Deep and recurrent neural networks: two real-world use cases

Guillaume LEVASSEUR & Cédric GILON

IRIDIA, Université libre de Bruxelles

March 4th 2022

Table of contents

Learning sequences

Use case 1: atrial fibrillation detection and forecast

Use case 2: electricity disaggregation

Conclusion

Index i
1
2
3
4
5

Variable Y_i 2
4
6
8
 Y_5

Index i
1
2
3
4
5

Variable
$$Y_i$$
2
4
6
8
 Y_5
10

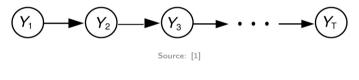
Ind	lex i	1	2	3	4	5		$Y_{5} = 10$
Variable Y_i		' _i 2	4	6	8	Y_5		
Index i	1	2		3		4	5	

Variable Y_i SI VIS PACEM PARA Y_5

1

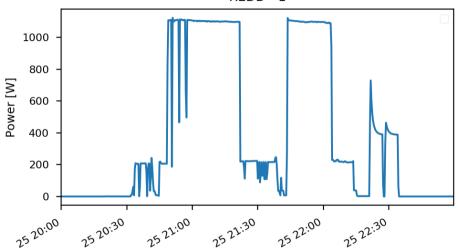
	Ind	lex i		1	2	3	4	5		$Y_{5} = 10$
Variable Y_i		Yi	2	4	6	8	Y_5			
Inde	ex i	1	2	2		3		4	5	$Y_5 = DOX$ $Y_5 = PLU(IE)$
Variat	ble Y_i	SI	VI	S	PA	CEM		PARA	Y_5	$Y_5 = BELLVM$

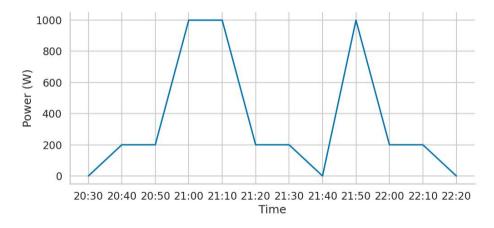
Index i	1	2	3	4	5	
Variable Y_i	2	4	6	8	Y_5	



 $P(Y_5 = 10) = P(Y_5 = 10|Y_4 = 8)$

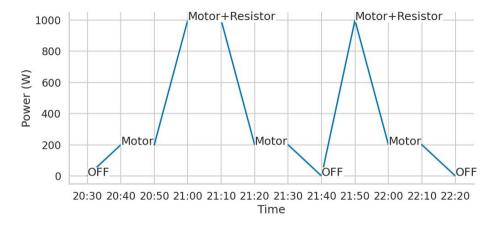
Learning sequences







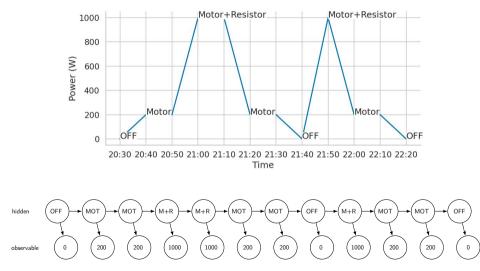
Learning sequences



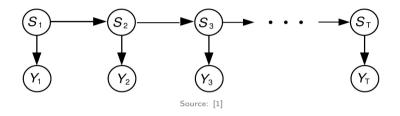


Learning sequences

Hidden Markov models

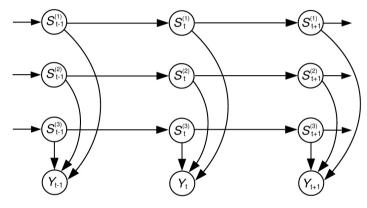


Hidden Markov models



- State transition probability matrix & observation probability distribution.
- Left-right architecture.
- 1^{st} order Markov: $P(S_t) = P(S_t|S_{t-1})$
- Hypothesis: observations Y_t are independent.

Factorial HMM



Source: [1]

Markov models summary

Key features:

- Transition matrix can be constrained to the problem.
- Approximate learning.
- Generative models.
- Sucessfully applied to: signal denoising, molecular biology, electricity disaggregation, speech recognition, etc.

Limitations:

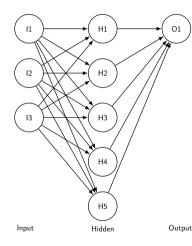
- Intractability for large numbers of states.
- Complexity: $O(TK^{2M})$
- Hypothesis: independence of observations.
- ► Hypothesis: 1st order Markov

Learning sequences – Need for memory

Use Y_3 and Y_4 to deduce Y_5 ?

