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Abstract

Decision makers acting in real-world problems often have to take into account multiple
objectives. Whenmaximizing one objective comes at the cost of another, the objectives are
in conflict, and the decision maker must find a compromise between them. The optimal
trade-offs might differ on a case-by-case basis, as they depend on the preferences, or utility,
of the decision maker.

In this dissertation, we investigate utility-based approaches, that take into account prior
knowledge over the decision maker’s utility, to learn his or her preferred trade-off. By
making efficient usage of this prior knowledge, we can swiftly discard undesirable trade-
offs, significantly narrowing down the search space for the optimal solution, and thus
enhancing the speed at which we find the desired trade-off.

We analyze different scenarios, depending on the amount of prior knowledge available.
First, we consider that the utility is known a priori, and propose a novel multi-objective
reinforcement learning algorithm that optimizes directly on said utility. We show that, by
explicitly considering multiple objectives, we learn the optimal trade-off in a more stable
and efficient manner than using single-objective solvers. Second, we consider the interac-
tive scenario, with only partial prior knowledge over the utility, but where we can query
the decisionmaker to learn about its preferences. We show that we can optimize the timing
of our queries during the learning process to maximally improve our chances of learning
the preferred trade-off. Third, we assume no prior knowledge over the utility. Learning a
single, but conditional solution on preferences allows us to reuse the samples learned for
different trade-offs, thus improving the efficiency of the search. By generalizing our solu-
tion to all possible preferences, we can learn any possible trade-off, such that the decision
maker can choose its preferred solution a posteriori.

Throughout our research, we primarily focus on sequential decision-making problems,
where a solution is found after having taken a sequence of actions. We demonstrate our
findings for unknown utility functions on a real-world use-case, epidemic outbreaks. By
reducing the number of social contacts at key points in time, we can control the spread
of the epidemic. We learn a variety of optimal strategies that balance between the hos-
pitalizations due to the outbreak and the social contact reduction, which can support the
decision maker in taking an informed decision, knowing the available alternatives.
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Samenvatting

Besluitvormers moeten vaak rekening houden met meerdere doelstellingen. Wanneer het
maximaliseren van één doelstelling ten koste gaat van een andere, zijn de doelstellingen
conflicterend, en moet de besluitvormer een compromisoplossing vinden. De optimale
afwegingen kunnen per geval verschillen, omdat ze afhangen van de voorkeuren, of het
nut, van de beslisser.

In dit proefschrift onderzoekenwe nutsgebaseerde benaderingen, die rekening houdenmet
voorkennis over het nut van de beslisser, om zo zijn of haar voorkeursafweging te leren
kennen. Door efficiënt gebruik te maken van deze voorkennis kunnen we ongewenste
afwegingen snel verwerpen, waardoor de zoekruimte naar de optimale oplossing aanzien-
lijk kleiner wordt en we dus sneller de gewenste afweging vinden.

Wij analyseren verschillende scenario’s, afhankelijk van de beschikbare voorkennis. Ten
eerste nemen we aan dat het nut a priori bekend is, en stellen we een nieuwmulti-objectief
reinforcement learning algoritme voor dat rechtstreeks op dat nut optimaliseert. We to-
nen aan dat, door expliciet rekening te houden met meerdere objectieven, we de opti-
male afweging leren op een stabielere en efficiëntere manier dan met single-objective al-
goritmen. Ten tweede beschouwen wij het interactieve scenario, met slechts gedeeltelijke
voorkennis over het nut, maar waarbij wij met de beslisser kunnen interageren om zijn
voorkeuren te leren kennen. We kunnen hierbij de timing van onze vragen optimaliseren
om de probabiliteit op het leren van de gewenste compromis te maximaliseren. Ten derde
veronderstellen wij geen voorkennis over het nut. Het leren van een enkele, maar voor-
waardelijke oplossing op voorkeuren stelt ons in staat de geleerde data te hergebruiken
voor verschillende afwegingen, waardoor de efficiëntie van het zoekproces toeneemt. Door
onze oplossing te generaliseren naar alle mogelijke voorkeuren, kunnen we elke mogelijke
afweging leren, zodat de beslisser a posteriori zijn voorkeursoplossing kan kiezen.

In ons onderzoek richten wij ons voornamelijk op sequentiële besluitvormingsproblemen,
waarbij een oplossing wordt gevonden na het nemen van een reeks handelingen. Wij
demonstreren onze bevindingen voor onbekende nutsfuncties op een reëel praktijkgeval,
namelijk epidemische uitbraken. Door het aantal sociale contacten op kritische momenten
te beperken, kunnen we de verspreiding van de epidemie beheersen. Wij leren een ver-
scheidenheid aan optimale strategieën die een evenwicht vinden tussen de ziekenhuisop-
names ten gevolge van de uitbraak en de vermindering van het aantal sociale contacten,
wat de besluitvormer kan helpen bij het nemen van een geïnformeerde beslissing, met
kennis van de beschikbare alternatieven.
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Chapter 1

Introduction

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Motivating scenarios for multi-objective approaches . . . . . . . . . . . . . 7
1.3 Research question and contributions . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Known, non-linear utility functions . . . . . . . . . . . . . . . . . . 10
1.3.2 Partially known utility function, with interactive learning . . . . . 10
1.3.3 Unknown, non-linear utility function . . . . . . . . . . . . . . . . . 10
1.3.4 Learning mitigation policies for epidemic outbreaks . . . . . . . . 11

1.4 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Introduction

Many real-world decision problems are sequential in nature. Say we want to provide elec-
tricity to a region using hydroelectric power. This power is produced through a set of
dams situated at strategic locations of water reservoirs. By regulating the flow of water
that passes by the dams through the control of the dams’ gates, we produce electricity. Our
aim is to produce enough electricity such that the demand for the region is met. However,
the amount of water we release now has an impact on how much we can release later on.
Maybe, at a later point in time, there will not be enough water left in the reservoirs to meet
the demand. Thus, our dam controller should not optimize the instantaneous opening of
its gates as to meet the current demand. Instead, it should optimize the sequence of open-
ings over time such that the demand is always met (Castelletti et al., 2013; Pianosi et al.,
2013).

Another example of such a sequential decision problem that garnered world-wide atten-
tion the past three years concerns the mitigation of the COVID pandemic. Governments
imposed a series of decisions to root out the epidemic, mostly in the form of social restric-
tions such as lockdowns or travel constraints (Willem et al., 2021). It is the whole sequence

5



6 CHAPTER 1. INTRODUCTION

of decisions over time that led to a more or less successful reduction of the number of in-
fections of the pandemic.

Different approaches exist to solve such sequential decision problems. In this dissertation,
we focus on one set of approaches called reinforcement learning (RL) (Sutton & Barto,
2018). At its core, we can see RL as a learning process that tries out different strategies, re-
inforcing the decisions that lead to desirable results and trying out alternatives otherwise.
We typically say that RL searches for the optimal strategy through trial and error.

In both the abovementioned examples it would be helpful to have a single, clear objective
for which RL can optimize: the electricity demand should always bemet, and the pandemic
should be rooted out as quickly as possible. Considering this, a straightforward solution
to root out the COVID pandemic would have been to lock everyone into their homes until
not a single infection remained. Sadly, doing so would have led to disastrous economic
consequences and would have considerably impacted the health and psychological well-
being of a number of individuals. We can understand why this strategy has not been
applied by our governments. In reality, they had to consider additional objectives such
as economic impact and mental well-being next to the infection mitigation. Analogously,
regulating the water flow of water reservoirs has significant socio-economic impacts for
the region. The release of water downstream is necessary to meet downstream users’
agricultural needs (Castelletti et al., 2013; Pianosi et al., 2013; Reddy & Kumar, 2006). On
the other hand, stakeholders on the shores are interested in keeping the lake level within a
certain range to avoid floods and support recreational activities or environmental services.
Increasing the lake storage to avoid irrigation deficits means increasing the risk of flooding
and therefore some compromise needs to be established. Moreover, the optimal trade-offs
might differ on a case-by-case basis, and they can be difficult to identify without a picture
of all possible options.

Unfortunately, research work on optimizing a sequential decision problem often focuses
on maximizing a single, scalar objective (Sutton & Barto, 2018). For the aforementioned
real-world problems, this means somehow combining the different objectives into a single
target metric. A possible option is for the decision maker to ask an expert to manually
engineer a metric so to induce a specific behavior after optimization (Roijers et al., 2013).
However, this approach has several drawbacks. First, such work can be expensive and
error-prone, as it often requires domain expertise and extensive tuning before the opti-
mization process finally produces a behavior that satisfies the decision maker. By focusing
on a single solution at a time, this process also fails to inform the decision maker of all the
trade-offs that could be possible. Finally, the decision maker has no way to convey directly
their actual preferences, instead having to rely on the expertise of the designer to construct
a suitable metric. These issues can severely restrict the influence that the decision maker
has on the process, thus possibly missing their preferred solutions.

As such, we advocate the use of an explicitly multi-objective approach, through the use of
Multi-objective reinforcement learning (MORL) (Hayes, Rădulescu, et al., 2021). Recalling
our dam optimization problem, we can, by explicitly optimizing on electricity demand,
irrigation deficits and risks of flooding, show the impact of the learned solution on these
different objectives. Moreover, we can personalize the importance of each objective such
that the different stakeholders reach a consensus. We note that the preferences of the
decision maker, i.e., his utility, thus become part of the optimization process.
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We outline a few motivating scenarios, demonstrating different manners of involvement
of the decision maker.

1.2 Motivating scenarios formulti-objective approaches

It might be tempting to believe that we can view any multi-objective optimization problem
as a single-objective one. After all, if we can design a single-objective reward signal that
matches the preferences of the decision maker, we can use single-objective optimization to
learn the optimal solution. However, Roijers et al. (2013) show that designing this function
is not always feasible, possible or desirable. They outline 3 scenarios for which using
multi-objective optimization is beneficial. Recently, Hayes, Rădulescu, et al. (2021) propose
3 additional scenarios on top of the ones from Roijers et al. (2013). We summarize these
scenarios and classify them in 3 broad categories. Each category assumes different degrees
of knowledge over the utility function during the search process. This is also reflected in
the presented scenarios.

(a) In the unknown utility function scenario, it is not advisable to use a priori scalarization
because the utility function is not known at the time of learning. In this situation, it
is better to calculate a set of policies that cover different possible outcomes in order
to be able to respond quickly if more information becomes available. For example,
in wind farm management, it can be difficult to determine the best course of action
because there are conflicting objectives - maximizing power output and minimizing
maintenance costs caused by the strain of operation - and certain factors such as
storms, the wake effect, and grid instability can impact the lifespan of turbine com-
ponents (Verstraeten et al., 2019, 2020). Since the relationship between these factors
and preventive control measures is not fully understood, it is important to learn a
set of optimal solutions that can be quickly implemented when necessary.

(b) In the decision support scenario, the user’s preferences are uncertain or difficult to de-
termine, making it infeasible or impossible to use a priori scalarization because the
user’s utility function is unknown. In this situation, it is better to present the users
with a set of policies from which they can choose based on their own preferences.
For example, in water management, it can be challenging to identify the optimal way
to manage a water reservoir because there are many stakeholders with different and
potentially conflicting objectives. Each stakeholder has their own preferences for
how the water should be managed, and these preferences can affect different as-
pects of businesses and communities located around the lake. It may be difficult or
impossible to accurately capture the preferences of all stakeholders while consid-
ering the trade-offs across all objectives. Instead, it is more practical to learn a set
of optimal policies and present them to the users for selection, possibly through a
collective decision made by a local council or government.

The difference between this scenario and scenario (a) lies in the selection phase,
after the solution set has been learned. In the first scenario, the utility function is
explicitly defined a posteriori and applied on each solution of the solution set. In the
second scenario, the users decide on their preferred solution without formalizing
the utility function. In this case, the utility function is implicit. The second scenario
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is typically applied for user selection since defining their utility explicitly is hard or
not feasible.

(c) In the known utility scenario, the user’s preferences are known in advance and quan-
tifiable. We can thus work with the utility function and, if desired, apply scalariza-
tion and use single-objective optimization. However, this might not always be desir-
able as Roijers et al. (2013) have shown that using a priori scalarization can lead to
an intractable problem. Moreover, using multiple reward signals provides additional
information that can be used to speed up the learning process. We expand further
upon this in this dissertation, see Chapter 3.

(d) In the interactive decision support scenario, we can interact with the decision maker
during the learning process. There might be too much uncertainty about the utility
function a priori. However, we can reduce this uncertainty during learning by elic-
iting the user’s preferences. For example, by asking the user to rank some proposed
solutions we can refine our knowledge over its utility, narrowing the search space.
At the cost of requisitioning the user’s time, we might be able to greatly reduce the
amount of resources necessary to find the optimal solution.

(e) In the dynamic utility function scenario, the utility of the decision maker can change
over time. It is thus undesirable to apply a priori scalarization. In this case, we
would prefer to learn a solution set, such that the user can select an optimal alter-
native when its utility changes. An alternative would be to learn a single policy and
dynamically adapt the utility function as it changes over time, but this can lead to
instability during learning and a period of suboptimal behavior as the learner adapts,
which need not occur if the learner has learned a set of solutions in advance. De-
pending on how often or how greatly the utility function changes, this might also
be more costly in terms of computational resources (Abels et al., 2019; S. Wang et al.,
2022).

(f) The review and adjust scenario can be seen as a generalization of the dynamic utility
function scenario. In this scenario, not only is there uncertainty about the decision
maker, there is also uncertainty about the MOMDP itself. Upon seeing the solution
set, the decision maker might identify objectives that he previously missed, but now
deems important.

All these scenarios show different use-cases where multi-objective optimization is advan-
tageous. From an algorithmic perspective, many of the scenarios present similarities. For
example, scenario (a), (b) and (e) all aim to learn a full coverage set. The difference lies
in the selection phase. In a similar fashion, scenario (f) requires to learn a coverage set,
although this might only be a partial set if the number of objectives increases. In all these
scenarios, the utility function is unknown.

At the other side of the spectrum lies scenario (c), where we assume the utility function is
known a priori. Since we only need to learn a single policy, and we can take advantage of
our full knowledge over the utility function, we need another class of algorithms for this
type of scenario.

Thus, from an algorithmic perspective, we observe two different approaches. Scenario (d)
shows a third approach. Although the goal is to learn a single policy, we only have partial
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knowledge over the user’s utility. However, in this case we can refine this knowledge
through interactions with the user. As such, we need algorithms that are able to propose
solutions so we can improve this knowledge, instead of algorithms that learn the optimal
solution with regard to the current estimate of the utility function.

In conclusion, we distinguish 3 general classes of multi-objective algorithms based on the
amount of knowledge on the utility function:

1. Full-knowledge algorithms, forwhichwe know the utility function. These are single-
policy algorithms (Vamplew et al., 2011) that can directly optimize on the user utility.
Nevertheless, keeping track of the multiple objectives separately can help in inter-
preting and understanding the policy, and increase sample-efficiency compared to
using a single-objective algorithm, especially if the utility function exhibits complex,
non-linear behavior.

2. Knowledge-gathering algorithms, for which interacting with the decision maker is
key to improve this knowledge. These algorithms need to trade off the cost of in-
volving the user and the cost of interacting with the environment.

3. Incomplete-knowledge algorithms, for which the utility function is unknown. These
are called multi-policy algorithms (Vamplew et al., 2011), as they require to learn a
solution for each possible trade-off.

1.3 Research question and contributions
In the previous section, we classified three general cases of multi-objective RL algorithms
based on the amount of available knowledge regarding the utility function. This classifica-
tion leads to the main research question of this dissertation. How can we best incorporate
the available knowledge we have over the utility function in the multi-objective optimiza-
tion process?

Each of the 3 classes of algorithms shown in Section 1.2 exhibit their own peculiarities
and dilemmas. However, we can summarize them in one main challenge. Compared to
single-objective optimization, where the objective to maximize is clear, multi-objective op-
timization is confronted with alternative choices. This greatly increases the complexity of
the search for the optimal solution. Parts of the search-space that can quickly be discarded
for single-objective problems cannot be discarded for their multi-objective counterpart, as
they might hold interesting trade-offs. In general, the search towards the optimal solution
is more exhaustive, as it is unclear what the exact preferences of the decision maker are.

Thus, the uncertainty over the decision maker’s preferences are the principal cause of this
exhaustive search. Hence, it seems logical that incorporating all available prior knowledge
over these preferences, even if incomplete, will narrow down the search space. Already,
most prior and current work in MORL makes assumptions on how these preferences are
shaped, estimating that weighting each objective by a percentage of importance is enough
to model the decision maker’s utility (Abels et al., 2019; Alegre et al., 2023; Alegre et al.,
2022; Barrett & Narayanan, 2008; Hiraoka et al., 2009; Mossalam et al., 2016; Roijers et al.,
2015; R. Yang et al., 2019). However, this is mostly due to the compatibility of weighted ob-
jectives with the RL framework, not because it is representative of user preferences (Vam-
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plew et al., 2022). Indeed, most common types of utility functions have different shapes,
with different properties (Arrow et al., 1961; Carbaugh, 2013; Douglas, 1976).

In this dissertation, we take a utility-centered approach, first incorporating prior knowl-
edge over the utility function, and then designing algorithms that best use this knowledge
to efficiently learn the optimal solution with respect to the decision maker’s preferences.
We propose contributions for different kinds of prior knowledge, ranging from full knowl-
edge over the utility function to no prior knowledge at all.

1.3.1 Known, non-linear utility functions
Although, as stated previously, a large part of the MORL literature assumes we can ex-
press the user utility as a weighted sum over objectives, this does not align with human
preferences which often are non-linear. In this case, even if the utility function is known
a priori, dedicated multi-objective models and methods are required (Roijers et al., 2013).
We propose Multi-Objective Categorical Actor-Critic (MOCAC), an algorithm for known
utility functions, which corresponds to the 1st general class of multi-objective algorithms.
MOCAC is amethod that learns the optimal solution, evenwhen the utility function is non-
linear, by learning a multi-variate distribution over the multi-objective returns, inspired
by distributional reinforcement learning (Bellemare et al., 2017). Moreover, by leveraging
the additional information provided by the different objectives, it does so more efficiently
than single-objective approaches that directly optimize the utility.

1.3.2 Partially known utility function, with interactive learning
In contrast with the 1st general class of multi-objective algorithms, often it is not possible
to have full knowledge over the utility function, and we only have partial prior knowl-
edge. However, we might be able to interact with the decision maker to improve our
partial understanding of his or her preferences. We propose Multi-Objective Partially Ob-
servable Monte-Carlo Planning (MOPOMCP), an algorithm that optimizes the timing of
user-interaction, such that it maximally improves our chances of learning the best solution,
within the available (computational, interaction) resources. We do this using a Bayesian
approach (Russo, 2016), keeping a belief distribution over the possible utility functions
given our current knowledge, and timing the interactions such that they best improve our
belief.

1.3.3 Unknown, non-linear utility function
In the case that we do not have any prior knowledge over the utility function, and we
cannot interact with the decision maker to improve our understanding over its utility, we
need to learn the set of all possible trade-offs, guaranteeing that the learned set contains
the decision maker’s preferred solution. We propose Pareto Conditioned Networks (PCN),
an algorithm that efficiently learns all optimal trade-offs, by feeding the experience used
for different compromises into a single neural network, thus allowing to share experience
across policies (Kumar et al., 2019; Schmidhuber, 2019).

Although MORL algorithms for unknown utility functions have been investigated, they
often make assumptions on the types of preferences the decision maker can have (see
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Section 2.4) (Abels et al., 2019; Alegre et al., 2023; R. Yang et al., 2019). In contrast, our
method makes no assumption on the shape of the utility function. Moreover, existing
MORL algorithms with no assumption on the shape of the utility function scale poorly
with the complexity of the problem (Moffaert & Nowé, 2014; Parisi et al., 2016), while our
approach is scalable with the size of the decision problem. Finally, our approach is also
scalable with respect to the number of objectives.

1.3.4 Learning mitigation policies for epidemic outbreaks
As shown by the COVID-19 pandemic, infectious disease outbreaks represent a major
global challenge (P. J. K. Libin et al., 2021). We present a real-world use-case for multi-
objective reinforcement learning, by learning multi-objective mitigation strategies for epi-
demic outbreaks. We focus on policies putting restrictions on social contacts, to reduce the
spread of the epidemic and the consequent burden on hospitals. We make no assumptions
on the utility function, learning all trade-offs between hospitalizations and loss in social
contacts, by extending our previous contribution, PCN, to this setting. We show that our
methodology can be used to learn a wide set of high-quality policies on real-world prob-
lems, providing the decision maker with insightful and diverse alternatives.

1.4 Organization of this dissertation
This dissertation has been organized in logical, rather than chronological order. It follows
the outlined contributions, ordered in decreasing amount of knowledge over the utility
function.

Chapter 2 presents a brief introduction on multi-objective reinforcement learning and its
solution concepts. Chapter 3 presents our contributions for known, non-linear utility func-
tions, which has been published in (Reymond, Hayes, et al., 2023). Chapter 4 presents
recent contributions for the interactive setting with the decision maker, which has not
yet been published. In Chapter 5, we present our novel algorithm for unknown utility
functions, which has been published in (Reymond, Eugenio, & Nowè, 2022). Chapter 6
showcases a real-world application of this algorithm for epidemic outbreaks, available as
a preprint at (Reymond, Hayes, et al., 2022), and currently under review at Expert Sys-
tems with Applications1. Finally, we conclude our dissertation in Chapter 7 and outline
directions for future work.

A complete list of publications is available in Section 7.1.3. Next to the publications in-
corporated in this manuscript, Reymond et al. (2018) includes initial work with multiple
objectives and preliminary work in workshops (Reymond & Nowe, 2019; Reymond et al.,
2021, 2023). Moreover, our research resulted in collaborative work, which is cited in the
related work sections of this manuscript (Hayes et al., 2021, 2023; Roijers et al., 2021; Wang
et al., 2022). One of these collaborations led to an overview paper co-authored by numer-
ous researchers of the MORL community (Hayes et al., 2022). Finally, this list contains
published work not related to MORL, and as such are not cited in this document (Avalos
et al., 2022a, 2022b; Nevens et al., 2018).

1https://www.sciencedirect.com/journal/expert-systems-with-applications

https://www.sciencedirect.com/journal/expert-systems-with-applications
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2.1 Multi-objective reinforcement learning

This chapter lays the fundamental background concepts necessary to understand this dis-
sertation.

In this chapter, we formalize the MORL paradigm, introducing the framework used to
formalize the sequential decision problem, the optimization criterions and the role of the
decision maker in the learning process.

13
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2.2 Multi-objective Markov decision processes
Recalling the water reservoir optimization example, we call in RL terminology the con-
troller that regulates the water flow an agent. This agent interacts with an environment,
in this case the water reservoir. These interactions happen through actions the agent can
perform, e.g. opening or closing the dam gates. In order to decide which action to per-
form, the agent can observe the current state of the environment, e.g. the water level of
the reservoir. Performing actions changes the state, as such the agent is able to observe the
consequences of its actions. Finally, in order to be able to judge the quality of its actions,
the agent receives a reward in the form of a numerical signal. For example, it could receive
a reward of 1 if the demand is met, and −1 if it is not met. In real-world problems, there
can often be multiple reward signals, e.g. one for electricity demand, one for agricultural
needs, and one for environmental services.

Formally, we model these sequential decision problems as a Multi-objective Markov deci-
sion process (MODMP). A MOMDP is a tuple, M = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩, where 𝒮,𝒜 are
the state and action spaces respectively, 𝒯 : 𝒮 × 𝒜 × 𝒮 → [0, 1] is a probabilistic tran-
sition function, 𝛾 is a discount factor determining the importance of future rewards and
ℛ : 𝒮×𝒜×𝒮 → R𝑛 is an 𝑛-dimensional vector-valued immediate reward function, with
𝑛 being the number of objectives of the problem. In single-objective RL, 𝑛 = 1 while in
multi-objective reinforcement learning (MORL), 𝑛 > 1.

2.3 Policies
In MORL, problems are thus defined as MOMDPs. While MOMDPs define the actions an
agent can take, it does not define which actions are taken in each state. We call this the
agent’s policy. This policy dictates the agent’s behavior. More formally, a policy 𝜋 is a
probabilistic function 𝒮 ×𝒜 → [0, 1] determining, for each state 𝑠 ∈ 𝒮 , the probability of
taking an action 𝑎 ∈ 𝒜.
When the number of objectives 𝑛 = 1, the goal is to find the optimal policy 𝜋* that
maximizes the expected sum of discounted rewards:

𝜋* = argmax
𝜋

E

[︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡| 𝜋, 𝑠0
]︃
, (2.1)

where 𝑡 is the timestep and 𝑠0 the initial state of the environment, i.e. the start-state.

The expected sum of discounted rewards is often also called the Value, and reflects the
quality of a policy:

𝑉 𝜋 = E

[︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡| 𝜋, 𝑠0
]︃
. (2.2)

A policy 𝜋1 is considered better than another policy 𝜋2 when its Value is higher:
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𝜋1 > 𝜋2 ⇐⇒ 𝑉 𝜋1 > 𝑉 𝜋2 . (2.3)

In the multi-objective case, when 𝑛 > 1, the Value is an 𝑛-dimensional vector, which we
denote 𝑉 .

While this difference might seem relatively simple — we consider multiple criteria instead
of one but the problem itself remains unchanged — it can completely transform the way
to tackle the problem at hand.

To its core, it changes one of the most basic concepts of optimization. The goal of single-
objective RL is to find the policy that maximizes its objective, the expected sum of dis-
counted rewards. But with the introduction of multiple objectives, this notion of maxi-
mization (the argmax term in Equation 2.1) becomes unclear.

Say we have a 2-objective MOMDP where finding a solution that improves one objective
comes at the cost of the other objective. It becomes impossible to improve all the objec-
tives at once. Which solution is then considered the optimal one? Without any additional
information, there is no clear winner (e.g., we cannot decide which solution is optimal be-
tween (0, 10), (3, 3) or (10, 0)). This means that in multi-objective optimization there is
no perfect solution, we need to make trade-offs between the different criterions.

However, to the end-user trying to solve a problem, some of these trade-offs are better
than others. In this regard, an ordering between multi-objective solutions can be made.
This ordering depends on the personal preferences of the end-user. In this manner, we can
tie our multi-objective problem back to single-objective optimization: we aim to find the
solution that is best according to the personal preferences of the end user.

2.4 Utility function
Although a MOMDP possesses multiple objectives, we can rank the compromises accord-
ing to the end-user’s preferences, or utility. We thus assume that there exists, either implic-
itly or explicitly, the existence of a scalarization function that converts a vectorial return
to a scalar preference score. We call this function the utility function 𝑢 : R𝑛 → R.

As a minimal assumption we consider that a solution that improves one of the objectives
without hampering any of the other objectives will have a higher utility for the decision
maker. We thus assume that the utility function is monotonically increasing:

𝑢(𝑉 1) > 𝑢(𝑉 2)⇐⇒ (∀𝑖 : 𝑉 1
𝑖 ≥ 𝑉 2

𝑖 ) ∧ (∃𝑖 : 𝑉 1
𝑖 > 𝑉 2

𝑖 ). (2.4)

Often, diverse types of parametrized scalarization functions are used inMORL to represent
the utility function, where the parameters represent the preferences of the decision maker.

The most commonly used type of scalarization function is the linear scalarization func-
tion (Abels et al., 2019; Alegre et al., 2023; Alegre et al., 2022; Barrett & Narayanan, 2008;
Hiraoka et al., 2009; Mossalam et al., 2016; Roijers et al., 2015; R. Yang et al., 2019). This
function makes a weighted sum over the objectives, where the weights are the parameters
of the function. Each weight represents a percentage of importance for each objective.
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Thus, the weight-vector is constrained to be positive and sum to 1, i.e. it is drawn from
the 𝑛− 1 dimensional simplex:

𝑢(𝑉 ) = 𝑤⊤𝑉 , {𝑤 ∈ S𝑛−1}, (2.5)

with S𝑛−1 the 𝑛− 1 dimensional simplex:

S𝑛−1 = {𝑤 ∈ R𝑛 : 𝑤0 + · · ·+ 𝑤𝑛−1 = 1, 𝑤𝑖 ≥ 0 for 𝑖 = [𝑛]}. (2.6)

Next to the ease of implementation, its main advantage lies in its additivity property. We
can apply the utility function to the individual vectorial rewards, and its sum will be equal
to the utility over the whole return:

𝑢(𝑅) = 𝑤⊤
𝑇∑︁
𝑡=0

𝑟𝑡

=

𝑇∑︁
𝑡=0

𝑤⊤𝑟𝑡

=

𝑇∑︁
𝑡=0

𝑢(𝑟𝑡).

(2.7)

This means that without any additional changes, we can use single-objective RL algo-
rithms to optimize directly on the utility, while keeping the convergence guarantees and
properties of the original algorithm.

Although this additivity property is a considerable advantage, linear scalarization comes
with some issues. One of its main disadvantages is that, due to linear functions being a
subset of all monotonically increasing functions, it cannot represent all possible prefer-
ences of the decision maker. Consider our previous example with 3 possible trade-offs,
𝑉 1 = (10, 0), 𝑉 2 = (3, 3) and 𝑉 3 = (0, 10), no weight-parameters𝑤 exist such that 𝑉 2

becomes the preferred solution. The weights 𝑤 = ( 12 ,
1
2 ) that consider both objectives as

equally important have utilities 𝑢(𝑉 1) = 5, 𝑢(𝑉 2) = 3 and 𝑢(𝑉 3) = 5. We expand more
on this limitation in Section 2.6.

To alleviate this issue, another type of parametrized scalarization function can be used, the
weighted-norm scalarization. It computes the weighted 𝑙𝑝 norm of a solution, where the
parameter weights 𝑤 are constrained in the same fashion as for linear scalarization:

𝑢(𝑉 ) = (

𝑛∑︁
𝑖

𝑤𝑖|𝑉𝑖|𝑝)
1
𝑝

= ||𝑤 1
𝑝𝑉 ||𝑝, {𝑤 ∈ S𝑛−1}.

(2.8)



2.5. OPTIMALITY CRITERION 17

A special case of this scalarization function which is often used in the literature is the
Chebyshev scalarization (Van Moffaert et al., 2013a). Chebyshev scalarization computes
the 𝑙∞ norm between a point in the multi-objective space and a utopian point 𝑧*:

𝑢(𝑉 ) = max
𝑖
𝑤𝑖|𝑉𝑖 − 𝑧*𝑖 |, {𝑤 ∈ S𝑛−1}. (2.9)

While the Chebyshev scalarization allows to recover all possible trade-offs, it requires to
choose an utopian point.

Although it might seem convenient to use weights to define the importance of each ob-
jective, in practice the relationship between weights and policy may be unpredictable, as
a small change in weights might result in completely different policies (Vamplew et al.,
2011). Moreover, humans find it challenging to express their preferences in absolute terms
(e.g., "70% importance for objective 1"), as using numbers to express preferences can be
unnatural and prone to errors (Tesauro, 1988).

2.5 Optimality criterion

In single-objective RL, we have defined the policy with the highest expected return as the
optimal policy 𝜋*. Similarly, since we assume the existence of a utility function 𝑢 inMORL,
we also assume the existence of a single optimal policy. However, depending on where we
apply 𝑢, we can define 2 different optimization criteria for 𝜋* (Hayes, Rădulescu, et al.,
2021). As these criteria can result in vastly different optimal policies, one should choose
the most appropriate one depending on the problem at hand.

As a first criterion the agent aims to compute a policy 𝜋 that optimizes the utility of the
expected vectorial return, i.e.,

𝜋* = argmax
𝜋

𝑢

(︃
E

[︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡|𝜋, 𝑠0
]︃)︃

. (2.10)

This is known as the scalarized expected return (SER) optimization criterion and is the one
used in most MORL research (Roijers et al., 2013). The particularity of this criterion is
that the utility is optimal on the average of multiple executions of the learned policy. One
advantage is that, since 𝑢 is applied on the vectorial Value, optimizing under SER allows
to apply temporal-difference on each objective separately and take advantage of classic
value-based methods (Van Moffaert et al., 2013b).

As a second criterion the agent aims to maximize the expected utility over single policy
executions, i.e.,

𝜋* = argmax
𝜋

E

[︃
𝑢

(︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡

)︃
|𝜋, 𝑠0

]︃
. (2.11)
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𝑠0𝑠1 𝑠2ℛ(𝑠0, 𝑎0) = (3, 3)

ℛ(𝑠0, 𝑎1) = (10, 0) or (0, 10)

Figure 2.1: A MOMDP for which the optimal policy differs depending on the optimization
criterion with the utility function 𝑢 = min(𝑟0, 𝑟1). Under ESR, 𝜋*(𝑎0 | 𝑠0) = 1 while
under SER, 𝜋*(𝑎0 | 𝑠1) = 1.

This is the expected scalarized return (ESR) criterion. Under ESR 𝑢 is applied directly on
the episodic return. Since 𝑢 can be non-linear, different approaches are required for ESR
than for SER.

We illustrate the difference between those two solution concepts using a small example,
shown in Figure 2.1. Consider a single-step, 2-objective MOMDPwith two possible actions
𝑎0, 𝑎1. Action 𝑎0 always results in reward 𝑟 = (3, 3), while action 𝑎1 results with equal
probability in either 𝑟 = (0, 10) or 𝑟 = (10, 0). Under ESR, given 𝑢 = min(𝑟0, 𝑟1), the
optimal policy is to always take 𝑎0 since it results in the highest utility 𝑢 = 3 (compared
to 𝑢 = 0 for 𝑎1). However, in expectation, i.e., over many policy runs, E [𝑟|𝑎1] = (5, 5).
Under the SER criterion, given the same utility function, the optimal policy is to always
take 𝑎1.

For example, say we are optimizing the daily commute to work of the decision maker. The
resulting policy should be optimized under SER if he has a flexible start-time allowing him
to arrive later some days, as long as he arrives early other days to compensate. However,
if his employer requires him to be precisely on time every day, ESR should be used since
arriving on time depends on every policy execution.

2.5.1 The special case of linear scalarization

Since the optimal policy can vary greatly depending on the optimization criterion used,
it is crucial to decide which criterion to optimize on in order to learn the optimal policy
that accurately reflects the preferences of the decision maker. However, one class of util-
ity functions exists for which this choice does not matter as both optimization criterions
lead to equivalent optimal policies. This is the case of linear scalarization functions (Equa-
tion 2.5). Due to their linear additivity property (Equation 2.7), both ESR and SER become
equivalent (Rădulescu et al., 2020):

E

[︃
𝑢

(︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡

)︃
|𝜋, 𝑠0

]︃
= E

[︃
𝑤⊤

ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡|𝜋, 𝑠0
]︃

= 𝑤⊤ E

[︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡|𝜋, 𝑠0
]︃

= 𝑢

(︃
E

[︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡|𝜋, 𝑠0
]︃)︃

.

(2.12)
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Not only does the linear additivity property allow to apply the utility function on indi-
vidual rewards, using linear scalarization allows optimizing on both SER and ESR equiv-
alently. These properties are the reasons why linear scalarization is a popular choice of
scalarization functions in MORL.

2.6 Coverage sets

Ultimately, the goal in MORL is to learn a policy 𝜋 that best fits the preferences of the
decision maker. We do so through the use of the utility function 𝑢 and the SER or ESR
optimality criterion. Both these criterions assume full knowledge over 𝑢 in order to learn 𝜋.
Although we have mentioned common scalarization functions, we have until now avoided
the question of how to obtain this knowledge over 𝑢. This is quite a hard question, as user
preferences come with multiple unknowns.

First, preferences are often shaped by a multitude of factors, such as personal experiences,
upbringing, individual tastes, and values. These factors can vary significantly from person
to person, which makes it challenging to create a standardized approach to understanding
and measuring preferences. This makes user preferences complex.

Furthermore, preferences can also be influenced by context and situational factors. For
example, a person’s preference for a particular type of food may vary depending on the
time of day, the weather, or their mood. Similarly, a person’s preference for a particular
type of entertainment may vary depending on their current interests or circumstances.
Thus, user preferences are difficultly quantifiable.

Finally, preferences can evolve and change over time as a person’s experiences, values,
and priorities shift. What was once a favorite food or activity may no longer hold the
same appeal, or a person may develop a new appreciation for something they previously
disliked.

Thus, it is not straightforward to transform the multi-objective problem back to a single-
objective one, and it depends in great part on our knowledge over these preferences. In-
deed, possessing full knowledge over the utility function allows to directly optimize on the
SER or ESR criterion. In this way, we can focus our search to only the trade-offs relevant
to the end-user and learn a single, personalized policy. On the contrary, if we have no
knowledge over the utility function, then any compromise could be the optimal solution.
To guarantee that we can provide the optimal policy regardless of the preferences of the
decision maker we need to learn a set that, for each possible utility function, contains the
corresponding optimal policy. Such a set "covers" all possible utility functions, as such we
call it a coverage set.

