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Introduction to AI and Music

3

h"ps://www.youtube.com/watch?v=jOzWN-
PYh9s&t=1s

h"ps://www.youtube.com/watch?v=SCm9O2
KNEX4&t=2s

https://www.youtube.com/watch?v=jOzWN-PYh9s&t=1s
https://www.youtube.com/watch?v=jOzWN-PYh9s&t=1s
https://www.youtube.com/watch?v=SCm9O2KNEX4&t=2s
https://www.youtube.com/watch?v=SCm9O2KNEX4&t=2s
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HAL9000, 2001: A Space Odissey

https://www.youtube.com/watch?v=E7WQ1tdxSqI

https://www.youtube.com/watch?v=E7WQ1tdxSqI


First Computer to Sing
(IBM7094, 1961)
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https://www.youtube.com/watch?v=41U78QP8nBk

https://www.youtube.com/watch?v=41U78QP8nBk


Algorithmic 
Composi/on?
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Mozart 
Musical Dice

7

“A popular early example is Mozart’s
Musikalisches Würfelspiel (Musical Dice
Game), whereby small fragments of music are
randomly re-ordered by rolling a dice to
create a musical piece.”



David Cope
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EMI, David Cope (1987)

h"ps://www.youtube.com/watch?v=PczDLl92vlcExtract of: Opus Cope: An Algorithmic Opera 
(2021)

h"ps://www.youtube.com/watch?v=8PI--_a4LY4

The composer David Cope began his “Experiments 
in Musical Intelligence” in 1981 as the result of a 
composer’s block;”

https://www.youtube.com/watch?v=PczDLl92vlc
https://www.youtube.com/watch?v=8PI--_a4LY4


A Functional Taxonomy of Music Generation Systems 69:3

Fig. 1. Concept map for automatic music generation systems.

orchestration, which is often modeled as a retrieval problem (Psenicka 2003), or a multi-objective
search problem (Carpentier et al. 2010).

The objective of a system, such as matching a target timbre, will directly impact the problem
de!nition and prospective solution techniques, such as multi-objective search or retrieval. Also
notice that a music generation system can tackle more than one functional aspect—melody, har-
mony, rhythm, timbre—either by targeting multiple goals at the same time or focusing on one goal
with other musical aspects considered constant and provided by the user.

Returning to Figure 1, three high-level concepts are shown above composition: narrative, interac-
tive composing, and di!culty. Interactive composing refers to an online problem-solving approach,
which can be real time or not, to music generation that employs user input. A system can be de-
signed to generate each of the four essential musical elements, or a combination of them, in an
interactive manner. For example, a system can listen to a person’s playing and learn her or his style
in real time and improvise with the player in the same style (Pachet 2003; Assayag et al. 2006). An-
other type of interactive system incorporates a user’s feedback in the music generation process,
using it either as critique for reinforcement learning (Franklin 2001) or as a source of parameters
in music generation (François et al. 2013).

The narrative contributes to the emotion, tension, and/or story line perceived by the listener
when listening to music (Huron 2006). The concept of di!culty focuses on physical aspects of
playing the instrument. Systems with ergonomic goals must consider the playability of certain
note combinations on a particular instrument.

To achieve these goals, the long-term and/or hierarchical structure of the music plays an im-
portant role. These high-level goals and the long-term structure have been the focus of recent
development in automatic music generation, a trend that will persist into the near future.

As shown in Figure 1, automatic music generation evokes a number of computational prob-
lems and demonstrates capabilities that span almost the entire spectrum of arti!cial intelligence.
For example, generating music can be described as a sensorless problem (generating monophonic

ACM Computing Surveys, Vol. 50, No. 5, Article 69. Publication date: September 2017.
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How can we turn 
music into data?
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11 69:8 D. Herremans et al.