- ▶ 2^{nd} order Markov chain. \Rightarrow Complexity!
- Store Y_3 in memory.

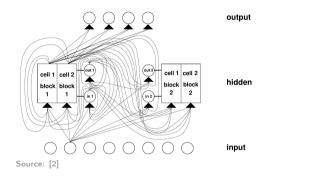
Neural networks: extension of HMMs



Multi-layer perceptron (MLP)

- Fully connected, feed-forward network.
- One hidden layer.
- Sigmoid activation.
- No memory.

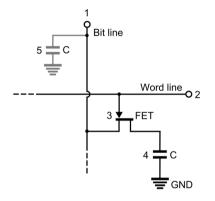
Recurrent neural networks & decaying error



- Fully connected network with feedback loops.
- One hidden layer.
- Sigmoid activation.
- Memory effect but exponential decay or blow-up of the error.

Problem: How to get a memory effect while avoiding decay or blow-up?

Computer memory cell (DRAM)

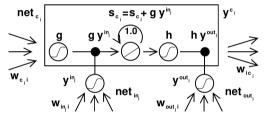


Source: wikimedia.org

- DRAM = dynamic random-access memory
- MOSFET = metal-oxide-silicon field-effect transistor

- 1. Binary value to read/write
- 2. Trigger
- 3. Gate MOSFET
- 4. Memory capacitor
- 5. Line parasitic capacitance

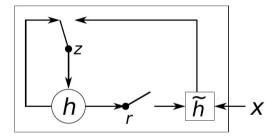
Long short-term memory (LSTM)



Source: [2]

- Gated unit for recurrent networks.
- Central self-recurring neuron with linear activation.
- net_c: input from the network.
- net_{in}: input gate.
- net_{out}: output gate.
- ▶ s_c: internal state.
- y_c : output to the network.

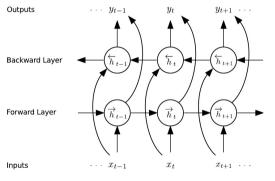
Gated recurrent unit (GRU)



Source: [3]

- Simplified LSTM for similar performance.
- ► X: input from the network.
- ► *z*: update gate.
- ▶ *r*: reset gate.
- ▶ *h*: hidden state.
- \blacktriangleright \tilde{h} : new state.
- Output: $zh^{t-1} + (1-z)\tilde{h}^t$

Bi-directional recursion



Source: [4]

- Use when the whole sequence is known, i.e. no real-time processing.
- Can be used with LSTM or GRU.
- Possible aggregations:
 - sum
 - product
 - concatenation

Deep recurrent neural networks summary

Key features:

- End-to-end learning of the problem.
- Generative models.
- Sucessfully applied to: signal denoising, electricity disaggregation, speech recognition, online translation, content recommendation, etc.

Limitations:

- Interpretability.
- Convergence is not guaranteed.
- More complex than HMMs.

Tutorial: Whole Circular Knitting Process at a Glance |... BappiFied 30K views • 3 years ago

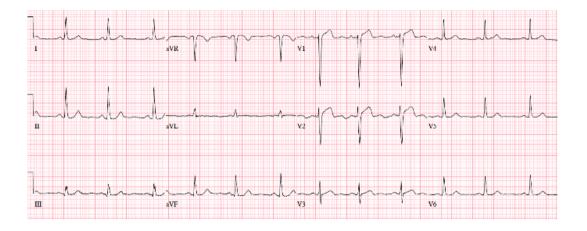
Andre Bandarra 67K views • 3 years ago

Mix - Textile Vlog

Use case 1: atrial fibrillation detection and forecast

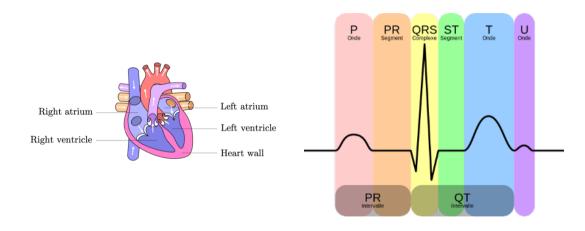
- Human heart and ECG
- ► Atrial fibrillation
- ► AF detection
- ► AF forecast

Electrocardiogram (ECG)



Use case 1: atrial fibrillation detection and forecast

Human heart and ECG decomposition



Atrial fibrillation

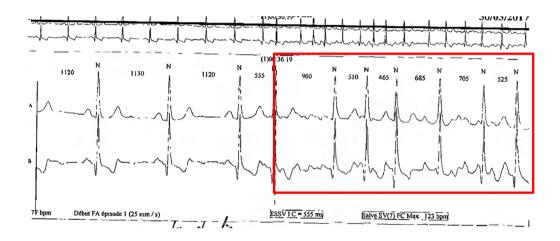
Medical definition [5]:

- No P wave
- ► ECG strip > 30 seconds
- Irregular rhythm

Risks [5]:

- \blacktriangleright ± 50 millions patients worldwide
- Stroke risk x5
- Death risk x2

Transition sinus rhythm-AF on ECG

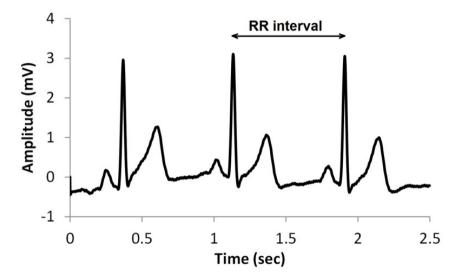


Holter recording with AF

Holter recording (3 days) with two episodes of AF

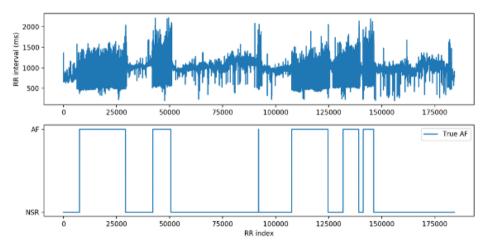
Use case 1: atrial fibrillation detection and forecast

RR intervals



Use case 1: atrial fibrillation detection and forecast

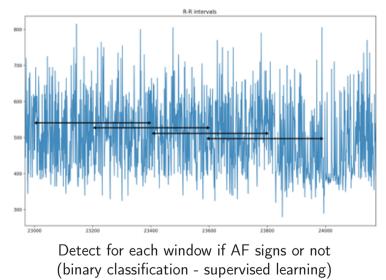
AF detection task



Detect at each instant t if AF of normal sinus rhythm (NSR)

Use case 1: atrial fibrillation detection and forecast

AF detection with sliding window



Use case 1: atrial fibrillation detection and forecast

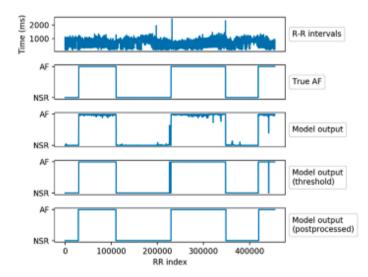
DNN model

Layer	Type	Parameters	Output shape		
1	Input layer		300 x 1		
2	1D convolution	filers:100, kernel size: 3	$298 \ge 100$		
3	1D convolution	filers:100, kernel size: 3	$296 \ge 100$		
4	Global max pooling		100		
5	Reshape		$100 \ge 1$		
6	Bidirectional GRU	units: 100	200		
7	Fully connected	units: 1, activation: sigmoid	1		
Total number of parameters 91 901					
Input RR intervals window CNN 2 layers Pooling GRU GRU GRU Output Diagnosis					
Source: [6]					

Use case 1: atrial fibrillation detection and forecast

AF detection metric

- ► AUC: 99.6
- Sensitivity: 94.9
- ► Specificity: 99.1

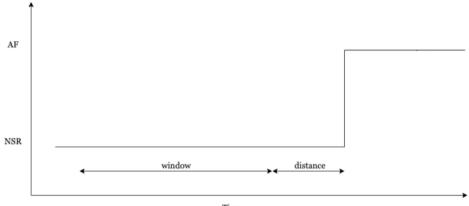


Use case 1: atrial fibrillation detection and forecast

AF forecast

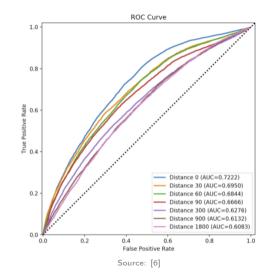
Is there information in the ECG previous to the AF onset?