Coverage sets are an important concept in MORL as often we assume that the preferences
of the decisionmaker are unknown, and aim to learn thewhole coverage set. In this setting,
we thus try to learn multiple policies, in contrast to the learning of a single optimal policy
in single-objective optimization.

Concretely, we say that a policy 𝜋1 dominates another policy 𝜋1 if its utility is higher, for
all possible utility functions 𝑢 ∈ 𝒰 :
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𝜋1 ≻ 𝜋2 ⇐⇒ (∀𝑢 ∈ 𝒰 : 𝑉 𝜋
1

𝑢 > 𝑉 𝜋
2

𝑢 ). (2.13)

We note that the scalarized 𝑉𝑢 depends on the optimization criterion (it should be 𝑉𝑢,ESR
or 𝑉𝑢,SER) but the ESR, SER suffix has been dropped, as the dominance concept is valid for
both optimization criterions.

This allows us to define the set of all non-dominated policies, which contains all the policies
that are not dominated by any other policy, i.e., there exists a utility function for each of
the policies in this set, for which that policy is optimal:

Π* = {𝜋 ∈ Π | ∄𝜋′ ∈ Π : 𝑉 𝜋′ ≻ 𝑉 𝜋}. (2.14)

In general, we call any set of policies a solution set, and any solution set that only contains
non-dominated policies a coverage set. The coverage set that contains all possible non-
dominated policies is called the optimal coverage set Π*.

It is important to note here that this concept of optimal coverage set depends on the type
of optimality criterion (SER, ESR) to use and the class of utility functions that represent the
decisionmaker (frommonotonically increasing utility functions to linear utility functions).
Thus, we can further refine the definition of coverage set and learn sets of policies specific
to the problem setting at hand.

By combining the 2 possible optimality criterions and the 2 covered classes of utility func-
tions we obtain 4 combinations of possible types of coverage sets. However, we have seen
in Section 2.5.1 that for linear utility functions SER and ESR become equivalent criterions,
thus we can further reduce the number of combinations to 3. The solution concept for
the coverage set of non-linear utility functions under ESR has only been recently defined
and is not used in this dissertation, so we refer the interested reader to Hayes, Verstraeten,
et al. (2021) for further explanations.

2.6.1 Linear utility functions under SER and ESR

Using a weighted sum as utility function restricts the number of non-dominated solutions
that can be learned. When using linear weights, a solution that is on the concave part
of the coverage set always has a lower utility than a neighboring solution on the convex
part, regardless of the chosen weights (Roijers et al., 2013). Thus, we can only discover the
solutions that are on the convex part of the coverage set.

𝐶 = {𝜋 ∈ Π | ∃𝑤 ∈ S𝑛−1 : 𝑤⊤𝑉 𝜋 ≥ 𝑤⊤𝑉 𝜋′
,∀𝜋′ ∈ Π}. (2.15)

Thus, if we know that the optimal coverage set of our problem is convex, using linear
scalarization is appropriate as by definition it optimizes for the convex coverage set. This
holds even if the ground-truth utility function of the decision maker is non-linear, as its
optimal solution is still contained in the convex coverage set.
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2.6.2 Monotonically increasing utility functions under SER
Consider a problem where we have no information concerning the utility function of the
decision maker and the optimal coverage set can be concave or partially concave. Then, to
ensure that the optimal policy is contained in the optimal solution set, we should optimize
for monotonically increasing utility functions. Under SER, the utility function is applied
on the vectorial Value 𝑉 . Without any additional information about the utility function,
we can only guarantee that a policy is better than another if its Value is higher across
all objectives than the Value of the other policy. A solution for which it is impossible to
improve one of the objectives without hampering another is said to be Pareto-efficient.

More formally, a policy 𝜋1 is said to Pareto-dominate another policy 𝜋2 if its expected
return 𝑉 𝜋1 is higher or equal across all objectives than 𝑉 𝜋2 , and there exist at least an
objective where 𝑉 𝜋1 is better than 𝑉 𝜋2 :

𝜋1 ≻𝑃 𝜋2 ⇐⇒ (∀𝑖 ∈ [𝑛] : 𝑉 𝜋1
𝑖 ≥ 𝑉 𝜋2

𝑖 ) ∧ (∃𝑖 : 𝑉 𝜋1
𝑖 > 𝑉 𝜋2

𝑖 ), (2.16)
where ≻𝑃 is the Pareto-dominance operator. Notice that this definition does not use the
utility function 𝑢 since 𝑢 is unknown. Thus, in this setting, we directly focus on the Pareto-
efficient vectors. We call the corresponding coverage set the Pareto front:

𝑃 = {𝜋 ∈ Π | ∄𝜋′ ∈ Π : 𝜋′ ≻𝑃 𝜋}. (2.17)

The advantage of using this coverage set lies in its genericity, as it is guaranteed to contain
the optimal policy for any kind of monotonically increasing utility function. On the down-
side, this set can be prohibitively large, in which case we may no longer be able to compute
all its corresponding policies without soliciting more information on how to prioritize the
objectives. Gaining more insight allows us to scale down the search, with at the other end
of the spectrum the class of linear utility functions and its corresponding convex coverage
set.

Taking full advantage of our knowledge over the user utility function can thus greatly
reduce the search space. Thus, as is advocated by Roijers et al. (2013), we argue that the
utility function should be a central part of the multi-objective optimization process and
adopt a utility-based perspective.

2.6.3 The impact of stochastic policies on the coverage set
Equation 2.1 shows that, for single-objective optimization, the optimal policy is the policy
leading to the highest expected return. Since this policy greedily takes the action leading
to the highest V-value, it is deterministic.

In contrast, consider a set of 2 optimal trade-offs,𝑉 1 = (10, 0),𝑉 2 = (0, 10), and their as-
sociated deterministic policies 𝜋1, 𝜋2, respectively. We can create a new, stochastic policy
𝜋3 that, in the start-state 𝑠0, randomly chooses to follow either 𝜋1 or 𝜋2 for the duration of
the episode, with probability 𝑝𝜋1 , 1−𝑝𝜋1 , respectively. Then𝑉 3 = 𝑝𝜋1𝑉 1+(1−𝑝𝜋1)𝑉 2.
For example, using 𝑝𝜋1 = 0.5 results in a new, non-dominated solution 𝑉 = (5, 5). By
varying 𝑝𝜋1 , we obtain infinitelymany possible trade-offs, showing that, in multi-objective
optimization, stochastic policies can lead to new, non-dominated solutions.
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Figure 2.2: Distinction of different coverage sets. For any setting, the points marked with
"-" are suboptimal, as they are dominated by the blue points with circle markers. When
the utility function is non-linear, the optimal coverage set corresponds to the Pareto front,
in blue. However, for linear utility functions, the point at position (2, 2) is suboptimal,
as no weight 𝑤 ∈ S𝑛−1 exist that results in this point having a higher utility than any
of the orange points (marked with "x"). Moreover, even for non-linear utility functions, if
stochastic policies are allowed, then combining the policies leading to the points marked
with "x" results in Values on the orange dashed line, which also dominates the point at
position (2, 2).

Moreover, we observe that, by using these stochastic policies, solutions on the concave part
of the coverage set (e.g., (3, 3)) become dominated by the stochastic mixture of solutions
on the convex part. In this case, as for linear utility functions, the convex coverage set
(Equation 2.15) is the optimal solution set (Vamplew et al., 2009).

Thus, the optimal solution set when allowing stochastic policies is the convex coverage set.
Nonetheless, for many settings, it is undesirable to have stochastic policies. For example,
in a medical treatment planning setting, the patients would probably object to random
selection of different medicines. Or, in the management of a hydroelectric power plant,
the decision maker does not want to be presented with a policy that has a probability of
completely draining the water reservoir even if that policy is optimal, as it would have
catastrophic consequences for nearby towns (Hayes, Rădulescu, et al., 2021).

As such the type of policy (deterministic or stochastic) should be considered on a case-
by-case basis, depending on the problem setting. An illustration of the different types of
coverage sets is shown in Figure 2.2.
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2.7 The utility-based perspective

The end-goal of a multi-objective optimization problem is to maximize the user utility.
Since the properties of a user’s utility may drastically alter the desired solution, taking
advantage of our knowledge over this utility is of paramount importance.

The utility-based approach is in contrast to the earlier axiomatic-based approach (Moffaert
& Nowé, 2014; White, 1982). In the axiomatic-based approach, the goal is to learn the
Pareto front of the decision problem. Since the Pareto front is the most generic coverage
set, this ensures that, with the axiomatic-based approach, we learn the optimal solution.
However, this set can be too large, making it prohibitively expensive to retrieve. Instead,
we should design algorithms that encompass knowledge over the utility function or the
relevant type of coverage set. This is a viable strategy for many practical applications,
where information about the user’s preferences is available through domain knowledge.
The axiomatic approach would disregard this knowledge leading to unnecessary use of
resources.

Thus, the utility-based approach consists in first gathering all possible knowledge over
the user’s preferences and over the problem at hand to narrow the search process. Then, a
suitable algorithm is selected to discover the appropriate solution or solution set. Finally,
we choose an appropriate method to extract the preferred solution from the solution set.
Concretely:

1. We collect all possible a priori knowledge over the user’s utility. This information
will help us determine the class of utility functions we will employ. Throughout this
dissertation, we will assume different amounts of a priori knowledge, and see that
this results in different approaches.

One key element of prior knowledge we require, is whether we should optimize on
the ESR or SER optimization criterion described in Section 2.5.

2. We decidewhether deterministic or stochastic policies are allowed for the problem at
hand. Depending on the problem, we might not desire stochastic policies, however,
if possible, we should use them, as stochastic policies can be strictly better than
deterministic policies (Vamplew et al., 2009; White, 1982).

3. Based on the previous points, we decide on the optimal solution concept. For exam-
ples, using stochastic policies allows us to optimize the convex coverage set (Sec-
tion 2.6.3).

4. We select or design a MORL algorithm that fits this solution concept. Due to the
incorporation of prior knowledge, different settings arise. Taking advantage of the
assumptionsmade for each setting result in specialized algorithms. While thismeans
we need to designMORL algorithms for each setting, these algorithms result in more
efficient learning than a generic approach.

5. When the utility function is unknown and the solution set is composed of multiple
policies, we devise a method to extract the optimal policy from the solution set. One
way would be to ask the decision maker to choose its preferred trade-off out of all
the ones present in the solution set. However, this might not be possible when the
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number of alternatives is too large. In this case, it might be better to estimate the
decision maker’s utility, e.g., through preference elicitation (Zintgraf et al., 2018).

2.8 Performance metrics for multi-objective optimiza-
tion

We have seen in the taxonomy that there exist quite a few scenarios for multi-objective
optimization, resulting in awide range of possible algorithms. However, until nowwe have
eluded how we can assess the performance of these algorithms and how we can compare
them with one another.

In single-objective RL, the optimal policy 𝜋* is the one with the highest possible Value 𝑉
so 𝑉 is typically used as a performance metric. Analogously, when the utility function 𝑢
is known, we can use the ESR and SER optimality criterions as performance metrics. In
contrast, we have seen that when 𝑢 is unknown our goal is to learn coverage sets that
contain the optimal policy for every possible utility function.

Comparing the learned coverage sets of different algorithms is a non-trivial task, as one
algorithm’s output might dominate the other in some part of the objective-space, but be
dominated in another. Intuitively, one would generally prefer the algorithm that obtains
better returns for a wider range of utility functions.

2.8.1 Hypervolume
The most widely used metric in the literature is called the hypervolume (Mannion et al.,
2018; Vamplew et al., 2011; W. Wang & Sebag, 2013; Yliniemi & Tumer, 2016; Zitzler &
Thiele, 1999). This metric evaluates the learned coverage set Π by computing its volume
w.r.t. a fixed specified reference point 𝑝. It can be seen as the union of boxes delimited by
the reference point and the solutions in Π:

𝐻(Π) = Λ

(︃⋃︁
𝜋∈Π

[𝑝,𝑉 𝜋]

)︃
(2.18)

where Λ is the Lebesgue measure (also called 𝑛-dimensional volume) and [𝑝,𝑉 𝜋] = {𝑞 ∈
R𝑛 | 𝑞 ≥ 𝑝 ∧ 𝑞 ≤ 𝑉 𝜋} is the box delimited below by the reference point 𝑝 and above by
𝑉 𝜋 .

The reference point is taken as a lower bound on the achievable returns so that the vol-
umes are always positive. Thus, the hypervolume envelops all possible V-values that are
dominated by that coverage set, with more dominating coverage sets having a larger hy-
pervolume. Thismetric is by definition the highest for the Pareto front, as no other possible
solution can increase its volume (since they are all dominated). While the hypervolume
metric is widely used and does give a measure of the coverage of a solution set, it can be
difficult to interpret. The benefit of a certain increase or decrease in hypervolume is not
readily apparent to the end user, and does not necessarily correlate to significant changes
in expected utility. Whenworking in high-dimensional objective-spaces, adding or remov-
ing a single point can lead to wildly different hypervolume values, especially if the point
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lies close to an extremum of the space. Moreover, the hypervolume assumes that every
Pareto-non-dominated point can contribute to the user utility. This is not necessarily the
case. For example, we have seen in Section 2.6.1 that the optimal coverage set for linear
scalarization is the convex coverage set, for which all concave solutions do not contribute
to the user utility.

2.8.2 Expected Utility Metric
The hypervolume does not necessarily correlate with the utility of the user. To alleviate
this, we can use the Expected Utility Metric (EUM) (Zintgraf et al., 2015). As the name
implies, it measures the expected utility for a user given a solution set:

EUM(Π) = E
𝑢∼𝒫(·|𝒰)

[︂
max
𝜋∈Π

𝑢(𝑉 𝜋)

]︂
, (2.19)

where 𝒫 is the probability distribution over the utility functions. EUM explicitly measures
the performance of a coverage setΠ across all possible utility functions 𝑢 ∈ 𝒰 . Contrary to
the hypervolume, an improvement in EUM leads to a similar improvement in utility. One
downside of this metric is that we explicitly need the set of all possible utility functions 𝒰 ,
which is not always available or easy to obtain. Nonetheless, it can be used with any of the
classes of utility functions defined in Section 2.4, such as linear scalarization (Equation 2.5)
or Chebyshev scalarization (Equation 2.9). Note however, that for these classes of utility
functions, the probability distribution𝒫 might not be uniform over the weight-space. This
is another downside of using EUM, it requires accurate knowledge over 𝒫 .

2.8.3 Expected Utility Loss
The Expected Utility Metric provides a way to measure how much utility we can expect
from a given solution set. But we do not necessarily know when a certain value is satis-
factory for the decision maker. This makes the EUM sometimes hard to interpret. As an
alternative, we can measure how far off we are from the best possible coverage set. This
can be meaningful since it provides a relative measure with respect to the optimal solution.
We call this variant the Expected Utility Loss (EUL):

EUL(Π) = E
𝑢∼𝒫(·|𝒰)

[︂
max
𝜋*∈Π*

𝑢(𝑉 𝜋*
)−max

𝜋∈Π
𝑢(𝑉 𝜋)

]︂
. (2.20)

As a downside, EUL requires to know the true optimal coverage set Π*, so in theory it
can only be used in test problems with a known structure. In practice, we can construct
an approximation of the optimal coverage set for a specific problem by selecting the non-
dominated policies across all our experiments. However, in this case EUL can only be
computed as an evaluation metric a posteriori, and cannot be used during the learning
process to guide the search of an algorithm towards better coverage sets.

2.8.4 Maximal Utility Loss
An alternative utility-centered metric that does not require knowledge over 𝒫 is theMax-
imal Utility Loss (MUL) (Zintgraf et al., 2015). It measures the maximal loss in utility that
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occurs when taking the best possible policy from the learned coverage set compared to the
one from the optimal coverage set:

MUL(Π) = max
𝑢∈𝒰

(︂
max
𝜋*∈Π*

𝑢(𝑉 𝜋*
)−max

𝜋∈Π
𝑢(𝑉 𝜋)

)︂
. (2.21)

While EUM indicates the average performance of a solution set, MUL provides information
about the worst-case scenario. The advantage of measuringworst-case performance is that
we only require to know the set 𝒰 , not its probability distribution 𝒫(· | 𝒰). However, like
EUL, this metric requires Π*, which is not always available.

2.8.5 The 𝜀-indicator
EUM, EUL and MUL are metrics that correlate with the user’s utility. We believe these
are most relevant, since the end-goal under SER or ESR is to maximize the user utility.
However, all three metrics require knowledge over the space 𝒰 , which we do not neces-
sarily know. As an alternative, we could apply the same principles as the previous metrics,
but on the objectives themselves instead of the utility. This can then serve as a proxy for
the utility-based metrics. An alternative metric to the MUL that does not require 𝒰 is the
𝜀-indicator 𝐼𝜀 (Vamplew et al., 2017; Zitzler et al., 2003).

𝐼𝜀 measures how close a coverage set is to the Pareto front𝑃 . The 𝜀-indicator of a coverage
set Π̂ is computed such that, for every 𝑉 𝜋 of the Pareto front, there exist a 𝑉 -value in the
coverage set that is at most 𝜖 smaller than 𝑉 𝜋 :

𝐼𝜀 = inf
𝜀∈R
{∀𝑉 𝜋∈ 𝑃, ∃𝑉 𝜋′∈ Π̂ : ||𝑉 𝜋 − 𝑉 𝜋′

𝑜 ||∞ ≤ 𝜀}. (2.22)

From a user’s perspective, 𝐼𝜀 has the intuitive meaning of showing that the proposed cov-
erage set is at most 𝜀worse than any𝑉 -value of the Pareto front. Thus, just as forMUL, this
is a worst-case performance metric. Also, like MUL, the main disadvantage of this metric
is that to compute it we need the true Pareto front. Again, in practice we can approximate
the Pareto front using the non-dominated policies across all our experiments.

2.8.6 The 𝜀−𝑚𝑒𝑎𝑛-indicator
While the 𝜀-indicator has nice theoretical properties guaranteeing performance in the
worst case (Zintgraf et al., 2015) — i.e., the MUL with respect to any possible utility func-
tion — it does not give any information about the EUL. This makes it a highly pessimistic
metric; the 𝜀-indicator will still report bad performance even if nearly the whole Pareto
front is learned exactly, as long as a single point is not correctly modeled.

While measuring the EUL precisely requires knowing in advance the distribution of pos-
sible utility functions, we propose a variation on the 𝐼𝜀 metric that aims to approximate
an upper bound to this value, by making an additional assumption (Reymond, Eugenio, &
Nowè, 2022). In particular, we propose computing 𝐼𝜀−𝑚𝑒𝑎𝑛, that assumes that each point
in the Pareto front is equally likely to be selected as the best choice by a randomly sam-
pled utility function. We compute 𝐼𝜀−𝑚𝑒𝑎𝑛 by taking the mean of the computed 𝜀 values,
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Figure 2.3: Pareto front and coverage set in 2-objective environment. The Pareto front is
the set containing the best compromises that can be achieved (black dots). We want to
learn a coverage set that is as close as possible to the true Pareto front (white dots). The
hypervolume metric, in light blue, measures the volume of all dominated solutions w.r.t.
some reference point (cross). The 𝜀 metrics first compute the maximum distance between
each point in the Pareto front and its closest point in the coverage set (𝜀𝑖). We can then
take their maximum value to compute the 𝐼𝜀 metric, or their mean value to obtain the
𝐼𝜀−𝑚𝑒𝑎𝑛 metric of the coverage set.

which are computed in the same way as the original 𝐼𝜀 metric. Because the MUL of incor-
rectly preferring another vector in the coverage set over a given vector in the Pareto front
is 𝜀
√
𝑛𝐿 (Zintgraf et al., 2015), where 𝐿 is the Lipschitz constant that described the level

of continuity of the utility function, the 𝐼𝜀−𝑚𝑒𝑎𝑛 metric describes an upper bound on the
EUL, given that each vector in the Pareto set is (approximately) equally likely to be the
vector that maximizes the user’s utility. The hypervolume and 𝜀-indicator are depicted in
Figure 2.3.
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3.1 The challenge of the ESR optimization criterion

In Section 1.2 we motivate how we can classify Multi-objective reinforcement learning
(MORL) algorithms in 3 main categories, depending on the knowledge we have over the
utility function 𝑢. In this chapter, we assume we are able to extract this utility function
before running the learning algorithm, e.g., by using preference elicitation methods (Zint-
graf et al., 2018). The utility function can thus be used to find the policy that leads to the
preferred outcome.

However, when user preferences are non-linear – as human preferences often are – the
utility function cannot be used to straightforwardly reduce a multi-objective problem to a
single-objective one. Dedicated multi-objective models and methods are required, even if
the utility function is known a priori (Roijers et al., 2013). After all, reinforcement learning
(RL) relies heavily on the assumption that optimizing the (discounted) sum of individual
rewards will also optimize the overall problem. But with non-linear utility functions, the
sum of the utility function applied to the individual rewards is not equal to the utility over
the return:

𝑢

(︃
ℎ∑︁
𝑡=0

𝛾𝑡𝑟𝑡

)︃
̸=

ℎ∑︁
𝑡=0

𝛾𝑡𝑢 (𝑟𝑡) . (3.1)

This makes our setting a hard-to-solve problem, as the vast majority of RL algorithms can-
not be straightforwardly applied: they use the Bellman equation, which takes advantage of
this sum-of-rewards assumption. Moreover, most work on MORL applies the utility func-
tion on the expected returns (the Value 𝑉 ), not directly on the discounted sum of rewards
(the return 𝑅). That is to say, the vast majority of MORL algorithms optimize using the
SER criterion, not the ESR optimization criterion.

We focus on the latter, which implies that each policy evaluation is relevant to the user in
terms of utility. This also means that the utility function cannot be applied on the Values,
as they estimate expected returns. Perhaps this is why, even though identified as an open
challenge in the seminal survey on MORL (Roijers et al., 2013), this setting is still severely
understudied in the MORL literature, most bodies of work instead bypassing this issue by
assuming that the utility function is a weighted sum over the objectives.

In this chapter, we overcome this challenge by proposing a novel algorithm that explicitly
keeps track of the different objectives and correctly applies the non-linear utility function
on estimates of the overall multi-objective return. Our key insight is that, if the agent
learns a multi-variate distribution over the future returns, we can use this distribution to
bootstrap, enabling us to exploit the Bellman equation inMORL. Using this insight, we pro-
pose an actor-criticmethodwe callMulti-Objective Categorical Actor-Critic (MOCAC) (Rey-
mond, Hayes, et al., 2023), that uses such bootstrapping in its critic. We implement and
demonstrate our methods on multiple multi-objective benchmarks, and show that they
learn effectively where single-objective baselines fail. To the best of our knowledge, this
is the first MORL algorithm that exploits a priori known non-linear utility functions to
optimize the expected utility.
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3.2 Using accrued rewards to compute the utility
In reinforcement learning, the optimal policy is the one that maximizes the expected re-
turn. For MORL, the maximization is done with respect to the utility on the return. This
means the utility function can only be applied on whole episodic returns. Thus, at any
timestep 𝑡, it is essential to not only estimate the future rewards, but also take into ac-
count the accrued rewards: the rewards accumulated from timestep 0 until timestep 𝑡.

Consider a 2-objective MOMDP where, at timestep 𝑡 = 𝑇 − 1, the agent has already accu-
mulated a total reward𝑅−

𝑡 = (5, 0). The preferences of the decision maker are formalized
as the non-linear utility function 𝑢 = min(𝑟0, 𝑟1) (i.e., the objectives are perfect comple-
ments). Let us say the agent has two possible actions, each leading it to a final state, thus
ending the episode. The first action 𝑎0 results in reward 𝑟𝑡 = (2, 2), while the second
action 𝑎1 results in reward 𝑟𝑡 = (0, 5). If only future rewards are considered, executing
𝑎0 will result in 𝑢 = 2, while 𝑎1 will result in 𝑢 = 0 (𝑎0 is optimal). However, if we take
into account the accrued rewards, 𝑎0 will result in a total episodic return of (7, 2) (𝑢 = 2),
while 𝑎1 will result in (5, 5) (𝑢 = 5). In this case, the action leading to the highest user
utility is 𝑎1. We thus propose to incorporate the accrued reward in order to make correct
use of 𝑢. Given, at timestep 𝑡, the future discounted return𝑅𝑡 =

∑︀𝐻
𝑘=𝑡 𝛾

𝑘−𝑡𝑟𝑘 , we define
the accrued reward as:

𝑅−
𝑡 =

𝑡−1∑︁
𝑘=0

𝛾𝑘𝑟𝑘. (3.2)

The episodic return is then simply the sum of the accrued rewards and𝑅𝑡:

𝑅 = 𝑅−
𝑡 + 𝛾𝑡𝑅𝑡. (3.3)

3.2.1 Markov property for MOMDPs with accrued rewards
By incorporating the accrued reward into the utility function, we can directly optimize the
policy on the user utility. Note that by using a history of past rewards to update a policy
conditioned on state 𝑠𝑡 we break the Markov property. This, however, can be prevented
by conditioning the state on the accrued rewards. Thus, we can transform any MOMDP
M1 = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩ to another MOMDP M2 = ⟨𝒮 × R𝑛,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩ such that,
at any timestep 𝑡, we can keep track of the reward that has been accumulated since the
start-state 𝑠0.

3.3 Optimizing the utility using single-objective meth-
ods

Although single-objective methods are not applicable to MOMDPs, since we assume the
utility function is known we can optimize on the scalar utility using accrued rewards. We
propose a mapping function that, given a MOMDP and a utility function, returns a MDP
for which the optimal policy is the same, i.e., fend : M× 𝑢→M.
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Formally, given M = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩, we define M = ⟨𝒮 × R𝑛,𝒜, 𝒯 , 𝛾,ℛ⟩ as the
single-objective MDP with the same optimal policy, where M’s state-space is augmented
following Section 3.2.1 to guarantee the Markov property, the action-space𝒜 and discount
factor 𝛾 are the same as for M, and the reward function returns a zero-reward in every
state, except when the agent reaches a terminal state, in which case the reward function
returns the utility of the accrued rewards, i.e., the utility of the episodic return:

ℛ(𝑠, 𝑎, 𝑠′) =
{︃
𝑢(𝑅−

𝑇 + 𝛾𝑇ℛ(𝑠, 𝑎, 𝑠′)) if 𝑠′ ∈ 𝒮𝑓
0 otherwise,

(3.4)

where 𝒮𝑓 ⊆ 𝒮 is the set of final states. We call this mapping the terminal mapping.

Two issues arise with this transform. Firstly, it reduces the problem to a single-objective
MDP with a highly sparse reward function. Such sparse problems are notoriously hard
to learn, especially for long episodes (a well-known example is the Atari 2600 game Mon-
tezuma’s Revenge (Burda et al., 2019)).

Secondly, as with accrued rewards, this transform breaks the Markov property. To cope
with this issue, we can augment the state-space with the accrued rewards, resulting in
a state-space of size 𝒮 × R𝑛. Since the state-space is increased compared to the original
MOMDP, we expect that RL algorithms will need an increased number of interactions with
the environment, as more exploration is required to find the optimal policy.

This increased exploration problem is applicable for any MOMDPs with non-linear util-
ity functions, since it is then mandatory to keep track of the accrued rewards to retain
the Markov property. However, it is exacerbated for the terminal scalarization due to the
sparsity of rewards. Learning the optimal policy for MDPs with sparse rewards is hard, as
we typically need to explore a large part of the state-space before reaching higher returns.
Since the state-space itself is augmented, even more exploration is required. We show in
Section 3.9 that, while it is possible to use single-objective algorithms with this transform,
it is inefficient to do so, as many interactions with the environments are required. Dedi-
cated multi-objective approaches take advantage of the multiple reward signals, removing
the sparse reward problem and thus alleviating the exploration issue.

As a final caveat, we note that, for infinite time-horizons with no terminal states, the re-
ward is multi-objective reward is accumulated indefinitely and the single-objective reward
perceived by the agent is always zero. Thus, this transform assumes a finite time-horizon
setting.

3.3.1 Mapping function for linear scalarization functions

The terminal mapping results in a sparse reward function. Assuming we know the utility
function is a linear scalarization, we can take advantage of its additivity property (Equa-
tion 2.7) to alleviate this issue. Since, in this case, the sum of the utilities of individual re-
wards is equal to the utility of the episodic return, we propose a mapping fstep : M× 𝑢→
M, in which M’s reward function returns, at every timestep, the utility of the vectorial
reward returned byM’s reward function. Thus, givenM = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩, the map-
ping function fstep results in M = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ⟩, with:
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ℛ(𝑠, 𝑎, 𝑠′) = 𝑢(ℛ(𝑠, 𝑎, 𝑠′)). (3.5)

We call this mapping the timestep mapping. We use it as a baseline in our experimental
section to show that, when the utility function is non-linear, the optimal policy resulting
from applying 𝑢 at every timestep does not maximize the decision maker’s utility.

3.4 Policy gradient formulti-objective reward functions

As mentioned above, no existing MORL algorithm can cope with our setting. There-
fore, we develop a novel algorithm based on the classic policy gradient algorithm, Re-
inforce (Williams, 1992), to multi-objective optimization. Reinforce makes use of the Pol-
icy Gradient theorem to provide convergence guarantees of the policy towards a local
optimum via gradient ascent. We aim to provide the same convergence guarantees for
MOMDPs.

Given a performance measure 𝐽(𝜋𝜃), with 𝜃 the parameters of the policy 𝜋, we would like
to use its gradient ∇𝜃𝐽(𝜋𝜃) to update the policy using gradient ascent:

𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃𝐽(𝜋𝜃𝑘)

where 𝛼 is the learning rate. For single-objective RL, the performance measure is the
expected return:

𝐽(𝜋𝜃)
.
= E
𝜏∼𝜋𝜃

[𝑅(𝜏)] . (3.6)

To derive its gradient, we use the log-derivative trick:

d

d𝑥
log 𝑓(𝑥) =

1

𝑓(𝑥)

d

d𝑥
𝑓(𝑥)

d

d𝑥
𝑓(𝑥) = 𝑓(𝑥)

d

d𝑥
log 𝑓(𝑥) (3.7)

The gradient ∇𝜃𝐽(𝜋𝜃) of 𝐽(𝜋𝜃) is derived as follows:
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∇𝜃𝐽(𝜋𝜃) = ∇𝜃 E
𝜏∼𝜋𝜃

[𝑅(𝜏)]

= ∇𝜃
∫︁
𝜏

𝒫(𝜏 | 𝜋𝜃)𝑅(𝜏)

=

∫︁
𝜏

∇𝜃𝒫(𝜏 | 𝜋𝜃)𝑅(𝜏)

3.7
=

∫︁
𝜏

𝒫(𝜏 | 𝜋𝜃)∇𝜃 log𝒫(𝜏 | 𝜋𝜃)𝑅(𝜏)

= E
𝜏∼𝜋𝜃

[∇𝜃 log𝒫(𝜏 | 𝜋𝜃)𝑅(𝜏)]

= E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑅(𝜏)
]︃
. (3.8)

This expectation can be estimated using a sample mean, after having collected a set of
trajectories using 𝜋𝜃 , resulting in the Reinforce algorithm:

Algorithm 1 Reinforce (Williams, 1992)
Require: Parametric policy 𝜋𝜃 , learning rate 𝛼
1: while 1 do
2: Collect set of trajectories {𝜏𝑖}𝑁𝑖=1 using 𝜋𝜏
3: Estimate ∇𝜃𝐽(𝜋𝜃) with

∑︀𝑁
𝑖=1

∑︀𝑇
𝑡=0∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑅(𝜏𝑖)

4: 𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜋𝜃)
5: end while

Reinforce is an actor-only method, as it directly optimizes the policy, and does not esti-
mate the policy’s Value. Since it collects a set of trajectories at each iteration, the policy is
updated at most once per episode (when the size of the set is one). This makes it a quite
sample-inefficient algorithm. However, this has the advantage of being able to compute
the full discounted return which, for ESR optimization, is necessary to compute the utility.
Thus, we propose a multi-objective variant of Reinforce called MO Reinforce1, that opti-
mizes the user utility under ESR, by adapting Equation 3.8 to vectorial rewards, using the
ESR optimization criterion as performance measure:

𝐽(𝜋𝜃)
.
= E
𝜏∼𝜋𝜃

[𝑢(𝑅(𝜏))] . (3.9)

1We note that our preliminary workshop paper (Roijers et al., 2018) we referred to this algorithm as expected
utility policy gradient (EUPG).
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This results in:

∇𝜃𝐽(𝜋𝜃) = ∇𝜃 E
𝜏∼𝜋𝜃

[𝑢(𝑅(𝜏))]

= E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅(𝜏))

]︃

= E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅−
𝑡 +𝑅𝑡)

]︃
. (3.10)

In the last step of Equation 3.10, we explicitly show the use of accrued rewards, as a re-
minder that augmenting the state-space with the accrued rewards (as explained in Sec-
tion 3.2) is necessary to keep the Markov property.

Using our proposed MO Reinforce, we can directly optimize the policy for ESR, even when
the utility function is non-linear. However, as for the original Reinforce algorithm, MO Re-
inforce updates its policy once after each episode, resulting in a sample-inefficient algo-
rithm.

3.5 Using a distributional critic to estimate the future
returns

By using the Policy Gradient theorem, we can directly optimize the policy on the episodic
return. However, many interactions with the environment are required before being able
to update the policy, as we have to execute the policy until the end of the episode to com-
pute the return. If, instead, at each timestep 𝑡, we could estimate the future return 𝑅𝑡,
we would not have to wait until the whole episode is played out before updating the pol-
icy, as we could then replace the return in Equation 3.8 with our estimate, and update
the policy at the current timestep based on this estimate. This is the core idea behind the
actor-critic framework, which has been used to produce many state-of-the-art deep rein-
forcement learning algorithms (Abdolmaleki et al., 2018; Fujimoto et al., 2018; Haarnoja
et al., 2018; Mnih et al., 2016; Schulman et al., 2017). At its essence, the actor-critic frame-
work leverages two components. On the one hand, the actor learns the policy, a probability
distribution over the actions in𝒜, conditioned on a given state. These probabilities are up-
dated regularly, increasing the probabilities of actions that lead to high returns by using
the negative log-likelihood loss. On the other hand, the critic learns to estimate the future
expected returns for a given state-action pair. This estimate is commonly known as the
𝑄-value:

𝑄(𝑠, 𝑎) = E

[︃
ℎ∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 | 𝜋, 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]︃
. (3.11)

Note that the 𝑄-value is similar to the Value, the difference being that the 𝑄-value is
conditioned on both the state and the action, while the Value is conditioned on the state
only.



36 CHAPTER 3. KNOWN NON-LINEAR UTILITY FUNCTIONS UNDER ESR

Using a critic allows the actor to be updated at every timestep, by estimating the future
expected returns using the critic instead of waiting for them to be played out. However,
the goal of our multi-objective setting is to learn a policy that leads to the highest user
utility for every single evaluation. Thus, 𝑢 needs to be applied on the episodic return,
not on the expected return. In light of this, we incorporate distributional reinforcement
learning into our algorithm, by creating a critic that estimates a multi-variate distribution
𝒵𝜋 over return values, inspired by the work of Bellemare et al. (2017).

In single-objective RL, the expected return from a state 𝑠𝑡, 𝑉 𝜋(𝑠𝑡), can be decomposed
into a distribution 𝒵𝜋 over future returns:

𝑉 𝜋(𝑠𝑡) =

∫︁
𝑅

𝑅𝒵𝜋(𝑅 | 𝑠𝑡), (3.12)

where 𝒵(𝑅 | 𝑠𝑡) represents the probability of having a return 𝑅 from state 𝑠𝑡. Learning
the whole distribution instead of just the expected return leads to more stable learning. To
solve our multi-criteria setting, we build upon this idea, and extend it to the multivariate
case, allowing us to learn the distribution over 𝑛-dimensional future returns. In contrast
to single-objective learning, this is actually essential for MORL under ESR as we need to
sum the accrued return with future returns before applying the utility function and taking
the expectation. Without employing a distributional critic, we would not be able to do so.
Indeed, under the ESR optimization criterion, we can use a multivariate 𝒵 to express the
optimal policy as follows:

𝜋* = argmax
𝜋

∫︁
𝑅

𝑢(𝑅)𝒵𝜋(𝑅 | 𝑠0). (3.13)

Moreover, we can estimate the utility for a state 𝑠𝑡 by incorporating the accrued returns:

𝑉 𝜋𝑢,ESR(𝑠𝑡) =

∫︁
𝑅

𝑢(𝑅−
𝑡 +𝑅)𝒵𝜋(𝑅 | 𝑠𝑡,𝑅−

𝑡 ). (3.14)

Using this insight, we propose a novel multi-objective algorithm that incorporates this
multivariate distributional critic to optimize the policy under the ESR criterion.

3.6 Multi-Objective Categorical Actor-Critic

We introduce Multi-Objective Categorical Actor-Critic (MOCAC), our proposed algorithm
for ESR under known non-linear utility functions. MOCAC is based on the actor-critic
framework. First, we demonstrate how the actor optimizes the decision maker’s utility
using a multivariate 𝒵 to estimate the future returns. Then, we explain how the critic is
used to learn 𝒵 .
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3.6.1 Multi-objective policy gradient with future return estimates
Equation 3.10 shows that we can optimize the policy (or actor) based on the multi-objective
returns. We now show that we can replace this return by an estimate, and still optimize
the policy with respect to the same performance indicator, i.e., the ESR criterion.