Table 1. Continued

Evolutionary/Population-based optimization algorithms
Melody (Horner and Goldberg 1991; Towsey et al. 2001; WASCHKA II 2007;

Herremans and Sörensen 2012)
Harmony (McIntyre 1994; Polito et al. 1997; Phon-Amnuaisuk and Wiggins 1999; Geis

and Middendorf 2007; WASCHKA II 2007; Herremans and Sörensen 2012)
Rhythm (Tokui and Iba 2000; Pearce and Wiggins 2001; Ariza 2002)
Interaction (Biles 1998, 2001)
Di!culty (Tuohy and Potter 2005; De Prisco et al. 2012)
Timbre (Carpentier et al. 2010)

Local search-based optimization
Melody (Herremans and Sörensen 2012)
Harmony (Herremans and Sörensen 2012; Herremans et al. 2015a)
Narrative (Browne and Fox 2009; Herremans and Chew 2016a, 2017)
Timbre (Carpentier et al. 2010)

Integer Programming
Melody (Cunha et al. 2016)

Other optimization methods
Melody (Davismoon and Eccles 2010)
Harmony (Tsang and Aitken 1999; Farbood and Schoner 2001; Bemman and Meredith

2016)
Timbre (Hummel 2005; Collins 2012)
Di!culty (Radisavljevic and Driessen 2004)

of features in a particular song or corpus to generate music having selected feature distributions
similar to the target song or corpus.

The "rst attempts at generating melodies with computers date back to 1956, when Pinkerton
built a "rst order Markov model, the “Banal Tune-Maker,” based on a corpus of 39 simple nursery
rhymes. Using a random walk process, he was able to generate new melodies that “sound like
nursery rhymes.” The following year, Brooks et al. (1957) built Markov models from order one
up to eight based on a dataset of 37 hymns. When using a random walk process, they noted that
melodies generated by higher order models tend to be more repetitive and those generated by
lower order models had more randomness.

The trade-o# between composing pieces similar to existing work and novel, creative input is a
delicate one. Although Stravinsky is famously quoted as having said, “good composers borrow and
great composers steal” (Raines 2015), machines still lack the ability to distinguish between artful
stealing and outright plagiarism. Concepts of irony and humor can also be di!cult to quantify. To
avoid plagiarism and create new and original compositions, an automatic music generation system
needs to "nd the balance between generating pieces similar to a given style, yet not too similar to
individual pieces.

Papadopoulos et al. (2014) examined problems of plagiarism arising from higher order Markov
chains. Their resulting system learns a high-order model but introduces MaxOrder, the maximum
allowable subsequence order in a generated sequence, to curb excessive repeats of material from
the source music piece. The sequences are generated using "nite-domain constraint satisfaction.
The idea of adding control constraints when generating music using Markov models was further
explored by Pachet and Roy (2001). Examples of applications of such control constraints include

ACM Computing Surveys, Vol. 50, No. 5, Article 69. Publication date: September 2017.
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Table 1. Functional Overview of Selected Music Generation Systems by Their Main Technique

Markov models
Melody (Pinkerton 1956; Brooks et al. 1957; Moorer 1972; Conklin and Witten

1995; Pachet and Roy 2001; Davismoon and Eccles 2010; Pearce et al.
2010; Gillick et al. 2010; McVicar et al. 2014; Papadopoulos et al. 2014)

Harmony (Hiller Jr and Isaacson 1957; Xenakis 1992; Farbood and Schoner 2001;
Allan and Williams 2005; Lee and Jang 2004; Yi and Goldsmith 2007;
Simon et al. 2008; Eigenfeldt and Pasquier 2009; De Prisco et al. 2010;
Chuan and Chew 2011; Bigo and Conklin 2015)

Rhythm (Tidemann and Demiris 2008; Marchini and Purwins 2010;
Hawryshkewich et al. 2011)

Interaction (Thom 2000)
Narrative (Prechtl et al. 2014a, 2014b)
Di!culty (McVicar et al. 2014)

Factor oracles
Interaction (Assayag et al. 2006; Weinberg and Driscoll 2006; François et al. 2007;

Assayag et al. 2010; Dubnov and Assayag 2012; François et al. 2013; Nika
et al. 2015)

Rhythm (Weinberg and Driscoll 2006)
Incremental parsing

Interaction (Pachet 2003)
Reinforcement learning

Interaction (Franklin 2001)
Rule/Constraint satisfaction/Grammar-based

Melody (Keller and Morrison 2007; Gillick et al. 2010; Herremans and Sörensen
2012)

Harmony (Hiller Jr and Isaacson 1957; Steedman 1984; Ebcioğlu 1988; Cope 1996;
Assayag et al. 1999b; Cope 2004; Huang and Chew 2005; Anders 2007;
Anders and Miranda 2009; Aguilera et al. 2010; Herremans and Sörensen
2012, 2013; Tanaka et al. 2016)

Narrative (Rutherford and Wiggins 2002)
Di!culty (Lin and Liu 2006)
Interaction (Lewis 2000; Chemillier 2001; Morales-Manzanares et al. 2001; Marsden

2004)
Narrative (Casella and Paiva 2001; Farbood et al. 2007; Brown 2012; Nakamura et al.