AF forecast parameters

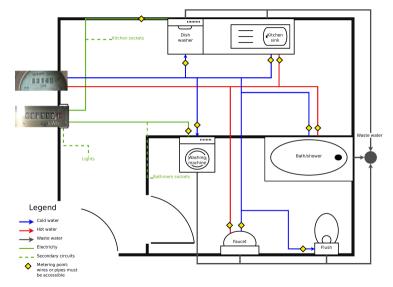


AF forecast

Distance	AUC	AUC CI (95%)
0	0.722	[0.721 - 0.724]
30	0.695	[0.693 - 0.697]
60	0.684	[0.683 - 0.686]
90	0.667	[0.665 - 0.668]
300	0.628	[0.626 - 0.629]
900	0.613	[0.611 - 0.615]
1800	0.608	[0.607 - 0.610]



Use case 1: atrial fibrillation detection and forecast



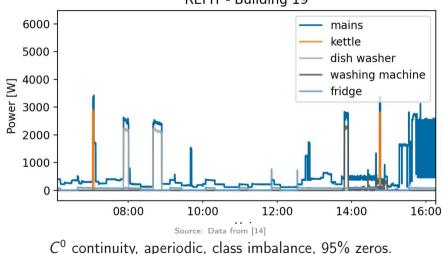
Feedback has an impact

Intervention type	Decrease range	Region	Sources
Comparison group	4–13 %	US, EU	[7, 8]
Total consumption	2–22 % 1	EU	[8-11]
Consumption cost	0–23 % 1	EU	[12, 13]
Appliance-level consumption	3–27 %	EU	[10, 11, 13]
Hawthorne effect	4–13 %	EU	[8, 11]

¹Subject to damping as shown in [10].

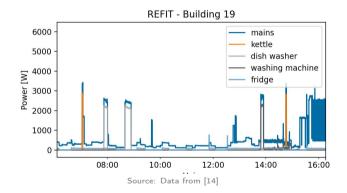
Use case 2: electricity disaggregation

Data characteristics



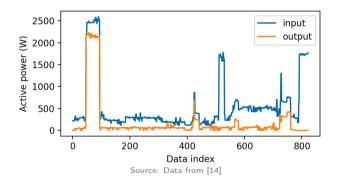
REFIT - Building 19

Multi-label classification approach



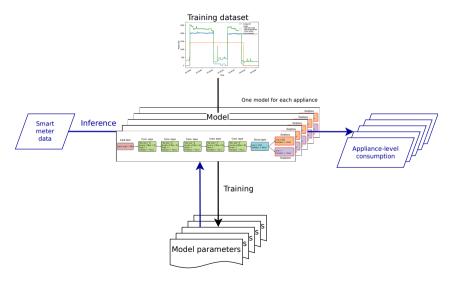
- Model type: factorial HMMs.
- Sensitive to class imbalance.
- Signal aggregate constrains can be added.

Denoising regression approach

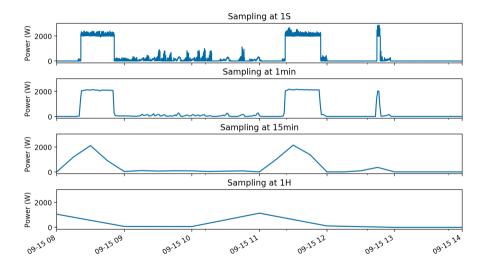


- Model type: deep neural networks.
- Requires data sub-metering for training.
- Better more homes than longer periods.

Denoising regression approach

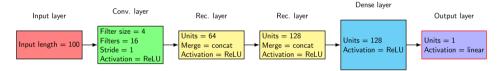


Necessary time granularity

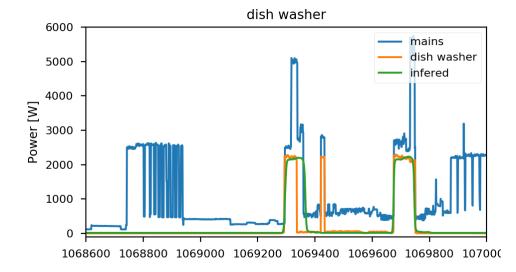


Deep recurrent net for disaggregation

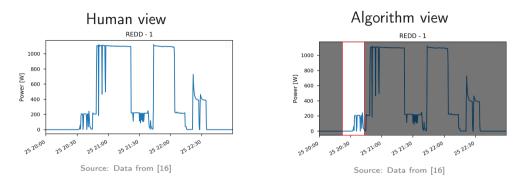
WindowGRU [15]



Model output



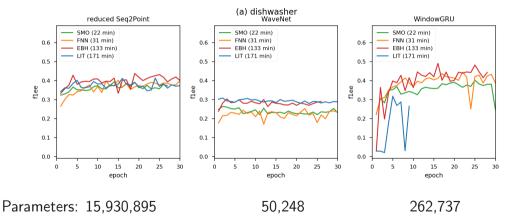
Sliding window processing



Mañé & Takens theorem \Rightarrow A window size exists such that enough data is captured for the model to fit. Too long windows include noise and harm performance [17].