Starting from:

∇𝜃𝐽(𝜋𝜃) = E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅(𝜏))

]︃
,

using the law of iterated expectations, we split the trajectory 𝜏 into two parts: 𝜏:𝑡, 𝜏𝑡: the
parts of the trajectories before timestep 𝑡 and from 𝑡 onwards, respectively. We also use
our definition of accrued rewards (Section 3.2) to split the episodic return 𝑅(𝜏) into the
accrued return𝑅−

𝑡 and future return𝑅𝑡.

∇𝜃𝐽(𝜋𝜃) = E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅(𝜏))

]︃

=

𝑇∑︁
𝑡=0

E
𝜏∼𝜋𝜃

[∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅(𝜏))]

=

𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
E

𝜏𝑡:∼𝜋𝜃

[∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅(𝜏)) | 𝜏:𝑡]
]︂

=

𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
E

𝜏𝑡:∼𝜋𝜃

[︀
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝜏:𝑡
]︀]︂

(3.15)

Since ∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) is constant with respect to the inner expectation, we can take it
out:

∇𝜃𝐽(𝜋𝜃) =
𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) E

𝜏𝑡:∼𝜋𝜃

[︀
𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝜏:𝑡
]︀]︂
. (3.16)

Because we augment the state-space with the accrued reward, 𝑅−
𝑡 depends only on 𝑠𝑡.

Moreover, due to theMarkovian property of (MO)MDPs, the future return𝑅𝑡 only depends
on 𝑠𝑡, 𝑎𝑡. Given that𝑅−

𝑡 depends only on 𝑠𝑡 and𝑅𝑡 only on 𝑠𝑡, 𝑎𝑡, 𝑢(𝑅−
𝑡 +𝑅𝑡) does not

depend on the past:

E
𝜏𝑡:∼𝜋𝜃

[︀
𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝜏:𝑡
]︀
= E
𝜏𝑡:∼𝜋𝜃

[︀
𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝑠𝑡, 𝑎𝑡
]︀
. (3.17)

Since a MOMDP is composed of a discrete number of states and actions, there are a finite
number of possible returns 𝑅. Thus, expanding the expectation of the previous equation
results in:

E
𝜏𝑡:∼𝜋𝜃

[︀
𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝑠𝑡, 𝑎𝑡
]︀
=
∑︁
𝑅

𝑢(𝑅−
𝑡 +𝑅)𝒵(𝑅 | 𝑠𝑡, 𝑎𝑡), (3.18)
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where𝒵(𝑅 | 𝑠𝑡, 𝑎𝑡) is the probability of obtaining future return𝑅 from 𝑠𝑡, 𝑎𝑡. The policy
gradient is thus:

∇𝜃𝐽(𝜋𝜃) =
𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︃
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)

∑︁
𝑅

𝑢(𝑅−
𝑡 +𝑅)𝒵(𝑅 | 𝑠𝑡, 𝑎𝑡)

]︃
. (3.19)

Improving learning stability using a baseline

At timestep 𝑡, we thus use 𝒵 to estimate the utility of the episode, and update the pol-
icy accordingly. The policy is therefore potentially updated at each timestep, making it
sample-efficient compared to MO Reinforce.

In practice, the expectation of Equation 3.19 is estimated using a sample mean, after having
collected a set of trajectories {𝜏𝑖}𝑁𝑖=1 using 𝜋𝜃 . However, depending on the reward func-
tion, the return can greatly vary between episodes, potentially resulting in a high variance
estimate. We now aim to reduce this variance to improve the stability of the learning
process.

For any function 𝑏(𝑠𝑡) that only depends on the state 𝑠𝑡 (and not on the action 𝑎𝑡), we have
the property that:

E
𝑎𝑡∼𝜋𝜃

[∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑏(𝑠𝑡)] = E
𝑎𝑡∼𝜋𝜃

[∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)] 𝑏(𝑠𝑡)

=
∑︁
𝑎∈𝒜

𝜋𝜃(𝑎𝑡 | 𝑠𝑡)∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑏(𝑠𝑡)

3.7
=
∑︁
𝑎∈𝒜
∇𝜃𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑏(𝑠𝑡)

= ∇𝜃
∑︁
𝑎∈𝒜

𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝑏(𝑠𝑡) = ∇𝜃1𝑏(𝑠𝑡) = 0. (3.20)

We call 𝑏(𝑠𝑡) a baseline (Mnih et al., 2016). Interestingly, this equation shows that the
baseline has the property of not affecting the expectation, if added in the policy gradient.
We can use the exact same proof as for the original policy gradient with baseline theorem
to modify Equation 3.19:

∇𝜃𝐽(𝜋𝜃) =
𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) E

𝜏𝑡:∼𝜋𝜃

[︀
(𝑢(𝑅−

𝑡 +𝑅𝑡)− 𝑏(𝑠𝑡)) | 𝑠𝑡, 𝑎𝑡
]︀]︂

=

𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) E

𝜏𝑡:∼𝜋𝜃

[︀
𝑢(𝑅−

𝑡 +𝑅𝑡) | 𝑠𝑡, 𝑎𝑡
]︀
−

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) E
𝜏𝑡:∼𝜋𝜃

[𝑏(𝑠𝑡) | 𝑠𝑡, 𝑎𝑡]
]︂

=

𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[︂
∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡) E

𝜏𝑡:∼𝜋𝜃

[︀
(𝑢(𝑅−

𝑡 +𝑅𝑡)) | 𝑠𝑡, 𝑎𝑡
]︀
− 0

]︂
.

(3.21)
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Instead of using the return, which greatly affects the variance of the sample mean estimate
of E𝜏𝑡:∼𝜋𝜃

, we can thus use the difference between the return and a baseline function. This
is called the Advantage (Mnih et al., 2016). In the case of MOCAC, we use the expected
utility for state 𝑠𝑡 as baseline, i.e. 𝑏(𝑠𝑡) =

∑︀
𝑅 𝑢(𝑅

−
𝑡 + 𝑅)𝒫(𝑅 | 𝑠𝑡). Plugging this in

Equation 3.19 results in:

∇𝜃𝐽(𝜋𝜃) =
𝑇∑︁
𝑡=0

E
𝜏:𝑡∼𝜋𝜃

[∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)𝐴(𝑠𝑡, 𝑎𝑡)] , (3.22)

with

𝐴(𝑠𝑡, 𝑎𝑡) =
∑︁
𝑅

𝑢(𝑅−
𝑡 +𝑅)𝒫(𝑅 | 𝑠𝑡, 𝑎𝑡)−

∑︁
𝑅

𝑢(𝑅−
𝑡 +𝑅)𝒫(𝑅 | 𝑠𝑡). (3.23)

We use this gradient to update the policy of MOCAC with gradient ascent.

3.6.2 Incorporating a distributional critic
Next to the actor, the second component of MOCAC is the critic. We have explained in
Section 3.6.2 that we can use a distributional critic to optimize under the ESR criterion. We
take inspiration from Bellemare et al. (2017), who propose a distributional variant of Deep
Q-Networks (DQN) (Mnih et al., 2015).

Bellemare et al. (2017) use a parametric discrete distribution 𝒵𝜓 to approximate 𝒵𝜋 as it is
computationally friendly and highly representative. We arbitrarily choose the number of
categories 𝐶 of 𝒵𝜓 . Each category 𝑖 ∈ [𝐶] of 𝒵𝜓 is defined as a support atom 𝑧𝑖 = 𝑉MIN+
𝑖∆𝑧, with ∆𝑧 := 𝑉MAX−𝑉MIN

𝐶−1 , where 𝑉MIN, 𝑉MAX ∈ R represent the smallest and largest
return values of the distribution, respectively. Note that 𝑉MIN and 𝑉MAX are bounds on the
returns, not on the value, but we use the 𝑉 -notation to remain consistent with Bellemare
et al. (2017). Thus, 𝑍𝜓 : 𝒮 × 𝑁 → [0, 1] is a probabilistic function which represents the
probability of ending with a return 𝑅𝑡 ∈ [𝑧𝑖, 𝑧𝑖+1), given a state 𝑠𝑡 and a category 𝑖.

For our algorithm, we require a multivariate distribution where 𝑧𝑖 is a support atom for
vectorial returns. We provide a separate 𝑉MIN, 𝑉MAX for each objective. Moreover, we as-
sume the same number of categories𝐶 for each objective-dimension, resulting in a discrete
distribution with 𝐶𝑛 categories. Each atom 𝑧𝑖 ∀𝑖 ∈ [𝐶]𝑛 then becomes:

𝑧𝑖 = 𝑉MIN + 𝑖∆𝑧,

with∆𝑧 :=
𝑉MAX − 𝑉MIN

𝐶 − 1
.

(3.24)

𝑉 (𝑠𝑡) is computed in a similar manner as the single-objective case (Equation 3.12):

𝑉 (𝑠𝑡) =
∑︁
𝑖∈[𝐶]𝑛

𝑧𝑖𝒵𝜓(𝑧𝑖 | 𝑠𝑡).
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Because the critic now represents a full distribution instead of an expected value, we over-
come the second challenge of our setting: since 𝑧𝑖 is defined as a return with its associated
probability 𝒵𝜓(𝑧𝑖), it can be converted into a preference score using 𝑢 under the ESR
criterion. This results in the following equation:

𝑢𝑡 =
∑︁
𝑖∈[𝐶]𝑛

𝑢(𝑅−
𝑡 + 𝛾𝑡𝑧𝑖)𝒵𝜓(𝑧𝑖 | 𝑠𝑡). (3.25)

Note that we include the accrued reward as defined in Section 3.2 to correctly compute the
utility.

Updating the critic

To update the critic, we compute the distributional Bellman update 𝒯 𝑧𝑗 := 𝑟𝑡 + 𝛾𝑧𝑗
for each atom 𝑧𝑗 , for a given sample transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). We then distribute its
probability 𝒵𝜓(𝑧𝑗 | 𝑠𝑡) to the immediate neighbors of 𝒯 𝑧𝑗 . Each of the components of
the projected update is:

(Φ𝒯 𝒵𝜓(𝑠𝑡))𝑖 =
∑︁
𝑗

[︃
1−
|[𝒯 𝑧𝑗 ]𝑉MAX

𝑉MIN
− 𝑧𝑖|

∆𝑧

]︃1
0

𝒵𝜓(𝑧𝑖 | 𝑠𝑡+1), (3.26)

with [.]𝑎𝑏 bounding the argument between [𝑎, 𝑏].

We use the cross-entropy term of the KL-divergence as the loss function for the critic:

𝐷𝐾𝐿(Φ𝒯 𝒵(𝑠)||𝒵(𝑠)). (3.27)

Thus, we propose Multi-Objective Categorical Actor-Critic (MOCAC), an algorithm that
optimizes the utility under the ESR criterion and is able to take advantage of any kind of
monotonically increasing utility function. The algorithm is summarized in Algorithm 2. To
the best of our knowledge, it is the first reinforcement learning algorithm to cope with this
setting. Moreover, we show in the experimental section that it is also stable and sample-
efficient.
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Algorithm 2 Multi-Objective Categorical Actor-Critic
Require: Policy, critic parameters 𝜃.𝜓, number of categories 𝐶 , maximal and minimal

possible return 𝑉MAX,𝑉MIN, actor, critic learning rates 𝛼1, 𝛼2

1: 𝑡← 0 ◁ Start new episode
2: while 1 do
3: Take action 𝑎𝑡 ∼ 𝜋𝜃(𝑠𝑡), get 𝑠𝑡+1, 𝑟𝑡
4: 𝑢𝑡 =

∑︀
𝑖∈[𝐶]𝑛 𝑢(𝑅

−
𝑡 + 𝛾𝑡𝑟𝑡 + 𝛾𝑡+1𝑧𝑖)𝒵𝜓(𝑧𝑖 | 𝑠𝑡+1) ◁ Expected utility based on

next-state estimate
5: 𝑏𝑡 =

∑︀
𝑖∈[𝐶]𝑛 𝑢(𝑅

−
𝑡 + 𝛾𝑡𝑧𝑖)𝒵𝜓(𝑧𝑖 | 𝑠𝑡) ◁ Baseline based on current-state

estimate
6: 𝑑𝜃 ← ∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)(𝑢𝑡 − 𝑏𝑡) ◁ Eq. 3.22
7: 𝑚𝑐 = 0, 𝑐 ∈ [𝐶]𝑛

8: for 𝑐 ∈ [𝐶]𝑛 do
9: 𝒯 𝑧𝑐 ← 𝑟𝑡 + 𝛾𝑧𝑐 ◁ Compute projection onto support atom
10: 𝑏𝑐 ← (𝒯 𝑧𝑐 − 𝑉MIN)/∆𝑧 ◁ 𝑏𝑐 ∈ [𝐶]𝑛

11: for each neighbor 𝑗 of 𝑏𝑐 do ◁ Considering upper, lower results in 2𝑛

neighbors
12: 𝑚𝑗 ← 𝑚𝑗 +𝒵𝜓(𝑠𝑡+1)|𝑏𝑐 − 𝑗|
13: end for
14: end for
15: 𝑑𝜓 ← ∇𝜓

∑︀
𝑐∈[𝐶]𝑛 𝑚𝑐𝒵𝜓(𝑠𝑡)

16: 𝜃 ← 𝜃 + 𝛼1𝑑𝜃 ◁ Gradient ascent to maximize 𝐽(𝜋𝜃)
17: 𝜓 ← 𝜓 − 𝛼2𝑑𝜓 ◁ Gradient descent to minimize cross-entropy
18: 𝑡← 𝑡+ 1
19: end while

3.6.3 Corollary: A multi-objective actor for SER

Accrued rewards are necessary for non-linear utility functions, regardless of the optimiza-
tion criterion (SER or ESR).We argue that the distributional critic is required for optimizing
under ESR. As such, as a corollary, we propose a modified version of MOCAC for optimiz-
ing under SER. In this version, the utility is applied on the estimated Value to cope with
the different optimization criterion. This results in two consequences. First, we change
the actor loss accordingly. Second, since we do not require to know the distribution over
returns𝒵 , the distributional critic is replaced by the more traditional critic, that learns to
estimate 𝑉 . We call this algorithm Multi-Objective Actor-Critic (MOAC), since it does not
use the distribution 𝒵 .

For the actor, we derive a multi-objective variant of the policy gradient theorem, which
modifies the actor-update equation. Intuitively, this loss computes the policy gradient for
each objective separately andweights the gradient according to the objective’s importance.
The importance of each objective depends on the utility function. These weighted gradi-
ents are then summed together. More formally, for the SER optimization criterion, the
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performance measure we aim to maximize is defined as follows:

𝐽(𝜋𝜃)
.
= 𝑢( E

𝜏∼𝜋𝜃

[𝑅(𝜏)])

= 𝑢(𝑉 𝜋𝜃 (𝑠0)). (3.28)

The gradient of the policy performance, i.e. the policy gradient, is:

∇𝜃𝐽(𝜋𝜃) = ∇𝜃𝑢(𝑉 𝜋𝜃 (𝑠0))

=

𝑛∑︁
𝑖=0

𝜕𝑢

𝜕𝑉 𝜋𝜃
𝑖

𝜕𝑉 𝜋𝜃
𝑖

𝜕𝜃

=

𝑛∑︁
𝑖=0

𝜕𝑢

𝜕𝑉 𝜋𝜃
𝑖

∇𝜃𝑉 𝜋𝜃
𝑖 (𝑠0), (3.29)

with 𝑉 𝜋𝜃
𝑖 the Value for the 𝑖-th objective. Since this is a scalar, ∇𝜃𝑉 𝜋𝜃

𝑖 (𝑠0) follows the
original Policy Gradient proof (in our case with baseline):

∇𝜃𝑉 𝜋𝜃
𝑖 (𝑠0) = E

𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)(𝑄𝜋𝜃
𝑖 (𝑠𝑡, 𝑎𝑡)− 𝑉 𝜋𝜃

𝑖 (𝑠𝑡))

]︃
. (3.30)

Intuitively, ourMOACpolicy gradient is aweighted sumover the individual single-objective
policy gradients where each weight defines the importance of its objective, which is mea-
sured using the utility function. Concretely, the MOAC policy gradient equals to the sum
of the single-objective policy gradients multiplied by the gradient of the utility function
when evaluating the utility function for 𝑠0. Since, in the setting of this chapter, 𝑢 is known,
we assume we can compute its derivative:

∇𝜃𝐽(𝜋𝜃) =
𝑛∑︁
𝑖=0

𝜕𝑢

𝜕𝑉 𝜋𝜃
𝑖

E
𝜏∼𝜋𝜃

[︃
𝑇∑︁
𝑡=0

∇𝜃 log 𝜋𝜃(𝑎𝑡 | 𝑠𝑡)(𝑄𝜋𝜃
𝑖 (𝑠𝑡, 𝑎𝑡)− 𝑉 𝜋𝜃

𝑖 (𝑠𝑡))

]︃
(3.31)

We use this gradient to update the policy of MOAC with gradient ascent.

Concerning the critic, we update the estimate of 𝑉 according to a vectorial version of
temporal difference, where each objective is updated independently:

𝑉 (𝑠𝑡)← 𝑉 (𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)) (3.32)

where 𝛼 is the learning rate.
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Figure 3.1: A visual representation of the Split environment. In our experiment, the length
of each hallway is 10. Only zero-rewards are provided, except at the end of the hallway.

3.7 Ablation study
MOCAC uses two different components to optimize under ESR for non-linear utility func-
tions. In this section we perform an ablation study showing that each of the components
is crucial to learn the optimal policy. We first show the effects of omitting the distribu-
tional critic (see Section 3.7.1). Then, we demonstrate the importance of using accrued
rewards (see Section 3.7.2). Finally, we show that MOCAC performs well on a wide range
of different utility functions (see Section 3.7.3).

3.7.1 Using a distributional critic
To demonstrate the need of a distributional critic, we first perform an ablation study on a
(new) simple environmentwe call Split. We compare ourmethodwithMOAC, themodified
version of MOCAC described in Section 3.6.3, which does not use a distributional critic,
but does incorporate the accrued rewards.

The Split environment, depicted in Figure 3.1, is defined as follows: in the start-state, the
agent can choose between two hallways of equal length. The first one leads to a reward
(3, 3), while the second one leads to either a reward (10, 0) or (0, 10). Since Split only
provides a non-zero reward in the terminal states, the future return in any non-terminal
state is equal to the episodic return. Thus, Split avoids the non-stationarity issue that arises
with accrued rewards (see Section 3.2), allowing us to analyze the effect of a distributional
critic in isolation.

We use a synthetic utility function that multiplies both rewards together:

𝑢 = max(0, 𝑟0)max(0, 𝑟1). (3.33)

As such, the utilities for reaching the first and second hallway are 9 and 0, respectively.

Results are shown in Figure 3.2. Both MOCAC and MO Reinforce learn policies that lead
to the optimal utility. MO Reinforce does not use a critic, and applies 𝑢 directly on the
episodic return. We thus expect it to reach optimality, but more slowly than our actor-
critic approach, which can benefit from the learned return distributions of the critic to
improve its learning. MOAC on the other hand, learns to take the wrong hallway leading
to a utility of 0. The reason behind this behavior lies in its critic. It learns the expected
values of each objective rather than a distribution over the returns. These expected values
are (3, 3) and (5, 5) for the first and second hallway, respectively. Applying the utility
on the resulting 𝑉 -values leads to an incorrect estimate of 𝑢 = 25 for the second path,
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Figure 3.2: Results for the Split environment. Using a distribution over returns (MOCAC)
is key for learning optimal policies when using a critic. When this is not the case (MOAC),
the ESR criterion is not met.

which in turn leads to corrupted advantages in for the actor gradient – and thus a poor
performance.

Finally, as we can see in Figure 3.2, even though MOCAC has more parameters to learn
than MO Reinforce, it reaches the optimal utility at an earlier stage, since the actor-critic
algorithm makes an update at every timestep, while the baseline algorithm only updates
its estimators at the end of each episode.

3.7.2 Conditioning on accrued rewards
We show in an ablation study performed on two simple MOMDPs that, depending on the
setting, conditioning the policy on the accrued reward (by augmenting the state-space
with the accrued reward) can be necessary to reach the optimal utility. We note that in
the experiments in Section 3.9, we did not condition on the accrued rewards so far, as this
turned out not to be useful in the environments from the MORL literature that we used.
Nonetheless, we aim to show that conditioning can be important, using simple environ-
ments.

MiniRandom In the first environment, the agent first receives a random reward: either
(0, 5), (5, 0) or (0, 0) regardless of the action chosen, and the environment transitions to
the next state. Subsequently, in this next state, it can choose between actions 𝑎0, 𝑎1 or 𝑎2,
which will deterministically deliver it a (5, 0), (0, 5) or (2, 2) reward, respectively. The
episode then ends. The utility function used is the same as for the Split environment,
namely 𝑢 = 𝑟0𝑟1. The optimal action to take depends on the initial random reward that
the agent received. If the agent initially received (0, 5), the optimal action would be the
one that gives a reward (5, 0), i.e., 𝑎1, as then 𝑢 = 25 (compared to 𝑢 = 0 for 𝑎0, and
𝑢 = 14 for 𝑎2).



3.7. ABLATION STUDY 45

0 0.5 1

·106
1

1.2

1.4

1.6

timesteps

ut
ili
ty

MOCAC (cond) MOCAC (¬cond)
MOReinforce (cond) MOReinforce (¬cond)

(a) Results for Fishwood.

0 1 2

·104

5

10

15

20

timesteps

ut
ili
ty

MOCAC (cond) MOCAC (¬cond)
MOReinforce (cond) MOReinforce (¬cond)

(b) Results for Mini-Random.

Figure 3.3: Comparison of MOCAC and MO Reinforce with and without augmenting the
state-space with accrued reward on two environments, Fishwood and Mini-Random.

We execute both MO Reinforce and MOCAC on this environment, with and without con-
ditioning. The results are averaged over 10 runs and visible in Figure 3.3b.

As we can see, without augmenting the state-space, both algorithms plateau at a utility
slightly above 10. This behavior can be explained as follows: even though the estimators
are updated using the accrued rewards (so that the utility is applied on the episodic return),
the agent has no way of knowing which of the random rewards it will receive at a new
episode. As such, only action 𝑎2 will guarantee a positive utility, regardless of the first
random reward. On any other action, the agent would gamble on the 1/3 probability that
the random reward is optimal. Only choosing 𝑎2 results in an average episodic utility of
10.67, corroborating the non-conditioned plots on Figure 3.3b.

In contrast, the conditioned variants are able to select the optimal action every time, as the
accrued reward is included in the state. This results in a much higher utility.

Finally, we notice that, although the episode lasts only for 2 timesteps, MOCAC reaches
the optimal behavior more quickly than MO Reinforce.

Fishwood In the second environment, a hiker sets up his camp near the river, and needs
to prepare food for the evening. To do so, he needs both fish, which can be found in the
river, as well as wood to make a fire, which can be found in the woods nearby. Two sticks
of wood are needed to grill one fish, so in order to eat, the hiker needs both. This translates
in a utility function:

𝑢 = min

(︂
fish,

⌊︂
wood

2

⌋︂)︂
.
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Concretely, this environment has 2 states, the riverbank and the woods. Both moving out
of, and staying in either state results in a probability of getting either a fish or a wood-stick.
This process is repeated for a number of timesteps, until the episode ends.

We first perform experiments on Fishwood using the following parameters: 𝑝𝑓 = 0.25, 𝑝𝑤 =
0.65, 𝑙 = 13 where 𝑝𝑓 , 𝑝𝑤, 𝑙 are the probabilities of getting fish, wood, and the duration
of an episode, respectively. Results are shown in Figure 3.3a. We observe similar trends
as with the previous experiments: the conditioned policies plateau at a higher utility than
the non-conditioned ones, and MOCAC converges faster than MO Reinforce.

We believe a combination of two factors explain this result. Firstly, the agent is not guaran-
teed to receive either fish or wood, due to the stochasticity of these rewards. So, depending
on the success rate of the executed action, the agent might need to retry it. Secondly, the
episode duration is short, meaning the agent will not have time to compensate for ill-
chosen actions nor bad luck, by a simple randomized process. Knowing what has already
been gathered becomes important in the choice for future actions.

In general, we can conclude that augmenting the state-space with the accrued reward
can be necessary to reach optimal performance. In both experiments this occurred due
to stochasticity of the reward schemes. We therefore conclude that if the reward func-
tion is stochastic, conditioning on the accrued rewards is necessary to guarantee optimal
performance.

Finally, we note that experiments performed on Split, Deep-Sea-Treasure and Minecart all
use deterministic reward functions. In these cases, when we run the experiments with
and without reward conditioning, we did not see any improvement in performance by
conditioning the policies with the accrued reward (it even learns slightly slower since the
state-space is bigger), there is thus no conditioning when these environments are used in
Section 3.9.

3.7.3 Illustration on generalmonotonically increasing utility func-
tions

Finally, we investigate the applicability of MOCAC with respect to different utility func-
tions. Recall that in Equation 3.22 we only assume that the utility function 𝑢 is mono-
tonically increasing. Therefore, we expect MOCAC to also perform well on other utility
functions beside the ones we have been using so far. MOCAC’s critic uses a multivariate
categorical distribution over the returns as an approximation for the true distribution. For
each category, the utility function is applied on its corresponding 𝑧𝑖...𝑘 . This might lead to
inaccuracies as 𝑧𝑖...𝑘 covers a range of return values. Due to the non-linear nature of 𝑢 this
can potentially lead to inaccurate gradient updates for MOCAC’s policy. Note that we can
reduce these inaccuracies by increasing the number of categories 𝐶 , at the expense of ad-
ditional computation. To show the representational power of a categorical critic, we apply
MOCAC with 5 utility functions with different properties on the Fishwood environment.
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The utility functions used are the following:

𝑢1 = 𝑟20 + 𝑟21

𝑢2 = 𝑟20 + 𝑟1

𝑢3 = max(⌊𝑟0⌋, ⌊
𝑟1
2
⌋)

𝑢4 = 𝑟0𝑟1

𝑢5 =

{︃
𝑟0𝑟1 if 𝑟0 > 2

0 if 𝑟0 ≤ 2,

where 𝑟0, 𝑟1 is the return for the first (fish), second (wood) objective respectively. Since
𝑝𝑓 < 𝑝𝑤 , squaring 𝑟0 in 𝑢2 makes it more difficult to ascertain if the agent should focus on
fish or wood. Focusing on fish results in a slightly higher utility as focusing on wood but,
since the reward function is stochastic, the utility after each episode varies, often resulting
in a lower utility compared to focusing on wood. For 𝑢3, we focus on non-polynomial non-
linearities by usingmax and ⌊.⌋ operators. For 𝑢4, both objectives are multiplied with each
other. The non-linearity lies in the combination of both objectives, which contrasts with
𝑢1 and 𝑢2 that applied a non-linearity on each objective separately. Finally, 𝑢5 introduces
a threshold constraint.

We perform 20 runs for every utility function. We augment the state-space with accrued
rewards as we have shown this is necessary to learn the optimal policy on Fishwood.
Results are shown in Figure 3.4 for each utility function separately. The bottom right
plot shows the normalized and aggregated performance across the 5 utility functions. We
compare MOCAC with MO Reinforce. Both algorithms show a high standard deviation.
This is because, due to the stochasticity of the reward function combined with the non-
linearity of each utility function, the utilities received at the end of each episode vary
greatly. Still, MOCAC systematically learns the optimal policy, receiving a normalized
utility of 1 on average at the end of every episode. In contrast, MO Reinforce sometimes
learns suboptimal policies even though it applies policy gradient on the episodic utility.
We believe this occurs because of the high variance in utilities, even for similar action
sequences compared to MOCAC which uses a baseline to reduce variance.

Thus, MOCAC can handle different types of utility functions and the variance introduced
by their non-linearities. MO Reinforce, on the other hand, learns the optimal policy most
of the time but not consistently, as on average it receives a normalized utility of 0.75.
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Figure 3.4: Results for diverse utility functions. The bottom right figure shows the average
normalized performance over the 5 utility functions.

3.8 Benchmark environments
To test the effectiveness and sample-efficiency of MOCAC, we evaluate it on Deep Sea
Treasure (Vamplew et al., 2011) and Minecart (Abels et al., 2019), two different MOMDP
benchmarks from the MORL literature. We start by defining these benchmark environ-
ments.

3.8.1 Deep-Sea-Treasure
Deep-Sea-Treasure (DST) is a classic multi-objective benchmark (Vamplew et al., 2011)
in which the agent controls a submarine in search for treasure. Deeper in the ocean lies
higher-valued treasures, but it will take longer to reach them. Thus, there is a trade-off
between treasure-value and time. We define 𝑟0, 𝑟1 as the rewards received for the treasure
and time objectives, respectively.

DST is a grid-world environment, where the submarine moves on a 11 × 12, resulting in
132 different states. The state number is one-hot encoded, resulting in a 132-sized vector
that is given as input to any of the actor and critic estimators.

We can arbitrarily choose the shape of the Pareto front by modifying the reward values
provided by each treasure or by changing the layout of the ocean floor. For the experiments
involving MOCAC, we have modified the original treasure values in such a way that every
optimal treasure × fuel combination is evenly spread out on the convex coverage
set. Treasure values are displayed on Figure 3.5. In the original environment, the treasures
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Figure 3.5: The Deep Sea Treasure environment with modified treasure compared to the
original environment (Vamplew et al., 2011). Treasure values are made in such a way
that every optimal treasure× fuel combination is evenly spread out on the convex
coverage set. The agent starts in the top-left corner and tries to reach any of the treasures.
Further treasures are worth more.

values at the bottom of the ocean are 1, 2, 3, 5, 8, 16, 24, 50, 74, 124 respectively. Using
11 evenly-spread categories, as is done in our experiments, results in the first 5 treasures
(half of the number of possible treasures) falling in the first category. A straightforward
solution would be to increase the number of categories until all the treasures have their
own category. However, due to the multivariate nature of the distribution, this results
in an exponential increase of categories. Although this allows to accurately compute the
estimated expected utility, it comes at a high computational cost as, at each critic-update,
each category is updated according to all its neighbors. Thus, this results in a considerably
higher wall time per update. Due to time-constraints, we have instead opted for a more
evenly spread-out Pareto front. Another way to mitigate this problem is to use unevenly-
spread categories. However, this assumes we know the spread of solutions of the Pareto
front.

3.8.2 Minecart

Minecart (Abels et al., 2019) is a complex environmentwith a high-dimensional state-space.
Starting at a base station, the agent controls a cart whose goal is to mine diverse ores from
the mines scattered in the environment, and go back to the base to sell the ores. The agent
moves a cart in a continuous 2-dimensional space. Internally, the state is represented by a
6-dimensional continuous vector containing the cart’s velocity, position, angular rotation
and cargo. We can either use this internal state or use the pixel frames of the environment’s
visual representation as observations. For the experiments involving MOCAC, we use the
pixel representation. A frame of the environment can be seen in Figure 3.6.

The agent can execute 6 possible actions: it can accelerate, decelerate and rotate the cart
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Figure 3.6: TheMinecart environment. The base is located in the top-left corner, while the
5 mines are spread around the environment.

to the left or right. It can mine ores, which will only be effective if it is located in a mine.
It can also simply do nothing.

Since each ore type represents a separate objective, we can vary the number of objec-
tives by increasing the types of ores we can mine. Moreover, we can change the shape of
the Pareto front by changing the number of mines present on the map, altering the mine
locations, and changing the types and quantities of ores present in each mine. For the ex-
periments involving MOCAC, there are a total of 2 objectives: the amount of ores mined,
and the fuel consumption.

3.9 Experiments

We now test the effectiveness of MOCAC on both Deep-Sea-Treasure and Minecart. In
all our experiments, we compare MOCAC with our proposed baseline algorithm, MO Re-
inforce, described in Section 3.4. Additionally, by using the MOMDP to MDP mappings
described in Section 3.3, we use single-objective methods as a baseline. For this, we eval-
uate the well-known single-objective Advantage Actor-Critic (A2C) algorithm (Mnih et
al., 2016) on these MDPs, as it is the one closest to our method. We call the baseline that
executes A2C using the timestep, terminal mappingA2C (timestep),A2C (terminal), respec-
tively. All experiments are averaged over 5 runs. The hyperparameters and neural network
architecture used for each experiment are given in in Section A.2 of the Appendix. The
code is publicly available online2.



3.9. EXPERIMENTS 51

0 1 2 3 4 5

·104

−0.5

0

0.5

1

timesteps

ut
ili
ty

MOCAC
MOReinforce
A2C (timestep)
A2C (terminal)

Figure 3.7: Results for Deep-Sea-Treasure, using linear utility with weight 𝑤0 = 0.9. A2C
(timestep) displays a slower convergence speed than MOCAC and A2C (terminal). As for
most weights, is stuck at the first treasure.

3.9.1 Deep-Sea-Treasure

Linear Utility Function We consider two scenarios for this environment. Although
our focus lies in the non-linearity of utility functions, we first show that MOCAC performs
just as well on linear utility functions. In this scenario, we use a linearly weighted sum as
utility function, i.e., 𝑢 = 𝑤0𝑟0 + (1− 𝑤0)𝑟1 and 𝑤0 ∈ 0, 0.1, . . . , 1.

Non-linearUtility Function In a second scenariowe consider a non-linear utility func-
tion since a key contribution of our proposed method is that it can cope with this class of
functions. In this setting, a debt-ridden crew is seeking treasure to pay back their credi-
tors before some deadline. If they are late, they have to pay a late-fee penalty, as well as
interests for every additional timestep. We translate this scenario in the following utility
function:

𝑢 =

{︃
ln(1 + 𝑒(𝑟0−𝑑0)) if 𝑟1 ≤ 𝑑1
ln(1 + 𝑒(𝑟0−𝑑0))− (𝑟1 − 𝑑1)2 − 𝑝 if 𝑟1 > 𝑑1,

(3.34)

where 𝑑0 is the debt, 𝑑1 the deadline, and 𝑝 the penalty. The first term is a softplus func-
tion (Szandała, 2021), meaning that any treasure with a lower value than the debt will yield
a zero reward, but the crew is of course free to keep any additional spoils. The other terms
represent the interests and penalty. In this case, 𝑑0 = 45, 𝑑1 = 10, 𝑝 = 10, resulting in the
sixth treasure being optimal (out of ten).

2https://github.com/mathieu-reymond/mocac

https://github.com/mathieu-reymond/mocac


52 CHAPTER 3. KNOWN NON-LINEAR UTILITY FUNCTIONS UNDER ESR

0 0.5 1 1.5 2 2.5 3

·105

−1 · 103
−1 · 102
−1 · 101

0

1 · 101
1 · 102
1 · 103
1 · 104

timesteps

ut
ili
ty

MOCAC MOReinforce
A2C (terminal) A2C (timestep)

(a) Accrued

0 0.5 1 1.5 2 2.5 3

·105

−1 · 103
−1 · 102
−1 · 101

0

1 · 101
1 · 102
1 · 103
1 · 104

timesteps

ut
ili
ty

MOCAC MOReinforce
A2C (terminal) A2C (timestep)

(b) Not Accrued

Figure 3.8: Results for Deep-Sea-Treasure, using a non-linear utility function. Only the
dedicated multi-objective approaches learn the optimal policy. A2C (terminal) shows un-
stable learning curves and A2C (timestep) fails to learn any decent policy.

Results

We first discuss the linear utility function. The results for 𝑤0 = 0.9 can be seen on Fig-
ure 3.7. Results for the other weights are available in Figure A.1 of the Appendix. Regard-
less of the value for the weight 𝑤0, MO Reinforce is not able to learn well because, unable
to explore beyond the first treasure, it sticks to the easily obtainable reward the treasure
provides. In contrast, both the A2C (timestep) and A2C (terminal) baselines learn the opti-
mal policy. However, differences in learning speed appear depending on the weight value.

For example, low values for 𝑤0 result in lower convergence speeds for A2C (terminal).
Since it only receives non-zero rewards at the end of the episode, it spends more time
exploring compared to A2C (timestep).

On the other hand, with high values for𝑤0, A2C (timestep)’s convergence speed decreases
compared to the other algorithms, even though rewards are provided at every timestep.
In this case, exploration is beneficial for A2C (terminal). It reaches later treasures earlier
than A2C (timestep).

Regardless, MOCAC proves to be robust to the differences in weights, as it systematically
learns the optimal policy. Moreover, its convergence speed is on par with or faster than
the best performing baseline for each 𝑤0.

With a non-linear utility function, the story becomes quite different, as can be seen in
Figure 3.8.

As expected, A2C (timestep) is unable to learn any decent behavior. Since scalarization
occurs at every timestep, 𝑢 never receives the total time spent to find the treasure, meaning
the deadline penalty is never applied. Because time is incorrectly taken into account, this
baseline learns a policy that seeks the biggest treasure, but is also the one that is the furthest
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away. This yields a poor episodic utility.

