proposition 6.3.25. Take a nested system JS of depth 2 with Bwf at
the top level, and nestable branch evaluations in the lower levels. If
SVCompress(JS)(x, I) = t, then SVMerge(JS)(x, I) = t.

Proof. The proof is very similar to the proof of the previous proposition,
but with a different val. Let J be a locally complete t-domain supporting
justification with x as internal node. Without loss of generality, we can
assume that x is a root of J . For each node y in J we say that val(y) =
lubz is a descendant of y,z∈F+(val(z) + 1). The construction of J∗ happens in the
same way as before. Again, comparing J with Shrink(J∗) we remove edges and
add edges. The added edges are towards negative elements or towards positive
elements of a lower val. An edge y → z towards a positive element always
decreases val. This is easy to see, because by definition val(y) ≥t val(z) + 1.
An edge y → ∼z towards a negative element will not increase val. This is a bit

ALTERNATIVE VIEW ON NESTED SYSTEMS 153

more difficult. If this edge was already present in J , then val(y) ≥t val(∼z)
because every positive descendant of ∼z is also a positive descendant of y. If
this edge was added to the subjustification pasting, then there is a node v
such that v → ∼z is in J and val(v) ≤t val(y) because it was pasted before.
Therefore, we have that val(∼z) ≤t val(v) ≤t val(y). Hence, mixed loops and
positive loops will give rise to an infinite decreasing sequence in val, which
contradicts the well-foundedness of the ordinal numbers.

Corollary 6.3.26. For a nested system JS of depth 2 with Bwf at the top level,
and nestable branch evaluations in the lower levels, we have that Compress(JS)
and Merge(JS) are strongly equivalent for graph-like justifications.

Proof. This follows from Propositions 6.3.24 and 6.3.25.

The proofs of the above two propositions can also be transferred to Bcwf by
swapping the roles of F+ and F−.

Corollary 6.3.27. For a nested system JS of depth 2 with Bcwf at the top level,
and nestable branch evaluations in the lower levels, we have that Compress(JS)
and Merge(JS) are strongly equivalent for graph-like justifications.

All the proofs above constructed a certain order on the nodes of a justification so
that if the subjustifications are pasted in that order, we get a good justification:
by shrinking again, we only add edges from nodes with a higher order to a lower
order and that is not detrimental to the value of the justification. This can be
put it in a new property.

Definition 6.3.28. Let B a branch evaluation. We call B extendable if for
any (complementary) justification system JS, interpretation I, graph-like
justification J and internal node x of J there is a well-order � (well-founded
and total) on the nodes of J such that all branches b starting with x formed by

• y → z in J

• y → z for z ≺ y

are at least as good as valB(J, x, I) with respect to ≤t.

In the proofs of previous results, we have seen that BKK, Bwf , and Bcwf are
extendable. In case of these branch evaluations, Compress(JS) and Merge(JS)
are strongly equivalent for graph-like justifications. This can be generalised to
any extendable branch evaluation.

154 NESTED JUSTIFICATION SYSTEMS

Theorem 6.3.29. For a nested system JS of depth 2 with an extendable and
nestable branch evaluation B at the top level, and nestable (but not necessarily
extendable) branch evaluations in the lower levels, we have that Compress(JS)
and Merge(JS) are strongly equivalent for graph-like justifications.

Proof. Take a justification J with valCompress(JS)(J, y, I) = SVg
Compress(JS)(y, I)

for all y ∈ Fd. Paste the subjustifications in order of the well-order of the
nodes of J to get the justification J∗. The justification Shrink(J∗) will have
two types of edges exactly corresponding to the one in the condition of extend-
able. Therefore, valCompress(JS)(Shrink(J∗), x, I) ≥t valCompress(JS)(J, x, I).
By Proposition 6.3.9, valMerge(JS)(J∗, x, I) ≥t valCompress(JS)(J, x, I) =
SVg

Compress(JS)(x, I); hence SVCompress(JS)(x, I) ≤ SVMerge(JS)(x, I). Com-
bined with Corollary 6.3.11, the proof is finished.

We have seen that both Bwf and Bcwf are extendable. Similarly, we find that
the dual of an extendable branch evaluation is also extendable.

Proposition 6.3.30. If B is extendable, then B is extendable as well.

Proof. A justification in JF is also a justification in JF and valBJF (J, x, I) =
valBJF (J, x, I). Since B is extendable, we have that there is a well-order ≺ on the
nodes of J such that for branches b formed as in the definition of extendable, we
have that I(B(b)) ≥t valBJF (J, x, I). This means that I(B(b)) ≥t valBJF (J, x, I),
proving that B is extendable.

So far, extendable is defined for graph-like justifications. The well-founded
order constructed in the proofs for Bwf , Bcwf , and BKK also work for tree-
like justifications, which we call tree-like extendable. This allows us to prove
graph-reducibility, but we need another property.

Definition 6.3.31. A branch evaluation B is double-resistant if B(p → x →
x→ b) = B(p→ x→ b) for any path p and branch b.

Proposition 6.3.32. If B is transitive and maps finite branches to their last
element, then B is double-resistant.

Proof. Since B maps finite branches to their last element, it is straightforward
that B is double-resistant for finite branches. The result for infinite branches
follows from transitivity.

Corollary 6.3.33. The branch evaluations BKK, Bwf , and Bcwf are double-
resistant

CONSISTENCY OF NESTED SYSTEMS 155

The idea is to add edges between nodes with the same label and then use
double-resistance to prove graph-reducibility.

Theorem 6.3.34. If B is tree-like extendable and double-resistant, then B is
graph-reducible.

Proof. Take a locally complete tree-like justification T with root n with label x.
For each y ∈ Fd internal in T , let Ny be the nodes of T labelled y. By tree-like
extendable, Ny has a minimal element ny since Ny is not empty.

Define the graph G obtained from T by adding edges from n to ny for each
n ∈ Ny \ {ny}. Since B is tree-like extendable, the branches in G starting
with x are at least as good as valB(T, x, I). The graph G is technically not a
justification, but we can still speak of branches in G.

Define J to be the graph consisting of the rules for ny in T . This is a locally
complete graph-like justification and we can assume that x is a root of J (by
removing the nodes not reachable from x). Take a branch b ∈ BJ (x). We prove
it corresponds to a branch b∗ in G with the same value. The start of b∗ is a
node n with label x. If n is equal to nx, then we follow to the next element
in b to get a node y. If n is not equal to nx, then we first go through nx and
then to y. This process is repeated to get a branch b∗ in G. By applying
double-resistance at most ω times we get that B(b) = B(b∗). Since b was
taken arbitrarily, we proved that valB(J, x, I) ≥t valB(T, x, I), completing the
proof.

This theorem provides a different way to prove that BKK, Bwf , and Bcwf are
graph-reducible.

6.4 Consistency of Nested Systems

So far, we have seen two ways to look at the semantics of nested systems:
compression and merge. However, we have not discussed an important factor:
the consistency of these systems. Of course, it makes sense to assume that every
branch evaluation in the nesting tree is consistent. An unnested system is a
nested system with depth one and the compression and merge are equal to that
system. So if that system is not consistent, then the compression and merge
are not consistent.

The branch evaluation of Compress(JS) is the branch evaluation of the top
level. So if Compress(JS) is complementary, then it is consistent. However,
proving that the compression is complementary turns out to be difficult. The

156 NESTED JUSTIFICATION SYSTEMS

compression contains the rules of flattened systems. And thus in order to have
complementarity, we need that each time flattening is performed during the
construction of the compression, that the flattening is complementary. However,
complementarity is a syntactical property, while the flattening is semantical.
Recall that Proposition 2.3.8 gives a characterisation of complementarity in
two parts. The following proposition illustrates that complementarity of the
flattening implies consistency.

Proposition 6.4.1. Let JS be a complementary justification system with B
respecting negation. If Flatg(JS) satisfies (1) of Proposition 2.3.8, then JS is
graph-like consistent. If Flatt(JS) satisfies (1) of Proposition 2.3.8, then JS is
tree-like consistent.

Proof. The proof for graph-like and tree-like is the same. By Proposition 3.2.3
since JS is complementary, it suffices to prove that SVJS(x, I) = f implies
that SVJS(∼x, I) = t. So take x with SVJS(x, I) = f . This means that every
locally complete justification J with x as root has a branch bJ starting with
x with I(B(bJ)) = f . The function mapping such justifications J to B(bJ)
corresponds to a selection function for x in Flat(JS). By (1) of Proposition 2.3.8,
there is a rule ∼x ← A in Flat(JS) with A ⊆ {∼B(bJ) | J}. The case A
corresponds to a justification K; hence for every branch b ∈ BK(∼x) we have
B(b) = ∼B(bJ) for some justification J with x as root. This means that
I(B(b)) = ∼I(B(bJ)) = ∼f = t, which proves that valJS(J,∼x, I) = t.

This implies that the complementarity of the flattening is at least as strong as
the consistency.

However, consistency implies (2) of the complementarity characterisation for
Flat(JS).

Proposition 6.4.2. Let JS be a complementary justification system. If JS is
graph-like consistent, then Flatg(JS) satisfies (2) of Proposition 2.3.8. If JS is
tree-like consistent, then Flatt(JS) satisfies (2) of Proposition 2.3.8.

Proof. Take x ← A in Flat(JS), which corresponds to a locally complete
justification J in JS. We define a selection function S for ∼x. Take a rule
∼x ← B in Flat(JS), which corresponds to a locally complete justification
K in JS. By Lemma 2.3.15 and complementarity of JS, we have that there
is a K-branch b starting with ∼x such that ∼b is a J-branch starting with
x. This means that B(b) ∈ ∼A ∩ B. Define S(B) = B(b). This implies that
∼ Im(S) ⊆ A.

CONSISTENCY OF NESTED SYSTEMS 157

Consequently, to prove that Flat(JS) is complementary (and JS is consistent),
you only need to prove (1) of the complementarity characterisation for Flat(JS).

Corollary 6.4.3. Let JS be a complementary justification system. If Flat(JS)
satisfies (1) of Proposition 2.3.8, then it is complementary.

Proof. Follows from Propositions 6.4.1 and 6.4.2.

There is one particular kind of justification system JS for which Flat(JS) is
complementary.

Proposition 6.4.4. Let JS be a parametric and complementary justification
system. There is a well-founded relation � on Fd so that

• if x← A ∈ R, then for all y ∈ A, y ≺ x.

Then Flat(JS) is complementary.

Proof. The well-founded relation can be extended to a well-order with the same
properties. So assume � is a well-order from now on. Therefore, we can denote
Fd = {xi | i ≤ β}. By Corollary 6.4.3 it suffices to prove that for every selection
function S of x in Flat(JS), there exists an ∼x ← A in Flat(JS) such that
A ⊆ ∼ Im(S). We prove this by transfinite induction on i ≤ β. The element x0
only has rules x0 ← B with B ⊆ Fo. And so the justifications for x0 consist of
a single such rule and the selection function S is a selection of x0 in JS. By
complementarity of JS, we have a rule ∼x0 ← A with A ⊆ ∼ Im(S). Since
A ⊆ Fo, this is also a rule in Flat(JS). Take any ordinal i with 0 < i ≤ β and
assume that Flat(JS) is complementary for xj with j < i.

For each x← B we will prove that there is a yB ∈ B such that either

• yB ∈ Fo and y ∈ Im(S), or

• yB ∈ Fd and there is a selection function Sy of y in Flat(JS) so that
Im(Sy) ⊆ Im(S).

This would imply a selection function T for x in JS and by complementarity of
JS would imply the existence of a rule ∼x← C with C ⊆ ∼ Im(T). For each
yB ∈ Fd, we have that yB < x and thus by induction there is a locally complete
justification JB with ∼y as root and {B(b) | b ∈ bJB (∼y)} ⊆ ∼ Im(Sy) ⊆
∼ Im(S). Combining the rule ∼x ← C and the justifications yB we get a
justification for ∼x. The rule in Flat(JS) corresponding to this justification
provides us our desired rule ∼x← A in Flat(JS).

158 NESTED JUSTIFICATION SYSTEMS

So take a rule x← B in JS. Let J be the set of locally complete justifications
with x as root and x ← B the rule for x. Any justification J in J is the rule
x← B plus for all y ∈ B \ Fo a locally complete justification Jy with y as root.
We can assume that there is no y ∈ Fo∩ Im(S). Take y ∈ B∩Fo. If each locally
complete justification Jy with y as root can be extended to a justification in J
such that S(J) chooses a path starting with x→ y, then S induces a selection
function Sy of y in Flat(JS) so that Im(Sy) ⊆ Im(S). This exists by the axiom
of choice.

So assume for each y ∈ B ∩ Fo, there is a locally complete justification Jy with
y as root that cannot be extended to a justification in J such that S(J) chooses
a path starting with x→ y. The combination of these Jy together with x← B
forms a justification J in J so that all J-branches are mapped to an element
outside of Im(S). This is a contradiction, which completes the proof that the
rules for xi in Flat(JS) are complementary.

The conditions in the previous proposition are quite stringent, as the existence
of such a well-founded relation implies that no justification can have infinite
branches as that would imply the existence of an infinite decreasing chain.

As usual, the tree-like case is simpler.

Proposition 6.4.5. If JS is complementary and B respects negation, then
Flatt(JS) is complementary.

