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Abstract

Language is a unique hallmark of human intelligence. Our linguistic systems do not only
meticulously serve our communicative needs, they are also incredibly robust to noise,
adaptive to change and they can be learnt e�ciently. One of the grand challenges in AI
consists in the development of truly intelligent autonomous agents with bidirectional com-
munication systems o�ering the same robustness, adaptivity and e�ciency as found in hu-
man languages. Ideally, these communication systems are also transparent and explainable
in human-interpretable terms, which facilitates the veri�cation of their internal consis-
tency, thereby eliciting trust. Today, the design of adequate representations and learning
mechanisms that lead to such communication systems is still an unsolved problem. In this
dissertation, I present novel representations and learning mechanisms that are suitable for
the communication systems of autonomous agents and that exhibit the key desirable prop-
erties of human languages. �ese representations and learning mechanisms are validated
through case studies that tackle visual question answering benchmarks. Visual question
answering involves answering natural language questions about images and requires per-
ceptual, linguistic, and reasoning abilities. I present four main contributions that allow an
agent to represent and acquire linguistic structures on the conceptual, morpho-syntactic,
and semantic level. �e �rst contribution consists in a computational construction gram-
mar that has su�cient representational capacity for the benchmark dataset. Speci�cally,
it provides bidirectional mappings between all questions of the dataset and their under-
lying procedural semantic representations. �e next contributions consist of experiments
where the agent acquires this grammar through task-based communicative interactions.
Concretely, in the �rst experiment, the agent learns to extract meaningful concepts from
continuous sensorimotor observations. Here, I build further on experiments within the
language game paradigm, and I introduce a novel concept representation that is based
on prototype theory. �e second experiment provides an alternative, hybrid approach,
which combines symbolic and sub-symbolic techniques to capture the same concepts in
the form of hybrid procedural semantic representations. In the �nal experiment, I in-
troduce a mechanistic model of two cognitive processes that are central in usage-based
theories of language acquisition: intention reading and pa�ern �nding. �rough these
processes, the agent is able to acquire a grammar through task-based communicative inter-
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actions. In particular, the intention reading process enables the agent to hypothesize about
the intended meaning of an observed u�erance, and the pa�ern �nding process enables
the agent to construct abstract schemata that capture generalisations over form-meaning
mappings. Together, the contributions that I present in this dissertation push forward the
state of the art in the development of autonomous agents with communication systems
o�ering human-like properties. �e methodological advances that I introduce are relevant
to a wide range of application domains, including for example human-robot interaction
systems, conversational agents and intelligent tutoring systems.



Samenvatting

Taal is een uniek kenmerk vanmenselijke intelligentie. Ons taalsysteem is niet enkel uiter-
mate geschikt voor onze communicatieve noden, het is ook zeer robust, �exibel en kan
e�ciënt geleerd worden. Een van de grote uitdagingen binnen de Arti�ciële Intelligentie
bestaat uit het ontwikkelen van intelligente autonome agenten met bidirectionele com-
municatiesystemen die dezelfde robuustheid, �exibiliteit en e�ciëntie als menselijke talen
bezi�en. Idealiter zijn deze communicatiesystemen ook transparant en verklaarbaar in
menselijke termen, aangezien dit de interpretatie en veri�catie van de interne werking van
deze systemen vergemakkelijkt en daardoor vertrouwen uitlokt bij mensen. Vandaag is het
ontwerpen van representaties en leermechanismen die leiden tot zulke communicatiesys-
temen nog steeds een onopgelost probleem. In deze doctoraatsthesis presenteer ik nieuwe
representaties en leermechanismen die geschikt zijn voor de communicatiesystemen van
autonomone agenten en de gewenste eigenschappen van menselijke talen tentoonstellen.
Deze representaties en leermechanismen worden gevalideerd door casestudy’s die de ‘vi-
sual question answering’ taak aanpakken. ‘Visual question answering’ omvat het beant-
woorden van vragen, gesteld in natuurlijke taal, over a�eeldingen en vereist perceptie,
linguı̈stische vaardigheden en redenering. Ik presenteer vier bijdragen die een agent toe-
laten om linguı̈stische structuren op het conceptuele, morfosyntactische en semantische
niveau voor te stellen en te leren. De eerste bijdrage bestaat uit een computationale con-
structiegrammatica die voldoende representatieve capaciteit hee� voor de dataset van de
casestudy. Speci�ek voorziet deze grammatica bidirectionele mappings tussen alle vragen
uit de dataset en hun onderliggende procedurele semantische representatie. De andere
bijdragen bestaan uit experimenten waarbij de agent deze grammatica leert door middel
van taak-gebaseerde communicatieve interacties. In het eerste experiment leert de agent
om betekenisvolle concepten te abstraheren uit continue sensomotorische observaties. Hi-
ervoor bouw ik verder op eerdere experimenten binnen het taalspel-paradigma en intro-
duceer ik een nieuwe representatie voor concepten die gebaseerd is op prototype theorie.
Het tweede experiment bestaat uit een alternatieve hybride aanpak voor het leren van
concepten, waarbij symbolische en subsymbolische technieken gecombineerd worden om
concepten te va�en in de vorm van een hybride procedurele semantische representatie. In
het laatste experiment introduceer ik een mechanistisch model van twee cognitieve pro-
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cessen die centraal staan in gebruiksgebaseerde theoriën van taalverwerving: ‘intention
reading’ en ‘pa�ern �nding’. Door middel van deze processen kan de agent een grammat-
ica leren via taak-gebaseerde communicatieve interacties. In het bijzonder laat ‘intention
reading’ de agent toe om hypotheses te maken over de bedoelde betekenis van een geob-
serveerde uitdrukking en laat ‘pa�ern �nding’ de agent toe om abstracte schema’s te con-
strueren die generalisaties over mappings tussen vorm en betekenis va�en. De bijdragen
die ik in deze doctoraatsthesis presenteer stuwen de state-of-the-art in de ontwikkeling van
autonome agenten met communicatiesystemen met mensachtige eigenschappen vooruit.
De methodologische vernieuwingen die ik introduceer zijn relevant voor een brede waaier
aan applicatiedomeinen, zoals mens-robot interactiesystemen, conversationele agenten en
intelligente leermeestersystemen.
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1.1 Introduction

Language is the quintessential trait of human intelligence. Our linguistic systems are ex-
tremely well-suited for achieving our communicative goals, they are also immensely ex-
pressive, incredibly robust and they can be learned remarkably e�cient and fast. �ese
characteristics stem from the fact that linguistic systems are shaped by evolutionary pro-
cesses (Smith and Szathmáry, 2000; Steels and Szathmáry, 2018). However, the exact mech-
anisms that regulate the variation, selection and self-organisation of linguistic structures,
that drive the emergence and ongoing evolution of human languages and that bring to
bear the properties exhibited by human languages are still heavily debated.

One way to unravel these mechanisms is to equip autonomous arti�cial agents with mech-
anistic models of them and simulate the acquisition, emergence and evolution of linguistic

5
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communication systems. In fact, the development of these mechanistic models and agent-
based communication systems o�ering human-like robustness, �exibility and adaptivity
constitutes a fundamental challenge in arti�cial intelligence and is o�en claimed to be a
necessary precondition for building truly intelligent systems (Mikolov et al., 2016; Van
Eecke and Beuls, 2020). From a computational point of view, such systems are preferably
transparent and explainable in human-interpretable terms as this facilitates the veri�cation
of their internal correctness and consistency (Lowe et al., 2019), and thereby elicits trust.
Today, however, the communication systems of autonomous agents are still far removed
from exhibiting these human-like properties as the design of adequate representations and
learning mechanisms that lead to such systems is an unsolved problem.