In contrast, since MOCAC, MO Reinforce and A2C (terminal) receive the correct utility
at the end of each episode they are all able to learn the optimal policy. However, we do
observe differences in learning speed and stability. For A2C (timestep), the harsh time con-
straints (the quadratic time factor as well as the penalty term) make exploration difficult.
Moreover, since scalarization is applied, it occurs that high treasure values get negated
by the time penalties, especially when the episode contains unnecessary steps. This re-
sults in a learner that requires more timesteps compared to the dedicated multi-objective
approaches to find the optimal policy and often deviates from this policy after having dis-
covered it.

In comparison, both MO Reinforce and MOCAC quickly reach the optimal treasure and do
not collapse to suboptimal policies afterwards. Even though the time constraint penalizes
the total utility, keeping track of the different objectives separately benefits the learning
process. In terms of convergence speeds, MOCAC reaches the optimal treasure first but,
as the episodes are short, the number of additional updates compared to the number of
episodes amounts to an average of only 0.2%. Thus, it is not so much the sample efficiency
but the reduction in variance – due to the advantage – that helps MOCAC perform better
than MO Reinforce.

3.9.2 Minecart

For Minecart, we perform two sets of experiments. In the first, the agent is trained on the
6-dimensional, continuous state-space from the environment. In the second, the agent is
trained on 84 × 84 pixel frames, using the same image pre-processing and convolutional
network architecture as in Mnih et al. (2015).

Non-linear Utility Function Aswith the Deep-Sea-Treasure environment, we imagine
a setting where a known non-linear utility function needs to be applied. The agent is a
mining company with a contract to provide a specific amount of ores at an agreed-upon
price. The leftover ores can be sold at market price. If there is a breach of contract due to
insufficient amount of ores, a compensation penalty will be applied. Finally, fuel is seen as
an additional expense. This can be formalised in the following utility function:

𝑢 =

{︃
𝑡0𝑝0 + (𝑟0 − 𝑡0)𝑝1 − 𝑟1/20 if 𝑡0 ≤ 𝑟0
𝑟0𝑝0 − 𝑐− 𝑟1/20 if 𝑡0 > 𝑟0,

(3.35)

where 𝑡0, 𝑝0, 𝑝1, 𝑐 are the request ore amount, contract price, market price, and compen-
sation penalty, respectively. In our scenario, 𝑡0 = 0.7, 𝑝0 = 5, 𝑝1 = 7, 𝑐 = 2.
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Figure 3.9: Results for Minecart using a non-linear 𝑢 with a 6-dimensional continuous
state-space. MOCAC outperforms all baselines. MO Reinforce performs on-par with A2C
(terminal).
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Figure 3.10: Results for Minecart using a non-linear 𝑢 with 84 × 84 pixel frames, similar
to the Atari 57 suite. MOCAC outperforms all other algorithms.

Results

As can be seen in Figure 3.9 and Figure 3.10, for both sets of experiments MOCAC reaches
the highest utility. The agent almost consistently fills its cart to capacity, and goes back to
the base station to sell the minerals.

Looking at the baselines, we observe different behavior depending on the state-space used
for training. For the 6-dimensional state-space, MO Reinforce on average performs on-
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par with A2C (terminal), despite the higher variance and worse sample efficiency than its
actor-critic counterpart. Both agents do not always fill their cart to full capacity, resulting
in a lower utility.

With pixel frames their behavior is different. Although the network architecture is (except
for the output) the same as MOCAC, some A2C (terminal) runs never learn to mine ores.
MO Reinforce only partially fills its cart, usually just enough to reach the quota, but with
nothing left to sell at market price.

All in all, combining the actor with a distributional critic in MOCAC is key to obtaining
good utility.

3.10 Related work
Most of the recent work on MORL assumes an unknown, but linear, utility function. We
discuss unknown utility functions in Chapter 5 and focus here on the setting where the
utility function is decided upon beforehand. Most similar to our work is P. Zhang et al.
(2021), which also learns amultivariate distribution overmulti-objective returns. However,
it does not consider accrued rewards, which we found necessarily for optimization with
non-linear utility functions. Instead, the rewards are aligned with each other (e.g., sepa-
rate rewards functions for killing monsters and for eating coins in Pacman), and serve as
additional information for the policy, further confirming that taking into account different
objectives is beneficial even if the utility function is known in advance.

Neil et al. (2018), Peng et al. (2018), and Tesauro et al. (2008) use linear utility functions,
with the known issue that a small change in weights might lead to completely different
policies (Vamplew et al., 2011). Van Seijen et al. (2017) learn separate 𝑄-values per objec-
tive, optimized under the 𝑙2 norm over the expected returns (and is thus related to SER).
When selecting an action, the 𝑄-values of the different objectives are summed up. Inter-
estingly, Lin et al. (2020) take an opposite approach, by learning to decompose a single
reward signal into different objectives.

Non-linear utility has been investigated in a tabular setting for SER by Van Moffaert et
al. (2013b), who use a Chebyshev function. Moreover, monotonically increasing utility
functions in general have been investigated in the (much simpler) bandit setting (Roijers
et al., 2017), by modelling them using a Gaussian process and interacting with the user
to obtain preference information. For MOMDPs, Hayes, Reymond, et al. (2021) propose a
variant of Monte-Carlo Tree-Search (MCTS) to find the optimal policy for monotonically
increasing utility functions. However, they require a model of the MOMDP.

A related field, called lexicographical RL, ranks the different objectives by preference (Gá-
bor et al., 1998). For humans, this is less error-prone as putting absolute weights on ob-
jectives (Skalse et al., 2022). Like for the work discussed in this chapter, the preferences
are known in advance. This gives rise to Lexicographic MDPs (K. Wray et al., 2015), a
subset of MOMDPs, and Lexicographic POMDPs (K. H. Wray & Zilberstein, 2015). This
has been used to optimize a primary reward function, while also optimizing auxiliary re-
wards (A. M. Turner et al., 2020), or avoiding negative side effects (Saisubramanian et al.,
2021; A. Turner et al., 2020). Moreover, it has been used in the context of safe reinforce-
ment learning, where the secondary objectives correspond to safety constraints (Skalse
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et al., 2022), such as avoiding collisions and obeying to traffic rules in the autonomous
driving domain (C. Li & Czarnecki, 2018). Instead of ranking the different objectives, we
can require each objective to reach a minimal acceptable value (i.e., a threshold). This is
called thresholded lexicographical ordering, and has been investigated in the tabular set-
ting (Vamplew et al., 2011) by modifying tabular Q-learning, and then further extended for
the multi-agent setting (Hayes et al., 2020).

The known-utility scenario also relates to constrained RL, where the policy optimizes a
(single-objective) reward, subject to constraints. Often, these constraints are incorporated
as a penalty signal into the original reward function, with manual weight selection (Levine
& Koltun, 2013; Tamar & Mannor, 2013). However, since it is usually unknown how to
weight the penalty signal, other works use a primal-dual algorithm to avoid manually
setting these weights (Bhatnagar & Lakshmanan, 2012; Paternain et al., 2019; Tessler et
al., 2019). These algorithms are less suited for a multi-objective approach, as they cannot
arbitrarily combine the different objectives using a non-linear scalarization function.

3.11 Discussion
We proposed Multi-Objective Categorical Actor-Critic (MOCAC). To our knowledge, this
is the first actor-critic RL algorithm that can handle MORL under the expected scalarized
returns criterion, where the utility function can be non-linear. MOCAC takes into account
accrued rewards and, in contrast to single-objective actor-critic RL algorithms, its critic
only works if it learns a multivariate distribution over future returns, rather than an ex-
pected value over future returns.

In its current form, themultivariate distribution is represented as a categorical distribution,
its main advantage being ease of computation. As a downside, the number of categories
increases exponentially with the number of objectives. To scale to decision problems with
many objectives, another representation is required, which we leave for future work. An-
other challenge is that the categorical distribution we use is not well-suited for decision
problems for which the Pareto front contains solutions that are not evenly spread out. For
example, in the original Deep Sea Treasure environment, the treasures values at the bot-
tom of the ocean are 1, 2, 3, 5, 8, 16, 24, 50, 74, 124 respectively. Using 11 categories, as
was done in our experiments, results in the first 5 treasures (half of the number of possible
treasures) falling in the first category. This is why, in our experiments we have modified
the treasure values (see Section 3.8.1). While there are a number of ways to remedy this
problem, such as increasing the number of categories, using categories of unequal sizes,
or using a different number of categories per objective, this does not solve the more fun-
damental scalability issue encountered when using categorical distributions. For single-
objective RL, quantile functions have been used to represent the distribution over returns,
using a step-function with a fixed number of quantiles as approximation (Dabney et al.,
2018; D. Yang et al., 2019). These quantiles can be learned, to best approximate the quantile
function. We believe a similar approach could be used to further extend MOCAC. How-
ever, these extensions do not change the core idea behind MOCAC, which is combining
distributional RL with accrued rewards to cope with non-linear utility functions, which is
what we have focused on this chapter.

We show empirically that MOCAC can successfully learn in MOMDPs under ESR with a
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known utility function. Furthermore, we show that it is much more sample-efficient and
stable than all the proposed alternatives, clearly indicating that learning a distribution over
the vectorial returns can convey important benefits in this class of problems.
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4.1 Introduction
Multi-objective optimization revolves around the decision maker’s preferences. In Chap-
ter 3, we demonstrated that using a dedicated multi-objective approach is beneficial even
when we have full knowledge of the utility function. However, the chapter did not cover
how to obtain this knowledge, and it was assumed to be available. Obtaining this knowl-
edge can be challenging, as some computational processes may be too computationally
expensive or demanding to be used as a reward function in the (MO)RL process. Addition-
ally, some processes may require expensive machinery and specialized personnel to test in
a laboratory setting. For example, a pharmaceutical company could design a new drug in
silico and test its performance in vitro. In both cases, the utility function is expensive to
evaluate, even though it gives an accurate utility score. In cases where the decision maker
is a board of stakeholders, each proposition needs to be negotiated, adding another layer
of complexity.

Although, in these cases, there is a cost of evaluating the utility function, each evaluation
improves our understanding of the decision maker’s preferences. The challenge, then, is
to obtain as much information as possible over the decision maker’s preferences with each
additional evaluation. Thus, the proposed solution should be meaningful, since evaluating
a Pareto-efficient policy provides more insight than evaluating a random policy. However,
learning a Pareto-efficient policy is a challenging task, evenwhen the utility is fully known.
We argue that the two processes are intertwined, as understanding the preferences of the
decision maker guides the RL learning process towards the optimal policy, but evaluating
Pareto-efficient policies improves our understanding over these preferences.

Thus, we need to learn these two processes in conjunction. By evaluating solutions during
the RL learning phase, we improve our knowledge over the utility function, which nar-
rows the search-space of the optimal policy with respect to the user preferences. Thus, it
becomes easier to refine and improve the solution over time. Moreover, this interactivity
allows for our estimate of the utility function to be adapted to changing preferences or
circumstances. As the decision maker’s preferences evolve, the policy can be updated to
reflect these changes. Finally, in case the decision maker is a person (or group of persons),
their involvement in the learning process means they gain a better understanding of how
it works and how their preferences are being taken into account. This can increase their
trust in the system and make them more willing to use it. The question then is, how can
we maximize our chances of learning the optimal policy, given the limited number of eval-
uations of the utility function? We address this question in this chapter, by optimizing the
timing at which we evaluate the utility function, such that, given the current exploration
of the search-space, we can propose a relevant solution to evaluate, that will maximize the
improvement over our estimate of the utility function, such that this improvement will
maximally improve subsequent exploration of the search-space.

To focus on the impact of the query timings, we study a specific class of MORL problems,
called Multi-objective multi-armed bandits (MOMABs), which remove the sequential na-
ture of the decision process. This simplifies the policy learning, for the profit of the query
optimization.

We take a Bayesian approach, by learning a belief distribution over the preferences of the
decision maker. Initially, this belief distribution will be highly uncertain about what these
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preferences can be, sampling from it thus results in completely different utility function
estimates. Our aim is to select actions that are optimal for any of the potential utility func-
tions covered by the belief distribution. However, we include an additional action to our
action-space: the query-action, that asks a query to the decision maker. Before selecting
an action, we perform a number of simulations on a model of the environment. The best-
performing action in the simulations is selected to be executed in the actual environment.
The model used for simulations is also learned, and takes into account uncertainty about
the environment’s dynamics, again using a Bayesian approach. We call this algorithm
Multi-objective Partially Observable Monte-Carlo Planning (MOPOMCP), and show that it
significantly improves the chances of finding the optimal policy compared to interacting
with the decision maker at fixed intervals.

4.2 Multi-armed bandits
In this work, we focus on a specific class of MORL problems, called Multi-objective multi-
armed bandits (MOMABs). First, we introduce its single-objective counterpart, Multi-
armed bandits (MABs) (Auer et al., 2002). The name comes from slot machines, also called
one-armed bandits, found at the casino. When the gambler pulls the lever (or arm) of a slot
machine, its reels spin, sometimes resulting in a winning combination that pays out a cer-
tain amount of money. Assuming each slot machine of the casino is configured differently,
our gambler should try to figure out which machine has the highest chance of returning a
winning combination of reels. In RL terms, one can see a MAB as a single-state, single-step
RL problem, where each action corresponds to pulling the lever of a different slot machine
(in the bandit literature, this is referred to as pulling an arm). The reward function is
stochastic, as each arm has a different probability of returning a winning payout. Since
this is a single-step problem, the episode ends after pulling one of the arms. The Q-value
of each arm is thus the average reward obtained by this arm, which, in the limit, is equal to
the mean of the reward distribution. Analogously as the definition of the optimal policy in
Section 2.3, the optimal policy amounts to choosing the action with the highest Q-value.

Due to the uncertainty associated with the reward of each policy execution (or arm-pull), it
is challenging to learn the optimal action as quickly as possible. As such, MABs are well-
suited to study the exploration-exploitation trade-off, as one needs to explore different
actions to better understand their associated reward-distributions (and thus gain confi-
dence in the estimated Q-values), but one does not want to try out too many alternatives,
as they are costly and suboptimal.

MABs provide a theoretical framework for many real-world problems. Examples include
online advertisement, wherewewant to select the advert that has the highest probability of
being clicked on by a user (Chapelle & Li, 2011; Rhuggenaath et al., 2019), the mitigation
of epidemics (P. Libin et al., 2019) and wind farm control, where we want to select the
orientation of the blades that maximize the power output (Bargiacchi et al., 2018).

For our problem setting, the multi-objective variant of this framework allows us to study
the timing of the utility function evaluation, without having to take into account the se-
quential learning part of the policy. Instead, we have a fixed number of possible policies,
where the optimal policy can change depending on the utility function. Learning the Q-
values and associated optimal policy is focused on single-step executions instead of multi-
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step executions, but gives us insight on the convergence speed and probability of learning
the optimal policy within the allotted training steps.

Formally, we define a MAB as a set of parametric reward distributions 𝒫𝜃0 , . . . ,𝒫𝜃𝐴 with
parameters 𝜃0, . . . , 𝜃𝐴 respectively, where executing action 𝑎 ∈ 𝒜 returns a sample 𝑟 ∼
𝒫𝜃𝑎 :

B = {𝒫𝜃0 , . . . ,𝒫𝜃𝐴}. (4.1)

For example, assuming the rewards are normally distributed, 𝜃𝑎 is characterized by the
mean𝜇𝑎 and standard deviation𝜎𝑎 of the normal distribution, resulting inB = {𝒩 (𝜇0, 𝜎0),
. . . ,𝒩 (𝜇𝐴, 𝜎𝐴)}.
The optimal policy, or arm, is defined as:

𝜋* = argmax
𝑎∈𝒜

𝑄(𝑎) = argmax
𝑎∈𝒜

𝜇𝑎, (4.2)

where 𝜇𝑎 is the mean of the distribution 𝒫𝜃𝑎 .
Our problem consists in maximizing our chances of finding the optimal policy, given a
limited budget of utility function evaluations and of policy evaluations. This corresponds,
in the MAB literature, to the best-arm identification setting (Audibert et al., 2010).

4.3 Algorithms for best-arm identification
Our goal is to maximize our chances of finding the optimal policy, given a fixed budget.
In this Section, we introduce some of the most well-known single-objective algorithms for
this setting.

4.3.1 Round robin
Anaive approachwould be to select each action the same number of times, until the budget
is spent, and then selecting the action with the highest Q-value estimate. This is called the
round-robin strategy. The downside of this approach is that valuable budget is spent on
arms for which we are increasingly certain that they are suboptimal (i.e., the estimated
Q-values are much lower than for other arms). Instead, this budget could be spent on
improving our confidence in the top arms (i.e., the arms with similar Q-values). Since we
do not exploit any of our current knowledge (i.e., estimated Q-values), round-robin is a
pure exploration strategy. The algorithm is shown in Algorithm 3.

4.3.2 Upper Confidence Bound
Instead of pure exploration, one would like to also take advantage of the knowledge gained
in previous interactions. One of the most famous algorithms to tackle MABs is the Upper
Confidence Bound (UCB) algorithm, which balances exploration and exploitation using a
frequentist approach (Auer et al., 2002). UCB is based on the idea that actions that have
been selected many times are unlikely to see significant changes in their Q-values. Instead,
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Algorithm 3 Round-robin
Require: 𝑇 budget
1: 𝑝,𝑄← 0, initial pull count, Q-value for each arm to 0
2: for 𝑡 ∈ [𝑇 ] do
3: 𝑎← 𝑡 mod |𝒜|, select next arm
4: 𝑟𝑎 ∼ 𝒫𝜃𝑎 , pull 𝑎
5: 𝑝𝑎 ← 𝑝𝑎 + 1, increment pull count
6: 𝑄(𝑎)← 1

𝑝 (𝑄(𝑎)(𝑝𝑎 − 1) + 𝑟𝑎), update estimated mean
7: end for
8: return argmax𝑎∈𝒜𝑄(𝑎)

Algorithm 4 Upper Confidence Bound
Require: 𝑇 budget
1: 𝑝,𝑄← 0, initial pull count, Q-value for each arm to 0
2: for 𝑡 ∈ [𝑇 ] do
3: 𝑎← argmax𝑎𝑄(𝑎) + 𝛽

√︁
ln 𝑡
𝑝𝑎

, select next arm based on UCB
4: 𝑟𝑎 ∼ 𝒫𝜃𝑎 , pull 𝑎
5: 𝑝𝑎 ← 𝑝𝑎 + 1, increment pull count
6: 𝑄𝑎 ← 1

𝑝 (𝑄𝑎(𝑝𝑎 − 1) + 𝑟𝑎), update estimated mean
7: end for
8: return argmax𝑎∈𝒜𝑄𝑎

one should select actions with a high potential for reward: actions that have been selected
few enough times that, given their current Q-values, they can still become optimal. Con-
cretely, at time 𝑡, the arm is selected as follows:

𝑎𝑡 = argmax
𝑎

𝑄𝑡−1(𝑎) + 𝛽

√︃
ln 𝑡

𝑁𝑡−1(𝑎)
, (4.3)

where 𝑁𝑡−1(𝑎) is defined as the number of times action 𝑎 has been selected at time 𝑡− 1,
and 𝛽 a constant weighting the importance of the exploration factor. We see that the ex-
ploration term decreases with 𝑁𝑡−1(𝑎), thus preferring promising arms that have been
selecting less often. The downside of this algorithm, next to the sensitivity of the hyper-
parameter 𝛽, is its inability to incorporate prior knowledge. The algorithm is shown in
Algorithm 4.

4.3.3 Top-two Thompson Sampling
In contrast to the frequentist approach taken by UCB, we can use a Bayesian approach,
which naturally incorporates prior knowledge about data and statistics (Thompson, 1933).
A well-known Bayesian algorithm for best arm identification is called Top-two Thompson
Sampling (TTTS) (Russo, 2016). The primary goal of TTTS is to distinguish the best arm
from the second-best arm. The stronger this distinction, the highest confidence it has that
the estimated best arm is indeed the optimal arm. Since the other arms are worse than the
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Algorithm 5 Best arm sampling
Require: ℋ history of pulls, 𝜑 prior parameters
1: for 𝑎 ∈ 𝒜 do ◁ for each arm, sample a mean
2: sample 𝜃𝑎 ∼ 𝒫(𝜃𝑎 | ℋ𝑎)
3: �̂�𝑎 ← 𝜃𝑎 ◁Mean based on sampled parameters
4: end for
5: return argmax �̂�𝑎 ◁ arm of the highest estimated mean

second-best arm, their ordering does not matter, so we should avoid spending our budget
on them.

To distinguish arms, TTTS maintains a belief distribution over each reward distribution
𝒫𝜃𝑎 , 𝑎 ∈ 𝒜. That is, TTTS estimates the parameters 𝜃𝑎 based on the history of observed
samplesℋ𝑎,𝑡 = {𝑟0, . . . , 𝑟𝑡−1} from 𝒫𝜃𝑎 .

We would like to compute the probability distribution 𝒫(𝜃𝑎 | ℋ𝑎,𝑡) over the possible
distribution parameters, given the history ℋ𝑎,𝑡. This is called the posterior distribution.
Initially, when our history ℋ𝑎,𝑡 is empty, we are uncertain about 𝜃𝑎 and use default pa-
rameters 𝜑𝑎. The distribution 𝒫(𝜃𝑎 | 𝜑𝑎) is called the prior distribution. According to
Bayes’ theorem (Bishop & Nasrabadi, 2006), we have:

𝒫(𝜃𝑎 | ℋ𝑎,𝑡) =
𝒫(ℋ𝑎,𝑡 | 𝜃𝑎)𝒫(𝜃𝑎 | 𝜑𝑎)

𝒫(ℋ𝑎,𝑡)
,

𝒫(𝜃𝑎 | ℋ𝑎,𝑡) ∝ 𝒫(ℋ𝑎,𝑡 | 𝜃𝑎)𝒫(𝜃𝑎 | 𝜑𝑎). (4.4)

We ignore 𝒫(ℋ𝑎,𝑡) since it does not depend on 𝜃𝑎.

At time 𝑡, TTTS samples from a Bernoulli distribution (typically with 𝑝 = 0.5 of success)
𝑏 ∼ ℬ(𝑝) to decide if it should pull the best arm. The ordering of arms is decided by
sampling from each of the belief distributions, and sorting the arms according to their
associated sample (see Algorithm 5). When 𝑏 is a success, we pull the best arm. Otherwise,
we aim to pull the second-best arm. The second-best arm is decided by saving the sampled
best arm, and then resampling from each belief distribution until the resampled best arm
is different from the saved best arm. That arm is then pulled.

At 𝑡 = 0, when our beliefs have no information about the reward distributions, each arm is
equally likely to be selected as best. However, as we pull arms, our belief distributions be-
come increasingly informative, and the likelihood of the highest ranked arm corresponding
to the optimal arm increases as well.

We repeat this process until the budget has been exhausted. At this point, the arm asso-
ciated with the belief distribution with the highest mean is identified as the best arm. We
show the algorithm in Algorithm 6.
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Algorithm 6 Top-two Thompson sampling
Require: 𝑇 budget, 𝜑 prior parameters, 𝑝 success probability
1: ℋ ← 0, empty history for each arm
2: for 𝑡 ∈ [𝑇 ] do
3: 𝑖← Algorithm 5 (ℋ, 𝜑) ◁ arm of the highest estimated mean
4: sample 𝑏 ∼ ℬ(𝑝)
5: if 𝑏 = 1 then
6: ℋ𝑖 ← ℋ𝑖 ∪ 𝑟𝑡, 𝑟𝑡 ∼ 𝒫𝜃𝑖 ◁ pull arm and add to history of arm-pulls
7: else ◁ sample second-best arm
8: repeat
9: 𝑗 ← Algorithm 5 (ℋ, 𝜑)
10: until 𝑖 ̸= 𝑗
11: ℋ𝑗 ← ℋ𝑗 ∪ 𝑟𝑡, 𝑟𝑡 ∼ 𝒫𝜃𝑗 ◁ pull arm and add to history of arm-pulls
12: end if
13: end for
14: return argmax𝑎∈𝒜 �̄�𝑎 ◁ arm with the highest sample mean

4.4 Multi-objective multi-armed bandits
Similarly as for MORL, in case we have vectorial rewards and the utility function is un-
known, we cannot rank the rewards, and thus cannot straightforwardly use either UCB or
TTTS. In this section, we formalize MABs with multiple objectives, and how they incor-
porate the utility function.

Formally, a multi-objective multi-armed bandit (MOMAB) (Drugan & Nowe, 2013) is a
tupleB = ⟨ℛ, 𝑢⟩, whereℛ is a set of parametric multivariate stochastic reward functions
𝒫𝜃0 , . . . ,𝒫𝜃𝐴 , and 𝑢 is the utility function defining the preferences of the decision maker.
For MOMABs, each 𝒫𝜃𝑎 is a multivariate distribution with the number of dimensions
equal to the number of objectives.

ℛ = {𝒫𝜃0 , . . . ,𝒫𝜃𝐴}. (4.5)

The optimal policy, or optimal arm, is the arm resulting in the maximal utility. Like in
MORL, this depends on the optimization criterion, which is either ESR or SER (as defined
in Section 2.5).

For SER, the optimal policy corresponds to the arm with the highest utility with respect to
its Q-value. This is equivalent to applying the utility function on the mean of the reward
distribution:

𝜋* = argmax
𝑎∈𝒜

𝑢(𝑄(𝑎)) = argmax
𝑎∈𝒜

𝑢(𝜇𝑎), (4.6)

where 𝜇𝑎 is the mean of the multivariate distribution 𝒫𝜃𝑎 .

For ESR, the optimal policy corresponds to the arm with the highest expected utility over
rewards. This meanswe need toweight the sample with their probability of being sampled:
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Figure 4.1: Example of a 5-arm, 2-objective MOMAB, where the reward distribution for
each arm is represented by a multivariate normal distribution. The colored ellipse is drawn
at 2 standard deviations from themean. As arm 𝑏4 is dominated by the other arms, it cannot
be the optimal arm. Since the non-dominated coverage set (i.e., the other arms) is convex,
each of its arms can be optimal for a linear utility function 𝑢, depending on its weight. The
right y-axis represents the 1-dimensional simplex, from which 𝑢’s weight can be sampled.
This simplex is split in colored sections, where the color of each section corresponds to
the weight-values for which the same-colored arm is optimal.

𝜋* = argmax
𝑎∈𝒜

∫︁ ∞

−∞
𝑢(𝑥)PDF𝑎(𝑥)𝑑𝑥, (4.7)

where PDF𝑎(𝑥) is the probability density function of 𝒫𝜃𝑎 . Analogously to Chapter 3,
this means that estimating the mean of the reward distribution is insufficient to learn the
optimal policy, one needs to estimate the whole distribution. We believe this might pose
additional challenges and is an interacting avenue for future work (see Section 7.1), as the
ESR setting has been understudied compared to SER.

Figure 4.1 shows an example of a 2-objectiveMOMAB, with 5 arms. Each ellipse represents
themultivariate normal distribution (up to 2 standard deviations from themean) associated
with its arm. We see that 4 of the 5 arms are non-dominated and can potentially be the
optimal arm under SER, depending on the utility function. The right y-axis shows the 1-
dimensional simplex associated with the weights of linear utility functions. Weights on
the axis are colored according to their optimal arm.
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4.4.1 Multi-objective top-two Thompson sampling
For single-objective optimization, TTTS is an efficient algorithm for best-arm identifica-
tion. We propose to extend it to the multi-objective setting, by learning multivariate belief
distributions over the arms. We call this algorithm Multi-objective top-two Thompson
sampling (MOTTTS).

An important aspect of MOMABs is the inclusion of the utility function 𝑢. This function is
initially unknown. To find the best arm, we need to have an understanding of 𝑢. Similarly
as for arms, we keep a belief distribution over𝑢, whichwe improve over time by interacting
with the decision maker. Using this belief distribution, we can sample utility function
estimates �̂� and rank the multivariate samples coming from the arm belief distributions.
This allows us to pull arms following the same strategy as the TTTS algorithm. Next, we
explain how to represent this belief distribution, and how it changes when adding new
datapoints.

4.4.2 Belief distribution of the utility function
While the utility function could be a formal process returning an absolute score, in many
real-world problems, the decision maker is human. Humans find it challenging to express
their preferences in absolute terms (e.g., "I like this movie 0.4 much"), as using numbers
to express preferences can be unnatural and prone to errors (Tesauro, 1988). Additionally,
values may change (Sidney, 1957) depending on the user’s mood, which can be influenced
by seemingly trivial factors like the weather (Forgas, 1995; Sirakaya et al., 2004). On the
other hand, expressing preferences in relative terms (e.g., "I prefer movie A over B") is
easier for humans and tends to be more consistent over time (Tesauro, 1988; Zoghi et al.,
2014). Therefore, we focus on representing the utility function using relative feedback.
We can translate this process as a binary classification task where, given two propositions,
the goal is to predict if the first proposition is preferred over the second one. Formally,
given two propositions 𝑟0, 𝑟1, we define ≻ : R𝑛 × R𝑛 → {1, 0} as the binary preference
operator, where 𝑟0 ≻ 𝑟1 outputs 1 when the decision maker prefers 𝑟0 over 𝑟1, and 0
otherwise. Thus, we define each interaction with the decision maker as a pair, where the
first element is the two propositions to compare, and the second element is the decision
maker’s answer:

⟨⟨𝑟0, 𝑟1⟩, 𝑟0 ≻ 𝑟1⟩. (4.8)

We keep each interaction in an interaction history ℋ𝑞 , which is used to update the belief
distribution over 𝑢.

In Interactive Thompson sampling (ITS) (Roijers et al., 2017), an algorithm for regret min-
imization for MOMABs, the authors propose to use Bayesian logistic regression (Bishop &
Nasrabadi, 2006) for linear utility functions to predict the decision maker’s relative pref-
erences. This approach enables them to maintain a belief over the weights of the linear
utility function, which are drawn from the 𝑛 − 1 simplex S𝑛−1. However, the posterior
distribution computed using exact Bayesian logistic regression does not have a closed form
solution. Instead, one option is to estimate the posterior distribution using the Laplace ap-
proximation, which approximates the true posterior distribution to a multivariate normal
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distribution (Bishop & Nasrabadi, 2006). The drawback is that the sampled𝑤 ∼ 𝒩 do not
adhere to the simplex constraints, and thus need to be normalized. This has the downside
of further degrading the original approximation. Another downside is that the Laplace ap-
proximation uses gradient descent to fit the posterior distribution to the datapoints, which
is a more expensive computational process compared to the closed-form posterior beliefs
of the reward distributions.

Due to these downsides, we propose to use particle filtering (Doucet et al., 2000; Gordon et
al., 1993) as a belief distribution over the utility function. Particle filtering uses a set of par-
ticles to represent a distribution, where each particle is weighted according their likelihood
given the datapoints. Sampling from this belief distribution then amounts to sampling a
particle according to their likelihood. Formally, given a set of particles 𝑥0, . . . , 𝑥𝑃 , where
𝑃 is the total number of particles, each 𝑥𝑖 is associated with a particle weight 𝜔𝑖, whose
value is:

𝜔𝑖 = 𝒫(𝑥𝑖 | ℋ𝑞). (4.9)

The mean of the particle distribution is then the weighted average of the particles:

𝜇 =

𝑃∑︁
𝑖=0

𝜔𝑖𝑥𝑖. (4.10)

Since we can freely choose how we define our particles, one advantage of particle filtering
is that it can approximate distributions of arbitrary shapes. When the utility function is
linear, as is the case in ITS, we can represent 𝑢 by its weights (see Equation 2.5). Since
the weights from 𝑢 belong to S𝑛−1 (Equation 2.6), we sample our particles from it. Thus,
contrary to the Bayesian logistic regression used in ITS, our belief distribution using par-
ticle filtering adheres to the simplex constraints. However, as a downside, the number of
particles required to accurately represent the 𝑛 − 1 simplex increases exponentially with
the number of objectives. One way to alleviate this problem is to use a pruning and resam-
pling strategy, where particles with a likelihood below a certain threshold are pruned and
replaced with new, more likely particles (Hol et al., 2006). We leave the many-objectives
setting for future work, and focus on MOMABs with a limited number of objectives.

At the beginning of training, we assume that we do not possess any knowledge over 𝑢.
Thus, initially all particles are weighted equally. However, with each new datapoint, the
likelihood of each particle is updated. Intuitively, we give a high likelihood to all particles
that match the decision maker’s answers to past queries, and a low likelihood to the other
particles. Given our historyℋ𝑞 of relative queries, the weight 𝜔 of particle 𝑥 is defined as:

𝜔 =
∏︁
ℎ∈ℋ𝑞

|(𝑟0ℎ ≻ 𝑟1ℎ)− 𝜂|(𝜔⊤𝑟0ℎ ≥ 𝜔⊤𝑟1ℎ), (4.11)

where 𝜂 accounts for potential mistakes, or change of preference from the decision maker.
Thus, when 𝜂 = 0, only the particles of weights for which all answers of the decision
maker correspond to the solution with the highest utility have a non-zero probability of
being sampled. Moreover, these particles are equally likely.
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Figure 4.2: A side-by-side comparison of both types of belief distributions. In both cases,
we show the evolution of the belief distribution with the size of the history of relative
queries (1,2,3,5,10,50). The same queries were used for each belief distribution. On the left,
we show the belief distribution using Bayesian logistic regression. As the size of the history
increases, the covariance matrix becomes smaller. We also note that the weights become
correlated, as they should sum to 1. Despite the decrease in variance, we see that, even
after 50 queries, significantly different weights can be sampled. On the right, we show the
belief distribution based on particle filtering. We see that the number of potential particles
quickly becomes concentrated around the true mean.

Figure 4.2 shows a side-by-side comparison of both types of belief distributions, with
Bayesian logistic regression, particle filtering to the left, right, respectively of the plot. We
show the evolution of the belief distribution as more queries are added to the interaction
history, and the unknown utility function’s weight (in blue). Although, after 50 queries, the
Bayesian logistic regression belief is centered around the true mean, and learns that both
weights are correlated, the standard deviation is high, and significantly different weights
can be sampled. In contrast, the only particles with a non-zero likelihood are the particles
close to the true mean. Moreover, we observe that, with just a few queries, the number of
potential particles has been greatly reduced.

4.4.3 Comparison between Bayesian logistic regression and parti-
cle filtering

By modifying ITS (Roijers et al., 2017), the algorithm that introduced Bayesian logistic
regression for linear utility functions with relative preferences, and replacing its belief
with particle filtering, we can compare the performance of both approaches.

ITS aims tominimize the cumulative regret. Since in regretminimization there is no budget
limit, as the regret should be minimal for any budget, the setting differs from our best arm
identification setting. Nonetheless, keeping an accurate belief over the utility function is
crucial in the regret minimization setting as well, since an inaccurate belief increases the
chances of pulling a suboptimal arm, which increases the regret.

At each timestep, ITS samples twice from its arms and utility belief distributions. It then
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Algorithm 7 Interactive Thompson Sampling with Particle filtering
Require: 𝜑 prior parameters on reward distribution, prior parameters on utility weight

distribution
1: ℋ𝐴 ← 0, empty history for each arm
2: ℋ𝑞 ← 0, empty interaction history
3: while 1 do
4: 𝑥𝑥, 𝑥𝑦 with 𝑥, 𝑦 ∼ 𝒫(𝜔0:𝑃 | ℋ𝑞) ◁ 2 samples from belief distribution over 𝑢
5: 𝑖← Algorithm 5 (ℋ, 𝜑, 𝑥𝑥) ◁ arm of the highest estimated mean w.r.t. 𝑥𝑥
6: 𝑗 ← Algorithm 5 (ℋ, 𝜑, 𝑥𝑦) ◁ arm of the highest estimated mean w.r.t. 𝑥𝑦
7: ℋ𝐴𝑖 ← ℋ𝐴𝑖 ∪ 𝑟𝑡, 𝑟𝑡 ∼ 𝒫𝜃𝑖 ◁ pull first sampled arm and add to history of

arm-pulls
8: if 𝑖 ̸= 𝑗 then
9: ℋ𝑞 ← ℋ𝑞 ∪ ⟨⟨�̂�𝑖, �̂�𝑗⟩, �̂�𝑖 ≻ �̂�𝑗⟩ ◁ Query user on current mean estimates and

add to interaction history
10: end if
11: end while

ranks its arms based on the sampled utility. Since the beliefs where sampled twice, there are
two arms 𝑎𝑖, 𝑎𝑗 ranked first. ITS always pulls 𝑎𝑖, the top arm from the first set of samples.
However, ITS assumes that, when 𝑎𝑖 and 𝑎𝑗 are different, it might be due to uncertainty
over the utility function, and we should thus query the decision maker. The queries should
ensure those two top arms will be ranked differently in a subsequent timestep (i.e., one
arm will be better than the other). Thus, ITS proposes to use the estimated means �̂�𝑖, �̂�𝑗
of 𝑎𝑖, 𝑎𝑗 , respectively as solutions to be ranked by the decision maker. The interaction
⟨⟨�̂�𝑖, �̂�𝑗⟩, �̂�𝑖 ≻ �̂�𝑗⟩ is then added to the interaction history.