Proof. By Corollary 6.4.3, it suffices to prove (1) of Proposition 2.3.8. Take a
selection function S of x in Flatt(JS). This corresponds to a function T that
chooses a branch bJ ∈ BJ(x) for each locally complete tree-like justification J
with root x. Fix a rule x← A in JS. Let JA be the set of locally complete tree-
like justifications with x as root and x← A as the rule for the root. Every such
justification is the combination of a rule x← A in JS and for each y ∈ A ∩ Fd
a locally complete tree-like justification Jy with root y. Let ×y∈A∩FdJy denote
this justification. We prove that there is a y ∈ A so that

• y ∈ Fo and for all y ∈ A ∩ Fd there are locally complete tree-like
justifications Jy with root y so that T chooses the branch x → y in
the justification ×y∈A∩FdJy.

• y ∈ Fd and for each locally complete tree-like justification Jy with root
y, we have that for each z ∈ (A ∩ Fd) \ {y}, there are locally complete
tree-like justifications Jz with root z so that T chooses a branch starting
with x→ y in the justification ×z∈A∩FdJz.

CONSISTENCY OF NESTED SYSTEMS 159

Assume by contradiction that such a y does not exist. This means that there are
justification Jy for y ∈ A ∩ Fd so that T does not choose a branch in ×y∈A∩Fd ,
which is a contradiction. Essentially, we chose a y ∈ A with the above property.
Since x ← A is chosen arbitrarily, we get a selection function for x in JS.
By complementarity of JS, there is a rule ∼x ← Ax so that for all y ∈ Ax,
we have that ∼y has the above property. If ∼y ∈ Fd, then this means that
there is a selection function Sy in Flatt(JS) for ∼y so that Im(Sy) ⊆ Im(S).
This means we can do the above all over again to construct a rule for y in JS.
Iterating this constructs a tree-like justification K with root x so that every
branch starting with the root is equal to the negation of a branch chosen by S.
Since the construction replaces each defined leaf by a rule, the justification K is
locally complete. This proves complementarity of Flatt(JS) because B respects
negation.

This has the consequence that tree-like consistency can be considered to be
completely solved.

Theorem 6.4.6. Every B that respects negation is tree-like consistent.

Proof. Follows from Propositions 6.4.1 and 6.4.5.

This also has some ramifications for graph-like consistency by the link established
in Corollary 2.4.7.

Corollary 6.4.7. If B respects negation, then B is graph-like consistent if and
only if B is graph-reducible.

Proof. Follows from Proposition 6.4.5 and Corollary 2.4.7.

Corollary 6.4.8. If B respects negation, is double-resistant and tree-like
extendable, then B is a graph-like consistent.

Proof. Follows from Theorem 6.3.34 and Corollary 6.4.7.

This provides an alternative way to prove that BKK, Bwf and Bcwf are graph-like
consistent.

Proving complementarity of Flatg(JS) can be done by showing the underlying
justification frame is equivalent to the underlying justification frame of Flatt(JS),
which was proven to be complementary. However, this is equivalent to the
following property, which we call strongly graph-reducibility.

160 NESTED JUSTIFICATION SYSTEMS

Definition 6.4.9. A branch evaluation B is strongly graph-reducible if for each
complementary justification frame JF , x ∈ Fd, and every locally complete tree-
like justification T with root x, there is a locally complete graph-like justification
with root x so that

{B(b) | b ∈ BJ(x)} ⊆ {B(b) | b ∈ BJ(x)} .

It is obvious that strong graph-reducibility implies graph-reducibility and by
Corollary 6.4.7 graph-like consistency.

On the other hand, strong graph-reducibility implies that Flatt(JS) and
Flatg(JS) are equivalent.

Proposition 6.4.10. Let JS be a complementary justification system. If B
respects negation and is strong graph-reducibility, then the underlying justification
frames of Flatt(JS) and Flatg(JS) are equivalent.

Proof. By Proposition 2.4.2, it suffices to prove that for each rule x ← A in
Flatt(JS) there is a rule x← B in Flatg(JS) such that B ⊆ A. The rule x← A
corresponds to a locally complete tree-like justification T with x as root as follows:
A = {B(b) | b ∈ BT (x)}. Then, by strong graph-reducibility, there is a locally
complete graph-like justification J with x as root with {B(b) | b ∈ BJ(x)} ⊆ A,
which completes the proof.

Corollary 6.4.11. Let JS be a complementary with B strong graph-reducible
and respecting negation, then Flatg(JS) is complementary.

Proof. By Proposition 6.4.5, Flatt(JS) is complementary. Then by Proposi-
tion 6.4.10, the result follows.

Corollary 6.4.12. Let JS be a complementary with B strong graph-reducible
and respecting negation, then JS is graph-like consistent.

Proof. Follows by Corollary 6.4.11 and Proposition 6.4.1.

Since BKK is strong graph-reducible (see below), it provides yet another prove
that BKK is graph-like consistent.

Contrast the requirements of Corollary 6.4.8 with that of Corollary 6.4.12. Tree-
like extendable and double-resistant branch evaluations are not necessarily strong
graph-reducible since the graph-like justification constructed in Theorem 6.3.34,
might contain branches that are better. However, the evaluation of the finite
branches will be the same as the evaluation of a finite branch in the tree-like

CONSISTENCY OF NESTED SYSTEMS 161

justification. The problem lies with the infinite branches. If the tree-like
justification T has val(T, x, I) = u, then the constructed graph-like justification
might have an infinite branch evaluated to t under I. We can assume that
infinite branches are mapped to logical facts. Therefore, we get a branch b with
B(b) = t, while T does not. Hence, the branch evaluation might not satisfy
strong graph-reducibility.

In case of BKK, everything works out.

Lemma 6.4.13. The branch evaluation BKK is strong graph-reducible.

Proof. Take a locally complete tree-like justification T with root x. In the
proof of Theorem 6.3.34, we construct a locally complete graph-like justification
J with root x from T given an interpretation I so that valBKK(J, x, I) ≥t
valBKK(T, x, I). If J has an infinite branches, then T has an infinite branch
as well, by doubling elements in the branch. Therefore, we have that
{BKK(b) | b ∈ BJ(x)} ⊆ {BKK(b) | b ∈ BT (x)}, completing the proof that
BKK is strong graph-reducible.

We are not yet able to prove the strong graph-reducibility of Bwf (and Bcwf).
This is because in the condition of extendable, we can have better branches,
and suddenly, we can introduce negative loops where there were none before,
see the discussion above. Further exploring whether Bwf and Bcwf are strong
graph-reducible is important for applications such as fixpoint definitions (see
Section 6.5.4).

So far, we have investigated the complementarity of Flat(JS), but we still need
to prove that unfolding is also complementary to prove the complementarity of
the compression. For systems JS of depth 2, we can prove that Compress(JS)
is complementary. First, we need the following lemma.

Lemma 6.4.14. Let JS be a nested system of depth 2 with all systems in its
nesting tree complementary and the flattening of all leaf systems complementary.
Then Compress(JS) satisfies (2) of Proposition 2.3.8.

Proof. Take x ← A in Compress(JS). This corresponds to a rule x ← B
in the top system and a bunch of rules y ← Cy for y ∈ Y in flattening of
lowest systems so that A = B \ Y ∪

⋃
y∈Y Cy. Similarly, each ∼x ← D in

Compress(JS) corresponds to ∼x ← E in top and z ← Fz for z ∈ Z in
flattening of lowest systems so that D = E \Z ∪

⋃
z∈Z Fz. By complementarity

of the top system, ∼B ∩ E 6= ∅, so take w ∈ ∼B ∩ E. If ∼w ∈ Y , then w ∈ Z;
hence by complementarity of lowest systems, we get that ∼C∼w ∩ Fw 6= ∅.
So take v ∈ ∼C∼w ∩ Fw. Now define the selection function S mapping D to

162 NESTED JUSTIFICATION SYSTEMS

w if ∼w /∈ Y and to v otherwise. We have that ∼ Im(S) ⊆ A. Indeed, if
∼w /∈ Y , then ∼w ∈ B \ Y ⊆ A. If ∼w ∈ Y , then ∼v ∈ C∼w ⊆ A. Therefore,
∼ Im(S) ⊆ A.

Proposition 6.4.15. Let JS be a nested system of depth 2 such that

1. all systems in its nesting tree are complementary;

2. the flattening of all leaf systems are complementary;

3. each defined fact x in the top level has a single rule.

Then Compress(JS) is complementary.

Proof. Note that if every fact has a single rule, then the body of every rule
is a single element due to complementarity. By Lemma 6.4.14, it suffices to
prove that Compress(JS) satisfies (1) of Proposition 2.3.8. If x is defined in
a leaf, then this is immediate from the complementarity of the flattening of
that leaf. So assume x is defined in the top level. Take a selection function
S of x in Compress(JS). Any rule x← B in Compress(JS) is constructed by
unfolding the single rule x← y in the top level. We distinguish two cases. The
first case is when y is open in Compress(JS) or defined in the top level. Then
by complementarity of the top level, the rule ∼x ← ∼y is a rule in the top
level; hence ∼x← ∼y is a rule in Compress(JS) and Im(S) = {y}. The second
case is when y is defined in the lowest level. Then for every rule x ← B in
Compress(JS), y ← B is a rule in the flattening of the lowest level. This means
that S is also a selection function of x in the flattening of the lowest level. By
complementarity of the flattening of the lowest level, there is a rule ∼y ← C
with C ⊆ ∼ Im(S). By unfolding, ∼x ← C is also a rule in Compress(JS);
hence Compress(JS) is complementary.

Apart from proving that Compress(JS) is complementary, we can also try to
prove that Merge(JS) is consistent. Merging complementary systems provides
a complementary system as shown by the following proposition.

Proposition 6.4.16. If every system in the nesting tree of JS is complement-
ary, then Merge(JS) is complementary as well.

Proof. Combining rules for different facts does not affect complementarity.

Proposition 6.4.17. The merge branch evaluation is tree-like consistent if
every branch evaluation respects negation.

APPLICATIONS 163

Proof. It is straightforward that the merge branch evaluation respects negation.
The result then follows from Theorem 6.4.6.

This has also a consequence for the compression.

Proposition 6.4.18. If every system in the nesting tree of JS is complementary
and every branch evaluation involved respects negation, then compression is
tree-like consistent.

Proof. By Theorem 6.3.18, we have for all x ∈ Fd that SVt
Compress(JS)(x, I) =

SVt
Merge(JS)(x, I) and ∼SVt

Compress(JS)(∼x, I) = ∼SVt
Merge(JS)(∼x, I). Then

by Proposition 6.4.17, we have SVt
Merge(JS)(x, I) = ∼SVt

Merge(JS)(∼x, I). This
proves that SVt

Compress(JS)(x, I) = ∼SVt
Compress(JS)(∼x, I).

Proving the graph-like consistency of Merge(JS) is left for possible future work.

All the results in this chapter around the connection between Merge(JS) and
Compress(JS) and their consistency are shown in Fig. 6.1.

6.5 Applications

Having a modular design in a knowledge representation language is invaluable.
Such a design allows to extend the language with various new language constructs
without the need to overhaul the existing language and corresponding semantics.
If you do not have a modular design, then everytime some new construct is
added, everything has to be proven again, perhaps in similar manners, but
most of the times it would take a full paper to do this. One line of research
is especially messy in this regards: aggregates in logic programming. This is
observation becomes apparant by the vast number of semantics for aggregates
in logic progrogramming (Faber et al., 2011; Gelfond and Zhang, 2019; Liu
et al., 2010; Marek and Remmel, 2004; Pelov et al., 2007; Son et al., 2007).

We argue that nested justification systems have such a modular design. In
principle, to add a new language constructs, e.g., aggregates or compound
formulae into justification theory, one would only need to come up with an
unnested system describing the new language construct. Once that has been
worked out, then the nesting will take care of the integration of the feature
into the rest of the language. This section illustrate this with first-order logical
formulae and aggregates. We must, however, note that these applications only
just scratch the surface of what is possible with nesting.

164 NESTED JUSTIFICATION SYSTEMS

SVt
Merge(x)

SVg
Merge(x)

SVt
Compress(x)

SVg
Compress(x)

∼SVt
Merge(∼x)

∼SVg
Merge(∼x)

∼SVt
Compress(∼x)

∼SVg
Compress(∼x)

2

11

5

2

6

8

6

9

3

4

3

7

4

3

3

7

11 101 11 11011

Figure 6.1: This diagram shows the relations between merge and compression, where
an arrow from x to y means x ≤t y. The arguments I and JS are left out for better
presentation. Full lines are proven, dashed (blue) lines are proven for depth 2, all
other lines (red) are unproven.

1. Tree-like is stronger than graph-like, see Corollary 2.4.4.
2. The easy side of consistency since merge is complementary, see Proposition 6.4.16

and Theorem 2.3.18.
3. Compression is stronger than merge, see Corollary 6.3.11.
4. Merge is stronger than compression for tree-like justifications, see

Corollary 6.3.17.
5. Tree-like consistency of merge, see Proposition 6.4.17.
6. Tree-like consistency of compression, see Proposition 6.4.18.
7. Merge is stronger than compression for graph-like justifications in case of depth

2, see Theorem 6.3.29.
8. This holds if compress is complementary by Theorem 2.3.18.
9. This holds if compress is complementary and the top branch evaluation is

consistent.
10. This holds if compress is complementary and top branch evaluation is graph-

reducible.
11. This holds if merge is graph-reducible by complementarity of merge, see

Proposition 6.4.16 and Corollary 6.4.7.