�ree main shortcomings can be identi�ed in prior work on the acquisition of agent-based
communication systems. At their core, these communication systems should be able to
perform the basic function of language, namely to express meanings through u�erances
as a speaker, and to retrieve meanings underlying u�erances as a listener. A �rst group
of prior work is targeted towards learning communication systems from corpora of forms
and meanings. While exploring interesting ideas, such approaches have only been demon-
strated on inputs with limited complexity in terms of both forms and meanings, and o�en
have access to additional information next to the raw inputs, such as a prede�ned lexicon or
a priori segmented forms (Doumen et al., forthcoming), i.a. Dominey and Boucher (2005);
Dominey (2005a,b, 2006); Chang (2008); Gaspers et al. (2011, 2016); Gaspers and Cimiano
(2012, 2014) and Abend et al. (2017). In a second group of work, mappings between forms
and meanings are learned via task-oriented, communicative interactions. While this ap-
proach is well suited for autonomous agents, it is always applied to speci�c linguistic phe-
nomena (Doumen et al., forthcoming), such as Russian aspect (Gerasymova and Spranger,
2010, 2012), English spatial expressions (Spranger and Steels, 2015; Spranger, 2015, 2017),
Hungarian agreement (Beuls et al., 2010), or word order in English noun phrases (Van
Eecke, 2018, Ch. 7). A third group of prior work relies on the methodologies from the
Multi-Agent Reinforcement Learning (MARL) paradigm and focusses on learning emer-
gent communication protocols for solving a particular task (Van Eecke and Beuls, 2020),
such as visual question answering (Das et al., 2017b), solving puzzles (Foerster et al., 2016),
negotiation (Cao et al., 2018), reference (Lazaridou et al., 2016b), navigation (Sukhbaatar
et al., 2016; Bogin et al., 2018; Mordatch and Abbeel, 2018), and coordination in self-driving
cars (Resnick et al., 2018). While these approaches achieve impressive results on their re-
spective tasks, they struggle to operationalise some of the key properties found in human
communication systems, which has important repercussions on the emerged languages
(Van Eecke and Beuls, 2020). Many of the aforementioned approaches rely on black-box
architectures, with the MARL paradigm in particular being dominated by neural network-
based methodologies. �is makes it di�cult to gain insights into the acquired languages
and, more importantly, the underlying processes and mechanisms that led to them.

�is dissertation aims to push forward the state of the art in this area of research by pre-
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senting novel representations and learning mechanisms that bring to bear bidirectional
communication systems for autonomous arti�cial agents, that exhibit the key desirable
properties of human languages, such as expressiveness, robustness, e�ciency and adaptiv-
ity, that operate on a larger scale compared to previous work both in terms of the complex-
ity of the input and the linguistic phenomena considered, and that focus on computational
representations and processes that are transparent and human-interpretable.

�e methodology for modelling the communication systems of arti�cial agents adopted in
this dissertation is the language game paradigm (Steels, 1995). �is paradigm tackles the
question of how linguistic conventions can emerge through local interactions and coordi-
nation in a population of autonomous agents that are situated in their native environment.
To investigate the many aspects that are involved in such a modelling e�ort, the language
game paradigm requires a whole-systems approach (Steels et al., 2012). In particular, set-
ting up a language game necessitates the operationalisation of mechanisms taking place on
the sensorimotor, conceptual and linguistic level, all working together to implement the
basic function of language. �is requires theories, methodologies, tools and techniques
that are well-suited for this task, su�ciently advanced and can be integrated with each
other, especially for dealing with the emergence and evolution of more complex phenom-
ena such as grammatical structures. One theory from linguistics that has been particularly
successful in capturing the basic function of language is construction grammar (i.a. Gold-
berg (1995); Kay and Fillmore (1999); Cro� (2001)). In this dissertation, I therefore rely on
Fluid Construction Grammar (FCG) (Steels, 2011a, 2017; van Trijp et al., 2022, h�ps://fcg-
net.org), the most advanced computational construction grammar formalism. Next to this,
procedural cognitive semantics (Woods, 1968; Winograd, 1972; Johnson-Laird, 1977) pro-
vides a framework that elegantly integrates the meaning of natural language u�erances in
sensorimotor processing. �erefore, I use Incremental Recruitment Language (IRL) (Van
den Broeck, 2008; Spranger et al., 2012b), a special-purpose formalism for representing and
processing procedural semantic representations. Both of these tools are integrated in the
Babel so�ware package for running multi-agent language game experiments (Steels and
Loetzsch, 2010, h�ps://emergent-languages.org).

�e contributions of this dissertation focus on the representation, processing, and learning
of linguistic structures that are on the one hand situated on the conceptual level, and on
the other hand on the morpho-syntactic and semantic level. Conceptual structures allow
autonomous agents to link the experiences in their low-level, sensorimotor data streams to
higher-level, symbolic concepts that are meaningful in their environment and for the task
at hand, and with which they can reason. Learning these structures requires to identify
and extract relevant pa�erns in the agents’ sensorimotor data and update them as more
observations become available. Morpho-syntactic and semantic structures further allow
the agents to express those concepts through u�erances that convey information on how
these concepts interact in a particular situation and dampen referential ambiguities for
their interlocutors. Learning these structures is extremely di�cult as only the morpho-

https://fcg-net.org
https://fcg-net.org
https://emergent-languages.org
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syntax can ever be observed in communicative interactions and the underlying semantics
thus needs to be reconstructed. �e methodology for learning these morpho-syntactic and
semantic structures constitutes the most important contribution of this dissertation.

�e remainder of this chapter consists of the following sections. In Section 1.2, I lay out the
objectives of this dissertation and the concrete contributions that tackle them. A�erwards,
I discuss the potential impact of these contributions in Section 1.3. Finally, Section 1.4
provides an overview of the structure of this dissertation.

1.2 Objectives and Contributions

�e primary objective (O1) of this dissertation is the introduction of novel representations
and learning mechanisms that enable autonomous agents to acquire linguistic structures
suitable for solving communicative tasks in their environment and that bring to bear the
key desirable properties of human languages, such as robustness, �exibility, adaptivity,
learning e�ciency and expressiveness. �ese representations and learning mechanism ei-
ther extend earlier work within the language game paradigm, or they are developed from
scratch and inspired on theories, empirical �ndings andmethodologies from arti�cial intel-
ligence, linguistics and cognitive science. �e ultimate goal of this objective is to advance
the state of the art in human-like communication systems for autonomous agents, which
in turn can be bene�cial in two major areas. On the one hand, these developments allow
for conducting more advanced experiments on the emergence and evolution of language
and thereby provide valuable insights into human languages and cognition. On the other
hand, the advancements facilitate the design of the next wave of intelligent systems where
agents and humans communicate through natural language in a way that is more robust,
natural, coherent, and explainable. Examples of such systems include human-robot inter-
action systems, conversational agents and intelligent tutoring systems.