We compare the difference in performance of the two types of belief distributions by exe-
cuting ITS on 10000 randomly generated 2-objective MOMABs, with randomly generated
utility functions. For each MOMAB, we make 100000 experiments. For each experiment,
we execute ITS for 2000 timesteps, as is done in the original paper (Roijers et al., 2017).
All hyperparameters are the same as in the original experiments, and we use 100 particles
equally-spaced over the 𝑛 − 1 simplex, initialized with uniform probability-weights. We
plot the cumulative regret over time, averaged over all experiments, in Figure 4.3.

Figure 4.3 shows that, on average, using particle filtering leads to a lower cumulative regret
than using Bayesian logistic regression as a belief distribution for 𝑢. Since the generated
MOMABs are different, it is more difficult to find the optimal arm for some than for oth-
ers. This means the cumulative regret inherently varies across MOMABs. As such, we did
not find any insight in including the standard deviation in the plot. Instead, we computed
the number of MOMABs for which using particle filtering results in a lower final regret.
This is the case for 62% of the MOMABs, indicating some variability in performance using
particle filtering. But, as it outperforms Bayesian logistic regression on the majority of the
MOMABs, this confirms that, using a representation that inherently adheres to the simplex
constraints is beneficial for MOMABs with linear utility functions. Moreover, ITS uses the
estimated means �̂�𝑖, �̂�𝑗 to query the decision maker. Over time, these values are unlikely
to change significantly. Thus, over time, the decisionmaker receives similar queries. While
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Figure 4.3: Cumulative regret of ITS using both types of belief distributions, averaged
over 10000 MOMABs, with 100000 experiments per MOMAB. Since these MOMABs are
randomly generated, and thus present their own peculiarities, we did not find any in-
sight in including the standard deviation in the plot. Instead, we computed the number of
MOMABs for which using particle filtering results in a lower regret, and determined this
to be the case for 62% of the MOMABs.

having duplicate queries (or almost-duplicate queries) can be beneficial for Bayesian logis-
tic regression, as it reduces the estimated standard deviation of the multivariate normal
(see Figure 4.2), it is less beneficial for particle filtering, as these duplicate queries do not
change the boundaries between successful and unsuccessful particles. Thus, this provides
an opportunity to ask fewer questions to the decision maker. This means that, next to the
type of belief distribution to consider for 𝑢, another aspect to take into consideration is
which types of queries to ask the decision maker.

4.4.4 Selecting queries for the decision maker

Although pairwise comparisons are more reliable in terms of human answers, they provide
less information than absolute scores, and are thus less effective to estimate the utility
function. It is thus important that the pairwise comparisons are informative and realistic.
For the comparisons to be realistic, we select the solution pairs based on our current belief
distributions over arms. Moreover, since our goal is to distinguish the top-two arms, we
aim to provide queries that further discriminate the top-two arms in terms of utility.

Inspired from ITS, we base our query-selectionmechanism onThompson sampling (Thomp-
son, 1933). However, unlike ITS, which select queries based on the estimated means over
arms, which results in potential similar queries over time, we base our queries on the
samples themselves. This allows to increase variety in queries, while still focusing on
discriminating the top arms.
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Algorithm 8 Query selection
Require: ℋ𝐴 pull history for each arm,ℋ𝑞 interaction history
1: �̂� ∼ 𝒫(· | ℋ𝑞) ◁ sample utility function based on utility-belief
2: 𝑟 ∼ 𝒫𝜃𝑎

∀𝑎 ∈ 𝒜 where 𝜃𝑎 ∼ 𝒫(· | ℋ𝐴𝑎 ) ◁ sample each arm-belief
3: 𝑘 ← argmax𝑎∈𝒜 �̂�(𝑟𝑎) ◁ top sample w.r.t. sampled utility function
4: 𝑙← argmax𝑎∈𝒜∖{𝑘} �̂�(𝑟𝑎) ◁ second-top sample w.r.t. sampled utility function
5: return ⟨⟨𝑟𝑘, 𝑟𝑙⟩, 𝑟𝑘 ≻ 𝑟𝑙⟩ ◁ return interaction with decision maker

First, we sample a utility function estimate �̂� from our belief distribution. Next, for each
belief distribution over arms, we sample a vectorial reward 𝑟𝑎 ∼ 𝒫𝜃𝑎 . For each arm 𝑎,
we compute its utility �̂�(𝑟𝑎) using the corresponding sampled rewards and the sampled
weights. We can then rank the arms according to their computed utility. We give the
samples corresponding to the top-two ranked arms as a query to the decision maker. This
allows us to have varied queries (as they are based on samples), that focus on a narrow
region of the utility-space (the region that distinguishes the first and the second arm).

4.4.5 Different query timings for multi-objective Top-two Thomp-
son sampling

Using particle filtering as belief distribution representation for the utility function, and
using a Thompson sampling based approach to select the queries which we ask the de-
cision maker, we explain how we incorporate these components into our multi-objective
extension of top-two Thompson sampling, MOTTTS. We propose different variants, with
different timings for querying the decision maker, to analyze the impact of the belief dis-
tribution over 𝑢.

If learning the utility function and learning the optimal arm are separate, disjoint processes,
we can do one process followed by the other one. Thus, our first variant asks all the queries
first, based on the initial belief distributions over arms, then learns the optimal policy using
the learned utility function. We call this variant MOTTTS-start.

Analogously, our second variant first learns the belief distributions over the arms, then
asks all the queries based on these learned beliefs. We call this variant MOTTTS-end.

Finally, to assess the impact of combining both processes together, we propose a third
variant, where the timing of each query is spread out equally over the arm-pulling budget.
We call this variant MOTTTS-interleaved.

4.4.6 Experiments

To assess the impact of intertwining the arm-selection process and the query process, we
analyze the difference in performance of each algorithm variant on randomly generated
bandits.

For our experiments, we assume the reward distributions are normally distributed, as this
is often the case in the bandit literature (Chapelle & Li, 2011; Rhuggenaath et al., 2019;
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Algorithm 9 MOTTTS with interleaved queries
Require: 𝑚, 𝜈, 𝛼, 𝛽 prior parameters on reward distribution, prior parameters on utility

weight distribution, 𝑇𝐴 pulling budget, 𝑇 𝑞 query budget, 𝑝 success probability
1: ℋ𝐴 ← 0, empty history for each arm
2: ℋ𝑞 ← 0, empty interaction history
3: 𝑞 ← 𝑇𝐴

𝑇 𝑞 ◁ query frequency
4: for 𝑡 ∈ [0, 𝑇𝐴 − 1] do
5: if 0 = 𝑡 mod 𝑞 then ◁ ask a query every 𝑞 steps
6: ℋ𝑞 ← ℋ𝑞∪ Algorithm 8 (ℋ𝐴,ℋ𝑞)
7: end if
8: �̂�← 𝑥 ◁ mean of belief distribution over utility
9: 𝑖← Algorithm 5 (ℋ𝐴, 𝜈, 𝛼, 𝛽, �̂�) ◁ arm of the highest estimated mean w.r.t. �̂�
10: sample 𝑏 ∼ ℬ(𝑝)
11: if 𝑏 = 1 then
12: ℋ𝐴𝑖 ← ℋ𝐴𝑖 ∪ 𝑟𝑡, 𝑟𝑡 ∼ 𝒩 (𝜇𝑖,𝜎𝑖) ◁ pull arm and add to history of arm-pulls
13: else ◁ sample second-best arm
14: repeat
15: 𝑗 ← Algorithm 5 (ℋ𝐴, 𝜈, 𝛼, 𝛽, �̂�)
16: until 𝑖 ̸= 𝑗
17: ℋ𝐴𝑗 ← ℋ𝐴𝑗 ∪ 𝑟𝑡, 𝑟𝑡 ∼ 𝒩 (𝜇𝑗 ,𝜎𝑗) ◁ pull arm and add to history of arm-pulls
18: end if
19: end for

Roijers et al., 2017). We assume no correlation between the random variables of 𝒫𝜃 , as
this does not affect the multivariate mean. Thus,ℛ is defined as:

ℛ = {{𝒩 0(𝜇0
0, 𝜎

0
0), . . . ,𝒩𝑛(𝜇𝑛0 , 𝜎

𝑛
0 )}, . . . , {𝒩 0(𝜇0

𝐴, 𝜎
0
𝐴), . . . ,𝒩𝑛(𝜇𝑛𝐴, 𝜎

𝑛
𝐴)}. (4.12)

We define 𝜇𝑎 = [𝜇0
𝑎, . . . , 𝜇

𝑛
𝑎 ], 𝜎𝑎 = [𝜎0

𝑎, . . . , 𝜎
𝑛
𝑎 ] as the multivariate mean, standard devi-

ation for arm 𝑎, respectively (thus 𝜃𝑎 = ⟨𝜇𝑎,𝜎𝑎⟩).

Posterior distribution for normal distributions

MOTTTS keeps a belief distribution for each of the arms. As the reward distribution for
each arm the considered MOMABs is a set of independent normal distributions, we keep
a separate belief distribution for each normal. We define the posterior distribution based
on (Murphy, 2007), to which we refer for its derivation.

We assume 𝒫𝜃𝑎 is normally distributed, and consider the most generic case where both
𝜇𝑎, 𝜎𝑎 are unknown. We would like to compute posterior distribution, i.e., the probabil-
ity distribution 𝒫(𝜇𝑎, 𝜎𝑎 | ℋ𝑎,𝑡) over the possible means, standard deviations, given the
historyℋ𝑎,𝑡. For this, we need the likelihood function 𝒫(𝜇𝑎, 𝜎𝑎 | 𝜑𝑎). When both 𝜇𝑎, 𝜎𝑎
are unknown, 𝒫(𝜇𝑎, 𝜎𝑎 | 𝜑𝑎) is a normal-inverse-gamma distribution, written as 𝒩Γ−1,
with parameters 𝜑𝑎 = (𝑚𝑎, 𝜈𝑎, 𝛼𝑎, 𝛽𝑎), where𝑚𝑎 represents the prior mean, 𝜈𝑎 the prior
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sample size, 𝛼𝑎 the prior shape and 𝛽𝑎 the prior scale (Van den Burg, 2020):

𝒫(𝜇𝑎, 𝜎𝑎 | 𝜑𝑎) = 𝒩Γ−1(𝑚𝑎, 𝜈𝑎, 𝛼𝑎, 𝛽𝑎). (4.13)

Plugging this into Equation 4.4 results in

𝒫(𝜇𝑎, 𝜎𝑎 | ℋ𝐴𝑎,𝑡) ∝ 𝒩 (𝜇𝑎; 𝜌𝑎,𝑡, 𝜁𝑎)Γ
−1(𝜎2

𝑎;
1

2
𝑁𝑡(𝑎) + 𝛼𝑎, 𝛽𝑎,𝑡) (4.14)

where

𝜌𝑎,𝑡 =
𝜈𝑎𝑚𝑎 +𝑁𝑡(𝑎)|�̄�𝑎,𝑡

𝜈𝑎 +𝑁𝑡(𝑎)
,

𝜁𝑎 =
𝜎𝑎√︀

𝑁𝑡(𝑎) + 𝜈𝑎
,

𝛽𝑎,𝑡 = 𝛽𝑎 +
1

2
𝑠𝑎,𝑡 +

𝑁𝑡(𝑎)𝜈𝑎(�̄�𝑎,𝑡 −𝑚𝑎)
2

2(𝑁𝑡(𝑎) + 𝜈𝑎)
,

with �̄�𝑎,𝑡 the sample mean, 𝑠𝑎,𝑡 the sample sum of squares:

�̄�𝑎,𝑡 =
1

𝑁𝑡(𝑎)

∑︁
𝑟𝑖∈ℋ𝐴

𝑎,𝑡

𝑟𝑖,

𝑠𝑎,𝑡 =
∑︁

𝑟𝑖∈ℋ𝐴
𝑎,𝑡

(𝑟𝑖 − �̄�𝑎,𝑡)2.

Thus, sampling from our posterior distribution is performed in two steps. First, a variance
𝜎2
𝑎 is sampled from the inverse-gamma distribution based prior parameters𝛼𝑎, 𝛽𝑎,𝑡 and the

number of pulls 𝑁𝑡(𝑎). Then, 𝜌𝑎,𝑡, 𝜁𝑎 are computed, using this sampled variance. Finally,
we sample a mean 𝜇𝑎 from a normal distribution with mean 𝜌𝑎,𝑡 and standard deviation
𝜁𝑎.

Experimental setup

So that learning the optimal policy is challenging, i.e., it is not possible to reliably find the
optimal policy by randomly pulling arms, the generated bandits must satisfy some prop-
erties. First, so there can be different optimal arms depending on the utility function, we
ensure a percentage of arms are non-dominated. In our experiments, we set this percent-
age to 40%.

Next, after sampling a random synthetic utility function by sampling from the 𝑛− 1 sim-
plex, we compare the difference in utility between the top-two arms. We ensure this differ-
ence is below a certain threshold, to reduce the number of ways to identify the best arm.
In our experiments, we set this threshold to 0.1.

Finally, we ensure there is an overlap over the different arm-distributions by choosing high
enough variance terms. In our experiments, the stochastic reward function for each arm
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MORobin-end MOTTTS-start MOTTTS-end MOTTTS-interleaved MOTTTS-cheat
BAI% 66.96% 72.70% 67.80% 75.07% 83.29%

WIN% N/A 13.53% 0.11% 86.38% N/A

Table 4.1: Comparison ofMOTTTSwith different timings for asking queries to the decision
maker. For more insight on the performance of each timing strategy, we show a round-
robin strategy as lower bound, and a "cheat" version ofMOTTTSwhich uses the true utility
function as upper bound. We show the best-arm-identification percentage (BAI%) for each
strategy, based on 100000 experiments on 10000 MOMABs. We observe that MOTTTS-
interleaved finds the optimal arm 75.07% of the time, compared to 72.70% and 67.80%
for the other variants. We do not show the standard deviation, as the different MOMABs
exhibit different properties. instead, we show the number of times each variant has the
highest BAI%, and see that MOTTTS-interleaved has the highest BAI% on 86.38% of the
MOMABs.

is represented by an independent normal distribution per objective, where the mean is
sampled from a uniform distribution 𝜇 ∼ 𝒩 (0, 1) and standard deviation is sampled from
𝜎 ∼ 𝒩 (0.05, 0.15).

To provide further insights on the generated bandits, we include additional baselines that
serve as upper and lower bounds on the probability of identifying the optimal arm. As an
upper bound, we assume knowledge of the utility function, and apply TTTS on the utility
of the sampled multi-objective rewards, which is equivalent to MOTTTS without having
to learn the utility function. We call this upper bound MOTTTS-cheat.

As a lower bound, we use a round-robin strategy, i.e., the arm-pulling budget is split equally
for each arm (see Section 4.3.1). After pulling each arm the same number of times, all
queries are asked to learn the utility function. This strategy avoids pulling arms in a smart
way and does not take advantage of the learned belief distributions over arms.

We generate a total of 10000MOMABs, and execute each algorithm 100000 times on each
MOMAB. Each of the random MOMAB has 10 different arms, and 2 objectives. We set the
total budget for arms to 40 and the total budget for queries to 5.

Results

Results are displayed in Table 4.1. For each algorithm, we report the best arm identifi-
cation percentage (BAI%) averaged over all MOMABs. Since the generated MOMABs are
different, it is more difficult to find the optimal arm for some than for others. This means
the BAI% inherently varies across MOMABs. As such, we did not find any insight in in-
cluding the standard deviation. Instead, we report the percentage of MOMABs for which
each query-timing outperforms the others in terms of BAI% (i.e., WIN%1 in the Table).

First, we notice that, as expected the round-robin strategy performs worst, as it does not
use targeted exploration. Second, we observe that knowing the utility function does in-
deed result in better performances, as the MOTTTS-cheat upper-bound baseline performs

1These percentages do not exactly sum to 100, due to the rare occurrences where performance is equal.
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best. Next, we observe that asking all queries before pulling arms results in a better perfor-
mance than asking all queries after having used up the pulling budget. Since, at the start
of training, we use uninformative belief distributions, our query-selection strategy (see
Section 4.4.4) samples different utility functions, and random vectorial rewards, resulting
in diverse queries. While these queries might not be realistic, they allow to narrow down
the range of possible utility functions, resulting in a more reliable ranking of arms during
the arm-selection steps. In contrast, having no information on the utility function means
each non-dominated arm is potentially optimal. Thus, for all these arms, an accurate belief
distribution is required, resulting in the pulling budget being split across more arms than
necessary. Even if, afterwards, the queries are realistic, the uncertainty on the belief distri-
butions over arms might be too high to accurately select the best arm. Indeed, we observe
that the performance of MOTTTS-end is similar to the lower-bound, MORobin-end, as the
exploration has been spread over too many arms.

Across all the query-selection timings, MOTTTS-interleaved performs best. This indi-
cates that improving knowledge over the utility function and improving knowledge over
the search space of the policy are intertwined processes. As an additional analysis, we ob-
serve using theWIN% that on 86.38% of the MOMABs, MOTTTS-interleaved has a higher
BAI% than bothMOTTTS-start andMOTTTS-end. This supports our conclusion about the
intertwined processes.

Finally, although MOTTTS-interleaved has the highest BAI% across the query-selection
variants, there is still a large gapwith the upper-bound performance, which reaches 83.29%.
We believe that, by further optimizing the timing at which the queries are asked, we can
close this gap.

4.5 POMCP for query optimization
Wehave shown that learning the utility function is tied with learning the optimal policy, as
MOTTTS-interleaved learns to identify the best arm significantly more often than its non-
intertwined counterparts (MOTTTS-start and MOTTTS-end). Thus, we argue that we can
optimize the timing of querying the decision maker, as there is still a gap in performance
when executing MOTTTS-cheat (i.e., with a known utility function).

We propose, to the best of our knowledge, the first algorithm for best arm identification
in the multi-objective setting. Our algorithm takes inspiration from Partially Observable
Monte-Carlo Planning (POMCP) (Silver & Veness, 2010), which effectuates Monte-Carlo
sampling to break the curse of dimensionality of large search-spaces. Moreover, POMCP
can cope with partial observability of MDPs, by keeping and updating beliefs over states.
This makes POMCP compatible with our setting, as we keep belief distributions over the
arms and utility function, which are updated with each pull, and query, respectively. Fi-
nally, since POMCP is a planning algorithm based on tree-search, it is made for episodic
settings with a finite number of timesteps. This is the case for our best-arm identification
setting, where the pulling budget and query budget define the number of timesteps that
can be executed.

POMCP is an online algorithm for action-recommendation. In its essence, it is an exten-
sion of Monte-Carlo tree search (MCTS) (Coulom, 2007b) for partially observable MDPs
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(POMDPs). Although, contrary to MDPs and POMDPs, MOMABs do not have states, we
will see in Section 4.5.2 that we can use the same concept behind these algorithms differ-
ently in MOMABs, by considering the whole process towards finding the best arm as a
sequential decision process.

We first explain the main idea behind MCTS, as it is essentially the same as for POMCP. At
each timestep 𝑡, MCTS performs a number of simulations, or rollouts, using a model of the
environment. All rollouts start from the current state 𝑠𝑡. Based on these simulated rollouts,
it estimates Q-values 𝑄(𝑠𝑡, 𝑎) for each action 𝑎 of 𝑠𝑡. It then recommends executing the
action with the highest estimated Q-value in the environment. This leads to a new state
𝑠𝑡+1, at which point the process repeats: recommending an action to execute in 𝑠𝑡+1, based
on simulated rollouts starting from 𝑠𝑡+1. The main particularity of POMCP, compared to
MCTS, is that POMCP does not actually know the state 𝑠𝑡 (or 𝑠𝑡+1) it is currently in. It
has only a limited view on the state, and a belief distribution 𝒫 on what this state could
be. For each rollout, POMCP samples an estimated state 𝑠𝑡, and starts the simulation from
there. The recommended action is then based on the aggregated Q-value estimates over
all 𝑠𝑡 samples.

4.5.1 Simulating rollouts

Recommending an action is based on simulated rollouts. To identify with the highest con-
fidence possible which action to recommend, the rollouts use a targeted exploration of
the available model. This is done by building a tree of the possible action-sequences, and
following the most promising branches of this tree.

Initially, our tree consists of a root-node, corresponding to the belief distribution 𝒫𝑡 over
the current state 𝑠𝑡 (we will see that in our setting, wewill consider a "state" as the histories
of pulls and queries). This belief-node has one child-node per possible action, called action-
node. These action-nodes have no child-nodes yet, however they will be created later on.
Each node keeps track of the number of times it has been visited (the visitation count),
as well as the average return of all rollouts passing through that node (the Value of that
node).

A rollout is split in 4 phases. In the first phase, we walk down our current tree. At each
belief-node, we select an action-node based on the UCB (see Section 4.3.2), as is done in
the original MCTS and POMCP algorithms. We execute the action in the model of the
environment, leading us to the belief distribution over the next state. If this belief does not
correspond to a child-node of the selected action-node, we go to the next phase. Otherwise,
we walk to that child-node, and repeat the process.

Thus, the second phase starts from an action-node that leads to a belief that has not been
encountered before. We create a new belief-node for this belief, and add it as a child of the
current action-node. Moreover, similar as for the root-node, we add one-child node per
possible action to the newly created belief-node. The second phase is thus a node-creation
phase. Since this occurs at every rollout, each rollout creates one belief-node. The size of
the tree is thus proportional to the number of rollouts performed at each timestep.

Next, the third phase starts from the newly created node, and executes a fixed policy until
reaching a final state in the model of the environment. We then assess the performance of
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the rollout using a scoring function (i.e., the rollout’s return).

Finally, the return is backpropagated through the tree, updating the visitation count and
Q-value of each traversed node during this rollout.

4.5.2 Transition model of MOMABs for simulated rollouts

POMCP requires a model of the environment to make simulations. We propose to create
a such a model, entirely based on our belief distributions over arms and utility function.

The length of an episode (and thus the maximal depth of the search tree built by POMCP)
is defined by the sum of the query budget and pulling budget. At each timestep, we can
either pull an arm, or query the decision maker. The first 𝑎1, . . . , 𝑎𝐴 actions pull the corre-
sponding arm 𝑎1, . . . , 𝑎𝐴. The last action queries the decision maker, using the querying
strategy explained in Section 4.4.4. The number of actions is thus𝐴+1. However, if either
the pulling budget or the query budget is 0, then we can only query, or pull, respectively.

Of course, these actions are executed in the model, as such we need to define what hap-
pens when we pull an arm or decide to query the decision maker. For each new rollout,
we sample a virtual MOMAB, based on our belief distributions, by sampling an estimated
mean, standard deviation �̂�𝑎, �̂�𝑎 ∼ 𝒫(· | ℋ𝐴𝑎,𝑡), 𝑎 ∈ 𝒜 for each arm, and sampling a
utility function �̂� ∼ 𝒫(· | ℋ𝑞𝑡 ). When pulling an arm 𝑎, we sample a reward from the
virtual MOMAB 𝑟 ∼ 𝒩 (�̂�𝑎, �̂�𝑎). Our belief distribution over 𝑎 is then updated using 𝑟.
Analogously, queries are evaluated on �̂�, and our belief distribution over the utility func-
tion is updated accordingly. At the end of the rollout, we can then evaluate our final belief
against the virtual MOMAB, and thus provide a score measuring the rollout’s quality. By
using a different virtual MOMAB for each rollout, we ensure that the recommended action
at the root-node is the best one, for all potential states covered by our belief distribution.

Using our proposed model comes with some challenges. Mainly, the quality of the esti-
mated Q-values at the root-node are significantly impacted by the branching factor of the
same tree, as a larger branching factor requires exponentially more simulations. We note
2 different branching factors, one for the belief-nodes, and another for the action-nodes.
Each belief node has one child for each possible action. Thus, the branching factor in-
creases with the number of possible arms. Hence, we expect a decrease of performance
for MOMABs with a large number of arms. This is a known problem for tree-search ap-
proaches such as MCTS and POMCP, and multiple approaches have been proposed to cope
with large action-spaces, typically by keeping a small subset of candidate-actions (Chaslot
et al., 2008; Couëtoux et al., 2011; Coulom, 2007a; Gelly & Silver, 2011).

Analogously, action-nodes have a branching factor that depends on the number of subse-
quent beliefs encountered after executing the action tied with the action-node. However,
pulling an arm in our proposed model results in a continuous reward-vector. Thus, each
time we enter an action-node and execute its action, the sampled reward will be differ-
ent, resulting in a different belief distribution and associated belief-node. As such, the
branching factor for belief nodes is infinite, bounding the tree-depth to 3: the root node,
the actions executable from the root node, and finally an endlessly growing number of
next-belief-nodes. To ensure a meaningful tree-search, we need to cope with this infinite
branching factor.
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Figure 4.4: Example of produced bins, depending on the number of samples. The orange
region shows an unknown reward distribution from which we sampled 2, 3, 5, 10 times,
from the leftmost plot to the rightmost plot, respectively. As the number of samples in-
creases, our belief distribution becomes more precise, which means the bins better match
the reward distribution.

4.5.3 Aggregating belief-nodes together
A straightforward way of dealing with continuous state-spaces is to discretize the states.
For our setting, this amounts to splitting the range of possible reward values in a fixed
number of bins. We can decide on the branching factor by choosing the number of bins. A
higher number of bins increases the accuracy of the discretization, at the cost of a higher
branching factor.

We use an adaptive binning mechanism, based on the belief distribution over the arm
we are currently pulling. As the belief distribution becomes more accurate, due to the
additional samples, then the bins become increasingly precise. Since, in our setting, the
reward-distributions follow a Normal distribution, its conjugate prior is a Normal-gamma
distribution (see Equation 4.14). We use the estimated mean and standard deviation from
the conjugate prior to produce the boundaries between each bin.

Concretely, we compute a range of possible values [𝜇 − 𝑐𝜎, 𝜇 + 𝑐𝜎], where 𝑐 is a con-
stant defining up to how many standard deviations we can be away from the estimated
mean, that we partition equally between the chosen number of bins. We set, using prior
hyperparameters 𝛼 = 1

2 , 𝛽 = 0.1:

𝜇 = �̂�,with �̂� the sample mean,

𝑘 = 𝛼+
𝑁

2
,with 𝑁 the number of samples,

𝜏 = (𝛽 +
𝑁

2
�̂�2)−1,with �̂� the sample standard deviation, assuming a zero-prior,

𝜎 =

√︂
1

𝑘𝜏
, since 𝑘𝜏 is the mean of a Gamma distribution.

Figure 4.4 shows an illustration of our binning method depending on the number of sam-
ples, using 10 bins per objective-dimension. It displays, in orange, the bivariate normal
distribution (up to 2 standard deviations) from which the samples (in blue) are drawn. The
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grid (in black) represent the different bins. As the number of samples increase, so does the
confidence of the belief distribution in its estimation of the mean and standard deviation.
The bins increasingly concentrate around the true distribution.

Our adapted binning allows for an automatic segmentation of the sampled rewards. How-
ever, the number of bins required to split the state-space increases exponentially with the
number of objectives. Still, we argue that, when the number of objectives are limited, bin-
ning is a reasonable approach, as it is conceptually simple and adaptive to each individual
belief distribution.

4.5.4 Evaluating rollouts
Since we can cope with the infinite branching of action-nodes, we can execute simulated
rollouts that each will increase the size and depth of the search tree. At the end of a rollout,
we need to assess its quality. Since our aim is to provide the best arm within a fixed
budget, we would like our algorithm to recommend the action that maximally increases
our chances to find this best arm. As such, our scoring function should reflect this.

Since we can best assess the quality of a rollout after it has been executed, and the score
is backpropagated through the tree, we only provide a score at the end of each simulation,
after having used all the budget. This score is computed using the posterior belief over
arms and over the utility function, since they define our estimate over the best arm.

To assess the importance of the scoring function compared to the number of rollouts, we
have analyzed 2 alternative scoring mechanisms. As a first scoring function, we compute
our estimated utility of each arm, by using the estimated mean of the posterior belief
over the utility function and the estimated mean of each arm. If the arm with the highest
estimated utility, i.e., the proposed best arm, matches the best arm from the simulated
bandit generated at the root node of our tree, the simulation is considered a success, and
returns a score of 1. Otherwise, the simulation is considered a failure, and the returned
score is 0:

�̂�* = argmax
𝑎∈𝐴

�̂�⊤
𝑢 �̂�𝑎, (4.15)

ℛ1 =

{︃
1 if �̂�* = �̃�*

0 otherwise.
(4.16)

This is the same way we would recommend the best arm to the real decision maker (and
not the simulated utility function in our algorithm). Since each action-node keeps track of
the average score from all simulations passing through that node, the scores of the action-
nodes at the root represent the probability of recommending the best arm to the decision
maker.

Not only is this scoring function aligned with the goal of our problem setting, it has
also the advantage of being computationally inexpensive, which allows us to spend the
computational budget on additional simulations, thus improving the accuracy of the es-
timated probabilities at the root’s action-nodes. However, due to its binary nature, this
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scoring function is sparse. Moreover, since the success depends on our initial belief over
the MOMAB, it can be noisy. Thus, many simulations are required for accurate best arm
identification probabilities at the root node.

The first scoring function requires many simulations for accurate best arm identification
probabilities at the root node. When the branching factor becomes too large, this can
become an issue. Thus, we envisage a second, less sparse and more informative scoring
function. We take inspiration from TTTS which, to identify the best arm, aims to discrim-
inate the best and second-best arm as much as possible. In a similar fashion, we estimate
the confidence of our posterior belief at the end of the simulation in recommending the
best arm.

To compute this confidence score, we sample weights and arm-rewards multiple times
from our posterior belief over the MOMAB. For each arm, we count the number of times
it is recommended as best. This gives us a recommendation percentage for each arm. The
returned score is the highest recommendation percentage.

Since the recommendation percentage depends on the number of times we sample from
our posterior belief, it is more computationally expensive. However, it might be a benefi-
cial trade-off depending on the properties of the bandit (e.g., number of arms, number of
objectives).

4.5.5 Experiments

We evaluate our method on random MOMABs, generated in the same fashion as for our
MOTTTS experiments (see Section 4.4.6). We generate 30 MOMABs, and perform 1000
experiments on each MOMAB. Furthermore, we compare our method against MOTTTS-
interleaved, the top performing baseline, which ask queries at regular, fixed intervals.
We use 100 particles equally-spaced over the 𝑛 − 1 simplex, initialized with uniform
probability-weights. We set the UCB exploration factor 𝛽 to 0.1.

Results are shown in Figure 4.5. We show MOPOMCP using the 2 scoring functions.
MOPOMCP𝑠=1 uses the binary scoring function, while MOPOMCP𝑠=1000 estimates the
posterior confidence with 1000 samples. We analyze the effect of the number of rollouts
on MOPOMCP’s performance, by repeating the experiments with an increasing number
of rollouts. We note that, since MOPOMCP𝑠=1 uses a less computationally expensive scor-
ing function than MOPOMCP𝑠=1000, it can perform more rollouts for similar wall-times.
In fact, the number of rollouts for similar wall-times is one order of magnitude higher
for MOPOMCP𝑠=1 than for MOPOMCP𝑠=1000. This is why we perform experiments with
104, 105, 106 rollouts for MOPOMCP𝑠=1, and 103, 104, 105 rollouts for MOPOMCP𝑠=1000.

In general, the BAI% increases with the number of rollouts. Provided enough rollouts,
MOPOMCPoutperforms theMOTTTS-interleaved baseline, regardless of the scoring func-
tion. However, for similar wall-times, MOPOMCP𝑠=1000 systematically outperforms
MOPOMCP𝑠=1. Thus, it seems that using amore informative scoring function has a higher
impact on performance than increasing the number of rollouts. MOPOMCP𝑠=1000 with
105 rollouts reaches a BAI% of 78.38%, compared to 74.48% for MOTTTS-interleaved
and 85.26% for the upper bound, MOTTTS-cheat. Since we can maximally improve the
BAI% by 10.78% compared to the baseline, the 3.9% improvement by MOPOMCP𝑠=1000
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Figure 4.5: Best-arm-identification percentage (BAI%) of MOPOMCP depending on
the number of rollouts. MOPOMCP𝑠=1 uses the binary scoring function, while
MOPOMCP𝑠=1000 estimates the posterior confidence with 1000 samples. We note that
MOPOMCP𝑠=1 needs one order of magnitude more rollouts than MOPOMCP𝑠=1000 to
reach similar performance in BAI%. However, since the binary scoring function is less ex-
pensive to compute, the wall-time is similar. We observe that, given enough rollouts, the
timing of the queries proposed byMOPOMCP results in a higher BAI% than the MOTTTS-
interleaved baseline. Moreover, for similar wall-time, using the second scoring function
results in a higher BAI% than using the binary scoring function.

represent a substantial increase in performance. Moreover, looking at the corresponding
WIN% value on the right plot of Figure 4.5, we see that MOPOMCP𝑠=1000 has a higher
BAI% than MOTTTS-interleaved on 100% of the generated MOMABs, showing that it re-
liably optimizes the timing of queries, regardless of the MOMAB’s properties. In contrast,
MOPOMCP𝑠=1 with 106 rollouts has a higher average BAI%, but is better than MOTTTS-
interleaved on 73.33% of the generated MOMABs. Moreover, we expect the WIN% and
BAI% to increase as we increase the number of rollouts. Since the best-arm-identification
setting is not necessarily an online setting, we expect this to be possible depending on
the problem at hand. Thus, our proposed MOPOMCP algorithm learns different timings
depending on the MOMAB, allowing it to more efficiently pull arms with respect to the
estimated utility, resulting in a higher chance of finding the best arm than when using a
fixed timing for queries.

4.6 Related work
While, to the best of our knowledge, we are the first to propose an algorithm for best arm
identification in themulti-objective setting, this setting is related to different areas of work.

MOMABs (Drugan &Nowe, 2013) have been studied to learn the set of Pareto optimal poli-
cies (Garrido-Merchán & Hernández-Lobato, 2019; Laumanns & Ocenasek, 2002). Yahyaa
and Manderick (2015) and Yahyaa et al. (2014) assume Bernoulli distributions over the re-
wards, and additionally aim for a fair pulling of all Pareto-efficient arms. These methods
minimize the regret using a multi-objective performance metric. For example, Daulton et
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al. (2020) learn the set of Pareto-efficent arms using a fast approximation of the expected
hypervolume improvement, while Belakaria et al. (2020) select the action that maximizes
information gained about the Pareto front. Additionally, R. Zhang and Golovin (2020) learn
the Pareto front by sampling different scalarization functions, based on the hypervolume.

In contrast to these methods that do not assume knowledge over the utility function,
MOMABs have been used for known utility functions in the context of constrained opti-
mization, eitherwith linear constraints (Kagrecha et al., 2023), or non-linear constraints (Sui
et al., 2015, 2018). However, they do not necessarily take an explicitly multi-objective ap-
proach, instead optimizing a single objective, subject to predefined constraints (Sui et al.,
2015, 2018). Constrained optimization for MABs has been used in the context of clinical
trials, by identifying dosages that satisfy toxicity constraints (C. Shen et al., 2020).

Instead of constraints, another approach is to provide an order of preferences over the dif-
ferent objectives, and incorporate that into a multi-objective Bayesian optimisation frame-
work (Abdolshah et al., 2019).

More closely related to our setting, Paria et al. (2020) minimize the regret of MOMABs by
randomly sampling utility functions. The sampling strategy can incorporate prior knowl-
edge over the preferences of the decision maker, thus fine-tuning the set of optimal arms.
While they do not incorporate a way to choose or update this prior, they argue their
method is compatible with potential updates of information over preferences during the
optimization process.

One other work that considers interactive preference learning for MOMABs is (Astudillo
& Frazier, 2020). Like in our work, they incorporate pairwise relative queries, and they
use parametric utility functions. Moreover, on top of linear utility functions, they consider
quadratic and exponential utility functions. However, they focus on regret minimization,
and ask queries at fixed intervals, like ITS (Roijers et al., 2017).

Finally, preference learning has been considered in RL (Wirth et al., 2016, 2017). How-
ever, while these methods use relative queries, they are based on partial trajectories, or
states, instead of multi-objective trade-offs (Christiano et al., 2017; Ibarz et al., 2018). In-
terestingly, (Ziegler et al., 2019) consider both pairwise relative preferences and ranking
preferences, by ordering 4 samples according to their preference.

4.7 Discussion
In this chapter, we have focused on the interactive decision support scenario (see Sec-
tion 1.2). We have formalized the interactive setting as a MOMAB, in which we can query
the decision maker. We propose MOTTTS with interleaved queries as a strong baseline for
the best arm identification problem, demonstrating that learning the policy and learning
the utility function are intertwined processes. Furthermore, we propose to use particle
filtering as a belief distribution over linear utility functions, and show that this represen-
tation is more reliable than using Bayesian logistic regression.

