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Home is where I want to be
But I guess I’m already there
I come home, she lifted up her wings
Guess that this must be the place
I can’t tell one from another
Did I find you, or you find me?
There was a time before we were born
If someone asks, this is where I’ll be

This must be the place, David Byrne

Abstract

Reinforcement Learning (RL) is a Machine Learning method mimicking the way hu-
mans learn to perform new tasks, specifically when it involves a great amount of
trial and error. By nature, it is a progressive process that requires many interac-
tions with the environment, and therefore time, before it can exhibit a satisfactory
behavior. Consequently, an important challenge faced by current RL techniques is
sample-efficiency. While most approaches to reduce the amount of samples needed
focus on extracting a maximum amount of information out of each sample, we explore
ways to improve the exploration strategy of the learner. Pushing the learning agent
towards fruitful areas of the search space, and preventing it from wasting its time
in undesirable areas, helps the agent reach a good policy faster and more efficiently.
We present the Actor-Advisor, a general-purpose Policy Shaping method, allowing an
external advisory policy to influence the actions selected by an RL agent. We extend
our main contribution to a wide range of settings, such as discrete and continuous
actions spaces, using on or off-policy Reinforcement Learning algorithms. We design
the learning correction to let Policy Gradient-based methods benefit from off-policy
external guidance, despite their strong on-policyness.

We evaluate the Actor-Advisor in two important RL sub-fields: learning from
human intervention, and Transfer Learning. Although almost any source can be used
as an advisor of an RL agent following the Actor-Advisor framework, the focus of
this thesis is applying the Actor-Advisor to several novel Transfer Learning problems.
Transfer Learning is resolutely related to sample-efficiency, since it aims at making the
learning of new tasks faster by smartly reusing knowledge acquired in previous tasks.
Finally, we introduce Self-Transfer, a learning trick inspired by Transfer Learning, in
which an RL agent can easily improve its sample-efficiency by using an advisor pre-
trained for a short while on the same task. We hope that our contributions will help
promote the use of Reinforcement Learning methods in future real-life problems.
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1 | Introduction

Machine Learning is a sub-field of Artificial Intelligence, and can be divided into three
main types of algorithms: Supervised Learning, Unsupervised Learning and Reinforce-
ment Learning [Abu-Mostafa et al., 2012]. In Supervised Learning, the algorithm is
provided with a set of inputs, and with each input, a corresponding output. The goal
of the algorithm is to learn the function which produced the outputs given the inputs,
in order to be able to predict the output of unseen inputs. In contrast, an Unsuper-
vised Learning algorithm only receives the inputs, and attempts to cluster them in
some way, allowing for patterns that may have been undetected by human experts to
be discovered. Finally, a Reinforcement Learning algorithm takes an input, predicts
an output, and then receives a scalar grading, or reward, indicating how well it did;
the objective of the Reinforcement learner is to maximize the rewards it gets.

Reinforcement Learning (RL) is attractive when the solution to a problem is un-
known or too difficult to implement by hand, but that it is possible to tell whether a
solution is good or bad. It has already been proven useful in a wide range of appli-
cations, such as industrial and healthcare problems: order dispatching [Kuhnle et al.,
2019], datacenter cooling [Lazic et al., 2018], personalized pharmacological anemia
management [Gaweda et al., 2005], etc. Nevertheless, due to the progressive nature of
the RL process and the need to sufficiently explore the solution space, most existing
RL algorithms tend to require a prohibitive amount of samples to learn well, which
makes them difficult to apply in real-life settings. To mitigate this problem, work has
been pursued to extract as much value from each sample as possible in order to de-
crease the amount of samples needed [Schulman et al., 2015, 2017; Hessel et al., 2018;
Steckelmacher, 2020].
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CHAPTER 1. INTRODUCTION

Reasoning, Problem Solving
Knowledge Representation

Artificial Intelligence

Natural Language Processing

Heuristic Optimization

Planning
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Supervised Learning Unsupervised Learning Reinforcement Learning

Figure 1.1: A non-exhaustive overview of Artificial Intelligence methods: this thesis
focuses on Reinforcement Learning, a Machine Learning sub-field.

Another direction is to improve the exploration carried out by the algorithm by
guiding it using some extra information; this approach belongs to the realm of Policy
Shaping. In a Reinforcement Learning context, Policy Shaping methods let an external
advisory policy influence or determine the actions chosen by the agent during action
selection time. We use the term “extra information”, which is deliberately vague,
because many different sources can be used to advise the reinforcement learner: a
human teacher [Griffith et al., 2013], a sub-optimal heuristic hand-coded by a designer,
a proven-safe shield [Alshiekh et al., 2018], another reinforcement learner [Lai et al.,
2020], etc. We are specifically interested in Transfer Learning approaches [Taylor
and Stone, 2009], which exploit solutions learned in previous problems to learn new
problems faster; this thesis mostly contains applications of Transfer Learning.

Settings compatible
with Policy Shaping :

continuous actions discrete actions
critic-only ✓ (GPSARSA, fitted Q-iteration) ✓ (Q-Learning)
actor-only ✗ (PG) ✗ (PG)
actor-critic ✗ (SAC, PPO) ✓ (BDPI)

2



Settings compatible
with Policy Shaping

with our contributions :
continuous actions discrete actions

critic-only ✓ (GPSARSA, fitted Q-iteration) ✓ (Q-Learning)
actor-only ✓ (PG) ✓ (PG)
actor-critic ✓ (SAC, PPO) ✓ (BDPI)

However, leveraging external knowledge to guide an agent’s exploration through
tasks in the above-mentioned fields was not always feasible, due to fundamental al-
gorithmic limitations. Some algorithms simply do not tolerate their action selection
strategy to be directly influenced by an external force, such as actor-only or some
actor-critic reinforcement learning algorithms. Yet, these algorithms tend to be the
only ones applicable to tasks where the action space is continuous, as it is often the case
for robotic tasks. As a result, the first part of this thesis (mainly, Chapter 3) extends
a well-known Policy Shaping technique to make it compatible with state-of-the-art RL
algorithms. Our main contribution, which we call the Actor-Advisor framework, is a
general framework in which an RL actor is helped through its learning process by an
advisor, using a Policy Shaping method. We dedicate Chapter 3 to the maximisation
of the variety of problem settings in which Policy Shaping can be applied to improve
the agent’s performance.

The second part of this thesis is focused on applying our contribution developed
in the first part to different problem settings, such as:

• learning from human intervention (Chapter 4)

• transferring knowledge across robotic platforms equipped with different sensors
(Chapter 5, Section 5.2)

• transferring knowledge from different experts to one student (Chapter 5, Section
5.3)

• learning while transferring knowledge in parallel (Chapter 5, Section 5.5)

• self-transfer learning to easily boost sample-efficiency (Chapter 6)

Below, the reader will find a more exhaustive list of the contributions presented in
this thesis. Most, if not all of the results listed revolve around our main contribution,
the Actor-Advisor framework.

The Actor-Advisor with Policy Gradient Chapter 3, Section 3.1.2
Policy Gradient methods, a big family of RL algorithms, do not tolerate the

3



CHAPTER 1. INTRODUCTION

influence of an external force. However, these methods cannot simply be disre-
garded, as they are sometimes better suited than other RL algorithms to learn
certain tasks. We present the learning correction, a method that makes Policy
Gradient methods compatible with external guidance.

The Actor-Advisor with BDPI Chapter 3, Section 3.1.3
We implement a learning correction adapted to Bootstrapped Dual Policy Itera-
tion (BDPI) [Steckelmacher et al., 2019], a very different algorithm than Policy
Gradient-based algorithms. Although BDPI does not theoretically need our
learning correction to accept external guidance, in contrast to Policy Gradient
methods, we empirically show that its learning can still be improved thanks to
it.

Extension of the Actor-Advisor to continuous action spaces Chapter 3, Sec-
tion 3.2
Our Actor-Advisor is based on Policy Intersection [Griffith et al., 2013], a tech-
nique that guides the RL exploration strategy. However, originally, this method
assumes discrete actions, significantly restricting its scope of application. We
show two approaches to extend the Actor-Advisor to tasks with continuous ac-
tions.

Learning from a simulated human Chapter 4
We evaluate the Actor-Advisor in a learning from a simulated human teacher
setting, on a difficult to explore grid-world with sparse rewards. We compare
two teaching methods, advice and feedback, and show that teaching via advice
requires significantly less interventions than providing feedback. In addition,
we observe that the Actor-Advisor lets the Policy Gradient agent recover in the
presence of misleading advice, and when the teacher suddenly stops giving advice
to the agent.

Transfer between differently equipped drones Chapter 5, Section 5.2
We tackle a novel Transfer Learning setting, in which two Proximal Policy Opti-
mization (PPO) [Schulman et al., 2017] agents controlling simulated drones with
different sensors help each other learn the same navigation task. We compare the
Actor-Advisor with transfer via shaping the reward of the agent in that setting,
and show that our contribution significantly improves sample-efficiency at the
beginning of learning in contrast to reward shaping.

Using multiple advisors to identify changes Chapter 5, Section 5.3
We introduce a method to allow several advisors to vote on which action should
be taken by a fresh BDPI agent on a new task. This method is evaluated on
a large grid-world with sparse rewards, and changing environmental dynamics.

4



Leveraging multiple advisors instead of one makes it possible to predict parts of
the new task that are likely to vary from the previous tasks, and parts that are
likely to be the same as before.

Transfer in an air compressor management problem Chapter 5, Section 5.4
We distill knowledge from several previously learned controllers into a new one
while it trains on a new variant of an air compressor management setting. This
approach outperforms simply loading an old controller, and significantly im-
proves performance in the long run.

Transfer between multiple agents learning a task in parallel Chapter 5, Sec-
tion 5.5
We introduce Shepherd, an RL agent as a service allowing the users of a web
application to train PPO agents that automatically share knowledge with each
other and help improve each other. We present a novel environment to evalu-
ate the Shepherd framework on in future work: a tour guide web application
designed for visitors of Brussels.

Self-Transfer to improve sample-efficiency Chapter 6
We introduce Self-Transfer, a learning trick for RL agents consisting in training
an advisor agent on a task for a short while, then freezing it and using it to advise
a fresh agent learning the same task until reaching a good policy. We observe
that this simple idea results in a significant improvement in sample-efficiency of
a Soft Actor-Critic (SAC) [Haarnoja et al., 2018] agent on multiple continuous
environments, and of a BDPI agent on a difficult to explore environment with
discrete actions mimicking a large office space.

5





2 | Background

Learning by reinforcement is a method constantly used by humans to develop intelli-
gence, for a wide variety of tasks. Learning to ice skate for the first time, for example,
is a pure learning by reinforcement task, that requires hours of practice to master.
At a given instant, the ice skater pushes on their left foot, then senses their current
balance on the blades, their speed and how close they are to the fence of the ice rink.
Their action might slightly offset their balance, and lead to them falling down. Little
by little, the ice skating beginner learns to stay longer on the ice without hurting
themselves. In an Artificial Intelligence context, Reinforcement Learning (RL) is the
appropriation by computer programs of that learning mechanism. Researchers and en-
gineers design idealized situations, formulated as Markov decision processes (MDPs),
in which the learner, called an agent, repeatedly selects an action, observes the current
state of its environment after the action has been executed, and (perhaps) receives a
reward (a numerical value) [Sutton and Barto, 2018, ch. 3]. The objective of the RL
agent is to learn a behavior, or policy, that leads to the best rewards possible.

Some Reinforcement Learning algorithms are said to be model-based [Sutton, 1990],
in the sense that they not only use a policy, but also a model of some sort of their
environment. A model is a form of reversible access to the dynamics of the MDP
representing the environment [Moerland et al., 2020], which allows the agent to plan
forward before committing to a particular action. In contrast, model-free RL methods
[Sutton and Barto, 2018, p.13 and 14] cannot predict how their environment will
“react” to their action in advance. Model-free algorithms can be preferable to model-
based ones when the environment is difficult to accurately model. In this thesis, we
focus on model-free RL methods.

7



CHAPTER 2. BACKGROUND

An important challenge in Reinforcement Learning is exploration. To learn a good
policy, the agent must have had the chance to try out a potentially large number
of actions and observe their consequences, otherwise the agent may stay stuck in a
local optimum. However, not only may a satisfactory amount of exploration take
time, but it will probably lead to the agent making mistakes, which, depending on
the environment, can be disastrous. To make learning faster and less hazardous, there
exist techniques that guide the exploration strategy of the agent towards fruitful, safer
areas [García and Fernández, 2015]. The Actor-Advisor, our main contribution, is one
such technique, and is based on Policy Intersection [Griffith et al., 2013], which we
review in this chapter.

In the next section, we formally introduce Markov Decision Processes (MDPs).
We then describe the RL algorithms mostly used in our experiments, namely Policy
Gradient, PPO and Bootstrapped Dual Policy Iteration (BDPI). Note that we also
leverage Soft Actor-Critic in some of our experiments, however, to harmoniously incor-
porate external guidance in their learning process, BDPI and Policy Gradient methods
require the most important modifications, which are detailed in Chapter 3. Hence, we
describe their inner-workings in this chapter, to better grasp our contributions to them.
Typically, the choice of which algorithm to apply is done after having determined the
problem to be solved. To our knowledge, there does not yet exist one algorithm that
fits all reinforcement learning applications, hence why we could not stick to one al-
gorithm for all our experiments, and had to diversify. With the adoption of different
RL algorithms came the need to adapt our contribution, the Actor-Advisor (which
we detail in Chapter 3), to the core mechanisms of these algorithms. An important
trait that fundamentally impacts the structure of an RL algorithm is whether it is
applicable to environments with discrete or continuous actions.

Most RL algorithms can roughly be categorized in two families: value-based algo-
rithms [Watkins and Dayan, 1992], and policy-based algorithms [Sutton et al., 2000].
A policy search method explicitly learns a policy function π or actor, which, at each
time-step t, takes a state st and samples an action at ∼ π(at|st) from its current
state-dependent policy [Sutton et al., 2000; Peters and Bagnell, 2010]. In opposition,
a value-based method learns a “quality” function Q, also called a critic, which takes
state action pairs st, at as input, and estimates how much reward can be expected if at

is chosen in st. At acting time, actions can be selected using a heuristic based on the
Q function. Although value-based methods are not impossible to use in environments
with continuous actions [Engel et al., 2005; Antos et al., 2007], computing the Q func-
tion becomes impractical. Policy Gradient, PPO and SAC are the preferred methods
when dealing with continuous action spaces; BDPI uses both a policy function π and
one or several Q functions, yet it is restricted to discrete actions.

8



2.1. THE REINFORCEMENT LEARNING SETTING

Finally, we review in Section 2.5 two algorithms allowing an external policy to guide
the exploration strategy of an RL agent: Probabilistic Policy Reuse (PPR) [Fernández
and Veloso, 2006], and Policy Intersection [Griffith et al., 2013].

2.1 The Reinforcement Learning Setting
An environment, which lets the agent execute actions, observe states, and sometimes
gives it rewards, can be formulated using a Markov Decision Process (MDP) defined
by the tuple ⟨S,A,R, T ⟩ [Bellman, 1957], with the time discretized in time-steps. At
each time-step t, the agent takes an action at ∈ A based on the current state st ∈ S,
receives a new state from the environment st+1 ∈ S and a scalar reward rt, returned by
a reward function R(st, at, st+1) ∈ R. For each state transition, a transition function
T (st+1|st, at) ∈ [0, 1] taking as input a state-action pair (st, at) returns a probability
distribution over new states st+1; T is generally unknown to the agent. Both the
actions set A and states set S can be finite or infinite. For instance, in a grid-world
environment, which consists of a map of I rows times J columns, a state is typically
described as the i ∈ I, j ∈ J coordinates of the cell the agent is currently in; there
are four actions at the agent’s disposal: either going one cell up, down, left or right.
Another example is a robot navigation task, in which the state can be the output of
a distance sensor, and the agent sends a target speed to the controller of its motor(s).
In the grid-world example, there is only a finite number of states and actions, whereas
in the latter case, both the state and action spaces are infinite because continuous.

The amount of rewards received in the long run is formally defined as the discounted
return Rt =

∑
t γ

trt, where γ ∈ [0, 1] is called the discount factor. The closer γ is to
1, the more the agent will prefer long-term rewards to short-terms ones. The agent
selects actions based on its policy π, which maps a state to a probability distribution
over actions, with π(at|st) ∈ [0, 1] denoting the probability of taking action at given
state st. The objective of an RL algorithm is to progressively modify π until the
optimal policy π∗ is found, which maximizes Eπ∗ [Rt], the expected discounted return
[Sutton et al., 2000, ch. 3].

In this thesis, we focus on episodic tasks, in which time is broken down into
episodes; typically, an episode ends and a new one starts once the agent has reached
the goal, or once a given number of time-steps have passed. Similarly to playing mul-
tiple games of chess, episodic tasks assume an initial state si ∈ S to which the agent
is put back in at the beginning of each episode. The performance of an RL agent,
and ultimately of the algorithm it executes, is evaluated mainly through looking at its
learning curve. The reader will find multiple learning curves throughout this thesis;
all of them show, for each episode, the sum of all rewards collected during the episode,
see an example in Figure 2.1. The higher the curve goes, the better the policy learned

9
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Figure 2.1: Three fabricated learning curves, each corresponding to an imaginary
algorithm executed for N runs of X episodes (here, 1000) on an imaginary task.
The curves shown in this thesis are obtained by computing for episode i ∈ 1, 2, ...X
the moving average of the mean over N episodic rewards. The shadows around the
curves show the moving average of the standard deviation. Algorithm A and B learn
a similarly good policy (given that the optimal episodic reward is 100), however,
algorithm B is more sample-efficient than A, as it reaches the good policy faster than A.
Algorithm C obtains even better results since it shows a significant jumpstart compared
to A and B; the agent shows an almost good behaviour right from the beginning of
learning. Jumpstarts like these tend to occur notably when the agent is helped by an
external advisory policy, as it is the case in Transfer Learning settings, for instance.

is. In addition, an experiment often consists in several runs of an RL algorithm learn-
ing a task from beginning to end, for a number of episodes. In our results sections,
we never show the learning curve of only one run; our curves are always averages of
several runs, at least 4, often 8 runs per curve.

In addition to the value of the rewards obtained by the agent towards the end of
learning, another important criterion to assess the quality of an RL algorithm is the
amount of episodes, or more generally the amount of time, that the agent took to learn
a good policy. This criterion is often referred as the sample-efficiency of an algorithm;
each interaction the agent has with its environment consists in a data sample. The
less samples the algorithm needs until reaching a policy achieving high rewards, the
quicker the algorithm is at learning the task, which can determine whether or not
the algorithm can actually be used in a given setting. Sample-efficiency is paramount

10



2.2. IMPROVING EXPLORATION

in robotic applications, for instance, in which each time-step can take up to several
seconds.

Unfortunately, most RL algorithms need the agent to sufficiently explore the en-
vironment to manage to learn a good policy, which can in turn be costly in samples.
Guiding the exploration strategy of an agent aims at making the exploration process
more efficient, by advising it on which actions to select; this can potentially reduce
the number of samples needed. The two methods we mainly evaluate in this thesis
(see Section 2.5) are both under the Policy Shaping umbrella [Najar and Chetouani,
2021] (see Section 2.5), as they directly alter the agent’s action choice.

2.2 Improving Exploration
In this thesis, we focus on a Policy Shaping approach to improve the exploration of the
agent of its environment, and indirectly improve its sample-efficiency. Nevertheless,
there exist other very different methods to improve exploration, as it consists in a
general goal that can be approached from multiple angles; below, we briefly review
two notable examples of such methods for the curious reader. One can design their
agent to have an intrinsic motivation to perform a task, allowing it to generate its
own rewards, other than the ones provided by the environment [Oudeyer and Kaplan,
2009]. In reinforcement learning literature, the intrinsic motivation of an agent to
explore is often called curiosity. Curiosity-driven exploration techniques [Still and
Precup, 2012; Frank et al., 2014; Pathak et al., 2017; Burda et al., 2018] form a fairly
young RL sub-domain, and include visitation counts, which approximate the visitation
frequency of states, and novelty or surprise, which rewards the agent when it visits less
know states. A common method to implement the surprisal of an agent to see a given
state is by leveraging a model of the environment, predicting the next state based on
the previous state and action; the agent is trained to maximise the prediction error,
hence favouring highly surprising states [Achiam and Sastry, 2017].

Properly balancing exploration and exploitation consists in a well-known reinforce-
ment learning challenge; the agent explores by deliberately choosing actions that were
not tried out yet in a given state, and it exploits by choosing actions it believes to
lead to optimal rewards. In opposition to intrinsic motivation which aims attention on
rewards, Thompson Sampling [Thompson, 1933; Russo et al., 2018] and Upper Confi-
dence Bound [Garivier and Moulines, 2011] perform the action selection in a way that
better adjust the amount of exploration of the agent.

Note that the above-mentioned techniques do not reappear in the rest of this thesis,
as they cannot be used for applications such as learning from human intervention and
Transfer Learning, in contrast to Policy Shaping.
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2.2.1 The Challenge of Guiding Exploration Through Policy
Shaping

Most RL algorithms can be decomposed into two main parts: an acting part, and
a learning part. The acting part is executed at each time-step: it is when the agent
selects an action to be executed according to its current policy or Q values; the process
of choosing an action can be simply sampling a probability distribution over actions, or
leveraging a sophisticated heuristic. The learning part, often called a training epoch,
updates the policy or Q values based on the rewards obtained by executing actions,
following an update rule. In contrast to the acting part, the learning part does not
necessarily have to happen at every time-step, e.g., Policy Gradient updates its policy
only after a whole episode has passed. In actor-critic algorithms, such as SAC and
BDPI, there are actually two different updates per training epoch: the update of the
critic, using the critic update rule, and the update of the actor, using the actor update
rule.

To allow their exploration to be guided by an external advisory policy without
jeopardizing learning, some RL algorithms require the advice produced by the advisor
to be included not only in the acting part, but also in the learning part of the agent.
The inclusion of advice in the acting part is often straightforward, and is already
implemented by existing Policy Shaping methods (see Section 2.5). The addition of
advice in the learning part, on the other hand, can be tricky, and heavily relies on the
inner-workings of the RL algorithm, specifically its actor update rule. In addition, not
all Policy Shaping methods are compatible with continuous actions, although many
applications require a continuous action space. In Chapter 3, we extend our Actor-
Advisor framework to allow Policy Shaping to be applied to algorithms that would
not otherwise tolerate it, and we extend Policy Intersection, a well-investigated Policy
Shaping technique, to settings with continuous actions.

When adapting an RL algorithm to Policy Shaping, one only needs to consider
the actor update rule. Therefore, we are not concerned with the training of the critic,
since it is the actor that is responsible of the agent’s exploration strategy. In the next
sections, we review the specific RL algorithms we use the most in our experiments
throughout this thesis: Policy Gradient, PPO and BDPI. Note that we do not hold
the ambition to teach the reader about these algorithms, but rather highlight the part
in each of them that requires our attention when combining it with our contribution;
this part is called the actor update rule.

12



2.3. POLICY GRADIENT METHODS

2.3 Policy Gradient methods
Policy Gradient [Williams, 1992; Sutton et al., 2000] explicitly learns a policy πθ

parametrized by a weights vector θ; θ is updated at each training epoch h ∈ {0, 1, 2, ...}:

θh+1 = θh + α∇LP G(πθ)

= θh + α∇(−
T∑

t=0
Rt log(πθ(at|st))) (2.1)

where α is a small learning rate, L(πθ) is the loss, and Rt =
∑

t γ
trt denotes the

discounted return at time t. Intuitively, the loss leads to the probability of past
actions with the highest return to be executed more often in the future, leading to
a constantly improving policy. Because the policy πθ(st) is a probability vector that
sums to 1, if the probability of one action is increased, the probability of the other
actions is decreased. Concretely, at each time-step t, the agent takes the current state
st as input, outputs a state-dependent policy πθ(st) ∈ RA (a probability distribution
over the set of actions A, summing to 1), samples an action at ∼ πθ(st) according to
the policy, and receives a reward rt from the environment after having executed at.
The experience tuple (st, at, rt) is appended to a list of experiences. Once the episode
is finished, these experiences are used to compute new tuples (st, at,Rt), with Rt the
return at time t, and the loss LP G(πθ) is computed. Policy Gradient can perform only
one policy update on a batch of experiences; after that, the batch must be discarded
as Policy Gradient always requires fresh experiences to update its policy, which is
relatively sample-inefficient. In all algorithms we use, the policy π is represented by a
neural network, which adjusts the weights θ to minimize the loss.

Similarly to Policy Gradient, Proximal Policy Optimization (PPO) [Schulman
et al., 2017] directly learn a policy πθ, however it uses a different loss than the one in
Equation 2.1 to update the parameters θ:

θh+1 = θh + α∇LCLIP (πθ)
= θh + α∇(min(pt(θ)Rt, clip(pt(θ), 1− ϵ, 1 + ϵ)Rt)) (2.2)

where pt(θ) = πθ(at|st)
πθold(at|st) is an importance sampling term, ϵ is a fixed parameter

(ϵ = 0.2 in [Schulman et al., 2017]), and Rt =
∑

t γ
trt is the discounted return, as

in Equation 2.1 1. In PPO, the use of the importance sampling term pt(θ) allows for
1In the original paper, the return Rt is replaced by an estimator of the advantage function At

to improve learning stability. Here, we keep the return term in our equations for simplicity, but we
invite interested readers to consult the original paper [Schulman et al., 2017] for more details.
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Figure 2.2: Policy Gradient refuses to learn the task if even a small amount of actions
are not selected from its policy. The agent executes an arbitrary action instead of
sampling its policy with a probability ϵ = 0.01. These disturbances prevent Policy
Gradient from learning Lunar Lander [Brockman et al., 2016] with discrete actions, a
task it normally learns in approximately 2000 episodes.

multiple training iterations to be performed on the same batch of experience tuples,
which increases sample-efficiency, in comparison to Policy Gradient. In a nutshell, the
clip term encourages stable convergence by ensuring that pt(θ) remains in the interval
[1− ϵ, 1+ ϵ], which prevents the new policy πθ from changing “too much” from the old
policy πθold , during a training epoch. Taking a too large step away from the original
policy can destroy the policy altogether.

In addition to whether it is value-based or policy-based, an RL algorithm can also
be classified depending on whether it is on-policy or off -policy: “On-policy methods
attempt to evaluate or improve the policy that is used to make decisions, whereas
off-policy methods evaluate or improve a policy different from that used to generate
the data” [Sutton and Barto, 2018, p.124]. Policy Gradient is said to be strongly on-
policy: it only converges if the actions executed by the agent are drawn from its current
policy πθ. This is illustrated in Figure 2.2: we force the agent to execute an arbitrary
action other than one sampled from the current policy with probability ϵ = 0.01,
which is enough to prevent Policy Gradient from learning a task it is normally capable
of learning. PPO does not show the same sensitivity to disturbances in the action
selection as Policy Gradient does, perhaps because of its ability to update its policy
multiple times on the same batch of experiences. Figure 2.3 shows the robustness
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2.4. BOOTSTRAPPED DUAL POLICY ITERATION
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Figure 2.3: Proximal Policy Optimization, a sophisticated upgrade of Policy Gradient,
does not present the same sensitivity to disturbances in the action selection as Policy
Gradient does, whether it is facing an environment with discrete (right) or continuous
actions (left). A very slight decrease in performance can be noticed in the continuous
actions case at the beginning of learning, however, it is quickly compensated towards
the end. The agent executes an arbitrary action instead of sampling its policy with a
probability ϵ = 0.01.

of PPO when the agent is forced to execute a random action instead of sampling its
policy with a probability ϵ = 0.01.

Guiding the exploration strategy of an agent often involves the intervention of
external, off-policy advice at action selection time. Unfortunately, vanilla Policy Gra-
dient is incapable of tolerating such interference, which disturbs its learning to the
point of jeopardizing convergence. We present in Chapter 3 a solution to overcome
this limitation, by modifying the loss of Policy Gradient to directly include external
off-policy advice, without any convergence issue.

Although the definition of the loss may change, Policy Gradient is at the basis
of most actor-only and actor-critic algorithms, such as PPO and SAC. A notable
exception is BDPI, which uses a form of Conservative Policy Iteration [Pirotta et al.,
2013] for its actor, instead of a Policy Gradient actor.

