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Introduction

• Who am I?
• PhD student at the AI Lab (Applied Research)

• Under supervision of prof. Johan Loeckx

• Research interests in applied AI and cybersecurity

• What is this guest lecture about?
• Variants of finite state machines and applications

• Our hierarchical extension on finite state machines
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Outline of the lecture

• Preliminary knowledge:
• Terminology + basics of automata theory

• Tries, factor automata, and factor oracles

• Our research at the AI lab:
• Hierarchical-alphabet automata (HAAs)

• Hierarchical factor oracles (HFOs)

• Applications of our research:
• Anomaly detection with the HFO
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Terminology

• Alphabet: finite set of symbols

• Words: concatenations of zero or more symbols

• Factors: contiguous subsequences of a word
• Prefix: a factor at the beginning of a word

• Suffix: a factor at the end of a word

• Language: subset of the infinite set of possible words we can 

create using an alphabet!
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Terminology: Examples

• Alphabet: { a, b, c, …, 3, 4 }

• Words: { "", "a", "abc", "cars", "3x4mpl3", … }

• Factors: actor is a factor of factory
• Prefix: fact is a factor and prefix of factory

• Suffix: ory is a factor and suffix of factory

• Languages: a*b*, the set of factors of a word, …

6



Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F
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Finite State Machines

• Acceptance and rejection of words:
• A finite state machine recognizes a language:

• It accepts words part of that language

• It rejects words not part of the language

• Start at the initial state q0 + first symbol of your input word

• Repeatedly follow δ with current state + symbol of word:

• Accepting state after full word? Word is accepted

• Normal state or no transition? Word is rejected
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Applications of FSMs

• Anomaly detection on 

system call sequences

Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2000, May). A fast automaton-based method for detecting anomalous 

program behaviors. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001 (pp. 144-155). IEEE.
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Tries

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf 

represents words from its set

• Example:
• Trie for the set { three, tree, trie }
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Tries

 
 

 

 

 

 

  

 

 

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf 

represents words from its set

• Example:
• The word tre is not in { three, tree, trie }
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Construction Algorithm of Tries
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Applications of Tries

• Efficient data structure, storing words based on prefixes
• Eliminates duplicate prefixes, allows for efficient search
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Interactive Demonstration of Tries

32



Factor Automata

• Definition:
• Factor automaton of a word x is 

the minimal deterministic 

automaton that recognizes the 

factors of x

Crochemore, M., & Hancart, C. (1997). Automata for matching patterns. Handbook of Formal Languages: Volume 2. Linear 
Modeling: Background and Application, 399-462.
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Factor Oracles

• Definition:
• Acyclic automaton built on a (set 

of) word(s), recognizes at least all 

factors of this (set of) word(s)

• Applications:
• Intended for pattern matching

• Computation of repeat factors

• Modelling for music improvisation

Allauzen, C., Crochemore, M., & Raffinot, M. (1999). Factor oracle: A new structure for pattern matching. In SOFSEM’99: 
Theory and Practice of Informatics: 26th Conference on Current Trends in Theory and Practice of Informatics Milovy, Czech 
Republic, November 27—December 4, 1999 Proceedings 26 (pp. 295-310). Springer Berlin Heidelberg.
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Factor Automata vs Factor Oracles

• Factor oracle:
• Acyclic automaton that 

recognizes at least all 

factors of x

• Factor automaton:
• Deterministic automaton that 

recognizes the factors of x
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Factor Automata vs Factor Oracles

• Factor oracle:
• Has an online algorithm

• Constructed in linear time and space

• Memory-efficient improvement over FAs

• Example:
• Factor oracle for {three, trie, tree}
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Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Examples:
• FO for the word "factor"
• FO for the word "bubble"
• FO for the word "eeeeee"
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Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Example: "factor"
• Word has length 6

• Has 7 (= 6 + 1) states

• Has 11 (= 2 * 6 – 1) transitions

• Why? No repeat symbols = worst-case
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Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Example: "eeeeee"
• Word has length 6

• Has 7 (= 6 + 1) states

• Has 6 transitions

• Why? Every symbol is equal = best-case
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Factor Oracles

• Accepts at least all factors:
• FO for {three, trie, tree}

• Example:
• Accepts "hre", which is a factor

of three
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Factor Oracles

• Accepts at least all factors:
• FO built on {three, trie, tree}

• Example:
• Accepts "ree", which is a factor

of both three and tree
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Factor Oracles

