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Markov chains

Index i 1 2 3 4 5

Variable Yi 2 4 6 8 Y5

Source: [1]

P(Y5 = 10) = P(Y5 = 10|Y4 = 8)
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Markov chains

Learning sequences 5



Markov chains
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Hidden Markov models

hidden OFF MOT MOT M+R M+R MOT MOT OFF M+R MOT MOT OFF

observable 0 200 200 1000 1000 200 200 0 1000 200 200 0
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Hidden Markov models

Source: [1]

▶ State transition probability matrix & observation probability distribution.
▶ Left-right architecture.
▶ 1st order Markov: P(St) = P(St |St−1)

▶ Hypothesis: observations Yt are independent.
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Factorial HMM

Source: [1]
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Markov models summary

Key features:
▶ Transition matrix can be

constrained to the problem.
▶ Approximate learning.
▶ Generative models.
▶ Sucessfully applied to: signal

denoising, molecular biology,
electricity disaggregation,
speech recognition, etc.

Limitations:
▶ Intractability for large numbers

of states.
▶ Complexity: O(TK 2M)

▶ Hypothesis: independence of
observations.

▶ Hypothesis: 1st order Markov
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Learning sequences – Need for memory

Index i 1 2 3 4 5

Variable Yi SI VIS PACEM PARA Y5

Y5 = BELLVM

Use Y3 and Y4 to deduce Y5?
▶ 2nd order Markov chain. ⇒ Complexity!
▶ Store Y3 in memory.
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Neural networks: extension of HMMs

I1

I2

I3

H1

H2

H3

H4

H5

O1

Input Hidden Output

Multi-layer perceptron (MLP)
▶ Fully connected, feed-forward

network.
▶ One hidden layer.
▶ Sigmoid activation.
▶ No memory.
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Recurrent neural networks & decaying error

Source: [2]

▶ Fully connected network
with feedback loops.

▶ One hidden layer.
▶ Sigmoid activation.
▶ Memory effect but

exponential decay or
blow-up of the error.

Problem: How to get a memory effect while avoiding decay or blow-up?

Learning sequences 13



Computer memory cell (DRAM)

Source: wikimedia.org

1. Binary value to read/write
2. Trigger
3. Gate MOSFET
4. Memory capacitor
5. Line parasitic capacitance

▶ DRAM = dynamic random-access memory
▶ MOSFET = metal-oxide-silicon field-effect transistor
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Long short-term memory (LSTM)

Source: [2]

▶ Gated unit for recurrent
networks.

▶ Central self-recurring
neuron with linear
activation.

▶ netc : input from the
network.

▶ netin: input gate.
▶ netout : output gate.
▶ sc : internal state.
▶ yc : output to the network.
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Gated recurrent unit (GRU)

Source: [3]

▶ Simplified LSTM for similar
performance.

▶ X : input from the network.
▶ z : update gate.
▶ r : reset gate.
▶ h: hidden state.
▶ h̃: new state.
▶ Output: zht−1 + (1 − z)h̃t
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Bi-directional recursion

Source: [4]

▶ Use when the whole
sequence is known, i.e. no
real-time processing.

▶ Can be used with LSTM or
GRU.

▶ Possible aggregations:
▶ sum
▶ product
▶ concatenation
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Deep recurrent neural networks summary

Key features:
▶ End-to-end learning of the

problem.
▶ Generative models.
▶ Sucessfully applied to: signal

denoising, electricity
disaggregation, speech
recognition, online translation,
content recommendation, etc.

Limitations:
▶ Interpretability.
▶ Convergence is not guaranteed.
▶ More complex than HMMs.
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Use case 1: atrial fibrillation detection and
forecast

▶ Human heart and ECG
▶ Atrial fibrillation
▶ AF detection
▶ AF forecast
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Electrocardiogram (ECG)

Use case 1: atrial fibrillation detection and forecast 20



Human heart and ECG decomposition
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Atrial fibrillation

Medical definition [5]:
▶ No P wave
▶ ECG strip > 30 seconds
▶ Irregular rhythm

Risks [5]:
▶ ± 50 millions patients worldwide
▶ Stroke risk x5
▶ Death risk x2
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Transition sinus rhythm-AF on ECG
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Holter recording with AF

Holter recording (3 days) with two episodes of AF
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RR intervals
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AF detection task

Detect at each instant t if AF of normal sinus rhythm (NSR)
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AF detection with sliding window

Detect for each window if AF signs or not
(binary classification - supervised learning)
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DNN model

Source: [6]
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AF detection metric

▶ AUC: 99.6
▶ Sensitivity: 94.9
▶ Specificity: 99.1
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AF forecast

Is there information in the ECG previous to the AF onset?
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AF forecast parameters
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AF forecast

Source: [6]
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Use case 2: electricity disaggregation
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Feedback has an impact

Intervention type Decrease range Region Sources

Comparison group 4–13% US, EU [7, 8]

Total consumption 2–22% 1 EU [8–11]

Consumption cost 0–23% 1 EU [12, 13]

Appliance-level consumption 3–27% EU [10, 11, 13]

Hawthorne effect 4–13% EU [8, 11]

1Subject to damping as shown in [10].
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Data characteristics

Source: Data from [14]

C 0 continuity, aperiodic, class imbalance, 95% zeros.

Use case 2: electricity disaggregation 35



Multi-label classification approach

Source: Data from [14]

▶ Model type:
factorial HMMs.

▶ Sensitive to class
imbalance.

▶ Signal aggregate
constrains can be
added.
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Denoising regression approach

Source: Data from [14]

▶ Model type: deep
neural networks.

▶ Requires data
sub-metering for
training.

▶ Better more homes
than longer
periods.
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Denoising regression approach

Appliance-level
consumptionAppliance-level

consumption

Model parameters
Model parameters

Training dataset

Model parameters

Training

Smart
meter
data Appliance-level

consumption

Inference
Model

Model parameters
Model parameters

Appliance-level
consumptionAppliance-level

consumption

One model for each appliance
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Necessary time granularity
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Deep recurrent net for disaggregation

WindowGRU [15]

Input length = 100

Input layer

Filter size = 4
Filters = 16
Stride = 1
Activation = ReLU

Conv. layer

Units = 64
Merge = concat
Activation = ReLU

Rec. layer

Units = 128
Merge = concat
Activation = ReLU

Rec. layer

Units = 128
Activation = ReLU

Dense layer

Units = 1
Activation = linear

Output layer
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Model output
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Sliding window processing

Human view

Source: Data from [16]

Algorithm view

Source: Data from [16]

Mañé & Takens theorem ⇒ A window size exists such that enough data is
captured for the model to fit. Too long windows include noise and harm

performance [17].
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Performance benchmark

Generalization test on an “unseen” home:

Parameters: 15,930,895 50,248 262,737
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Design of ML experiments

▶ Inference of already seen patterns is easy.
▶ Evaluate generalization on unseen

patients or homes.
▶ Group IDs for cross-validation.
▶ Select a period during which at least two

events happen.
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Conclusion

▶ Neural networks extend Markov models.
▶ Memory cells are instrumental in the convergence of recurrent nets.
▶ GRU layer simplifies LSTM for a similar performance.
▶ Deep recurrent networks combine convolutional and recurrent layers.
▶ Deep RNN require less parameters than CNN.
▶ Two use-cases: fibrillation detection and disaggregation.
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