2.4 Bootstrapped Dual Policy Iteration
Bootstrapped Dual Policy Iteration [Steckelmacher et al., 2019, BDPI] is an actor-
critic method, with one actor and multiple critics Nc > 1. Critics are trained using a
value-based method called Aggressive Bootstrapped Clipped DQN (ABCDQN) [Steck-
elmacher et al., 2019], a version of Clipped DQN [Fujimoto et al., 2018]. Each critic
maintains two Q-functions, QA and QB ; at each training epoch, a batch bi is sampled
for each critic i ∈ [1, Nc] from an experience buffer B. Then, the critics update their
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QA function Nt > 1 times, and swap their QA and QB functions in between iterations.
At each iteration, QA is updated using Equation 2.3 on the batch bi.

Qk+1(st, at) = Qk(st, at) + α (rt+1 + γ V (st+1)) (2.3)
−Qk(st, at)

V (st+1)) = min
l=A,B

Ql(st+1, argmaxa′ QA(st+1, a
′))

The actor π, the most interesting part to us, is trained using a variant of Conser-
vative Policy Iteration [Pirotta et al., 2013]. Every training epoch, after the critics
have been updated for a number Nt of times, the actor is trained towards the greedy
policy of all its critics. This is achieved by sequentially applying Equation 2.4 Nc

times, each iteration updating the actor based on a different critic (Equation 2.4 is
applied as many times as there are critics).

π(s)← (1− λ)π(s) + λΓ(QA,i
k+1(s, ·)) ∀s ∈ bi (2.4)

where λ = 1 − e−δ is the actor learning rate, computed from the maximum allowed
KL-divergence δ, and Γ the greedy policy. Given a state, the greedy policy returns
the action believed to yield the best reward; Γ(QA,i

k+1(s, ·)) denotes the greedy policy
according to the QA function of the i-th critic. By applying Equation 2.4, the actor
is moved one small step towards the average greedy policy of the critics. To allow the
actor to also be guided by an external advisor, in Chapter 3, we modify Equation 2.4
to explicitly include the intervention of the advisor.

2.5 Policy Shaping by Altering the Exploration Strat-
egy

Existing Policy Shaping methods let an external advisory policy πA alter or determine
the agent’s behavior at acting time, either sporadically or continuously throughout
learning. Since πA can be of any source, Policy Shaping consists in a general approach
used in many different RL subfields, such as Safe RL [Alshiekh et al., 2018; García and
Fernández, 2015; García and Fernández, 2019], learning from human feedback [Griffith
et al., 2013], and Transfer Learning [Fernández and Veloso, 2006]. In this thesis, we
are mainly interested in ways in which agents can transfer their policies to help each
other learn new tasks faster (see Chapters 5 and 6), although we start in Chapter 4
with a learning from human intervention task.
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Below, we review two methods to shape an RL agent’s policy: Probabilistic Policy
Reuse [Fernández and Veloso, 2006; García and Fernández, 2019, PPR], and Policy
Intersection [Griffith et al., 2013; Cederborg et al., 2015, originally called “Policy
Shaping”]. The first work we know of that introduced the term “Policy Shaping” is
Griffith et al. [2013]. However, the method presented (which we detail below) is very
specific, while the term Policy Shaping could apply to a wide variety of methods [Mac-
Glashan et al., 2017; Harutyunyan et al., 2014]. Since Griffith et al. [2013] introduce an
element-wise multiplication between discrete probability distributions, and that this
operation represents taking the intersection between the distributions, we re-baptize
Griffith’s formula “Policy Intersection” in this thesis for clarity. Similarly, a “Policy
Union” algorithm can be achieved by summing the probability distributions (which
we non-exhaustively evaluate in Section 3.1.2).

2.5.1 Probabilistic Policy Reuse
First introduced by Fernández and Veloso [2006], Probabilistic Policy Reuse (PPR)
samples an action at each time-step either from an external advisory policy πA(st)
(or advisor) with probability ψ, or from the currently learned policy πL(st) (or actor)
with probability 1− ψ:

at ∼

{
πA(st) with probability ψ

πL(st) with probability 1− ψ
(2.5)

where πL(st) is the state-dependent policy learned by the agent, πA(st) is the state-
dependent advice, and ψ is the probability of sampling an action at from the advisor
πA rather than from πL. Even though PPR only sometimes executes an action from
πA, when it does so, πA fully determines the action executed by the agent. Moreover,
PPR has no provision for the advisor to choose, state for state, when to advise the
agent and when to let it choose an action itself.

2.5.2 Policy Intersection
This second approach to Policy Shaping multiplies the πL and πA vectors, then nor-
malizes the resulting policy vector at each time-step:

at ∼ πL(st)× πA(st) =

element-wise product︷ ︸︸ ︷
πL(st)πA(st)
πL(st) · πA(st)︸ ︷︷ ︸∑
a∈A

πL(a|st)πA(a|st)

(2.6)
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where πL(st) · πA(st) is the dot product of the two policies. At acting time, the
agent samples an action at from the mixture πL × πA of the agent’s current learned
policy πL(st) and the external advisory policy πA(st), instead of sampling only from
πL(st). The product πL(st)×πA(st) amounts to taking the intersection between what
the current agent’s policy πL wants to do, and what the external advisory policy πA

would do in state st. As a result, although this formula was first introduced by Griffith
et al. [2013] as “Policy Shaping”, we re-name it Policy Intersection in this thesis for
clarity.

Probabilistic Policy Reuse Versus Policy Intersection

We identify two desirable properties when combining the actor’s policy with the ad-
visor’s policy:

1) the advisor must have a non-negligible power of influence over the advisee, es-
pecially when its advice is relevant;

2) the advisee must be able to ignore, or progressively learn to ignore the advisor’s
bad advice

Point 1 is motivated by the fact that, when faced with situations on which the advisor
has some good recommendations, it is preferable that the actor effectively selects
actions recommended by the advisor, and does not waste time exploring instead. Point
2 becomes paramount in cases where the advisor is not optimal. This is prevalent
in Transfer Learning settings, in which the advisor has learned a first task, similar
yet distinct to the second task the advisee is about to tackle. In such settings, the
advisee must be capable of following the advisor when its knowledge about the first
task is relevant to the second task, and ignore it otherwise. This is a particularly
difficult challenge in the realm of Transfer Learning, which we propose a solution for
in Chapter 5, Section 5.3. Nevertheless, a part of the solution resides in the method
used to combine the actor’s and advisor’s policies.

PPR makes the action selection choice at a given time-step fully either the actor’s
or the advisor’s. Regarding point 1 mentioned above, if the advisor happens to know
better than the actor in a given situation, but it just so happens to not be “its turn”,
then the opportunity to exploit good advice is wasted. Similarly, if the turn is given
to the advisor in a situation where its advice happens to be irrelevant, then the agent
is bound to take a wrong action.

In contrast to PPR, Policy Intersection allows πL and πA to more cooperatively
select actions, with πA able to increase or decrease the probability of actions, but
without fully determining the action. When sampling actions from the product of the
actor’s and advisor’s policy, the agent is forced to select an action in the subset of
actions that both the actor and the advisor agree on. The advisor cannot force the
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agent to take actions that the actor has a zero probability for. Moreover, by adding,
at each time-step, a very small non-zero probability to all zero probabilities of the
advisor’s vector, the actor can always push for the augmentation of the probability
of an action that the advisor normally “does not agree with”. At the beginning of
learning, the actor is likely to have all its probabilities set to non-zero values, as its
behavior is initially random. As long as the state of the agent’s policy is to be open to
anything, guiding it using an external source of knowledge is possible. As the advisor
suggests actions to the actor, some of which revealing themselves to be bad, the actor
adjusts its probabilities over actions according to the consequences these actions have
on the environment. Towards the end of learning, the actor becomes deterministic ,
hence the agent stops listening to the advisor; in cases where the actor and the advisor
disagree, the actor’s probabilities are very high for one action, and almost zero for the
ones the advisor has a high probability for.

Both PPR and Policy Intersection can be used to guide the exploration strategy of
an agent, since they both directly alter its policy. Nevertheless, they let the advisory
policy πA get involved only at acting time, not in the learning part. Moreover, Equa-
tion 2.6 can only be applied to tasks for which there is a finite set of actions, excluding
environments with a continuous action space. PPR, on the other hand, is trivial to use
with continuous actions. Our main contribution, the Actor-Advisor, leverages Policy
Intersection in the acting part, and manages to also include the advisory policy in the
learning part of the agent if need be. As we illustrated in Section 2.3, Policy Gradient
does not tolerate its actions to be sometimes overridden by an external force, which
happens to correspond with the definition of Policy Shaping. In Chapter 3, Section
3.1.3, we empirically show that incorporating the advisory policy in the actor update
rule can make the use of Policy Shaping with Policy Gradient possible, and can im-
prove the stability of the learning process for BDPI. In addition, we extend Policy
Intersection to environments with continuous actions in Section 3.2.

In Chapter 4, we use the Actor-Advisor to help a Policy Gradient agent learn a grid-
world task while being advised by a simulated human teacher. After that brief venture
into the realm of learning from human interventions, we focus all of our attention on
various Transfer Learning tasks in Chapter 5: we notably introduce how not one but
several advisory policies can intervene at the same time to help a fresh agent, how
agents with different sensors can share their knowledge to learn the same task faster
in a flying drone simulation, and how multiple users of a web-application can easily
train the same RL agent. Finally, in Chapter 6, we present our last application idea
for the Actor-Advisor to significantly improve the sample-efficiency of an agent, using
a simple yet effective trick: Self-Transfer.
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3 | The Actor-Advisor

The theoretical contributions presented in this chapter were first introduced in Plisnier,
Steckelmacher, Brys, Roijers and Nowé, Directed Policy Gradient for Safe Reinforce-
ment Learning with Human Advice, European Workshops on Reinforcement Learning
(EWRL), 2018; Plisnier, Steckelmacher, Roijers and Nowé, Transfer Reinforcement
Learning Across Environment Dynamics With Multiple Advisors, Benelux Conference
on Artificial Intelligence (BNAIC), 2019; and Plisnier, Steckelmacher and Nowé, Self-
Transfer Learning, Adaptive and Learning Agents (ALA) 2020.

We introduce this thesis main contribution, the Actor-Advisor, a Policy Shaping
method that integrates external knowledge about which action should be taken in the
Reinforcement Learning process, regardless of whether the action space is discrete or
continuous. We provide all necessary extensions making the Actor-Advisor compatible
to RL algorithms designed to deal with environment with discrete actions (e.g., BDPI)
or continuous actions (e.g., Soft-Actor Critic); and that are either on-policy (e.g.,
Policy Gradient) or off-policy (e.g., BDPI). In the next chapters, we demonstrate the
versatility of the Actor-Advisor by evaluating it to a variety of Reinforcement Learning
problems, such as learning from a simulated human teacher, allowing simulated drones
with different sensors to help each other learn the same task, and allowing multiple
advisors to pitch in to solve one navigation task in a grid-world environment.

The Actor-Advisor is a framework in which a reinforcement learning actor policy is
influenced by an advisor policy. We do not consider RL algorithms that do not include
an actor in this thesis. Note that Policy Shaping techniques can still be used, and
have predominantly been used with critic-only algorithms until now [Griffith et al.,
2013; Fernández and Veloso, 2006]; however, the most sample-efficient and popular
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Figure 3.1: In the case of Policy Gradient, the Actor-Advisor involves the advisory
policy both during the acting part and the learning part of the agent: the mixed policy
πL × πA is sampled both for action selection (vanilla Policy Intersection), and when
the loss or actor update rule is computed (learning correction). Note that the network
training (or optimization) problem is not made harder by the use of πA, since πA is
not fed to the trainable part of the network, is not parametric, and as such cannot
be considered as an extension of the state-space. This neural architecture, inspired
by how variable action-spaces are implemented in Steckelmacher et al. [2018], meets
all the Policy Gradient and PPO assumptions, yet the behavior of the agent can be
directly altered by an external advisory policy from any source.

algorithms at time of writing, such as PPO and SAC, happen to always include an
actor, and very little work currently exists on Policy Shaping used with actor-only and
actor-critic algorithms.

We divide our different extensions of the Actor-Advisor into two main sections:
contributions that are specific to RL algorithms compatible with environments with
discrete actions (see Section 3.1), and contributions that are specific to algorithms
that are compatible with environments with continuous actions (see Section 3.2). This
classification criterion is motivated by the fact that depending on whether the action
space is discrete or continuous, the design of the RL algorithm used can fundamentally
differ. Although the Actor-Advisor is a generic method with few assumptions, its
implementation can be impacted by the underlying RL algorithm. The two main
sections of this chapter are further decomposed as follows:
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• Section 3.1: we present the two forms of discrete advice considered in this thesis,
namely stochastic and deterministic (see Section 3.1.1); we adapt the loss of
Policy Gradient and PPO, two on-policy algorithms, to harmoniously integrate
off-policy advice without jeopardizing convergence (see Section 3.1.2); we adapt
the actor-learning rule of an off-policy actor-critic algorithm, namely BDPI, and
empirically show that the learning stability of the agent is improved (see Section
3.1.3;

• Section 3.2: we extend Policy Intersection, the Policy Shaping algorithm the
Actor-Advisor is based on, to be used with Soft Actor-Critic (SAC) [Haarnoja
et al., 2018], an off-policy algorithm designed for continuous actions spaces. In
contrast to selecting an action when the actions are discrete, choosing a continu-
ous action while being advised follows a completely different process, that must
be carefully though out.

Policy Shaping techniques reviewed in Chapter 2 only intervene in the acting part
of the reinforcement learning agent, i.e., they influence or determine which action is
executed by the agent at action selection time. The Actor-Advisor, on the other hand,
allows an external advisory policy to intervene both in the acting part, following the
Policy Intersection formula (see Section 2.5), and learning part of the agent, using
what we call a learning correction. Historically, this learning correction first came
into existence when we used a Policy Gradient actor for the first time, and wished to
guide its policy, using off-policy advice. Due to its strong on-policyness, this made
Policy Gradient’s learning diverge, until we designed a learning correction as detailed
in Section 3.1.2.

In our experience, a learning correction is mandatory when using an actor-only
on-policy algorithm (such as Policy Gradient), and can improve the stability of the
learning of some off-policy algorithms (such as BDPI), although it is not required to
learn 1.

3.1 Discrete Action Spaces
We first describe the two main shapes a state-dependent discrete advisory policy can
take in the learning problems explored in this thesis. We then detail how we modified
Policy Gradient, PPO and BDPI to let them incorporate off-policy advice harmo-
niously into their learning process.

1Off-policy RL algorithms do not need a learning correction, since overriding the policy generating
the data does not jeopardize their convergence, in contrast to Policy Gradient methods.
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3.1.1 Stochastic and Deterministic Advice
In the discrete actions case, the Actor-Advisor implements the Policy Intersection for-
mula first introduced by Griffith et al. [2013], and detailed in Section 2.5.2 of Chapter
2. In that formula, the advice vector πA(st) is a probability distribution over actions
summing to 1, and is either stochastic or deterministic, leading to distinct potential
uses of the advice in real-world applications:

Stochastic advice ensures that each action has a non-zero probability, and can thus
be selected by the agent with an arbitrarily high or low probability, depending
on the agent’s current policy πL. Stochastic advice can be seen as an optional,
soft advice, as it will merely bias the action selection rather than determining
it. Stochastic advice can be used to allow a heuristic, a human teacher (in the
case of suggestions, not commands), or a previously learned policy, in a transfer
learning setting, to help the agent learn the task. In the above-mentioned cases,
stochastic advice can be sub-optimal, hence it is desirable that the agent learns to
ignore it whenever following the advice endangers its performance. A property
we believe inherent to Policy Gradient and actor-critic algorithms, on top of
which we implement the Actor-Advisor in the sections below, is that the higher
the entropy of the advice, the easier it is for the agent to learn to ignore it. Our
experiments in the next chapters tend to empirically confirm this intuition.

Deterministic advice has one 1 for a particular action, and a zero probability for all
other actions. Deterministic advice can be used to enforce proven-safe mandatory
guidelines that must be respected by the agent, in a safe RL task. In the case
of a human user, it can also express the act of providing orders that, from
the perspective of the user, must absolutely be executed, such as wanting their
assistive robot to suddenly resume what it is currently doing. 2

3.1.2 On-policyness and the Learning Correction
We were first introduced to Policy Shaping when working with an implementation of
Policy Gradient, applied to environments with discrete actions. Policy Gradient [Sut-
ton et al., 2000] is an actor-only Reinforcement Learning algorithm which explicitly
represents and maintains a policy, instead of Q-Values. In contrast to Q-Learning-
based algorithms, Policy Gradient does not need an extra exploration strategy to
introduce exploration; directly sampling its actor naturally leads to sporadic explo-
ration until convergence. Policy Shaping methods, on the other hand, consist in extra

2In a safety-critical application, such as a motorized wheelchair learning to navigate, a hierarchy
between advisors might have to be considered, in which a proven-safe backup policy always has
priority. This is to prevent cases in which the human user tries to make the wheelchair perform
dangerous actions, such as driving down stairs.
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exploration mechanisms by design, and have originally only been used with Q-Learning
[Griffith et al., 2013; Fernández and Veloso, 2006]. Therefore, it is a counter-intuitive
idea to want to leverage Policy Shaping with a Policy Gradient agent. More im-
portantly, vanilla Policy Gradient methods will simply not allow for an exploration
strategy to influence their action selection without convergence issues, due to their
strong on-policyness. Our first extension of the Actor-Advisor architecture consists of
a solution to this problem, allowing the policy executed by the agent to be directly
influenced by an external advisory policy, without impairing convergence. We empir-
ically show in Figure 3.3 how necessary the learning correction is for Policy Gradient
to be able to exploit off-policy advice: a Policy Gradient is tackling Lunar Lander,
Five Rooms or Cart Pole [Brockman et al., 2016] 3, while receiving advice at every
time-step from a well-trained advisor on the same task.

We implement the vanilla Policy Intersection formula by Griffith et al. [2013] at
acting time: an action to be executed is sampled from the mixed policy πθ = πθL×πA

between the agent state-dependent policy vector πθL(st) and an advice vector πA(st)
produced by the advisory policy πA. At learning time, both the agent and the advisor
produce their policy vector, πθL(st) and πA(st) respectively. The loss is then computed
based on the mixed policy πθ(st, πA(st)) = πθL(st) × πA(st), instead of on πθL(st)
alone:

θh+1 = θh + α∇LP G+Advice(πθ)

= θh + α∇(−
T∑

t=0
Rt log(πθ(at|st, πA(st))))

= θh + α∇(−
T∑

t=0
Rt log(πθ(at|st)× πA(at|st))) (3.1)

This makes the Policy Gradient actor aware of the action it has actually executed in the
environment, while being influenced by the advice at acting time, instead of updating
its policy with action probabilities that would be off-policy. Including πA(st) in the
loss satisfies the need of Policy Gradient to see the actions selected being sampled from
the policy it is currently learning (as discussed in Chapter 2, Section 2.3); we meet
this need by integrating the mixed policy in the Policy Gradient upgrade, to match
up with the actions sampled from the mixed policy at action selection time.

We call the integration of the advice term πA(st) in the loss a learning correction,
and it can be implemented in the clip loss of PPO, similarly to Equation 3.1. Instead

3Lunar Lander, Cart Pole, Pendulum and Acrobot are benchmark environments commonly used
by the RL research community, made available by OpenAI [Brockman et al., 2016]. Five Rooms is
our own custom environment, inspired by Four Rooms [Precup et al., 1998]
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Lunar Lander Cart Pole Five Rooms 14x12

Five Rooms 23x21AcrobotPendulum

Figure 3.2: The benchmark environments used in this chapter to evaluate the learning
correction. Lunar Lander for discrete and continuous action spaces, Cart Pole, Pen-
dulum and Acrobot come from the OpenAI Gym library [Brockman et al., 2016]; Five
Rooms is a custom grid-world environment inspired by Four Rooms [Precup et al.,
1998]. Lunar Lander: The task is solved with rewards around 200. Cart Pole: An
optimal policy receives rewards of 200. Five Rooms 14 × 12: An optimal policy ob-
tains rewards of 75. Pendulum: The maximum reward is zero. Acrobot: Achieving
the target results in a reward of 0. Five Rooms 23× 21: The optimal reward is 57.

of computing the gradient solely based on πθL(st), it is computed based on the com-
bination of the current policy πθL(st) and the advisory policy πA(st). An intuition
of the impact of the learning correction is made more explicit in the modified actor
update of Bootstrapped Dual Policy Iteration, which we present in the next section.
This modified Policy Gradient loss allows the agent to learn even though its actions
are influenced by the advisor, which would not be possible if the neural network was
unaware of the existence of the advisor, due to Policy Gradient’s strong on-policy
nature.

Although the advantage of using the learning correction is clear with Policy Gra-
dient, as illustrated on Figure 3.3 (left), it is less so when implementing it in PPO.
We experimented the use of the learning correction on three different environments,
all with discrete actions: Lunar Lander, Cart Pole, and a custom grid-world of 23 ×
21 cells named Five Rooms. Out of the three environments, PPO seems to benefit
from the learning correction only when facing Five Rooms. At time of writing, we
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Figure 3.3: In Lunar Lander and Five Rooms, Policy Gradient needs the learning
correction to be able to leverage the guidance provided by even a near-perfect advisor
(Policy Intersection, “PI”), otherwise, its performances plummets. In Cart Pole, on
the other hand, the use of the learning correction is not required by the agent to learn,
nor does it jeopardize learning; both “PG/PI without LC” and “PG/PI with LC”
curves overlap. We first train a regular Policy Gradient agent, without any external
guidance, until it reaches a good policy. We freeze and store this agent to be used as
an advisor. We then launch two fresh Policy Gradient agents, advised by the advisor
: i) one using our learning correction to integrate the guidance from the advisor, and
ii) one using vanilla Policy Intersection, without the learning correction. The learning
correction allows agent i (top curve) to exploit the advice without issue, while the
performance of agent ii (bottom curve) drastically drops.
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do not have a well-constructed and convincing theory as to why the performance of
PPO with or without the presence of a learning correction varies so drastically across
environments. Nevertheless, a notable difference between Lunar Lander, Cart Pole
and Five Rooms is that Five Rooms is a large, difficult to explore environment with
sparse rewards. The agent starts in the top left corner of a 23 × 21 cells grid, and
must find a goal cell in the bottom right corner; it receives a positive reward only
when it has reached the goal, and -1.0 in all other states. In future experiments, we
prefer to use a learning correction with PPO when dealing with particularly hard to
explore environments with sparse rewards, but to not use it otherwise.

In the small experiment producing the results in Figure 3.3, the advisor and ad-
visee are trained on the same task. However, most Transfer Learning settings seldom
consider the transfer of a policy between two agents tackling the exact same task,
unless they are solving the task in parallel [Lai et al., 2020], because there is sim-
ply not much point in doing so. Worthwhile Transfer Learning applications consider
learning new, distinct tasks from previous ones, hence leveraging sub-optimal advi-
sors which knowledge has become partially irrelevant. Similarly, learning from human
intervention methods must take into account the inconsistencies and flaws embedded
into advice from human teachers. As we explore these two RL subdomains in the
next chapters, we empirically show how the Actor-Advisor allows the agent to learn
to exploit advice when it is helpful and relevant, and to ignore it otherwise.
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Figure 3.4: It is not clear whether the learning correction always helps the performance
of PPO in the presence of an external advisory policy. We evaluate it on three different
environments with discrete actions: Lunar Lander, Cart Pole, and a custom grid-world
of 23 × 21 cells called Five Rooms. Although it leads to a decrease in sample-efficiency
on both Lunar Lander and Cart Pole, the same learning correction leads to better
results compared to not implementing it on Five Rooms. This drastic difference in
results obtained might be due to the differences between the environments: Five Rooms
consists in a large, difficult to explore environment with sparse rewards, in comparison
to Lunar Lander and Cart Pole.

Policy Union Versus Policy Intersection

In Chapter 2, Section 2.5, we reviewed Policy Intersection, originally called Policy
Shaping when first introduced by Griffith et al. [2013]. In the context of this thesis, we
purposely refer to Equation 2.6 as an intersection between the actor’s and the advisor’s
policies, since it performs an element-wise product between the two probability vectors.
However, as the reader may guess, there exist other ways to combine probability
vectors; one could sum both vectors instead of multiplying them:
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Figure 3.5: Both Policy Gradient agents using either Policy Intersection or Policy
Union implement the learning correction, without which Policy Gradient’s learning
would diverge. The inferior performance of Policy Union is due to a too high explo-
ration, instead of focusing on exploiting the advisor’s relevant advice.

at ∼ πL(st) + πA(st) =

element-wise sum︷ ︸︸ ︷
πL(st) + πA(st)
πL(st) · πA(st)︸ ︷︷ ︸∑

a∈A
πL(a|st) + πA(a|st)

(3.2)

We refer to Equation 3.2 as Policy Union, as performing an element-wise sum of
two probability vectors amounts to taking the union of their probabilities. In contrast
to Policy Intersection, Policy Union broadens the agent’s action choice instead of re-
stricting it, and makes the resulting probabilities over actions become more uniformly
distributed, in contrast to Policy Intersection. Even when the actor becomes deter-
ministic towards the end of learning, the advisor forces the agent to keep on exploring
actions it would normally take. This can be observed in Figure 3.5, where we compare
a Policy Gradient actor being advised using Policy Intersection and one being advised
using Policy Union. Both agents implement the learning correction. While Policy
Intersection allows the agent to exploit the highly relevant advice it receives, Policy
Union lets the agent perform useless exploration some of the time, preventing it from
maximizing performance.
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Another frequently used algorithm in this thesis, due to its inherently high sample-
efficiency, is Bootstrapped Dual Policy Iteration. Below, we describe how we combine
BDPI with the Actor-Advisor.

3.1.3 Bootstrapped Dual Policy Iteration Leveraging Advice
Although BDPI does not only use an actor, but also several critics, the only element
that requires modifications to support the Actor-Advisor properly is the actor update
rule, as well as its action selection strategy at acting time. Because the advice appears
in the policy loss of the version of the Actor-Advisor implemented on top of Policy
Gradient methods, we must consider how advice influences both acting and learning
of the actor of BDPI.

BDPI with Advice at Acting Time

As with the Actor-Advisor with Policy Gradient, the BDPI actor remains purely state-
dependant, and does not observe any form of advice. The actor therefore learns πL,
and has no extra input for advice. At acting time, the actions executed by the agent
are therefore sampled from the mixture of the policy vector of the actor πL(st) with
the policy vector of the advice πA(st), following the Policy Shaping formula shown in
Equation 2.6.

Because BDPI is an off-policy algorithm, simply combining the output of the actor
with the advice vector, and sampling actions from the result, maintains the conver-
gence properties of BDPI. Nevertheless, we empirically show in Figure 3.6 that modify-
ing the actor update rule to make it include advice in the learning mechanism increases
the quality of the executed policy in the early stages of learning, and improves overall
stability. At acting time, we therefore store the advice vector received by the agent
at each time-step, which leads to the agent storing (st, at, rt, st+1, πA(st)) tuples in its
experience buffer. We now discuss how the actor learning rule can leverage this advice
to increase the quality of the actual behavior of the agent.

BDPI with Advice at Learning Time

While the BDPI critics play no role at acting time, they are updated, along with the
actor, at learning time. Fortunately, the critics being off-policy, no special consider-
ation is needed when learning Q∗ from experiences generated by the mixture of the
actor and advice. The actor, however, can benefit from an involvement of the advice
in its learning mechanism, by implementing a learning correction similar to the one in
the Policy Gradient loss.

Assuming that the advice is provided continuously (i.e., at each time-step), the
objective is to maximize the expected cumulative reward obtained by the agent, that
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Figure 3.6: Applying a learning correction, that encourages the BDPI actor to diverge
from the advice it receives, increases the quality of the policy in the early stages of
learning. This figure shows how a BDPI agent performs without advice (No Adv.),
with simple advice that encourages it to go forwards (Adv. + LC), and with that
advice but no learning correction (Adv. - LC). Every curve show the average of 4
runs. The environment used is “Virtual Office” (see Section 6.3.2), a difficult to ex-
plore environment mimicking an office space, with fully continuous states and discrete
actions.

executes a mixture of the BDPI actor and the advisor. We therefore want the actor to
learn a policy that, when combined with advice, is optimal for the task. We formalize
this objective in Equations 3.3 and 3.4, shown below, that we first introduced in
Plisnier et al. [2019a]:

π(s, πA(s))← Γ(Q(s)) converges to the optimal policy (3.3)

Starting from Equation 3.3, we isolate πL, the actor of BDPI, and derive an updated
learning rule:

π(s, πA(s))← Γ(Q(s))
πL(s)πA(s)
|πL(s) · πA(s)| ← Γ(Q(s))

πL(s)πA(s)← Γ(Q(s))×
a scalar︷ ︸︸ ︷

|πL(s) · πA(s)|︸ ︷︷ ︸
a vector

πL(s)← Γ(Q(s))× |πL(s) · πA(s)|
πA(s) + ε

(3.4)
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with the fraction an element-wise division between two vectors, and ε a small positive
value that prevents a division by zero if the advice contains a zero probability for any
of the actions.