1994)
Neural networks/Restricted Boltzmann machines/ LSTM

Harmony (Lewis 1991; Hild et al. 1992; Eck and Schmidhuber 2002;
Boulanger-Lewandowski et al. 2012; Herremans and Chuan 2017)

Melody (Todd 1989; Du# 1989; Mozer 1991; Lewis 1991; Toiviainen 1995; Eck and
Schmidhuber 2002; Franklin 2006; Agres et al. 2009;
Boulanger-Lewandowski et al. 2012)

Interaction (Franklin 2001)
Narrative (Browne and Fox 2009)

(Continued)

ACM Computing Surveys, Vol. 50, No. 5, Article 69. Publication date: September 2017.A Funchonal Taxonomy of Music Generahon Systems 



Measuring Success
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Measuring Success

Human listeners Using music theore2c 
rules 

Using machine-
learned models

13



First-order, Higher 
Order, Variable Order…

14

Markov Models



Similarity... but how 
much?

• “Since similarity is central to metrics of success in 
music generation systems, an important challenge 
then becomes one of finding the right balance 
between similarity and novelty or creativity.”

• “It is interesting to speculate how much must be 
changed to create a new work.” (…)“in the case 
with high-order Markov models, run the risk of 
crossing the fine line between stylistic similarity 
and plagiarism” (Herremans et al., 2018, p. 695)

15



Genetic Algorithms

16



Flow Machines, Daddy’s Car (Pachet, 2017)

17

https://www.youtube.com/watch?v=LSHZ_b05W7o

… and 
Continuator

https://www.youtube.com/watch?v=ynPWOMzossI

https://www.youtube.com/watch?v=LSHZ_b05W7o
https://www.youtube.com/watch?v=ynPWOMzossI


Musical Agents

18

JOURNAL OF NEWMUSIC RESEARCH 63

Figure 2. The nine dimensions of our musical agents typology.

online such as the Contuniator 50 and the Voyager 11 .
There are also musical agents that learn o!ine and gen-
erate online such asMASOM 78 .

There is a wide variety of musical agents. We reviewed
78 systems and identi"ed 9 dimensions that form the
typology of musical agents. These nine dimensions are
agent architectures, musical tasks, environment types,
number of agents, number of agent roles, communica-
tion types, corpus types, input/output (I/O) types, human
interaction modality (HIM). This typology is available in
Figure 2 and Table 1.

(1) Agent architectures: Our typology of musical
agent architectures (Figure 2) is based on well-
known agent classi"cations in MAS and Arti"cial
Intelligence literature. On the top level of the musi-
cal agent architecture typology, we classify musical
agent architectures using three broad types of agent
architectures: cognitive, reactive, and hybrid (Rus-
sell Norvig, 2010; Weiss, 2013; Wooldridge, 2009).
Under the agent types, we use architecture model
paradigms as another level of categorisation. This

classi"cation of agent architectures and model
paradigms also serves as the base along which we
discuss our survey of musical agents, and the details
on each agent architecture type are given in the
corresponding sections.

(2) Musical tasks: Musical agents partially or com-
pletely automatise musical creative tasks. So far, we
identi"ed 12 di#erent musical tasks implemented by
musical agents (Figure 2):
– Composition: The artefacts of composition

are sets of symbolic instructions in the case
of musical scores, or audio "les in the case
of "xed-media works in electroacoustic music
or acousmatic music. For example, Coming
Together:Freesound 25 is a system that gener-
ates soundscape compositions.