A secondary objective (O2) is to validate the novel representations and learning mecha-
nisms through case studies that tackle challenging communicative tasks in concrete envi-
ronments. In this dissertation, I focus on the task of visual question answering (VQA). First
introduced by Antol et al. (2015), the VQA task involves answering natural language ques-
tions about images, which requires the design and integration of perceptual, linguistic and
reasoning abilities in arti�cial systems. I focus particularly on the CLEVR benchmark task
designed by Johnson et al. (2017a). �is benchmark was speci�cally designed to diagnose
the linguistic and reasoning capabilities of VQA systems and focus less on the perceptual
abilities. In particular, the benchmark provides computationally rendered images of 3D
objects that are relatively easy to process using o�-the-shelf techniques, paired with nat-
ural language questions that feature a wide range of linguistic structures, such as noun
phrases, prepositional phrases, anaphora, conjunction and subordination, and test a wide
variety of reasoning skills, such as counting, a�ribute identi�cation, logical operations,
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spatial operations and comparison. �is level of complexity, both in terms of the provided
input and the variation of linguistic phenomena, combined with the focus on linguistic
and reasoning abilities, make the CLEVR benchmark task well suited for the purposes of
this dissertation.

1.2.1 Main Contributions

�ese two objectives are tackled by �ve main contributions. �e �rst contribution, called
the CLEVR grammar, constitutes a baseline solution to the CLEVR benchmark task. It
captures all the conceptual, morpho-syntactic and semantic structures required to map
all questions of the CLEVR dataset to their underlying meaning representations (and vice
versa), and use these meaning representations to compute the answers. �e other con-
tributions consist of new representations and learning mechanisms that are applied for
learning the conceptual, morpho-syntactic and semantic structures of the CLEVR gram-
mar. Speci�cally, the second, third and fourth contribution focus on learning conceptual
structures, while the ��h contribution focusses on learning morpho-syntactic and seman-
tic structures. �e acquired linguistic structures are evaluated through the communicative
task of visual question answering task on the CLEVR dataset. In what follows, I describe
these contributions in more detail.

�e CLEVR grammar (C1)

Two kinds of representations are central in constructing the CLEVR grammar. On the one
hand, all linguistic knowledge necessary for the benchmark is captured by an inventory
of form-meaning mappings, or constructions, formalised using FCG. �ese constructions
o�er complete coverage of all questions of the CLEVR dataset. In other words, the gram-
mar is able to map between all questions and their underlying meaning representations.
�ese meanings are represented in terms of procedural cognitive semantics, implemented
in IRL. In procedural cognitive semantics, meaning is captured in the form of constraint
networks that can be executed algorithmically. When executed over a symbolic annotation
of the CLEVR images, the IRL meaning representations correctly compute the answers to
all questions of the dataset. �e CLEVR grammar, including both the FCG constructions
and the IRL meaning representations, thus e�ectively solves the CLEVR benchmark task
on the symbolic level.

I show that the CLEVR grammar not only allows the CLEVR benchmark to be solved in
a transparent and human-interpretable manner, it is also easily extensible, more expres-
sive than the CLEVR dataset, does not require any annotated training data and operates
both in comprehension, i.e. mapping questions to meanings, and production, i.e. mapping
meanings to questions. Furthermore, the CLEVR grammar constitutes one of the �rst truly
large-scale FCG grammars, covering more than one million u�erances in both directions
of processing. It thereby contributes to the scaling of computational construction gram-
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mars and demonstrates the potential of recent advances in Fluid Construction Grammar,
such as the introduction of a new high-level notation by Van Eecke (2018).

Methodology for learning grounded concepts through discrimination (C2)

I present an interactive learning approach, through the language game paradigm, where
an agent learns to extract meaningful symbolic concepts from continuous sensorimotor
observations of its environment in order to solve an object reference task. �e concept
representation is inspired by prototype theory (Rosch, 1973) and the learning mechanisms
extend earlier experiments within the language game paradigm (Wellens, 2012). �e no-
tion of discrimination, i.e. maximally separating one object with respect to others in terms
of perceptual observations, plays a central role in shaping the concepts. �e novel method-
ology is applied to the CLEVR dataset for learning the various perceptual concepts it con-
tains, such as colours, shapes andmaterials. �rough a number of experiments, I show that
the proposedmethodology results in a repertoire of concepts that can be learned e�ciently
and rapidly, generalises well to unseen instances, is adaptive to changes in the environ-
ment and o�ers transparent and human-interpretable insights into the agent’s processing
and memory. �ese properties are highly desirable for robotics and interactive task learn-
ing, andmake the proposedmethodology readily applicable to tackle various tasks in those
domains. Additionally, the experiments contribute to the research on the emergence and
evolution of conceptual systems within the language game paradigm.

End-to-end human-interpretable grounded language processing system (C3)

I present the integration of the repertoire of grounded concepts, acquired through the
methodology of C2, in higher-level reasoning tasks. In particular, the acquired percep-
tual concepts are integrated with the procedural semantic representations of the CLEVR
grammar in order to tackle the CLEVR benchmark task. �is integration constitutes a
grounded language processing system that is end-to-end human interpretable, ranging
from the constructional language processing (C1) to the representation and acquisition of
concepts (C2) and their integration in the symbolic processing of the procedural semantic
representations (C1). Within the domain of visual question answering, that is traditionally
dominated by block-box architectures, this constitutes a radically di�erent approach that
focusses on tackling the VQA task in a way that is transparent, human-interpretable, adap-
tive and open-ended. While I demonstrate the fully explainable grounded language pro-
cessing system in a VQA se�ing, the same methodology can be followed to operationalise
similar systems that require a combination of perceptual, linguistic and reasoning abilities.
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Methodology for learning grounded concepts through hybrid procedural seman-
tics (C4)

I contrast the methodologies of C2 and C3 with a novel methodology named hybrid proce-
dural semantics. Hybrid procedural semantics immediately integrates the grounded con-
cept learning task within the visual question answering task. In particular, the grounded
concepts are captured by small, modular and highly specialised image-processing neural
networks. �ese are subsequently integrated in the procedural semantic representations
of the CLEVR grammar, interleaved with existing, symbolic functionality. I show that the
hybrid procedural semantics methodology o�ers an elegant and �exible way to combine
symbolic and sub-symbolic techniques and achieves results on the CLEVR benchmark task
that are competitive with the state of the art. Furthermore, I show that the neural networks
responsible for capturing concepts can be learned e�ciently and are designed to enable the
transparency and open-endedness of the hybrid procedural semantics methodology. �e
main novelty of this methodology is thus the modular and �exible integration of highly ac-
curate sub-symbolic techniques for pa�ern recognition with symbolic reasoning processes
through procedural semantics. Next to VQA, hybrid procedural semantics is directly ap-
plicable in a wide variety of other tasks that require natural language interaction with and
reasoning over images, knowledge graphs or multiple such sources of information.

Mechanisticmodel of intention reading and pattern�nding for learning grammar
(C5)

For the largest experiment and most important contribution of this dissertation, I turn to
the acquisition of morpho-syntactic and semantic structures. Speci�cally, in the previous
contributions, I focussed on learning the perceptual concepts present in the CLEVR dataset
and integrated them in the procedural semantic representations of the CLEVR grammar in
order to solve the CLEVR benchmark task. I thereby relied on the hand-cra�ed FCG con-
structions to perform the linguistic analysis of the questions. �e aim of this contribution
is to learn the FCG constructions of the CLEVR grammar through task-oriented, commu-
nicative interactions. �is requires learning a set of form-meaningmappings that cover the
observed questions of the CLEVR dataset, but also novel ones in the same style. Crucially,
only the questions themselves are ever observed in communicative interactions, implying
that the agent needs to reconstruct their underlying meanings. However, the space of pos-
sible meanings underlying a previously unobserved u�erance is in�nitely large. Managing
the complexity of this space and intelligently navigating it constitutes the main challenge
of this experiment.