Intuitively, in Equation 3.4, the actor learning rule moves the actor in the direction
of the greedy function of a critic with a force or pull that influences how much the
greedy function is followed, depending on how much it agrees with the advisor. The
more the advice differs from the actor, the more the actor will follow the greedy func-
tion (and thus pull away from the advice). Such a pull allows the agent to compensate
for bad advice, by learning an actor πL that, when combined with the sub-optimal
advice, still leads to a good policy. In the late learning stages, the Policy Gradient
or BDPI actor becomes highly deterministic, and therefore defines (in the limit) the
entirety of the behavior of the agent. In late learning stages, bad advice is therefore
automatically overcome by the actor, which allows the optimal policy to be executed
by the agent even with incorrect advice. Our learning correction improves the behavior
of the agent in the early stages of learning, when the policy is not yet deterministic. By
making it compensate for bad advice, we ensure a rapid improvement of the behavior
of the agent, even when sub-optimal advice is used. We show in Figure 3.6 that the
learning correction indeed increases the performance of the agent in the early stages
of learning (after about 60 episodes), and provides a significant advantage over not
using advice.

3.2 Continuous Action Spaces
Before presenting our extension compatible with continuous actions, we detail how
the transition from a discrete action space to a continuous one alters the design of the
Actor-Advisor. In the discrete actions case, the state-dependent policy vector π(st) of
the agent is a discrete probability distribution over actions, a vector of |A| real values
between 0 and 1, and that sum to 1. Such a discrete policy can be explicitly learned,
with Policy Gradient for instance [Sutton et al., 2000], or computed on-the-fly based
on learned Q values, using an exploration strategy.

In the continuous case on the other hand, enumerating the actions is impossible, as
is producing an explicit probability density for each of them. Usually, the agent’s policy
is implemented as a Gaussian distribution, parameterized by a mean µ and a standard
deviation σ, these two parameters being output by a neural network given a state st.
At each time-step, a single action at is sampled from the Gaussian policy with mean
µ and standard deviation σ. Continuous actions are challenging for Reinforcement
Learning, and not every algorithm is compatible with them. For instance, almost all
on-line RL algorithms for continuous actions need an explicit actor: there are very few
critic-only algorithms for continuous actions [Engel et al., 2005; Antos et al., 2007].
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3.2.1 The Actor-Advisor for Continuous Actions
We explore two ways to incorporate advice in the policy of a continuous actor. The
first approach deals with combining the mean and the standard deviation of the actor
µL and σL, with that of the advisor µA and σA; we experiment this approach with
PPO. The second approach we propose merely assumes that actions can be sampled
from the advisor, and that the actor can consider these actions and either “accept” or
“reject” them, based on Gaussian distribution policy. We use Soft Actor-Critic (SAC)
as our case-study for this second method, and report the results in Chapter 6, Section
6.2.

The Analytic Approach

In our first approach, we assume the advisor is parameterized by a mean µA and
standard deviation σA. We average both means and sample actions from the Gaussian
distribution parameterized with the new µ, following Equation 3.5:

µ = µL + µA

2
at ∼ N (µ, σL) (3.5)

Note that we keep the standard deviation σL from the actor unchanged. Preliminary
experiments showed that averaging standard deviations similarly to the means yielded
poor results. Equation 3.5 is our most satisfactory solution so far, although we plan
on improving it in future work. Indeed, due to the sum performed, this method loses
a property we find important: the actor cannot learn to ignore advice over time, in
contrast to the original Policy Intersection formula (see Chapter 2, Section 2.5.2).

Incorporating the advice in the loss of PPO in the continuous actions space leads
to mixed results, reported in Figure 3.7. Similarly to our observation made when
applying PPO to several different environments with discrete actions in Section 3.1.2,
the performance of PPO with or without the learning correction varies dramatically
depending on the task. Pendulum and Lunar Lander with continuous actions require
PPO to implement the learning correction for it to preserve good results, whereas the
sample-efficiency of PPO on Acrobot is decreased when the learning correction is used.
At time of writing, we do not hold a convincing theory explaining this behaviour; we
merely report these results.

In the next section, we choose to use the Soft Actor-Critic algorithm instead of
PPO, with another approach for computing the intersection between the actor’s and
advisor’s policies when the actions are continuous. Since it has been introduced in
Schulman et al. [2017] as an off-policy algorithm, in theory, SAC has no issue with
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Figure 3.7: Again, the use of the learning correction with PPO leads to mixed re-
sults, depending on the environment. PPO is incapable of learning the continuous
Lunar Lander and Pendulum tasks while using Policy Intersection without the learn-
ing correction (Policy Intersection, “PI”). However, the learning correction decreases
sample-efficiency on the Acrobot environment, another task with continuous actions.
The shaping of the PPO agent’s policy is made possible by applying Equation 3.5.

having its action selection tampered with off-policy advice. As a result, we do not
implement a learning correction for SAC.

The Sampling Approach

Equation 2.6 expresses the product of two state-dependent probability distributions:
the actor’s πL(st), and the advisor’s πA(st). In the discrete actions case, πL(st) and
πA(st) are both vectors of size |A|, where A is a finite set of actions available to the
agent. Multiplying those two vectors amounts to taking the intersection between those
two probability distributions. In other words, Policy Intersection samples actions that
both the actor and the advisor “agree on”, as these actions have a non-zero probability
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Algorithm 1 Policy Intersection for Continuous Actions
Require: πL is the currently learning actor, and πA is the frozen actor used as advisor
AA = set of actions sampled from πA(st)
P = [ ]
for every action aA

i ∈ AA do
Get πL(aA

i |st)
Append πL(aA

i |st) to P
end for
Create D = Categorical Distribution(P )
Execute action a ∼ D

in both πL(st) and πA(st) 4. Unfortunately, when the action space is continuous,
finding actions in the intersection between the actor’s and the advisor’s policies is less
straightforward.

In Reinforcement Learning algorithms that can be applied to environments with
continuous actions, such as SAC, individual actions can directly be sampled from the
actor. Unfortunately, it is difficult to access a probability distribution over all possible
actions, as the number of possible actions is infinite. However, the actor can provide,
given a particular action, the probability density of that action. Assuming that the
advisor can similarly be sampled, our approach to sampling the intersection between
which actions are allowed by the actor and those allowed by the advisor is the following:

1. At action selection time, we sample a large amount of actions AA from the
advisor (where the superscript “A” stands for advisor).

2. We then submit each action aA
i ∈ AA from the advisor to the actor πL, which

returns probability densities πL(aA
i |st). These probability densities from the

actor, for actions from the advisor, form a set P .

3. We create a new Categorical distribution D, parameterized with the probability
densities P . This distribution can act as a policy that can be sampled for actions.

4. We execute in the environment an action sampled from D.

This method implements an “AND” between the actor and the advisor’s policies.
We basically consider that Policy Intersection computes the product of independent
probabilities in the discrete-action case, note that it is equivalent to computing the

4Note that if no agreement can be made, i.e., the intersection between which action the actor and
the advisor want to choose is empty, it can be arbitrarily decided that either the advisor or the actor
has the last word, depending on the problem.
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probability of the “AND” of two events, and implement that “AND” event in the
continuous-action case, where the product is impossible to efficiently implement.

While our sampling technique allows to compute the intersection between an actor
and an advisor, with no assumption about their distributions (we do not assume
that they are Gaussian, for instance), we acknowledge that alternative approaches
could have been devised, such as creating a new stochastic policy resulting of the
point-wise multiplication of the advisor’s probability density function with the actor’s
probability density function, sampled for a large number of actions. This method,
however, requires an advisor that can produce density values for arbitrary actions,
while ours merely requires an advisor that can sample actions.

The evaluation of this extension of the Actor-Advisor to continuous actions by
sampling actions can be found in Chapter 6, Section 6.2, where we apply it to three
challenging environments with continuous actions spaces.

3.3 Is the Learning Correction Always Useful?
In this chapter, we introduced the learning correction, firstly as a means to allow Policy
Gradient-based methods to include Policy Shaping in their learning process. We show
in Section 2.3 that if a few of the actions executed in the environment are randomly
picked, and not selected according to the current policy of the Policy Gradient agent,
then learning collapses. Again in this chapter, in Section 3.1.2, we show that the policy
of a Policy Gradient agent tends to diverge, even when being advised by a very good
advisor. Policy Gradient reacts badly to external forces choosing actions in its stead.
However, Policy Shaping is, by definition, a family of techniques that tampers with the
selection of actions, in order to steer the exploration of the agent. And, depending on
the application, the use of a Policy Shaping method can greatly improve performance.
Hence, the learning correction is first and foremost designed to make Policy Shaping
possible for Policy Gradient. In addition, we observed that PPO can benefit from the
learning correction in difficult to explore environments with sparse rewards.

When it comes to other reinforcement learning algorithms that are not based on
Policy Gradient, such as Bootstrapped Dual Policy Iteration, the learning correction
can be implemented, not because it is necessary for the learning algorithm to properly
function in the presence of an external advisor, but because it might help the agent
to fully benefit from the advisor. We see in Section 3.1.3, Figure 3.6, that using the
learning correction with a BDPI actor can improve the overall performance of the
agent in early stages of learning.

In the next chapters, when we refer to the Actor-Advisor, we imply that the learning
correction is used by default. However, we regularly perform ablation studies to verify
if the use of the learning correction still proves effective on different environments than
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Lunar Lander, see for instance Figure 3.6 on Virtual Office, an environment described
in Chapter 6, and 5.12 in Chapter 5 on a large grid-world environment. Although
we certainly do not cover all existing reinforcement learning algorithms in this thesis,
we at least empirically prove the benefit of using the learning correction for Policy
Gradient, PPO and BDPI, in more than one environment.
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4 | Learning from Human
Intervention

This chapter is drawn from our publication, Plisnier, Steckelmacher, Brys, Roijers and
Nowé, Directed Policy Gradient for Safe Reinforcement Learning with Human Advice,
presented at the European Workshop on Reinforcement Leaning (EWRL), 2018.

Reinforcement Learning algorithms have the potential to unburden classical control
engineers from having to develop sophisticated controllers for robotic applications. As
suggested in Chapter 2, an RL algorithm is a compact, generic method that specifies
how to learn a task, not how to perform it, leaving that chore to the RL agent. As
a result, one RL algorithm can be used for a wide range of different tasks, instead of
having to implement an individual controller per task. This feature could lead to the
deployment of RL agents embedded on machines assisting humans in their daily-lives.

For the integration in human-populated spaces to be smooth, these agents should
be able to quickly alter their behavior according to users’ requests, to make them feel
at ease and in control. Moreover, a non-negligible extra benefit of taking human input
into account while learning is that it can potentially be used to speed up learning. It
is this last point that motivates us to write this chapter. Learning from humans, and
in human-populated environments, has enjoyed great interest from the Reinforcement
Learning community over the past two decades [Jr. et al., 2001; Thomaz and Breazeal,
2006; Knox and Stone, 2009, 2010; Knox et al., 2012; Warnell et al., 2017; Griffith et al.,
2013; Cederborg et al., 2015; Christiano et al., 2017; Mathewson and Pilarski, 2017;
MacGlashan et al., 2017; Li et al., 2019; Najar and Chetouani, 2021, to only cite a
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few]. Techniques have been developed for every form of signal a person can voluntary
emit and enter in an AI system, such as providing feedback on the previously executed
action, or advice on which action should be executed next, which behavior between
two behaviors is preferred, or directly giving a demonstration of the desired behavior.

Arguably, some signals are easier to emit, and consist in more intuitive teaching
tools than others [Li et al., 2019]. It is generally accepted that providing feedback
is a fairly intuitively teaching technique for humans, in contrast to notably using
demonstrations [Knox and Stone, 2009; Thomaz and Breazeal, 2006]; everyone can
recognize success or failure, but only experts know how to best perform complicated
tasks. Existing techniques often focus on learning from human-delivered feedback, i.e.,
rewards or critiques. This has been done either by shaping the environmental reward
by mixing it with human reward [Thomaz and Breazeal, 2006; Knox and Stone, 2010]
or totally ignoring the environmental reward and learning solely from human reward
[Knox and Stone, 2009; Christiano et al., 2017; Jr. et al., 2001; Mathewson and
Pilarski, 2017], or by shaping the agent’s policy from human critiques [Griffith et al.,
2013; MacGlashan et al., 2017]. Nevertheless, methods leveraging human feedback
to shape the reward of the environment, or the actual agent’s policy, can effectively
improve the performance of the agent; however, it can only be used as a bias. If the
agent has the intention to act undesirably, the human teacher only has the possibility
to express their dissatisfaction after the agent’s wrong-doing. Nevertheless, the teacher
should not only be able to influence the agent’s behavior and learning, but also to be
able to immediately halt and correct the agent whenever it might engage in undesirable
behavior, which is by design not possible using feedback-based techniques.

In this chapter, we apply the Actor-Advisor to the problem of learning from human-
provided directives or advice. Specifically, we use the Actor-Advisor in this context as
a Policy Shaping using human advice method, and evaluate it in an environment with
discrete actions. This environment consists in a large, difficult to explore grid-world,
in which Options [Sutton et al., 1999b] are used to allow our simulated human to give
advice on a reasonable time-scale, as would be the case in a real-world application.

Additionally, for the experiment detailed in this chapter, the Actor-Advisor is
implemented on top of a Policy Gradient agent, while methods guiding the exploration
strategy have until now only been used together with algorithms based on Q-Learning
[Griffith et al., 2013]. As detailed in Chapter 3, because the mixing in [Griffith et al.,
2013] makes the actual behavior of the agent diverge from what it learns, thus off-
policy, Policy Gradient cannot be applied as-is [Sutton et al., 2000]. Our contribution
extends Policy Gradient to allow an advisory policy πA to directly influence the actions
selected by the agent, without impairing the convergence of learning. The Actor-
Advisor allows the behavior of the agent to be immediately altered by an advisor,
making it compatible with Safe Reinforcement Learning; allows the agent to leverage
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advice to learn faster; is robust to mistakes in the advice; and does not need any
insurance against sparse advice.

4.1 Existing Learning from Human Interaction Tech-
niques

We now review existing techniques that are currently mainly used to learn from human
intervention.

4.1.1 Reward Shaping
Feedback-based methods allow RL agents to learn from human intervention, one of
the most famous ones being Reward Shaping [Ng et al., 1999]. Reward Shaping is
a general method that allows the addition of a supplementary reward to the envi-
ronmental reward signal that the agent already receives. The use of this method is
motivated when the environmental reward is particularly sparse, or/and only one re-
ward is provided at the very end of the task, which makes credit assignment difficult.
In this case, shaping the reward received by the agent with a richer, more frequently
emitted one can help speed the learning process. The shaping reward can be from
many different sources; when it is applied to learning from human interventions, it is
typically a measure of appreciation provided (in the form of a scalar) by the human
in the loop. Learning from both human feedback and environmental reward can be
achieved by simply summing them [Thomaz and Breazeal, 2006], or by using more
advanced mixing strategies [Knox and Stone, 2010; Harutyunyan et al., 2015a].

In addition to allowing users to influence the behavior learned by the agent, human
feedback can also help the agent learn faster [Jr. et al., 2001; Thomaz and Breazeal,
2006; Knox and Stone, 2009, 2010; Knox et al., 2012; Warnell et al., 2017; Griffith
et al., 2013; Cederborg et al., 2015; Christiano et al., 2017; Mathewson and Pilarski,
2017; MacGlashan et al., 2017]. However, human feedback has been shown to be
rich, but flawed and biased towards sub-optimal policies [Knox and Stone, 2010].
The rewards directly produced by the environment, and that theoretically encode the
optimal policy, cannot therefore be ignored by the agent.

4.1.2 Human Imitation
The TAMER framework [Knox and Stone, 2009; Warnell et al., 2017] focuses on value
functions, instead of policies or rewards. It considers that human teachers do not give
a regular one-action reward, but an estimation of how fruitful the action is expected
to be in the future, which is close to the definition of a value function. Hence, the
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learning problem does not need to be solved by reinforcement any more, as a value
function is directly provided to the agent. The agent’s goal becomes to learn a model
of the human value function, using supervised learning, and to myopically act by
maximising this function. TAMER has been extended to continuous action spaces
by using the human value-function in an actor-critic setting [Vien and Ertel, 2012].
The actor-critic setting also enables the use of advantage, i.e., how much better than
expected an action is, instead of plain value functions, as it is achieved in COACH
[MacGlashan et al., 2017]. Other work also considered human feedback as the sole
reward source, and as a numerical value to be maximised [Jr. et al., 2001; Mathewson
and Pilarski, 2017].

Nevertheless, a couple of issues of human imitation techniques have been identified.
Firstly, they often assume that the human value-function is stationary in time, which
has been observed not to be the case [Knox et al., 2012]. Secondly, the translation
of human feedback (such as good or marvellous) to numbers is often arbitrary [Loftin
et al., 2014; Griffith et al., 2013]. This led to work replacing the notion of value
or reward with the one of preference [Christiano et al., 2017]. The human is shown
trajectories produced by the agent, and which one is deemed the best is used to model
a reward function.

4.1.3 Learning from Demonstrations
Human demonstrations consist of entire trajectories of states and actions, and are used
to jumpstart learning in artificial agents with good initial policies [Peters and Schaal,
2008; Taylor et al., 2011]. In Taylor et al. [2011], a baseline policy is extracted from
human demonstrations, then the agent autonomously learns using RL to outperform
human performance on a simulated robot soccer domain. Demonstrations can also
shape the agent’s policy throughout its learning process [Nair et al., 2017]: an actor
is trained off-policy with demonstration data, while a critic prevents the agent from
blindly following the demonstrator’s action when they are suboptimal.

The final approach we review in this chapter is Policy Shaping, which shares simi-
larities with learning from demonstration techniques, as it allows a human to directly
control the actions of the agent. However, Policy Shaping does not require the user to
control the agent during a whole uninterrupted trajectory, from start to goal. Instead,
the user is allowed to provide sparse advice, only when needed or when the operator
is available, even if it is only for single time-steps at once.

4.1.4 Policy Shaping
Policy Shaping allows a human to advise the agent’s actions, hence letting the hu-
man directly guide the agent’s exploration strategy [Griffith et al., 2013; Najar and
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Chetouani, 2021]. In Griffith et al. [2013]; Cederborg et al. [2015]; Sahni et al. [2016],
the human feedback, expressed as binary positive or negative evaluations of the actions,
is collected while the agent acts, and a critique policy is extracted from it. During
action selection, this critique policy is then mixed with the agent’s policy (following
Equation 2.6), learned with standard variations of the Q-Learning algorithm. Policy
Shaping has been successfully applied to 2D games [Griffith et al., 2013; Cederborg
et al., 2015] and language games [Harrison et al., 2017].

Another application of Policy Shaping that does not rely on human feedback, which
we prefer in our experiments and implement in the Actor-Advisor, is allowing the hu-
man teacher to directly submit actions to the agent, instead of first extracting a policy
from collected human critiques. In our setting, at every time-step, the human provides
a fresh advice to the agent with a probability L before any option has been selected.
This advice can influence (or even determine, in the case of deterministic advice) the
action selection. At training time, human directives are re-played and Policy Gradient
automatically adjusts to them. Our method is, to our knowledge, the first allow-
ing the use of Policy Shaping (or other guiding the exploration strategy method) in
Policy Gradient. This is not only much simpler than human policies [Griffith et al.,
2013], but also highly effective when the agent must urgently be prevented from acting
undesirably, as we show in Section 4.3.2.

4.2 Challenges in Human Feedback
Except for learning from demonstrations, all the methods presented in Sections 4.1.4
to 4.1.1 allow for, or even rely on rewards or value functions. Rewards are either
obtained from human feedback, preferences or critiques. Moreover, these rewards are
used to slowly bias the policy of the agent towards human-sanctioned ones, and do
not allow an immediate change of the agent’s behavior if it is doing something wrong.
On a more theoretical level, it has been observed that human teachers give feedback
according to the agent’s current policy [Kim et al., 2009; MacGlashan et al., 2017].
If the teacher is told that the learner is currently bad at a given task, they are more
likely to deliver more positive feedback when the learner is succeeding at the task,
than when they are told that the agent is already good at the task [MacGlashan
et al., 2017]. This non-stationary feedback is a challenge for Reinforcement Learning
algorithms designed for Markov Decision Processes (the reward function must depend
only on the current state and action), and requires specific algorithmic precautions to
be implemented [Harutyunyan et al., 2015b].

A bigger challenge is that, according to previous work analysing how people teach
[Thomaz and Breazeal, 2006; Kaochar et al., 2011], humans actually seldom use feed-
back. Hence, offering only feedback as a teaching tool to users often leads to unex-
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pected usage. For instance, teachers could communicate guidance through the feed-
back channel [Thomaz and Breazeal, 2006], because they want to tell the agent what
to do, not whether it did well. Moreover, Reinforcement Learning algorithms slowly
optimize their policy, which makes the impact of human feedback soft and progressive.
As a result, teachers can feel like the agent is not listening to them.

Although these observations based on previous work seem to indicate that feedback-
based methods should be avoided while teaching, there is a feature achievable via
feedback-based methods, and that advice-based methods cannot reproduce. This fea-
ture is teaching user preferences to the agent. Despite the power of advice to immedi-
ately and visibly alter the action taken by the agent if the user commands it, an agent
using policy shaping eventually learns the optimal policy, whether or not user direc-
tives align with this optimal policy. If following user preferences lead to a sub-optimal
policy, the agent will learn to deflect from them whenever it can. Indeed, advice does
not change the objective of the task; it merely improves exploration, allowing the agent
to get to the goal quicker. Reward shaping methods, on the other hand, tamper with
the objective function; they add extra rewards to the environmental reward signal, and
thus can alter the overall goal of the task (unless the shaping reward is designed to be
potential-based [Harutyunyan et al., 2015b]). As a result, rewards coming from the
user can permanently teach the agent to respect their preferences while performing
a given task, as they become part of its objective. On one hand, this presents the
advantage of making the agent’s behavior customizable by users; on the other hand,
letting users tamper with the objective anticipated by the designer of the agent is not
always desirable.

In summary, we believe that choosing a learning from human intervention method
is a careful process that is strongly task-dependent. In our case, advice-based methods
are preferred as we are primarily interested in increasing the agent’s sample-efficiency
at learning a complex task, which goal does not include respecting some user pref-
erences. In this chapter, we compare our Actor-Advisor contribution, implemented
on top of a Policy Gradient agent, to a simple Reward Shaping setting, in terms of
amount of human interventions needed and final performance that can be achieved.
We evaluate both methods on an environment with a discrete action space: a goal
finding task in a large grid-world.

4.3 Helping an Agent Learn to Navigate in a Large
Grid-World

The environment used to evaluate the Actor-Advisor learning from human intervention
is Five Rooms, a 29×27 cells grid-world (see Figure 4.1a), inspired from the well-known
Four Rooms environment used to evaluate options without human intervention [Sutton
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et al., 1999b]. To simulate the human teacher, we handcraft a function providing the
agent with advice or rewards (see Section 4.3.2).

Considering the sheer size of Five Rooms, making it hard for a Policy Gradient
agent to explore, we let the agent use options to fasten navigation. Options have the
additional and non-negligible benefit of being easier for a human to advise or give
feedback on, in contrast to low-level actions which are often much less intuitive.

4.3.1 Options
To reduce the size of a prohibitively large-scale reinforcement learning problem, a
complicated task can be divided into simpler sub-problems. The options framework
[Sutton et al., 1999b] considers high-level actions, called options, which have their own
execution policy over lower-level actions. An option o is defined as a tuple ⟨Io, πo, βo⟩:
an initiation set Io ⊆ S containing the states in which the option can start; a policy
πo : S × A → [0, 1]; and a termination function βo : S → [0, 1] determining whether
the option should end or not in a given state. The policy over options π(ot|st) is
responsible for selecting a next option whenever one terminates.

Options present important advantages compared to flat Reinforcement Learning.
On a technical perspective, it is sometimes possible for designers to hand-code options
into an agent (or robot), since options can be smaller and simpler than the original
complete task. In this case, the agent’s goal becomes to learn the π policy over options,
and not the πo option policies, which can significantly simplify the learning process.
Moreover, already-learned or designer-provided options can potentially be reused to
tackle similar sub-problems. On a user-friendliness perspective, options may be easier
to understand for humans, as they are high-level steps (such as opening a door) in
comparison to low-level actions (such as actioning a single muscle motor). Because
they are selected at a coarser time-scale, giving feedback or advice on options is also
much easier than on low-level actions.

In this grid-world experiment, we use designer-provided options to illustrate the
compatibility of the Actor-Advisor with options. Our agent learns the top-level policy
π. Because our contribution can also be applied to flat Reinforcement Learning, and
to simplify our notations, we denote π the policy being learned, and at the option
selected at time t.

4.3.2 Evaluation on Five Rooms
Five Rooms is a custom 1 29 cells high and 27 cells wide grid world, divided by walls.
Each of the five rooms are accessible via one of the four one-cell-wide doors. This, in
addition to its size, makes exploration difficult. In a conventional setting, the agent

1By “custom”, we mean that we designed the Five Rooms environment.
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a)
S

G

b)

Figure 4.1: Comparison between a) our 29 × 27 Five Rooms environment on which
we evaluate our method and b) the 11 × 11 Four rooms environment [Sutton et al.,
1999b] which inspired Five Rooms. In environment a), black cells represent walls; the
agent starts in the initial state S, and must reach the goal G.

can move one cell up, down, left or right, unless the target cell is a wall (then the agent
does not move). The agent starts in the top-left corner of the grid, and must reach
the bottom right corner, where it receives a reward of +100; it receives −0.1 in every
other cell. The episode terminates either once the goal has been reached, or after 500
unfruitful time-steps. The optimal policy takes 54 time-steps to reach the goal, and
obtains a cumulative reward of 100− 54× (−0.1) = 94.6.

Five Rooms is fairly large (in comparison to Four rooms in Figure 4.1b) and dif-
ficult to sufficiently explore, due to the sparse reward. As the original Four Rooms
environment [Sutton et al., 1999b], and because of its sheer size, Five Rooms is well-
suited to the use of options. Our use of a complicated environment, and options, is
motivated by the nature of real-world robotic tasks in human-populated environments,
that are big, complex, and are likely to already rely on options. Note that options are
not necessary for the Actor-Advisor to work, but our experiments show, using this en-
vironment, that our method is compatible with Hierarchical Reinforcement Learning.
We see this as an important benefit, as it is natural for humans to provide feedback
on the level of options. We implemented 5 options: 4 door-options, each associated to
one of the 4 doors, driving the agent directly to that door from any neighboring room,
and then terminating. One option goes to the goal from any cell of the bottom room.
Instead of choosing among the four up, down, left, right low-level actions, the agent’s
policy selects an option among these 5 ones. If the chosen option is defined for the
agent’s current position, the option leads directly to its respective destination. Oth-
erwise, a random action is executed, after which the option immediately terminates
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and returns control to the policy over options. As a result, the agent visits potentially
every cell of the grid, instead of just hopping from door to door, keeping the problem
challenging2.

The Actor-Advisor Learning from Human Intervention

The Actor-Advisor learns from both the human teacher and the environment. Being
aware of the environment allows the agent to learn the optimal policy defined by the
environmental reward signal. By giving orders, the teacher helps the agent explore
better, while having the possibility to deflect the agent’s behavior before it engages
in undesirable actions. In contrast to reward-shaping-based techniques, the Actor-
Advisor does not rely on regular evaluations of how good the agent behaves, but on
direct directions from the teacher. These directions immediately alter the behavior of
the agent; we believe that this can procure a sense of power to the teacher, crucial
in real-world applications [Thomaz and Breazeal, 2006]. Moreover, our experimental
results in Section 4.3.2 demonstrate that the Actor-Advisor is able to leverage advice
to learn faster, instead of merely obeying instructions and then learning as if nothing
happened. If no advice is available, πA is set to the uniform distribution, which cancels
its effect and allows Policy Gradient to learn as usual. The network is trained using
the standard Policy Gradient loss [Sutton et al., 2000], adapted for the use of advice,
following our contribution in Section 3.1.2. We now demonstrate how much less human
interventions are needed for the Actor-Advisor to be useful, compared to reward-based
approaches.