APPLICATIONS 165

6.5.1 FO system

This section is not an application of nested systems, but is used as a subsystem
in the other applications in the chapter. So far, only propositional facts are used
in justification theory, but it is not difficult to add first-order logic formulae. If
for example, we have a formula φ∧ψ, then we add a rule φ∧ψ ← φ, ψ, while for
ψ ∨ ψ we add two rules φ ∨ ψ ← φ and φ ∨ ψ ← ψ. This idea can be extended
to any formula by looking at its decomposition into subformulae.

Definition 6.5.1. Let V be a set of first-order predicate symbols over a
domain D and let FOL(V) be the set of first-order formulae without free
variables over V . To each formula φ in FOL(V), we associate a fact aφ. The
justification frame JFFOL(V),D consists of F+ = {aφ | φ ∈ FOL(V)}, Fd∩F+ =
{aφ | φ ∈ FOL(V) and φ is not an atom}, and R is the complementation of the
inductive rule set defined as follows.

• aφ1∧···∧φn ← aφ1 , . . . , aφn ;

• aφ1∨···∨φn ← aφi for all i;

• a¬φ ← ∼aφ;

• a∀x : φ(x) ←
{
aφ[x/d]

∣∣ d ∈ D};
• a∃x : φ(x) ← aφ[x/d] for all d ∈ D.

Note that we use ¬ to denote negation in first-order formulae to distinguish
between ∼ in the justification frame.

This justification frame can capture first-order logic by letting the facts aP (d)
and ∼aP (d) for P ∈ V and d ∈ D be the set of opens. Usually, we identify aP (d)
with P (d).

Example 6.5.2. Suppose cat, small, and cute are unary predicate symbols
and we have a domain {a, b} Take the following first-order formula ∀x : (cat(x)∧
small(x)) ⇒ cute(x), where φ ⇒ ψ is just a shorthand for ¬φ ∨ ψ. A locally
complete justification for this formula can look as follows.

166 NESTED JUSTIFICATION SYSTEMS

a∀x : (cat(x)∧small(x))⇒cute(x)

a(cat(a)∧small(a))⇒cute(a)

a¬(cat(a)∧small(a))

∼acat(a)∧small(a)

∼asmall(a)

a(cat(b)∧small(b))⇒cute(b)

acute(b)

Note that the fact ∼acat(a)∧small(a) has two cases:
{
∼acat(a)

}
and

{
∼asmall(a)

}
.

This is due to complementation since acat(a)∧small(a) has only one case:{
acat(a), asmall(a)

}
. This justification shows that if a is not small and b is

cute, then the formula ∀x : (cat(x) ∧ small(x))⇒ cute(x) is true. N

The idea in the example above works for any branch evaluation that maps finite
branches to their last element. This includes BKK, Bwf , Bwf , and the alternative
versions of Bsp and Bst. However, BKK is the better candidate in this case,
since it says nothing about infinite branches (u) and it is the least precise such
branch evaluation: I(BKK(b)) ≤p I(B(b)).

Definition 6.5.3. Let JSFOL(V),D be the justification system with justification
frame JFFOL(V),D and branch evaluation BKK.

We can simulate first-order logic with justification theory, however note that
justification theory is three-valued and thus will also be able to cope with
unknown facts. For instance in Example 6.5.2, if we do not know anything of a,
but b is a small cat, but not cute, then our formula is false.

Proposition 6.5.4. For an interpretation of the atoms in FOL(V), the single
model I of JSFOL(V),D extending this interpretation captures (three-valued)
first-order logic: φI = SVJS(aφ, I).

Proof. Follows by induction on the depth of the formula.

APPLICATIONS 167

This system will be used extensively as a subsystem in a nested system and will
essentially enable first-order logic formulae in justification systems. Therefore,
it is important to know that Flat(JSFOL(V),D) is complementary.

Proposition 6.5.5. The system Flat(JSFOL(V),D) is complementary.

Proof. Let φ � ψ if φ is a subformula of ψ. This is a well-founded relation,
then Proposition 6.4.4 finishes the proof.

If you are only interested in a finite set of formulae, then JSFOL(V),D can be
restricted to the subformulae of these formulae.

6.5.2 Aggregates

In Section 2.7.1, we have seen how to construct a justification frame for normal
logic programs. If you want to extend logic programs with aggregates, we
need to add extra rules for aggregate atoms. However, now we have nested
justification systems at our disposal, we can define the aggregate atoms in a
nested system. This allows for a more modular representation of the rules.
For simplicity, let us add weight constraints of the form i ≤ {x1, . . . , xn} ≤ j
meaning that at least i and at most j xs hold. Let L = {x1, . . . , xn}. Then we
add facts wi,L,j and ∼wi,L,j representing the weight constraints. Then we have
the following rules

wi,L,j ← L+ ∪ ∼L−,

where L+, L− ⊆ L and |L+| = i and |L−| = n−j. If L+∪∼L− = ∅, then we have
a rule wi,L,j ← t. The rules for ∼wi,L,j come from taking the complementation
of the rules for wi,L,j . By adding these rules in a nested system we added
weight constraints to our justification frame. The branch evaluation of this
inner system does not matter as long as finite branches are mapped to their
last element, so we can take BKK as we did for the first-order logic systems.

An added benefit of using nested justification systems means that we can
have nested weight constraints. The maximum nested depth of these weight
constraints will dictate the nesting depth of the nested system. So even though,
the definition of these weight constraints is very easy, nesting will allow arbitrary
nesting of the constructs.

Example 6.5.6. The logic program{
p← w0,{w1,{x1,x2},2,w0,{x1},1},1

}

168 NESTED JUSTIFICATION SYSTEMS

will be translated to the nested system

p← w

BKK :


w ← ∼v1
w ← ∼v2

BKK :

 v1 ← x1
v1 ← x2
v2 ← t






The fact p will be t in a model only if both x1 and x2 are false. N

This application illustrates that we can define new language constructs locally
and use them in a modular fashion.

6.5.3 First-Order Definitions: FO(ID)

In this section, we capture First-order logic extended with Inductive Definitions
(FO(ID)) definitions (Denecker and Vennekens, 2007). Let Σ be a vocabulary
consisting of a set of predicate symbols. A definitional rule over Σ is an
expression of the form:

∀x(P (x)← φ),

where P is a predicate symbol in Σ, x a tuple of n variables, and φ an first-order
logic (FO) formula over Σ such that the free variables of φ all occur in x. Similar
to rules in justification frame, P (x) is the head and φ the body of the rule.

Definition 6.5.7. A first-order definition ∆ over Σ is a set of definitional
rules. The set Def(∆) is the set of predicate symbols occurring as a head in
some definitional rule of ∆. The set Open(∆) = Σ \Def(∆) is the set of open
symbols.

As with justification frames, we will denote them with curly braces:{
Prime(2)← t
∀x(Prime(x)← 2 < x ∧ ¬∃y : y < x ∧ Prime(y) ∧Divisible(x, y))

}
Here Prime is in Def(∆) and Divisible and < (viewed as a binary predicate)
are in Open(∆).

For a given domain D, a value for an n-ary predicate symbol is a function
from Dn to L = {f ,u, t}. A Σ-interpretation I consists of a domain DI and
a value σI for each symbol σ in Σ. Let ∆ be a definition over Σ and O a
two-valued Open(∆)-interpretation. Let V Σ

O be the collection of three-valued

APPLICATIONS 169

Σ-interpretations extending O. On this set, we can define the three-valued
immediate consequence operator ΨO

∆ which maps any I ∈ V Σ
O to the O-extension

J such that for each defined domain atom P (a),
P (a)J = max

≤t

{
φ(a)J

∣∣ ∀x(P (x)← φ) ∈ ∆
}
.

The set V Σ
O is isomorphic to the set Lc for the lattice L of two-valued Σ-

interpretations extending O. Therefore, ΨO
∆ is a consistent approximator and

has a well-founded fixpoint I∆
O , which in general is three-valued.

Definition 6.5.8. The model of ∆ with respect to a two-valued interpretation
O of Open(∆) is the two-valued well-founded model of ΨO

∆.

In order to capture first-order definitions with justification theory, we should
use the well-founded semantics and the AFT correspondence from Chapter 5.
Previously in this chapter, we have seen that introducing first-order formulas
into bodies of rule can change the semantics. Fortunately, nested systems solved
this predicate introduction problem. These compound formulae in bodies can
be decomposed into their subformulae in a subsystem.
Example 6.5.9. The above definition for Prime could be transformed into
the following nested system.

Bwf :



Prime(2)← t
Prime(x)← aφ(x) for all x ∈ N

BKK :


aφ(x) ← x > 2, a¬ψ(x) for all x ∈ N
a¬ψ(x) ← ∼aψ(x) for all x ∈ N
aψ(x) ← aχ(x,y) for all x, y ∈ N
aχ(x,y) ← y < x, Prime(y), Divisible(x, y) for all x, y ∈ N




A justification for Prime(3) in the merge would look like

Prime(3)

2 < 3 a¬φ(3)

∼aφ(3)

∼aχ(3,0) ∼aχ(3,1) ∼aχ(3,2) ∼aχ(3,3) ∼aχ(3,...)

∼Prime(0) ∼Prime(1) ∼Divisible(3, 2) ∼(3 < 3) ∼(. . . < 3)

∼(2 < 0) ∼(2 < 1)

170 NESTED JUSTIFICATION SYSTEMS

Shrinking this justification provides the following justification in the compression

Prime(3)2 < 3

∼Prime(0) ∼Prime(1) ∼Divisible(3, 2) ∼(3 < 3) ∼(. . . < 3)

∼(2 < 0) ∼(2 < 1)

The shrinking essentially removes the auxiliary symbols. In both justifications,
there are a lot of superfluous facts of the form ∼(y < 3) for y ≥ 3. This is a
shortcoming of the propositional nature of justification theory. We will come
back to this in the conclusion chapter. N

In general, FO(ID) definitions can be evaluated similarly with justification
theory.

Definition 6.5.10. Let ∆ be an FO(ID) definition. The justification system
JS∆ associated with ∆ is the nested system with nesting tree of depth two
where

• The single leaf system is the restriction of JSFOL(V),D to the set of
formulae {φ | ∀x(P (x)← φ) ∈ ∆}.

• The root system is the system with Bwf as branch evaluation and rules
equal to the complementation of the set{

P (d)← φ[x/d] | d ∈ Dn,∀x(P (x)← φ) ∈ ∆
}
.

Proposition 6.5.11. The system Compress(JS∆) is complementary if every
P (x) has at most one definitional rule.

Proof. This follows from Propositions 6.5.5 and 6.4.15 .

Multiple definitional rules for the same P (x) can be merged by taking the
disjunction of the bodies.

Since JS∆ has two levels, we know that Merge(JS∆) and Compress(JS∆) are
strongly equivalent. Therefore, we can speak of the model of JS∆: the model
of Compress(JS∆) or Merge(JS∆).

Theorem 6.5.12. The model of ∆ corresponds to the model of JS∆.

APPLICATIONS 171

Proof. Assume O is a fixed interpretation of the open symbols. The operator
ACompress(JS∆) is equal to the three-valued immediate consequence operator ΨO

∆.
Then by complementarity of JS∆ and the correspondence from Chapter 5, we
have that the well-founded model of Compress(JS∆) is equal to the well-founded
fixpoint of ΨO

∆, which concludes the proof.

Many different types of definitions found in mathematics can be formalised
with well-founded semantics in logic programming (Denecker, 1998; Denecker
and Ternovska, 2008; Denecker and Vennekens, 2014; Denecker et al., 2001)
and thus by extension in justification theory. One can argue that, in general,
mathematical language is first-order in nature. This is evident from the fact that
a large part of mathematics can be expressed in Zermelo–Fraenkel set theory,
which in turn is expressed with first-order logic. Denecker and Vennekens (2007)
state

The fact that the inability to express inductive definitions is a well-
known weakness of first order logic, has subsequently motivated an
extension of FO with a new construct for representing definitions,
whose semantics is based on the well-founded semantics.

FO(ID) is exactly such an extension of FO. Justification theory can capture the
definitional part of FO(ID). Very similar, one can capture coinductive definitions
by swapping Bwf with Bcwf , see the next section for more details.

6.5.4 Fixpoint Definitions: FO(FD)

In this section, we will capture fixpoint definitions (Hou and Denecker, 2009;
Hou et al., 2010) with justification theory. Fixpoint definitions are inspired by
first-order definitions and in fact nested justification systems are inspired by
fixpoint definitions as done by Hou and Denecker (2009).

Definition 6.5.13 (Hou and Denecker, 2009, Definition 1). A least fixpoint
definition, respectively greatest fixpoint definition over a vocabulary Σ is defined
by simultaneous induction as an expression D of the form

bR,∆1, . . . ,∆m,∇1, . . . ,∇nc respectively dR,∆1, . . . ,∆m,∇1, . . . ,∇ne

with 0 ≤ n,m such that:

1. R is a set of definitional rules over Σ.

2. Each ∆i is a least fixpoint definition over Σ and each ∇j is a greatest
fixpoint definition over Σ.

172 NESTED JUSTIFICATION SYSTEMS

3. Every defined symbol in D has only positive occurrences in bodies of rules
in D.

4. Each defined symbol P ∈ Def(D) has exactly one local definition,
i.e. formally {Def(R),Def(∆1), . . . ,Def(∇n)} is a partition of Def(D).
Formally: either locally defined or in some sub definitions.