– Assisted composition systems recommend
musical ideas to composers by automatising any
sub-tasks of musical composition. For exam-
ple, MASC 60 implements A#ective Com-
puting with a MAS to recommend melodies
to composers. Also, several composers used



Swarm Music
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Swarm 
Music
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Google LM

• https://google-
research.github.io/seanet/musiclm/exam
ples/

21

https://google-research.github.io/seanet/musiclm/examples/
https://google-research.github.io/seanet/musiclm/examples/
https://google-research.github.io/seanet/musiclm/examples/


Our research
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Complex 
Networks
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From music to networks

FerreH 2017 26



Modelling Sequences into Networks
- Each Musical element is mapped into a node.

- A Directed Edge is created between two consecu=ve elements.

27

What should be considered as a 
musical element?

What happens when multiple 
elements appear simultaneously?



State of the Art:

Liu et al. (2009) inveshgate the creahon of complex
networks through the analysis of different pieces of 
classical and contemporary music, considering notes 
consecuhvely in the score to create nodes.The authors
ignore possible notes occurring simultaneously, thus
focusing on the melodic dimension of the music.

28

What should be considered as a musical element?

2198 X. Liu, C.K. Tse, and M. Small

note 7

note 1 

note 5

note 4

node 9

note 2

note 3

note 8note 6

Fig. 2. A network for music, where nodes are notes and edges are connections of two
consecutively played notes

Fig. 3. Network from Bach’s violin solos

to have 20 possible time values (e.g., brieve, semi-brieve, dotted minum, minum,
dotted crochet, crochet, dotted quaver, quaver, dotted semi-quaver, semi-quaver,
dotted demisemi-quaver, demisemi-quaver, etc. [11]), for instance, there are al-
together 1760 possible notes.

For simplicity, we consider single-note scores where notes are to be played
one after another, without simultaneous playing of two or more notes like a
chord. Then, we may examine the way in which notes appear in the score for
the purpose of constructing a complex network to represent the score.



State of the Art:
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Multimed Tools Appl
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Fig. 3 Jimi Hendrix – Red House

4 Practical examples

4.1 Analysis of some tracks

Figures 3, 4, 5, 6 and 7 show examples of the network representations of different melody
lines, together with their associated degree distribution, plotted in linear and log-log scales
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Fig. 4 Miles Davis – So What

What should be considered as a musical element?

Ferretti (2017) focuses on the creation of these
networks from complex melodies existing in solos 
and justifies the existence of properties related to 
the concepts of small world. 



State of the Art:

Gomez chooses to focus on the harmony of the
piece, and defines each node of the network
according to the notes that occur simultaneously
at each instant. 

30

What should be considered as a 
musical element?

What happens when mulAple 
elements appear simultaneously?

Serrà et al. try to explain the evolu?onary direc?on
of contemporary music through the proper?es of 
the networks created. 



State of the Art:

31

What should be considered as a 
musical element?

What happens when mulAple 
elements appear simultaneously?

Serrà et al. try to explain the evolu?onary direc?on
of contemporary music through the proper?es of 
the networks created. 

infrequent (intuitively, the latter provide the small musical nuances
necessary to make a discourse attractive to listeners3–5). Nonetheless,
it also states that there is no characteristic frequency nor rank sepa-
rating most used codewords from largely unused ones (except for the
largest rank values due to the finiteness of the vocabulary). Another
non-trivial consequence of power-law behavior is that when a # 2,
extreme events (i.e. very rare codewords) will certainly show up in a
continuous discourse providing the listening time is sufficient and
the pre-arranged dictionary of musical elements is big enough.

Importantly, we find this power-law behavior to be invariant
across years, with practically the same fit parameters. In particular,
the exponent b remains close to an average of 2.18 6 0.06 (corres-
ponding to a around 0.85), which is similar to Zipf’s law in linguistic
text corpora23 and contrasts with the exponents found in previous
small-scale, symbolic-based music studies24,25. The slope of the least
squares linear regression of b as a function of the year is negligible
within statistical significance (p . 0.05, t-test). This makes a high
stability of the distribution of pitch codeword frequencies across
more than 50 years of music evident. However, it could well be that,
even though the distribution is the same for all years, codeword
rankings were changing (e.g. a certain codeword was used frequently
in 1963 but became mostly unused by 2005). To assess this possibility
we compute the Spearman’s rank correlation coefficients26 for all
possible year pairs and find that they are all extremely high, with
an average of 0.97 6 0.02 and a minimum above 0.91. These high
correlations indicate that codeword rankings practically do not vary
with years.