Experiments

Because our main contribution, the Actor-Advisor, does not rely on rewards, values,
classifiers or value functions, its properties are quite different from existing algorithms,
that we review in Sections 4.1.1 and 4.1.2. Our experiments therefore thoroughly
explore the properties of the Actor-Advisor, and are divided in three groups:

1. We compare the Actor-Advisor with policy shaping from a simulated human
advisory policy, to simple Policy Gradient with reward shaping from a simulated
human reward function, and to Policy Gradient without any human intervention
(Section 4.3.2).

2. We quantify the impact on the Actor-Advisor of varying the hyper-parameters
of Policy Shaping: the probability of giving advice L and the probability that
the advice is correct P (right) (Section 4.3.2).

2The task is much more challenging than if initiation sets 4.3.1 were used, as the agent has access
to every option at any moment
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Figure 4.2: Comparison between Policy Gradient (PG) with Policy Shaping from
human advice (PG + Human Advice) and Policy Gradient with Reward Shaping
from human reward (PG + Human Reward). Both human advice and reward are
given to the agent with a probability L = 0.05, corresponding to roughly 1000 human
interventions for 1000 episodes. Human advice leads to the highest returns (curve on
top), and improves the performance of the agent right from the start.

3. We consider a bounded amount of human advice, compatible with a real-world
deployment of the Actor-Advisor, and show that the agent can still learn even if
the amount of advice is heavily reduced (Section 4.3.2).

Simulated Human Advice

In our experiments, we use a function simulating a human teacher providing advice to
the agent in a deterministic fashion. To design this function, we got inspiration from
a small sample of actual people giving advice to a learner. Before the agent chooses
an option, the human has the possibility of telling the agent which option to execute.
This human advice is represented as a probability distribution over options, with a
probability 1 for the option that the human wants the agent to execute, and 0 for
every other option. The πA(st) advice is then mixed to the learned policy πL(st), as
detailed in Section 4.3.2.

Because real humans may not always be present, or attentive, the human has
a probability 0 ≤ L ≤ 1 of providing advice to the agent, and a probability 0 ≤
P (right) ≤ 1 of providing correct advice. A wrong advice consists in the teacher
advising the agent to take the door leading to the middle left room, regardless of the
agent’s current location, which takes the agent away from the direct path to the goal.
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The Actor-Advisor and Reward Shaping

In this section, we compare the Actor-Advisor to simple Policy Gradient with reward
shaping, and Policy Gradient without any form of human intervention.

Our deterministic simulated human reward shaping works as follows, and is given
to the agent only on some time-steps, with a probability of L = 0.05 (this leads
to about 1000 human interventions over 1000 episodes). At time-step t, the agent
chooses an option at. The human teacher has access to the agent’s current position in
the grid, and knows which option a∗ is the correct one given that position. She allows
(by giving 0) or punishes (by giving -5) the agent depending on whether at = a∗.
This numerical human reward is then added to the environmental reward. Although
it is not potential-based, this does not prevent the agent from learning the task; and
making it potential-based [Harutyunyan et al., 2015b] would require modeling the
human’s reward function, which might alter it. Human advice is given to the Actor-
Advisor with the same probability L = 0.05, which also results in about 1000 human
interventions over 1000 episodes.

Results in Figure 4.2 show that, in the beginning, the performance of the agent is
not improved by human reward; however performance seems to be slightly improved
towards the end of the 1000 episodes (p-values are given in Table 4.1). On the other
hand, the Actor-Advisor leads to much higher returns early on, and continues to
dominate reward shaping and simple Policy Gradient until the end of the 1000 episodes.
This experiment shows that, in contrast to reward-based methods, even a small amount
of human advice significantly improves the agent’s performance. The next experiments
explores the behavior of the Actor-Advisor when various amounts of human advice is
given.

Sensitivity to Hyper-Parameters

Different settings lead to varying kinds of human intervention given to the agent.
In this experiment, we vary the value of L, the probability that the teacher gives
advice, and P (right), the probability that the advice is correct. We show that the
most interesting results are obtained for values of L that are not too large. If L is
too large, the agent is controlled by the human and learns to imitate her, but this is
only useful if we consider the human to be the main controller, and the agent is only
used to “fill in the gaps” when the human is unavailable. Hence, we keep the value
of L small (L = 0.2 maximum) in order to fully emphasize the learning ability of the
Actor-Advisor, in a setting where imitation learning is not enough.

Figure 4.3 compares various configuration of the Actor-Advisor, with a high or low
probability of giving advice, and a high or low probability of giving correct advice.
The main results are:
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Figure 4.3: Comparison of the Actor-Advisor with small and large values of L (the
probability of giving advice) and P (rigth) (probability that the advice given is correct)
As can be expected, a large L combined with a large P (right) gives the best results
(curve on the top). When P (right) = 0.2, the agent still manages to learn, regardless
of the value of L, which demonstrates the robustness of the Actor-Advisor to incorrect
advice.

1. When the advice delivered to the agent is correct, larger values of L lead to
higher returns. Similarly and unsurprisingly, when incorrect advice is delivered,
a small L allows the agent to overcome bad advice and still learn a good policy.

2. The agent always manages to learn a reasonable policy, even when most of the
advice is incorrect (P (wrong) = 0.8), regardless of L.

The second point is the most interesting, as it demonstrates that the Actor-Advisor
is robust to wrong advice. Adding advice to an agent is therefore free: scarce advice
can only improve the performance of the agent, and wrong advice does not prevent
the optimal policy from being eventually learned. The next experiment shows that the
Actor-Advisor is even robust to non-stationary advice, contrary to most reward-based
approaches (see Section 4.2).

Non-Stationary Advice

In many real-world settings, humans are not always available to help the agent learn.
In this experiment, we interrupt advice after 700 human interventions. This assesses
the robustness of the agent to advice that changes (abruptly) over time, and mimics
human advice obtained over one or two hours of on-the-field training, before the human
trainer leaves, possibly to set-up another agent in another company.

In Figure 4.4, the performance of the agent is very high while it is trained, as
human advice can be directly followed, leading to high returns. This shows that
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Figure 4.4: Advice is interrupted after 700 human interventions, with various proba-
bilities of giving advice L, and a probability of giving correct advice P (right) = 0.8.
An interesting phenomenon becomes stronger as L increases: the agent’s performance
drops when advice is removed (as the agent is on its own), but climbs back up after-
wards, eventually outperforming Policy Gradient without human advice.

the trainer is able to completely override the agent’s behavior, which is crucial for
safe Reinforcement Learning. When advice stops, the agent’s performance drops,
then consistently recovers, and even surpasses Policy Gradient’s performance without
human intervention (as is suggested by the statistical significance test values in Table
4.2). This empirical result shows the robustness of our technique and suggests that
Policy Shaping allows users to quit helping the learner whenever their interest fades:
the agent will still be able to discover a good policy. More importantly, the final
performance of the agent is higher when advice has been available at some point,
which demonstrates that the Actor-Advisor learns from the advice, instead of merely
following it. Interestingly, the more intensively the agent is helped (i.e., the higher the
L), the better it recovers afterwards. In a real-world setting, intense and dedicated
advice (but over a short period of time) therefore seems to be the way to go.

In contrast to reward shaping from human feedback, interrupting advice does not
necessarily result in a performance loss in the long run. In Figure 4.5, we compare
human advice, interrupted after 700 interventions, to reward shaping, interrupted
after 10,000 punishments (so, much more than 10,000 time-steps during which the
human had to watch the agent). Once the 10,000 human punishments have been
consumed, the performance of Policy Gradient with human reward slightly decreases,
then plateaus until the end. Using only 700 pieces of advice, the Actor-Advisor man-
ages to learn a policy marginally better than the one obtained with reward shaping,
even if reward shaping requires one order of magnitude more human dedication. Fur-
thermore, the Actor-Advisor is simpler to implement (see Section 4.3.2) than reward
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Figure 4.5: 700 pieces of human advice, with L = 1, versus 10,000 reward-based
punishments, with L = 1. Even though a far higher amount of reward is provided,
human advice eventually matches human reward.

shaping, which ideally requires a potential-based reward function to be designed [Ng
et al., 1999; Harutyunyan et al., 2015b] to avoid biasing the learned policy.

Conclusion

In this chapter, we use the Actor-Advisor, an extension of Policy Gradient that allows
an advisory policy πA to directly influence the actions selected by the agent, in a
learning from human intervention task. We illustrate the Actor-Advisor in a human-
agent cooperation setting, where the advisory policy is defined by a human. We show
that the Actor-Advisor allows good policies to be learned from scarce advice, is robust
to errors in the advice, and leads to higher returns than no advice, or reward-based
approaches. Contrary to other approaches, reviewed in Sections 4.1.1 to 4.1.3, the
Actor-Advisor uses the environmental reward, and still allows the optimal policy to
be learned. Finally, although we used the example of a human advisory policy, and
compared our work to other human-based approaches, it is important to note that
any advisory policy can be used to shape a learner’s policy, such as expert demonstra-
tions, policies to be distilled from other agents, backup policies for Safe Reinforcement
Learning, or a mix of all the above. the Actor-Advisor is therefore a straightforward,
effective, and widely applicable approach to policy shaping.

On a higher level, the Actor-Advisor is an original approach to learning from hu-
man intervention. It uses immediate advice instead of feedback or demonstrations, and
incorporates that advice in the learning process by directly shaping a policy, instead of
producing rewards or a value function. The Actor-Advisor is also easier to implement.
For instance, a theoretically correct implementation of reward-shaping requires that
the reward function is potential-based, which requires advanced algorithmic precau-
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tions to be implemented [Harutyunyan et al., 2015b]. Such precautions are not needed
by the Actor-Advisor. Moreover, incorporating human input through the reward func-
tion leads to slowly changing the agent’s policy, in contrast to directly influencing the
agent’s policy. In this regard, our work is pushing forward two promising (but not yet
well-investigated) paradigms, namely advice as a tool for humans to teach agents, and
policy shaping as a method to learn from external directives.
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Test Episode Number Human reward Human advice
t-test [180, 220] 0.343 0.001

[960, 1000] 0.035 1.464e-06
Wilcoxon [180, 220] 0.419 1.369e-03

[960, 1000] 0.007 2.396e-09

Table 4.1: P-values comparing the returns obtained by Policy Gradient (PG) to PG
+ Human Reward and PG + Human Advice, in the early and late stages of learning.
The returns obtained by PG + Human Advice are significantly higher than the ones
obtained by PG + Human Reward, both in early and late stages of learning. Each
test is performed on 41 (episodes) × 16 (runs) samples of cumulative reward values,
taken in one of two given episode intervals.

L p-value (Wilcoxon)
0.05 0.047
0.2 1.294e-07
1 2.035e-08

Table 4.2: P-values comparing the returns obtained by Policy Gradient (PG) to PG
+ Human Advice when advice is interrupted after 700 human interventions, on 41
(episodes) × 16 (runs) samples in the late stage of learning (episode interval [960,
1000]). The performance of PG + Human Advice is significantly higher than of Policy
Gradient for the highest values of L. Interestingly, there is little significance difference
between L = 0.2 and L = 1.
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This chapter is drawn from our publication, Plisnier, Steckelmacher, Roijers and Nowé,
Transfer Reinforcement Learning Across Environment Dynamics With Multiple Advi-
sors, Benelux Conference on Artificial Intelligence (BNAIC), 2019.

In the previous chapter, we looked at how advice from a simulated teacher can
help improve the sample-efficiency of a Policy Gradient agent, via the use of the
Actor-Advisor. As detailed in Chapter 3, the Actor-Advisor is based on Policy In-
tersection [Griffith et al., 2013], an algorithm originally designed to integrate human
input in the learning process of an RL agent. Griffith et al. [2013], as well as our own
contribution in Chapter 4, show that human input is valuable to accelerate learning by
guiding the agent’s exploration. Nevertheless, despite being primarily thought out as a
learning from human intervention algorithm, Policy Intersection can be more generally
considered as a transfer learning approach [García and Fernández, 2015], guiding an
RL agent’s exploration towards fruitful areas according to readily available knowledge,
which can come from any source.

Arguably, humans constantly perform the same routine tasks over and over again,
and even the new situations people may face are likely to resemble known ones. For
instance, once you know how to open windows at home, opening the windows at your
office or at your friend’s house should not be a problem for you, despite minor design
disparities. Solving new situations, yet similar to previous ones, are seldom a problem,
since we (hopefully) do not have to relearn from scratch how to open a window every
time we meet a new window. Vanilla Reinforcement Learning agents, on the other
hand, do not automatically identify the links between old and new windows to be
opened, and tend to tackle each new window with a blank memory, as if it were a
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whole new adventure. Unfortunately, as the reader can easily guess, this does not lead
to an efficient nor sustainable manner for RL agents to undertake real-world challenges
in the long term. This is where Transfer Learning comes in.

Transfer Learning is an intuitive way to help an RL agent learn to perform tasks
in a more sample-efficient manner. A Transfer Learning setting often involves a source
task and a target task; first, the agent learns the source task, then the knowledge
acquired in the source task is intelligently leveraged by the agent while tackling the
target task, using a Transfer Learning algorithm [Taylor and Stone, 2009; Zhu et al.,
2020]. Transferred knowledge can be the agent’s learned policy or Q-values [Taylor
et al., 2007; Fernández and Veloso, 2006; Brys, 2016]; learned skills or options [Andre
and Russell, 2002; Ravindran and Barto, 2003; Konidaris and Barto, 2007], some
general enough skill (like walking) to fit a large set of target tasks [Tang and Haarnoja,
2017]; parts of a modular neural network policy in which each module deals with
a different aspect of the task [Devin et al., 2017; Mirowski et al., 2018]. Methods
to effectively transfer knowledge include reward shaping [Brys et al., 2015], policy
reuse methods, which shape the agent’s exploration strategy [Fernández and Veloso,
2006; Griffith et al., 2013], initializing a policy [Taylor et al., 2007] using information
from the source task, and initializing parts of the target network with the source
network [Devin et al., 2017; Mirowski et al., 2018; Chaplot et al., 2016], to only cite
a few. When it comes to the specific algorithms we evaluate in this chapter, i.e.,
Probabilistic Policy Reuse and Policy Intersection (which we review in Section 2.5),
they can both be labelled as Transfer Learning via guiding the agent’s exploration
[García and Fernández, 2015]. PPR [Fernández and Veloso, 2006] has specifically been
though out for Transfer Learning purposes; Policy Intersection [Griffith et al., 2013],
on the other hand, was first introduced as a way to incorporate human interventions
in the RL agent’s learning process to improve its performance.

In this chapter, we present four applications of Transfer Learning leveraging the
Actor-Advisor framework, each tackling a specific current limitation of existing Trans-
fer Learning methods:

Transfer across robotic platforms with different sensors
Transferring policies from a robotic platform equipped with a set of potentially
expensive sensors, to another platform with similar effectors, but equipped with
different, less efficient sensors. Once trained using this setting, the resulting
system behaves as well as one equipped with a full set of expensive sensors,
while running on a much less sophisticated platform. The appeal of this setting
is the possibility to drastically reduce the cost of the robot, making the system
more affordable to members of the general public.

Transfer from multiple advisors
Transferring an “average policy” of multiple agents trained on a set of similar yet
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distinct tasks, to help a fresh agent tackle a new task. This average policy acts
as a voting mechanism for previously learned policies, potentially determining
which parts are shared across tasks, and which parts differ. This average policy
allows the fresh agent to make assumptions about which actions advised by the
transferred policies can be applied to the new task, and which actions can be
deemed as irrelevant, prior to having any interaction with the new task.

Transfer to kickstart learning in an air compressor management problem
Transferring from previously developed controllers on an environment with vary-
ing parameters, to learn a new controller faster on an additional version of the
environment. It is not uncommon that, for multiple distinct variants of a given
setting, multiple corresponding controllers must be developed to tackle them.
However, learning each controller from scratch can be unfeasible, and unsustain-
able if the number of different variants is large.

Reinforcement learning web-service with transfer across users
Transferring policies across users of a smartphone application (for instance) offers
each user the possibility to interact with an already well-formed agent, only
requiring refinements specific to the user’s preferences. Such transfer allows to
model the behaviors most users tend to like, but keeps agents flexible enough for
user individual personalisation.

Before presenting each of our contributions one by one, we non-exhaustively review
and categorize some well-investigated Transfer Learning methods.

5.1 Existing Transfer Learning Techniques
Transferring knowledge in Reinforcement Learning potentially improves sample-efficiency,
as it allows an agent to exploit relevant past knowledge while tackling a new task, in-
stead of learning the new task from scratch [Taylor and Stone, 2009]. Usually, we
consider that the valuable knowledge to be transferred in Reinforcement Learning is
the actual output of a reinforcement learner: a Q function or a policy π [Brys, 2016,
p.34]. Some work also consider reusing skills, or options [Sutton et al., 1999a], as a
transfer of knowledge across tasks [Andre and Russell, 2002; Ravindran and Barto,
2003; Konidaris and Barto, 2007]. We focus on Transfer Learning methods directly
reusing πsource, the policy learned in the source task. In this section, we sort previous
work in categories related to the way πsource is transferred into the agent, and look
at what is allowed to be different between the source task and the target task. The
two predominant ways in which knowledge can be transferred are i) πsource serves as
a guide during exploration, ii) πsource is used to train or initialize the agent, so that
the agent actively imitates πsource.
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5.1.1 Exploration
Guiding the exploration strategy of the agent, the topic of this thesis, transfers a policy
in a fast and effective way. Altering the exploration strategy is a popular technique in
the safe RL domain, and consists in biasing or determining the actions taken by the
agent at action selection time [García and Fernández, 2015]. Such exploration requires
the agent to be able to learn from off-policy experiences. The motivation behind guided
exploration is the poor performance of a fresh agent at the beginning of learning, in
addition to the presence of obstacles difficult to overcome in the environment. An
exploration guided by a smarter external policy, such as πsource, could help improve
the agent’s early performance, as well as help it in the long run explore fruitful areas.

Some existing work applies guided exploration to transfer learning [Fernández and
Veloso, 2006; Taylor and Stone, 2007; Madden and Howley, 2004], and illustrates how
this technique allows the agent to outperform πsource’s performance. Regarding the
components of the source and target tasks that are allowed to differ, Fernández and
Veloso [2006] considers different goal placements (hence, different reward functions),
Madden and Howley [2004] uses symbolically learned knowledge to tackle states that
are seen by the agent for the first time, and Taylor and Stone [2007] assumes similar
state variables and actions, but a different reward function. The translation functions
required to map a state/action in one task to a state/action in another are assumed
to be provided.

5.1.2 Learning
Although an improved exploration might result in an improved performance, and a
jump-start occurs, an agent which actions are simply overridden by an external policy
does not actively learn to imitate it. Other techniques have proposed to “teach” the
agent to perform the target task (instead of merely guiding it), either by dynamic
teaching, or by straightforward initialization. Imitation learning aims to allow a stu-
dent agent to learn the policy of a demonstrator, out of data that it has generated
[Hussein et al., 2017]. Similarly, policy distillation [Bucila et al., 2006] can be applied
to RL to train a fresh agent with one or several expert policies, hence resulting in one,
smaller, potentially multi-task RL agent [Rusu et al., 2015].

Imitation learning and policy distillation are somewhat related to transfer learning
[Hussein et al., 2017, p.24], although imitation and distillation assume that the source
and target tasks are the same, while transfer does not. The Actor-Mimic [Parisotto
et al., 2015] uses several DQN policies (each expert in a different source task) to train a
multi-task student network, by minimizing the cross-entropy loss between the student
and experts’ policies. To perform transfer, the resulting multi-task expert policy is
used to initialize yet another DQN network, which learns the target task. The Actor-
Mimic assumes that the source and target tasks share the same observation and action
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spaces, with different reward and transition functions. In Q-value reuse [Taylor et al.,
2007, Section 5.5], a Q-Learner uses Qsource to kickstarts its learning of the target
task, while also learning a new action-value function Qtarget to compensate Qsource’s
irrelevant knowledge. In Taylor et al. [2007], the agent learns to play Keepaway games,
and is introduced to a game with more players, resulting in more actions and state
variables. Brys et al. [2015] transfers πsource to a Q-Learning agent through reward
shaping; the differences in the action and state spaces between source and target tasks
are solved using a provided translation function.

Our Actor-Advisor tries to get the best of both the exploration alteration and the
teaching worlds. In a Transfer Learning context, it mixes πsource with the policy of
the actor at action selection time (hence biasing the exploration strategy), using the
policy mixing formula in Griffith et al. [2013]; the mixed policy is also integrated in
the loss or update rule of the actor. This way, the learning process is influenced by
πsource, while it also guides the agent’s exploration.

5.2 Transfer Across Robotic Platforms with Differ-
ent Sensors

For a robot to learn a good policy, it often requires expensive equipment (such as
sophisticated sensors) and a prepared training environment conducive to learning.
However, it is seldom possible to perfectly equip robots for economic reasons, nor
to guarantee ideal learning conditions, when deployed in real-life environments. A
solution would be to prepare the robot in a laboratory environment, in which all
necessary material is available to learn a good policy. After training in the lab, the
robot should be able to get by without the expensive equipment that used to be
available to it, and yet still be guaranteed to perform well on the field. The transition
between the lab (source) and the real-world environment (target) is related to transfer
learning, where the state-space between the source and target tasks differ.

In Transfer Learning, many different components can vary between the source
and target tasks. The state description, for instance, might not be the same in the
two tasks; one might be richer and/or easier to learn from, than the other [Taylor
and Stone, 2009, Section 3.2.1]. This dissimilarity naturally emerges when trying to
share knowledge across robots equipped with different sensors. In this section, we are
interested in transferring knowledge from a platform to another, both tackling the
same task with the same action set, while sensing their environment differently. The
transfer is made from the robot which state description is empirically easier to learn
from to the robot which state description is harder to learn from. This could allow
a cheap under-equipped robot to perform as well on the field as a more sophisticated
one, for which the task is much easier to learn.
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The task to be learned is a simulated drone navigation task in a suburban-like
street, with houses and trees along it. We leverage two types of observations, which
are typically collected by different types of sensors: depth maps, and color images.
As suggested above, we would want to give our advisor observations of the best type,
the observation type that helps an RL agent to learn the task the most. Indeed,
in our problem, we assume that the most helpful type of observation is likely to be
produced by the most expensive and effective sensors, which are only available in the
lab environment. The resulting advisor policy would then be used by a second agent
learning the same task in the same environment, but with observations of the type of
lesser quality as input. However, as we are not sure whether observing depth maps
or color images is the best to solve this particular task, we train two advisors, one on
depth maps, the other on color images, and let the depth maps advisor advise agents
seeing color images, and vice versa.

All agents in this setting, be them advisors or advisees, learn using Proximal Policy
Optimization (PPO) [Schulman et al., 2017], reviewed in Chapter 2, Section 2.3. We
compare our Actor-Advisor framework to reward shaping based on the advisor’s policy,
a method to perform transfer learning proposed by Brys et al. [2015]. We empirically
observe that the Actor-Advisor reaches good rewards much sooner, shows a significant
jumpstart compared to its reward-shaping-based challenger, and maintains a good
policy when executed without the help of the advisor after training.

5.2.1 Reward Shaping for Policy Transfer
The original reward shaping for policy transfer, as introduced by Brys [2016], defines
the shaping reward as the probability Rπadvisor = πadvisor(s, aadvisee) that the advisor
would have taken action aadvisee chosen by the advisee in state s. However, Brys
[2016] argue that the advisee should not simply be fed with that policy-based shaping
reward, since it is not based on a potential function as is. The risk behind a non-
potential based reward shaping function is to prevent the advisee from learning the
task it was supposed to learn in the first place [Ng et al., 1999]. Building on results
by Harutyunyan et al. [2015b], Brys [2016] learns the Q-function Q−Rπadvisor related
to the negation of Rπadvisor . Q−Rπadvisor is then used to base the shaping reward on,
as Q-function are always potential functions.

In our setting, we do not go through the trouble of computing Q−Rπadvisor , and
directly feed the advisee with Rπadvisor = πadvisor(s, aadvisee). We justify our deci-
sion as follows: i) in our case, both the advisor and the advisee aim at solving the
same task, hence this shaping should not perturb what the advisee eventually learns;
ii) computing Q−Rπadvisor would have taken extra time that then would have to be
accounted for at the disadvantage of the reward shaping method versus the Actor-
Advisor, which does not require such lengthy preprocessing. Furthermore, our results
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below empirically show that directly feeding the advisee with its advisor’s policy as an
additional reward not only preserves learning, but also yields a non-negligeable policy
improvement towards the end of learning.

5.2.2 A Drone Flying Down the Street
In our setting, we use AirSim 1, a drone simulator, to let a drone learn to fly down a
street in a suburban area, while avoiding to get stuck in trees or on roofs.

Environment

The specific environment in the AirSim world in which our experiment takes place
is called Neighborhood. It simulates a drone flying around in a suburban area, and
risking getting caught in trees and bumping against the roof of houses. In case of
a collision, AirSim offers the possibility to retrieve information related to the object
with which the drone collided. The goal of the agent is to fly forward while avoiding
obstacle collision. An episode ends either in case of a collision, resulting in a -50
reward, or after 200 time-steps. The agent has four actions at its disposal: go forward,
turn left, turn right, or go down. We disable the “go up” action to prevent the agent
from simply learning to first fly high above trees and other obstacles. This way, the
agent would be able to resume its task by flying around randomly, without ever hitting
obstacles thanks to its high position in the sky. Instead, we want to force the drone to
learn to fly carefully around objects. The agent receives a -2 reward at each time-step,
unless it goes forward, in which case it receives a zero reward.

As mentioned above, there are two potential ways for the drone to perceive its
surroundings in Neighborhood: via depth maps, or color images. Depending on the
observation type used, states can either be matrices of 144 × 255 × 1 (in the case of
depth maps) or 144× 255× 3 (in the case of color images). As the formal description
of an MDP includes the state space, learning to navigate while observing depth maps
consists in a different task than learning to navigate while observing color images. As
a result, although the goal remains the same in both tasks, the transfer of policy from
one to another accurately falls in the realm of conventional Transfer Learning.

Managing Multiple Sensors

To perform the actual transfer of a policy learned using one type of observation to
another policy learned using another type of observation, we evaluate and compare two
distinct methods: a reward-shaping based method feeding probabilities to the advisee

1AirSim is a simulator notably for drones and cars, built on the Unreal Engine, see:
https://microsoft.github.io/AirSim/
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as an additional reward [Brys, 2016], and our Actor-Advisor method. Both Transfer
Learning methods rely on the training of a first agent, the advisor, which does not
receive any external advice while learning. Once this advisor is obtained, the advisee
learns while receiving input from the advisor, either in the form of additional reward
in the case of reward shaping, or probability distributions over actions in the case of
the Actor-Advisor. However, due to the fact that the advisor and advisee do not use
the same sensor to observe the environment, we are faced with a technical challenge
to allow the advisor to help the advisee during training.

Be it for reward shaping or the Actor-Advisor, to be able to advise the advisee,
the advisor must be fed with observations of its own observation type (depth maps
or color images), even though it is not updating its own policy anymore. This leads
to the following assumption: during the training of the advisee, observations of both
types (depth maps and color images) must be made available to the agent by the
environment. We do not consider this assumption to be a problem, since that, in our
setting, the advisee’s training takes place in the laboratory environment, similarly to
the advisor’s training.

To solve this issue, we manage our advisor (i.e., feeding it its input, retrieving its
output) in a environment wrapper, externally to the RL algorithm. This environment
wrapper receives the state from the original environment, in which observations of both
types are present, and dispatches observations in two different states, one for the actor
and one for the advisor. When the reward shaping method is enabled, the environment
wrapper adds an extra reward coming from the advisor (following the method proposed
by Brys [2016]) to the original environmental reward. In case the Actor-Advisor is
used, then the advice produced by the advisor, which is in the form of a vector of
probabilities over actions in the case of the Actor-Advisor, is put in the advisee’s
state. When executing the advisee’s policy after training without the help of the
advisor, the advice value in the advisee’s state is replaced by a vector of ones, rendering
the advisor’s influence null. Making the advice part of the agent’s observation is
made possible by the MultiInputActorCriticPolicy class in Stable Baselines 3, and a
modification done to that class by Denis Steckelmacher, one of our colleagues.