5. For every subdefinition D′ of D, Open(D′) ⊆ Open(D) ∪Def(R).

A fixpoint definition is either a least or greatest fixpoint definition. The sets
Def(D) and Open(D) are defined similarly as for inductive definitions.

We assume that there is a single rule ∀x(P (x)← φP) with P ∈ Def(D).

Given two disjoint first-order vocabularies Σ and Σ′, and Σ-interpretation I
and Σ′-interpretation I. The Σ∪Σ′-interpretation mapping each element σ ∈ Σ
to σI and each σ ∈ Σ′ to σI′ is denoted by I + I ′. When Σ′ ⊆ Σ, we denote
the restriction of a Σ-interpretation I to Σ′ by I|Σ′ .

Fix a domain D. Let R be a set of definitional rules and O a two-valued
Open(R)-interpretation. We can associate an operator ΓRO on the set of Def(R)-
interpretations.

We define ΓRO (I1) = I2 if for every ∀x(P (x) ← φP) ∈ R, P I2 ={
d ∈ Dn

∣∣ φP [x/d]I1 = t
}
.

Since each defined symbol in Def(R) has only positive occurrences in the body
of a rule in R, we have that ΓRO is monotone with respect to ≤t. Therefore, it
has least and greatest fixpoints denoted by lfp(ΓRO) and gfp(ΓRO).

Let D be a fixpoint definition and let O be a two-valued Open(D)-interpretation.
We define an operator ΓDO on the set of Def(D)-interpretations.

ΓDO(I) is defined inductively as the interpretation K +K ′ where

• K is the (Def(D) \Def(R))-interpretation such that for I ′ = O+ I|Def(R):

– K|Def(∆i) = lfp(Γ∆i

I′) for all i = 1, . . . ,m.

– K|Def(∇j) = gfp(Γ∇jI′) for all j = 1, . . . , n.

• K ′ is Def(R)-interpretation ΓRO+K(I|Def(R)).

Definition 6.5.14. Let D be a fixpoint definition and I a two-valued
interpretation of the symbols in D. The interpretation I is a model of D
if either

APPLICATIONS 173

• D is a least fixpoint and I|Def(D) = lfp
(

ΓDI|Open(D)

)
.

• D is a greatest fixpoint and I|Def(D) = gfp
(

ΓDI|Open(D)

)
.

The similarities between fixpoint definitions and nested justification systems
are abundant. Fixpoint definitions have an additional restriction: every defined
symbol has only positive occurrences in bodies of rules.

Definition 6.5.15. A justification frame JF = 〈F ,Fd, R〉 is positive if for
every x ∈ F+ and x← A ∈ R we have that A ∩ Fd ∩ F− = ∅.

In case a justification frame is positive, then the unique Bwf -model corresponds
to the least fixpoint of OJF and similarly the unique Bcwf-model corresponds
to the greatest fixpoint of OJF .

Proposition 6.5.16. Let JF = 〈F ,Fd, R〉 be a positive complementary
justification frame. If the interpretation of the opens is fixed, then

• the unique Bwf-model I of JF corresponds (as in Section 5.3.1) to (I, I)
with I = lfp(OJF).

• the unique Bcwf-model I of JF corresponds to (I, I) with I = gfp(OJF).

Proof. Since JF is positive, we have that OJF is monotone with respect to
⊆, hence OJF has least and greatest fixpoints with respect to ⊆. This also
means that there is a ≤t-least Bsp-model and ≤t-greatest Bsp-models and they
correspond with lfp(OJF) and gfp(OJF). Since JF is positive, the ≤t-least
Bsp-model is the unique Bst-model. Since there is a single Bst-model, it is equal
to the unique Bwf-model. Similarly, the ≤t-greatest Bsp-model is the unique
Bcst-model, which is equal to the unique Bcwf -model.

We now are going to construct a nested system corresponding to a fixpoint
definition. Take a fixpoint definition D.

Definition 6.5.17. For a set of definitional rules, the justification frame JFR
contains the complementation of the rules{

P (d)← aφP [x/d]

∣∣∣ ∀x(P (x← φP) ∈ R
}
.

The nested system JSD is defined inductively as the nested system with nesting
tree (the leaves represent the nesting trees of those systems)

174 NESTED JUSTIFICATION SYSTEMS

JSR

JSFOL

JS∆1 · · · JS∆m
JS∇1 · · · JS∇n

where JSR is JFR together with Bwf if D is a least fixpoint and Bcwf is D is
a greatest fixpoint. The system JSFOL is the restriction of the system from
Definition 6.5.3 to the formula φP in R.

There is a slight hiccup in the definition above: it is possible that φP and φQ
have subformulae in common. In that case, some facts are defined in multiple
levels. We can avoid this by doubling the facts: every JSFOL system uses a
different symbol, for example aφ and bφ.

Example 6.5.18. Let T be a binary predicate symbol denoting a transition
graph and R a unary predicate on the states. The set of states that have a path
passing infinitely many times through a state satisfying R is captured by the
predicate P defined using the following fixpoint definition.

∀x(P (x)← Q(x))⌊
∀x(Q(x)← R(x) ∧ ∃y : T (x, y) ∧ P (y))
∀x(Q(x)← ∃y : T (x, y) ∧Q(y))

⌋ 
The corresponding justification system is in Fig. 6.2. N

Lemma 6.5.19. Let D be a fixpoint definition. Then Compresst(JSD) is
complementary.

Proof. Follows by induction using Propositions 6.5.5, 6.4.5 and 6.4.15.

Theorem 6.5.20. Let D be a fixpoint definition. Then the model of D is equal
to the model of Compress(JSD)

Proof. We do this by induction of the depth of D. If no nesting occurs, then
OJF associated to Compress(JSD) is equal to ΓRO . Then by Proposition 6.5.16
the result follows. So assume nesting occur and the theorem holds for all fixpoint
definitions with smaller depth. The operator Γ∆i

J′ correspond to OJF associated
to Compress(JS∆i

) and Γ∇jJ′ correspond to OJF associated to Compress(JS∇j).
This means that OJF associated to Compress(JSD) is equal to ΓDO . Then by
Proposition 6.5.16 the proof is completed.

APPLICATIONS 175

B c
w

f:

                          P
(x

)←
Q

(x
)

B K
K

:

                      B w
f:

                      Q
(x

)←
a
φ
Q

(x
)

B K
K

:

                  a
φ
Q

(x
)←

a
R

(x
)∧
∃y

:
T

(x
,y

)∧
P

(y
)

a
φ
Q

(x
)←

a
∃y

:
T

(x
,y

)∧
Q

(y
)

a
R

(x
)∧
∃y

:
T

(x
,y

)∧
P

(y
)
←
R

(x
),
a
∃y

:
T

(x
,y

)∧
P

(y
)

a
∃y

:
T

(x
,y

)∧
P

(y
)
←

a
T

(x
,y

)∧
P

(y
)

a
∃y

:
T

(x
,y

)∧
Q

(y
)
←

a
T

(x
,y

)∧
Q

(y
)

a
T

(x
,y

)∧
P

(y
)
←
T

(x
,y

),
P

(y
)

a
T

(x
,y

)∧
Q

(y
)
←
T

(x
,y

),
Q

(y
)

                                                                                        
Fi
gu

re
6.
2:

T
he

co
rr
es
po

nd
in
g
ju
st
ifi
ca
tio

n
sy
st
em

to
th
e
fix

po
in
t
de
fin

iti
on

of
Ex

am
pl
e
6.
5.
18
.

176 NESTED JUSTIFICATION SYSTEMS

6.6 Conclusion

In this chapter, we gave a new view on nested justification systems that retains
the justification quality by merging the nested systems into a single justification
system with an adapted branch evaluation. Our new approach is actually
more general, as it allows for branch evaluations that are not parametric, while
parametricity is essential for compression. We identified a sufficient condition
such that the compression and merge are strongly equivalent for tree-like
justifications. As usual, graph-like justifications tend to be more difficult. But
with more restrictions, we are able to prove it for systems of depth 2. This
property, extendable, is however not really properly understood. Future work
could try to understand what it means to be extendable: what is the significance
of the well-founded order and what is its intuitive meaning. We have seen that
extendable branch evaluation are also graph-reducible if double-resistance is
also required. We discussed the consistency of the compression and merge and
found that this is intricately related to the complementarity of flat systems.
We proved that tree-like flat systems are complementary and thus we solved
tree-like consistency for branch evaluations that respect negation. This means
that graph-like consistency is equivalent to graph-reducibility, which could help
with future research. Nested justification systems are a really powerful tool to
design modular knowledge representation, as shown by the applications at the
end of this chapter.

Chapter 7

Conclusion

7.1 Contributions

In this thesis we investigated two main properties. The first one is the consistency
of justification semantics. Intuitively, it says that if a fact does not have a
good justification, then its negation has a good justification and vice versa.
The second is the difference between graph-like and tree-like justifications, or
as we called it, graph-reducibility. These seemingly unrelated properties are
actually intricately related: graph-like consistency holds if and only if tree-like
consistency and graph-reducibility hold. Because of this relation, our attention
was mainly focused on graph-like consistency. In Chapter 3, we proved the
graph-like consistency for the main branch evaluations. At the end of this
thesis, we managed to prove tree-like consistency for any branch evaluation
that respects negation. Therefore, graph-like consistency is equivalent to just
graph-reducibility.

Beside these two properties, we have three other research questions each handled
in a separate chapter. First, we showed in Chapter 4 that justification systems
can be seen as two-player games. This allowed us to solve the consistency
problem in case we have a finite system. The second result is the embedding
of justification theory into AFT. This embedding is an important one as it
links a logical framework (justification theory) to an algebraic one (AFT). We
managed to transfer ultimate semantics, a concept from AFT, to justification
theory. The last line of results is discussed in Chapter 6: a different view on
nested justification systems. Even though, it is not completely solved for graph-
like justifications, nested justification systems can be used to define modular

177

178 CONCLUSION

semantics as shown by the various applications at the end of Chapter 6. In
that chapter, we showed that nested justification systems can be viewed in a
different light, at least for tree-like justifications. At the end of this chapter, by
happenstance, we also solved tree-like consistency.

This work advances the state of justification theory quite a lot compared to the
works of Denecker (1993); Denecker et al. (2015). We established a number of
properties that can be checked for new branch evaluations in order to check
their soundness.

7.2 Future Directions

Conducting science usually raises more questions than it can answer. This thesis
is no exception. We distinguish two future research directions: applications and
extensions of justification theory. Let us first discuss the challenges and open
questions.

7.2.1 Challenges and Open Questions

In Chapter 3, we discussed the connection between different justification
semantics. In particular, we have that every Bwf-model is a Bst-model, every
BKK-model and every Bst-model are a Bsp-model, and similar for Bcwf and
Bcst. Determining such a relation between two branch evaluations happens on
a case-by-case basis. Crucial for proving these relations are the splittability
property and the associated pasting theorem (Theorem 2.6.20). Determining a
general property on two branch evaluations B1 and B2 so that every B1-model
is a B2-model might give more insight between the relation of various branch
evaluations. Similarly, when fixing the interpretation of the open facts, we have
that the BKK-model is the ≤p-least Bsp-model, the Bwf-model is the ≤p-least
Bst-model, and similarly for Bcwf and Bcst. Also, for these types of result, having
an easy to check property might come in handy.

Chapter 4 establishes justification theory in a game theoretic setting. This
connection is only used to prove consistency in a finite context. Future work
should exploit it further by bringing results from game theory to justification
theory. For example, results on memoryless determinacy of parity games
(Emerson and Jutla, 1991; Roux, 2019; Zielonka, 1998) and of ω-automata (Jutla,
1997) might be useful to prove graph-like consistency. If a game associated to
a justification system is equivalent to a parity game or an ω-automata, then
by our connection, the justification system is graph-like consistent. For a given

FUTURE DIRECTIONS 179

branch evaluation, not every justification system will have that form. Therefore,
this line of work can be useful to determine consistency of certain systems
instead of the complete branch evaluation at hand.

The correspondence between AFT and justification theory outlined in Chapter 5
is a one-way street: for every justification frame, we can associate an AFT-
approximator, but not the other way around. Therefore, it begs the question
if the reverse is true. That is, does every approximator on a power set lattice
correspond to a justification frame? If the answer is positive, then all applications
of AFT on the power set lattice can be captured using justification theory. Let
L be a power set lattice on the set F . In our connection, F is the set of positive
(defined) facts. So given F , we can define F+ := F . The difficult part is to
come up with the correct rules. Every I in L corresponds to a conjunction∧
x∈I x ∧

∧
x/∈I ∼x. A naive rule set might have rules y ← I1 ∪ ∼(L \ I2)

for y ∈ A(I1, I2)1. This would however constructs a lot of rules with big
bodies. Perhaps some resolution similar to ultimate justification frames can be
performed. Solving this might allow us to bring over results in AFT to the main
justification semantics. One example is stratification (Bogaerts and Cruz-Filipe,
2021; Vennekens et al., 2006, 2007a). Perhaps, we can characterise this more
generally: in which cases is a justification frame stratifiable.