Codeword frequency distributions provide a generic picture of
vocabulary usage. However, they do not account for discourse
syntax, as well as a simple selection of words does not necessarily

constitute an intelligible sentence. One way to account for syntax is to
look at local interactions or transitions between codewords, which
define explicit relations that capture most of the underlying regular-
ities of the discourse and that can be directly mapped into a network
or graph18,19. Hence, analogously to language-based analyses27–29, we
consider the transition networks formed by codeword successions,
where each node represents a codeword and each link represents a
transition (see SI). The topology of these networks and common
metrics extracted from them can provide us with valuable clues about
the evolution of musical discourse.

All the transition networks we obtain are sparse, meaning that the
number of links connecting codewords is of the same order of mag-
nitude as the number of codewords. Thus, in general, only a limited
number of transitions between codewords is possible. Such con-
straints would allow for music recognition and enjoyment, since
these capacities are grounded in our ability for guessing/learning
transitions3,4,8 and a non-sparse network would increase the number
of possibilities in a way that guessing/learning would become unfea-
sible. Thinking in terms of originality and creativity, a sparse network
means that there are still many ‘composition paths’ to be discovered.
However, some of these paths could run into the aforementioned
guessing/learning tradeoff 9. Overall, network sparseness provides a
quantitative account of music’s delicate balance between predictabil-
ity and surprise.

In sparse networks, the most fundamental characteristic of a code-
word is its degree k, which measures the number of links to other
codewords. With pitch networks, this quantity is distributed accord-
ing to a power law P(k) / k2c for k . kmin, with the same fit
parameters for all considered years. The exponent c, which has
an average of 2.2060.06, is similar to many other real complex

Figure 2 | Pitch distributions and networks. (a) Examples of the rank-frequency distribution (relative frequencies z9 such that
P

r z0r~1). For ease of
visualization, curves are chronologically shifted by a factor of 10 in the vertical axis. Some frequent and infrequent codewords are shown. (b) Examples of
the density values and their fits, taking z as the random variable. Curves are chronologically shifted by a factor of 10 in the horizontal axis. (c) Average
shortest path length l versus clustering coefficient C for pitch networks (right) and their randomized versions (left). Randomized networks were obtained
by swapping pairs of links chosen at random, avoiding multiple links and self-connections. Values l and C calculated without considering the 10 highest
degree nodes (see SI). Arrows indicate chronology (red and blue colors indicate values for more and less recent years, respectively).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 521 | DOI: 10.1038/srep00521 3



Results on Piano Works
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IntroducMon to AI and Music

33

https://www.youtube.com/watch?v=jOzWN-
PYh9s&t=1s

h"ps://www.youtube.com/watch?v=SCm9O2
KNEX4&t=2s

https://www.youtube.com/watch?v=jOzWN-PYh9s&t=1s
https://www.youtube.com/watch?v=jOzWN-PYh9s&t=1s
https://www.youtube.com/watch?v=SCm9O2KNEX4&t=2s
https://www.youtube.com/watch?v=SCm9O2KNEX4&t=2s


Clusterizing 
the 
network
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Demo on 
Clusterized 
Melodies
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A – B – C – D – E – C – A – B – C - codaDynamics of the 
Network and Form

36

On Musical Form…



Is there a beOer 
network 
representaMon?
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Schoenberg on the 
dimensions of Music…

’The elements of a musical idea are partly
incorporated in the horizontal plane as 
successive sounds and partly in the ver7cal 
plane as simultaneous sounds’;31 or: ’In 
accordance with this [law], harmony and melody, 
ver:cal and horizontal, form a musical unit, a 
space, in both of whose dimensions the musical 
substance is deposited.
The concep:on of the dimensions of musical 
space is therefore connected with ’harmony and 
melody’—without ’ver:cal’ and ’harmony’, or
’horizontal’ and ’melody’, thereby being iden:cal. 

38



“(…) many real-world systems do not operate in 
isolation. On the contrary, they are 
interconnected and what happens at a single 
level of interaction affects the structure and 
function at another interconnected layer.” 