Our experiments show that there is, on average, a large gap in performance between al-
gorithms that learn the utility function, and the multi-objective variant of TTTS that has
access to the utility function. By optimizing the timing at which we ask queries, we argue
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we can close this performance gap. We propose, MOPOMCP, a Bayesian approach towards
query-timing optimization for best-arm identification. Given enough simulated rollouts,
MOPOMCP can accurately estimate which action maximally improves its belief over the
best arm in terms of utility. Moreover, MOPOMCP copes with relative queries, which are
more suited towards human decision makers.

We see many possible avenues for future work. First, we focused on linear utility functions
in this chapter, which is a more restrictive setting than using non-linear utility functions.
We can extend our work towards non-linear utility functions by using non-linear para-
metric scalarization functions, such as Chebyshev scalarization (Equation 2.9), and use
particle filtering for the function parameters, similarly as we have done for the linear case.
However, like for the linear case, the number of particles required to cover the parametric
space increases exponentially with the number of objectives. Alternatively, we can use
Gaussian Processes (GPs) to model non-linear utility functions, as we have done in (Roi-
jers, Zintgraf, et al., 2021). While the GPswe use in (Roijers, Zintgraf, et al., 2021) copewith
relative preferences, they do not enforce monotonicity constraints. While monotonicity
constraints cannot be enforced on GPs, some approximations exist (Chu & Ghahramani,
2005; Riihimäki & Vehtari, 2010; Zintgraf et al., 2018). Further research is thus necessary
to integrate these with MOPOMCP.

Second, we aim to scale our experiments to the many-objective setting, by proposing an
adaptive particle filtering method that resamples filters in more interesting regions of
the weight space (Hol et al., 2006; T. Li et al., 2015). We can also scale our experiments
to MOMABs with more arms, by using, e.g., progressive widening (Chaslot et al., 2008;
Coulom, 2007a) on the actions in MOPOMCP’s search tree.

Third, we can, on top of optimizing the timing of the query, optimize the queries them-
selves, by proposing queries that most discriminate part of the belief distribution over the
utility function. We can take inspiration from active learning, which deals with interactive
settings (Brochu et al., 2010; Eric et al., 2007; Zintgraf et al., 2018).

Finally, using belief distributions over the utility function can be incorporated into MORL,
such that we learn a policy that either provides us with information about the utility, when
being presented to the decision maker, or is optimal with respect to our belief distribution
over the utility function.
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5.1 Introduction
Previous chapters focus on algorithms with some form of knowledge over the utility func-
tion. However, in many real-world problems, the utility function is unknown beforehand.
This can happen, for example, when there are multiple stakeholders with different prefer-
ences and objectives, and it is not understood how to capture all of these in a single utility
function. It might also be infeasible to interact with the decision maker and refine our
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knowledge over the utility function. For example, in the case multiple stakeholders are
involved, each interaction might result in multiple debates and negotiations before agree-
ing on a preferred solution. In this case, learning all non-dominated trade-offs and present
them to the stakeholders, so these negotiations occur only once, a posteriori, might be
preferable.

We refer to the third main category defined in Section 1.2: no-knowledge algorithms,
where the utility function is unknown. As in the previous chapters, we only make min-
imal assumptions concerning the shape of the utility function. Finally, we aim to avoid
unexpected behavior due to the stochasticity of the policy. For example, for the manage-
ment of a hydroelectric power plant, the decision maker does not want to be presented
with a policy that has a probability of completely draining the water reservoir even if that
policy is optimal, as it would have catastrophic consequences for nearby towns (Hayes,
Rădulescu, et al., 2021). Thus, we aim to learn deterministic policies. As explained in Sec-
tion 2.6.3, even for non-linear utility functions, settings allowing stochastic policies result
in the convex coverage set being the optimal coverage set. However, in the case of deter-
ministic policies, one should learn the Pareto front, where the non-dominance criterion
defines the membership of a solution to the Pareto front.

Combining unknown non-linear utility functions with deterministic policies results in a
complex setting. The lack of the additivity property (see Section 2.4) means we cannot
straightforwardly apply the Bellman equation. Moreover, we have seen in Chapter 3 that,
even if the utility function is known a priori, single-objective algorithms are outperformed
by dedicated multi-objective algorithms in terms of sample-efficiency and can be outper-
formed in terms of utility. Thus, outer-loopmethods, which focus on optimizing one utility
function at a time, cannot easily use single-objective sub-routines and need to incorpo-
rate these dedicated multi-objective algorithms as well. Additionally, many outer-loops
methods execute these sub-routines independently. Even though optimizing for separate
trade-offs often results in exploring separate parts of the state-space, similar trade-offs are
usually characterized by similar behavior. Thus, at least for part of the policy execution,
they encounter similar states. We believe the sub-routines could benefit from sharing ex-
perience with each-other and avoid spending resources on exploring the same regions of
the state-space.

In this chapter, we propose a novel method, Pareto Conditioned Networks (PCN) (Reymond,
Eugenio, & Nowè, 2022), that is able to efficiently learn the policies that belong to the
Pareto front. PCN conditions a single neural network on the desired compromise, so that
it outputs the policy predicted to achieve it. Our method is sample-efficient, as it feeds
the experience used for different compromises into the same network, thus allowing to
share experience across policies. This also means it does not need to learn a policy in-
dependently for each trade-off found in the Pareto front, which is an approach taken by
several works in multi-objective reinforcement learning (MORL) (Parisi et al., 2014; Roijers
et al., 2015). Moreover, we make minimal assumptions concerning the utility function as
opposed to the often-used assumption of linear scalarization of the objectives in the MORL
literature (Abels et al., 2019; R. Yang et al., 2019). Finally, our method is scalable with re-
spect to the number of objectives, as opposed tomany of the current state-of-the-art MORL
methods, who often limit themselves to 2- or 3-objective problems (Hayes, Rădulescu, et
al., 2021).
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5.2 Reward Conditioned Policies
Our work is inspired by the Reward Conditioned Policies algorithm proposed by (Kumar
et al., 2019; Schmidhuber, 2019). Using neural networks as function approximators in RL
comes with many challenges. One of them is that the target (e.g., the optimal action of
the policy) is not known in advance — as opposed to classical supervised learning where
the ground-truth target is provided. As the behavior of the agent improves over time, the
action used as target can change, often leading to hard-to-tune and brittle learners (Fu et
al., 2019; Mnih et al., 2015).

Instead of trying to continuously improve the policy by learning actions that should lead
to the highest cumulative reward, Reward Conditioned Policies flips the problem, by learn-
ing actions that should lead to any desired cumulative reward (be it high or low). In this
way, all past trajectories can be reused for supervision, since their returns are known, as
well as the actions needed to reach said returns. We can thus train a policy that, condi-
tioned on a desired return, provides the optimal action to reach said return. By leveraging
the generalization properties of neural networks, we can accumulate incrementally better
experience by conditioning on increasingly higher reward-goals.

In our work, we condition our policy on a multi-objective return, such that we can exe-
cute policies to reach diverse points on the Pareto front. We propose a training regimen
focused on increasing the current solution set uniformly across the whole objective-space
to avoiding catastrophic forgetting.

5.3 Pareto Conditioned Networks
In this Section we introduce our main contribution, the Pareto Conditioned Networks
(PCN) algorithm. The key idea behind our approach is to use supervised learning tech-
niques to improve the policy instead of resorting to temporal-difference learning. As ex-
plained in Section 5.2, this eliminates the moving-target problem, resulting in stable learn-
ing.

PCN uses a single neural network that takes a tuple ⟨𝑠, ℎ̂, �̂�⟩ as input. They represent, for
state 𝑠, the return �̂� that PCN should reach at the end of the episode, i.e. the desired return
of the decision maker. The desired horizon ℎ̂, that says how many timesteps should be
executed before reaching �̂�. At execution time, both ℎ̂ and �̂� are chosen by the decision
maker at the start of the episode.

PCN’s neural network has a separate output for each action 𝑎𝑖 ∈ 𝒜. Each output repre-
sents the confidence the network has that, by taking the corresponding action, the desired
return will be reached in the desired number of timesteps. We can draw an analogy with
a classification problem where the network should learn to classify (𝑠, ℎ̂, �̂�) to its corre-
sponding label 𝑎𝑖.

As with classification, PCN requires a labeled dataset with training examples to learn a
mapping from input to label. Contrary to classification, however, the data present in the
dataset is not fixed. PCN collects data from the trajectories experiencedwhile exploring the
environment (see Section 5.3.1). Thus, the dataset improves over time, as we collect better
and better trajectories. In particular, since the ability of PCN to reach Pareto-dominating
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Figure 5.1: Conversion from a trajectory to labeled datapoints. For each timestep, we
extract a single datapoint. The input (blue) is composed of the state at that timestep, and
total return and number of timesteps until the end of the episode. The label (red) is the
action taken at that timestep.

solutions depends on the data on which its network is trained, we want to keep only
relevant experiences. We do so by limiting the size of the dataset and pruning it in such
a way so to keep only tuples with �̂�’s from different parts of the objective-space (see
Section 5.3.4).

We collect new data for several episodes, after which we re-train the network with a num-
ber of batch updates from the new dataset (see Section 5.3.2). This improves the policies
induced by the network, which in turn allows to gather better data for the next training
batch.

5.3.1 Building the dataset

As mentioned before, each datapoint in PCN’s dataset is comprised of an input ⟨𝑠, ℎ̂, �̂�⟩
and an output 𝑎. These are computed from observed transitions in the environment. As
the dataset is empty at first, we execute a random policy on the environment for the first
few episodes in order to collect a variety of trajectories.

After each episode is completed we store its trajectory. Then, for each timestep 𝑡 of the
trajectory, we know howmany timesteps are left until the end is reached, i.e., the episode’s
horizon ℎ𝑡 = 𝑇 − 𝑡. We can also compute the cumulative reward obtained from timestep
𝑡 onward, i.e., 𝑅𝑡 = Σ𝑇𝑖=𝑡𝛾

𝑖𝑟𝑖. Since for this trajectory executing action 𝑎𝑡 in state 𝑠𝑡 re-
sulted in return𝑅𝑡 in ℎ𝑡 timesteps, we add a datapoint with input ⟨𝑠, ℎ̂, �̂�⟩ = ⟨𝑠𝑡, ℎ𝑡,𝑅𝑡⟩
and output 𝑎 = 𝑎𝑡 to the dataset. In other words, when the observed return corresponds
to the desired return in that state, then 𝑎𝑡 is the optimal action to take. Figure 5.1 shows
how a full trajectory is decomposed into individual datapoints.

5.3.2 Training the Network

The network architecture of PCN uses a separate embedding for the state and another
one for the desired return and horizon. The desired return and horizon are concatenated
together and multiplied by a scaling factor to normalize their values. They then pass
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through a single fully connected layer followed by a sigmoid function. Similarly, the state-
embedding also ends with a fully connected layer and sigmoid activation. Both layers have
the same number of output nodes (we use 64 for all our experiments), which are combined
together using the Hadamard product. The Hadamard product has been shown to make
a more effective use of conditioning variables (E. Perez et al., 2018), and the sigmoid used
on both outputs ensure that both embeddings are equally important. Finally, the resulting
output passes through a multilayer perceptron that has a separate output node for each
action, and a single hidden layer of 64 nodes with a ReLU activation function.

PCN trains the network as a classification problem, where each class represents a different
action. Transitions 𝑥 = ⟨𝑠𝑡, ℎ𝑡,𝑅𝑡⟩, 𝑦 = 𝑎𝑡 are sampled from the dataset, and the ground-
truth output 𝑦 is compared with the predicted output 𝑦 = 𝜋(𝑠𝑡, ℎ𝑡,𝑅𝑡). The predictor
(i.e., the policy) is then updated using the cross-entropy loss function:

𝐻 = −
∑︁
𝑎∈𝒜

𝑦𝑎 log 𝜋(𝑎 | 𝑠𝑡, ℎ𝑡,𝑅𝑡), (5.1)

where 𝑦𝑎 = 1 if 𝑎 = 𝑎𝑡 and 𝑦𝑎 = 0 otherwise.

The network is re-trained periodically, but only after a set number of episodes (which is a
hyperparameter that depends on the problem), to ensure that enough new experience has
been collected and that the underlying dataset has been improved sufficiently.

5.3.3 Policy Exploration
As our dataset is composed of transitions collected from training experience, we can see
that the quality of our dataset crucially depends on the quality of the executed trajectories.
It is unrealistic to expect PCN to reliably produce trajectories with high-valued desired
returns when it has only been trained on datapoints originating from random trajectories.
Rather, we can expect PCN to produce trajectories with returns in the range of the ones
from the current training data. Therefore, if we obtain trajectories reaching high returns,
PCN will be able to confidently return high-return policies.

PCN leverages the fact that, due to the generalization capabilities of neural networks,
the policies obtained from the network will still be reliable even if the desired return is
marginally higher than what is present in the training data. In fact, they will perform
similar actions to those in the training data, but lead to a higher return. Thus, we incre-
mentally condition the network on better and better returns, in order to obtain trajectories
that extend the boundaries of PCN’s current coverage set.

More precisely, we randomly select a non-dominated return 𝑅𝑛𝑑 and its corresponding
horizon ℎ̂ from the dataset. By randomly picking a non-dominated return from the entire
coverage set we ensure equal chance of improvement to each part of the objective space.
However, using 𝑅𝑛𝑑 exactly would induce the network to only replicate the already ob-
served sampled trajectory so, as a second step, we choose a single objective 𝑜 to improve
upon. We then increase the desired value for that objective to obtain a new target return.
PCN determines the magnitude of the increase by computing the standard deviation 𝜎𝑜 for
the selected objective, using all non-dominated returns from the trajectories in the dataset.
The magnitude is then sampled from the uniform distribution𝑈(0, 𝜎𝑜) and added to𝑅𝑛𝑑,𝑜
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to form our desired return �̂�. By restricting the improvement to at most 𝜎𝑜, �̂� stays in
the range of possible achievable returns and, by only modifying one objective at a time,
the changes to the network’s input compared to the training data are kept at a minimum.

With �̂� and ℎ̂ selected, PCN can condition its network and act during the training episode.
At the start of the episode, ⟨𝑠0, ℎ̂, �̂�⟩ results in executing 𝑎0 and observing 𝑟0, 𝑠1. PCN
then updates the desired return and horizon such that they stay consistent throughout
the episode: �̂� ←− �̂� − 𝑟0 and ℎ̂ ←− max(ℎ̂ − 1, 1). We ensure that ℎ̂ is at least 1 to
avoid impossible desired horizons. PCN can then choose an action for 𝑠1. This process is
repeated until PCN encounters a terminal state. The trajectory is then added to the dataset,
using the conversion to datapoints explained in Section 5.3.1.

To increase the range of observations in the environment during training, PCN samples
actions from a categorical distribution with each action’s confidence score correspond-
ing to its probability of being sampled. This is done by using a softmax function on the
network’s output (Szandała, 2021). Note that at execution time— i.e., after the training pro-
cess —we use a deterministic policy by systematically selecting the action with the highest
confidence. This is because, as mentioned in Section 2.6.3, only deterministic policies are
optimal when learning the complete set of Pareto-efficient policies.

5.3.4 Updating the Dataset
As it collects new experience, PCN needs to use it to train its network without forgetting
about previous, relevant experience. Unfortunately, measuring relevance of data in our
setting is non-trivial. We mainly care about the non-dominated solutions, since those are
the ones that compose our coverage set, so ideally we would only keep their associated
trajectories in our dataset. However, focusing solely on the current coverage set can lead
to performance degradation if it is composed of too few V-values. This is because, during
exploration (see Section 5.3.3), we will keep collecting very similar trajectories to the ones
we already have. In turn, this will reinforce PCN’s strategy to focus only on these few
policies, disrupting the learning process. Thus, throughout training we keep a dataset of
𝑁 trajectories, favoring trajectories that span different parts of the objective-space while
removing highly clustered solutions. To do this we employ an additional metric, the crowd-
ing distance, that assigns a lower score to points with close neighbors. We then combine
both the distance to the coverage set and the crowding distance in a single metric, which
we use to prune less relevant points from the dataset.

We measure our preference for non-dominated V-values by computing for each solution
its negative L2-norm distance, 𝐼𝑙2, to its closest non-dominated solution in the dataset.
Non-dominated V-values thus score the highest with 𝐼𝑙2 = 0.

𝐼𝑙2,𝑖 = −min ‖𝑝𝑖 − 𝑝𝑗‖2 , 𝑝𝑗 ∈ Π̂, (5.2)

where 𝑖 is the index of the 𝑖-th solution in the dataset and 𝑝𝑗 is a non-dominated point in
the current coverage set Π̂.

We measure the level of clustering of a V-value, 𝐼𝑐𝑑, using the crowding distance (Deb et
al., 2000). It assigns a score for each solution based on the distance between its neighbors
in each dimension. Thus, V-values with close neighbors will have lower scores, while more



5.4. EXPERIMENTS 91

1 2 3 4 5

1

2

3

4

5

𝐼𝑙2

𝐼𝑐𝑑

Figure 5.2: The 𝐼𝑑𝑠 metric for the solid black dot combines its negative L2-norm distance
(red arrow) to its closest non-dominated neighbor (orange), and its crowding distance as
the sum, for each dimension, of the max distance between a point’s upper and lower neigh-
bor (blue).

isolated points will have higher scores. Algorithm 10 shows how the crowding distance is
computed in practice.

We then combine 𝐼𝑙2 with 𝐼𝑐𝑑 in a single score metric, which we call dominating score, 𝐼𝑑𝑠.
We define it as:

𝐼𝑑𝑠,𝑖 =

{︃
𝐼𝑙2,𝑖 if 𝐼𝑐𝑑,𝑖 > 0.2

2(𝐼𝑙2,𝑖 − 𝑐) if 𝐼𝑐𝑑,𝑖 ≤ 0.2
(5.3)

Note that since 𝐼𝑙2 corresponds to a negative distance, if a point is crowded — i.e., 𝐼𝑐𝑑,𝑖 ≤
0.2 – we double the distance penalty. In addition, we add an additional small penalty
𝑐 to crowded points to prune, to detect and prune duplicate points on the coverage set.
Figure 5.2 shows an example on how to compute the L2-norm and crowding distances for
a given solution set.

5.4 Experiments
Most state-of-the-art algorithms inMORL assume that the utility function can be expressed
as a linear scalarization. This makes them unsuitable as relevant baselines, as their setting
is different from ours. Thus, for all experiments, we compare PCN with 2 baselines that
share our same assumptions on the utility function and that learn a set of policies that
estimates the whole Pareto front. The first baseline, Multi-Objective Natural Evolution
Strategies (MONES) (Parisi et al., 2017) uses a parametrized policy. It learns a distribution
over the policy parameters such that sampling from this distribution produces a Pareto-
efficient policy. Different samples produce different Pareto-efficient policies, each leading
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Algorithm 10 Crowding Distance
Require: 𝑝 points
Ensure: The crowding distance 𝐼𝑐𝑑
1: for 𝑜← 0 to 𝑛 do
2: 𝑠𝑖 ← arg sort 𝑝.,𝑜
3: for 𝑗 ← 0 to len(𝑝) do
4: 𝑛𝑢, 𝑛𝑑 ← 𝑠𝑖𝑗+1 , 𝑠𝑖𝑗−1

5: 𝑐𝑠𝑖𝑗 ,𝑜 = 𝑝𝑛𝑢 − 𝑝𝑛𝑑

6: end for
7: end for
8: return 𝐼𝑐𝑑 ←

∑︀
𝑜 𝑐.,𝑜

Deep Sea Treasure Minecart Crossroad Walkroom
learning rate 1× 10−2 1× 10−3 1× 10−3 1× 10−2

batch-size 256 256 1024 256
updates per iteration 10 50 50 10
exploration episodes 50 20 50 50

buffer size 200 50 50 10𝑛3

Table 5.1: The hyperparameters of Pareto Conditioned Networks, for each experiment.

to a different non-dominated return. The advantage of this method is that it can produce
an infinite number of different policies. However, the main drawback is that we do not
know the return of the sampled policy without executing it first.

The second baseline used is the Radial Algorithm (RA) (Parisi et al., 2014). RA trains a fixed
number of independent policies. Each policy is trained using a policy gradient algorithm,
where the gradients w.r.t. the different objectives are weighted together. Using different
weights on these gradients produces distinct policies, each aiming for different regions
of the objective-space. The main disadvantage of this approach is that every new policy
is learnt independently, disregarding potentially useful experience encountered by other
policies.

In contrast, our approach makes efficient usage of encountered experience as it learns a
single network that, when conditioned on a desired return, produces a policy with pre-
dictable behavior.

When not mentioned otherwise, all results are averaged over 5 runs. The hyperparameters
used are summarized in Table B.1. The code is publicly available online1.

The results for all experiments are summarized in Table 5.2. Figures 5.3-5.6 show, for each
environment, the coverage set found by each algorithm, with dominated solutions filtered
out.

1https://github.com/mathieu-reymond/pareto-conditioned-networks

https://github.com/mathieu-reymond/pareto-conditioned-networks
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Algorithm 11 Pareto Conditioned Networks
Require: PCN network 𝜋𝜃 with buffer ℬPCN.
1: for 𝑛 ∈ [𝑁 ] do ◁ fill buffers with random trajectories
2: sample trajectory 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 , 𝑟0:𝑇 ⟩ using random policy 𝜋𝑛
3: for 𝜏𝑖 ∈ 𝜏 do
4: ℎ̂, �̂� = 𝑇 − 𝑖,∑︀𝑇

𝑡=𝑖 𝛾
𝑡−𝑖𝑟𝑡 ◁ target horizon, return

5: add 𝜏𝑖, ℎ̂, �̂� to ℬPCN
6: end for
7: end for
8: while True do
9: for𝑚 ∈ [𝑀 ] do ◁ policy updates
10: update 𝜋𝜃 using ℬPCN
11: end for
12: prune ℬPCN using {𝑅𝜏 | ∀𝜏 ∈ ℬPCN}
13: select ℎ̂, �̂� based on ℬPCN ◁ optimistic targets
14: for 𝑛 ∈ [𝑁 ] do ◁ exploration
15: sample 𝜏 = ⟨𝑠0:𝑇 , 𝑎0:𝑇 , 𝑟0:𝑇 ⟩ using 𝜋𝜃 with ℎ̂, �̂�
16: for 𝜏𝑖 ∈ 𝜏 do
17: add 𝜏𝑖, 𝑇 − 𝑖,𝑅𝑖 to ℬPCN
18: end for
19: end for
20: end while

We experimentally validate our method on three multi-objective benchmarks:

• Deep-Sea-Treasure (Vamplew et al., 2011), awell-known 2-objective grid-world prob-
lem (see Section 5.4.1),

• Minecart (Abels et al., 2019), a 3-objective problem with a continuous state-space
(see Section 5.4.2),

• Crossroad, a novel 2-objective traffic environment, with high-dimensional pixel-like
states (see Section 5.4.3).

In addition, in Section 5.5 we propose an additional novel high-objective environment,
Walkroom, where we test our algorithms with up to 9 objectives.

5.4.1 Deep-Sea-Treasure

Deep-Sea-Treasure (DST) is a well known environment in multi-objective literature (see
Section 3.8.1 for further details on the environment), where the agent controls a submarine
in search for treasure hidden in the depth of the ocean. The agent must balance a trade-
off between fuel consumption and treasure value. Navigating consumes fuel, but deeper
treasures are worth more than shallow ones.

DST is a fairly small environment, which allows us to compute Pareto front analytically.
It is composed of 10 different points, which form a concave front.
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hypervolume
PCN (ours) MONES RA

DST 22845.40± 19.20* 17384.83± 6521.10 22437.40± 49.20
Minecart 197.56± 0.70* 123.81± 23.03 123.92± 0.25
Crossroad 539.53± 6.27* 429.09± 27.47 466.02± 31.23

𝐼𝜀 indicator
PCN (ours) MONES RA

DST 0.039± 0.087* 0.687± 0.222 0.667± 0.000
Minecart 0.271± 0.087* 1.596± 0.889 1.000± 0.000
Crossroad 0.247± 0.172* 0.660± 0.200 0.408± 0.039

Table 5.2: Mean and standard deviation of hypervolume and 𝜀-indicator across all 5 runs
for all algorithms. For hypervolume, higher is better. For 𝐼𝜀, lower is better. Best results
are highlighted in bold and with an asterisk.

Figure 5.3 shows the discovered points of the Pareto front by PCN and our two baselines.
Only PCN is able to fully recover the Pareto front. RA only discovers the extrema, and is
unable to find any of the points in the concave part of the front. While MONES performs
slightly better, the number and value of points it discovered was highly variable depending
on the run, explaining the high variance seen in Table 5.2.

5.4.2 Minecart

Minecart is a complex environmentwith a continuous state-space (Abels et al., 2019). Start-
ing at a base station, the agent controls a cart with the goal to extract ores frommines scat-
tered in the environment, and sell them back at its base. The cart has a limited capacity, so
it cannot be filled indefinitely. Finally, actions consume fuel, making the Minecart problem
a 3-objective problem. For further details for this environment, we refer to Section 3.8.2.
In our experiments, we use the 6-dimensional continuous state-space.

Because the cart has a limited capacity to store ores, the agent must decide the ratio of
each ore present in the cart. This is why, as can be seen in Figure 5.4, the vast majority of
policies discovered by PCN are laid out in a straight line: the sum of𝑅0 and𝑅1 equals 1.5
(which is the cart capacity). A few policies only partially fill the cart, saving a bit of fuel
in the process. In comparison, the coverage sets discovered by both baselines only contain
a small subset of the possible ore ratios, and they systematically consume more fuel than
our method. Finally, Table 5.2 reports that PCN achieves a low variance in hypervolume
across the different runs, which shows that PCN is consistent in finding these diverse and
efficient policies.

5.4.3 Crossroad

We evaluate our proposed method on a novel traffic environment, Crossroad, developed
using the SUMO framework (Lopez et al., 2018). In this environment, the agent controls
the traffic lights at a busy intersection between two bidirectional roads, a horizontal one
with two lanes and a vertical one with a single lane. The traffic flow on each lane is high,
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Figure 5.3: Best coverage sets for each algorithm in the Deep Sea Treasure environment.
PCN is the only algorithm that recovered the full Pareto front.
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Figure 5.4: Best coverage sets for each algorithm in theMinecart environment. The straight
shape of PCN’s coverage set is due to the cart weight limit. PCN’s coverage set fully
dominates the ones from the baselines.
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Figure 5.5: A visual representation of the Crossroad environment. The agent controls the
traffic lights at the center of the intersection. Because one road has more lanes than the
other, traffic flow is highest when its light is always green. This comes at the expense of a
never-ending waiting time for the cars on the other road.

resulting in quickly growing waiting queues on the lane where the traffic light is red.

The agent can choose between 2 actions, either switching the lights or not. For a realistic
traffic light system, the traffic lights first turn orange after the switching action has been
made. Afterwards, they turn to the next phase (red or green). Actions during the orange
phase are ignored, so that the lights cannot be immediately switched again.

The agent perceives a 2-dimensional grid of the top-down view of the intersection. Cells
represent a section of a lane. A cell is filled with 0 if no car is present. If a cell contains a
car, its value is the number of timesteps that the car has been on the lane. Thus, when a
traffic light is red, all cells of the corresponding lane with a car increment their value by 1
at each timestep.

We consider 2 objectives: the first is the traffic flow, computed as the number of cars
that leave the intersection. The second objective is the car waiting time, i.e., the number
of timesteps a car has to wait before exiting the crossroad. Thus, favoring traffic on the
horizontal road will favor the first objective, while alternating often will favor the second.
The environment is depicted in Figure 5.5.

Figure 5.6 shows the coverage sets found by PCN and the two baselines. The points dis-
covered by our method dominate the ones found by the baselines across nearly the whole
objective-space. There is a single exception is the rightmost extremum, which corresponds
to the policy that never switches the light, only allowing cars from the major road to cross
the intersection. This policy is pretty simple, as it consists of always performing the same
action, which explains why all methods find it.

5.5 Scaling Up the Objective-Space
Our experimental section shows that our proposed method significantly outperforms the
baselines in several settings, with discrete, continuous and high-dimensional state-spaces.
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Figure 5.6: Best coverage sets for each algorithm in the Crossroad environment. PCN
fully dominates the baselines but for the naive policy that never switches the traffic lights
(bottom-right point).

It also empirically shows that the coverage sets discovered by PCN contain more non-
dominated solutions than our selected baselines. Nevertheless, the vast majority of bench-
marks used in MORL, including the ones used in our experiments, are limited to 2, some-
times 3 different objectives (Hayes, Rădulescu, et al., 2021).

To get a better understanding of the performance of PCN w.r.t. the number of objectives,
we devise a synthetic environment, Walkroom, that can be instanced with an arbitrary
number of objectives. Walkroom takes inspiration fromDeep Sea Treasure, and is modeled
as an 𝑛-dimensional grid-world in which the agent can move in every cardinal direction.
Thus, the dimensions correspond to the number of objectives of the environment. The
action space increases linearly with the number of objectives (|𝒜| = 2𝑛). At each timestep,
the agent receives a −1 reward for the objective corresponding to its moving dimension,
and a 0 reward for all other objectives. There are no other rewards. Similarly to Deep
Sea Treasure, Walkroom has a set of goal states positioned along an uneven border, so
that reaching each goal state results in a different Pareto-efficient solution. The optimal
policies are thus to go directly towards any of the border-positions, at which point the
episode ends.

We evaluate each method in a set of randomly generated Walkroom environments, from
2 to 9 dimensions. We perform 20 runs for every algorithm, on every version of the envi-
ronment (𝑛 = 2, . . . , 9). Note that we do not plot the discovered coverage sets since this
is not possible for 𝑛 > 3. Instead, we show boxplots of the hypervolume and 𝜀 metrics
computed on all runs. Since the Pareto fronts can be computed analytically when the en-
vironments are generated, the 𝜀metrics give us an accurate representation of the coverage
of each solution set found by each learning algorithm.

Results are summarized in Figure 5.7. RA performs poorly compared to the other algo-
rithms across all metrics. This is because the number of policies that RA requires to cover
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the objective-space increases exponentially with the number of objectives. Thus, train-
ing time must be split between more and more policies, which reduces their individual
performance. For the same reason, we were unfortunately unable to compare in RA in
environments with more than 5 objectives, due to its exponential computational costs.

For 𝑛 ≤ 4, MONES achieves similar or better scores than PCN in the 𝐼𝜀 metric. This is
likely due to PCN missing some points from the Pareto front, which impact this metric
significantly. However, we can see from the hypervolume and 𝐼𝜀−𝑚𝑒𝑎𝑛 metrics that PCN
generally performs better thanMONES on the rest of the Pareto front. Surprisingly, for𝑛 >
4 MONES performs significantly worse than PCN. This might be because the parameter
distributions of MONES are not able to explore efficiently in very large dimensional spaces.

5.6 Related work
Most of the recent work on MORL assumes an unknown, but linear utility function. How-
ever, this restricts the solution set that can be learned, as linear scalarization assumes the
Pareto front to be convex. In the linear setting, the goal is to train an agent such that the
optimal policy can be recovered for any preference weights. Roijers et al. (2015) propose
Optimistic Linear Support (OLS), a generic method that iteratively selects different sets of
weights and calls a single-objective learner as subroutine to find the corresponding optimal
policy. Mossalam et al. (2016) extend this method for Deep RL. OLS has also been com-
bined with Successor Features (Barreto et al., 2017) to form a convex coverage set (Alegre
et al., 2022). This has then been further extended in (Alegre et al., 2023), using Generalized
Policy Improvement (Barreto et al., 2020).

Another approach, taken by Barrett and Narayanan (2008) and Hiraoka et al. (2009), is to
directly optimize on the coverage set without single-objective subroutine, by modifying
the Bellman equation. Xu et al. (2020) combine evolutionary algorithms (Deb et al., 2000)
with the actor-critic framework (Abdolmaleki et al., 2018; Fujimoto et al., 2018; Schulman
et al., 2017) for continuous action-spaces. Contrary to PCN, these methods are unable to
discover any V-values on the concave regions of the Pareto front (Das & Dennis, 1997).

Using conditioned networks has been explored in MORL, but again restricted to the linear
scalarization setting. In (Castelletti et al., 2012), Fitted Q-Iteration (FQI) is extended to use a
modified Q-network conditioned on preference weights instead of target returns. Similarly,
Abels et al. (2019) use such a conditioned Q-network to extend Deep Q-Networks (DQN).
Moreover, a similar network is used in (R. Yang et al., 2019), in combination with a multi-
objective Bellman operator.

Our work also can be related to imitation learning, as it also uses supervised learning to
learn a policy (Osa et al., 2018; Sun et al., 2018). However, imitation learning requires
expert trajectories to train on, while PCN generates its own set of trajectories.

When the utility function can be any monotonically-increasing function, White (1982)
adapt Value Iteration, while Moffaert and Nowé (2014) and Ruiz-Montiel et al. (2017) adapt
tabular Q-learning to directly learn the Pareto front. A similar approach is taken by Wier-
ing and De Jong (2007), which has been extended to model-based RL (Wiering et al., 2014).
However, these approaches are limited to discrete low-dimensional state-spaces. More-
over, these methods assume a deterministic reward function, as the optimal policy cannot
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Figure 5.7: Box plots of normalized hypervolume, 𝐼𝜀 and 𝐼𝜀−𝑚𝑒𝑎𝑛 in the Walkroom envi-
ronments, from 2 to 9 objectives. We normalized the hypervolumes as their true values
scale exponentially with the number of objectives (for 𝑛 = 9, in the order of 109). For
hypervolume, higher is better. For 𝜀-indicator metrics, lower is better.

be reliably executed for stochastic rewards (Roijers, Röpke, et al., 2021). Alternatively, M.
Agarwal et al. (2022) propose a framework to learn policies which maximizes a concave
function, that is not necessarily monotone. We have extended tabular Q-learning to the
deep MORL setting, with mitigated success on more complex environments (Reymond &
Nowé, 2019).

Model-based approaches have also been investigated for MORL, by modifying MCTS to
learn either the convex hull (Painter et al., 2020) or the Pareto front (D. Perez et al., 2014;
W. Wang & Sebag, 2013). Since these approaches are model-based, they require to know
the transition-function in advance. Alternatively, the model can be learned, an approach
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taken for linear scalarization by Alegre et al. (2023) and Yamaguchi et al. (2019).

Related fields that have been adapted for MORL include meta-learning, where the meta-
policy quickly specializes towards desiredweights (Chen et al., 2019), constrained learning,
where a subset of the objectives are seen as constraints (Huang et al., 2022), and distribu-
tional RL, where a distribution over actions is learned based on constraints per objec-
tive (Abdolmaleki et al., 2020).

Finally, Parisi et al. (2014) learn to reach the Pareto front using a modified policy gradient
search, and Parisi et al. (2017) do this by modifying evolution strategies. Both algorithms
make the same assumptions on the utility functions as PCN and are used as baselines in
our experimental section (Section 6.4).

5.7 Discussion
We have presented a novel algorithm, Pareto Conditioned Networks, which is able to ef-
ficiently and effectively learn coverage sets in multi-objective sequential problems. PCN
uses a single neural network to generalize experience across all possible multi-objective
returns, learning coverage sets even in concave Pareto fronts.

We evaluated the empirical performance of PCN in several environments against state-of-
the-art benchmarks. PCNwas able to consistently obtain higher returns than the baselines
throughout the whole objective-space, demonstrating its ability to exhaustively discover
optimal coverage sets. In addition, PCN demonstrated its ability to learn the Pareto front
even when dealing with a large number of objectives.

While PCN can work in continuous state-spaces, its network architecture is currently lim-
ited to discrete action-spaces. However, the main ideas behind PCN do not change for
continuous action-spaces and PCN can be extended to continuous actions by changing the
classification problem to a regression one. We use this idea in Chapter 6.
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6.1 Introduction
Over the course of this thesis, we have developed MORL algorithms for various multi-
objective settings, which we experimentally validated on a number of benchmark environ-
ments. In this Chapter, we apply and extend one of our methods to a real-world problem:
mitigating epidemic outbreaks.

As shown by the COVID-19 pandemic, infectious disease outbreaks represent a major
global challenge. To this end, understanding the complex dynamics that underlie these
epidemics is essential. Epidemiological transmission models allow us to capture and un-
derstand such dynamics and facilitate the study of prevention strategies through simula-
tion. However, developing efficient mitigation strategies remains a challenging process,
given the non-linear and complex nature of epidemics.

Given that RL learns a policy through trial-and-error, without knowledge of the underlying
dynamics of the environment it interacts with, it provides a methodology to automatically
learn mitigation strategies in combination with complex epidemic models (P. J. K. Libin
et al., 2021).

Previous research focused on optimizing policies with respect to a single objective, such as
the pathogen’s attack rate, while the mitigation of epidemics is a problem that inherently
covers distinct and possibly conflicting criteria (i.a., prevalence, mortality, morbidity, cost).
Since somehow aggregating these criteria into a singlemetric comeswithmany challenges,
we have argued in Chapter 2 for an explicitly multi-objective approach.

