
Hierarchical-Alphabet Automata

and Applications

1

Introduction

• Who am I?
• PhD student at the AI Lab (Applied Research)

• Under supervision of prof. Johan Loeckx

• Research interests in applied AI and cybersecurity

• What is this guest lecture about?
• Variants of finite state machines and applications

• Our hierarchical extension on finite state machines

2

Outline of the lecture

• Preliminary knowledge:
• Terminology + basics of automata theory

• Tries, factor automata, and factor oracles

• Our research at the AI lab:
• Hierarchical-alphabet automata (HAAs)

• Hierarchical factor oracles (HFOs)

• Applications of our research:
• Anomaly detection with the HFO

3

Outline of the lecture

• Preliminary knowledge:
• Terminology + basics of automata theory

• Tries, factor automata, and factor oracles

• Our research at the AI lab:
• Hierarchical-alphabet automata (HAAs)

• Hierarchical factor oracles (HFOs)

• Applications of our research:
• Anomaly detection with the HFO

4

Terminology

• Alphabet: finite set of symbols

• Words: concatenations of zero or more symbols

• Factors: contiguous subsequences of a word
• Prefix: a factor at the beginning of a word

• Suffix: a factor at the end of a word

• Language: subset of the infinite set of possible words we can

create using an alphabet!

5

Terminology: Examples

• Alphabet: { a, b, c, …, 3, 4 }

• Words: { "", "a", "abc", "cars", "3x4mpl3", … }

• Factors: actor is a factor of factory
• Prefix: fact is a factor and prefix of factory

• Suffix: ory is a factor and suffix of factory

• Languages: a*b*, the set of factors of a word, …

6

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

7

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

8

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

9

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

10

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

11

Finite State Machines

• Definition: a five-tuple (Q, Σ, δ, q0, F)
• A finite set of states Q

• An alphabet (or set of symbols) Σ
• A transition function δ, returns a q of Q

• The initial state q0
• A set of accepting states F

12

Finite State Machines

• Acceptance and rejection of words:
• A finite state machine recognizes a language:

• It accepts words part of that language

• It rejects words not part of the language

• Start at the initial state q0 + first symbol of your input word

• Repeatedly follow δ with current state + symbol of word:

• Accepting state after full word? Word is accepted

• Normal state or no transition? Word is rejected

13

Applications of FSMs

• Anomaly detection on

system call sequences

Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2000, May). A fast automaton-based method for detecting anomalous

program behaviors. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001 (pp. 144-155). IEEE.

14

Tries

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf

represents words from its set

• Example:
• Trie for the set { three, tree, trie }

15

Tries

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf

represents words from its set

• Example:
• Trie for the set { three, tree, trie }

16

Tries

• …
• ...

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf

represents words from its set

• Example:
• Trie for the set { three, tree, trie }

17

Tries

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf

represents words from its set

• Example:
• Trie for the set { three, tree, trie }

18

Tries

• Definition:
• Rooted tree associated with a

set of words

• Paths from root to leaf

represents words from its set

• Example:
• The word tre is not in { three, tree, trie }

19

Construction Algorithm of Tries

{trie, tree}

20

Construction Algorithm of Tries

{trie, tree}

21

Construction Algorithm of Tries

{trie, tree}

22

Construction Algorithm of Tries

{trie, tree}

23

Construction Algorithm of Tries

{trie, tree}

24

Construction Algorithm of Tries

{trie, tree}

25

Construction Algorithm of Tries

{trie, tree}

26

Construction Algorithm of Tries

{trie, tree}

27

Construction Algorithm of Tries

{trie, tree}

28

Construction Algorithm of Tries

{trie, tree}

29

Construction Algorithm of Tries

{trie, tree}

30

Applications of Tries

• Efficient data structure, storing words based on prefixes
• Eliminates duplicate prefixes, allows for efficient search

31

Interactive Demonstration of Tries

32

Factor Automata

• Definition:
• Factor automaton of a word x is

the minimal deterministic

automaton that recognizes the

factors of x

Crochemore, M., & Hancart, C. (1997). Automata for matching patterns. Handbook of Formal Languages: Volume 2. Linear
Modeling: Background and Application, 399-462.