Cosnet (Complex Systems and Network Lab, 
University of Zaragoza)

39



MulMlayer Networks - Methodology

40Bono Rosselló, 2021
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Dynamics of the Network and Texture

42

But… What is Texture?

HOMOPHONIC POLYPHONICMONOPHONIC



Polyphonic Texture: ’Ricercar a 6’ J.S.Bach
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Polyphonic Texture: ’Ricercar a 6’ J.S.Bach
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Homophonic Texture: ‘If ye Love Me’ Thomas Tallis
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Homophonic Texture: ‘If ye Love Me’ Thomas Tallis
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Random walks

47



No Structure

48
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Ant Colony Optimization



EvaluaMng… music? 

51



InteracMons, roles, emergence?

52

[INFO-H-410] Techniques of AI
TP GAA (Genetic Algorithms and Ant System)Correction

v1.0.1
page 5

Data: Popsize, Numgen, Crossoverproc, Mutationproc

for i 2 1, .., Popsize do
Population[i]  RandomSolution()

end
Evaluate(Population)
Sbest  GetBestSolution(Population)
for gen 2 1, .., Numgen do

Parents  Selection(Population)
Children  �
for Parent1, Parent2 2 Parents do

Children1, Children2  Crossover(Parent1, Parent2, Crossoverproc)
Children1  Mutate(Children1, Mutationproc)
Children2  Mutate(Children2, Mutationproc)

end
Evaluate(Children)
Pbest  GetBestSolution(Children)
if Pbest > Sbest then

Sbest  Pbest

end
Population  Children

end
Algorithm 1: Pseudocode for a simple genetic algorithm. Popsize is the number of
individuals in the population, Numgen is the number of generations, Crossoverproc
is a crossover procedure, and Mutationproc is a mutation procedure.

Data: n, m, ↵, �, ⇢, ⌧0

while !termination() do
for k 2 1, ..,m do

ants[k] [1]  SelectRandomCity()
for i 2 2, n do

ants[k] [i]  ASDecisionRule(ants, i)
end
ants[k] [n+ 1]  ants[k] [1]

end
UpdatePheromones(ants)

end
Algorithm 2: Pseudocode for the Ant System algorithm. n is the size of the
problem, m the number of ants, ↵ and � are parameters of the solution construc-
tion procedure ASDecisionRule (see Eq. 1), ⇢ is the parameter of the pheromone
update procedure UpdatePheromones (see Eq. 2), and ⌧0 is the initial value of the
pheromones

Reminder

ASDecisionRule! pkij(t) =
[⌧ij ]

↵ · [⌘ij ]�P
l2Nk

i
[⌧il]

↵ · [⌘il]�
, if j 2 Nk

i (1)

5

[INFO-H-410] Techniques of AI
TP GAA (Genetic Algorithms and Ant System)Correction

v1.0.1
page 6

UpdatePheromones ! ⌧ij(t) = (1� ⇢) · ⌧(t� 1) +
mX

k=1

�⌧kij

�⌧kij =
1

Lk
, if arc(i, j) is used by ant k on its tour

(2)

Found an error? Let us know: https://github.com/iridia-ulb/INFOH410/issues

6



How should we 
modify the 
equa<ons?
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Equations

54

6 F. Author et al.

might first consider our approach as parallel instances of ACO, each one of them
on one layer of the described multilayer graph. In that sense, each search space
constrains the possible transitions according to the existing directed intra-layer
edges.

Regarding the objective functions, that will evaluate each ant colony’s so-
lution, heterogeneity is provided by the fact that each colony will optimize a
(possibly) di↵erent objective function. This allows the methodology to be con-
figured, for instance, as a polyphonic music generator.

To complete the adaptation of the Ant System to our multilayer model we
need to provide a way for the di↵erent colonies to interact. To achieve this,
we introduce a second type of pheromone, as proposed in other Ant System
variations for multi-objective optimization problems [13]. This pheromone will
be used by one layer colony to influence other layers colonies. To do this, the
inter-layer edges will be employed to convey the information of nodes involved
in the solution developed on one layer to other layers.

Therefore, the pheromone trails are used to influence two environments with
two di↵erent purposes: i) the coordination of one colony towards their goal in
their own layer and ii) the coordination of di↵erent colonies towards connected
musical regions on other layers.