Apart from the main fixpoint types, there is another important type of fixpoint:
the grounded fixpoints (Bogaerts, 2015; Bogaerts et al., 2015a,b). This raises the
question whether there is a branch evaluation for which the models correspond to
the grounded fixpoints. Perhaps, the justification frame has to be manipulated
to be able to capture grounded fixpoints, just as we did for ultimate semantics.

We have added new type of fixpoints for co-well-founded and co-stable semantics
on the AFT side. This begs the question if we can find corresponding algebraic
fixpoints for an arbitrary branch evaluation.

The nested systems of Chapter 6 have a few open questions. At first, the
graph-like strong equivalence between merge and compress is only proved for
systems of depth two in case the branch evaluation is extendable. We conjecture
this is true for any depth.

Conjecture 7.2.1. If all branch evaluations are extendable and nestable,
then Merge(JS) and Compress(JS) are strongly equivalent for graph-like
justifications.

Here, two possibilities arise to prove this. First, we can prove it directly by
using the following conjecture.

Conjecture 7.2.2. Let JS =
〈
F ,Fd,Fdl, R,B,

{
JS1, . . . ,JSk

}〉
be a nested

system of depth two and for each 1 ≤ i ≤ k, let JSi′ be a system strongly

180 CONCLUSION

equivalent to JSi. Then Compress(JS) is strongly equivalent to

Compress
(〈
F ,Fd,Fdl, R,B,

{
JS1′, . . . ,JSk′

}〉)
.

Proposition 7.2.3. If Conjecture 7.2.2 holds, then Conjecture 7.2.1 holds.

Proof. The proof is done by induction of the depth of JS. The cases depth 1
and 2 are already proven. So assume a depth n > 2 and the result holds for
m < n. Therefore by induction, we know that Merge(JSi) is strongly equivalent
to Compress(JSi). Since compression gives an unnested system, we have that
Compress(JSi) = Compress(Compress(JSi)). By Conjecture 7.2.2, we have
that Compress(JS) and

Compress(
〈
F ,Fd,Fdl, R,B,

{
Merge(JS1), . . . ,Merge(JSk)

}〉
)

are strongly equivalent. The latter is strongly equivalent to

Merge(
〈
F ,Fd,Fdl, R,B,

{
Merge(JS1), . . . ,Merge(JSk)

}〉
)

by the result of depth two, which is equal to Merge(JS) by Lemma 6.3.3.

A second possibility to prove Conjecture 7.2.1 is by proving graph-reducibility
of merge.

Proposition 7.2.4. If Merge(JS) is graph-reducible, then Conjecture 7.2.1
holds.

Proof. In Fig. 6.1, the condition amount to the arrows with label 11, making a
loop in the middle to get the following chain of inequalities:

SVg
Merge(x) ≤t SVg

Compress(x) ≤t SVt
Compress(x) = SVt

Merge(x) ≤t SVg
Merge(x).

Therefore, this collapses to all equalities, thus completing the proof.

This brings us to the second missing result in Chapter 6: the consistency of
compress and merge. The consistency of the compression is related to the
complementarity of compress.

Proposition 7.2.5. If Compress(JS) is complementary and the top-level
branch evaluation is consistent, then Compress(JS) is consistent.

By lack of counterexamples, we conjecture that Compress(JS) is complementary
if all branch evaluations are consistent.

FUTURE DIRECTIONS 181

Conjecture 7.2.6. Let JS be a nested system such that all branch evaluations
are graph-like consistent, then Compress(JS) is complementary.

For the consistency of merge, we can either try to prove it directly, or by using
Conjecture 7.2.1 if it is true.

Proposition 7.2.7. If Compress(JS) is complementary and Conjecture 7.2.1
holds, then Merge(JS) is graph-like consistent.

For nested systems, we do not have the AFT connection from Chapter 5, apart
from the approximator corresponding to the compression. Researching this
further will allow to bring nestings to AFT. Bogaerts (2015) conjectured that
fixpoint definitions correspond to the unique grounded fixpoint (or unique stable
fixpoint) of some operator. The idea sketched is reminiscent of the merge system.
Exploring this further might bring about nestings to AFT.

7.2.2 Applications of Justification Theory

So far, justification theory has not as many applications covered as AFT, and a
future challenge is to cover more applications. One way to do this is to exploit
the connection between AFT and justification theory set about in Chapter 5.
Two important fields captured by AFT, but not by justification theory are
autoepistemic logic and default logic. Other applications include extensions
of logic programming (Antic et al., 2013; Charalambidis et al., 2018; Pelov
et al., 2007), description logics (Liu et al., 2016) and active integrity constraints
(Bogaerts and Cruz-Filipe, 2018).

By extending the AFT connection in the other direction, we can construct a
justification frame corresponding to an approximator (see discussion above). If
such a construction is possible, most applications of AFT can be captured. We
should start to investigate what justifications mean and what they can teach
us in this setting. We might also investigate whether the automated way of
translating an approximator in a justification frame corresponds to the “natural”
justifications arising in these settings.

7.2.3 Extensions of Justification Theory

We have seen in Example 6.5.9 that the propositional nature of justification
theory can be hampering to get succinct explanations from justifications.
Perhaps, extending justification theory to a first-order system might alleviate
this problem.

182 CONCLUSION

Example 7.2.8. The second justification from Example 6.5.9 can expressed as
follows.

Prime(3)

2 < 3 ∼Prime(0) ∼Prime(1) ∼Divisible(3, 2) ∼(X < 3)

∼(2 < 0) ∼(2 < 1)

3 ≤ X

The rightmost edge has a condition 3 ≤ X and it means that the fact ∼(X < 3)
is a child of Prime(3) for each such X. N

By allowing first-order logic formulae with free variables as facts, we can extend
justification theory. However, justifications now have arbitrary first-order logic
conditions on the edges. For tree-like justifications, we can take the conjunction
of the conditions of the edges leading up to the fact to resolve the actual set of
facts. However, you still need to resolve possible unifications of the variables
occurring in the conditions. For graph-like justifications, this becomes more
difficult due the existence of loops. It is not clear yet how to resolve this problem.
One line of research is expanding on this idea to bring true first-order logic to
justification theory. A benefit of researching this type of justification theory is
that redundant and duplicate information of a justification can be represented
compactly. Related to this is the work of Bogaerts and Weinzierl (2018), where
they construct justifications to learn new clauses. However, if these clauses are
of a first-order nature, the learned clause could be more generally applicable and
more succinctly represented. Some preliminary work by Bogaerts, Marynissen,
and Weinzierl (2020) on completion formulas for non-ground programs might
give insight on how to resolve unifications between the conditions in a first-order
graph-like justification.

Bibliography

Christian Antic, Thomas Eiter, and Michael Fink. Hex semantics via
approximation fixpoint theory. In Pedro Cabalar and Tran Cao Son,
editors, Logic Programming and Nonmonotonic Reasoning, 12th International
Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013.
Proceedings, volume 8148 of Lecture Notes in Computer Science, pages
102–115. Springer, 2013. doi: 10.1007/978-3-642-40564-8_11. URL
https://doi.org/10.1007/978-3-642-40564-8_11.

Grigoris Antoniou and Frank van Harmelen. Web ontology language: OWL. In
Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, International
Handbooks on Information Systems, pages 91–110. Springer, 2009. doi:
10.1007/978-3-540-92673-3_4. URL https://doi.org/10.1007/978-3-
540-92673-3_4.

Joaquín Arias, Manuel Carro, Elmer Salazar, Kyle Marple, and Gopal
Gupta. Constraint answer set programming without grounding. Theory
and Practice of Logic Programming, 18(3-4):337–354, 2018. doi: 10.1017/
S1471068418000285. URL https://doi.org/10.1017/S1471068418000285.

Joaquín Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. Justifications
for goal-directed constraint answer set programming. In Francesco Ricca,
Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Gerhard
Friedrich, Paul Fodor, Angelika Kimmig, Francesca A. Lisi, Marco
Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors, Proceedings 36th
International Conference on Logic Programming (Technical Communications),
ICLP Technical Communications 2020, (Technical Communications)
UNICAL, Rende (CS), Italy, 18-24th September 2020, volume 325 of EPTCS,
pages 59–72, 2020. doi: 10.4204/EPTCS.325.12. URL https://doi.org/10.
4204/EPTCS.325.12.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology
languages for the semantic web. In Dieter Hutter and Werner Stephan,

183

https://doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1007/978-3-540-92673-3_4
https://doi.org/10.1007/978-3-540-92673-3_4
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.4204/EPTCS.325.12

184 BIBLIOGRAPHY

editors, Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H.
Siekmann on the Occasion of His 60th Birthday, volume 2605 of Lecture Notes
in Computer Science, pages 228–248. Springer, 2005. doi: 10.1007/978-3-540-
32254-2_14. URL https://doi.org/10.1007/978-3-540-32254-2_14.

Christopher Béatrix, Claire Lefèvre, Laurent Garcia, and Igor Stéphan.
Justifications and blocking sets in a rule-based answer set computation.
In Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos, editors,
Technical Communications of the 32nd International Conference on Logic
Programming, ICLP 2016 TCs, October 16-21, 2016, New York City,
USA, volume 52 of OASICS, pages 6:1–6:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. doi: 10.4230/OASIcs.ICLP.2016.6. URL
https://doi.org/10.4230/OASIcs.ICLP.2016.6.

Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system for
incremental asp-based stream reasoning. Theory and Practice of Logic
Programming, 17(5-6):744–763, 2017. doi: 10.1017/S1471068417000370. URL
https://doi.org/10.1017/S1471068417000370.

Nuel D. Belnap. A useful four-valued logic. In J. Michael Dunn and George
Epstein, editors, Modern Uses of Multiple-Valued Logic, pages 8–37. Reidel,
Dordrecht, 1977. Invited papers from the Fifth International Symposium
on Multiple-Valued Logic, held at Indiana University, Bloomington, Indiana,
May 13-16, 1975.

Yi Bi, Jia-Huai You, and Zhiyong Feng. A generalization of approximation
fixpoint theory and application. In Roman Kontchakov and Marie-Laure
Mugnier, editors, Web Reasoning and Rule Systems - 8th International
Conference, RR 2014, Athens, Greece, September 15-17, 2014. Proceedings,
volume 8741 of Lecture Notes in Computer Science, pages 45–59. Springer,
2014. doi: 10.1007/978-3-319-11113-1_4. URL https://doi.org/10.1007/
978-3-319-11113-1_4.

Howard A. Blair. Game characterizations of logic program properties. In
V. Wiktor Marek and Anil Nerode, editors, Logic Programming and
Nonmonotonic Reasoning, Third International Conference, LPNMR’95,
Lexington, KY, USA, June 26-28, 1995, Proceedings, volume 928 of Lecture
Notes in Computer Science, pages 99–112. Springer, 1995. doi: 10.1007/3-
540-59487-6_8. URL https://doi.org/10.1007/3-540-59487-6_8.

Alexander Bochman. Here and there among logics for logic programming. In
Esra Erdem, Joohyung Lee, Yuliya Lierler, and David Pearce, editors, Correct
Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, volume
7265 of Lecture Notes in Computer Science, pages 87–101. Springer, 2012.

https://doi.org/10.1007/978-3-540-32254-2_14
https://doi.org/10.4230/OASIcs.ICLP.2016.6
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1007/978-3-319-11113-1_4
https://doi.org/10.1007/978-3-319-11113-1_4
https://doi.org/10.1007/3-540-59487-6_8

BIBLIOGRAPHY 185

doi: 10.1007/978-3-642-30743-0_7. URL https://doi.org/10.1007/978-
3-642-30743-0_7.

Bart Bogaerts. Groundedness in logics with a fixpoint semantics. PhD thesis,
Department of Computer Science, KU Leuven, Jun 2015. Denecker, Marc
(supervisor), Vennekens, Joost and Van den Bussche, Jan (cosupervisors).

Bart Bogaerts and Luís Cruz-Filipe. Fixpoint semantics for active integrity
constraints. Artificial Intelligence, 255:43–70, 2018. doi: 10.1016/j.artint.
2017.11.003. URL https://doi.org/10.1016/j.artint.2017.11.003.

Bart Bogaerts and Luís Cruz-Filipe. Stratification in approximation fixpoint
theory and its application to active integrity constraints. ACM Transactions
on Computational Logic, 22(1):6:1–6:19, 2021. doi: 10.1145/3430750. URL
https://doi.org/10.1145/3430750.

Bart Bogaerts and Antonius Weinzierl. Exploiting justifications for lazy
grounding of answer set programs. In Jérôme Lang, editor, Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1737–1745. ijcai.org,
2018. doi: 10.24963/ijcai.2018/240. URL https://doi.org/10.24963/
ijcai.2018/240.

Bart Bogaerts, Joost Vennekens, and Marc Denecker. Grounded fixpoints and
their applications in knowledge representation. Artificial Intelligence, 224:
51–71, 2015a. doi: 10.1016/j.artint.2015.03.006. URL https://doi.org/10.
1016/j.artint.2015.03.006.

Bart Bogaerts, Joost Vennekens, and Marc Denecker. Partial grounded fixpoints.
In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2784–2790. AAAI Press,
2015b. URL http://ijcai.org/Abstract/15/394.

Bart Bogaerts, Simon Marynissen, and Antonius Weinzierl. Towards lightweight
completion formulas for lazy grounding in answer set programming. In
Maria V. Martínez and Ivan Varzinczak, editors, 18th International Workshop
on Non-monotonic Reasoning NMR 2020 Workshop Notes, pages 58–66, 2020.
URL https://nmr2020.dc.uba.ar/WorkshopNotes.pdf.

Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg.
Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-
Theoretical Studies, volume 897 of Lecture Notes in Mathematics. Springer,
1981.

https://doi.org/10.1007/978-3-642-30743-0_7
https://doi.org/10.1007/978-3-642-30743-0_7
https://doi.org/10.1016/j.artint.2017.11.003
https://doi.org/10.1145/3430750
https://doi.org/10.24963/ijcai.2018/240
https://doi.org/10.24963/ijcai.2018/240
https://doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.1016/j.artint.2015.03.006
http://ijcai.org/Abstract/15/394
https://nmr2020.dc.uba.ar/WorkshopNotes.pdf

186 BIBLIOGRAPHY

Pedro Cabalar and Jorge Fandinno. Justifications for programs with disjunctive
and causal-choice rules. Theory and Practice of Logic Programming, 16(5-6):
587–603, 2016. doi: 10.1017/S1471068416000454. URL https://doi.org/
10.1017/S1471068416000454.

Pedro Cabalar and Jorge Fandinno. Enablers and inhibitors in causal
justifications of logic programs. Theory and Practice of Logic Programming,
17(1):49–74, 2017. doi: 10.1017/S1471068416000107. URL https://doi.
org/10.1017/S1471068416000107.

Pedro Cabalar and Paolo Ferraris. Propositional theories are strongly equivalent
to logic programs. Theory and Practice of Logic Programming, 7(6):745–759,
2007. doi: 10.1017/S1471068407003110. URL https://doi.org/10.1017/
S1471068407003110.

Pedro Cabalar, Jorge Fandinno, and Michael Fink. Causal graph justifications of
logic programs. Theory and Practice of Logic Programming, 14(4-5):603–618,
2014. doi: 10.1017/S1471068414000234. URL https://doi.org/10.1017/
S1471068414000234.

Broes De Cat, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
Predicate logic as a modelling language: The IDP system. CoRR,
abs/1401.6312, 2014. URL http://arxiv.org/abs/1401.6312.

Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou.
Approximation fixpoint theory and the well-founded semantics of higher-
order logic programs. Theory and Practice of Logic Programming, 18(3-4):
421–437, 2018. doi: 10.1017/S1471068418000108. URL https://doi.org/
10.1017/S1471068418000108.

Roberto Di Cosmo, Jean-Vincent Loddo, and Stephane Nicolet. A game
semantics foundation for logic programming (extended abstract). In Catuscia
Palamidessi, Hugh Glaser, and Karl Meinke, editors, Principles of Declarative
Programming, 10th International Symposium, PLILP’98 Held Jointly with the
7th International Conference, ALP’98, Pisa, Italy, September 16-18, 1998,
Proceedings, volume 1490 of Lecture Notes in Computer Science, pages 355–
373. Springer, 1998. doi: 10.1007/BFb0056626. URL https://doi.org/10.
1007/BFb0056626.

Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed
point theorems. Pacific Journal of Mathematics, 82(1):43 – 57, 1979. doi:
pjm/1102785059. URL https://doi.org/.

Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. Justifications
for logic programming. In Pedro Cabalar and Tran Cao Son, editors, Logic

https://doi.org/10.1017/S1471068416000454
https://doi.org/10.1017/S1471068416000454
https://doi.org/10.1017/S1471068416000107
https://doi.org/10.1017/S1471068416000107
https://doi.org/10.1017/S1471068407003110
https://doi.org/10.1017/S1471068407003110
https://doi.org/10.1017/S1471068414000234
https://doi.org/10.1017/S1471068414000234
http://arxiv.org/abs/1401.6312
https://doi.org/10.1017/S1471068418000108
https://doi.org/10.1017/S1471068418000108
https://doi.org/10.1007/BFb0056626
https://doi.org/10.1007/BFb0056626
https://doi.org/

BIBLIOGRAPHY 187

Programming and Nonmonotonic Reasoning, 12th International Conference,
LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, volume
8148 of Lecture Notes in Computer Science, pages 530–542. Springer, 2013.
doi: 10.1007/978-3-642-40564-8_53. URL https://doi.org/10.1007/978-
3-642-40564-8_53.

Adnan Darwiche. Human-level intelligence or animal-like abilities?
Communications of the ACM, 61(10):56–67, 2018. doi: 10.1145/3271625.
URL https://doi.org/10.1145/3271625.

Marc Denecker. Knowledge representation and reasoning in incomplete logic
programming. PhD thesis, K.U. Leuven, Leuven, Belgium, September 1993.

Marc Denecker. The well-founded semantics is the principle of inductive
definition. In Jürgen Dix, Luis Fariñas del Cerro, and Ulrich Furbach, editors,
Logics in Artificial Intelligence, European Workshop, JELIA ’98, Dagstuhl,
Germany, October 12-15, 1998, Proceedings, volume 1489 of Lecture Notes
in Computer Science, pages 1–16. Springer, 1998. doi: 10.1007/3-540-49545-
2_1. URL https://doi.org/10.1007/3-540-49545-2_1.

Marc Denecker and Danny De Schreye. Justification semantics: A unifiying
framework for the semantics of logic programs. In Luís Moniz Pereira and
Anil Nerode, editors, Logic Programming and Non-monotonic Reasoning,
Proceedings of the Second International Workshop, Lisbon, Portugal, June
1993, pages 365–379. MIT Press, 1993.

Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive
definitions. ACM Transactions on Computational Logic, 9(2):14:1–14:52,
2008. doi: 10.1145/1342991.1342998. URL https://doi.org/10.1145/
1342991.1342998.

Marc Denecker and Joost Vennekens. Well-founded semantics and the algebraic
theory of non-monotone inductive definitions. In Chitta Baral, Gerhard
Brewka, and John S. Schlipf, editors, Logic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceedings, volume 4483 of Lecture Notes in Computer
Science, pages 84–96. Springer, 2007. doi: 10.1007/978-3-540-72200-7_9.
URL https://doi.org/10.1007/978-3-540-72200-7_9.

Marc Denecker and Joost Vennekens. Building a knowledge base system for an
integration of logic programming and classical logic. In Maria Garcia de la
Banda and Enrico Pontelli, editors, Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings,
volume 5366 of Lecture Notes in Computer Science, pages 71–76. Springer,
2008. doi: 10.1007/978-3-540-89982-2_12. URL https://doi.org/10.
1007/978-3-540-89982-2_12.

https://doi.org/10.1007/978-3-642-40564-8_53
https://doi.org/10.1007/978-3-642-40564-8_53
https://doi.org/10.1145/3271625
https://doi.org/10.1007/3-540-49545-2_1
https://doi.org/10.1145/1342991.1342998
https://doi.org/10.1145/1342991.1342998
https://doi.org/10.1007/978-3-540-72200-7_9
https://doi.org/10.1007/978-3-540-89982-2_12
https://doi.org/10.1007/978-3-540-89982-2_12

188 BIBLIOGRAPHY

Marc Denecker and Joost Vennekens. The well-founded semantics is the principle
of inductive definition, revisited. In Chitta Baral, Giuseppe De Giacomo,
and Thomas Eiter, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourteenth International Conference, KR
2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014. URL http:
//www.aaai.org/ocs/index.php/KR/KR14/paper/view/7957.

Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations,
Stable Operators, Well-Founded Fixpoints and Applications in Nonmonotonic
Reasoning, pages 127–144. Springer US, Boston, MA, 2000. ISBN 978-1-
4615-1567-8. doi: 10.1007/978-1-4615-1567-8_6. URL https://doi.org/
10.1007/978-1-4615-1567-8_6.

Marc Denecker, Maurice Bruynooghe, and V. Wiktor Marek. Logic programming
revisited: Logic programs as inductive definitions. ACM Transactions on
Computational Logic, 2(4):623–654, 2001. doi: 10.1145/383779.383789. URL
https://doi.org/10.1145/383779.383789.

Marc Denecker, V. Wiktor Marek, and Miroslaw Truszczynski. Uniform semantic
treatment of default and autoepistemic logics. Artificial Intelligence, 143
(1):79–122, 2003. doi: 10.1016/S0004-3702(02)00293-X. URL https://doi.
org/10.1016/S0004-3702(02)00293-X.

Marc Denecker, Victor W. Marek, and Miroslaw Truszczynski. Ultimate
approximation and its application in nonmonotonic knowledge representation
systems. Information and Computation, 192(1):84–121, 2004. doi: 10.1016/j.
ic.2004.02.004. URL https://doi.org/10.1016/j.ic.2004.02.004.

Marc Denecker, Maurice Bruynooghe, and Joost Vennekens. Approximation
fixpoint theory and the semantics of logic and answers set programs. In Esra
Erdem, Joohyung Lee, Yuliya Lierler, and David Pearce, editors, Correct
Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, volume
7265 of Lecture Notes in Computer Science, pages 178–194. Springer, 2012.
doi: 10.1007/978-3-642-30743-0_13. URL https://doi.org/10.1007/978-
3-642-30743-0_13.

Marc Denecker, Gerhard Brewka, and Hannes Strass. A formal theory of
justifications. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning - 13th
International Conference, LPNMR 2015, Lexington, KY, USA, September
27-30, 2015. Proceedings, volume 9345 of Lecture Notes in Computer Science,
pages 250–264. Springer, 2015. doi: 10.1007/978-3-319-23264-5_22. URL
https://doi.org/10.1007/978-3-319-23264-5_22.

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7957
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7957
https://doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1145/383779.383789
https://doi.org/10.1016/S0004-3702(02)00293-X
https://doi.org/10.1016/S0004-3702(02)00293-X
https://doi.org/10.1016/j.ic.2004.02.004
https://doi.org/10.1007/978-3-642-30743-0_13
https://doi.org/10.1007/978-3-642-30743-0_13
https://doi.org/10.1007/978-3-319-23264-5_22

BIBLIOGRAPHY 189

Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995. doi: 10.1016/0004-3702(94)00041-X. URL
https://doi.org/10.1016/0004-3702(94)00041-X.

E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and
determinacy (extended abstract). In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 368–
377. IEEE Computer Society, 1991. doi: 10.1109/SFCS.1991.185392. URL
https://doi.org/10.1109/SFCS.1991.185392.

Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity
of recursive aggregates in answer set programming. Artificial Intelligence,
175(1):278–298, 2011. doi: 10.1016/j.artint.2010.04.002. URL https://doi.
org/10.1016/j.artint.2010.04.002.

François Fages. A new fixpoint semantics for general logic programs compared
with the well-founded and the stable model semantics. In David H. D. Warren
and Péter Szeredi, editors, Logic Programming, Proceedings of the Seventh
International Conference, Jerusalem, Israel, June 18-20, 1990, pages 441–458.
MIT Press, 1990.

Jorge Fandinno and Claudia Schulz. Answering the "why" in answer set
programming - A survey of explanation approaches. Theory Practice of
Logic Programming, 19(2):114–203, 2019. doi: 10.1017/S1471068418000534.
URL https://doi.org/10.1017/S1471068418000534.

Melvin Fitting. A kripke-kleene semantics for logic programs. Journal of Logic
Programming, 2(4):295–312, 1985. doi: 10.1016/S0743-1066(85)80005-4. URL
https://doi.org/10.1016/S0743-1066(85)80005-4.

Melvin Fitting. Partial models and logic programming. Theoretical Computer
Science, 48(3):229–255, 1986. doi: 10.1016/0304-3975(86)90096-4. URL
https://doi.org/10.1016/0304-3975(86)90096-4.

Melvin Fitting. Kleene’s logic, generalized. Journal of Logic and Computation,
1(6):797–810, 1991. doi: 10.1093/logcom/1.6.797. URL https://doi.org/
10.1093/logcom/1.6.797.

Melvin Fitting. Tableaux for logic programming. Journal of Automated
Reasoning, 13(2):175–188, 1994. doi: 10.1007/BF00881954. URL https:
//doi.org/10.1007/BF00881954.

Melvin Fitting. Fixpoint semantics for logic programming a survey. Theoretical
Computer Science, 278(1-2):25–51, 2002. doi: 10.1016/S0304-3975(00)00330-3.
URL https://doi.org/10.1016/S0304-3975(00)00330-3.

https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1017/S1471068418000534
https://doi.org/10.1016/S0743-1066(85)80005-4
https://doi.org/10.1016/0304-3975(86)90096-4
https://doi.org/10.1093/logcom/1.6.797
https://doi.org/10.1093/logcom/1.6.797
https://doi.org/10.1007/BF00881954
https://doi.org/10.1007/BF00881954
https://doi.org/10.1016/S0304-3975(00)00330-3

190 BIBLIOGRAPHY

Chrysida Galanaki, Panos Rondogiannis, and William W. Wadge. An infinite-
game semantics for well-founded negation in logic programming. Annals of
Pure and Applied Logic, 151(2-3):70–88, 2008. doi: 10.1016/j.apal.2007.10.004.
URL https://doi.org/10.1016/j.apal.2007.10.004.

Chrysida Galanaki, Christos Nomikos, and Panos Rondogiannis. Game
semantics for non-monotonic intensional logic programming. In Pedro Cabalar
and Tran Cao Son, editors, Logic Programming and Nonmonotonic Reasoning,
12th International Conference, LPNMR 2013, Corunna, Spain, September
15-19, 2013. Proceedings, volume 8148 of Lecture Notes in Computer Science,
pages 329–341. Springer, 2013. doi: 10.1007/978-3-642-40564-8_33. URL
https://doi.org/10.1007/978-3-642-40564-8_33.