33

Factor Oracles

• Definition:
• Acyclic automaton built on a (set

of) word(s), recognizes at least all

factors of this (set of) word(s)

• Applications:
• Intended for pattern matching

• Computation of repeat factors

• Modelling for music improvisation

Allauzen, C., Crochemore, M., & Raffinot, M. (1999). Factor oracle: A new structure for pattern matching. In SOFSEM’99:
Theory and Practice of Informatics: 26th Conference on Current Trends in Theory and Practice of Informatics Milovy, Czech
Republic, November 27—December 4, 1999 Proceedings 26 (pp. 295-310). Springer Berlin Heidelberg.

34

Factor Automata vs Factor Oracles

• Factor oracle:
• Acyclic automaton that

recognizes at least all

factors of x

• Factor automaton:
• Deterministic automaton that

recognizes the factors of x

35

Factor Automata vs Factor Oracles

• Factor oracle:
• Has an online algorithm

• Constructed in linear time and space

• Memory-efficient improvement over FAs

• Example:
• Factor oracle for {three, trie, tree}

36

Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Examples:
• FO for the word "factor"
• FO for the word "bubble"
• FO for the word "eeeeee"

37

Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Example: "factor"
• Word has length 6

• Has 7 (= 6 + 1) states

• Has 11 (= 2 * 6 – 1) transitions

• Why? No repeat symbols = worst-case

38

Factor Oracles

• States and transitions:
• Has exactly m + 1 states

• Between m and 2m – 1 transitions

• Example: "eeeeee"
• Word has length 6

• Has 7 (= 6 + 1) states

• Has 6 transitions

• Why? Every symbol is equal = best-case

39

Factor Oracles

• Accepts at least all factors:
• FO for {three, trie, tree}

• Example:
• Accepts "hre", which is a factor

of three

40

Factor Oracles

• Accepts at least all factors:
• FO built on {three, trie, tree}

• Example:
• Accepts "ree", which is a factor

of both three and tree

41

Factor Oracles

• Accepts at least all factors:
• FO built on {three, trie, tree}

• Example:
• Rejects "trh", because it is not a

factor of three, trie, or tree

42

Construction Algorithm of FOs

43

Construction Algorithm of FOs

44

Construction Algorithm of FOs

45

Interactive Demonstration of FOs

46

Applications of FOs

• Used for pattern matching:
• Backwards Oracle Matching (BOM)

• Set Backwards Oracle Matching (SBOM)

47

Set Backward Oracle Matching

48

Set Backward Oracle Matching

49

Set Backward Oracle Matching

50

Set Backward Oracle Matching

51

Set Backward Oracle Matching

52

Set Backward Oracle Matching

53

Applications of FSMs (2)

• Anomaly detection on

system call sequences:
• Could we use factor

oracles for this?

• Problems:
• Explosion in size

• Narrowly-defined vs.

broad behavior

Sekar, R., Bendre, M., Dhurjati, D., & Bollineni, P. (2000, May). A fast automaton-based method for detecting anomalous

program behaviors. In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001 (pp. 144-155). IEEE.

54

Outline of the lecture

• Preliminary knowledge:
• Terminology + basics of automata theory

• Tries, factor automata, and factor oracles

• Our research at the AI lab:
• Hierarchical-alphabet automata (HAAs)

• Hierarchical factor oracles (HFOs)

• Applications of our research:
• Anomaly detection with the HFO

55

Research Goals

• Solving previously-mentioned issues:
• Capturing broad, complex behavior with compact FSMs

• Possible solution:
• Exploiting hierarchical relationships of symbols

• How?
• Words to hierarchical words using hierarchical relationships

• Factors to hierarchical factors

• Finite state machines to alphabet-hierarchical automata

56

Hierarchical Words

• Alphabet: finite set of symbols

• Hierarchical words: concatenations of

symbols in the form of a rooted tree

• Hierarchical factors: factors of

hierarchically connected words for every

level of the hierarchy

57

Hierarchical Words

• Alphabet: finite set of symbols

• Hierarchical words: concatenations of

symbols in the form of a rooted tree

• Hierarchical factors: factors of

hierarchically connected words for every

level of the hierarchy

Hierarchical

factors:Hierarchical

word:

58

Hierarchical Words

• Where is hierarchy relevant?
• Language: words, sentences, paragraphs

• Music: individual notes, chords

• Action: actions into sequence of sub-actions

• Hierarchy in cybersecurity?
• Parent-child relationships between processes:

one process can spawn others

59

Hierarchical-Alphabet Automata

• Intuitively:
• Hierarchical variant of regular FSMs

• Has a super-transition function Δ that

maps symbols of its alphabet in one

level to (at most) one other HAA

60

Hierarchical Factor Oracles

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set

root
├── a
│ ├── 1
│ ├── 2
│ └── 3
└── b

 ├── 4
 ├── 5
 └── 6

61

Hierarchical Factor Oracles root
├── a
│ ├── 1
│ ├── 2
│ └── 3
└── b

 ├── 4
 ├── 5
 └── 6

root
├── a
│ └── 1

└── b

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set

62

Hierarchical Factor Oracles root
├── a
│ ├── 1
│ ├── 2
│ └── 3
└── b

 ├── 4
 ├── 5
 └── 6

root
├── a
│ └── 1
└── b

 ├── 5
 ├── 6
 └── 7

• Hierarchical-alphabet variant of

regular (flat) factor oracles:
• Built using a (set of) hierarchical word(s)

• Accepts hierarchical factors of its set

63

Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
• Perform a breadth-first traversal on each hierarchical sequence

• During the traversal, build a list of regular sequences

• After traversal: build regular FOs using regular sequences

• Create super-transitions from oracle to oracle

root
├── a
│ ├── 1
│ ├── 2
│ └── 3
├── b
│ ├── 4
│ ├── 5
│ └── 6
└── a

 ├── 3
 ├── 2
 └── 1

64

Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
• Perform a breadth-first traversal on each hierarchical sequence

• During the traversal, build a list of regular sequences

• After traversal: build regular FOs using regular sequences

• Create super-transitions from oracle to oracle

root
├── a
│ ├── 1
│ ├── 2
│ └── 3
├── b
│ ├── 4
│ ├── 5
│ └── 6
└── a

 ├── 3
 ├── 2
 └── 1

65

Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
• Perform a breadth-first traversal on each hierarchical sequence

• During the traversal, build a list of regular sequences

• After traversal: build regular FOs using regular sequences

• Create super-transitions from oracle to oracle

root
├── a
│ ├── 1
│ ├── 2
│ └── 3
├── b
│ ├── 4
│ ├── 5
│ └── 6
└── a

 ├── 3
 ├── 2
 └── 1

66

Construction Algorithm for HFOs

• Hierarchical oracle for a set of hierarchical sequences:
• Perform a breadth-first traversal on each hierarchical sequence

• During the traversal, build a list of regular sequences

• After traversal: build regular FOs using regular sequences

• Create super-transitions from oracle to oracle

root
├── a
│ ├── 1
│ ├── 2
│ └── 3
├── b
│ ├── 4
│ ├── 5
│ └── 6
└── a

 ├── 3
 ├── 2
 └── 1

67

Accepting or rejecting input

Accepting with

68

Accepting or rejecting input

Stack = []

Current = None

S
├── α
│ └── a
| └── b
└── β

 └── c

69

Accepting or rejecting input

Stack = [β]

Current = None

S
├── α
│ └── a
| └── b
└── β

 └── c

70

Accepting or rejecting input

Stack = [α, β]

Current = None

S
├── α
│ └── a
| └── b
└── β

 └── c

71

Accepting or rejecting input

Stack = [β]

Current = α

S
├── α
│ └── a
| └── b
└── β

 └── c

72

Accepting or rejecting input

Stack = [b, β]

Current = α

S
├── α
│ └── a
| └── b
└── β

 └── c

73

Accepting or rejecting input

Stack = [a, b, β]

Current = α

S
├── α
│ └── a
| └── b
└── β

 └── c

74

Accepting or rejecting input

Stack = [b, β]

Current = a

S
├── α
│ └── a
| └── b
└── β

 └── c

75

Accepting or rejecting input

Stack = [β]

Current = b

S
├── α
│ └── a
| └── b
└── β

 └── c

76

Accepting or rejecting input

Stack = []

Current = β

S
├── α
│ └── a
| └── b
└── β

 └── c

77

Accepting or rejecting input

Stack = [c]

Current = β

S
├── α
│ └── a
| └── b
└── β

 └── c

78

Accepting or rejecting input

Stack = []

Current = c

S
├── α
│ └── a
| └── b
└── β

 └── c

79

Accepting or rejecting input

Stack = []

Current = None

S
├── α
│ └── a
| └── b
└── β

 └── c

80

Accepting or rejecting input

accepted by

81

Interactive Demonstration of HFOs

82

Outline of the lecture

• Preliminary knowledge:
• Terminology + basics of automata theory

• Tries, factor automata, and factor oracles

• Our research at the AI lab:
• Hierarchical-alphabet automata (HAAs)

• Hierarchical factor oracles (HFOs)

• Applications of our research:
• Anomaly detection with the HFO

83

Anomaly Detection

• What is it?
• Finding patterns in data that do not conform to expected behavior

• Relevant in lots of domains and applications, and real-life relevance!