• Accepts at least all factors:
• FO built on {three, trie, tree}

• Example:
• Rejects "trh", because it is not a 

factor of three, trie, or tree
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Construction Algorithm of FOs
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Construction Algorithm of FOs
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Construction Algorithm of FOs
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Interactive Demonstration of FOs
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Applications of FOs

• Used for pattern matching:
• Backwards Oracle Matching (BOM)

• Set Backwards Oracle Matching (SBOM)
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Set Backward Oracle Matching
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Set Backward Oracle Matching
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Set Backward Oracle Matching
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Set Backward Oracle Matching
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Set Backward Oracle Matching
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Set Backward Oracle Matching
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Applications of FSMs (2)

• Anomaly detection on 

system call sequences:
• Could we use factor 

oracles for this?

• Problems:
• Explosion in size

• Narrowly-defined vs.

broad behavior

Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2000, May). A fast automaton-based method for detecting anomalous 

program behaviors. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001 (pp. 144-155). IEEE.
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Outline of the lecture

• Preliminary knowledge:
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Research Goals

• Solving previously-mentioned issues:
• Capturing broad, complex behavior with compact FSMs

• Possible solution:
• Exploiting hierarchical relationships of symbols

• How?
• Words to hierarchical words using hierarchical relationships

• Factors to hierarchical factors

• Finite state machines to alphabet-hierarchical automata

56



Hierarchical Words

• Alphabet: finite set of symbols

• Hierarchical words: concatenations of 

symbols in the form of a rooted tree

• Hierarchical factors: factors of 

hierarchically connected words for every 

level of the hierarchy
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Hierarchical Words

• Alphabet: finite set of symbols

• Hierarchical words: concatenations of 

symbols in the form of a rooted tree

• Hierarchical factors: factors of 

hierarchically connected words for every 

level of the hierarchy

Hierarchical 

factors:Hierarchical 

word:
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Hierarchical Words

• Where is hierarchy relevant?
• Language: words, sentences, paragraphs

• Music: individual notes, chords

• Action: actions into sequence of sub-actions

• Hierarchy in cybersecurity? 
• Parent-child relationships between processes: 

one process can spawn others
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Hierarchical-Alphabet Automata

• Intuitively:
• Hierarchical variant of regular FSMs

• Has a super-transition function Δ that 

maps symbols of its alphabet in one 

level to (at most) one other HAA
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Hierarchical Factor Oracles

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set

root  
├── a  
│  ├── 1  
│  ├── 2  
│  └── 3  
└── b  

 ├── 4  
 ├── 5  
 └── 6
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Hierarchical Factor Oracles root  
├── a  
│  ├── 1  
│  ├── 2  
│  └── 3  
└── b  

 ├── 4  
 ├── 5  
 └── 6

root  
├── a  
│  └── 1  

└── b

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set
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Hierarchical Factor Oracles root  
├── a  
│  ├── 1  
│  ├── 2  
│  └── 3  
└── b  

 ├── 4  
 ├── 5  
 └── 6

root  
├── a  
│  └── 1  
└── b  

 ├── 5  
 ├── 6  
 └── 7

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set
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Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
• Perform a breadth-first traversal on each hierarchical sequence

• During the traversal, build a list of regular sequences

• After traversal: build regular FOs using regular sequences

• Create super-transitions from oracle to oracle

root  
├── a  
│  ├── 1  
│  ├── 2  
│  └── 3  
├── b  
│  ├── 4  
│  ├── 5  
│  └── 6  
└── a  

 ├── 3  
 ├── 2  
 └── 1
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Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
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Accepting or rejecting input

Accepting with
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Accepting or rejecting input

Stack = []

Current = None

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [β]

Current = None

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [α, β]

Current = None

S  
├── α  
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|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [β]

Current = α

S  
├── α  
│  └── a
|  └── b
└── β

 └── c

 

 
 

    

 

 

 

 

 

 

 
 

  

 

 

 

 

 

   

 

 

72



Accepting or rejecting input

Stack = [b, β]

Current = α

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [a, b, β]

Current = α

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [b, β]

Current = a

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [β]

Current = b

S  
├── α  
│  └── a
|  └── b
└── β

 └── c

 

 
 

    

 

 

 

 

 

 

 
 

  

 

 

 

 

 

   

 

 

76



Accepting or rejecting input

Stack = []

Current = β

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = [c]

Current = β

S  
├── α  
│  └── a
|  └── b
└── β

 └── c
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Accepting or rejecting input

Stack = []

Current = c

S  
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│  └── a
|  └── b
└── β
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Accepting or rejecting input

Stack = []

Current = None
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├── α  
│  └── a
|  └── b
└── β

 └── c

 

 
 

    

 

 

 

 

 

 

 
 

  

 

 

 

 

 

   

 

 

80



Accepting or rejecting input

accepted by
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Interactive Demonstration of HFOs
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Anomaly Detection

• What is it?
• Finding patterns in data that do not conform to expected behavior

• Relevant in lots of domains and applications, and real-life relevance!