I overcome this challenge by relying on two cognitive processes that play a central role in
usage-based theories of language acquisition, namely intention reading and pa�ern �nding
(Tomasello, 2003, 2009b). Speci�cally, I introduce a mechanistic model of intention read-
ing and integrate it with an existing mechanistic model of pa�ern �nding. �e la�er was
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designed to learn form-meaning mappings from annotated corpora (Doumen et al., forth-
coming). Intention reading enables the agent to hypothesise about the intended meaning
of an observed u�erance, while pa�ern �nding enables the agent to construct abstract
schemata that capture generalisations over forms and meanings. I argue that the interplay
of these cognitive capacities reduces the search space of possible meanings and ultimately
allows the agent to incrementally acquire an open-ended FCG grammar that is adequate
for solving the communicative task, in this case question answering, through situated and
local interactions.

I show that the cognitive capacities of intention reading and pa�ern �nding are oper-
ationalised through a number of human-interpretable learning operators that allow the
grammar to be acquired incrementally, e�ciently and rapidly. �ese learning operators
remain ever-adaptive and result in a grammar that is transparent, open-ended and facili-
tates both language comprehension and production.

In sum, this methodology is a major contribution to the research on the emergence of
grammar within the language game paradigm and it advances the state of the art with re-
spect to the development of human-like communication systems for autonomous agents.
Similar to Doumen et al. (forthcoming), the presented experiment provides computational
evidence for the cognitive plausibility of theories from usage-based language acquisition,
in particular intention reading and pa�ern �nding, and corroborates the theoretical under-
pinnings of the �eld of construction grammar. In contrast to Doumen et al. (forthcoming),
the agent does not rely on annotated corpora of forms and meanings, but faces the chal-
lenging task of reconstructing meanings through intention reading over the course of a
series of communicative interactions.

1.2.2 Additional Contributions

Apart from the �ve main contributions that are directly aimed at tackling the two objec-
tives of this dissertation, I describe here one additional contribution that was developed
during my PhD project.

Neural heuristics for computational construction grammar (C6)

�e �eld of construction grammar aims to develop an all-encompassing scienti�c theory of
language. In computational constructional grammar, these theoretical insights and anal-
yses are formalised into concrete processing models (Van Eecke and Beuls, 2018). FCG,
in particular, handles constructional language processing as a state-space search problem
(Bleys et al., 2011; Van Eecke and Beuls, 2017), looking for the sequence of constructions
that successfully maps an u�erance onto its meaning representation or vice versa. A major
issue in FCG and computational construction grammar at large is scaling, as the modelling
and processing of a large number of constructions and all of their intricate relations soon
becomes intractable (van Trijp et al., 2022).
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Inspired by recent successes in arti�cial intelligence that intelligently combine neural net-
works with traditional search techniques (e.g. AlphaGo (Silver et al., 2016)), recurrent
neural networks are integrated into the FCG search process. Speci�cally, encoder-decoder
neural networks are trained on the input of the comprehension or production processes
together with the sequences of constructions that successfully analyse those inputs. �e
trained networks can then be used to predict heuristic values during the FCG search pro-
cess to guide the exploration of branches and the application of particular constructions.
A case study on the CLEVR grammar shows that the neural heuristic methodology out-
performs other state-of-the-art approaches that are aimed at reducing the search space in
FCG.�is case study has been submi�ed as Van Eecke et al. (subm). �e neural heuristics
methodology primarily contributes to the �eld of computational construction grammar
in that it helps to overcome the issue of intractability, which has an impact both theo-
retically and practically (Van Eecke et al., subm). On the theoretical level, being able to
e�ciently process a large number of constructions allows construction grammarians to
gain more insight into the intricate relations of constructions and how a large number of
them cooperates in analysing u�erances. On the practical level, the advances obtained
by scaling computational construction grammar can in turn lead to breakthroughs in the
automatic learning of construction grammars (e.g. Doumen et al. (forthcoming) and C5),
which has a broader impact in usage-based linguistics research (Diessel, 2015), language
acquisition models (Tomasello, 2003) and language technology applications (Nevens et al.,
2019a; Willaert et al., 2020, 2021, 2022; Beuls et al., 2021).

1.3 Potential Impact

�e contributions presented in this dissertation have a potential impact in at least three
areas of research.

1.3.1 Intelligent Systems

Ever since Winograd (1972)’s SHRDLU, researchers in arti�cial intelligence have been de-
veloping systems in which intelligent agents need to communicate, either with humans
or with each other, through natural language. Nowadays, such systems are omnipresent
and tackle a wide variety of tasks. Examples include visual question answering systems,
conversational agents, navigation systems, personal assistants, human-robot interaction
systems and intelligent tutoring systems. �e key to success in such systems is three-
fold. First, it is crucial to develop a precise understanding of the user’s natural language
query. �is requires powerful natural language processing capabilities that can analyse
u�erances in order to produce concrete meaning representations. Second, the meaning
representations should facilitate reasoning within the domain of the application in order
to ful�l the user’s query. �ird, intelligently conversingwith users requires these processes
to be bidirectional, such that concrete meaning representations grounded in the domain
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of the application can also be conceptualised and formulated through natural language
u�erances.

�e contributions presented in this dissertation have the potential of being incorporated in
a wide range of intelligent systems of the kind just described. In particular, the presented
representations and learning mechanisms focus both on conceptual structures, bridging
the gap from low-level, sensorimotor input to a higher level where reasoning and lan-
guage capabilities reside, and morpho-syntactic and semantic structures, i.e. grammar. In
other words, the learning mechanisms focus on constructing meaning representations that
are grounded in the agents’ environment. Moreover, the properties of robustness, �exibil-
ity, adaptivity and open-endedness are central. �ese properties ensure that there is no
separate training phase, but the intelligent systems can keep on learning and adapting in-
de�nitely even when the task or the environment changes. Furthermore, the presented
methodologies focus on transparency and interpretability, which allows users to inspect
the internal reasoning and decision making processes of the intelligent systems. Finally,
the presented methodologies support bidirectional language processing, which allows the
intelligent systems, together with the necessary reasoning components, to produce an-
swers, ask for clari�cations, and �ll potential knowledge gaps in a more natural and co-
herent manner.

In terms of the visual question answering task in particular, this dissertation presents radi-
cally di�erent approaches to tackle this task in a �eld that is dominated by neural network-
based approaches. �ese contributions achieve results that are competitive with the state
of the art whilst possessing the aforementioned highly desirable properties.