In this Chapter, we investigate the use of MORL to learn a set of solutions that approximate
the Pareto front of multi-objective mitigation strategies. We consider the first wave of
the Belgian COVID-19 epidemic, which was mitigated by a hard lockdown (Willem et al.,
2021). When the incidence of confirmed cases were steadily dropping, epidemiological
experts were asked to investigate strategies to exit from the stringent lockdown which
was imposed.

Here, we consider the epidemiological model developed by (Abrams et al., 2021) that was
constructed to describe the Belgian COVID-19 epidemic, and was fitted to hospitaliza-
tion incidence data and serial sero-prevalence data. This model constitutes a stochastic
discrete-time age-structured compartmental model that simulates mitigation strategies by
varying social distancing parameters concerning school, work and leisure contacts.

Based on this model, we contribute MOBelCov, a novel mutli-objective epidemiological
environment, in the form of amulti-objectiveMarkov decision process (Roijers et al., 2013).
MOBelCov encapsulates the epidemiological model developed by (Abrams et al., 2021) to
implement state transitions, with an action space that combines a proportional reduction
of school, work and leisure contacts at each time step. Furthermore, it defines a reward
function based on two objectives: the attack rate (i.e., proportion of the population affected
by the pathogen) and the social burden that is induced by the mitigation measures.

To learn and explore the trade-offs between the attack rate and social burden we apply
PCN, described in Section 5.3. As PCN is an algorithm designed for discrete action-spaces,
we extend it towards continuous action-spaces to accommodateMOBelCov’s action-space.
With this continuous action variant of PCN, we explore the Pareto front of multi-objective
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COVID-19 mitigation policies.

By evaluating the solution set of mitigation policies returned by PCN, we observe that
PCN minimizes the social burden in scenarios where hospitalization rates are sufficiently
low. Therefore, in this work we illustrate that multi-objective reinforcement learning can
be utilized to provide important insights surrounding the trade-offs between complex mit-
igation polices in real-world epidemiological models.

6.2 COVID-19 model and the MOBelCov MOMDP

6.2.1 Stochastic compartment model for SARS-CoV-2

As an environment to evaluate non-pharmaceutical interventions, we consider the adapted
version of the SEIR compartmental model presented by Abrams et al., that was used to
investigate exit strategies in Belgium after the first epidemic wave of SARS-CoV-2 (Abrams
et al., 2021).

In a SEIR model, the population is separated into 4 different compartments. Members
of the population are susceptible to infection when they are in compartment S1. If an
individual comes into contact with an infections individual then they move to the exposed
compartment, E, at a time specific rate, 𝜆(𝑡). After a period of time an exposed individual
becomes infectious, where they move to the infected compartment, I. Finally, infected
people recover, at which point they move to the recovered compartment, R.

However, tomake efficientmitigation strategies, particularly ones that can deal with inten-
sive care capacity or implement quarantines of symptomatic people, it is essential to extend
this model with additional relevant compartments. To this end, the compartment model
we use captures the different stages of disease spread and history that are associated with
SARS-CoV-2 (i.e., pre-symptomatic, asymptomatic, symptomatic with mild symptoms and
symptomatic with severe symptoms) and to represent the stages associatedwith severe dis-
ease, i.e., hospitalization, admission to the intensive care unit (ICU) and death. Thus, after
a person becomes infected, they move to a new pre-symptomatic compartment, I𝑝𝑟𝑒𝑠𝑦𝑚,
at rate 𝛾. Once infected, individuals develop mild symptoms, I𝑚𝑖𝑙𝑑, with probability 1− p
or do not develop any symptoms, I𝑎𝑠𝑦𝑚, with probability p, where asymptomatic individ-
uals recover, R, at rate 𝛿1. Individuals who experience symptoms can suffer from a mild
infection, I𝑚𝑖𝑙𝑑, and recover at rate 𝛿2, or they suffer from a more severe infection, I𝑠𝑒𝑣 ,
at a rate 𝜓. Individuals with a severe infection are then transferred to a hospital for treat-
ment, Iℎ𝑜𝑠𝑝 with probability 𝜑1. However, some individuals become critically ill and are
transferred directly to the ICU with probability 1 − 𝜓1. Individuals in the hospital, Iℎ𝑜𝑠𝑝
and I𝐼𝐶𝑈 , recover at rate 𝛿3 or 𝛿4 and die at rate 𝜏3 and 𝜏4 respectively. Figure 6.1 outlines
the compartmental model defined by Abrams et al. (Abrams et al., 2021).

The flow rates depicted in Figure 6.1 are defined by a set of ordinary differential equations,

1Boldface vector notation is used to denote the multiple age groups for each compartment.
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Figure 6.1: Schematic diagram of the compartmental model for SARS-CoV-2 presented
by (Abrams et al., 2021) which is used to derive the MOMDP.

which are outlined as follows:

𝑑S(𝑡)
𝑑𝑡

= −𝜆(𝑡)(S)(𝑡),
𝑑E(𝑡)
𝑑𝑡

= 𝜆(𝑡)(S)(𝑡)− 𝛾E(𝑡),
𝑑I𝑝𝑟𝑒𝑠𝑦𝑚(𝑡)

𝑑𝑡
= 𝛾E(𝑡)− 𝜃I𝑝𝑟𝑒𝑠𝑦𝑚(𝑡),

𝑑I𝑎𝑠𝑦𝑚(𝑡)

𝑑𝑡
= 𝜃𝑝I𝑝𝑟𝑒𝑠𝑦𝑚(𝑡)− 𝛿1I𝑎𝑠𝑦𝑚(𝑡),

𝑑I𝑚𝑖𝑙𝑑(𝑡)
𝑑𝑡

= 𝜃(1− 𝑝)I𝑝𝑟𝑒𝑠𝑦𝑚(𝑡)− {𝜓 + 𝜔2}I𝑚𝑖𝑙𝑑(𝑡),
𝑑I𝑠𝑒𝑣(𝑡)
𝑑𝑡

= 𝜓I𝑚𝑖𝑙𝑑(𝑡)− 𝜔I𝑠𝑒𝑣(𝑡),
𝑑Iℎ𝑜𝑠𝑝(𝑡)

𝑑𝑡
= 𝜑1𝜔I𝑠𝑒𝑣(𝑡)− {𝛿3 + 𝜏1}Iℎ𝑜𝑠𝑝(𝑡),

𝑑I𝐼𝐶𝑈 (𝑡)
𝑑𝑡

= (1− 𝜑1)𝜔I𝑠𝑒𝑣(𝑡)− {𝛿4 + 𝜏2}I𝐼𝐶𝑈 (𝑡),
𝑑D(𝑡)
𝑑𝑡

= 𝜏1Iℎ𝑜𝑠𝑝(𝑡)− 𝜏2I𝐼𝐶𝑈 (𝑡),
𝑑R(𝑡)
𝑑𝑡

= 𝛿1I𝑎𝑠𝑦𝑚(𝑡) + 𝛿2I𝑚𝑖𝑙𝑑(𝑡) + 𝛿3Iℎ𝑜𝑠𝑝(𝑡) + 𝛿4I𝐼𝐶𝑈 (𝑡)

In this set of ordinary differential equations, each state variable represents a vector over all
age groups for a particular compartment at time 𝑡. For example, S = (𝑆1(𝑡), 𝑆2(𝑡), ..., 𝑆𝐾(𝑡))𝑇

is the vector representing the susceptible members of the population of each age group 𝑘
at time 𝑡. Infection dynamics are governed by an age-specific force of infection 𝜆:

𝜆(𝑘, 𝑡) =

𝐾∑︁
𝑘′=1

𝛽(𝑘, 𝑘′)𝐼𝑘′(𝑡), (6.1)

where𝐾 is the total number of age groups, and 𝛽(𝑘, 𝑘′) is the time-invariant transmission
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rate that encodes the average per capita rate at which an infectious individual in age group
𝑘 makes an effective contact with a susceptible individual in age group 𝑘′, per unit of time.

As we consider an age-structured population, we consider this extended SEIR structure for
𝐾 = 10 age groups, i.e., [0−10), [10−20), [20−30), [30−40), [40−50), [50−60), [60−
70), [70 − 80), [80 − 90), [90, 100+). Contacts of the different age-groups, which impact
the propagation rate of the epidemic, are modeled using social contact matrices. We define
a social contact matrix for 6 different social environments: 𝐶home, 𝐶work, 𝐶transport, 𝐶school,
𝐶leisure, 𝐶other, for the home, work, transport, school, leisure, other environments respec-
tively. The social contact matrix across all social environments is defined as:

𝐶 = 𝐶home + 𝐶work + 𝐶transport + 𝐶school + 𝐶leisure + 𝐶other (6.2)

Under the social contact hypothesis (Wallinga et al., 2006), we have that:

𝛽(𝑘, 𝑘′) = 𝑞 · 𝐶(𝑘, 𝑘′), (6.3)

where 𝑞 is a proportionality factor.

Following (Abrams et al., 2021), we rely on distinct social contact matrices for symptomatic
and asymptomatic individuals, respectively𝐶𝑠 and𝐶𝑎. Therefore, we define the transmis-
sion rates for both symptomatic and asymptomatic individuals as follows:

𝛽𝑠(𝑘, 𝑘) = 𝑞𝑠 · 𝐶𝑠(𝑘, 𝑘′), (6.4)

and
𝛽𝑎(𝑘, 𝑘

′) = 𝑞𝑎 · 𝐶𝑎(𝑘, 𝑘′). (6.5)

The age-dependent force of infection can be defined as follows:

𝜆(𝑡) = 𝛽𝑎 × {I𝑝𝑟𝑒𝑠𝑦𝑚(𝑡) + I𝑎𝑠𝑦𝑚(𝑡)}+ 𝛽𝑠 × {I𝑚𝑖𝑙𝑑(𝑡) + I𝑠𝑒𝑣(𝑡)}, (6.6)

where 𝜆(𝑡) = (𝜆(1, 𝑡), 𝜆(2, 𝑡), ..., 𝜆(𝐾, 𝑡)). For all further information about the different
compartments and parameters we refer the reader to the work of (Abrams et al., 2021).

Variability in social contact behavior, disease transmission, recovery andmortality impacts
the epidemic outcome and is subject to chance. To evaluate intervention strategies that
modulate infectious disease transmission and prevention, the use of stochastic epidemio-
logical models is warranted (Abrams et al., 2021). Moreover, the effect of stochasticity is
most pronounced when the number of infectious individuals is small or variability is high,
for example studying the initial growth of an epidemic (Britton & Lindenstrand, 2009), or
when implementing deconfinement strategies after strict lock-downs.

By formulating the set of differential equations defined above, as a chain-binomial (see
Appendix B.1), we can obtain stochastic trajectories from this model (Bailey, 1975). A
chain-binomialmodel assumes a stochasticmodelwhere infected individuals are generated
by some underlying probability distribution. For this stochastic model we consider a time
interval (𝑡, 𝑡+ ℎ], where ℎ is defined as the length between two consecutive time points.
In this work we set ℎ = 1

240 .
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6.2.2 Interventions strategies
To model different types of non-pharmaceutical interventions, we follow the contact re-
duction scheme presented by (Abrams et al., 2021). Firstly, in order to consider distinct
exit scenarios, we modulate the SCMs to reflect a contact reduction in a particular age
group. We consider a contact reduction function that imposes a proportional reduction of
work (including transport) 𝑝𝑤 , school 𝑝𝑠 and leisure 𝑝𝑙 contacts, which is implemented as
a linear combination of SCMs:

𝐶(𝑝𝑤, 𝑝𝑠, 𝑝𝑙) = 𝐶home + 𝑝𝑤(𝐶work + 𝐶transport) + 𝑝𝑠𝐶school + 𝑝𝑙(𝐶leisure + 𝐶other) (6.7)

We denote𝐶𝑡 the social contact matrix at timestep 𝑡, resulting from the reduction function
𝐶 . Secondly, we assume that compliance to the interventions is gradual and model this
using a logistic compliance function (see details in Appendix B.1.1).

We can thus simulate the lockdown that occurred during the first wave of the pandemic
by fixing 𝑝𝑤 , 𝑝𝑠 and 𝑝𝑙 for the concerned time-period. Figure 6.2 shows the progress of the
epidemic during lockdown, by setting 𝑝𝑤 = 0.2, 𝑝𝑠 = 0, 𝑝𝑙 = 0.1.

6.2.3 A MOMDP for the compartment model
In order to apply multi-objective reinforcement learning, we construct the MOBelCov
MOMDP based on the epidemiological model we introduced. Since a MOMDP is a tuple,
M = ⟨𝒮,𝒜, 𝒯 , 𝛾,ℛ, 𝑛⟩, we define its components 𝒮,𝒜, 𝒯 ,ℛ.

Action-space: Our actions concern the installment of a SCM with a particular reduc-
tion resulting from the reduction function 𝐶 (see Sec. 6.2.2). To this end, we use the
proportional reduction parameters 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 defined in Sec. 6.2.2. Thus, each 𝑎 ∈ 𝒜 is
a 3-dimensional continuous vector in [0, 1]3 (i.e., 𝑎 = [𝑝𝑤, 𝑝𝑠, 𝑝𝑙]) which impacts the SCM
according to Equation 6.7.

Transition function: The model defined by (Abrams et al., 2021) utilizes a model tran-
sition probability 𝑀 (see Appendix B.1 for details on 𝑀 ), that progresses the epidemio-
logical model in one timestep based on the currently installed SCM 𝐶(𝑝𝑤, 𝑝𝑠, 𝑝𝑙). We use
this function as the transition function in MOBelCov.

In a classicalMDP, executing an action 𝑎𝑡 in any state 𝑠𝑡 leads to a next state 𝑠𝑡+1 according
to the transition function 𝒯 . At every timestep 𝑡, the policy is free to choose the action
to perform. In our case, this potentially results in a different restriction [𝑝𝑤, 𝑝𝑠, 𝑝𝑙] every
week. However, we argue that in the context of mitigation policies, consistency is key, and
policies that impose changes too frequently will be hard to follow.

In order to learn realistic and consistent mitigation policies, we incorporate a budget on
the number of times a policy can change its actions until the terminal state of the MOMDP.
Concretely, when the action changes, i.e., if the social restriction proposed by the policy is
different from the current one in place, we reduce the budget by one. We only allow action
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Figure 6.2: Simulation of the modified SEIR compartment model from the start of the epi-
demic until the end of the impose lockdown, by setting the SCM using Equation 6.7 with
𝑝𝑤 = 0.2, 𝑝𝑠 = 0, 𝑝𝑙 = 0.1 during the lockdown period. We plot 10 executions of the
lockdown policy and observe a variation in the evolution of the epidemic due to the envi-
ronment stochasticity. In bold, we show a policy execution on the deterministic variant of
the environment. Finally, the scatter-points correspond to reported hospitalizations and
deaths related to COVID-19 in Belgium during that time-period (see Appendix ??).

changes as long as there is budget left. We note that we can simulate a no-limit budget
setting by setting the budget to the length of the episode.

Finally, for each timestep 𝑡, our transition function 𝒯 uses the model transition probability
𝑀 to simulate the model for one week, using 𝐶 obtained from 𝑎𝑡.

State-space: The state of the MOMDP concerns a 3-tuple. The first element, 𝑠𝑚, directly
corresponds to the aggregation of the state variables in the epidemiological model, i.e., a
tuple,

{𝑆𝑘, 𝐸𝑘, 𝐼𝑝𝑟𝑒𝑠𝑦𝑚𝑘 , 𝐼𝑎𝑠𝑦𝑚𝑘 , 𝐼𝑚𝑖𝑙𝑑𝑘 , 𝐼𝑠𝑒𝑣𝑘 , 𝐼ℎ𝑜𝑠𝑝𝑘 , 𝐼𝐼𝐶𝑈𝑘 , 𝐻𝑛𝑒𝑤
𝑘 , 𝐷𝑘, 𝑅𝑘},

for each age group 𝑘 ∈ {1, . . . ,𝐾}, where𝐷 encodes the members of the population who
become deceased, and 𝐻𝑛𝑒𝑤 explicitly keeps track of the number of newly hospitalized
individuals.

We parameterize the epidemiological model using the mean of the posteriors as specified
by Abrams et al. (2021). The population size for each of the considered age groups was
taken from the Belgian statistical agency STATBEL2. To initialize the model, we used the
2https://statbel.fgov.be/nl/themas/bevolking/structuur-van-de-bevolking#figures

https://statbel.fgov.be/nl/themas/bevolking/structuur-van-de-bevolking#figures


108CHAPTER 6. EXPLORINGTHE PARETO FRONTOFMOCOVID-19MITIGATION POLICIES

number of confirmed cases until 13 March 2020 (Abrams et al., 2021), as reported by the
Belgian agency for public health Sciensano3.

The second element of the tuple consists of the social contact matrix 𝐶𝑡 that is currently
in place. The reason to incorporate it in the state-space is two-fold. First, Abrams et al.
(2021) define a compliance function, simulating the time people need to get used to the
new rules set in place. As such, during the simulated week, there is a gradual shift from
the current 𝐶𝑡 to the new social contact matrix, 𝐶𝑡+1. As such, we need to maintain the
current 𝐶𝑡, to maintain a Markovian environment.

Secondly, we require the current 𝐶𝑡 to determine whether the action changes the social
restrictions in place, and thus consume part of the budget.

The third element of the tuple concerns of the budget 𝑏. We note that we incorporate a
distinct budget per action-dimension, so 𝑝𝑤, 𝑝𝑠 and 𝑝𝑙 each have their own budget, ren-
dering 𝑏 a vector 𝑏 = [𝑏𝑤, 𝑏𝑠, 𝑏𝑙]. As such, it is possible that, at timestep 𝑡, the budget for
one of the proportional reductions is reduced but not the others.

Therefore, we define a state in MOBelCov as follows:

𝑠 = 𝑠𝑚 ∪ 𝐶 ∪ 𝑏 (6.8)

Reward function: We define a vectorial reward function which considers multiple ob-
jectives: attack rate (i.e., infections, hospitalizations) and the social burden imposed by the
interventions on the population.

The attack rate in terms of infections is defined as the difference in susceptibles from the
current state and next state (P. J. K. Libin et al., 2021). Since this is a cost that needs to be
minimized, we defined the corresponding reward function as the negative attack rate:

ℛARI(𝑠, 𝑎, 𝑠
′) = −(

𝐾∑︁
𝑘=1

𝑆𝑘(𝑠)−
𝐾∑︁
𝑘=1

𝑆𝑘(𝑠
′)). (6.9)

The reward function to reduce the attack rate in terms of hospitalizations is defined as the
negative number of new hospitalizations:

ℛARH(𝑠, 𝑎, 𝑠
′) = −

𝐾∑︁
𝑘=1

𝐻new
𝑘 (𝑠). (6.10)

Finally, we use the missed contacts resulting from the intervention measures as a proxy
for societal burden. To quantify missed contacts, we consider the original social contact
matrix 𝐶 and the installed social contact matrix 𝐶𝑡 to compute the difference 𝐶𝑡 − 𝐶 .
The resulting difference matrix quantifies the average frequency of contacts missed. To
determine missed contacts for the entire population, we apply the difference matrix to the
population sizes of the respective age groups that are currently uninfected (i.e., susceptible
3https://epistat.wiv-isp.be/covid/

https://epistat.wiv-isp.be/covid/
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and recovered individuals). Therefore, we define the social burden reward function ℛSB,
as follows:

ℛSB(𝑠, 𝑎, 𝑠
′) =

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

(𝐶 − 𝐶)𝑖𝑗𝑆𝑖(𝑠)𝑆𝑗(𝑠) +
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

(𝐶 − 𝐶)𝑖𝑗𝑅𝑖(𝑠)𝑅𝑗(𝑠), (6.11)

where 𝑆𝑘(𝑠) represents the number of susceptible individuals in age group 𝑘 in state 𝑠 and
𝑅𝑘 represents the number of recovered individuals in age group 𝑘 in state 𝑠.

In Section 6.4, we optimize PCN on two different variants for the multi-objective reward
function: [ℛARH,ℛSB] and [ℛARI,ℛSB], to study the impact of these distinct attack rate
quantities.

6.3 Pareto Conditioned Networks for MOBelCov
In Section 5.3, we propose Pareto Conditioned Networks (PCN), an algorithm to learn the
Pareto front and its associated set of Pareto-efficient policies. Since our aim is to learn all
possible non-dominated trade-offs between hospitalizations and social burden, we apply
PCN on our proposed MOBelCov environment.

However, PCN learns on environments with discrete action-spaces, while the action-space
of MOBelCov is continuous. Moreover, since PCN learns by imitating trajectories, it is not
designed to learn on MOMDPs with a stochastic transition function.

In this Section, we extend PCN towards continuous action-spaces. Additionally, we pro-
pose a modified training scheme to cope with the stochasticity of the MOBelCov environ-
ment.

6.3.1 Training the network for continuous actions

PCN trains the network as a classification problem, where each class represents a different
action. Transitions 𝑥 = ⟨𝑠𝑡, ℎ𝑡,𝑅𝑡⟩, 𝑦 = 𝑎𝑡 are sampled from the dataset, and the ground-
truth output 𝑦 is compared with the predicted output 𝑦 = 𝜋(𝑠𝑡, ℎ𝑡,𝑅𝑡). The predictor
(i.e., the policy) is then updated using the cross-entropy loss function (see Section 5.3.2).

To cope with the continuous action-space setting, we change the output of the neural
network such that there is a single output value for each dimension of the action-space.
Since the actions should be bound in the domain of possible actions ([0, 1] in the case
of MOBelCov, see Section 6.2.3), we apply a tanh non-linearity function on each output.
As such, we have a regression problem instead of a classification problem, as the labeled
dataset now uses continuous labels 𝑦 = 𝑎𝑡 instead of categories. We thus use a Mean
Squared Error (MSE) loss to update the policy:

𝑀𝑆𝐸 =
1

|𝒜|
∑︁
𝑎∈𝒜

(𝑦𝑎 − 𝑦𝑎)2 (6.12)
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Since learning the full set of Pareto-efficient policiesΠ* requires that the policies 𝜋* ∈ Π*

are deterministic stationary policies (Roijers et al., 2013), we use the output ŷ as action at
execution time. However, PCN improves its policy through exploration, by continuously
updating its dataset with better trajectories. Thus, at training time, we use a stochastic
policy by adding random noise to the action (Lillicrap et al., 2015):

𝑎𝑡 = 𝜋(𝑎𝑡, ℎ𝑡,𝑅𝑡) + 𝜂𝑛 with 𝑛 ∼ 𝒩 , (6.13)

where 𝒩 is the standard Normal distribution and 𝜂 is a hyper-parameter defining the
magnitude of noise to be added.

6.3.2 Coping with stochastic transitions
PCN trains its policy on a dataset that is collected by executing trajectories. It assumes
that reenacting a transition from the dataset leads to the same episodic return. When the
transition function 𝒯 of theMOMDP is deterministic, thewhole trajectory can be faithfully
reenacted, which guarantees the same return. Combined with the fact that PCN’s policy
is deterministic at execution time, conditioning the policy on a target episodic return is
equivalent to conditioning it on the Value 𝑉 .

However, when 𝒯 is stochastic this can no longer be guaranteed. To mitigate this, we
add small random noise to𝑅𝑡 when performing gradient descent, which reduces the risk
of overfitting (Zur et al., 2009). Moreover, while the MOBelCov model is stochastic, the
variation is entirely due to the sampling of the binomial distributions in the binomial-
chain. While this variation accumulates over time, the time window we consider for each
timestep (i.e., one week) is short enough that the accumulation stays limited. Thus, the
possible next-states resulting from a state-action pair are similar to each other. This allows
PCN to compensate if 𝑟𝑡 = ℛ(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is worse than expected.

Although we use a stochastic model to cope with the uncertainty of the outcome of the
outbreak, it is possible to deterministically evaluate the set of ordinary differential equa-
tions that define the model. We assess the validity of our approach by executing PCN
on this deterministic variant, and observing similar performance as with the MOBelCov
model. We show the results in Appendix B.2.1.

6.4 Experiments
Our goal is to use PCN to learn deconfinment strategies in the MOBelCov environment.
We aim to learn policies that balance between the epidemiological objective of minimising
the attack rate (i.e.,ℛARH for hospitalization andℛARI for infection) and the social burden
(i.e.,ℛSB) experienced by the population population due to the implement mitigation mea-
sures. To this end, we consider two cases for the vectorial reward functions [ℛARH,ℛSB]
and [ℛARI,ℛSB], to learn and analyse policies under different targets with respect to the
considered attack rate.

To conduct this analysis, we apply our extension of PCN for continuous action-spaces on
the MOBelCov model. As explained in Section 6.3.2, we extend PCN for environments
with stochastic transitions.
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As in the work of Abrams et al. (2021), the simulation starts on the 1st of March 2020, by
seeding a number of infections in the population. Two weeks later, on the 14th of March,
the Belgian government initiated a full lockdown. This is implemented by fixing the ac-
tions 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 to 0.2, 0, 0.1 respectively (see Figure 6.2). This lockdown ended on the 4th
of May 2020, at which point the government decided on a multi-phase exit strategy to in-
crementally reduce teleworking, reopen schools and allow leisure activities, such as the
re-opening of bars and the cultural sector. It is from this day onward that PCN aims to
learn policies for diverse exit strategies, compromising between the total number of daily
hospitalizations and the total number of contacts lost as a proxy for social burden. The
simulation lasts throughout the summer school holidays, from 01/07/2020 to 31/08/2020.
Schools are closed during the school holidays, which is simulated by setting 𝑝𝑠 = 0, re-
gardless of the corresponding value outputted by the policy, i.e., during periods of school
closure 𝑝𝑠 is ignored.

We draw the analogy with the multi-phase exit strategy established by the Belgian gov-
ernment and the restriction on the number of action-changes imposed by the MOBelCov’s
budget 𝑏. Indeed, on the 11th of May 2020, exactly one week after the end of the lockdown,
stores and certain companies were allowed to reopen, under strict conditions. This corre-
sponds to altering 𝑝𝑤 in our MOMDP. One week later, on 18th of May, primary and sec-
ondary schools reopened for limited sized class-groups, and the cultural sector reopened
partially. This is equivalent to increasing 𝑝𝑠 and 𝑝𝑙. Further changes of restrictions occured
on the 8th of June, 1st, 9th and 25th of July. Thus, we argue that, with a limited budget, we
can achieve realistic policies. In our experiments, we consider budgets of 2 to 5, as these
closely relate to the number of changes that occured until the end of the summer holidays
of 2020. As an upper bound, we also consider a no-limit budget setting.

To evaluate the quality of the policies learned by PCN, we compare PCN to a baseline.
This baseline consists of a set of 100 fixed policies, that iterate over all the possible social
restriction levels, with values ranging between 0 and 1. Concretely, each policy uses a
fixed proportional reduction 𝑝𝑤 = 𝑝𝑙 = 𝑝𝑠 = 𝑢, 𝑢 ∼ 𝒰(0, 1) throughout the episode.
In other words, the fixed policies directly operate in a fine-grained manner on the whole
contact reduction function 𝐶 . This allows us to obtain a strong baseline for potential exit
strategies over the objective space. We note that while such fixed policies are a feasible
approach, they do not scale well in terms of action and objective spaces and they will not
be able to provide an adaptive restriction level, which is our aim using PCN.

All experiments are averaged over 10 runs. The hyper-parameters and the neural network
architecture can be found in Appendix B.2.3 and Appendix B.2.4, respectively.

6.4.1 Learned coverage set
We learn a coverage set (see Figure 6.3) that ranges from imposing minimal restrictions
to enforcing many restrictions. In Figure 6.3, we display on the right the coverage set of
the best-performing run in terms of hypervolume, for each budget setting. On the left, we
show an interpolated average of the coverage sets learned by the different runs.

Regardless of the imposed budget, we notice that the coverage sets discovered by PCN
almost completely dominate the coverage set of the baseline, demonstrating that there are
better alternatives to the fixed policies. This is most evident in the compromising policies,
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where one has to carefully choose when to remove social restrictions while at the same
time minimizing the impact on daily new hospitalizations. In these scenarios, PCN learns
policies that drastically reduce the total number of new hospitalizations (e.g., more than
20000) for the same social burden. We analyse the executions of such policies in Figure 6.4
(middle plot), that shows a flattened hospitalization curve, with a gradual increase of social
freedom during the school holidays such that the curve of the epidemic is flattened and
gradually decreases over time.

Interestingly, we notice that the most restrictive policy (i.e., the one that prioritizes hospi-
talizations over social burden, see Figure 6.4, bottom plot) still starts to gradually increase
𝑝𝑤 and 𝑝𝑙 from the end of July onward. This is because by then, the epidemic has mostly
faded out, and it is safe to reduce social restrictions. The timing of this reduction is impor-
tant as reducing restrictions too soon can lead to a new wave. PCN learns the impact of
its decisions over time, and correctly infers the timing at which restrictions can be safely
lifted.

Finally, the top plot shows that, without imposing social restrictions, the number of hos-
pitalizations peaks on the 15th of June. By the beginning of July, the epidemic has spread
out over the majority of the population, and the number of admissions at the hospital has
been reduced to a fraction of the number of hospitalizations at the peak. Thus, without
social restrictions, we do not take advantage of the natural decrease of social contacts due
to school holidays, as a significant proportion of the population has already been infected
before the start of the holidays.

6.4.2 Impact of budgets on the coverage set

Figure 6.3 demonstrates that the budget impacts the learnt coverage set. In general, an in-
crease of budget is associated with an increasingly better coverage set, as policies learned
using a higher budget dominate the ones learned with a lower budget. This is to be ex-
pected, as a higher budget gives the agent more freedom to change its actions as the epi-
demic progresses.

Moreover, we observe that the difference is concentrated around the less restrictive poli-
cies in terms of social burden. We postulate that this region contains the most complex
policies, as these try to maintain as much social freedom as possible, while containing
the number of hospitalizations. In these cases, the timing of the actions coincide with the
timing and duration of the peak of the epidemic, and a higher budget allows for more
fine-grained control to manage this timing. To confirm this, we select, for each budget
setting, the solution where the difference in performance is most noticeable, correspond-
ing to the solutions with a total number of hospitalizations around 80000 (which is in the
middle of the range of possible hospitalizations, as can be seen in Figure 6.3). We plot the
execution of the corresponding policies in Figure 6.5 and analyse their impact in terms of
social burden. First, we observe that the lower-budget policies are unable to reduce the
social restrictions past the peak of the epidemic. In contrast, the setting with no budget
restrictions meticulously controls the restrictions as the epidemic progresses, completely
removing restrictions by the end of thewave. Second, we note that the policywith a budget
of 5 resembles the execution of the one without restrictions. However, due to its budget,
the policy is unable to progressively reduce the restrictions and instead resorts to a halfway
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Figure 6.3: The Pareto front of policies discovered by PCN using MOBelCov, showing the
different compromises between the number of hospitalizations and the number of lost con-
tacts. On the right, we show, for each budget setting (colored, subscript indicates budget)
the coverage set learned by the best performing run. On the left, we show an interpolated
average of the coverage sets learned by the different runs, with the shaded regions corre-
sponding to the standard deviation. For comparison, the basline is displayed on both plots
(in black). As the budget increases, so does the size of the coverage set learnt by PCN.
Changes are most noticeable in the less restrictive trade-offs in terms of social burden.

compromise. Compared to this specific region of the coverage set, the difference in per-
formance between different budget settings seems marginal around the extremas. At the
extremas, the policies are less complex (e.g., business-as-usual, resulting in the same action
executed throughout the episode) and are thus less impacted by the budget restrictions.

Finally, we observe that, while the extremas deliver similar trade-offs for any of the chosen
budgets, these trade-offs differ for the setting without budget restrictions. Indeed, in this
setting, PCN does not learn the most extreme policies with respect to restrictions, even
though there are no constraints on the action-set. As explained in Section 5.3.3, PCN
searches for increasingly better solutions using a stochastic policy. Thus, at every timestep,
the action can change compared to the previous one. Continuously outputting the same
action (e.g., no social restrictions) becomes a complicated task. In comparison, for the
settings with a limited budget, the action stays the same as the previous one once the
budget has been spent. As such, it is easier to learn the most extreme policies. Thus, in the
specific case where we have an unlimited budget, the freedom of action actually hinders
PCN’s search, for certain regions of the reward-space.

6.4.3 𝑅ARH versus on 𝑅ARI

Next, we assess the difference in coverage sets when optimizing onℛARH versusℛARI. Al-
though these reward functions have a different scale (there are more infected persons than
hospitalised ones), our experiments show that infections and hospitalizations are tightly
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Figure 6.4: Selection of policies learned by PCN𝑏=5, frommost restrictive in terms of social
burden (top) to least restrictive (bottom). The x-axis represents the time, starting from the
end of the lockdown, on the 4th of May, until the end of the school holidays, on the 1st of
September. Since the lockdown is simulated before the start of the exit strategy, the start-
state differs for each episode (i.e., the hospital already contains infected individuals). The
left y-axis represents the number of individuals affected by the epidemic. The full-lined
plots represent the number of individuals admitted into the hospital, ICU and deceased
between the last timestep and the current one. The plot showing the newly deceased indi-
viduals closely relates to the ICU admissions. The right y-axis represents the proportional
reduction in effect, with 1 meaning a business-as-usual policy, and 0 meaning a complete
suppression of social contacts. The dotted-lined plots represent the proportional reduc-
tions for the work, leasure and school environments. We note that the school reduction
automatically goes to 0 at the start of the school holidays.

correlated. This is expected, as during the initial phase of the epidemic, limited immu-
nity was present in the population (i.e., limited natural immunity and no vaccines), which
induces a tight coupling between infection and hospitalization cases. This is confirmed
in Table 6.1. In this table, we show the different performance metrics (hypervolume, 𝐼𝜀,
𝐼𝜀−𝑚𝑒𝑎𝑛) with respect to the objectives [ℛARH,ℛSB]. The table is split in two parts. The
left-side shows the different performance metrics, for PCN using [ℛARH,ℛSB] as optimiza-
tion criterions. The right-side shows the same performance metrics, but with PCN using
[ℛARI,ℛSB] as optimization criterions.

Even with the ℛARI, the increased budget shows an increase in hypervolume in terms of
hospitalizations. Moreover, those hypervolumes are close to the ones trained on ℛARH,
indicating that their coverage sets are similar. However, regardless of the imposed budget,
the hypervolumes are slightly worse. This is to be expected, since those experiments are
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Figure 6.5: Execution of the policies attaining a number of hospitalizations around 80000,
for different budgets. From top to bottom we display the policy executions with budget
2,3,4,5 and no-limit, respectively. We notice that the lower-budget policies are unable to
reduce the social restrictions past the peak. The setting without budget restrictions finely
controls the restrictions as the epidemic progresses, completely removing restrictions by
the end of the wave. Finally, there is no consensus on which social environment to re-
strict most: certain policies provide similar restrictions for 𝑝𝑤 and 𝑝𝑙, while others impose
harsher restrictions on one social environment than the other.

not directly optimized on ℛARH. We draw a similar conclusion for 𝐼𝜀: for budgets 2, 3
and 5, the difference between the worst-performing policy for the ℛARI variant and the
ℛARH is less than 0.01, indicating less than 1% difference in return values between the
two variants when comparing their worst-performing policy. As an exception, we notice
that PCN without budget restrictions results in better performance across every metric for
the ℛARI variant. Still, due to the high standard deviation of the unlimited budget, ℛARH
setting, we do not believe this difference is meaningful. Thus, we could optimize on the
attack rate of hospitalizations with ℛARI. As there is a 2 week delay for hospitalizations,
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[ℛARH,ℛSB] [ℛARI,ℛSB]

Hypervolume 𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛 Hypervolume 𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛
PCN𝑏=2 158.370± 0.811 0.080± 0.011 0.033± 0.002 157.152± 1.023 0.087± 0.006 0.035± 0.002

PCN𝑏=3 158.721± 1.439 0.080± 0.012 0.032± 0.003 158.002± 2.081 0.084± 0.009 0.034± 0.005

PCN𝑏=4 160.642± 1.582 0.075± 0.007 0.028± 0.003 159.315± 2.601 0.088± 0.018 0.031± 0.006

PCN𝑏=5 163.104± 2.386 0.070± 0.023 0.022± 0.005 161.792± 2.464 0.075± 0.015 0.026± 0.005

Fixed 140.479± 0.000 0.139± 0.000 0.073± 0.000 140.479± 0.000 0.139± 0.000 0.073± 0.000

PCN 159.462± 7.713 0.264± 0.115 0.036± 0.020 159.852± 2.395 0.171± 0.093 0.032± 0.006

Table 6.1: Evaluation metrics for the coverage sets comparing hospitalizations with social
burden. In general, an increase of budget results in a better coverage set. Training on
infections (ARI) still provides a competitive coverage set in terms of hospitalizations. All
PCN coverage sets outperform the baseline.