Regarding the formal implementation of this algorithm, we first define the
transition probabilities (for every possible edge from i to j defined by neighbour-
hood Ni) biasing the random walk of each ant k through each layer in Equation
1.

p
k
ij(t) =

⇥
⌧inij

⇤↵in ·
⇥
⌧exij

⇤↵ex · [⌘ij ]�
P

l2Nk
i
[⌧inil ]

↵in · [⌧exil ]
↵ex · [⌘il]�

, if j 2 N
k
i (1)

These probabilities depend on the following three factors:

– Intra-pheromone Information (⌧inij ): A numerical value representing the
amount of internal pheromone in such edge. This value will be updated
accordingly to the use of the edge in a well-evaluated solution.

– Extra-pheromone Information (⌧exij ): A numerical value representing the
amount of external pheromone in such edge. This value will be updated
according to the use of connected nodes in other layers solutions.

– Heuristic Information (⌘ij): A numerical value representing the probability of
that transition in the initialized graph. This value is generated by the existing
probabilities in an original work or by a pre-designed artificial search space.

Therefore, each transition is biased by the conjunction of these three param-
eters. In order to control the influence of each one of these parameters, we make
use of ↵in, ↵ex and �. By doing so we can promote: the individual goal opti-
mization (↵in), the dependence on other agents (↵ex) or the use of the heuristic
musical information (�).

According to these probabilities, each ant colony will generate multiple solu-
tions depending on the number of ants (K) defined for each layer. These solutions
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will be then evaluated according to an objective function FL(pathk) that can be
di↵erent for each layer (L). Moreover, in our approach, we opt for an elitist varia-
tion of the Ant System and we select the best solution out of K of each iteration
according to FL(pathk). This choice facilitates the optimization of individual
goals when that is the desired behavior.

Then, the intra-pheromone trails are updated according to Equation 2:

⌧inij (t) =

(
(1� ⇢in) · ⌧inij (t� 1) +4⌧inij if ij 2 path

(1� ⇢in) · ⌧inij (t� 1) if ij /2 path
(2)

where, after each iteration a proportion of pheromone ⇢in will be evaporated on
all edges. Then if edge ij is part of the selected solution (path), it will receive an
increase of pheromone (4⌧inij ) according to the result of best path evaluation
FL(pathbest).

Regarding the external pheromone, it will be updated in a similar manner
according to Equation 3:

⌧exij (t) =

(
(1� ⇢ex) · ⌧exij (t� 1) +

PL
l=1 4⌧exij if 9jk : k 2 pathl

(1� ⇢ex) · ⌧exij (t� 1) else
(3)

where, after each iteration a proportion of pheromone ⇢ex will be evaporated on
all edges. Then if edge (ij) ends in a node j connected to a node contained in
another layer solution (pathl), it will receive an amount of pheromone according
to Fl(pathl). This choice aims at guiding agents on other layers to go towards
correlated nodes in their respective layers.

Finally, the objective functions F (path) mentioned above are left to be de-
signed according to the desired behavior of an agent regarding specific musical
variables. Such objective functions can be considered as one parameter more
to be chosen when designing a specific creation rather than a core part of the
system. In such a way, these objective functions can be used, for instance, to
reinforce certain rhythmic behavior or to obtain specific levels of randomness in
the generated melodies.

2.3 Algorithm Description

Once the multilayer model is described and the Ant System has been adapted
to target its distributed yet interactive behaviour we can proceed to describe a
run of the algorithm.

To initialize the algorithm we can opt for using a MIDI file of an original
work. This file containing di↵erent voices is mapped into a multilayer network
according to the procedure described in Figure 1. Such multigraph already con-
tains each search space with the allowed transitions (constraints). Furthermore,
the edges will be already weighted with the corresponding transition probabilities
that will be used as heuristic information (⌘ij) in Equation 1.

Then, di↵erent parameters can be configured depending on the interactions
desired by the user/artist. These decisions have influence on elements ranging
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3.1 Example 1: On the role of di↵erent pheromone types

The goal of this first example is to illustrate how di↵erent configurations of
the pheromone importance ↵in and ↵ex modify the individual behavior of each
agent. When intra-pheromone importance (↵in) is high, the agent manages to
reach the goal defined by the objective function F ; when ↵in is 0, the agent fails
in its attempt to reach its individual goal and behaves as a follower guided by
extra-pheromone ⌧ex.