As a concrete example of the potential impact of this dissertation in terms of intelligent
systems, the hybrid procedural semantics methodology (C4) is currently being extended
for use in conversational agents, and in particular to tackle the task of visual dialogue. In
this task, the procedural semantic representations not only elegantly and �exibly combine
perceptual and reasoning abilities, they additionally include a symbolic memory compo-
nent that keeps track of what has been said in the conversation. �is further highlights the
bene�ts of the hybrid approach since sub-symbolic perceptual elements can be seamlessly
integrated both in symbolic reasoning and in symbolic memory, but also symbolic mem-
ory elements can be as easily retrieved and related to sub-symbolic perceptual elements.
When successful, further extensions that can additionally incorporate large amounts of
background world knowledge by including knowledge graphs or ontologies come within
reach.

1.3.2 Evolutionary Linguistics

�e potential impact of my dissertation in the �eld of evolutionary linguistics resides in
the advancement of the research on the acquisition of conceptual systems (C2) and the ac-
quisition of grammar (C5). By building further on these contributions, many exciting new
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experiments come within reach. First of all, there is the integration of the aforementioned
contributions. Speci�cally, the acquisition of grounded concepts could be supplemented
with a system that abstracts meaningful semantic categories over these concepts and in
turn uses those semantic categories to guide the intention reading and pa�ern �nding
processes during grammar learning. Such an experiment would allow an intelligent agent
that starts out from scratch to progress through several learning stages and end up with
a bidirectional grammar, e.g. for asking and answering questions, where the perceptual
concepts that are part of the grammar are grounded in the agent’s sensorimotor experi-
ence. Such an experiment would shed light on a large number of mechanisms that are
required for the acquisition of conceptual, morpho-syntactic and semantic structures, and
particularly how these mechanisms interact. Second, there is the question of how these
structures, both conceptual and grammatical, originate and how a community of language
users achieves a consensus over them. �is requires multi-agent experiments where all
agents start without any linguistic structures, but are equipped with precise mechanistic
models of the invention, adoption and alignment mechanisms that are required for estab-
lishing both the conceptual and grammatical structures from the ground up. �e results
of such experiments will lead to a be�er understanding of the mechanisms involved in
the emergence and evolution of conceptual, morpho-syntactic and semantic structures,
and contribute to the hypothesis that linguistic structures emerge through communicative
interactions using general cognitive capacities, instead of being innate.

1.3.3 Construction Grammar

�e contributions presented in this dissertation have a potential impact on both construc-
tion grammar theory and computational construction grammar. In terms of construction
grammar theory, both the CLEVR grammar (C1) and the presented methodology for learn-
ing construction grammars through intention reading and pa�ern �nding (C6) corroborate
many of the theoretical �ndings of the �eld, such as the free combination of constructions
(Goldberg, 2006, p. 22), statistical pre-emption (Goldberg, 2011), and the co-emergence
of constructions and construction-speci�c, functionally motivated grammatical categories
(Cro�, 2001). From a computational point of view, the CLEVR grammar (C1) is one of the
�rst computational construction grammars to operate on this scale in both directions of
processing in a computationally e�cient manner. �is underlines the potential of Fluid
Construction Grammar and its recent additions, such as the new high level notation for
formalising constructions or the ability to hash constructions for more e�cient retrieval
(Van Eecke, 2018). I further contribute to the scaling of computational construction gram-
mar by presenting a concrete methodology for learning heuristics that substantially op-
timise the search process involved in constructional language processing (C6). Both of
these contributions (C1 and C6) constitute concrete technical advances in computational
construction grammar, and in particular in Fluid Construction Grammar. �ese advances
have the potential to push forward the �eld of computational construction grammar, par-
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ticularly by overcoming scaling issues, which in turn allows constructions grammarians to
computationally verify their theories on a larger scale and facilitates the use of computa-
tional construction grammar in usage-based linguistics research, corpus studies, historical
linguistics, language acquisition models and language technology applications (van Trijp
et al., 2022).

1.4 Structure of the Dissertation

�e remainder of this dissertation is structured as follows:

• Chapter 2: Background and Technical Foundations. In this chapter, I lay out
the technical foundations for operationalising the contributions that are presented in
subsequent chapters, together with the broader research context in which these are
embedded. Concretely, I introduce the Babel so�ware package, Fluid Construction
Grammar (FCG), and Incremental Recruitment Language (IRL).�e neural heuristics
methodology (C6) is discussed in the context of Fluid Construction Grammar.

• Chapter 3: Data. �is chapter introduces the CLEVR benchmark dataset (Johnson
et al., 2017a) for the task of visual question answering (VQA).�is benchmark task,
or derivatives thereof, will be used to validate the novel representations and learning
mechanisms introduced in subsequent chapters. A�erwards, this chapter presents
the CLEVR grammar (C1). I motivate why the CLEVR grammar was made in light
of this dissertation and why FCG and IRL are good candidates for operationalising
this and other VQA systems.

• Chapter 4: Learning Concepts through Discrimination. �is chapter intro-
duces the methodology for learning grounded concepts from continuous sensorimo-
tor observations through situated communicative interactions (C2). I �rst discuss
background material on prototype theory and related work on grounded concept
learning. A�erwards, I introduce the methodology and present the various exper-
iments that are designed to highlight the methodology’s desirable properties. �is
chapter also includes the integration of the acquired concepts with the procedural
semantic representations of the CLEVR grammar (C3). Experimental results of this
integration are presented and discussed.

• Chapter 5: Learning Concepts as Neural Modules. �is chapter presents the
hybrid procedural semantics methodology (C4). A�er discussing related approaches
that tackle VQA tasks, I introduce the methodology itself and how it was applied to
the CLEVR dataset. �is includes the design and training of the neural networks
and their integration in IRL. A�erwards, I present the evaluation results of this in-
tegration on the CLEVR benchmark task and compare them to the state-of-the-art
approaches discussed at the beginning of the chapter.
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• Chapter 6: LearningMorpho-Syntactic and Semantic Structures. �is chapter
presents the mechanistic model of intention reading and its integration with that of
pa�ern �nding (C5). I situate this model both with respect to theories of usage-based
language acquisition and computational models of grammar learning. A�erwards,
I introduce the language game that is set up for learning the CLEVR grammar and
discuss the learning operators that implement intention reading and pa�ern �nding.
�ese learning operators fully exploit the capabilities of both FCG and IRL. Finally, I
present the experimental results of the language game experiment and discuss their
theoretical and practical implications.

• Chapter 7: Conclusion. In the �nal chapter, I summarize the contributions of this
dissertation, discuss its achievements and elaborate on future directions of research.
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Preface

In this chapter, Section 2.2 is based on “Nevens, J., Van Eecke, P., & Beuls, K. (2019). A Prac-
tical Guide to Studying Emergent Communication through Grounded Language Games.
In AISB Language Learning for Arti�cial Agents Symposium (pp. 1-8).” and Section 2.3.6 is
based on “Van Eecke, P., Nevens, J., & Beuls, K. (submi�ed). Neural Heuristics for Scaling
Constructional Language Processing. Journal of Language Modelling.”