Chrysida Galanaki, Christos Nomikos, and Panos Rondogiannis. Game
semantics for non-monotonic intensional logic programming. Annals of Pure
and Applied Logic, 168(2):234–253, 2017. doi: 10.1016/j.apal.2016.10.005.
URL https://doi.org/10.1016/j.apal.2016.10.005.

David Gale and F. M. Stewart. Infinite Games with Perfect Information,
volume 2, pages 245–266. Princeton University Press, 1953. doi: doi:10.1515/
9781400881970-014. URL https://doi.org/10.1515/9781400881970-014.

Robin O. Gandy. Inductive definitions. In J.E. Fenstad and P.G. Hinman,
editors, Generalized Recursion Theory, volume 79 of Studies in Logic and the
Foundations of Mathematics, pages 265–299. Elsevier, 1974. doi: https://doi.
org/10.1016/S0049-237X(08)70591-3. URL https://www.sciencedirect.
com/science/article/pii/S0049237X08705913.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. On
the implementation of weight constraint rules in conflict-driven ASP solvers.
In Patricia M. Hill and David Scott Warren, editors, Logic Programming,
25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-
17, 2009. Proceedings, volume 5649 of Lecture Notes in Computer Science,
pages 250–264. Springer, 2009. doi: 10.1007/978-3-642-02846-5_23. URL
https://doi.org/10.1007/978-3-642-02846-5_23.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes),
pages 1070–1080. MIT Press, 1988.

Michael Gelfond and Yuanlin Zhang. Vicious circle principle, aggregates, and
formation of sets in ASP based languages. Artificial Intelligence, 275:28–77,
2019. doi: 10.1016/j.artint.2019.04.004. URL https://doi.org/10.1016/j.
artint.2019.04.004.

https://doi.org/10.1016/j.apal.2007.10.004
https://doi.org/10.1007/978-3-642-40564-8_33
https://doi.org/10.1016/j.apal.2016.10.005
https://doi.org/10.1515/9781400881970-014
https://www.sciencedirect.com/science/article/pii/S0049237X08705913
https://www.sciencedirect.com/science/article/pii/S0049237X08705913
https://doi.org/10.1007/978-3-642-02846-5_23
https://doi.org/10.1016/j.artint.2019.04.004
https://doi.org/10.1016/j.artint.2019.04.004

BIBLIOGRAPHY 191

Hugo Gimbert and Wieslaw Zielonka. When can you play positionnaly? In
I. Fiala, V. Koubek, and J. Kratochvil, editors, Mathematical Foundations
of Computer Science 2004, Lecture Notes in Comp. Sci. 3153, pages 686–
697, Prague, Czech Republic, 2004. Springer. URL https://hal.archives-
ouvertes.fr/hal-00160436.

Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally
without any memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR
2005 - Concurrency Theory, 16th International Conference, CONCUR 2005,
San Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653
of Lecture Notes in Computer Science, pages 428–442. Springer, 2005. doi:
10.1007/11539452_33. URL https://doi.org/10.1007/11539452_33.

Kurt Gödel. Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie
der Wissenschaften in Wien, 69:65–66, 1932.

Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya.
Coinductive logic programming and its applications. In Verónica Dahl and
Ilkka Niemelä, editors, Logic Programming, 23rd International Conference,
ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings, volume
4670 of Lecture Notes in Computer Science, pages 27–44. Springer, 2007.
doi: 10.1007/978-3-540-74610-2_4. URL https://doi.org/10.1007/978-
3-540-74610-2_4.

Ping Hou and Marc Denecker. A logic of fixpoint definitions. In Wolfgang Faber
and Joohyung Lee, editors, Second Workshop on Answer Set Programming
and Other Computing Paradigms (ASPOCP), pages 1–15, 2009.

Ping Hou, Broes De Cat, and Marc Denecker. FO(FD): extending classical
logic with rule-based fixpoint definitions. Theory and Practice of Logic
Programming, 10(4-6):581–596, 2010. doi: 10.1017/S1471068410000293. URL
https://doi.org/10.1017/S1471068410000293.

Matti Järvisalo, Tommi A. Junttila, and Ilkka Niemelä. Justification-based non-
clausal local search for SAT. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, and Nikolaos M. Avouris, editors, ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008,
Proceedings, volume 178 of Frontiers in Artificial Intelligence and Applications,
pages 535–539. IOS Press, 2008. doi: 10.3233/978-1-58603-891-5-535. URL
https://doi.org/10.3233/978-1-58603-891-5-535.

Andrew J. I. Jones. Deontic logic and legal knowledge representation*. Ratio
Juris, 3(2):237–244, 1990. doi: 10.1111/j.1467-9337.1990.tb00060.x. URL
https://doi.org/10.1111/j.1467-9337.1990.tb00060.x.

https://hal.archives-ouvertes.fr/hal-00160436
https://hal.archives-ouvertes.fr/hal-00160436
https://doi.org/10.1007/11539452_33
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1017/S1471068410000293
https://doi.org/10.3233/978-1-58603-891-5-535
https://doi.org/10.1111/j.1467-9337.1990.tb00060.x

192 BIBLIOGRAPHY

Charanjit S. Jutla. Determinization and memoryless winning strategies.
Information and Computation, 133(2):117–134, 1997. doi: 10.1006/inco.
1997.2624. URL https://doi.org/10.1006/inco.1997.2624.

Alexander S. Kechris, Benedikt Löwe, and John R. Steel, editors. Wadge degrees
and projective ordinals. The Cabal Seminar. Volume II, volume 37 of Lecture
Notes in Logic. Association for Symbolic Logic, La Jolla, CA; Cambridge
University Press, Cambridge, 2012. ISBN 978-0-521-76203-8.

Stephen Cole Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

Ruben Lapauw, Maurice Bruynooghe, and Marc Denecker. Improving parity
game solvers with justifications. In Dirk Beyer and Damien Zufferey, editors,
Verification, Model Checking, and Abstract Interpretation - 21st International
Conference, VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020,
Proceedings, volume 11990 of Lecture Notes in Computer Science, pages
449–470. Springer, 2020. doi: 10.1007/978-3-030-39322-9_21. URL https:
//doi.org/10.1007/978-3-030-39322-9_21.

Ruben Lapauw, Maurice Bruynooghe, and Marc Denecker. Justifications and
a reconstruction of parity game solving algorithms. CoRR, abs/2102.01440,
2021. URL https://arxiv.org/abs/2102.01440.

Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia. Asperix,
a first-order forward chaining approach for answer set computing. Theory
and Practice of Logic Programming, 17(3):266–310, 2017. doi: 10.1017/
S1471068416000569. URL https://doi.org/10.1017/S1471068416000569.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions
in logic programs. Annals of Mathematics and Artificial Intelligence, 25(3-4):
369–389, 1999. doi: 10.1023/A:1018978005636. URL https://doi.org/10.
1023/A:1018978005636.

Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent
logic programs. ACM Transactions on Computational Logic, 2(4):526–541,
2001. doi: 10.1145/383779.383783. URL https://doi.org/10.1145/383779.
383783.

Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You, and Zhiyong Feng.
Flexible approximators for approximating fixpoint theory. In Richard Khoury
and Christopher Drummond, editors, Advances in Artificial Intelligence -
29th Canadian Conference on Artificial Intelligence, Canadian AI 2016,
Victoria, BC, Canada, May 31 - June 3, 2016. Proceedings, volume 9673
of Lecture Notes in Computer Science, pages 224–236. Springer, 2016. doi:
10.1007/978-3-319-34111-8_28. URL https://doi.org/10.1007/978-3-
319-34111-8_28.

https://doi.org/10.1006/inco.1997.2624
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/978-3-030-39322-9_21
https://arxiv.org/abs/2102.01440
https://doi.org/10.1017/S1471068416000569
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1023/A:1018978005636
https://doi.org/10.1145/383779.383783
https://doi.org/10.1145/383779.383783
https://doi.org/10.1007/978-3-319-34111-8_28
https://doi.org/10.1007/978-3-319-34111-8_28

BIBLIOGRAPHY 193

Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczynski. Logic
programs with abstract constraint atoms: The role of computations. Artificial
Intelligence, 174(3-4):295–315, 2010. doi: 10.1016/j.artint.2009.11.016. URL
https://doi.org/10.1016/j.artint.2009.11.016.

John W. Lloyd. Declarative error diagnosis. New Generation Computing,
5(2):133–154, 1987. ISSN 1882-7055. doi: 10.1007/BF03037396. URL
https://doi.org/10.1007/BF03037396.

Jean-Vincent Loddo and Roberto Di Cosmo. Playing logic programs with the
alpha-beta algorithm. In Michel Parigot and Andrei Voronkov, editors, Logic
for Programming and Automated Reasoning, 7th International Conference,
LPAR 2000, Reunion Island, France, November 11-12, 2000, Proceedings,
volume 1955 of Lecture Notes in Computer Science, pages 207–224. Springer,
2000. doi: 10.1007/3-540-44404-1_14. URL https://doi.org/10.1007/3-
540-44404-1_14.

V. Wiktor Marek and Jeffrey B. Remmel. Set constraints in logic programming.
In Vladimir Lifschitz and Ilkka Niemelä, editors, Logic Programming and
Nonmonotonic Reasoning, 7th International Conference, LPNMR 2004, Fort
Lauderdale, FL, USA, January 6-8, 2004, Proceedings, volume 2923 of Lecture
Notes in Computer Science, pages 167–179. Springer, 2004. doi: 10.1007/978-
3-540-24609-1_16. URL https://doi.org/10.1007/978-3-540-24609-
1_16.

Maarten Mariën. Model Generation for ID-Logic. PhD thesis, Department of
Computer Science, KU Leuven, Belgium, February 2009.

Maarten Mariën, Rudradeb Mitra, Marc Denecker, and Maurice Bruynooghe.
Satisfiability checking for PC(ID). In Geoff Sutcliffe and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 12th
International Conference, LPAR 2005, Montego Bay, Jamaica, December
2-6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer Science,
pages 565–579. Springer, 2005. doi: 10.1007/11591191_39. URL https:
//doi.org/10.1007/11591191_39.

Maarten Mariën, Johan Wittocx, and Marc Denecker. Integrating inductive
definitions in SAT. In Nachum Dershowitz and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, 14th International
Conference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings,
volume 4790 of Lecture Notes in Computer Science, pages 378–392. Springer,
2007. doi: 10.1007/978-3-540-75560-9_28. URL https://doi.org/10.
1007/978-3-540-75560-9_28.

https://doi.org/10.1016/j.artint.2009.11.016
https://doi.org/10.1007/BF03037396
https://doi.org/10.1007/3-540-44404-1_14
https://doi.org/10.1007/3-540-44404-1_14
https://doi.org/10.1007/978-3-540-24609-1_16
https://doi.org/10.1007/978-3-540-24609-1_16
https://doi.org/10.1007/11591191_39
https://doi.org/10.1007/11591191_39
https://doi.org/10.1007/978-3-540-75560-9_28
https://doi.org/10.1007/978-3-540-75560-9_28

194 BIBLIOGRAPHY

Maarten Mariën, Johan Wittocx, Marc Denecker, and Maurice Bruynooghe.
SAT(ID): satisfiability of propositional logic extended with inductive
definitions. In Hans Kleine Büning and Xishun Zhao, editors, Theory
and Applications of Satisfiability Testing - SAT 2008, 11th International
Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings,
volume 4996 of Lecture Notes in Computer Science, pages 211–224. Springer,
2008. doi: 10.1007/978-3-540-79719-7_20. URL https://doi.org/10.
1007/978-3-540-79719-7_20.

Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371,
1975. ISSN 0003486X. URL http://www.jstor.org/stable/1971035.

Donald A. Martin. A purely inductive proof of Borel determinacy. In Recursion
theory (Ithaca, N.Y., 1982), volume 42 of Proceedings of Symposia in Pure
Mathematics, pages 303–308. Amer. Math. Soc., Providence, RI, 1985. doi:
10.1090/pspum/042/791065. URL https://doi-org/10.1090/pspum/042/
791065.

Simon Marynissen, Niko Passchyn, Bart Bogaerts, and Marc Denecker.
Consistency in justification theory. In 13th Workshop on Logic and Semantic
Frameworks with Applications LSFA 2018, Fortaleza, Brazil, Sept 26-28,
2018, pages 173–188, 2018a. URL https://lia.ufc.br/~lsfa2018/wp-
content/uploads/2018/09/LSFA18.pdf.

Simon Marynissen, Niko Passchyn, Bart Bogaerts, and Marc Denecker.
Consistency in justification theory. In Proceedings of 17th International
Workshop on Non-Monotonic Reasoning (NMR 2018), Tempe, Arizona,
USA, Oct. 27-29, 2018, pages 41–52. AAAI Press 2018, 2018b. URL
http://www4.uma.pt/nmr2018/NMR2018Proceedings.pdf.

Simon Marynissen, Bart Bogaerts, and Marc Denecker. Exploiting game theory
for analysing justifications. Theory and Practice of Logic Programming, 20(6):
880–894, 2020. doi: 10.1017/S1471068420000186. URL https://doi.org/
10.1017/S1471068420000186.