• (Time) series anomaly detection:
• Detecting spikes, drops, out-of-place patterns, unexpected trends, …
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HPM-based Anomaly Detection

• Main focus: anomaly detection in production environments
• Needs to be lightweight due to constraints in resources

• We should never forget rarely-occurring events

• We should be able to adapt to new behavior

• It should be general enough to work on different time series

• It should recognize non-strictly periodic events

• Should have a minimum amount of false positives

Van Onsem, M., De Paepe, D., Hautte, S. V., Bonte, P., Ledoux, V., Lejon, A., ... & Van Hoecke, S. (2022). Hierarchical pattern 

matching for anomaly detection in time series. Computer Communications, 193, 75-81.
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HPM-based Anomaly Detection

• Key idea: extract hierarchical fingerprints from time series
• Store all seen fingerprints in a tree structure

• New fingerprints are marked as possible anomalies

Van Onsem, M., De Paepe, D., Hautte, S. V., Bonte, P., Ledoux, V., Lejon, A., ... & Van Hoecke, S. (2022). Hierarchical pattern 

matching for anomaly detection in time series. Computer Communications, 193, 75-81.
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HPM-based Anomaly Detection
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HPM-based Anomaly Detection
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HPM-based Anomaly Detection
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HPM-based Anomaly Detection
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Interactive Demonstration of HPM
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HPM-based Anomaly Detection

• Disadvantages of basic algorithm:
• Everything is anomalous if you go fine-grained enough

• No temporal anomalies: only new patterns are possible anomalies

• Lack of context: have we seen a factor of fingerprints before?
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Extending HPM with HFOs

• Possible approach:

1. Segmenting: extract subsequences using a sliding window

2. Discretizing: extract fingerprints from above-obtained subsequences

3. Learning: represent consecutive fingerprints as hierarchical words (and HFO)

4. Anomaly detection: calculate score based on largest accepted HFO input
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Extending HPM with HFOs

• Segmenting:

 requests
2022-07-31 22:00:00+00:00 29309
2022-07-31 23:00:00+00:00 29977
2022-08-01 00:00:00+00:00 29748
2022-08-01 01:00:00+00:00 28414
2022-08-01 02:00:00+00:00 27871
...             ...
2022-10-14 17:00:00+00:00 41931
2022-10-14 18:00:00+00:00 41215
2022-10-14 19:00:00+00:00 38529
2022-10-14 20:00:00+00:00 37104
2022-10-14 21:00:00+00:00 34412

[[29309 29977 29748 ... 40237 36560 34145]
[29977 29748 28414 ... 36560 34145 31998]
[29748 28414 27871 ... 34145 31998 31041]
...
[37564 34118 29764 ... 41931 41215 38529]
[34118 29764 29600 ... 41215 38529 37104]
[29764 29600 29485 ... 38529 37104 34412]]
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Extending HPM with HFOs

• Discretizing:

[[29309 29977 29748 ... 40237 36560 34145]
[29977 29748 28414 ... 36560 34145 31998]
[29748 28414 27871 ... 34145 31998 31041]
...
[37564 34118 29764 ... 41931 41215 38529]
[34118 29764 29600 ... 41215 38529 37104]
[29764 29600 29485 ... 38529 37104 34412]]

[[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
...
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]]
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Extending HPM with HFOs

• Learning:

[[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
...
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]]
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Extending HPM with HFOs

• Learning:
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Extending HPM with HFOs

• Advantages over HPM:
• Not everything is anomalous: search finds largest accepting factor

• Temporal anomalies: old patterns are possibly anomalous

• Lack of context: checks for factors of fingerprints

• Advantages over HPM (extended with other state methods):
• Compactness: exploiting hierarchy of discretization for compactness

• Hierarchy: takes hierarchy of discretization into account
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Interactive Demonstration of Algorithm
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