2.1 Introduction

In this chapter, I introduce the tools and techniques that are used to operationalise sub-
sequent chapters of this dissertation together with the broader research context in which
these technical foundations are embedded. Concretely, in Section 2.2, I introduce the re-
search �eld of evolutionary linguistics and situate the language game paradigm within
this �eld. A�erwards, I discuss this paradigm in greater depth and provide an overview of
Babel, a �exible toolkit for implementing and running multi-agent language game experi-
ments on the emergence of language. Next, in Section 2.3, I introduce the �eld of construc-
tion grammar followed by an introduction to Fluid Construction Grammar (FCG), the most
advanced computational construction grammar formalism. I rely on FCG to operationalise
the language processing capabilities of autonomous agents in the language game experi-
ments. Finally, Section 2.4 introduces procedural cognitive semantics and the Incremental
Recruitment Language (IRL) system. IRL is a computational formalism for representing,
evaluating and automatically constructing procedural semantic representations, and fa-
cilitates the integration of the meaning of u�erances in the sensorimotor experiences of
autonomous agents. �e aforementioned sections include contributions that I made dur-
ing my PhD project to each of these tools, namely Babel, FCG and IRL. A summary of
this chapter and an overview of these contributions is presented in Section 2.5. Finally, I
note that related work describing the state of the art and relevant background literature
for each of the experiments will be provided separately in the following chapters.

2.2 Language Games with Babel

In this section, I �rst introduce the �eld of evolutionary linguistics, which studies the ori-
gins and evolution of natural languages (Section 2.2.1). �is topic can be studied from three
di�erent perspectives, as identi�ed by Steels (2012b, p. 1-2): the biological perspective,
the social perspective and the cultural perspective. A�er brie�y describing the goals and
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methodologies of these perspectives, I zoom in on the cultural perspective and introduce
three experimental paradigms that allow to study the emergence of linguistic conventions.
�e contributions of this dissertation are situated within one of these paradigms, namely
the language game paradigm. A�er discussing the language game paradigm more elabo-
rately in Section 2.2.2, I provide an overview of prior work that �ts within this paradigm
(Section 2.2.3) and I introduce the Babel so�ware package that is speci�cally designed to
operationalise language game experiments, including all experiments in this dissertation.
Finally, I discuss Babel’s meta-layer architecture (Section 2.2.5) that enables agents to �ex-
ibly handle problem solving and learning.

2.2.1 Evolutionary Linguistics

Researchers in evolutionary linguistics argue that languages are dynamic systems and that
linguistic structures emergence through communicative interactions that are in�uenced by
the context, the interlocutors and past experiences (Hopper, 1987; Jasperson et al., 1994)
(Van Eecke, 2018, p. 16). Underlying this are evolutionary processes, such as variation and
selection, taking place within the linguistic system (Smith and Szathmáry, 2000; Steels
and Szathmáry, 2018) and shaping language according to the communicative goals and
environmental conditions faced by the language community (Spranger, 2016, p. 2). �is
view on the evolution of natural languages is in contrast to the view that linguistic struc-
tures are innate and form a stable, universal grammar that underlies all natural languages
(Chomsky, 1986).

�ree Perspectives on Language Evolution

Evolutionary linguistics is a highly interdisciplinary �eld of research that brings together
evidence from a wide spectrum of scienti�c disciplines. Concretely, the evolution of natu-
ral languages can be studied from three di�erent perspectives (Steels, 2011b) (Steels, 2012b,
p. 1-2) (Spranger, 2016, p. 4-6) (Van Eecke, 2018, p. 16-17):

• Biological. From a biological perspective, the main questions underlying language
evolution concern the neuro-biological structures and processes that are necessary
for language, where these are encoded in the human genome, when these have
evolved, what their genetic bases are and whether any precursors in non-human
primates or other species can be found. From this perspective, one can investigate
how these neuro-biological structures and processes in�uence the general capacity
for language, or how they in�uence particular languages. �ese questions are stud-
ied within the Darwinian genetic evolution framework used in evolutionary biology.
Among others, this includes work by Dediu (2007); Bickerton and Szathmáry (2009);
Fitch (2010); de Boer (2012) and Arbib (2012).

• Social. �is perspective investigates the social mechanisms that are prerequisites
for language emergence, or have in�uenced the evolution of language. �e former
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include proposals such as theory of mind (Dunbar, 1998), joint a�ention (Tomasello,
1995; Carpenter et al., 1998), imitation learning (Tomasello, 1992) or shared inten-
tionality (Tomasello et al., 2005). Examples of the la�er include (changes in) the size
of communities, the social relations within communities, the need to cooperate on
complex tasks and the role of trust (see e.g. Knight et al. (2000), Tomasello (2003) and
Dor et al. (2014)). Methodologies from the �elds of anthropology and social science
are used to study this perspective on language evolution.

• Cultural. Languages evolve as a consequence of their use in communication, mak-
ing them a cultural phenomenon. Cultural evolution can a�ect any unit of language,
including speech sounds, concepts, words, semantic structures, morphological struc-
tures, syntactic structures or discourse structures, and encompasses the appearance,
propagation, change, erosion and disappearance of these units. �e cultural perspec-
tive of language evolution deals with the mechanisms underlying these evolutions
and the principles that allow languages to become conventionalised. If these under-
lying mechanisms can be unravelled and one assumes that these mechanisms have
been operating since the very �rst languages, their origins can in principle be recon-
structed (Heine and Kuteva, 2007). To unravel thesemechanisms, methodologies and
processes from linguistics, such as grammaticalization (Hopper and Traugo�, 2003),
evolutionary biology, such as variation, selection, self-organisation and emergent
functionality (Steels, 2012b), and arti�cial intelligence, such as multi-agent systems
(Steels, 1999), evolutionary computation (Smith et al., 2003; Kirby et al., 2008), or
reinforcement learning (Foerster et al., 2016; Lazaridou et al., 2016b) are used.

Despite that any general theory of language should cover all three of these perspectives
(Steels, 2012b, p. 1), they can also be studied independently from each other. �is is be-
cause language evolution processes at the biological, social and cultural level take place at
di�erent time-scales. �ere are, however, strong interactions between these perspectives,
as illustrated by Steels (2012b, p. 3) and Van Eecke (2018, p. 17). For example, theories of
cultural evolution cannot rely on unrealistic assumptions from the social perspective, e.g.
central control over language, or the biological perspective, e.g. mind-reading capabilities.
Moreover, progress from one perspective has repercussions in the other perspectives, re-
sulting in an upward spiralling process. For instance, increased social capabilities require
increased linguistic capabilities, which in turn increases the required brain capacity, which
then further allows for increased social complexities and so on.

In this dissertation, I focus on language evolution from the cultural perspective. �eories
from this perspective should not only be able to explain the emergence of speci�c linguistic
phenomena, but also provide a general explanation of how and why languages emerge or
change through cultural transmission (Steels, 2012b, p. 3).



2.2. LANGUAGE GAMES WITH BABEL 23

Experimental Paradigms

Within the cultural perspective on language evolution, there are three commonly used
experimental paradigms (van Trijp, 2008, p. 39-42) (van Trijp, 2016, p. 11-12) (Van Eecke,
2018, p. 18-20) (Van Eecke and Beuls, 2020):

Iterated Learning investigates how the structure of languages are in�uenced by innate
learning biases in the language learners when language is transmi�ed from one generation
to the next (i.a. Kirby and Hurford (2002); Smith et al. (2003); Kirby et al. (2004); Brighton
et al. (2005) and Kirby et al. (2008)). A central idea within the iterated learning paradigm is
that structural language features arise because languages need to pass through the trans-
mission bo�leneck. Speci�cally, this bo�leneck refers to the fact that it would be infeasible
to pass over the in�nitely large set of all possible u�erances across generations. �erefore,
language learners (children) only observe a small amount of learning data fromwhich they
need to reconstruct the language of their teachers (parents). �is results in a pressure to
obtain linguistic competence that leads the learners to overgeneralise based on their innate
learning biases. In turn, these overgeneralisations propagate to the next generation when
the learners become teachers themselves. �is process continues over many generations
until a stable point is reached. Experiments have shown that this process indeed allows
systematic and compositional languages to emerge.