Results

The goal of our drone is to navigate without bumping into obstacles; managing to
move forward without any collision results in an episodic reward of zero. In our
motivating story, one sensor is more effective than the other at making the agent learn
the task, because it is more rich and informative, or particularly well suited for a
neural network to learn from. However, in practice, a PPO agent shows no problem
learning to navigate the drone, whether the agent is seeing only depth maps, or only

62



5.2. TRANSFER ACROSS ROBOTIC PLATFORMS WITH DIFFERENT
SENSORS

camera images. In the specific case we are facing, it just so happens that not one
observation type suits the agent better than the other.

Since we did not know whether there would be a difference between using an
observation type over another, and if so which observation type leads to the best
advisor before launching our experiments, we tried both ways (see Figure 5.1):

i) rewards from depth maps (DM)/advised by DM: agent trained while seeing
camera images, and receiving help (either through reward shaping or the Actor-
Advisor) from an advisor seeing depth maps;

ii) rewards from camera images (CI)/advised by CI: agent trained while seeing
depth maps, and receiving help from an advisor seeing camera images;

In both cases, the reward shaping method does not surpasses the baseline, until
around 90 episodes, where it almost reaches a zero reward. The Actor-Advisor, on the
other hand, manages to produce a jumpstart at the beginning, and keeps performance
significantly above the baseline throughout the learning process. These results can be
looked at more closely in Figure 5.2.
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Figure 5.1: PPO seems to learn the task well, whether it is learning from depth maps
(DM) or camera images (CI). Agents learning from depth maps while having their
reward shaped by an advisor trained on camera images, and vice versa, does not lead
to a significant improvement in performance, except at the very end of learning, where
both reward shaping settings exceed the baseline. In contrast, when the transfer be-
tween advisor and advisee leverages the Actor-Advisor, we observe a non-negligeable
jumpstart at the beginning of learning, followed by a steady positive difference, out-
performing the baseline as well as the reward shaping method. The legends “rewards
from DM”, and “advised by DM” must be understood as follows: the agent learned
with camera images as observations, and an advisor trained on depth maps (either
using reward shaping or the Actor-Advisor respectively). Legends such as “rewards
from CI”, and “advised by CI” mean the other way around.

At the beginning of learning, the Actor-Advisor manages to gain a 20 episodes ad-
vance over the baseline and the reward shaping method. This difference is (somewhat)
maintained throughout learning, until around 120 episodes in, when the performance
of the reward shaping method surpasses that of the Actor-Advisor. To make sure that
our advisees can get by without their advisor after 140 episodes of training, we freeze
our advisees’ policies and run them on the same environment, without updating their
policies anymore (see Figure 5.3). They manage to maintain a reward close to zero
throughout execution, without any external help from an advisor.
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Figure 5.2: Left: Zoom in between 0 and 40 episodes in the learning process: the
Actor-Advisor leads to a non-negligeable jumpstart at the beginning of learning; the
Actor-Advisor method needs at most 12 episodes to reach a -300 reward, while the
reward shaping method requires at least 29 episodes. Right: Zoom in between 80 and
120 episodes in the learning process: the reward shaping method eventually surpasses
both the baseline and the Actor-Advisor towards the very end of learning; the reward
shaping method reaches a -3.5 reward after a 120 episodes, while the Actor-Advisor
plateaus at -20 until the end of our experiment.
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Figure 5.3: We execute the policies of advisees, either trained using the reward shaping
method or the Actor-Advisor. During execution, the advisee’s policy is not updated (it
does not learn anymore), and the advisor is not queried; the advisee chooses actions
without the advisor’s help. All agents reach a close to zero reward; the absence of
advisor does not impact performance during execution, as required.

Conclusion

To make assistive robot technology more accessible to a wide audience, one might
want to cut back on the cost of the equipment required by the robotic platform, such
as expensive sensors. However, an expensive sensor is often an effective, powerful
one, that can help a Reinforcement Learning agent learn a policy much faster than
without it. That is where Transfer Learning becomes handy: an agent is trained in a
laboratory environment, where all necessary equipment is available, then launched on
the field with much cheaper sensors. This way, the agent can learn to get by without
the particular equipment that will no longer be present once deployed in the real-world.
Nevertheless, to see if that plan is feasible, we must first ensure that transfer between
tasks with extremely different state spaces, due to the change in sensors, can lead to
positive transfer. In this section, we let an agent controlling a drone seeing depth
maps train while being advised by another agent seeing color images, and vice versa.
Interestingly, in this case, not one observation type seems better at forming an advisor
than the other. The Actor-Advisor manages to extract valuable advice to be fed to
the advisee in both situations, and yields an non-negligeable increase in performance
during learning. To conclude, transfer across tasks with wildly different state spaces
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can improve sample-efficiency and lead to an agent getting by without its advisor’s
help, as well as without its advisor’s (potentially expensive) sensors.

5.3 Transfer from Multiple Advisors
An important challenge of Transfer Learning, for an RL agent launched in a target
task, is to determine which parts are shared by both the target task and the source
task, and which parts differ. This information is critical; indeed one cannot just
blindly follow the policy learned in the source task while tackling the target task,
because a behavior that worked well in the past might not apply anymore. Therefore,
it is necessary for a Transfer Learning algorithm to be capable of following the past
policy only when suitable, and to otherwise diverge from it. To mitigate this problem,
current techniques either artificially set a probability of following the advisor, hence
limiting the potential damage of irrelevant advice [Fernández and Veloso, 2006]; or let
the agent learn when to follow advice [Taylor and Stone, 2007; Taylor et al., 2007;
Parisotto et al., 2015]. If several expert policies are available, then isolating one of
them and only exploiting that one policy often becomes the focus, instead of exploiting
a combination of them [Taylor and Stone, 2007; Fernández and Veloso, 2006]. Hence,
existing methods tend to add an extra learning problem, by either learning when to
follow the advisor, or which advisor to follow.

In this section, we present a novel approach to Transfer Learning, building on
the Actor-Advisor, in which all available source policies are exploited to help learn
related new tasks. Our in-depth empirical evaluation demonstrates that our approach
significantly improves sample-efficiency. We consider a setting where the agent needs
to learn a large amount of similar yet distinct tasks. An example of this setting
is a navigation task, in which the agent has to learn how to go to any of the 22
offices on a floor. Offices may have different shapes and furnishing, which makes
them share a state representation, but distinct transition dynamics. We propose a
method to reuse the knowledge acquired from learning several past tasks to tackle a
new task, having the same state-space and action space but different dynamics and
reward functions. We have at our disposal a number of expert source policies learned
in the same environment, which we call advisors. Our method, integrated with the
Actor-Advisor, combines all of the available expert source policies into one advisor.
This advisor is confident in areas where the source tasks are similar, meaning that the
advice probably applies in the target task as well, and is uncertain where the source
tasks differ. The latter case allows the fresh agent to learn for itself what is best to
do in situations unknown to its advisor. We implement our Transfer Learning method
within Bootstrapped Dual Policy Iteration (BDPI) [Steckelmacher et al., 2019], as
presented in Chapter 3, Section 3.1.3, an already extremely sample-efficient model-
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free actor-critic Reinforcement Learning algorithm, and we empirically show that,
combined with our contribution, BDPI can achieve an even higher sample-efficiency.

5.3.1 BDPI with Multiple Advisors
In this section, we leverage our novel extension of BDPI fully detailed in Section 3.1.3,
in Chapter 3, that allows advice to be given to the agent. On top of that extension, we
introduce a training method that consists of training an agent on N tasks, then using
these N actors to advise the N + 1th agent, then using the N + 1 agents to advise the
N + 2th, and so on.

An important challenge in Transfer Reinforcement Learning is discovering when
to follow the advisor (trained on the source task), and when to ignore it. Ideally, the
advisor should be followed only in the states for which its policy is optimal in the
target task. Unfortunately, knowing whether the advisory policy is optimal in a state
is impossible until the agent has fully learned the target task.

Previous work learns in which states to use the advisor, or which advisor to use in
which state [Fernández and Veloso, 2006; Taylor and Stone, 2007], and makes sure to
only sample one advisor at a time. We argue that it is initially impossible to evaluate
when to follow advice, and when to ignore it, based solely on the advice received
from a single advisor. Building on our hypothesis that evaluating a single advisor in
a sample-efficient way is impossible, we instead propose to use several advisors, and
combine them in the following way:

πA(s) = 1
N

∑
i

(
πi

A(s) + 1− ρ
)

(5.1)

where πA denotes the advisory policy (as always), N the number of advisors, and ρ ≤ 1
the weight of the advisors’ influence, that does nothing when set to 1, and artificially
increases the entropy of the advisors when set to a value smaller than 1. The resulting
vector πA(s) is then normalized to sum to 1, by dividing each element by the sum of all
elements. Equation 5.1 is a simple average of the advice given by all the advisors, and
can be seen as a uncertainty quantification through the use of an ensemble approach
[Chua et al., 2018; Lakshminarayanan et al., 2017; Kurutach et al., 2018]. Intuitively,
if N is large enough (typically 5 to 10), the advisors will tend to agree in states in
which the tasks being learned share a common structure, and disagree in states where
the tasks differ. Even if every single advisor is highly confident in these differing
states, the average will produce a probability distribution of high entropy. Moreover,
the advisors may agree that a few actions are bad in a given state, while not agreeing
on which ones are good. To leave a room, for instance, moving towards the window
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Figure 5.4: The 29×27 Five Rooms environment used in our experiments. ’S’ denotes
the starting cell, ’G’ the goal cell. a) The original door configuration. The first and
last doors (in green) are the ones that are allowed to move; b) an example of an
alternative configuration of the doors; c) all the potential door locations. For each of
the two doors, there are 26 such locations, which results in 26 × 26 = 676 different
environment configurations.

is always bad, regardless of the room, while moving towards the door will be more
strongly advised.

Building on Equation 5.1, we propose the following training method for multiple
tasks that share a common structure but different dynamics: train N actors on N
tasks from scratch, with N between 5 and 10 depending on the complexity of the
tasks. Then, combine the N actors in a single advisor, using Equation 5.1, and use it
to significantly improve the sample-efficiency and safety of the N + 1th actor. Then,
add the N + 1th actor to the pool of actors used to produce advice, and repeat for
N + 2, ... . Our experimental results, that we now present, validate our approach and
show that, as more advisors are available, the sample-efficiency of the agent increases
on new tasks.

5.3.2 Generalizing Across Multiple Navigation Tasks
We now evaluate our Advised BDPI algorithm in a representative environment for
which 676 tasks have to be learned. We demonstrate that learning a small amount of
tasks from scratch (even as low as 4) allows the next tasks to be solved significantly
faster. Moreover, the more tasks have been learned, the more sample-efficient the
agent becomes on new tasks. Combined with the already high sample-efficiency of
BDPI, this demonstrates that reinforcement-learning can now be used to train full
multi-task systems.
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Environment

We evaluate our method on our custom environment, Five Rooms (see Figure 5.4,
detailed in Chapter 4, Section 4.3.2. In order to reach the goal, the agent imperatively
has to go through at least two doors (the ones in green on Figure 5.4, a.). Reaching
the goal results in a +100 reward, the agent otherwise receives −1 per time-step. The
episode terminates either once the goal is reached, or after 500 unfruitful time-steps.

In our experiments, we vary the location of the doors on the two horizontal walls
(see Figure 5.4). Each door can be located in any of 26 cells. Every combination
allows the goal to be reached from the initial position, but some combinations lead to
shorter or longer optimal paths (see, in Figure 5.5, the difference between the paths
in examples a and g). Because we do not move the goal, and do not alter the reward
function, but only vary the location of the doors across task, our environment isolates
the impact of a varying transition function. Moving doors inside the environment is
also a simple but relevant illustration of our example task: learn to get out of many
rooms, each room differing by its furniture. Finally, moving a door is a localized
change to the environment, but is still very challenging: directly applying a policy
learned in a source configuration in a target configuration would lead the agent to get
stuck against a wall in the target environment (where there is a door in the source
environment). The source policy, strongly used to see a door where it is not there
anymore, would be highly confident in its bad action and mislead the fresh agent. We
now describe our experimental setup, and show that our Advised BDPI successfully
tackles this challenge.
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Figure 5.5: These 9 examples of configurations show how the difficulty of the task
(i.e., reaching the goal from the initial cell) can strongly vary from configuration to
configuration. The path from the initial cell to the goal cell is much longer and
convoluted in configuration g) than in configuration a), for instance.

Experimental Settings

We evaluate our Advised BDPI on the tasks described above. BDPI has been con-
figured closely to what is recommended in Steckelmacher et al. [2019]: 8 critics, all
trained every time-step for 4 training epochs. The current state (the current cell in
which the agent is) is one-hot encoded into a vector of 812 floats. The BDPI actor and
critics are neural networks with a single hidden layer of 256 neurons, with the tanh
activation function, and one output per action. Actor and critic networks are trained
with the Adam optimizer, with a learning rate of 0.0001, for 10 gradient steps per
training epoch. In order to produce our results, we trained many agent in this order:

1. 100 agents have been trained from scratch, each on a different random door
configuration (from 676). This produces a pool of advisors.
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2. The curves of Figure 5.6 have been produced by training 20 agents (per curve),
each on a randomly-selected configuration of doors, and using 50 of the advisors
produced at step 1 for advice.

3. The curves of Figure 5.9 have been produced the same way as in step 2, but by
using either more (100) or less (4 or 1) advisors for advice. Our experiments
with N = 100, 50, 4 or 1 advisors measure the sample-efficiency gains that are
obtained when training the N + 1th agent using N advisors.

4. The curves of Figure 5.12 have been produced the same way as in step 2 and 3,
but means to illustrate the effect of implementing the learning correction (see
Section 5.3.1). They are both advised by 100 advisors, and averaged over 10
runs each.

5. For steps 2, 3 and 4, we vary the ρ parameter of Equation 5.1, to evaluate the
impact of artificially increasing the entropy of the advisors. We generally show
that artificially increasing the entropy of the advisors is not needed to obtain
good results, which demonstrates the benefits of averaging advisors, and removes
one tunable parameter from our algorithm.

Because each configuration of doors has an optimal policy that achieves a different
return (as illustrated in Figure 5.5), we evaluate each agent on a large amount of runs,
to average out the effect of the door positions. This allows us to produce curves with
high confidence.

Results

Figure 5.6 shows that using advice generally improves performance, especially at the
beginning of learning. In addition, it can be noticed that a high ρ (i.e., ρ = 1) helps
in the beginning of learning, but tends to prevent the agent from achieving the best
performance towards the end. A lower ρ (i.e., ρ = 0.7), on the other hand, provides
more freedom to the agent to reach that high performance at the end, but at the cost
of lower performance in early learning stages.
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Figure 5.6: Comparison between learning the task while using advice from 50 advisors
(with ρ = 1.0, 0.8 or 0.7) and learning the task without advice. These curves are
averaged over multiple runs: 25 runs for the “advised” curves, and 100 runs for the
“no advice” curve. A high ρ greatly helps the agent at the beginning of learning but
slightly decreases performance in the long run, while a lower ρ allows the agent to
reach a better policy at the end of learning, but provides a weaker jumpstart.

We also evaluate the impact of either having a large amount of advisors (100, in our
case) or only a few (4 or 1), while varying the advisors’ weight ρ (0.8 or 1, see Figure
5.9). When ρ = 0.8 (see Figure 5.7), i.e., the influence of the advisors is somewhat
moderate, having a few or a large amount does not seem to matter in the long run.
However, when the influence of the advisors is maximum (i.e., ρ = 1.0, in Figure 5.8),
then increasing the amount of advisors increases sample-efficiency. Averaging over
a large number of advisors naturally exhibits uncertainty in areas where the target
task and the source tasks might differ, allowing the agent to be less dependent on
the ρ parameter. Even having only 4 advisors instead of 1 dramatically improves
performance.

We compared leveraging several advisors to leveraging only one carefully selected
advisor. This advisor is selected based on its doors configuration; the location of the
doors in its source task is the closest to the location of the doors in the target task.
Hence, as suggested by Fernández and Veloso [2006], out of all advisors from the pool,
this advisor should be the most suited to provide quality advice to the fresh agent.
However, even though using the best possible advisor leads to impressive results when
ρ = 0.8, averaging over 4 randomly chosen advisors can still provide better results in
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the long run, in both cases where ρ = 0.8 and ρ = 1.0. Moreover, having only one
advisor, albeit the best, still makes the fresh agent rely on a low value of ρ.
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Figure 5.7: ρ = 0.8
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Figure 5.8: ρ = 1.0

Figure 5.9: Comparison between learning the task while advised by either 100 advisors,
4 advisors or the best advisor for the target task. The “best advisor” is the advisor
which source task has the most similar doors configuration to that of the target task.
Even though one carefully chosen advisor gives better advice than a randomly chosen
one, the performance it can achieve in the long run is still below that of 4 randomly
chosen advisors, whether ρ = 0.8 or ρ = 1.0. Additionally, being advised by only
advisor, albeit the most suited one for the target task, still leads to an agent highly
dependent on ρ.
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Figure 5.10: ρ = 0.8
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Figure 5.11: ρ = 1.0

Figure 5.12: In both plots, the two curves are averages over 20 runs of agents advised
by 100 advisors. We compare between using advice with the learning correction and
without the learning correction. The learning correction ensures a more stable perfor-
mance regardless of whether ρ = 0.8 or 1.0 than when it is not implemented.

Finally, we assess the influence of the learning correction (see Section 5.3.1) on
learning while being advised (see Figure 5.12). When we do not artificially increase
the entropy of the advisors (i.e., when ρ = 1), learning the task while being advised
is harder without the learning correction. The importance of the learning correction
is lesser when ρ < 1, though. In contrast, the performance of the agents with the
learning correction is similar in both settings of ρ (0.8 or 1), which demonstrates that
our learning correction positively impacts the robustness of the agent.

We have a hunch as to why there is a visible dip in the performance in almost
all plots, in between 50 and 100 episodes. At the beginning of learning, the policy of
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the actor is random, while the advisor is not, and shows actions to the actor that are
generating good rewards. At this point, the critics of BDPI believe that all actions
are uniformly good, since the actor has only seen good actions, thanks to the advisor’s
guidance. Due to the inner randomness of neural networks, the policy of the actor
then arbitrarily concentrates its probability on one action, which is not necessarily
good, producing the dip in the curve. It takes some exploration time for the actor
to realize the suboptimality of that action, and to learn to choose better ones. Our
hunch is shared by Wexler et al. [2022], in which the authors call this phenomenon
Warm Start Reinforcement Learning Degradation.

Conclusion

In this section, we present a transfer learning method exploiting multiple advisors
to tackle new tasks. The source tasks and the target tasks take place in the same
state-space, but present crucial differences in their environment dynamics. Our mo-
tivating story is an agent having to exit several different offices. Even though it is
likely that all offices of a building floor share a common layout, these offices might
also be furnished differently, which makes navigation a unique experience in each of
them for a reinforcement learner. We contribute a transfer learning method consisting
in averaging the advice coming from multiple advisors, and providing this averaged
advice to the fresh agent tackling a target task. This approach naturally balances ad-
vice versus tabula-rasa learning, depending on where the tasks are similar or not. We
perform a thorough empirical evaluation of our method by: i) assessing the increase
in performance gained thanks to the use of advice compared to none; ii) evaluating
the benefit of having multiple advisors to average over instead of only one; iii) assess-
ing the importance of implementing our learning correction to ensure stable learning.
We saw that our contribution allows BDPI, an already highly sample-efficient algo-
rithm, to be even more sample-efficient in a multi-task setting. This opens multi-task
reinforcement-learning to areas, such as robotics, where many tasks have to be learned
quickly.

5.4 Transferring Policies to Kickstart Learning in an
Air Compressor Management Problem

In this section, we explore the use of transferring several previous policies to learn a
new one faster, in an environment with continuous actions mimicking an industrial
application. Three piston compressors are expelling air in a tank (see Figure 5.13); air
is going out through a valve which progressively opens or closes following a demand
curve. The compressors must provide a satisfactory pressure in between 3 and 5 bars,
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air compressor

motor

valve

tank

Figure 5.13: Description of the setup. Three piston air compressors are filling a tank
of varying size. The valve progressively opens or closes to simulate a demand.

while conserving energy. A Reinforcement Learning agent, in this case Soft Actor-
Critic [Haarnoja et al., 2018] (SAC), learns to control the three motors, each activating
one of the piston compressor, while observing the current speed of the motors and the
current pressure; the demand curve is unknown to the agent. Variants of the air
compressor management problem are generated by varying the volume of the tank,
and the compressing power of the three compressors. Each previous policy is trained
on a different variant of the setting.

We apply our Continuous Policy Intersection (see Chapter 3, Section 3.2) to ef-
fectively distill multiple transferred controllers in the learning process of a SAC agent
on a new variant of the air compressor management problem. We empirically show
that Policy Intersection outperforms simply loading a transferred controller in the new
task, be it with one or multiple transferred controllers, and that leveraging multiple
controllers performs significantly better than leveraging only one transferred controller.

5.4.1 The Air Compressor Management Problem
A piston compressor is a type of industrial compressor, which increases the pressure
of air enclosed in a cylinder. Air enters the cylinder through a valve, then is expelled
under pressure by a piston operated by an eternal motor, through a second valve. In
our particular setting, three compressors, each operated by its own motor, supply air
to a tank. The air flows through a valve which is progressively opened or closed to
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simulate a demand. The demand curve changes at each episode. Episodes last for 250
time-steps; at each time-step, the agent chooses the rotary speed of each of the three
motors operating the compressors. The action space is continuous, and ranges from
400 revolutions per minute (RPM) to 600 RPM, with the possibility to completely stop
the motor if the agent chooses to. When restarted, the motor goes from 0 directly
to 400 RPM. At each time-step, the agent receives an immediate reward consisting
in the negative amount of energy (in joules) that was consumed to power the motors
during the time-step. The agent must keep the air under a pressure in between 3
and 5 bars within the system; going above 5 bars does not bring any added value;
going under 3 bars triggers a backup policy. The backup policy is a naive controller
that sets all three motors to their maximum speed for one time-step, which results
in a very negative reward for the agent whenever the backup policy takes over. The
agent observes the current speed of the motors, as well as the current pressure in bars,
however, it does not know the demand curve. Although the reward is dense and highly
informative, this setting consists in a challenging environment with continuous actions
and partially observation states.

We generate several variants of this setting by randomly altering the size of the
tank, as well as the compressors. The parameters determining the amount of air
coming out of a compressor given x RPM are defined at the beginning of an experiment,
using the following formula: ρ × (1.0 + λ × ζ ∼ R ∈ [0, 1)), where ρ is a compressor
parameter, λ ∈ [0, 1] is the percentage of alterations applied to ρ, and ζ is a random
float yielded by a generator simulating a uniform distribution. The tank volume is
defined as 50+10, in liters. The random float generator R takes an integer called seed
s as parameter; we produce multiple variants of the environments to transfer across
by varying the value of s (from 1 to 17).

This simulated setup is modelled as an MDP as follows.

Action space

The action space is continuous and consists of 3 real values, ranging from -1 to 1. It
is considered best practice [stable-baselines] to have the action and state spaces be
centered around 0, and of a range of as close to 1 as possible. Each of the 3 real values
allows to set the target RPM of its corresponding compressor, linearly interpolated
between 0 (off, for an action value of -1) to 100% (for an action value of 1).

The action space is discontinuous in two places: for every compressor, the actual
effect of the action depends on the target RPM value it defines:

• Below 20 RPM: the compressor is turned off completely

• Between 20 RPM and the minimum RPM of the compressor: the target RPM
is adjusted to the minimum RPM of the compressor
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• Above the minimum RPM of the compressor: the action is left untouched

The effect is that the agent can produce low actions to indicate that a compressor
should work at its lowest RPM, and an even lower action to indicate that the com-
pressor should be turned off. This allows the agent to control the on/off status of the
compressors, in addition to their target speed, with a single real value.

Observation space

The observation space consists of several real values that measure past tank pressures
and RPMs. For every time-step, 4 real values are logged: the current pressure (in
bars) in the tank, and the current RPMs of the 3 compressors. When producing
observations, the environment looks N time-steps in the past to produce N real values
corresponding to the tank pressures at these past N time-steps (so, this is a history of
past tank pressures). The environment also looks M time-steps in the past to produce
3M real values corresponding to RPMs of the compressors during these past M time-
steps. N and M can be distinct, and in our experiment, we use N = 5 past tank
pressures and M = 3 past RPMs.

By observing past tank pressures and RPMs, the agent gets a feel of:

• How fast is the tank depleting, which allows it to approximate the derivative
of the tank pressure (that only looks at the past), thereby adjusting the future
RPMs.

• What is the demand of air in the recent past (by combining how the tank pressure
changes and what the RPMs were), which may help the agent guess what the
demand will be in the future if there are time-specific patterns in the demand.

This information is still not enough for optimal control, as it does not contain
information about the future demand, but observing a history of past sensor readings
has been shown to be one of the best approaches to learn in Partially Observable
MDPs [citation], and is easy to implement.

Reward function

The reward function is the change in cost that occurs after a given time-step executes
(so, after 60 seconds of simulated time after an action has been applied to the physical
or simulated system). More specifically, the reward given after a time-step consists of
two components:

1. Minus the amount of kilojoules consumed during the time-step. In the simulated
setup, the power consumption of the compressors is approximated in a lookup

79



CHAPTER 5. TRANSFER LEARNING

table (in watts). In simulation, we assume that a compressor instantly reaches
its target RPM and its corresponding power consumption, so the amount of
kilojoules is 60s × P × 0.001, with P the power (in watts) obtained from the
lookup table.

2. A turn on penalty when a compressor turns on. In addition to the point above
(the power consumption during the whole time-step), a compressor that goes
from off to on at the start of a time-step is considered to incur a cost equal to
its maximum (max RPM) power consumption during 60 seconds. For instance,
if the third compressor powers on, a reward of −60s×2000W ×0.001 = −120kJ
is given to the agent.

5.4.2 Transferring Versus Loading (χ)
We set λ, the percentage of alteration applied to the parameters of the compressors,
to 0.5. We train 16 different advisory policies, each trained on the environment with
a different seed s ∈ [1, ...16]. We consider two settings in which Policy Intersection for
continuous actions can be used: i) (single) a single advisor, with a different seed than
the advisee, is exploited, ii) (multiple) all available advisors are exploited, except the
one with the same seed as the advisee. To leverage multiple advisors, at each time-
step, one advisor is randomly picked from the set of advisors. We compare transferring
advisory policies using Policy Intersection to simply loading an advisor of a different
seed and letting it resume learning.

The phenomenon observed in Section 5.3.2 appears again in both Figure 5.14 and
Figure 5.15: a significant dip can be noticed in the learning curve, occurring only a few
episodes after the beginning of learning. Moreover, this dip only occurs when using
Policy Intersection; it is not present when loading an advisor. This is not surprising
as, similarly to BDPI, SAC is an actor-critic, off-policy algorithm.

Policy Intersection, leveraging either a single or multiple advisors, outperforms
loading an advisor and letting it resume learning. In addition, we observe in Figure
5.14 that exploiting multiple advisors instead of a single one significantly improve per-
formance, especially when recovering from the dip in performance. This phenomenon
is also noticeable in Figure 5.15, in which we compare leveraging 1 advisor, 4 advisors,
and 16 advisors. However, there is a performance ceiling, reached by all settings in the
long run, that does not seem possible to exceed by increasing the amount of advisors.

Conclusion

We applied Soft Actor-Critic to learn to control three motors, each activating a piston
compressor in an air compressor management problem. In this problem, air is expelled
by the piston compressors in a tank, while air is going out through a valve which
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Figure 5.14: Comparison between transferring from 16 advisors, 1 advisor, loading
one advisor at a time, or not using any transfer at all. Using Policy Intersection,
either with a single or multiple advisors, outperforms loading an advisor and letting it
resume learning. However, there is a significant dip in the learning curve shortly after
learning begins when Policy Intersection is used.
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Figure 5.15: There is a significant difference in performance between using 4 and 16
advisors, especially when recovering from the dip in the curve. This difference lessens
in the long run.

progressively opens or closes following a demand curve. The goal of the compressors
is to provide a satisfactory pressure in between 3 and 5 bars, while conserving energy.
Moreover, we considered the problem of learning a new controller based on previously
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learned ones on different variants of the air compressor management problem. To
tackle this Transfer Reinforcement Learning problem, we used Policy Intersection, a
Policy Shaping method, allowing one or multiple already acquired policies to distill
their knowledge in a new policy, through guiding the exploration strategy of the agent.
We empirically showed that this approach outperforms simply loading a transferred
controller, and that exploiting multiple transferred controllers instead of a single one
can significantly improve performance.