Table 1: Parameter Configuration of Example 1
Parameter Layer 0 Layer 1
Intra-pheromone factor (↵in) 2 0
Extra-pheromone factor (↵ex) 0 2
Heuristic information factor (�) 1 1
Target Length of Objective Function (F ) 8 8

Fig. 2: Evolution of the Objective Functions for Example 1 with di↵erent intra-
pheromone influence.

For this example we initialize a two voices multilayer graph by using the
Piano Sonata No. 11 in A major, K. 331, 1st Movement by W.A. Mozart. In this
mapping, each layer corresponds to the score of each hand of the piano. Both
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pheromone types are initialized to 1 in each layer, and their evaporation factors
⇢in and ⇢ex are both set to 0.1. The music will be generated by using 10 ants
on each colony/layer during 200 iterations with a length of 32 musical elements.
he colony parameters associated to each layer, e.g. the influence of each type
pheromone, heuristic information and the target length of the objective function,
can be found in Table 1.

The results in Figure 2 show the colony on layer 0 reaching its individual
goal by using intra-pheromone (⌧in) to guide its transitions. On the other hand,
the colony on layer 1 is not basing its decisions on the optimization given by the
intra-pheromone (⌧in) and so fails to reach its goal.

In musical terms, the high-pitched voice corresponding to the right hand of
the piano produces a melody using only 8 di↵erent musical elements, while the
left-hand uses more elements biased by the right hand melody.

3.2 Example 2: On the use of di↵erent objective functions

The goal of this example is to illustrate how di↵erent optimization goals can be
set for di↵erent agents and how music is the result of the trade-o↵ between these
behaviors interactions. In this case di↵erent objective functions (F ) with di↵erent
targets are set for each ant colony which will bias their behavior di↵erently.

For this example we make use of the same musical input from W.A. Mozart
to initialize the multilayer graph and the same parameters as in the Example 1
configuration. Therefore, we only change the values for the pheromone influences
and the objective functions as stated in Table 2. In this example, while the first
colony will try to produce melodies with 4 di↵erent elements, the second colony
will try to produce melodies with 32 di↵erent elements.

Table 2: Parameter Configuration of Example 2
Parameter Layer 0 Layer 1
Intra-pheromone factor (↵in) 1 1
Extra-pheromone factor (↵ex) 2 2
Heuristic information factor (�) 1 1
Target Length of Objective Function (F ) 4 32

We observe the results in Figure 3 where the colony on layer 1, biased by the
other factors, moves away from its goal of using 32 di↵erent elements. On the
other hand, the colony on layer 0 approaches its goal as the iterations advance
but also stagnates at a certain value. This example shows how while both layers
fail to reach their individual goal, a system equilibrium is reached after a number
of iterations.

In musical terms, di↵erent musical roles are given by di↵erent levels of com-
plexity as their target. Then, the interactions force the system to reach an equi-
librium that outputs two correlated voices with a pleasant melody combination.
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Fig. 3: Evolution of the Objective Functions for Example 2 with di↵erent goals.

3.3 Example 3: On the scalabilty of the system

The goal of this last example is to illustrate the capabilities of the system to
be used with more voices. As it happens in an orchestral composition, the roles
need to be more precisely defined when the number of instruments increases.
In that sense, we show the flexibility of the system by playing with both objec-
tive functions and pheromone influences configurations depicted in the previous
examples.

For this example, we initialize a six layers’ multigraph with the The Ricercar
a 6 from The Musical O↵ering from J.S.Bach, which constitutes a six-voice
fugue. We set the same parameters for pheromone initialization and evaporation
factors and number of ants per colony. In this case, however, we generate longer
melodies with a length of 64 elements. The rest of the configuration for each
colony is described in Table 3.

Table 3: Parameter Configuration of Example 3
Parameter Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Intra-pheromone factor (↵in) 0 0 2 2 1 1
Extra-pheromone factor (↵ex) 1 2 2 2 2 2
Heuristic information factor (�) 1 1 2 1 1 1
Target Length of Objective Function (F ) 4 4 16 4 32 8
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