�e iterated learning paradigm has been operationalised through four di�erent method-
ologies. First, agent-based models have been used to investigate the learner’s innate bi-
ases that could steer the language toward compositional and recursive syntax (Kirby, 2001,
2002; Brighton et al., 2005) and towards one-to-onemappings betweenmeanings and forms
(Smith, 2002, 2004). Second, mathematical models have been used to develop convergence
proofs (Gri�ths and Kalish, 2007). �ird, experiments with human participants have been
used to validate the outcomes of agent-based simulations and thereby reveal the innate
learning biases in humans (Kirby et al., 2008). Finally, the iterated learning paradigm
has been integrated in arti�cial agents that are equipped with deep neural networks (i.a.
Cogswell et al. (2019); Ren et al. (2020)). �e aim of these approaches is to improve system-
aticity and compositionality in emergent communication scenarios within theMulti-Agent
Reinforcement Learning (MARL) paradigm (see below).

In sum, the experiments conducted through the iterated learning paradigm convincingly
show that structural language features can emerge through generational transmission, the
transmission bo�leneck that this entails and innate learning biases. However, these exper-
iments do not focus on achieving communicative success between agents within a single
generation, and the lack of communicative success does not a�ect the linguistic behaviour
of the agents. Instead of interactively sharing, coordinating and aligning linguistic struc-
tures, there is a passive transmission of language from one generation to the next.
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Multi-Agent Reinforcement Learning (MARL) , on a high level, deals with a pop-
ulation of agents that are situated in an environment and learn to perform certain ac-
tions in certain states (called a policy) as to maximise their individual future rewards.
�is paradigm seems well-suited to model the conditions under which human languages
emerge and evolve given that the high-level description of MARL can be easily translated
to an ‘emergent communication’ scenario. In MARL, environments may be partially ob-
servable, requiring the agents to set up a communication protocol in order to complete a
task. A speaker agent can then learn a policy to u�er a particular u�erance (action) in order
to achieve the communicative goal (state). Conversely, the policy of a listener agent corre-
sponds to performing an action in the environment that is relevant for the communicative
goal, e.g. pointing to an object in a reference task, when observing a particular u�erance
(state). �e reward of both speaker and listener re�ects the communicative success of an
interaction, e.g. positive reward when successful and negative reward otherwise.

Emergent communication research within the MARL community has been applied to a
wide range of tasks that typically have a tight connection to real-world applications (Van
Eecke and Beuls, 2020), such as visual dialog (Das et al., 2017b), solving puzzles (Foer-
ster et al., 2016), negotiation (Cao et al., 2018), navigation (Sukhbaatar et al., 2016; Bogin
et al., 2018; Mordatch and Abbeel, 2018; Mul et al., 2019), and coordination in self-driving
cars (Resnick et al., 2018). However, the bulk of research is focussed on reference and
discrimination tasks (i.a. Lazaridou et al. (2016a,b, 2018); Bouchacourt and Baroni (2019);
Graesser et al. (2019); Chaabouni et al. (2021b,a)). �e main goal of all of these experiments
is learning a communication protocol that is e�ective for solving the given task. However,
the conditions faced by the agents in these tasks are o�en far-removed from those under
which human languages have emerged and continuously evolve (Lowe et al., 2019). For in-
stance, many experiments are limited to only speaker agents or only listener agents, with
possibly di�erent internal architectures (e.g. Das et al. (2017b); Bogin et al. (2018); Lazari-
dou et al. (2016b,a, 2018); Chaabouni et al. (2021a)). �is makes it impossible for these
agents to switch from the speaker role to the listener role or vice versa. When bidirec-
tional communication is considered, comprehension and production processes are o�en
not integrated with each other, allowing for separate languages to be learned for speaking
and listening (e.g. Bouchacourt and Baroni (2019); Graesser et al. (2019)). MARL experi-
ments are o�en limited to two agents (e.g. Lazaridou et al. (2016a, 2018); Das et al. (2017b)),
which circumvents many of the problems of learning linguistic conventions, since every
agent participates in every interaction. When a multi-agent se�ing is adopted, learning
is not necessarily decentralised (e.g. Foerster et al. (2016)), which would indicate central
control over language. Additionally, agents are not always fully autonomous, but possess
mind-reading or broadcasting capabilities (e.g. Mordatch and Abbeel (2018)). By the lack of
local interactions between autonomous agents with decentralised learning, the acquired
communication systems cannot bene�t from the robustness that is brought forward by
self-organising systems. Finally, the linguistic inventories of the agents are o�en prede-
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�ned and cannot be expanded dynamically (e.g. Lazaridou et al. (2016b)).

In sum, while the MARL paradigm is theoretically adequate for modelling the conditions
under which human languages emerge and evolve, in practice there is a large gap between
these conditions and the experimental methodologies in current MARL approaches. �is
gap does not hinder the performance of these approaches on their respective tasks, but it
does have important repercussions on the emerged communication systems (Van Eecke
and Beuls, 2020). Speci�cally, the current methodologies used within the MARL paradigm
cannot lead to communication systems with human-like properties, such as robustness,
�exibility, adaptivity, open-endedness and bidirectionality, which makes them currently
less suited to study the mechanisms underlying human language evolution.

Language Games study the emergence of linguistic conventions in a population of ar-
ti�cial agents through routinised local interactions and coordination (Steels, 1995, 1997a,
2012b). �e experiments presented in this dissertation are operationalised through the lan-
guage game paradigm. Having situated this paradigm within the cultural perspective on
language evolution, I will now use the remainder of Section 2.2 to describe this paradigm
in greater detail.

2.2.2 �e Language Game Paradigm

�e language game paradigm tackles the question of how an e�ective and e�cient commu-
nication system can emerge in a population of agents through a series of situated, com-
municative interactions. Each game is played between two agents from the population
that are randomly assigned the discourse roles of speaker and listener. �ese agents fol-
low a particular turn-taking routine or interaction script, where each turn may involve
symbolic communication, physical actions or gesturing. Crucially, all agents are situated
in an environment that may be simulated or physical, they are fully autonomous in that
there is no central control, mind-reading or broadcasting, and their interactions are local
and decentralised. A language game experiment models a particular communicative task
that necessitates the acquisition or emergence of a particular natural language-like phe-
nomenon and its conventionalisation within the population of agents. If successful, the
population of agents will have developed a shared communication system that is adequate
for the communicative task in their native environment.

Complex Adaptive Systems

In the language game paradigm, a community of language users can be seen as a complex
adaptive system (Steels, 2000b). Language game experiments thereby build on four main
principles:

• Variation and selection, for generating variants of linguistic structures and select-
ing them based on �tness under a number of selective pressures faced by a language
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community (Steels, 2012b, p. 14-15), such as communicative success (Clark and Bren-
nan, 1991), cognitive e�ort (Fitch, 2000; de Boer, 2000) and social conformity (Ne�le,
1999)

• Self-organisation, for organising a population-wide coherent language through
local interactions and alignment (Garrod and Doherty, 1994; Pickering and Garrod,
2006) (Steels, 2012b, p. 22-26)

• Level formation, by (possibly hierarchical) schema formation over semantic and
syntactic structures (Steels, 1997b)

• Reinforcement learning, by creating a positive feedback loop between success
and use of linguistic structures (Steels, 2012b, p. 24).