5.5 Reinforcement Learning Web-Service with Trans-
fer Across Users

At time of writing, Reinforcement Learning is getting an increasing amount of atten-
tion from companies, eager to apply the methods on their in-house problems, but not
necessarily willing to invest the time and effort to choose and tune the RL algorithm
best suited to their needs. Although RL is certainly not the solution to all prob-
lems, there exist some business and industrial applications that could benefit from an
RL-based approach. Most current implementations of Reinforcement Learning agents
consider that one agent interacts with one environment, and both the agent and the
environment run on the same machines. Previous work, such as RL-Glue [Tanner and
White, 2009], went a step in the direction of allowing the agent and environment to
be different processes on a computer, but a wider separation of the agent and en-
vironment is much less common. Nevertheless, we believe that a good solution for
companies would be to externalize the RL algorithm content and processing, so to not
have to administer the machine on which the algorithm runs, and keep up with the
literature to regularly update the algorithm itself.

To make the use of RL methods more accessible to a non-expert audience and
to meet the above-mentioned requirements, we introduce Shepherd, a web applica-
tion, implemented in Python with Django3. Shepherd allows anyone with an internet
connection to remotely query a Reinforcement Learning agent for actions, and allows
multiple clients (each with their own instance of an environment) to interact at the
same time with a single agent. It consists in a single agent, multiple executions set-
ting, comparable to what A3C proposes for compute-efficient Reinforcement Learning
[Mnih et al., 2016]. The novelty of Shepherd is that it does not rely on the A3C
algorithm, but instead is compatible with any Reinforcement Learning algorithm.

In addition to regularly updating the set of available RL algorithms on the server
side, we implemented the Shepherd framework so that agents can transfer knowledge
with each other following our Actor-Advisor architecture. This can be interesting in
cases where multiple users interact with a given application; in such setting, there are
global policy elements that can be learned and be applied to all users, and each user
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can personalize their own local policy with their preferences. Whenever a new user
visits the application, a new execution is instantiated and loads a saved version of
another execution if available. This kickstarts the learning of this new execution, and
allows the user to benefit from the knowledge already acquired by executions trained
by previous users.

We evaluate the individual performance of PPO agents sharing knowledge with
each other, while all simultaneously learning Lunar Lander. Finally, we describe a
novel environment in the form of a web application, called Bored in the city, inspired
by Tickle [De Troyer et al., 2019]. Tickle is a mobile application suggesting small
challenges to school students, aiming at re-engaging youngsters in learning. Bored
in the city follows the same idea, and suggests places, e.g., restaurants and shops, to
visitors of Brussels. All places are centered around the de Brouckère, Sainte Catherine
and Gare Centrale metro stations, and are close enough to each other so that users can
walk from one place to another, without having to take the metro or buses between
places. Although we did not undertake a proper user experiment to evaluate Shepherd
on it, Bored in the city consists in an ideal application for Shepherd. Each visitor would
interact with the Shepherd agent individually, while the agent learns what place to
suggest, based on its experience with all the visitors it has met so far.

We now describe the architecture allowing for one RL agent to collect data from
multiple users, and learn a policy that can behave in front of multiple users.

5.5.1 The Shepherd Architecture
By the term “user”, we mean a person that possesses an environment applicable to the
use of an RL algorithm, a User denotes the object representing a user in the database,
and a “client” is the program running on the user’s machine and communicating with
a server.

Shepherd is a web application using the Django Python web development frame-
work [Forcier et al., 2008] 2. It acts as a bridge between web clients, that connect
to it over the network (using JSON commands sent over HTTP), and state-of-the-
art Reinforcement Learning agents available in the Stable Baselines 3 [Raffin et al.,
2019]. Shepherd presents itself to the RL algorithms as a fully standard OpenAIGym
environment [Brockman et al., 2016]. At the core of Shepherd, the Actor-Advisor
framework is used to allow RL agents (all under one Shepherd agent), each trained
by a different user of Shepherd, to advise and help improve each other. This is why
Shepherd is comparable to a single agent, multiple executions setting, without the
need to fundamentally modify the RL algorithms from Stable Baselines 3.

In a typical use case of Shepherd, the problem to be solved by an RL agent is lo-
cated on the side of the user; a company may want a solution for efficiently managing

2https://www.djangoproject.com
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the heating of its buildings, for instance. Sensory data about the current temperature
in the buildings and the setting of the thermostats is sent to the Shepherd server by
the client program, running on a machine administered by the company. In return,
an action describing the new setting of the thermostats is received, and is transmitted
to the controller of the thermostats. In other words, the actual environment, in which
the actions of the agent are executed, takes place on the user’s grounds. Moreover,
to follow the client-server communication convention, actions are only sent “on de-
mand”: the environment prompts the agent for actions, despite it generally being the
other way around in standard RL applications. This way, users can request for an
action whenever they want, instead of being bombarded with unsolicited actions. The
company chooses the frequency at which it wants the setting of its thermostats to be
updated, and it can quit sending sensory data to the Shepherd server at any time.

We describe below the components of Shepherd, namely: i) the database allowing
to keep track of users, and of their RL agents; and ii) the communication workflow
between client and server, letting the environment running on the client side to spo-
radically send observations to an RL agent on the server side, and getting actions
in return. In Section 5.5.1, we detail how several instances of a Shepherd agent can
advise each other to help each other learn faster, as when used in an application like
Bored in the city.

For a user environment to be able to benefit from our service, the only require-
ments are that observations can be extracted from the environment, and that the
environment can take actions as input. Instead of learning how to properly apply
RL algorithms themselves, or hiring new expert staff, non-experts eager to try RL
on their applications can ask us to hyperparameter-tune and run the RL algorithms
on our server. The only contribution left from the user is to implement a client es-
tablishing the connection with our server, sending observations and receiving actions.
However, this part is relatively trivial to implement, and we provide an example in
Section 5.5.1.

Database

We now describe the different tables of our database (see Figure 5.16), as well as the
general workflow of the registration of new users and RL agents in our system.
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id: int, PrimaryKey
owner: User, ForeignKey
algo: Algorithm, ForeignKey

observation_space: TextField
action_space: TextField
policy: char
enable_learning: boolean

creation_time: DateTimeField
last_activity_time: DateTimeField
max_percent_cpu_usage: float
parameters: Parameter, 
ManyToManyField 
through ParameterValue

Agent

id: int, PrimaryKey
name: char
can_continuous_actions:
boolean

Algorithm

id: int, PrimaryKey
agent: Agent, ForeignKey
param: Parameter, ForeignKey

ParameterValue

value: char

id: int, PrimaryKey
name: char
algo: Algorithm, ForeignKey

t: int (choices=ParamType)

class ParamType: Bool = 1
INT = 2
FLOAT = 3
STR = 4

default_value: char

Parameter

id: int, PrimaryKey
name: char

User
1 0...n
1

0...n

1

0...n

1 0...n

1 0...n

1 0...n

id: int, PrimaryKey
agent: Agent, ForeignKey
date_time: DateTimeField

EpisodeReturn

return: float
id: int, PrimaryKey

key: char

APIKey

agent: Agent, ForeignKey

1 1

1 0...n

Figure 5.16: The database structure of the Shepherd framework. A User can have
several Shepherd Agents, which belong to that sole User. Each agent is running a
specific RL algorithm on a environment provided by the user; the action and observa-
tion spaces of that environment are stored as attributes of the Agent. Associated to
one given Shepherd Agent are ParameterValues; it can be set by the user, otherwise
the predefined default value from the corresponding Parameter is used.

User
New users are added to the database by an internal staff member through the
admin page. The onfly information required is a name to identify the user; we
use API keys to log users in instead of a user password. A User can possess
more than one Agent (one per environment that they have, or one per different
algorithm on one environment to compare algorithms, for instance).

Agent
When a user wants to launch an RL algorithm on their environment, a new Shep-
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herd Agent object is created and identified by both an APIKey and the owner
of the agent. The specification of the action and observation spaces of the user’s
environment are required for the initialization of a Shepherd Agent. New Shep-
herd agents are created through the admin page, as well as the parameter values
to configure the algorithm run by an agent. The difference between a Shepherd
agent and a standard RL agent is that several standard RL agents can execute
one Shepherd agent: a Shepherd agent stores a configuration, specifying which
algorithm must be executed, the parameters, as well as the latest generated
model and results obtained. There are a few “special actions” that the user can
do through the admin page; they can download data from the agent, such as the
episode rewards and the agent’s model, and reboot its learning, which is neces-
sary when the environment has been modified and that previous results become
irrelevant. If the enable learning field is set to False, then the current agent’s
model executes without updating its weights anymore; this mode is typically
used to evaluate a policy after some time spent training it. Given one algorithm,
especially when using the Stable Baselines 3, a type of policy network 3 can be
specified through the policy field, depending on the observation provided by the
environment. The creation time and last activity time fields exist for user’s infor-
mation about their agent; the max percent cpu usage indicates how much of one
cpu, or how many cpus can be allocated to a given Shepherd agent to execute.
Since one Parameter, such as the learning rate, is used by multiple Agents, but
each can have a different value of that parameter, and that an Agent generally
uses several parameters, the Agent table includes a custom many to many field
linking Agents with Parameters, through the ParameterValue table.

Algorithm
An Algorithm has a fairly brief definition in our database; it has a name, often
the abbreviated version of the name of an RL algorithm, such as PPO or A3C
and a Boolean flag indicating whether it is compatible with environments with
continuous actions or not. An Algorithm also has several Parameters associated
to it. Algorithm objects are preexisting the creation of Users and Agents;
we pre-populate the database with RL algorithms from Stable Baselines 3, but
adding new algorithms that are not from Stable Baselines 3 is trivial. Hence,
we also made BDPI [Steckelmacher et al., 2019] and its extension using the
Actor-Advisor available on Shepherd.

Parameter value
When a new Shepherd agent is created, an RL algorithm must be chosen to be
run by this agent. If they want to, the user can configure the algorithm through

3See https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html
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setting the value of some parameters, via the addition of ParameterValue objects
in the database4. This comes in handy when the user wants to try parameter
values different from predefined default ones. The value chosen is stored in
value_int, value_float, value_bool (exclusive) or value_str, depending on the
type of the corresponding Parameter object; all three other value attributes are
set to null. A ParameterValue is associated to one Shepherd Agent, and to one
Parameter, described below.

Parameter
Each RL algorithm in the database uses a multitude of parameters (e.g., learning
rate, batch size, γ, etc), all associated to that one algorithm. The type of the
value this parameter can take is defined by an Integer ∈ [1, 2, 3, 4]; if type is
equal to 1, the value of the parameter must be an Integer, if type = 2, the value
must be a floating point, etc5. Only one of the attributes value_int, value_float,
value_bool and value_str contains a value different than null, depending on the
type attribute. Similarly to Algorithms, Parameters are pre-existing Parameter-
Values; we populate the database with parameters used by most RL algorithms,
and set their default values, before the addition of Users and their Shepherd
Agents.

Episode return
Multiple EpisodeReturns are associated to one Shepherd Agent. Each EpisodeRe-
turn stores a float (the sum of all rewards collected during one episode), and a
date time field. EpisodeReturns are used to plot the Agent’s learning curve,
displayed on the admin page.

API key
To avoid the need for a user name and password, we use generated API keys
by the UUID module [Kuchling and Zadka, 2012]. The particularity of our
usage of API keys is that one APIKey is also associated to one Shepherd Agent.
When logging in to Shepherd, the client sends an API key to the server, which
retrieves the corresponding APIKey object, linked to the user’s corresponding
Agent. In the case where a user has multiple Shepherd agents, they would also
have multiple API keys, one per agent. The advantage of this setting is that if
one API key is leaked, only one of the user’s Shepherd Agents is leaked.

4Users can also ask experts on our side to suggest values for the parameters of the RL algorithm
they want to try out, depending on the particular environment they have.

5We have arbitrarily chosen these integers to type relations; they do not hold a particular meaning.
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Client-Server Communication

Once the database is populated with at least one User, owning at least one Shepherd
Agent, a client can start sending observations to our server, and receive actions in
return. Users must first log in by sending their API key, as mentioned above. Once
the Shepherd agent linked to the particular API key is retrieved, a session key is
created, and a process from the Shepherd agent’s process pool is allocated to that
session. The process pool of a Shepherd agent is a class keeping track of all currently
running processes (or instances) of a Shepherd agent: it allocates available processes or
creates new ones when users request a session; it deletes processes from the pool that
have been inactive for a given amount of time; etc. More importantly, since the process
pool keeps all running instances of a Shepherd agent “under one roof”, it facilitates the
exchange of advice between instances, making knowledge transfer between instances
possible throughout their learning (see next section).

Before the process for the newly created session starts learning, it looks for the
latest save of the processes previously learning under the corresponding Shepherd
agent, to pick up where the last one ended. If one such save is found (i.e., a zip file
in which neural networks weights have been saved), the process loads it, otherwise,
learning is started from scratch. Each running process regularly saves its network
weights in a directory shared by all processes of a Shepherd agent.

In a conventional reinforcement learning setting, the agent is usually the driving
force of the interactions between the agent and the environment. In a typical RL work-
flow, the agent generates an action, then prompts the environment for an observation,
in exchange of that action. In our Shepherd framework, on the other hand, we want
the environment on the client side to prompt the agent on the server for an action, in
return of an observation. Because of that role reversal, which is most unnatural for a
standard reinforcement learning algorithm, we implement a mock gym environment,
called ShepherdEnv-v0. Each process keeps an instance of that mock environment as
an attribute and communicates with it as if it were the environment on the client side.
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client server

shepherd agent

mock environmentenvironment

obs q_obs.put(obs) obs = env.reset()

action = get_action(obs)

q_action.put(action)
obs, r, done = get_obs(action)

q_obs.put(obs, 
reward, done)

obs, reward, done = env.step(action)

action = get_action(obs)

q_action.put(action)
obs, r, done = get_obs(action)

q_obs.put(obs, 
reward, done)

obs, reward, done = env.step(action)

...

action = get_action(obs)

process i

Figure 5.17: Time diagram of the first few exchanges between a client and the server.
The real environment on the client side produces the observations (abbreviated as
“obs”), the rewards (“r”), and the done flags. The little shapes above the observations
and actions indicate how observations travel from the client to the process running
on the server, and actions are relayed back to the environment on the client side.
Queues q_obs and q_action are used to buffer observations from the client and ac-
tions from the process on the server side until they can be delivered to their recipients.
The reinforcement learning process on the server side expects to be able to call the
environment with a step() function, taking an action as input, and returning an ob-
servation. However, in a conventional client-server relationship, it is the client that
prompts the server, not the other way around. Hence our need for a mock environment
on the server side, so that our Shepherd framework remains compatible with current
RL algorithms.

The time diagram in Figure 5.17 illustrates a few exchanges between client and
server, once the user is logged in, starting at the first observation sent by the client
to the server. We keep the description of the actual environment on the client side
extremely vague; all we care about is that it produces observations, rewards and
done flags. First, the RL algorithm resets the environment, which returns the first
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observation. Thankfully, the client is likely to start the exchange with an observation,
expecting an action in return. The client gets its action when the algorithm calls the
step() function on the mock environment. The learning process is stalled until the
client sends a new observation, etc. When done is True, indicating that the episode
is over and that a new one can start, the server responds with None instead of an
action, and the server waits for a new first observation. The mock environment uses
queues to store observations coming from the client, and actions coming from the RL
process, until these information are claimed by their effective recipients. This way, it
meets the expectations of the standard RL algorithms running on the server side, by
acting like a regular gym environment. Note however that the mock environment does
not simulate the actual environment on the client side; it merely serves as an interface
between the real environment and the RL process.

Transfer Between Processes

Our Shepherd framework allows for two main use cases: i) a simple case where one
learning execution tackles a given task; the user can train its agent as long as they
wish; its learning can be interrupted at any time, and resumed later by loading its
saved model, and ii) a more complex case where multiple learning executions learn the
same task in parallel.

An example of case ii could be multiple users of a web application, such as Bored
in the city (see Section 5.5.3 below), each logging in with the same API key, training
a different learning execution of the same Shepherd agent. Although all learning
executions seem to tackle essentially the same task, each user might respond slightly
differently to their learner’s actions. This leads to several different policies to be
learned: one global policy that is in common to all users of the application, and one
local policy per user. This motivates the use of some knowledge transfer mechanism
between learning executions under a given Shepherd agent, so that newer executions
can benefit from older, better trained ones, and to potentially improve the individual
sample efficiency of all learning executions. Note that case ii assumes that all learning
executions use the same observation space and action space, and that each learning
execution acts in its own instance of the environment; if learning executions interact
with each other on the field, this makes the problem multi-agent.

As we have hinted at in the previous section, the process pool of a Shepherd agent
keeps track of all learning executions of a given Shepherd agent, and facilitates the
exchange of advice between learning executions. At each time-step, once an observa-
tion is received by the server from the client, a process other than the current session
process is picked at random and queried for advice (see Figure 5.18). This advice
is then embedded in the observation, relayed to the RL algorithm executed by the
session process. Currently, the RL algorithms supported by Shepherd all come from
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the Stable Baselines 3 Raffin et al. [2019]; in the experiment in the next section, we
use their PPO implementation, extended with the Actor-Advisor. The integration of
advice in the Stable Baselines 3 implementations is rendered relatively minimal and
straightforward thanks to the recent addition of MultiInputPolicy 6, a type of policy
that accepts observations in the form of a dictionary. Using dictionaries of observa-
tions, instead of merely one observation, makes learning from several different types of
sensors possible, for instance, such as using both camera images and distance sensors
to solve a navigation task. In our case, we fill the observation dictionary with both
the actual environmental observation, as well as an advice vector coming from another
learning execution. We then ask the neural network to ignore this advice vector when
feeding itself with the observation, and relay it to the action selection and update rule
functions, as detailed in Chapter 3.

By picking one process from the pool at random at each time-step, all processes
under one Shepherd agent eventually advise each other to solve a given task. In the case
of a web application with multiple users responding differently to recommendations, or
of an industrial task with slight changes between instances of the environment, allowing
learning executions of one Shepherd agent to share knowledge with each other can help
speed up individual learning, and provide already well-trained behavior to later added
processes.

6See https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html#
multiple-inputs-and-dictionary-observations
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client server

shepherd agent

mock environmentenvironment

obs q_obs.put(obs) obs = env.reset()

action = get_action(obs)

q_action.put(action)

q_obs.put(obs, 
reward, done)

obs, r, done = get_obs(action) obs, reward, done = env.step(action)

action = get_action(obs)

q_action.put(action)
obs, r, done = get_obs(action)

q_obs.put(obs, 
reward, done)

obs, reward, done = env.step(action)

...

action = get_action(obs)

process i

obs['advice'] = 
get_advice(processes)

obs['advice'] = 
get_advice(processes)

obs['advice'] = 
get_advice(processes)

Figure 5.18: Same time diagram as above, but including the use of advice. Each
time an observation is received from the client, the process pool of the corresponding
Shepherd agent adds an advice vector in the observation before passing it to the mock
environment. Advice is produced by picking one of the processes in the pool at random
and querying it for advice. The advice vector is then leveraged internally by the RL
algorithm executed by process i.

In the next section, we evaluate the ability of our Shepherd architecture to allow
for effective transfer between several learning executions under one Shepherd agent,
on the Lunar Lander environment. We empirically show that having several processes
learning in parallel, each on their separate instance of the environment, while exchang-
ing advice with each other not only does not impair individual learning, but can even
non-negligibly improve individual sample-efficiency. We keep a throughout evaluation
of Shepherd on a more complex setting involving human users, such as Bored in the
city (described in Section 5.5.3), for future work.

5.5.2 Evaluation on Lunar Lander
To asses whether our Shepherd framework truly delivers what it promises in terms of
effective transfer, we compare the rewards obtained by several PPO agents learning
simultaneously under one Shepherd agent on discrete Lunar Lander, versus that of a
single PPO agent. Agents learning in parallel belong to the same pool of processes. As
a result, each time a learning execution receives an observation from the client, that
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observation is first handled by the process pool class which augments the observation
with an “advice” field. This advice is produced by one other process from the process
pool picked at random. Since a different process is picked to produce advice at each
time-step, the learning execution is eventually advised by all other processes from the
pool it belongs to, given enough time-steps.
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Figure 5.19: Performance of learning executions under a Shepherd agent learning dis-
crete Lunar Lander. We test three different settings: a single execution, two parallel
executions, and four parallel executions. When only one execution is running, no
transfer occurs, in contrast to when there are multiple executions. Each curve is the
average performance of 8 runs for each setting, and shows the individual performance
of a learning execution when several are learning in parallel. For the discrete Lunar
Lander environment, adding merely one extra learning execution adds a significant
boost in individual sample-efficiency, and the curve resulting from four parallel execu-
tions remains on top during the whole experiment.

In our experiment, for which results are shown in Figure 5.19, all executions start
from scratch and execute actions in their own instance of the environment, but are
advised by the other executions, and advise them as well. When a single PPO exe-
cution is launched under a Shepherd agent, no transfer occurs, since there is no other
execution to share knowledge with. Interestingly, although all executions have the
same “age” and level of knowledge of their environment, they seem to benefit enough
from each other’s advice for a significant individual sample-efficiency increase to occur
in between 200 and 400 episodes. Moreover, the individual performance of one of four
parallel executions remains on top during the whole experiment. Such improvement
in sample-efficiency for the discrete Lunar Lander environment, with no difference
between environment instances, is a pleasant surprise; however, the real challenge
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for Shepherd is to perform positive transfer in settings where the environments are
different.

We conclude this chapter with a presentation of Bored in the city, an environment
involving human users in the form of a web application, allowing multiple users to
train one Shepherd agent (through each training their own learning execution), and
new incoming users to benefit from an already well-trained agent. Bored in the city
is the proof of concept of an environment on which a tool such as Shepherd could be
leveraged to improve user experience.

5.5.3 Bored in the city: a Web Application to Visit Brussels
Bored in the city is a serverless web application in Javascript, that lists over one
hundred curated places, which we personally selected7. Amongst these places, there
mainly are Belgian and Asian restaurants, various shops, touristic spots, cafés and
bars in Brussels. We manually annotated each place with a type, from which there
are seven: restaurant, Asian restaurant, shop, thriftshop, cafe, bar, site-seeing. These
seven types are certainly not an exhaustive list of all types of the places that can
be found in Brussels; we chose these types as they would best represent our selection.
Users can visit the website without the need to create an account, and start requesting
suggestions coming from a Shepherd agent. The goal of the Shepherd agent is learning
to give suggestions that lead the users to the kind of places they like. The website
includes the following features:

• the user can request a place to be suggested to them by clicking on “Next place”.
When a place is suggested, its name and full address are displayed, and a marker
is shown on a map, using the Google Maps API;

• a route from the user’s current location to the place is displayed on the map
when “Show directions” is clicked 8;

• the user can add a place to their favorites by clicking on “I love it, add to
favorites”;

• the user can revisit their favorites by clicking on “Show favorites”. Once they
wish to go back to being requested new places, they can click on “Hide favorites”.

7As a result, the places listed in Bored in the city may be biased by our personal preferences,
which tend to be Asian restaurants and second-hand clothing stores.

8The application asks for the user’s geolocation data, but does not refuse to work in case geoloca-
tion is unavailable, but then assumes that the user’s current location is the last place they favorited.
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Figure 5.20: A potential suitable environment for Shepherd consists in a web applica-
tion suggesting places to visitors of Brussels, such as shops, restaurants and site-seeing
spots. Top: The main page displays the name and address of the suggested place, a
picture, and map on which the suggested place is marked. Bottom: The application
is leveraging the Google Maps API to retrieve information about the place, show a
map, and show directions from the user’s current location to the location of the place.
Places are suggested to the user by a Shepherd RL agent.
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Coupled with Shepherd, Bored in the city is a reinforcement learning-powered tour
guide of Brussels; it is intended for people who are visiting Brussels, specifically the
area between Sainte-Catherine and de Brouckère. In our original use case, as they
would walk around, users would request place suggestions throughout the day, and
perhaps physically go to some of the suggested places. Users reward the agent after
they have visited the place and if they liked it. Episodes are meant to represent full
days or nights, and last seven hours.

However, we had to rethink our original use case, as allowing users to reward the
agent only after they have physically been to a suggested place 9 leads to potentially
hours-long episodes with very sparse rewards. As a result, we modified our target use
case: instead of “liking” a place only after having visited the place, users can add
it to their favorites (to visit them later, perhaps). Instead of hours long, episodes
last only one time-step and end right after the user has either favorited or dismissed
the suggested place, which transforms our original sequential decision problem into
a contextual bandit. A typical usage of Bored in the city becomes requesting places
suggestions, then either adding the place to a favorite places list, or dismissing the
place, then requesting another place, and so on. Users can still use the application
on their phone while on the field, as originally intended, since we did not remove the
“Show directions” feature, which remains handy to walk from a location to another.
However, in contrast to the original setting, users are likely to reward the agent a lot
more often since they don’t have to physically visit the place first, and can do it from
their couch. This lessens the commitment asked from volunteers. Nevertheless, we
believe that our original use case idea would be feasible and interesting in a museum
guide setting, for instance, in opposition to visiting almost a whole city.

From the perspective of the RL agent, the agent observes the user’s current loca-
tion, their previous location (both in latitude and longitude coordinates), the type of
their previously suggested place (one-hot encoded), what type of place they favorited
so far (for each type, the normalized number of favorited places belonging to that
type), the time of the day (whether it is the morning, afternoon, evening or night,
one-hot encoded), and the day of the week (one-hot encoded). By observing geoloca-
tion data, the agent can potentially learn whether the user is more likely to favorite a
place if it is close to their current location. The agent can also learn user’s preferred
type of place, and whether the time of the day, and day of the week influence the
rewards. For instance, restaurants may be more likely to be favorited around lunch
time or dinner, cafés in the morning and early afternoon, and bars in the evening;
people tend to party on Fridays and Saturdays evening. There are as many actions
as there are places listed in Bored in the city, that is, slightly over one hundred. We

9We did not implement any mechanism to verify whether the user is physically at a suggested
place, and prevent them from rewarding the agent if they are not at the place. It is simply implied
in the phrasing of the button’s label that the user would first visit a place, then reward.
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have pondered the possibility to cluster places in seven groups, one per type of place,
and to restrict the number of actions to seven, but we eventually chose against it as
it leads to a too important information loss in our opinion.

For sufficiently informative results to be obtained, we estimate that a user exper-
iment on the Bored in the city environment would require at least 20 participants,
spending around a week visiting places in Brussels. Unfortunately, we did not man-
age to organize such experiment during our PhD study, hence results on this problem
are not reported in this thesis, but we hope that the opportunity to carry it out will
present itself in the near future. When considering RL environments involving human
users, the feasibility issue of evaluating contributions becomes much more prevalent
than when no human intervention is required. This is particularly regrettable as sys-
tems involving humans are likely to become the norm, hence the need to regularly test
contributions in user experiments. Specifically, when designing Bored in the city, we
felt compelled to make an environment not only interesting in terms of reinforcement
learning problem for the agent, but also in terms of user-friendlyness for users, in
order to keep volunteers engaged. However, the more sophisticated Bored in the city
became, the more user involvement it required, and the more difficult to organize the
user experiment revealed itself to be.
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This chapter is drawn from our publication, Plisnier, Steckelmacher and Nowé, Self-
Transfer Learning, presented at the Adaptive and Learning Agents (ALA) workshop,
in 2021.

A Transfer Learning setting often involves a source task and a target task; first,
the agent learns the source task, then the knowledge acquired in the source task
is intelligently leveraged by the agent while tackling the target task, using a Transfer
Learning method [Taylor and Stone, 2009; Zhu et al., 2020]. The aim of TL is generally
to make an RL agent learn new tasks faster by allowing it to reuse previously learned
knowledge efficiently.

In this chapter, we introduce Self-Transfer Learning, a TL setting in which the
source task and the target task are the same. We let an RL agent learn a task for a
short period of time, then freeze it and use it as an advisor for a fresh agent, that learns
the same task from scratch, until reaching a good policy. The training time allocated
to learning the frozen policy is a fraction of the time allocated to the fresh policy.
We evaluate Self-Transfer both on environments with discrete and continuous actions,
on which we test our novel implementation of Policy Intersection (PI) for continuous
action spaces (see description in Chapter 3, Section 3.2). Although transferring a
policy from a task to itself might seem redundant, we present preliminary results in
Sections 6.2 and 6.3.2 empirically showing that this approach brings a non-negligible
gain in sample-efficiency. We suspect that Self-Transfer positively impacts exploration,
both in policy space (exploring more states) and in parameter space (the fresh agent’s
policy is initialized used a fresh random seed).
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In addition to showing the benefits to be obtained from our implementation of
Self-Transfer, our empirical results in Sections 6.2 also show that our particular imple-
mentation of the Policy Intersection idea outperforms two other algorithms that can
be used in a Self-Transfer setting: Probabilistic Policy Reuse (PPR) [Fernández and
Veloso, 2006], and Dual Policy Distillation (DPD) [Lai et al., 2020], that we review
in Sections 2.5.1 and 6.1.2 respectively. For the discrete actions case, we compare
the Actor-Advisor to PPR and directly loading the advisor, using Bootstrapped Dual
Policy Iteration [Steckelmacher, 2020]. The way PPR can be implemented on top of
BDPI is detailed in Section 6.3.1.