𝐼𝜀 𝐼𝜀−𝑚𝑒𝑎𝑛
PCN𝑏=2 0.047± 0.020 0.009± 0.004

PCN𝑏=3 0.048± 0.022 0.007± 0.002

PCN𝑏=4 0.064± 0.018 0.011± 0.003

PCN𝑏=5 0.058± 0.011 0.013± 0.003

PCN 0.035± 0.011 0.008± 0.004

Global average 0.050± 0.017 0.010± 0.004

Table 6.2: Comparing the difference in the desired return provided to PCN and the actual
return PCN obtained when executing its policy. We see that, regardless of the setting, the
learned policy faithfully receives a return similar to its desired return.

this would facilitate learning policies to react to unexpected changes earlier than using
ℛARH, given that a good proxy to the actual number of infections was available (e.g., due
to a scale up of PCR testing, as was the case after the first lockdown).

6.4.4 Robustness of policy executions
The dataset of trajectories that PCN is trained on is pruned over time to keep only the most
relevant trajectories. The returns of these trajectories are used in Figure 6.3 to visualize
the learned coverage set. Each of these returns can be used as desired return for policy
execution. We now assess the robustness of the executed policies, by comparing the return
obtained after executing the policy with the corresponding target return. For each run, we
execute the policy 10 times and compute the 𝐼𝜀 and 𝐼𝜀−𝑚𝑒𝑎𝑛 metrics with respect to the
coverage set learned during the run. We show that the executed policies reliably obtain
returns that are similar to the desired return used to condition PCN.

Results are shown in Table 6.2. The 𝐼𝜀 indicators shows that, regardless of the budget,
the decision maker will lose at worst a 0.050 normalized return in any of the objectives.
On average, it will lose 0.010 normalized returns, i.e., on average, the return obtained by
executing a policy will either result in an additional 1441 hospitalizations than expected,
or result in 12 additional social contacts lost. Moreover, we emphasize that the learned
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coverage set contains the non-dominated returns encountered over the whole training
procedure. Since the MOBelCov model is stochastic, for multiple executions of the same
policy, the executions kept in the coverage sets are the ones for which the samples from
the binomial-chain resulted in a better progression of the epidemic than average. Thus,
we expect our policy-executions to be close to the target selected from the coverage set,
but not exactly on target. Based on this analysis, we conclude that the policies trained by
PCN are robust and produce returns as close as possible from their chosen target.

6.5 Related work
Reinforcement learning (RL) has been used in conjunction with epidemiological models to
learn policies to limit the spread of diseases and predict the effects of possible mitigation
strategies (P. J. K. Libin et al., 2021, 2018; Probert et al., 2019).

RL and Deep RL have been used extensively as a decision making aid to reduce the spread
of COVID-19. For example, to learn effective mitigation strategies (Ohi et al., 2020), to
learn efficacy of lockdown and travel restrictions (Kwak et al., 2021) and to limit the influx
of asymptomatic travellers (Bastani et al., 2021).

Multi-objective methods have also been deployed to learn optimal strategies to mitigate
the spread of COVID-19. Wan et al. (2021) implement a model-based multi-objective policy
search method and demonstrate their method on COVID-19 data from China. Given that
this method is model-based, a model of the transition function must be learned by sam-
pling from the environment. The method proposed by Wan et al. (2021) only considers
a discrete action space which limits the application of their algorithm. Wan et al. (2021)
use linear weights to compute a set of Pareto optimal policies. However, methods which
use linear weights can only learn policies on the convex-hull of the Pareto front (Vamplew
et al., 2008), therefore the full Pareto front cannot be learned. We note that the method
proposed by Kompella et al. (2020) considers multiple objectives. However, the objectives
are combined using a weighted sum with hand-tuned weights which are determined by
the authors. The weighted sum is applied by the reward function and a single objective
RL method is used to learn a single optimal policy. In contrast to previous work, our ap-
proach makes no assumptions regarding the scalarisation function of the user and is able
to discover Pareto fronts of arbitrary shape.

6.6 Discussion
Making decisions on how to mitigate epidemics has important ethical implications with
respect to public health and societal burden. In this regard, it is crucial to approach this
decision making from a balanced perspective, to which end we argue that multi-objective
decision making is essential. In this work, we establish a novel approach, i.e., an expert
system, to study multi-faceted policies, and this approach shows great potential to study
future epidemic mitigation policies. We are aware of the ethical implications that expert
systems have on the decision process and we make the disclaimer that all results based on
the expert system that we propose should be carefully interpreted by experts in the field of
public health, and in a broader context that encompasses health economics, well-being and
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education. We note that the work in this chapter was conducted by a interdisciplinary con-
sortium that includes computer scientists and scientists with a background public health,
epidemiology and bio-statistics.

In this work, we focus on the clinical outcomes of intervention strategies and use the
reduced contacts as proxy for social burden. This could be extended into more formal
health economic evaluations, by designing reward functions that explicitely consider dis-
tinct health economic principles. The COVID-19 pandemic demonstrates the broad impact
of infectious diseases on sectors other than health care. This stresses the need to capture
a societal and thus multi-objective perspective in the decision making process on public
health and health care interventions. Our learned policies confirm this, showing that fo-
cusing solely on reducing the number of hospitalizations results in taking drastic measures
– more than a thousand social interactions lost per person over the span of 4 months –
that may have a long-lasting impact on the population.

Although we use an age-structured compartment model, with social contact matrices to
model social interactions, this remains a model that evaluates the progression of the pan-
demic as an aggregated process over the population. Individual-based models could pro-
vide more detailed and localized policies, potentially further improving the quality of pos-
sible trade-offs, and would provide an interesting avenue for future work. However, due to
the computational cost of simulating suchmodels, and the number of interactions required
by reinforcement learning in general, this remains a challenging problem, that will require
fundamental research to improve the sample efficiency of multi-objective reinforcement
learning algorithms.

While we are able to interpret and analyse the obtained policies and their corresponding
trade-offs, as we can plot the Pareto front for two objectives, this approach cannot be used
for problems with more objectives, which will be necessary to cover reward functions
that cover distinct health economic principles. To facilitate this kind of research, new
algorithms are necessary to enable reinforcement learning in many-objective contexts and
to interprete the learnt policies.

In this work, PCN is able to cope with model stochasticity, as the stochasticity is limited. In
settings where the stochasticity is more pronounced, e.g., when designing policies to con-
trol the initial outbreak of an epidemic, further methodological extensions are warranted.

Finally, in this work we studied policies that aim to balance social burden and hospital-
izations. Yet, the methodology that we propose shows promise to address a wide variety
of public health challenges, such as balancing the number of lost schooldays with respect
to the attack rate of infections in schools (Torneri et al., 2021), contact tracing effort com-
pared to the impact of such policies (Willem et al., 2021), the impact of antivirals on the
epidemic while balancing the likelihood for resistance mutations to emerge (Torneri et al.,
2020), and to balance the cost of universal testing and its impact on an emerging epidemic
(P. J. Libin et al., 2021).

To conclude, we show that multi-objective reinforcement learning can be used to learn
a wide set of high-quality policies on real-world problems, providing the decision maker
with insightful and diverse alternatives, and showing the impact of extreme measures.
Furthermore, we show that action budgets can act as a regulariser that facilitates learning
realistic policies that can be easily conveyed to decision makers.



Chapter 7

Conclusions and future work

Throughout this dissertation, we have emphasized the importance of user-focused opti-
mization. By taking into account the decision maker’s preferences, we have incorporated
him or her in the optimization process. We have seen that this personalized approach has
multiple consequences.

First, combining the different objectives in a utility for optimization is non-trivial, as the
utility function can be non-linear. For sequential decision-making, such as reinforcement
learning, this non-linearity breaks the sum-of-rewards assumption used in the single-
objective case (Section 2.5). Thus, even if we know the utility function a priori, care
needs to be taken to actually optimize on this utility. We have shown different methods
of incorporating known, non-linear utility functions in the optimization process, either
by augmenting the state-space with accrued rewards (Section 3.3), or by optimizing on
the different objectives and using the utility function to guide the learner to the preferred
trade-off. We have proposed a policy-gradient based method for the second case (Sec-
tion 3.6,3.4), proven its convergence to a local optimum, and empirically shown that this
approach results in better sample-efficiency and lower variance during training compared
to using single-objective solvers that directly optimize on the utility (Section 3.9).

Second, when the utility function is not known a priori, we can learn it in conjunction
with the optimal trade-off. Thus, we are interleaving two different tasks into one. We
have seen that both processes are intertwined, and that, by optimizing both the policy
and our estimate over the utility function simultaneously, we can significantly improve
our chances of learning the optimal policy (Section 4.4.6). We have proposed a novel al-
gorithm for multi-objective multi-armed bandits that optimizes the interactions with the
decision maker, such that it maximizes our chances of improving the policy (Section 4.5).
While computationally expensive, this approach improves our chances of learning the op-
timal policy with a limited number of training steps and interactions, even compared to
intertwined approaches with fixed interaction-timings (Section 4.5.5).

Finally, in the case wewould like to take into account the decisionmaker’s preferences, but
we cannot interact with him or her to gather knowledge about its utility, we can learn all
possible Pareto-efficient trade-offs. In contrast to the previously mentioned consequences,
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this setting results in needing to learn multiple, different policies instead of the single,
preferred policy by the user. Since diverse parts of the state-space can result in different
trade-offs, exploration becomes paramount. To tackle this challenge, we have proposed a
novel algorithm that uses a single, conditional neural network to encode all the Pareto-
efficient policies (Section 5.3). The conditioning is based on the desired trade-off the de-
cision maker wants to achieve. This result in a generalization of the encountered parts
of the state-space across the different policies, greatly improving exploration and sample
efficiency (Section 6.4). Moreover, this conditioning allows scaling to problems with a high
number of objectives (Section 5.5).

Although the consequences of taking a personalized approach w.r.t. the decision maker
result in diverse settings, and we need to design setting-specific algorithms, we argue that,
as an end-result, taking the multi-objective approach is beneficial for the decision maker,
as he or she becomes involved in the optimization process. We demonstrate this on the
concrete, real-world use-case of epidemic outbreak mitigation. Our aim is to provide the
decision maker with additional insights on the different evolutions of a pandemic (in this
case the first wave of COVID-19 in Belgium), using available social restriction policies
(such as a lockdown). By learning the full Pareto front of policies, the decision maker can
better understand the impact of (partially) closing different social environments on the
number of hospitalizations due to COVID-19. For example, we can avoid a full closure of all
social environments, as the difference between full closure and an optimized 65% closure
is limited in terms of hospitalizations (7% compared to the business-as-usual scenario).

7.1 Future work
The research performed during this dissertation led to various ideas, which we believe
could lead to interesting future work. We summarize the different settings for the utility-
based perspective in multi-objective reinforcement learning in Table 7.1, including a non-
exhaustive but representative list of relevant work. We note that the mentioned works for
the knowledge-gathering non-linear utility functions setting for MOMDPs (in gray) are
not multi-objective works, but preference-based learning based on trajectories. As they
are the closest to the corresponding setting, we include them in the table. We believe that
these works can serve as an inspiration to extend our belief distribution over the utility
function and query-selection mechanism (Section 4.4.2) from the MOMAB setting to the
MOMDP setting.

Moreover, we note that the ESR setting has been generally understudied compared to the
SER setting and, to the best of our knowledge, not studied in the context of MOMABs.
For the incomplete-knowledge scenario setting, an ESR solution concept has only recently
been proposed (Hayes, Verstraeten, et al., 2021), which is why no other work tackles it.
Moreover, a large body of work in MORL assumes linear utility functions, for which ESR
and SER are equivalent. Additionally, ESR has only recently been studied in the known-
utility function setting. We believe the ESR optimization criterion is relevant for many
applications, such as energy generation under strict emission constraints (Mannion et al.,
2016) or medical treatments (Jalalimanesh et al., 2017; Laber et al., 2014; Lizotte et al.,
2010), as for these applications each policy execution is critical, and their utility func-
tion can be non-linear. Considering that MOPOMCP keeps a belief distribution over arms
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for unknown mean and unknown variance, we could take a distributional approach sim-
ilar to MOCAC to extend MOPOMCP to the ESR setting, after having incorporated belief
distributions for non-linear utility functions. Additionally, we can improve MOCAC by
incorporating elements from recent advances in the actor-critic paradigm (Andrychowicz
et al., 2021; Haarnoja et al., 2018) and distributional reinforcement learning (on which we
expand later).
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Full-knowledge
linear 𝑢 (Kagrecha et al., 2023) (Neil et al., 2018; Peng et al., 2018; Tesauro et al., 2008)

non-linear 𝑢

(Hayes, Reymond, et al., 2021;
P. Zhang et al.,
2021)MOCAC (Reymond, Hayes,
et al., 2023)

(Van Moffaert et al., 2013b)

Knowledge-gathering
linear 𝑢 (Astudillo & Frazier, 2020)

non-linear 𝑢
(Astudillo & Frazier, 2020; Paria
et al., 2020; Roijers et al.,
2017)MOPOMCP [Section 4.5]

(Christiano et al., 2017; Ibarz
et al., 2018; Wirth et al., 2016,
2017)

Incomplete-knowledge

linear 𝑢 (Abels et al., 2019; Alegre et al., 2023; Alegre et al., 2022; Castelletti
et al., 2012)

non-linear 𝑢
(Belakaria et al., 2020; Daulton
et al., 2020; Yahyaa & Manderick,
2015; R. Zhang & Golovin, 2020)

(Hayes, Verstraeten, et al., 2021)

(Parisi et al., 2014, 2017;
Reymond & Nowé,
2019)PCN (Reymond, Eugenio,
& Nowè, 2022)

Table 7.1: Overview of all identified settings for the utility-based perspective in multi-objective reinforcement learning. In blue, we mention
the contributions exposed in this dissertation for the identified settings. We note that the mentioned works for the knowledge-gathering
non-linear utility functions setting forMOMDPs (in gray) are not multi-objective works, but preference-based learning based on trajectories.
Moreover, an ESR solution concept for the incomplete-knowledge scenario has only recently been proposed (Hayes, Verstraeten, et al., 2021),
which is why no other work tackles this setting.
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Concerning the SER optimization criterion, we have derived a proof of convergence of
the policy gradient theorem for known non-linear utility functions (Section ??), which
has been used in MOAC, our proposed baseline for the SER setting (Section 3.6.3). We
believe our policy gradient for SER can be incorporated in recent single-objective actor-
critic methods (Andrychowicz et al., 2021) to design efficient MORL algorithms for known
non-linear utility functions under the SER criterion.

Finally, diverse related RL fields share similarities or challenges to MORL.We outline some
of them below, and how they could inspire future work.

7.1.1 Conditional reinforcement learning
Conditioning neural networks on values has lead to interesting results in various areas of
deep learning. For example, in image generation, conditional GANs (Mirza & Osindero,
2014) allow to generate images, conditioned on desired labels (e.g., dog, cat). Analogously,
text-to-image diffusion models condition the generated image on a caption text (Saharia
et al., 2022). In the pharmaceutical domain, variational autoencoders have been used to
generate molecules conditioned on desired properties (Lim et al., 2018).

In reinforcement learning, this idea led to goal-conditioned reinforcement learning (Andrychow-
icz et al., 2017; Nasiriany et al., 2019), universal value functions (Schaul et al., 2015), gen-
eralized policy improvement (Barreto et al., 2020), dynamic weights (Abels et al., 2019), as
well as return conditioned policies such as PCN (Chapter 5). These methods all generalize
the single-policy setting in different ways, by e.g. learning a policy or a 𝑉 -value function
conditioned on a goal state, or weights of linear utility functions Additionally, the accrued
rewards necessary for optimization under known utility functions (Section 3.2) can also
be seen as a form of conditioning.

We believe this idea can be further extended in MORL, through different potential av-
enues. For example, the dynamic weights setting (Abels et al., 2019) has been limited to
linear utility functions, but by using other scalarization methods, e.g. using Chebyshev
scalarization (Section 2.4), could be extended to non-linear utility functions. Moreover, we
could incorporate weight-conditioned policies into the interactive setting (Chapter 4), by
e.g. conditioning on the belief distribution over the utility function, allowing to take into
account uncertainty over the optimal policy.

7.1.2 Distributional reinforcement learning
Distributional value networks have been incorporated in DQN in multiple fashions (Belle-
mare et al., 2017; Dabney et al., 2018; Hessel et al., 2018; D. Yang et al., 2019), greatly
improving sample efficiency compared to non-distributional variants, with (Vieillard et
al., 2020) resulting in similar performance as model-based approaches (R. Agarwal et al.,
2021). It appears that, for the single-objective case, the benefits from using a distribution
come from regularizing effects of modelling said distribution, and its role as an auxiliary
task in a deep learning context, not really from reinforcement learning principles (Lyle
et al., 2019).

Learning return distributions has also been used in a risk-aware setting (Hayes et al., 2023;
Morimura et al., 2010), where the distribution can be used to assess the probability of an
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action resulting in low-valued returns.

We argue that, in the multi-objective setting, learning such a distribution presents addi-
tional advantages, that we could further exploit (Röpke et al., 2023). First, when the utility
function is unknown, and diverse parts of the state-space need to be explored, targeted
exploration becomes paramount. We believe the distribution could be used to direct the
policy towards promising trade-offs, greatly improving the speed at which we expand the
learned coverage set. In a similar fashion, distributions that showcase a high uncertainty
could indicate that the associated actions have not been performed enough, as their con-
sequences are still uncertain.

Finally, learning return distributions is essential when optimizing on the ESR criterion
(Chapter 3), a criterion that has been under-exploited in MORL, but presents many practi-
cal uses, e.g., medical treatments (Jalalimanesh et al., 2017), generator scheduling (Mannion
et al., 2018), stock investing (Y. Shen et al., 2014). We believe that further extending our
work to e.g. parametric multivariate distributions using normalizing flows (Dinh et al.,
2017; Hayes et al., 2022), or learn the inverse cumulative distribution function instead of
categories, as in (D. Yang et al., 2019), is essential for new ESR-optimizedMORL algorithms.

7.1.3 Model-based reinforcement learning
One way to improve sample efficiency in RL is to use a model, either given, or learned
(Hafner et al., 2020; Moerland et al., 2023). We can create fictitious interactions through
thismodel, avoiding costly interactionswith the real environment. Moreover, thesemodels
have also been used to target exploration to parts of the state-space where the model is
inaccurate (Da Silva et al., 2023; Shyam et al., 2019).

We argue that this could greatly benefit MORL algorithms, especially scenarios where the
utility function is unknown, and multiple policies have to be learned, as we only need to
learn a single model, that can be shared across all policies. This approach has recently
shown promising results in the unknown linear utility function scenario, greatly reducing
the number of required interactions compared to the model-free variant (Alegre et al.,
2023).

More concretely, we envision the combination of model-based approaches with PCN. As
explained in Chapter 5, PCN learns its policy based on trajectory executions. When the
environment is stochastic, the associated return might be due to chance, not to the quality
of the policy. Focusing on these trajectories can then lead to negative outcomes, as the
agent tries to repeat unlikely transitions, often resulting in worse outcomes than desired.
With a model, the transition probabilities can be learned, and we can estimate the quality
of the policy in terms of expectations, by executing multiple trajectories in the model. We
have recently experimented with this approach, combining PCN with Wasserstein Auto-
encodedMDPs (Delgrange et al., 2023), an approach that learns amodel of the environment
with formal bisimilarity guarantees, i.e., putting bounds on the difference of behavior of the
policy in the model and the environment. While learning the model, we are able to learn
unexpected events, and discard policies that rely on these events. Moreover, we extend
the single-objective guarantees presented in the original work to the multi-objective case
(Reymond, Delgrange, et al., 2023). However, the bisimilarity guarantees are bounded by
the model’s loss function. Learning a model based on a changing set of policies, and thus
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on changing trajectories, is a complicated task that can lead to instability issues (i.e., a
high loss), as the dataset of trajectories changes over time. Thus, future work is required
to reliably learn the model, and prevent these instabilities.
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Appendix A

Appendix for Chapter 3

A.1 Additional results
We show the plots for Deep Sea Treasure, using a known linear function, for weights
𝑤0 = 0, 0.1, . . . , 1, in Figure A.1.

A.2 Hyperparameters
All hyperparameters used for all these experiments are listed in Tables A.1, A.2.

149



150 APPENDIX A. APPENDIX FOR CHAPTER 3

−0.5
0

0.5

1

ut
ili
ty

𝑤0 =0.0
−1

0

1

𝑤0 =0.1
−1

0

1

𝑤0 =0.2

−2
−1
0

1

ut
ili
ty

𝑤0 =0.3
−2
−1
0

1

𝑤0 =0.4 −1

0

1

𝑤0 =0.5

−1

0

1

ut
ili
ty

𝑤0 =0.6 −1

0

1

𝑤0 =0.7 −0.5

0

0.5

1

𝑤0 =0.8

0 2 4

·104

−0.5

0

0.5

1

timesteps

ut
ili
ty

𝑤0 =0.9
0 2 4

·104

0

0.5

1

timesteps

𝑤0 =1.0

Figure A.1: Deep Sea Treasure with a linear utility function, for weights𝑤0 = 0, 0.1, . . . , 1.
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Table A.1: Hyperparameters for the Split, Deep-sea-treasure and Minecart environments.

Split Deep-Sea-Treasure Minecart
Common

lr 0.001 0.001 0.0003
𝛾 1.00 0.95 1.00

timesteps 6, 000 1, 000, 000 20, 000, 000
neurons (actor) (26, 20, 2) (132, 50, 4) Figure ??, (20, 20, 6)
non-linearity Tanh Tanh Tanh
clip-grad-norm None 50 50

MOCAC
value-coef 0.5 0.5 0.5

entropy-coef 0.01 0.1 0.1
update every 1 10 200
neurons (critic) (26, 50, 121) (132, 50, 50, 121) Figure ??, (20, 20, 121)

c 11 11 11
𝑉MIN (−1,−1) (0,−20) (0,−4)
𝑉MAX (10, 10) (100, 0) (1.5, 0)

MOAC A2C
value-coef 0.5 0.5 0.5

entropy-coef 0.01 0.1 0.1
update every 1 10 200
neurons (critic) (26, 50, 1) (132, 50, 50, 1) (26, 20, 20, 1)

Table A.2: Hyperparameters for the experiments on MiniRandom and Fishwood. Since
the input-size of the neural networks depend on the conditioning, the neurons rows are
variable.

MiniRandom Fishwood
Common

lr 0.001 0.001
𝛾 1.00 1.00

timesteps 10, 000 1, 000, 000
neurons (actor) (5 + 2, 50, 3) (2 + 2, 50, 2)
non-linearity Tanh Tanh
clip-grad-norm 50 50

MOCAC
value-coef 0.5 0.5

entropy-coef 0.01 0.01
update every 1 5
neurons (critic) (5 + 2, 50, 50, 121) (2 + 2, 50, 50, 121)

c 7 11
𝑉MIN (0, 0) (0, 0)
𝑉MAX (7, 7) (4, 7)
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Appendix B

Appendix for Chapter 6

B.1 Stochastic Compartmental Model

In this work we utilize the compartmental model proposed by (Abrams et al., 2021) and
extend themodel to amulti-objectiveMarkov decision process (MOMDP). Figure 6.1 shows
a visual depiction of the compartment model. The flows of the deterministic model are
defined by a set of ordinary differential equations, outlined in Section 6.2.1.

Intervening in the spread of the virus by, for example, reducing social contacts or govern-
ment interventions introduces uncertainty in the further course of the outbreak. There-
fore, to understand how this uncertainty affect the spread of the disease we introduce a
stochastic component model which can model the uncertainty generated by interventions
in social contacts.

By formulating the set of differential equations defined in Section 6.2.1, as a chain-binomial,
we can obtain stochastic trajectories from this model (Bailey, 1975). A chain-binomial
model assumes a stochastic model where infected individuals are generated by some un-
derlying probability distribution. For the stochastic model we consider a time interval
(𝑡, 𝑡 + ℎ], where ℎ is defined as the length between two consecutive time points. Similar
to (Abrams et al., 2021), in this work we set ℎ = 1

24 . (Abrams et al., 2021) define the set of
differential equations as a chain binomial as follows:
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S𝑡+ℎ(𝑘) = S𝑡(𝑘)− E𝑛𝑒𝑤,𝑡+ℎ(𝑘),
E𝑡+ℎ(𝑘) = E𝑡(𝑘) + E𝑛𝑒𝑤,𝑡+ℎ(𝑘)− I𝑝𝑟𝑒𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘),

I𝑝𝑟𝑒𝑠𝑦𝑚𝑡+ℎ (𝑘) = I𝑝𝑟𝑒𝑠𝑦𝑚𝑡 (𝑘) + I𝑝𝑟𝑒𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘)− I𝑎𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘)− I𝑚𝑖𝑙𝑑𝑛𝑒𝑤,𝑡+ℎ(𝑘),

I𝑎𝑠𝑦𝑚𝑡+ℎ (𝑘) = I𝑎𝑠𝑦𝑚𝑡 (𝑘) + I𝑎𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘)− R𝑎𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘),

I𝑚𝑖𝑙𝑑𝑡+ℎ (𝑘) = I𝑚𝑖𝑙𝑑𝑡 (𝑘) + I𝑚𝑖𝑙𝑑𝑛𝑒𝑤,𝑡+ℎ(𝑘)− I𝑠𝑒𝑣𝑛𝑒𝑤,𝑡+ℎ(𝑘)− R𝑚𝑖𝑙𝑑𝑛𝑒𝑤,𝑡+ℎ(𝑘),

I𝑠𝑒𝑣𝑡+ℎ(𝑘) = I𝑠𝑒𝑣𝑡 (𝑘) + I𝑠𝑒𝑣𝑛𝑒𝑤,𝑡+ℎ(𝑘)− Iℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘)− I𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘),

Iℎ𝑜𝑠𝑝𝑡+ℎ (𝑘) = Iℎ𝑜𝑠𝑝𝑡 (𝑘) + Iℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘)− Dℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘)− Rℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘),

I𝑖𝑐𝑢𝑡+ℎ(𝑘) = I𝑖𝑐𝑢𝑡 (𝑘) + I𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘)− D𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘)− R𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘),

D𝑡+ℎ(𝑘) = D𝑡(𝑘) + Dℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘) + D𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘),

R𝑡+ℎ(𝑘) = R𝑡(𝑘) + R𝑎𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘) + R𝑚𝑖𝑙𝑑𝑛𝑒𝑤,𝑡+ℎ(𝑘) + Rℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘) + R𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘)

where,

E𝑛𝑒𝑤,𝑡+ℎ ∼ Binomial
(︀
S𝑡(𝑘), 𝑝*𝑡 (𝑘) = 1− {1− 𝑝*𝑡 (𝑘)}I𝑡

)︀
,

𝑝*𝑡 (𝑘) = 1− 𝑒𝑥𝑝
[︃
−ℎ

𝐾∑︁
𝑘′=1

𝛽𝑎𝑠𝑦𝑚(𝑘, 𝑘′){I𝑎𝑠𝑦𝑚𝑡 (𝑘′)}+ 𝛽𝑠𝑦𝑚(𝑘, 𝑘′){I𝑚𝑖𝑙𝑑𝑡 (𝑘′) + I𝑠𝑒𝑣𝑡 (𝑘′)}
]︃
,

I𝑝𝑟𝑒𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (I
𝑝𝑟𝑒𝑠𝑦𝑚
𝑡 (𝑘), 1− 𝑒𝑥𝑝(−ℎ𝑝(𝑘)𝜃)) ,

I𝑚𝑖𝑙𝑑𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (I𝑝𝑟𝑒𝑠𝑦𝑚𝑡 (𝑘), 1− 𝑒𝑥𝑝 [−ℎ{1− 𝑝(𝑘)}𝜃])) ,
I𝑠𝑒𝑣𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︀
I𝑚𝑖𝑙𝑑𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝜓(𝑘)})

)︀
,

Iℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (I𝑠𝑒𝑣𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝜑1(𝑘)𝜔(𝑘)})) ,
I𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (I𝑠𝑒𝑣𝑡 (𝑘), 1− 𝑒𝑥𝑝 [−ℎ{1− 𝜑1(𝑘)}𝜔(𝑘)]) ,
Dℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︁
Iℎ𝑜𝑠𝑝𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝜏1(𝑘)}

)︁
,

D𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(︀
I𝑖𝑐𝑢𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝜏2(𝑘)}

)︀
,

R𝑎𝑠𝑦𝑚𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (I
𝑎𝑠𝑦𝑚
𝑡 (𝑘), 1− 𝑒𝑥𝑝 (−ℎ𝛿2(𝑘))) ,

Rℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(︁
Iℎ𝑜𝑠𝑝𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝛿3(𝑘)}

)︁
,

R𝑖𝑐𝑢𝑛𝑒𝑤,𝑡+ℎ(𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(︀
I𝑖𝑐𝑢𝑡 (𝑘), 1− 𝑒𝑥𝑝{−ℎ𝛿4(𝑘)}

)︀
.

Given MOBelCov also calculates new hospitalizations, H𝑛𝑒𝑤 , we define H𝑛𝑒𝑤 for the
stochastic compartmental model as follows:

H𝑛𝑒𝑤
𝑡+ℎ (𝑘) = H𝑛𝑒𝑤

𝑡 (𝑘) + Iℎ𝑜𝑠𝑝𝑛𝑒𝑤,𝑡+ℎ(𝑘).

For more details on this model and the chain-binomial representation of the differential
equations, we refer the reader to the work of (Abrams et al., 2021).
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To create a version of MOBelCov with a stochastic transition function,𝑀 , we utilize the
stochastic compartmental model outlined above. Given the transitionswithin the compart-
mental model are derived by an underlying probability distribution it is possible to utilize
the stochastic compartmental model transitions for MOBelCov. As previously outlined in
Section 6.2.1 the contact matrix 𝐶 applied the model state 𝑠𝑚 progresses the model and
returns a new model state 𝑠′𝑚. Given the underlying model dynamics are governed in a
probabilistic manner, the model returns 𝑠′𝑚 stochastically. Therefore, it is possible to use
this process as a stochastic transition function,𝑀 , for MOBelCov.

B.1.1 Modelling interventions
In order to model different types of interventions, we follow (Abrams et al., 2021). Firstly,
to consider distinct exit scenarios, we alter the social contact matrices to reflect a contact
reduction in a particular age group. Secondly, we assume that compliance to the interven-
tions is gradual and model this using a logistic compliance function. We use the logistic
compliance function in function of time 𝑡,

𝑐(𝑡, 𝑡𝐼) =
exp(𝛽*

0 + 𝛽*
1(𝑡− 𝑡𝐼))

1 + exp(𝛽*
0 + 𝛽*

1(𝑡− 𝑡𝐼))
, (B.1)

where 𝑡𝐼 indicates the time the intervention started. We initialize 𝛽*
1 to the value estimated

in by Abrams et al. and choose 𝛽*
0 = −5, as an intercept to have 𝑐(𝑡) = 0 for 𝑡 = 0, in

correspondence with Figure F2 in the Supplementary Information of (Abrams et al., 2021).

B.2 Additional results

B.2.1 Comparison of coverage sets learned on ODE and Binomial
models

The coverage sets displayed in Figure 6.3 correspond to PCN trained on the MOBelCov
model, which is stochastic. To show that PCN copes with the stochasticity of this model,
we compare these coverage sets with the ones learned on the ODE model, which is deter-
ministic.

Results are shown in Figure B.1. First, in a similar fashion as Figure 6.3, we show the
interpolated average coverage set for different budget setting, with PCN trained on the
ODE model. We observe similar trends as for the Binomial model. Next, for each budget
setting, we compare the interpolated average coverage set of the Binomial setting with the
ODE setting. We observe similar coverage set, regardless of the budget setting, indicating
that PCN is able to cope with stochastic transitions.

B.2.2 Comparison of coverage sets learned onRARH andRARI

In Section 6.4.3, we show that we can learn all trade-offs between social burden and hos-
pitalizations, while using the attack rate over infections as reward function.

Results are shown in Figure B.2. We observe that the learned coverage sets are similar,
regardless of the budget setting. Still, the coverage set of when trained onRARI is system-
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Figure B.1: Comparison of learned coverage sets when PCN interacts with the ODE (i.e.,
deterministic) variant of the compartment model. We observe that, regardless of the cho-
sen budget, PCN learns a similar coverage set on both variants of the model, indicating
that it is able to cope with the stochasticity present in the Binomial variant.

atically dominated by the one when trained on RARH. While hospitalizations and infec-
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hyper-parameter value grid-search
learning rate 0.001

total training timesteps 300000
batch size 256 256, 1024

model updates 50
episodes between updates 10

ER size (in episodes) 1000 400, 500, 1000
initial random episodes 200 50, 200

exploration noise 0.1 0, 0.1, 0.2
desired return noise 0.05 0, 0.05, 0.1, 0.2

reward scaling [10000, 100]

Table B.1: The different hyperparameters used by our extension of PCN. The right-most
column also shows, when applicable, the different values tried during grid-search.

tions are highly correlated, they differ in terms of age-groups. Older age-groups are more
susceptible to be hospitalized after being infected, but they do not form the majority of
the population. For trade-offs where infections and social burden need to be balanced, the
proportional reductions target different social environments than for trade-offs balancing
hospitalizations and social burden. For example, the work environment is majorly com-
prised of individuals with a more robust immune system, reducing the social contact in
this environment greatly affects the number of infections, but has a lesser impact on the
number of hospitalizations.

B.2.3 Experiment parameters

We used the same hyperparameters across all experiments. Each experiment resulted in
10 independent trials. Finally, we performed a grid-search over possible hyperparameter
values. All hyperparameters used and their possible values explored during grid-search
are displayed in Table B.1.

B.2.4 Neural network architecture

Next to the hyperparameter search, we also performed a grid search over 4 different neural
network architectures. All the architectures have the same structure. We use a compart-
ment embedding 𝑠𝑐𝑒𝑚𝑏, a social contact matrix embedding 𝑠𝑚𝑒𝑚𝑏 and a school-holidays
embedding 𝑠ℎ𝑒𝑚𝑏 that take as inputs the compartment, the previous 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 values (as
they fully define the SCM𝐶) and a boolean flag for school holidays, respectively. All these
embeddings have a same-sized embedding of 64, which are multiplied together to form the
full state embedding. This state-embedding is used as input for another network, 𝑠𝑒𝑚𝑏. Ad-
ditionally, we use a common embedding 𝑐𝑒𝑚𝑏 for the concatenation of the desired return
and horizon. Finally, the results of 𝑠𝑒𝑚𝑏 and 𝑐𝑒𝑚𝑏 are multiplied together, before passing
through a fully connected network 𝑓𝑐 that has 3 outputs, one for 𝑝𝑤, 𝑝𝑠, 𝑝𝑙 respectively.

All the architectures of the different components are displayed in Table B.2. The variant
used in all experiments is dense-big.
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Figure B.2: Comparison of learned coverage sets when PCN learns using the attack rate of
infectionsRARI.

B.2.5 Policy executions

Depending on the budget, PCN learns a coverage set containing more than 150 different
policies. To gain a better insight about their behavior, and how they differ from each other,
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variant 𝑠𝑐𝑒𝑚𝑏 𝑠𝑚𝑒𝑚𝑏 𝑠ℎ𝑒𝑚𝑏 𝑠𝑒𝑚𝑏 𝑐𝑒𝑚𝑏 𝑓𝑐

conv1d(10,20) linear(3,64) linear(1,64) linear(64,64) linear(3,64) linear(64,64)
relu sigmoid sigmoid sigmoid sigmoid relu

conv1d-small conv1d(20,20) linear(64,3)
relu

linear(100,64)
sigmoid

conv1d(10,20) linear(3,64) linear(1,64) linear(64,64) linear(3,64) linear(64,64)
relu relu relu relu sigmoid relu

conv1d-big conv1d(20,20) linear(64,64) linear(64,64) linear(64,3)
relu sigmoid sigmoid

linear(100,64)
sigmoid

linear(130,64) linear(3,64) linear(1,64) linear(64,64) linear(3,64) linear(64,64)
dense-small sigmoid sigmoid sigmoid sigmoid sigmoid relu

linear(64,3)
linear(130,64) linear(3,64) linear(1,64) linear(64,64) linear(3,64) linear(64,64)

dense-big relu relu relu relu sigmoid relu
linear(64,64) linear(64,64) linear(64,64) linear(64,3)
sigmoid sigmoid sigmoid

Table B.2: The 4 different neural network architectures explored for our experiments. All
the displayed results use the dense-big variant.

we plot executions of each learned policy for a budget of 5 in Fig. B.3-B.8. The plots are
displayed from the least restrictive policy in terms of social burden to the most restrictive
one. Since the MOBelCov model is stochastic, we show 10 executions of the same policy,
on each plot.
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Figure B.3: Execution of policies 0 to 19, with a budget of 5.
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Figure B.4: Execution of policies 20 to 39, with a budget of 5.
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Figure B.5: Execution of policies 40 to 59, with a budget of 5.
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Figure B.6: Execution of policies 60 to 79, with a budget of 5.
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Figure B.7: Execution of policies 80 to 99, with a budget of 5.
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Figure B.8: Execution of policies 100 to 114, with a budget of 5.
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