Simon Marynissen, Bart Bogaerts, and Marc Denecker. On the relation
between approximation fixpoint theory and justification theory. In Zhi-Hua
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 1973–1980. ijcai.org, 2021. doi: 10.24963/ijcai.2021/272.
URL https://doi.org/10.24963/ijcai.2021/272.

Richard Min and Gopal Gupta. Coinductive logic programming with
negation. In Danny De Schreye, editor, Logic-Based Program Synthesis and
Transformation, 19th International Symposium, LOPSTR 2009, Coimbra,

https://doi.org/10.1007/978-3-540-79719-7_20
https://doi.org/10.1007/978-3-540-79719-7_20
http://www.jstor.org/stable/1971035
https://doi-org/10.1090/pspum/042/791065
https://doi-org/10.1090/pspum/042/791065
https://lia.ufc.br/~lsfa2018/wp-content/uploads/2018/09/LSFA18.pdf
https://lia.ufc.br/~lsfa2018/wp-content/uploads/2018/09/LSFA18.pdf
http://www4.uma.pt/nmr2018/NMR2018Proceedings.pdf
https://doi.org/10.1017/S1471068420000186
https://doi.org/10.1017/S1471068420000186
https://doi.org/10.24963/ijcai.2021/272

BIBLIOGRAPHY 195

Portugal, September 2009, Revised Selected Papers, volume 6037 of Lecture
Notes in Computer Science, pages 97–112. Springer, 2009. doi: 10.1007/978-3-
642-12592-8_8. URL https://doi.org/10.1007/978-3-642-12592-8_8.

Robert C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1):75–94, 1985. doi: 10.1016/0004-3702(85)90042-6. URL
https://doi.org/10.1016/0004-3702(85)90042-6.

David Paulius and Yu Sun. A survey of knowledge representation in service
robotics. Robotics and Autonomous Systems, 118:13–30, 2019. doi: 10.
1016/j.robot.2019.03.005. URL https://doi.org/10.1016/j.robot.2019.
03.005.

Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and
stable semantics of logic programs with aggregates. Theory and Practice of
Logic Programming, 7(3):301–353, 2007. doi: 10.1017/S1471068406002973.
URL https://doi.org/10.1017/S1471068406002973.

Luís Moniz Pereira, José Júlio Alferes, and Joaquim Nunes Aparício.
Contradiction removal semantics with explicit negation. In Michael
Masuch and László Pólos, editors, Knowledge Representation and Reasoning
Under Uncertainty, Logic at Work [International Conference Logic at Work,
Amsterdam, The Netherlands, December 17-19, 1992], volume 808 of Lecture
Notes in Computer Science, pages 91–105. Springer, 1992. doi: 10.1007/3-
540-58095-6_7. URL https://doi.org/10.1007/3-540-58095-6_7.

Luís Moniz Pereira, Joaquim Nunes Aparício, and José Júlio Alferes. Non-
monotonic reasoning with logic programming. Journal of Logic Programming,
17(2/3&4):227–263, 1993. doi: 10.1016/0743-1066(93)90032-C. URL https:
//doi.org/10.1016/0743-1066(93)90032-C.

Enrico Pontelli and Tran Cao Son. Justifications for logic programs under answer
set semantics. In Sandro Etalle and Miroslaw Truszczynski, editors, Logic
Programming, 22nd International Conference, ICLP 2006, Seattle, WA, USA,
August 17-20, 2006, Proceedings, volume 4079 of Lecture Notes in Computer
Science, pages 196–210. Springer, 2006. doi: 10.1007/11799573_16. URL
https://doi.org/10.1007/11799573_16.

Teodor C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundamenta Informaticae, 13(4):445–463, 1990.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):
81–132, 1980. doi: 10.1016/0004-3702(80)90014-4. URL https://doi.org/
10.1016/0004-3702(80)90014-4.

https://doi.org/10.1007/978-3-642-12592-8_8
https://doi.org/10.1016/0004-3702(85)90042-6
https://doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.1017/S1471068406002973
https://doi.org/10.1007/3-540-58095-6_7
https://doi.org/10.1016/0743-1066(93)90032-C
https://doi.org/10.1016/0743-1066(93)90032-C
https://doi.org/10.1007/11799573_16
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1016/0004-3702(80)90014-4

196 BIBLIOGRAPHY

Stéphane Le Roux. Memoryless determinacy of infinite parity games: Another
simple proof. Information Processing Letters, 143:8–13, 2019. doi: 10.1016/j.
ipl.2018.10.015. URL https://doi.org/10.1016/j.ipl.2018.10.015.

Abhik Roychoudhury, C. R. Ramakrishnan, and I. V. Ramakrishnan. Justifying
proofs using memo tables. In Maurizio Gabbrielli and Frank Pfenning,
editors, Proceedings of the 2nd international ACM SIGPLAN conference on
on Principles and practice of declarative programming, Montreal, Canada,
September 20-23, 2000, pages 178–189. ACM, 2000. doi: 10.1145/351268.
351290. URL https://doi.org/10.1145/351268.351290.

Claudia Schulz and Francesca Toni. Justifying answer sets using argumentation.
Theory and Practice of Logic Programming, 16(1):59–110, 2016. doi: 10.1017/
S1471068414000702. URL https://doi.org/10.1017/S1471068414000702.

Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA,
USA, 1983. ISBN 0262192187.

Robert I. Soare. Gale-Stewart Games, pages 217–219. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016. ISBN 978-3-642-31933-4. doi: 10.1007/978-3-642-
31933-4_15. URL https://doi.org/10.1007/978-3-642-31933-4_15.

Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. Answer sets for logic
programs with arbitrary abstract constraint atoms. Journal of Artificial
Intelligence Research, 29:353–389, 2007. doi: 10.1613/jair.2171. URL https:
//doi.org/10.1613/jair.2171.

Leon Sterling and Marucha Lalee. An explanation shell for expert systems.
Computational Intelligence, 2:136–141, 1986. doi: 10.1111/j.1467-8640.1986.
tb00079.x. URL https://doi.org/10.1111/j.1467-8640.1986.tb00079.
x.

Leon Sterling and L. Ümit Yalçinalp. Explaining prolog based expert systems
using a layered meta-interpreter. In N. S. Sridharan, editor, Proceedings of
the 11th International Joint Conference on Artificial Intelligence. Detroit,
MI, USA, August 1989, pages 66–71. Morgan Kaufmann, 1989. URL http:
//ijcai.org/Proceedings/89-1/Papers/011.pdf.

Hannes Strass. Approximating operators and semantics for abstract dialectical
frameworks. Artificial Intelligence, 205:39–70, 2013. doi: 10.1016/j.artint.
2013.09.004. URL https://doi.org/10.1016/j.artint.2013.09.004.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285 – 309, 1955.

https://doi.org/10.1016/j.ipl.2018.10.015
https://doi.org/10.1145/351268.351290
https://doi.org/10.1017/S1471068414000702
https://doi.org/10.1007/978-3-642-31933-4_15
https://doi.org/10.1613/jair.2171
https://doi.org/10.1613/jair.2171
https://doi.org/10.1111/j.1467-8640.1986.tb00079.x
https://doi.org/10.1111/j.1467-8640.1986.tb00079.x
http://ijcai.org/Proceedings/89-1/Papers/011.pdf
http://ijcai.org/Proceedings/89-1/Papers/011.pdf
https://doi.org/10.1016/j.artint.2013.09.004

BIBLIOGRAPHY 197

Thanos Tsouanas. A game semantics for disjunctive logic programming. Annals
of Pure and Applied Logic, 164(11):1144–1175, 2013. doi: 10.1016/j.apal.2013.
05.008. URL https://doi.org/10.1016/j.apal.2013.05.008.

Maarten H. van Emden. Quantitative deduction and its fixpoint theory. Journal
of Logic Programming, 3(1):37–53, 1986. doi: 10.1016/0743-1066(86)90003-8.
URL https://doi.org/10.1016/0743-1066(86)90003-8.

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23(4):733–742, 1976. doi:
10.1145/321978.321991. URL https://doi.org/10.1145/321978.321991.

Bas C. van Fraassen. Singular terms, truth-value gaps and free logic. Journal of
Philosophy, 63(17):481–495, 1966. ISSN 0022362X. URL http://www.jstor.
org/stable/2024549.

Joost Vennekens, David Gilis, and Marc Denecker. Splitting an operator:
Algebraic modularity results for logics with fixpoint semantics. ACM
Transactions on Computational Logic, 7(4):765–797, 2006. doi: 10.1145/
1183278.1183284. URL https://doi.org/10.1145/1183278.1183284.

Joost Vennekens, David Gilis, and Marc Denecker. Erratum to splitting an
operator: Algebraic modularity results for logics with fixpoint semantics.
ACM Transactions on Computational Logic, 8(1):7, 2007a. doi: 10.1145/
1182613.1189735. URL https://doi.org/10.1145/1182613.1189735.

Joost Vennekens, Johan Wittocx, Maarten Mariën, and Marc Denecker. Predic-
ate introduction for logics with a fixpoint semantics. part I: logic programming.
Fundamenta Informaticae, 79(1-2):187–208, 2007b. URL http://content.
iospress.com/articles/fundamenta-informaticae/fi79-1-2-09.

Marina De Vos and Dirk Vermeir. Choice logic programs and nash equilibria
in strategic games. In Jörg Flum and Mario Rodríguez-Artalejo, editors,
Computer Science Logic, 13th International Workshop, CSL ’99, 8th Annual
Conference of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings,
volume 1683 of Lecture Notes in Computer Science, pages 266–276. Springer,
1999. doi: 10.1007/3-540-48168-0_19. URL https://doi.org/10.1007/3-
540-48168-0_19.

Marina De Vos and Dirk Vermeir. Logic programming agents and game theory.
In Alessandro Provetti and Tran Cao Son, editors, Answer Set Programming,
Towards Efficient and Scalable Knowledge Representation and Reasoning,
Proceedings of the 1st Intl. ASP’01 Workshop, Stanford, CA, USA, March
26-28, 2001, 2001. URL http://www.cs.nmsu.edu/%7Etson/ASP2001/8.ps.

https://doi.org/10.1016/j.apal.2013.05.008
https://doi.org/10.1016/0743-1066(86)90003-8
https://doi.org/10.1145/321978.321991
http://www.jstor.org/stable/2024549
http://www.jstor.org/stable/2024549
https://doi.org/10.1145/1183278.1183284
https://doi.org/10.1145/1182613.1189735
http://content.iospress.com/articles/fundamenta-informaticae/fi79-1-2-09
http://content.iospress.com/articles/fundamenta-informaticae/fi79-1-2-09
https://doi.org/10.1007/3-540-48168-0_19
https://doi.org/10.1007/3-540-48168-0_19
http://www.cs.nmsu.edu/%7Etson/ASP2001/8.ps

198 BIBLIOGRAPHY

Jia-Huai You and Li-Yan Yuan. Three-valued formalization of logic
programming: Is it needed? In Daniel J. Rosenkrantz and Yehoshua
Sagiv, editors, Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, April 2-4, 1990, Nashville,
Tennessee, USA, pages 172–182. ACM Press, 1990. doi: 10.1145/298514.
298559. URL https://doi.org/10.1145/298514.298559.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200(1-2):135–
183, 1998. doi: 10.1016/S0304-3975(98)00009-7. URL https://doi.org/10.
1016/S0304-3975(98)00009-7.

https://doi.org/10.1145/298514.298559
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI
Celestijnenlaan 200A box 2402

B-3001 Leuven
https://dtai.cs.kuleuven.be/

	Preface
	Abstract
	Beknopte Samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	Introduction
	Background
	Justifications in KRR
	Research Aims and Motivation
	Structure of Thesis

	Justification Theory
	Introduction
	Definitions
	Consistency of Justification Systems
	Equivalent Justification Frames
	Complementarity of Rules

	Graph-Reducibility
	Relation between Consistency and Graph-Reducibility

	Branch Evaluation Types
	Dual Branch Evaluations

	Pasting Justifications
	Applications
	Logic Programming
	Differences between answer-set programming
	Abstract Argumentation

	Conclusion

	Basic Properties of Justification Theory
	Introduction
	Consistency Revisited
	Consistency of Well-Founded Semantics
	Alternative Branch Evaluations
	Links between Different Justification Models
	Conclusion

	Exploiting Game Theory for Analysing Justifications
	Introduction
	Game Theory
	Justifications as Strategies
	Games Associated to justifications
	Strategies are Justifications

	Consistency Revisited
	Minimax
	Existence of Optimal Pairs of Positional Strategies

	Infinite Games
	Conclusion

	Embedding Justification Theory in Approximation Fixpoint Theory
	Introduction
	Approximation Fixpoint Theory
	Correspondence

	Approximation Fixpoint Theory
	The Embedding
	The Approximator
	Semantic Correspondence

	Application: Ultimate Semantics
	Conclusion

	Nested Justification Systems
	Introduction
	Basic Definitions
	Alternative View on Nested Systems
	Shrinking Justifications
	Expanding Justifications
	Kripke-Kleene Case
	Well-Founded Case

	Consistency of Nested Systems
	Applications
	FO system
	Aggregates
	First-Order Definitions: FO(ID)
	Fixpoint Definitions: FO(FD)

	Conclusion

	Conclusion
	Contributions
	Future Directions
	Challenges and Open Questions
	Applications of Justification Theory
	Extensions of Justification Theory

	Bibliography