6.1 The Self-Transfer Setting
In addition to extending Policy Intersection to the continuous actions case (see Section
3.2), our contribution evaluated in this chapter is the Self-Transfer framework, in
which two policies sequentially learned in the same environment are used in a Transfer
Learning setting, to increase sample-efficiency and final policy quality.

Our Self-Transfer procedure works as follows: an RL agent is launched in an envi-
ronment as usual. After a given amount of episodes I (at the designer’s discretion),
the agent’s learning is interrupted, and its actor πL is deep-copied into πA. Then,
πL and, for actor-critic algorithms such as Soft Actor-Critic [Haarnoja et al., 2018] 1

and Bootstrapped Dual Policy Iteration, the critics, are re-initialized to fresh random
weights. Learning then resumes, except that the fresh agent πL is now advised by πA,
using the Actor-Advisor in the discrete actions case, and continuous Policy Intersec-
tion in the continuous actions case. Pseudocode for the Self-Transfer setting is shown
in Algorithm 2.

6.1.1 Conventional Transfer Versus Self-Transfer
Due to the relatively odd nature of the particular setting in which we use Probabilistic
Policy Reuse and Policy Intersection 2, i.e., the transfer of knowledge acquired in a
given task to the same task, it is a little difficult to find directly comparable existing
work. Existing Transfer Learning work usually focuses on transferring knowledge
across tasks with different goals or differing environmental dynamics [Fernández and
Veloso, 2006; Zhang et al., 2018; Taylor et al., 2007; Plisnier et al., 2019b, only a
few examples], while we transfer from a task in a given environment to the same

1The specific SAC implementation we use can be found at: https://github.com/Rafael1s/
Deep-Reinforcement-Learning-Algorithms/tree/master/Ant-PyBulletEnv-Soft-Actor-Critic

2Although PPR [Fernández and Veloso, 2006] and PI [Griffith et al., 2013] find their roots in
traditional Transfer Learning, and learning from human interventions respectively, these methods are
general enough to be applied to a variety of other problems.
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6.1. THE SELF-TRANSFER SETTING

Algorithm 2 Self-Transfer
Require: I is the amount of episodes reserved to training the advisor πA

Initialize critics and actor πL

for every episode e = 1..∞ do
if e = I then

πA ← a copy of πL

Reset πL and critic networks
end if
for every time-step t until the end of episode do

if πA exists then
Sample at with the Actor Advisor given πL, πA, st

else
Sample at from πL(st)

end if
Periodically learn using the equations of the RL algorithm

end for
end for

task, in the same environment; only the initialization of the agent’s networks changes.
Methods using more than one actor to improve exploration of a given environment are
somewhat related to Self-Transfer, such as A3C [Mnih et al., 2016], Multi-Agent RL
settings in which agents actively share knowledge with each other [Omidshafiei et al.,
2019; da Silva et al., 2017; Hadfield-Menell et al., 2016], and Dual Policy Distillation
(DPD) [Lai et al., 2020] (see Section 6.1.2).

In contrast to DPD, but similarly to Self-Transfer, Self-Imitation Learning [Oh
et al., 2018] does not require a second agent to improve exploration; the agent learns
to reproduce its own past good decisions to deepen exploration. In Oh et al. [2018], a
preference for previously chosen actions that lead to a greater return than the current
value estimate for a given state is integrated in an actor-critic loss. Although this
concept is very close to ours, Self-Transfer leverages knowledge from past experiences
produced by an agent with a different initialization than the agent currently learning,
while Self-Imitation never resets the agent. We suspect that agents with different
initialization can lead to distinct, complementary experiences of the same environment,
and thus achieve a more thorough exploration when joining knowledge.

6.1.2 Dual Policy Distillation
In addition to Probabilistic Policy Reuse (PPR, see Section 2.5.1), one of the closest
existing technique to our contribution, that is using more than one actor, is Dual
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Policy Distillation [Lai et al., 2020]. DPD launches two agents (both using the same
RL algorithm, either DPG or PPO agents in the original paper) at the same time
in two instances of the same environment, but with different initializations of their
neural network weights. As the agents learn to solve the same task in parallel, they
optimize a distillation objective that incites the policies of the two agents to remain
close to each other. A theoretical justification of why the two policies complement each
other knowledge-wise is provided in Lai et al. [2020]: as with our Self-Transfer setting,
having more than one policy intervening in the action selection procedure (or learning
procedure) limits convergence to poor local optima. However, methods leveraging
more than one agent/actor have two potential downsides: i) their deployment to real-
life settings is likely to be more difficult if they require the two actors to execute actions
concurrently, in two instances of the environment, and ii) such methods assume that all
the policies are RL agents, hence one cannot be easily replaced by a fixed transferred
policy. Algorithms such as PPR and PI do not make such assumptions about the
advisor policy, allowing it to be from any source.

6.2 Self-Transfer in Continuous Action-Space Envi-
ronments

We present a preliminary evaluation of our contribution by applying Self-Transfer
on three Pybullet [Coumans and Bai, 2019] continuous control environments: Ant, a
four-legged insect-like creature; Half-Cheetah, a two-legged creature; and Hopper, a
single disembodied leg hopping away. In these three environments with continuous
actions, the goal is generally to learn to move forward as fast as possible, without
falling. We evaluate our Self-Transfer setting based on two Policy Shaping algorithms:
our Continuous Policy Intersection, and Probabilistic Policy Reuse (see Section 2.5).
For PPR, we tested two values for ψ, the probability in each timestep to sample the
advisor’s policy: 0.1 and 0.2. Setting ψ to 0.1 leads to the best results, therefore
we only show the results generated by that configuration in Figures 6.1, right. For
Continuous Policy Intersection, the size of the vector AA of actions sampled from the
advisor, then submitted to the actor, is set to 4096.

Results are reported in Figure 6.1. Each line is produced by averaging the results
of 8 random seeds, with the 95% confidence interval shown as shaded regions. Both
when the advisor is trained for 100 episodes and 200 episodes, Policy Intersection
outperforms Probabilistic Policy Reuse. In the Ant environment, PPR with a 200
episodes trained advisor shows a good jumpstart until approximately 1500 episodes;
our Continuous PI with a 100 episodes trained advisor exceeds PPR’s performance
after that. Moreover, Self-Transfer with Policy Intersection brings a non-negligible
performance gain compared to not using Self-Transfer, even while helped by an advisor
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(χ)

trained during only 100 episodes. This performance gain is present even when the
advisor does not have enough training time to learn how to produce rewards above
zero, as shown in the bottom plot (for the Hopper environment), and an advisor
trained for 100 episodes seems more beneficial than one trained for double that time
in that particular environment.
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Figure 6.1: Left: Comparison between Soft Actor-Critic with no Self-Transfer, and
using Self-Transfer with either Probabilistic Policy Reuse (PPR) or Policy Intersection
(PI). These curves are averaged over 8 runs per algorithm. The two vertical lines
indicate when the current actor is saved as a frozen advisor, and that the current agent
is replaced with a fresh agent. In all three PyBullet environments, Self-Transfer with
our Continuous Policy Intersection algorithm significantly outperforms its baseline
(SAC) and Self-Transfer with Probabilistic Policy Reuse. Results obtained by Dual
Policy Distillation on the three PyBullet environments are also shown.
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We also report results obtained by Dual Policy Distillation in Figure 6.1, although
these are not directly comparable to PI and PPR since they were produced by the
implementation provided with the original paper 3.

Figure 6.1: However, DPD’s results cannot directly be compared to that of PPR and
PI since they are implemented on top of SAC, while DPD is using Deep Deterministic
Policy Gradient (DDPG), which seems to learn these tasks less well than SAC. Right:
Comparison between the performance gain brought by DPD to its baseline DDPG,
the gain brought by PPR to SAC and by our continuous PI to SAC in each PyBullet
environment. These curves are averaged over 8 runs per algorithm. The performance
gain is computed by subtracting the reward obtained by the baseline (in this case,
either SAC or DDPG) from the reward obtained by the baseline augmented with the
transfer or distillation algorithm for each timestep of the experiment. Hence, we can
see the impact of each algorithm over time and how much they concretely improve their
baseline. Moreover, this allows for a fair comparison between algorithms implemented
on top of different baselines. Out of all three algorithms, our continuous PI is the
only one that either consistently significantly improves its baseline, or that does not
decrease its baseline performance.

When it comes to the positive difference in performance brought by each indi-
vidual method to their baseline, our continuous Policy Intersection outperforms both
Self-Transfer using PPR, and DPD. Figure 6.1, right, shows for each algorithm the
difference between its performance and the performance of its baseline. For instance,
the “DPD DDPG” curve is obtained by, for each timestep, subtracting the reward
obtained by the original Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al.,
2015] algorithm from that obtained when DPD is enabled. Similarly, the curves for
PPR and PI are computed by subtracting the reward obtained by SAC alone from
that when Self-Transfer is used. We kept the configurations for PPR and PI that led
to their best results, namely 200 advisor training episodes for PPR and 100 advisor
training episodes for PI. In contrast to learning curves as in Figure 6.1, computing this
gain achieved by a given extension of an RL algorithm allows extensions implemented
on different baselines to be fairly compared. However, we do not think that this com-
pletely excludes the need to compare extensions once they are all implemented on top
of the same baseline.

The gain brought by Self-Transfer in general, be it using PPR or our continuous
PI is especially visible on the Ant environment, while DPD brings a much smaller gain

3This implementation uses Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2015]
instead of Soft Actor-Critic; we did not re-implementing DPD on top of SAC as this consists in a
non-trivial task considering the complexity of the DPD algorithm.
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slightly above zero. However, it seems much harder for all three algorithms to increase
the rewards of their baseline on Half-Cheetah and Hopper. In particular, DPD starts
off with a positive difference during the first half of the experiment on Half-Cheetah,
then worsen DDPG’s performance during the other half. PPR very negatively impacts
performance in the Hopper environment, while PI and DPD manage to generally
remain close to zero if not slightly above. Our continuous PI is the only algorithm
leading to a non-negligible improvement of its baseline in both Ant and Half-Cheetah,
and manages to keep its impact either null or positive in Hopper.

6.3 Self-Transfer in Discrete Action-Space Environ-
ments

We evaluate the use of Self-Transfer in the following scenario: an agent learns to
navigate in a large, difficult to explore environment, and is given three slightly pre-
trained advisor policies. Each advisor policy has been trained for 40 episodes; the
advisee is to be trained for 1000 episodes. One could have simply trained one advisor
for 120 episodes, however, as shown below, advisors can vary in quality, in terms of
how improved the advisee’s policy is thanks to the advisor’s help. By training three
advisors for shorter amounts of time, rather than training one advisor for longer, the
hope is to have a higher chance of getting at least one good advisor.

Note that we do not devise a method to select the best advisor. However, in our
limited experience, we noticed that an agent reaching high rewards often makes a
good advisor. In addition to trying the solution of using the best advisor from the
advisors pool, we also try combining all three advisors, following our contribution in
Chapter 5, Section 5.3.1. The environment we evaluate our setting on is Virtual Office,
a large, difficult to explore environment with continuous states and discrete actions.
In addition, we compare two methods to perform Self-Transfer: Probabilistic Policy
Reuse (PPR), and the Actor-Advisor. Both methods are implemented on top of the
BDPI reinforcement learning algorithm; we describe this extension of BDPI with PPR
in the next section; see Section 3.1.3 in Chapter 3 for that with the Actor-Advisor.

6.3.1 BDPI with Probabilistic Policy Reuse
Our implementation of PPR within our BDPI actor works as follows: at acting time,
the action to be executed is sampled from πsource with probability ψ, and from the
policy learned by the actor πL(st) with probability 1− ψ. The actor still only learns
πL(st) and does not have an extra input for the action sampled by πsource.

Because BDPI with the Actor-Advisor implements a learning correction, that is
beneficial to it (see Section 3.1.3, Chapter 3), we also devise a learning correction
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Figure 6.2: Cumulative reward per episode in the Virtual Office using Probabilistic
Policy Reuse. The source policy reaches the goal from a single initial position, the
target policy reaches the goal from any initial position. The learning correction does
not have a measurable impact on PPR (p = 0.839 between episodes 250 and 300, each
line is the average of 4 runs).

for Probabilistic Policy Reuse. Similarly to the modified actor learning rule in the
Actor-Advisor (see Equation 3.4), the learning correction designed to compensate for
the use of π-reuse in BDPI must allow the combination of the actor’s policy πL with
the advice to converge to an optimal policy:

π(s, πA(s))← Γ(Q(s))
ϕreuse × πA(s) + (1− ϕreuse)× πL(s)← Γ(Q(s))

(1− ϕreuse)× πL(s)← Γ(Q(s))− ϕreuse × πA(s)

πL(s)← Γ(Q(s))− ϕreuse × πA(s)
(1− ϕreuse) (6.1)

with πA(s)) a single source policy, or a combination of several source policies using
Equation 5.1; and πL(s) the agent’s currently learned policy. However, in contrast
to the Actor-Advisor, using the learning correction in Equation 6.1 together with the
PPR algorithm at acting time does not lead to a significant difference in performance
(p = 0.839 when comparing with and without the learning correction between episodes
250 to 300, in the Virtual Office environment described below). Following the principle
of the lowest complexity, we therefore choose not to use any learning correction with
PPR in our experiment.
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6.3.2 The Virtual Office Environment
Virtual Office is meant to represent an open space cluttered with tables and chairs.
We have modeled Virtual Office based on an actual office space situated in the building
we work in. In this environment, the agent starts each episode in the same initial spot
with a random initial orientation, and must navigate to a goal spot, while avoiding
to bump into walls and obstacles. The agent can be in any continuous location in
the space, and has 3 actions at its disposal: move forward 0.01 units, rotate about its
axis by a 0.1 radians increment to the left, and rotate about its axis by a 0.1 radians
increment to the right. The agent does not observe its absolute location in the room,
but sees its immediate surroundings using the 60 distance sensors, covering a field of
view of 120 degrees, placed on its front. These sensors measure the distance between
the agent and the closest obstacle (in the [0, 1] range). The episode ends after 300
time-steps.

If the action executed by the agent would lead to it entering an obstacle, the action
is cancelled and a reward of -1 is given. Otherwise, the reward of the agent depends
on its distance to the goal region, in light gray in Figure 6.3, and is computed as 100
times the change in distance that the action caused. Because the speed of the agent is
0.01 (0.01 units traversed per time-step), the agent therefore receives a reward of +1
every time-step it moves directly towards the goal region, -1 if it goes in the opposite
direction, and values closer to zero when it takes a more tangential path.

Self-Transfer in Virtual Office

We trained three RL agents in Virtual Office during 40 episodes each, then froze them
to be used as advisors. Note that it is likely that, out of these three advisors, one may
have learned a slightly better policy than the others, and one may have learned a lesser
policy. We see two potential ways to leverage these advisors: i) use a single advisor,
and the best one, or ii) use a mixture of all three advisors. In case the information of
which advisor is the best one is not available, we show in Figure 6.5 below that the
Actor-Advisor actually manages to leverage sub-optimal advisors relatively well.

In Figure 6.5, we explore the case in which only one advisor can be used. Simply
loading a good advisor and let it resume learning leads to impressive results, and out-
performs both the Actor-Advisor and PPR when both are helped by a single advisor.
However, when the worst advisor is used, the loading and PPR approaches are unable
to override the worst advisor, while only the Actor-Advisor is able to recover. This
robustness is crucial in the real world, when producing even a handful of advisors may
already be too costly. The Actor-Advisor ensures that any advisor, even a sub-optimal
one, will still allow the agent in the target task to learn a good policy.

In contrast to the loading approach, PPR and the Actor-Advisor can benefit from
our contribution allowing several advisors to be combined when multiple source policies
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Figure 6.3: Top: Our Virtual Office environment representing an open-space cluttered
with furniture. The black circle is the agent, and the lines coming from it represent
the readings of its 60 frontal distance sensors. The goal region to be reached is in light
gray. Bottom: Distance readings as observed by the agent (sensor index on X, sensor
value on Y, between 0 and 1).

are available, and the designer cannot afford or does not wish to select one over the
others. Figure 6.6 shows how the Actor-Advisor, while using combined advisors, can
catch up with loading the best advisor in the long run. This means that the Actor-
Advisor allows, in the highly-challenging setting where identifying a good advisor is
impossible, to learn a policy comparable to what loading the best-possible advisor
allows (which would require an oracle in the real world).

Finally, in Figure 6.7, we show that our method of combining advisors, detailed
in Section 5.3.1, increases the performance of both PPR and the Actor-Advisor over
using only one advisor (we compare the combined advisor to all 3 available advisors
in the figure).
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Figure 6.4: Comparison of BDPI without transfer (BDPI/no TL) with the average
performance of loading a single advisor (Mean load), Probabilistic Policy Reuse using
combined advisors (PPR/combined), and the Actor-Advisor using combined advisors
(A-A/combined), on Virtual Office. Each curve takes into account the number of
episodes needed to train the advisor(s). Our Actor-Advisor, able to use combined
advisors, outperforms all the other approaches in final policy quality. Simply loading
an advisor and let it resume learning seems to perform better in the early stages, but
the variance of that approach makes it too risky to deploy in the real world.
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Figure 6.5: Comparison between loading an advisor, PPR and the Actor-Advisor
when only one advisor can be used, in the best (left) and worst case scenarios (right).
Results obtained in the Virtual Office when learning to reach the goal from random
initial positions. Each curve is the average of at least 4 runs. The Actor-Advisor is the
safest method: in the best-case scenario, it is only marginally below simply loading the
best advisor on the target task. In the worst-case scenario, the Actor-Advisor largely
outperforms the other approaches, and still allows a high-quality policy to be learned.
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Figure 6.6: Comparison between loading the best-possible advisor (requires an oracle)
to the Actor-Advisor and PPR using a combination of 3 advisors (possible in the
real-world). The Actor-Advisor is able to match the best-case scenario of the loading
approach, while PPR does not.
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Figure 6.7: Comparison between using our proposed combined advisors, or any individ-
ual advisor, both with PPR (left) and the Actor-Advisor (right). Combined advisors
increase the performance of both algorithms, with the Actor-Advisor measurably out-
performing PPR with any advisor.

Conclusion on Self-Transfer

In this chapter, we present Self-Transfer Learning, a scheme leveraging conventional
Transfer Learning algorithms to allow an RL agent to improve its performance at solv-
ing a given task, in both the continuous and the discrete actions settings. Self-Transfer
does not require a second instance of the agent learning in parallel, nor a second, sepa-
rate instance of the environment. The only cost of performing Self-Transfer is an extra
training time; we empirically showed in our preliminary experiments that dedicating
less than 15 % of the total training time needed to learn the task is enough to gain a
significant performance improvement.
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As suggested by [Lai et al., 2020], two agents with a different initialization launched
in the same environment can gather a distinct experience of that environment, and
can improve each other’s exploration by exchanging knowledge. Hence, it is likely that
the performance gain achieved by our contribution is a result of an improved explo-
ration, as we randomly reset the agent’s networks weights after the advisor has been
trained. A potentially interesting experiment to verify that hunch could be to have
the advisor and the advised agent have the exact same initialization, and compare
that to distinct individual initialization. In addition, as future work, we will compare
Self-Transfer to Dual Policy Distillation and Self-Imitation on the same reinforcement
learning algorithm on environments with continuous actions, and investigate the po-
tential of learning to imitate an agent with a different initialization. Finally, we will
compare our current implementation of Policy Intersection for continuous action spaces
to the use of the minimum operator from fuzzy set theory on the actor’s and advisor’s
possibility distributions.
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An important challenge of Reinforcement Learning is sample-efficiency, or how many
interactions the agent needs with the environment to learn a good policy. There
exist many ways to render learning faster; one can for instance focus on improving
the exploration carried out by the agent. Intuitively, making the exploration of an
RL agent more effective consists in quickly leading the agent towards areas of the
environment that are likely to be fruitful, and prevent it to waste time in areas likely
to not be profitable. This can be achieved by directly shaping the policy of the agent,
i.e., letting an external advisory policy influence or even determine the action executed
during action selecting time. In this thesis, we present our main contribution, the
Actor-Advisor, based on Policy Intersection, a Policy Shaping method.

Moreover, as we started applying the Actor-Advisor to numerous problems and
settings, we observed that not only a gain in sample-efficiency could be obtained,
but also that the Actor-Advisor reveals itself to be convenient for Transfer Learning
tasks. Transfer Learning and guiding exploration are related, as one can use the policy
learned in a previous task as an external advisory policy for a fresh agent learning a
new task. In addition, guiding exploration and Transfer Learning share a similar goal,
which is to help the fresh agent learn faster. The only difference lies in the assumption
made about the external advisory policy: TL considers that the advisory policy has
been produced by another RL agent, while a hand-coded heuristic, or a person can
also be used to guide an agent’s exploration.

Chapter 3 is dedicated to the extensions of the Actor-Advisor making it applicable
to several different RL algorithms and problems. One of the first challenges we en-
countered was the inherent incompatibility of Policy Gradient methods, a large family
of Reinforcement Learning algorithms, with vanilla Policy Intersection, due to their
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strong on-policyness. Our first contribution, detailed in Section 3.1.2, is the incor-
poration of off-policy advice in the Policy Gradient loss to allow the actor to see its
actions be influenced by off-policy advice without convergence issue. We empirically
show that the learning correction makes Policy Shaping possible for Policy Gradient,
in several challenging environments. Moreover, we observe that PPO can benefit from
the learning correction as well in difficult to explore environments with sparse rewards,
in both the discrete and continuous action cases. We also detail in Section 3.1.3 how
the actor update rule of Bootstrapped Dual Policy Iteration, a very different actor
than a Policy Gradient one, can be modified to harmoniously incorporate advice. Us-
ing the learning correction with a BDPI actor improves the overall performance of
the agent in early stages of learning. Finally, we extend vanilla Policy Intersection to
environments with continuous actions, thus largely expanding its application scope.

Chapter 4 is focused on evaluating the Actor-Advisor on a learning from human
intervention task, in which we compare teaching via rewards and teaching via advice.
In contrast to Reward Shaping, the often preferred method to influence the behavior
of an agent, Policy Shaping immediately and visibly influences the actions executed by
the agent, but does not tamper with the actual objective pursued. On the other hand,
Reward Shaping alters the agent’s behavior slower and requires a prohibitive number
of interventions, but potentially allows for the human user to teach the agent about
their preferences. We show that the Actor-Advisor allows good policies to be learned
from scarce advice, is robust to errors in the advice, and leads to higher returns than
no advice, or reward-based approaches.

In Chapter 5, we apply the Actor-Advisor to four Transfer Learning settings: trans-
fer between two simulated drones which observe the environment through different
sensors in Section 5.2; transfer from several advisors to one fresh agent in Section
5.3; transfer from several previous controllers to learn a new one in an air compressor
management problem 5.4, and letting several agents learn one task in parallel while
simultaneously sharing knowledge with each other in Section 5.5. Our positive results
in Section 5.2 show that it is possible to prepare the policy of an agent in a laboratory
environment with expensive sensors, and to later deploy it on the field with a cheaper
equipment. Our fundamental contribution in Section 5.3 consists in an approach to
identify areas where the previous tasks and the new task are similar, and areas in
which they are likely to differ, which are crucial information when dealing with Trans-
fer Learning problems. Our positive empirical results in Section 5.4 further motivate
us to use RL and Transfer in realistic, close to real-life industrial problems. In Sec-
tion 5.5, we present a novel web service named Shepherd which allows anyone with
an internet connection to train an RL agent, without having to keep their machine
up-to-date with the latest software versions required to run RL algorithms. In future
work, we wish to explore the possibility for several human users of a web application to
train the same policy via Shepherd. This policy would learn to suggest places to visit
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in Brussels following some global objectives, such as at what time should a restaurant
be suggested to a user, and how far consecutive places should be from one another,
but also to suggest new places based on the user’s favorite places.

Finally, our thesis ends with the introduction in Chapter 6 of our last contribution,
Self-Transfer. Self-Transfer is based on Transfer Learning, and could be considered
to exist in that realm, although its setting does not follow the conventional Transfer
Learning one. In Self-Transfer, a first agent is trained for a small amount of episodes
on a given task, then frozen and saved to serve as an advisor. Then, a fresh agent
is launched on the same task as the advisor, and trained while being advised by the
advisor until reaching a good policy. If, for instance, the advisor is trained for 100
episodes, and the advisee is trained for 2900 episodes, we observed in Section 6.2 that
the performance of the advisee exceeds that of an agent trained without Self-Transfer
for 3000 episodes. As a result, Self-Transfer can be considered as a handy learning
trick to improve sample-efficiency, which we made applicable to environments with
discrete actions and continuous actions.

7.1 Future Research Avenues
We now review a few additional research directions. Some of them are new application
opportunities for the Actor-Advisor, such as continuous transfer learning for life-long
learning agents, agents with different RL algorithms learning in parallel while advising
each other, and learning from human biometrics. Others take a broader look at the
field of RL.

Throughout our PhD study, we often felt the need to develop our own Reinforce-
ment Learning environments, due to an insufficient amount of existing benchmarks
for RL algorithms. Developing our own environments made us realize the lack of
documentation, standard practices and investigation done in the domain of RL envi-
ronment development. In the near future, we wish to promote RL environment design
as a RL research sub-domain of its own, generative of valuable contributions, and not
merely as a tool to evaluate researchers’ new RL algorithms.

We also mention research avenues that are much further from our comfort zone,
and out of the scope of this thesis, namely Reinforcement Learning used for Generative
Art. More and more artists are already opting for Supervised Learning methods to
create art pieces. To leverage RL to generate art, one defines the creative scope
and framework of the agent through the design of the RL environment. As a result,
using RL in the context of generating art requires more involvement from the artist
than when using Supervised Learning techniques, since designing an RL environment
consists in a more challenging task than passing a set of images to a classifier. Note
that this last topic points back to our environment design research direction.
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7.1.1 Life-Long Transfer
In the pursuit of life-long learning [Ring, 1998; Khetarpal et al., 2018], future RL
algorithms will probably need to include some automatic transfer mechanism to make
learning more efficient and already acquired skills easily reusable. We believe that
the Actor-Advisor has the potential to make that incorporation of systematic transfer
from older policies to newer policies easy to implement. An automatic transfer scheme
could be devised as follows: every x amount of episodes, the current policy is frozen
and saved in an advisor pool, and a fresh policy is initialized. This fresh policy
resumes learning for the next x episodes, while being advised by either a combination
of advisors from the pool of advisors, one randomly picked advisor from the pool, or
an advisor selected based on its relevance according to the current situation of the
agent. Such scheme could work well in ever-changing environments in which the agent
cannot afford to get too confident and must regularly keep on exploring, while being
able to exploit relevant already acquired knowledge.

7.1.2 Policy Distillation Between Different RL algorithms
Similarly to the framework proposed by Lai et al. [2020], the Actor-Advisor can be used
to let two agents learn a task in parallel while advising each other at the same time.
The Actor-Advisor does not make any assumption on the underlying RL algorithm
used by each agent, as long as they can produce state-dependent policy vectors (or
a probability given an action in the continuous actions case). As a result, one agent
could run a widely different RL algorithm than the other. This could help the merging
of originally incompatible RL techniques that can complement and compensate each
other’s limitations.

7.1.3 Extracting Advice From Biometrics
In Chapter 4, we briefly mentioned the need for AI assistive systems to make users feel
at ease around them. To achieve this, some biometric sensors could be used, such as
a pulse sensor, to let the RL agent observe how stressed the user is at each time-step.
Although this information is fairly straightforward to include as an additional state
information, or even as a reward, it is less clear however how this stream of data can be
interpreted as an advisory policy. Nevertheless, we believe desirable for a user to have
the possibility to give directions to its assistive robot without having to utter a word.
By measuring the user’s stress levels, the agent could be commanded to stop whatever
it is currently doing because its actions are stress inducing, for instance. As we have
discussed in Chapter 4, the advantage of using advice over rewards or feedback is that
the behavior of the agent is directly and visibly impacted, instead of slowly changed
over time.
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In the next section, we move on to a completely different research avenue that we
did not mention in this thesis, and that has nothing to do with the Actor-Advisor, but
that we wish to explore in the future.