Performance benchmark

Generalization test on an "unseen" home:



Design of ML experiments

- Inference of already seen patterns is easy.
- Evaluate generalization on unseen patients or homes.
- Group IDs for cross-validation.
- Select a period during which at least two events happen.

	Home ID	1	2	3
	C 0801	test	train	train
	0809	test		
	0803	test		
	0807	test		
Group of 11	0808	test		
	0804	test		
	0810	test		
	0802	test		
	3036	test		
	3021	test		
	3002	test		
	3023		test	
	3019		test	
	3014		test	
	3015		test	
	3005		test	
	3035		test	
	3039		test	
	3006		test	
	3001		test	
	3033		test	
Training set	3037		test	train
framing set	3020			test
	1203			test
Testing set	1211			test
-	1206			test
	1202			test
	1208			test
	1209			test
	1207			test
	1204			test
	1205			test
	1210			test

Conclusion

- Neural networks extend Markov models.
- Memory cells are instrumental in the convergence of recurrent nets.
- ► GRU layer simplifies LSTM for a similar performance.
- ▶ Deep recurrent networks combine convolutional and recurrent layers.
- ► Deep RNN require less parameters than CNN.
- ► Two use-cases: fibrillation detection and disaggregation.

References I

- Zoubin Ghahramani. "An introduction to hidden Markov models and Bayesian networks". In: Series in Machine Perception and Artificial Intelligence. WORLD SCIENTIFIC, June 2001, pp. 9–41. DOI: 10.1142/9789812797605_0002.
- Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-Term Memory". In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
- [3] Kyunghyun Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation". In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2014). ACL. June 2014.
- [4] Alex Graves and Navdeep Jaitly. "Towards End-To-End Speech Recognition with Recurrent Neural Networks". In: Proceedings of the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, 22–24 Jun 2014, pp. 1764–1772. URL: https://proceedings.mlr.press/v32/graves14.html.
- [5] Gerhard Hindricks et al. "2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS)". In: European Heart Journal 42.5 (Aug. 2020), pp. 373–498. DOI: 10.1093/eurheartj/ehaa612.
- [6] Cédric Gilon et al. "Forecast of paroxysmal atrial fibrillation using a deep neural network". In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2020. DOI: 10.1109/ijcnn48605.2020.9207227.
- [7] Maithili Iyer et al. "Comparison groups on bills: Automated, personalized energy information". In: Energy and Buildings 38.8 (Aug. 2006), pp. 988–996. DOI: 10.1016/j.enbuild.2005.11.009.
- [8] Gary Raw and David Ross. Energy Demand Research Project: Final Analysis. Tech. rep. AECOM, 2011.
- [9] Vojkan Tasic et al. "Self-powered water meter for direct feedback". In: 2012 3rd IEEE International Conference on the Internet of Things. IEEE, Oct. 2012. DOI: 10.1109/iot.2012.6402300.
- [10] Daire McCoy and Sean Lyons. "Unintended outcomes of electricity smart-metering: trading-off consumption and investment behaviour". In: Energy Efficiency 10.2 (June 2016), pp. 299–318. DOI: 10.1007/s12053-016-9452-9.

References II

- [11] Adnane Kendel et al. "What do people 'learn by looking' at direct feedback on their energy consumption? Results of a field study in Southern France". In: Energy Policy 108.Supplement C (2017), pp. 593-605. DOI: 10.1016/j.enpol.2017.06.020. URL: http://www.sciencedirect.com/science/article/pii/S0301421517303749.
- [12] Jonathan William Stinson. "Smart energy monitoring technology to reduce domestic electricity and gas consumption through behaviour change". PhD thesis. Edinburgh Napier University, 2015.
- [13] Ales Podgornik et al. "Effects of customized consumption feedback on energy efficient behaviour in low-income households". In: Journal of Cleaner Production 130 (Sept. 2016), pp. 25–34. DOI: 10.1016/j.jclepro.2016.02.009.
- [14] David Murray et al. "An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study". In: Scientific Data 4.1 (Jan. 2017). DOI: http://dx.doi.org/10.1038/sdata.2016.122. URL: https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned.
- [15] Odysseas Krystalakos et al. "Sliding Window Approach for Online Energy Disaggregation Using Artificial Neural Networks". In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence - SETN '18. ACM Press, 2018. DOI: 10.1145/3200947.3201011.
- [16] J. Zico Kolter and Matthew J. Johnson. "REDD: A Public Data Set for Energy Disaggregation Research". In: SustKDD 2011. 2011.
- [17] Matthew B Kennel et al. "Determining embedding dimension for phase-space reconstruction using a geometrical construction". In: Physical review A 45.6 (1992), p. 3403.