• (Time) series anomaly detection:
• Detecting spikes, drops, out-of-place patterns, unexpected trends, …

84

HPM-based Anomaly Detection

• Main focus: anomaly detection in production environments
• Needs to be lightweight due to constraints in resources

• We should never forget rarely-occurring events

• We should be able to adapt to new behavior

• It should be general enough to work on different time series

• It should recognize non-strictly periodic events

• Should have a minimum amount of false positives

Van Onsem, M., De Paepe, D., Hautte, S. V., Bonte, P., Ledoux, V., Lejon, A., ... & Van Hoecke, S. (2022). Hierarchical pattern

matching for anomaly detection in time series. Computer Communications, 193, 75-81.

85

HPM-based Anomaly Detection

• Key idea: extract hierarchical fingerprints from time series
• Store all seen fingerprints in a tree structure

• New fingerprints are marked as possible anomalies

Van Onsem, M., De Paepe, D., Hautte, S. V., Bonte, P., Ledoux, V., Lejon, A., ... & Van Hoecke, S. (2022). Hierarchical pattern

matching for anomaly detection in time series. Computer Communications, 193, 75-81.

86

HPM-based Anomaly Detection

87

HPM-based Anomaly Detection

88

HPM-based Anomaly Detection

89

HPM-based Anomaly Detection

90

Interactive Demonstration of HPM

91

HPM-based Anomaly Detection

• Disadvantages of basic algorithm:
• Everything is anomalous if you go fine-grained enough

• No temporal anomalies: only new patterns are possible anomalies

• Lack of context: have we seen a factor of fingerprints before?

92

Extending HPM with HFOs

• Possible approach:

1. Segmenting: extract subsequences using a sliding window

2. Discretizing: extract fingerprints from above-obtained subsequences

3. Learning: represent consecutive fingerprints as hierarchical words (and HFO)

4. Anomaly detection: calculate score based on largest accepted HFO input

93

Extending HPM with HFOs

• Segmenting:

 requests
2022-07-31 22:00:00+00:00 29309
2022-07-31 23:00:00+00:00 29977
2022-08-01 00:00:00+00:00 29748
2022-08-01 01:00:00+00:00 28414
2022-08-01 02:00:00+00:00 27871
... ...
2022-10-14 17:00:00+00:00 41931
2022-10-14 18:00:00+00:00 41215
2022-10-14 19:00:00+00:00 38529
2022-10-14 20:00:00+00:00 37104
2022-10-14 21:00:00+00:00 34412

[[29309 29977 29748 ... 40237 36560 34145]
[29977 29748 28414 ... 36560 34145 31998]
[29748 28414 27871 ... 34145 31998 31041]
...
[37564 34118 29764 ... 41931 41215 38529]
[34118 29764 29600 ... 41215 38529 37104]
[29764 29600 29485 ... 38529 37104 34412]]

94

Extending HPM with HFOs

• Discretizing:

[[29309 29977 29748 ... 40237 36560 34145]
[29977 29748 28414 ... 36560 34145 31998]
[29748 28414 27871 ... 34145 31998 31041]
...
[37564 34118 29764 ... 41931 41215 38529]
[34118 29764 29600 ... 41215 38529 37104]
[29764 29600 29485 ... 38529 37104 34412]]

[[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
...
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]
[Node(depth, slope, inter, …), Node(...), …]]

95

Extending HPM with HFOs

• Learning:

[[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
...
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]
[Node(depth, slope, inter), Node(...), …]]

96

Extending HPM with HFOs

• Learning:

97

Extending HPM with HFOs

• Advantages over HPM:
• Not everything is anomalous: search finds largest accepting factor

• Temporal anomalies: old patterns are possibly anomalous

• Lack of context: checks for factors of fingerprints

• Advantages over HPM (extended with other state methods):
• Compactness: exploiting hierarchy of discretization for compactness

• Hierarchy: takes hierarchy of discretization into account

98

Interactive Demonstration of Algorithm

99

100

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