7.1.4 RL Environments
Not only does most of the research in Reinforcement Learning restricts itself to ideal-
ized, simulated tasks running on computers, rather than real-life, robotic tasks (except
for a few notable exceptions [Levine et al., 2016]) but also little research is done on
the design of environments used as RL benchmarks in general. Therefore, when it
comes to choosing on which environment one would like to evaluate their RL algo-
rithm, the options can feel limited. There exist only a few collections of environments,
among which the best-known are OpenAI Gym [Brockman et al., 2016], the propri-
etary physics engine Mujoco [Todorov et al., 2012], the 3D navigation simulator AirSim
[Shah et al., 2018], and the continuous control benchmark RL-Lab [Duan et al., 2016].
One could argue that keeping the amount of available environments small, hence forc-
ing everyone to evaluate their method on the same benchmarks is desirable to better
compare algorithms against each other; that is the point of a common benchmark, af-
ter all. Nevertheless, this can also lead to an overfitting of RL algorithms to a specific
type of problem, if the benchmarks available do not represent a large enough range of
different applications. If the research community as a whole prefers evaluating their
contributions to video game-like environments, for instance, we might end up with RL
methods very proficient at playing video games, and little else.

It is likely that, as RL slowly comes out of the labs and in industry-oriented fields,
more researchers will be forced to design their own environment, accurately represent-
ing a very specific problem to be solved. However, as mentioned above, environment
design is still a secondary research interest, and the difficulty of a given environment
is even less investigated.

Environment Design

Environment design consists in formulating a problem, potentially existing in real-
life, as a program interacting with the RL agent. In this thesis, we designed a few
environments ourselves to evaluate our contributions on: Five Rooms, the large grid-
world used in Chapter 4 and 5, section 5.3, Bored in the City, the web application
used in Section 5.5, and Virtual Office, the large office space with continuous states
and discrete actions in Chapter 6. The main choices to be made when designing an
environment are the following:

1) What information should the agent be able to observe in order to learn the task,
and how should the information be encoded?
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2) Which actions should be available to the agent?

3) How should the agent be rewarded so that the it learns a desirable behavior?

In our experience, points 1 and 3 are often the trickiest, as they can make or break
the ability of an RL agent to learn the task. For a reinforcement learner to have a
chance at learning the task, the problem formulated must have the Markov property
[Sutton and Barto, 2018, p. 57]. At time-step t, the state st is the only source of
information the agent has on its environment; it must contain all relevant information
for the agent to be able to learn the task. If some relevant information about the
current state of the environment is not present in st, the environment becomes a
Partially Observable Markov Decision Process, in contrast to a fully observable one;
solving POMDPs is a challenging research field of its own. Once one has determined
what information should be included in the state, there remains the question of how
should this information be encoded. The same information can sometimes be expressed
in many, more or less compact ways. A verbose state representation can be easier to
learn from, but result in larger state spaces that take more time to explore; a highly
compact state representation reduces the size of the state space, but the neural network
representing the policy or Q function may have a more difficult time making sense of
it.

The reward function defines the goal of the agent; tampering with the reward
function means changing the objective of the task. Extreme care must be put in the
design of the reward function to prevent the agent from reward hacking, i.e., exploiting
a loophole allowing it to gain rewards without having to actually carry out the task
[Amodei et al., 2016]. The safest approach is to make sure that the reward is accurately
leading the agent towards the desired goal, and that any step taking the agent further
away from that goal gets punished; such reward function is said to be potential-based
[Ng et al., 1999]. As we briefly discussed in Chapter 5, Section 5.2, adding an extra
shaping reward that is also based on a potential function is possible, thanks to the
work presented in Harutyunyan et al. [2015b]. The problem with that method is that
it requires an additional agent to learn a Q function on which the shaping reward
can then be based, which is not always an option; many designer tend to design both
their environmental reward function, and their shaping reward if needed, based on gut
feeling.

To summarize, although there exist many contributions in terms of new RL algo-
rithms (and this thesis is no exception), not much formal work has yet been presented
on the design of RL environments themselves. Nevertheless, we feel that environments
will soon transition from mere benchmarks to representations of actual specific real-
life problems, and mastering the design of such environment will become an important
skill for RL experts. To our knowledge, for now, people use their intuition and rules
of thumb, which can only be acquired through practice, to create new environments.
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Such tips and tricks are seldom reported in papers. We wish to promote the existence
of designing RL environment as a full-fledged RL research sub-field of its own.

Environment Difficulty

Related to environment design, little is formally and exhaustively investigated about
what makes an RL environment difficult to learn for an agent, and how can the cur-
rently most used environments be graded in terms of difficulty. It is generally accepted
by the community that a sparse reward signal is harder to learner from than a rich,
frequent reward signal, as it requires the agent to thoroughly explore the environment
while receiving little reward in return. Some environment, which consist in games such
as chess, may reward the agent only at the very end of the game. This typically gives
rise to a credit assignment problem, i.e., the agent has a hard time figuring out which
actions were decisive for it to get the reward, and which were not.

Moreover, to go back to point 1) mentioned above, and as we briefly discussed in
Chapter 5, the content of the state, as well as its representation are important factors
when it comes to the feasibility of learning the task. In Chapter 5, Section 5.2, we
hint at the possibility that some sensors might help the agent learn better than others,
such as using distance sensors over a webcam. This may be because RL algorithms
become more and more limited by what their underlying neural network can learn.
Learning from raw images is generally difficult for a neural network without any prior
tweaking of the state representation, for instance.

In the future, we hope to see a more systematic discussion in papers of why a given
environment chosen to evaluate a new algorithm is considered to be challenging and in
what specific ways; this can notably help the reader better understand the strengths
and weaknesses of the proposed RL algorithm. We also wish to investigate the design
of a difficulty metric for environments.

RL and Art

This last direction is probably the one we are the least familiar with, which is to delve
into the field of Generative Art [Galanter, 2016]. Specially, concrete work has already
been carried out to show how Reinforcement Learning can be used to create art pieces
[Luo, 2020]. When Machine Learning is used in an artistic endeavor, artists tend to
prefer Supervised Learning methods, perhaps because the use of Supervised Learning
is more intuitive to create graphic art. However, when using SL, the input of the artist
in the creative process is limited, and often merely consists in feeding input images to
the neural network; the network outputs the final art piece.

In RL, the contribution required from the artist is potentially much more impor-
tant: they would have to design an RL environment in which the agent learns the
steps to make an art piece. For example, the agent could have to show a sequence of
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pictures in an order that would provoke an emotion, such as surprise, in the human
visitor. Through the environment, the artist provides the pictures, describes that ac-
tions consists in showing a given picture, or a combination of several; they can add
sounds to be played by the agent to accompany the images. As the current state, the
agent could observe what images and sounds it is currently displaying, and the facial
expression of the visitor using a webcam. Another example of RL used to create art
is music generation with a human in the loop: the agent can progressively add notes
to a track, while a human rewards the agent according to how good the current track
sounds to them. In contrast to using Supervised Learning techniques, creating com-
plete RL environments to serve as creative playgrounds to RL agents generally consists
in a greater effort and requires a good grasp of the field; this further motivates us to
promote environment design as a field of applications and research of its own.

120



Bibliography

Abu-Mostafa, Y. S., M. Magdon-Ismail, and H.-T. Lin
2012. Learning from data, volume 4. AMLBook New York.

Achiam, J. and S. Sastry
2017. Surprise-based intrinsic motivation for deep reinforcement learning. arXiv
preprint arXiv:1703.01732.

Alshiekh, M., R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu
2018. Safe reinforcement learning via shielding. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané
2016. Concrete problems in AI safety. Arxiv pre-print.

Andre, D. and S. J. Russell
2002. State abstraction for programmable reinforcement learning agents. In
AAAI/IAAI, Pp. 119–125.

Antos, A., C. Szepesvári, and R. Munos
2007. Fitted q-iteration in continuous action-space mdps. Advances in neural infor-
mation processing systems, 20.

Bellman, R.
1957. A Markovian decision process. Journal Of Mathematics And Mechanics,
6:679–684.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba
2016. Openai gym. arXiv preprint arXiv:1606.01540.

121



BIBLIOGRAPHY

Brys, T.
2016. Reinforcement Learning with Heuristic Information. PhD thesis, PhD thesis,
Vrije Universitet Brussel.

Brys, T., A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé
2015. Reinforcement learning from demonstration through shaping. In Proceedings
of the 24th International Conference on Artificial Intelligence, IJCAI’15, Pp. 3352–
3358. AAAI Press.

Bucila, C., R. Caruana, and A. Niculescu-Mizil
2006. Model compression: Making big, slow models practical. In International
Conference on Knowledge Discovery and Data Mining.

Burda, Y., H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros
2018. Large-scale study of curiosity-driven learning. arXiv preprint
arXiv:1808.04355.

Cederborg, T., I. Grover, C. L. Isbell, and A. L. Thomaz
2015. Policy shaping with human teachers. In IJCAI.

Chaplot, D. S., G. Lample, K. M. Sathyendra, and R. Salakhutdinov
2016. Transfer deep reinforcement learning in 3d environments: An empirical study.
In NIPS Deep Reinforcemente Leaning Workshop.

Christiano, P. F., J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei
2017. Deep reinforcement learning from human preferences. In Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., Pp. 4299–4307. Curran
Associates, Inc.

Chua, K., R. Calandra, R. McAllister, and S. Levine
2018. Deep reinforcement learning in a handful of trials using probabilistic dynamics
models. Advances in neural information processing systems, 31.

Coumans, E. and Y. Bai
2016–2019. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org.

da Silva, F. L., R. Glatt, and A. H. R. Costa
2017. Simultaneously learning and advising in multiagent reinforcement learning. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’17, P. 1100–1108, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

122

http://pybullet.org


BIBLIOGRAPHY

De Troyer, O., J. Maushagen, R. Lindberg, J. Muls, B. Signer, and K. Lombaerts
2019. A playful mobile digital environment to tackle school burnout using micro
learning, persuasion & gamification. In 2019 IEEE 19th International Conference
on Advanced Learning Technologies (ICALT), volume 2161, Pp. 81–83. IEEE.

Devin, C., A. Gupta, T. Darrell, P. Abbeel, and S. Levine
2017. Learning modular neural network policies for multi-task and multi-robot trans-
fer. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
Pp. 2169–2176. IEEE.

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel
2016. Benchmarking deep reinforcement learning for continuous control. In Inter-
national conference on machine learning, Pp. 1329–1338. PMLR.

Engel, Y., S. Mannor, and R. Meir
2005. Reinforcement learning with gaussian processes. In Proceedings of the 22nd
international conference on Machine learning, Pp. 201–208.

Fernández, F. and M. M. Veloso
2006. Probabilistic policy reuse in a reinforcement learning agent. In International
Conference on Autonomous Agents and Multiagent Systems.

Forcier, J., P. Bissex, and W. J. Chun
2008. Python web development with Django. Addison-Wesley Professional.

Frank, M., J. Leitner, M. Stollenga, A. Förster, and J. Schmidhuber
2014. Curiosity driven reinforcement learning for motion planning on humanoids.
Frontiers in neurorobotics, 7:25.

Fujimoto, S., H. van Hoof, and D. Meger
2018. Addressing function approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning.

Galanter, P.
2016. Generative art theory. A Companion to Digital Art, 1:631.

García, J. and F. Fernández
2015. A comprehensive survey on safe reinforcement learning. Journal of Machine
Learning Research.

García, J. and F. Fernández
2019. Probabilistic policy reuse for safe reinforcement learning. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 13(3):1–24.

123



BIBLIOGRAPHY

Garivier, A. and E. Moulines
2011. On upper-confidence bound policies for switching bandit problems. In Inter-
national Conference on Algorithmic Learning Theory, Pp. 174–188. Springer.

Gaweda, A. E., M. K. Muezzinoglu, G. R. Aronoff, A. A. Jacobs, J. M. Zurada, and
M. E. Brier
2005. Individualization of pharmacological anemia management using reinforcement
learning. Neural Networks, 18(5-6):826–834.

Griffith, S., K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz
2013. Policy shaping: Integrating human feedback with reinforcement learning. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds., Pp. 2625–2633. Curran
Associates, Inc.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine
2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv, abs/1801.01290.

Hadfield-Menell, D., S. J. Russell, P. Abbeel, and A. Dragan
2016. Cooperative inverse reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, eds., volume 29, Pp. 3909–3917. Curran Associates, Inc.

Harrison, B., U. Ehsan, and M. O. Riedl
2017. Guiding reinforcement learning exploration using natural language. CoRR,
abs/1707.08616.

Harutyunyan, A., T. Brys, P. Vrancx, and A. Nowé
2014. Off-policy shaping ensembles in reinforcement learning. arXiv preprint
arXiv:1405.5358.

Harutyunyan, A., T. Brys, P. Vrancx, and A. Nowé
2015a. Shaping mario with human advice. In Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15,
Pp. 1913–1914, Richland, SC. International Foundation for Autonomous Agents
and Multiagent Systems.

Harutyunyan, A., S. Devlin, P. Vrancx, and A. Nowé
2015b. Expressing arbitrary reward functions as potential-based advice. In Associ-
ation for the Advancement of Artificial Intelligence.

124



BIBLIOGRAPHY

Hessel, M., J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-
gan, B. Piot, M. Azar, and D. Silver
2018. Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
second AAAI conference on artificial intelligence.

Hussein, A., M. M. Gaber, E. Elyan, and C. Jayne
2017. Imitation learning: A survey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35.

Jr., C. L. I., C. R. Shelton, M. J. Kearns, S. P. Singh, and P. Stone
2001. Cobot: A social reinforcement learning agent. In Advances in Neural Informa-
tion Processing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada],
Pp. 1393–1400.

Kaochar, T., R. T. Peralta, C. T. Morrison, I. R. Fasel, T. J. Walsh, and P. R. Cohen
2011. Towards understanding how humans teach robots. In User Modeling, Adaption
and Personalization, J. A. Konstan, R. Conejo, J. L. Marzo, and N. Oliver, eds.,
Pp. 347–352, Berlin, Heidelberg. Springer Berlin Heidelberg.

Khetarpal, K., S. Sodhani, S. Chandar, and D. Precup
2018. Environments for lifelong reinforcement learning. arXiv preprint
arXiv:1811.10732.

Kim, E. S., D. Leyzberg, K. M. Tsui, and B. Scassellati
2009. How people talk when teaching a robot. In Proceedings of the 4th ACM/IEEE
International Conference on Human Robot Interaction, HRI ’09, Pp. 23–30, New
York, NY, USA. ACM.

Knox, W. B., B. D. Glass, B. C. Love, W. T. Maddox, and P. Stone
2012. How humans teach agents - A new experimental perspective. I. J. Social
Robotics, 4(4):409–421.

Knox, W. B. and P. Stone
2009. Interactively shaping agents via human reinforcement: The tamer framework.
In Proceedings of the fifth international conference on Knowledge capture, Pp. 9–16.
ACM.

Knox, W. B. and P. Stone
2010. Combining manual feedback with subsequent MDP reward signals for rein-
forcement learning. In Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010).

125



BIBLIOGRAPHY

Konidaris, G. and A. G. Barto
2007. Building portable options: Skill transfer in reinforcement learning. In IJCAI,
volume 7, Pp. 895–900.

Kuchling, A. and M. Zadka
2012. What’s new in python 2.5. Python Software Foundation. Retrieved, 11.

Kuhnle, A., N. Röhrig, and G. Lanza
2019. Autonomous order dispatching in the semiconductor industry using reinforce-
ment learning. Procedia CIRP, 79:391–396. 12th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 18-20 July 2018, Gulf of Naples, Italy.

Kurutach, T., I. Clavera, Y. Duan, A. Tamar, and P. Abbeel
2018. Model-ensemble trust-region policy optimization. arXiv preprint
arXiv:1802.10592.

Lai, K.-H., D. Zha, Y. Li, and X. Hu
2020. Dual policy distillation. arXiv preprint arXiv:2006.04061.

Lakshminarayanan, B., A. Pritzel, and C. Blundell
2017. Simple and scalable predictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems, 30.

Lazic, N., C. Boutilier, T. Lu, E. Wong, B. Roy, M. Ryu, and G. Imwalle
2018. Data center cooling using model-predictive control. Advances in Neural In-
formation Processing Systems, 31.

Levine, S., C. Finn, T. Darrell, and P. Abbeel
2016. End-to-end training of deep visuomotor policies. Journal of Machine Learning
Research.

Li, G., R. Gomez, K. Nakamura, and B. He
2019. Human-centered reinforcement learning: A survey. IEEE Transactions on
Human-Machine Systems, 49(4):337–349.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra
2015. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Loftin, R. T., B. Peng, J. MacGlashan, M. L. Littman, M. E. Taylor, J. Huang, and
D. L. Roberts
2014. Learning something from nothing: Leveraging implicit human feedback strate-
gies. In The 23rd IEEE International Symposium on Robot and Human Interac-

126



BIBLIOGRAPHY

tive Communication, IEEE RO-MAN 2014, Edinburgh, UK, August 25-29, 2014,
Pp. 607–612.

Luo, J.
2020. Reinforcement learning for generative art. University of California, Santa
Barbara.

MacGlashan, J., M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor,
and M. L. Littman
2017. Interactive learning from policy-dependent human feedback. In Proceedings
of the 34th International Conference on Machine Learning, D. Precup and Y. W.
Teh, eds., volume 70 of Proceedings of Machine Learning Research, Pp. 2285–2294,
International Convention Centre, Sydney, Australia. PMLR.

Madden, M. G. and T. Howley
2004. Transfer of experience between reinforcement learning environments with
progressive difficulty. Artificial Intelligence Review, 21(3-4):375–398.

Mathewson, K. W. and P. M. Pilarski
2017. Actor-critic reinforcement learning with simultaneous human control and
feedback. CoRR, abs/1703.01274.

Mirowski, P., M. Grimes, M. Malinowski, K. M. Hermann, K. Anderson, D. Teplyashin,
K. Simonyan, A. Zisserman, R. Hadsell, et al.
2018. Learning to navigate in cities without a map. In Advances in Neural Infor-
mation Processing Systems, Pp. 2419–2430.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu
2016. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, Pp. 1928–1937.

Moerland, T. M., J. Broekens, and C. M. Jonker
2020. Model-based reinforcement learning: A survey. arXiv preprint
arXiv:2006.16712.

Nair, A., B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel
2017. Overcoming exploration in reinforcement learning with demonstrations.
CoRR, abs/1709.10089.

Najar, A. and M. Chetouani
2021. Reinforcement learning with human advice: a survey. Frontiers in Robotics
and AI, 8.

127



BIBLIOGRAPHY

Ng, A. Y., D. Harada, and S. J. Russell
1999. Policy invariance under reward transformations: Theory and application
to reward shaping. In Proceedings of the Sixteenth International Conference on
Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999, Pp. 278–287.

Oh, J., Y. Guo, S. Singh, and H. Lee
2018. Self-imitation learning. arXiv preprint arXiv:1806.05635.

Omidshafiei, S., D.-K. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato, M. Campbell,
and J. P. How
2019. Learning to teach in cooperative multiagent reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 33, Pp. 6128–
6136.

Oudeyer, P.-Y. and F. Kaplan
2009. What is intrinsic motivation? a typology of computational approaches. Fron-
tiers in neurorobotics, P. 6.

Parisotto, E., J. L. Ba, and R. Salakhutdinov
2015. Actor-mimic: Deep multitask and transfer reinforcement learning. arXiv
preprint arXiv:1511.06342.

Pathak, D., P. Agrawal, A. A. Efros, and T. Darrell
2017. Curiosity-driven exploration by self-supervised prediction. In International
conference on machine learning, Pp. 2778–2787. PMLR.

Peters, J. and J. A. Bagnell
2010. Policy gradient methods. Scholarpedia, 5(11):3698.

Peters, J. and S. Schaal
2008. Reinforcement learning of motor skills with policy gradients. Neural Networks,
21(4):682–697.

Pirotta, M., M. Restelli, A. Pecorino, and D. Calandriello
2013. Safe policy iteration. In International Conference on Machine Learning,
Pp. 307–315.

Plisnier, H., D. Steckelmacher, D. M. Roijers, and A. Nowé
2019a. The actor-advisor: Policy gradient with off-policy advice. arXiv,
abs/1902.02556.

Plisnier, H., D. Steckelmacher, D. M. Roijers, and A. Nowé
2019b. Transfer reinforcement learning across environment dynamics with multiple
advisors. In BNAIC/BENELEARN.

128



BIBLIOGRAPHY

Precup, D., R. S. Sutton, and S. P. Singh
1998. Theoretical results on reinforcement learning with temporally abstract op-
tions. In 10th European Conference on Machine Learning (ECML), Pp. 382–393.

Raffin, A., A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann
2019. Stable baselines3.

Ravindran, B. and A. G. Barto
2003. Relativized options: Choosing the right transformation. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), Pp. 608–615.

Ring, M. B.
1998. Child: A first step towards continual learning. In Learning to learn, Pp. 261–
292. Springer.

Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al.
2018. A tutorial on thompson sampling. Foundations and Trends® in Machine
Learning, 11(1):1–96.

Rusu, A. A., S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell
2015. Policy distillation. arXiv preprint arXiv:1511.06295.

Sahni, H., B. Harrison, K. Subramanian, T. Cederborg, C. Isbell, and A. Thomaz
2016. Policy shaping in domains with multiple optimal policies: (extended ab-
stract). In Proceedings of the 2016 International Conference on Autonomous Agents
&#38; Multiagent Systems, AAMAS ’16, Pp. 1455–1456, Richland, SC. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

Schulman, J., P. Moritz, S. Levine, M. Jordan, and P. Abbeel
2015. High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov
2017. Proximal policy optimization algorithms. Arxiv pre-print.

Shah, S., D. Dey, C. Lovett, and A. Kapoor
2018. Airsim: High-fidelity visual and physical simulation for autonomous vehicles.
In Field and service robotics, Pp. 621–635. Springer.

Steckelmacher, D.
2020. Model-Free Reinforcement Learning for Real-World Robots. PhD thesis, Uni-
versity of Applied Sciences Utrecht.

129



BIBLIOGRAPHY

Steckelmacher, D., H. Plisnier, D. M. Roijers, and A. Nowé
2019. Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics.
arXiv e-prints, P. arXiv:1903.04193.

Steckelmacher, D., D. M. Roijers, A. Harutyunyan, P. Vrancx, H. Plisnier, and A. Nowé
2018. Reinforcement learning in POMDPs with memoryless options and option-
observation initiation sets. In Proceedings of the AAAI 2018 Conference on Artificial
Intelligence.

Still, S. and D. Precup
2012. An information-theoretic approach to curiosity-driven reinforcement learning.
Theory in Biosciences, 131(3):139–148.

Sutton, R., D. McAllester, S. Singh, and Y. Mansour
2000. Policy Gradient Methods for Reinforcement Learning with Function Approx-
imation. Neural Information Processing Systems (NIPS), P. 7.

Sutton, R. S.
1990. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Machine learning proceedings 1990, Pp. 216–224.
Elsevier.

Sutton, R. S. and A. G. Barto
2018. Reinforcement Learning: An Introduction. MIT Press, Cambridge.

Sutton, R. S., D. A. McAllester, S. P. Singh, Y. Mansour, et al.
1999a. Policy gradient methods for reinforcement learning with function approxima-
tion. In Neural Information Processing Systems (NeurIPS), volume 99, Pp. 1057–
1063.

Sutton, R. S., D. Precup, and S. Singh
1999b. Between mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artif. Intell., 112(1-2):181–211.

Tang, H. and T. Haarnoja
2017. Learning diverse skills via maximum entropy deep reinforcement learning.
URL http://bair. berkeley. edu/blog/2017/10/06/soft-q-learning.

Tanner, B. and A. White
2009. Rl-glue: Language-independent software for reinforcement-learning experi-
ments. The Journal of Machine Learning Research, 10:2133–2136.

Taylor, M. E. and P. Stone
2007. Cross-domain transfer for reinforcement learning. In Proceedings of the 24th
international conference on Machine learning, Pp. 879–886. ACM.

130



BIBLIOGRAPHY

Taylor, M. E. and P. Stone
2009. Transfer learning for reinforcement learning domains: A survey. Journal of
Machine Learning Research.

Taylor, M. E., P. Stone, and Y. Liu
2007. Transfer learning via inter-task mappings for temporal difference learning.
Journal of Machine Learning Research, 8(Sep):2125–2167.

Taylor, M. E., H. B. Suay, and S. Chernova
2011. Integrating reinforcement learning with human demonstrations of varying
ability. In The 10th International Conference on Autonomous Agents and Multia-
gent Systems - Volume 2, AAMAS ’11, Pp. 617–624, Richland, SC. International
Foundation for Autonomous Agents and Multiagent Systems.

Thomaz, A. L. and C. Breazeal
2006. Reinforcement learning with human teachers: Evidence of feedback and guid-
ance with implications for learning performance. In Proceedings of the 21st National
Conference on Artificial Intelligence - Volume 1, AAAI’06, Pp. 1000–1005. AAAI
Press.

Thompson, W. R.
1933. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294.

Todorov, E., T. Erez, and Y. Tassa
2012. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, Pp. 5026–5033. IEEE.

Vien, N. A. and W. Ertel
2012. Learning via human feedback in continuous state and action spaces. In
Robots Learning Interactively from Human Teachers, Papers from the 2012 AAAI
Fall Symposium, Arlington, Virginia, USA, November 2-4, 2012.

Warnell, G., N. R. Waytowich, V. Lawhern, and P. Stone
2017. Deep TAMER: interactive agent shaping in high-dimensional state spaces.
abs/1709.10163.

Watkins, C. J. and P. Dayan
1992. Q-learning. Machine learning, 8(3):279–292.

Wexler, B., E. Sarafian, and S. Kraus
2022. Analyzing and overcoming degradation in warm-start reinforcement learning.

131



BIBLIOGRAPHY

Williams, R. J.
1992. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8(3):229–256.

Zhang, A., H. Satija, and J. Pineau
2018. Decoupling dynamics and reward for transfer learning. arXiv preprint
arXiv:1804.10689.

Zhu, Z., K. Lin, and J. Zhou
2020. Transfer learning in deep reinforcement learning: A survey.

132


	Acknowledgement
	Table of Contents
	Introduction
	Background
	The Reinforcement Learning Setting
	Improving Exploration
	The Challenge of Guiding Exploration Through Policy Shaping

	Policy Gradient methods
	Bootstrapped Dual Policy Iteration
	Policy Shaping by Altering the Exploration Strategy
	Probabilistic Policy Reuse
	Policy Intersection


	The Actor-Advisor ()
	Discrete Action Spaces
	Stochastic and Deterministic Advice
	On-policyness and the Learning Correction ()
	Bootstrapped Dual Policy Iteration Leveraging Advice ()

	Continuous Action Spaces
	The Actor-Advisor for Continuous Actions ()

	Is the Learning Correction Always Useful?

	Learning from Human Intervention
	Existing Learning from Human Interaction Techniques
	Reward Shaping
	Human Imitation
	Learning from Demonstrations
	Policy Shaping

	Challenges in Human Feedback
	Helping an Agent Learn to Navigate in a Large Grid-World
	Options
	Evaluation on Five Rooms ()


	Transfer Learning
	Existing Transfer Learning Techniques
	Exploration
	Learning

	Transfer Across Robotic Platforms with Different Sensors
	Reward Shaping for Policy Transfer
	A Drone Flying Down the Street ()

	Transfer from Multiple Advisors
	BDPI with Multiple Advisors ()
	Generalizing Across Multiple Navigation Tasks ()

	Transferring Policies to Kickstart Learning in an Air Compressor Management Problem
	The Air Compressor Management Problem
	Transferring Versus Loading ()

	Reinforcement Learning Web-Service with Transfer Across Users
	The Shepherd Architecture ()
	Evaluation on Lunar Lander ()
	Bored in the city: a Web Application to Visit Brussels ()


	Self-Transfer
	The Self-Transfer Setting
	Conventional Transfer Versus Self-Transfer
	Dual Policy Distillation

	Self-Transfer in Continuous Action-Space Environments ()
	Self-Transfer in Discrete Action-Space Environments
	BDPI with Probabilistic Policy Reuse ()
	The Virtual Office Environment ()


	Conclusion
	Future Research Avenues
	Life-Long Transfer
	Policy Distillation Between Different RL algorithms
	Extracting Advice From Biometrics
	RL Environments