Such complex adaptive systems are well-known for solving problems in a manner that is
robust, �exible, adaptive and tailored to the environment. �e aim of the language game
paradigm is to achieve exactly these properties in the emergent communication systems.

�e Semiotic Cycle

�e semiotic cycle (Steels, 2012a) captures all processes that both the speaker and the lis-
tener go through during each language game or interaction. �ese are illustrated in Figure
2.1. �e processes of the speaker are shown on the le� side of the �gure and those of the
listener on the right side. Starting at the top, both agents �rst observe the environment in
which they are situated, using their own (possibly di�erent) sensors and construct their
own (possibly di�erent) world model. �is process is called grounding. A�erwards, in a
process called conceptualisation, the speaker determines the information that needs to be
conveyed to the listener in order to successfully complete the communicative task. �is
information is captured in a semantic structure, i.e. the meaning, which is then expressed
through a linguistic expression via a process called production. If the speaker does not pos-
sess adequate linguistic structures to complete production, it might need to invent them.
�e resulting u�erance is passed from the speaker to the listener. �e listener �rst analyses
the u�erance to obtain a semantic structure. �is process is called comprehension. A�er-
wards, the listener interprets this semantic structure with respect to its own world model
and performs an action that is relevant for completing the communicative task. �is action
may include pointing to a particular object, performing a gesture, moving an object, etc.
Alternatively, the listener may signal that it does not understand the u�erance, e.g. when
the speaker has just invented a new linguistic expression or the listener has no adequate
linguistic structures for completing comprehension.

As illustrated in Figure 2.1, the processes just described take place across three di�erent
levels. Speci�cally, grounding takes place on the sensorimotor level. Conceptualisation
and interpretation take place on the conceptual level and production and comprehension
take place on the language level.
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Figure 2.1: �e semiotic cycle captures the processes on the sensorimotor level, the concep-
tual level and the language level that both the speaker and the listener go through during
each interaction in a language game experiment.

Learning through Feedback and Alignment

�e �nal part of every language game interaction, not shown in the semiotic cycle, con-
sists of feedback and learning. Speci�cally, the speaker checks the action performed by
the listener to determine the outcome of the game (success or failure), and provides feed-
back to the listener. �is feedback may consist of pointing to the object that was intended,
performing the gesture that was expected, etc. If the listener had signalled that it did not
understand the u�erance, the process of adoption can start. Here, the listener expands its
communication system based on the observed u�erance, the speaker’s feedback, its own
current semantic and linguistic structures and its world model. Otherwise, both agents
engage in a process called alignment where they update their communication systems
based on the outcome of the game such that these are closer to each other and be�er
suited for future interactions. Alignment in language games is based on ample evidence
from psycholinguistics that human interlocutors rapidly and unconsciously self-organise
their communication systems on all levels during conversation (Garrod and Doherty, 1994;
Pickering and Garrod, 2006; Steels, 2011b, 2012b, p. 23). �e speci�c operationalisation of
alignment depends on the particular language game experiment, but it is typically based
on lateral inhibition1 (Steels, 1995) or statistical pre-emption (Goldberg, 2011; Boyd and
Goldberg, 2011; Goldberg, 2019, Ch. 5). It involves rewarding linguistic structures that can
be used successfully, while punishing competing structures and structures that cannot be
used successfully in communication. Competition may arise, for example, when multiple
linguistic forms express the same semantic structure or vice versa. Crucially, alignment of
communication systems is tightly connected to the self-organisation of linguistic conven-
tions within a population of agents (Steels, 2000b, 2012b, p. 23-24). Speci�cally, it creates
a positive feedback loop between the usage and the success of particular linguistic struc-
tures, which in turn leads to more agents in the population aligning their communication

1Lateral inhibition was �rst proposed by Ernst Mach in the 1860’s to explain edge detection in the receptive �elds
of the human eye (Mach, 1865)
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systems to these structures and ultimately to the conventionalisation of these structures
within the population.

�e main challenge in the operationalisation of a language game consists in �nding ad-
equate grounding, conceptualisation, production, invention, comprehension, interpreta-
tion, alignment and adoption operators that allow the population of agents to develop and
converge on a shared language.

2.2.3 Language Game Experiments

�e language game paradigmhas been used in a large number of experiments to investigate
the acquisition and emergence of vocabularies, concepts and, more recently, grammars.
Together, these experiments convincingly show that populations of agents can converge
on e�ective and e�cient shared communication systems through local interactions, the se-
lection, self-organisation, level-formation and reinforcement learning applied to semantic
and linguistic structures, and a number of communicative pressures. An overview of these
experiments is provided below, following the three waves of language game experiments
as identi�ed by Van Eecke (2018, p. 20-22).

Emergence of Vocabularies

�e most canonical language game experiment is the Naming Game (Steels, 1995), where
a population of agents develops a common vocabulary to refer to objects (or prede�ned
meanings) using proper names. Since its inception, a large literature has accumulated
around this game. For instance, agent-based models were used to replicate the Naming
Game using physical robots (Vogt, 2000; Steels and Kaplan, 2000; Steels and Loetzsch, 2012),
to study a variety of alignment mechanisms (Wellens, 2012) and to study the e�ect of in-
trinsic motivation and active learning mechanisms (Schueller and Oudeyer, 2016). Math-
ematical models have been used to determine scaling laws (Baronchelli et al., 2006), proof
convergence under various conditions (De Vylder and Tuyls, 2006) and study the e�ects of
population structure (Dall’Asta et al., 2006; Liu et al., 2009). �e emergence of set of con-
ventions in the form of the Naming Game has been so extensively studied that it can be
considered a solved problem, and its solutions are re-used in more advanced experiments
(Steels, 2011b).

Emergence of Concepts

In these language game experiments, the agents learn to coordinate their conceptual sys-
tems. �ese experiments extend the Naming Game in that the meanings underlying words
are no longer prede�ned, but they are semantic concepts grounded in the agents’ sensori-
motor experiences. For example, concepts may capture the colour of objects expressed in
a continuous, multi-channel colour space, or an action to perform in terms of the angles of
motors in robotic joints. �e agents thus not only need to learn mappings between words
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and semantic concepts, but simultaneously learn these semantic concepts. Because the sen-
sorimotor observations of autonomous agents are not necessarily identical, e.g. due to dif-
ferent perspectives, di�erent lighting conditions or di�erent sensors, the shared language
that emerges during these language games forms an abstraction layer over these hetero-
geneous observations. Concretely, the agents typically divide their space of sensorimotor
observations in convex regions, each of which corresponds to a particular concept, and
simultaneously establish a shared lexicon for each of these regions. �ese convex regions
are not necessarily identical between the agents and competition may arise as multiple
concepts become associated to a single word or vice versa. �e coordination of conceptual
systems thus requires two types of mechanisms: one for updating concepts such that they
capture distinctions that are functional in the agents’ environment, and one for updating
word-concept mappings. �e �rst type of mechanism typically relies on discrimination
and prototypicality (see e.g. Rosch (1973)), while the second type relies on the solutions
from the Naming Game experiment.

�ese kinds of experiments have been conducted in various domains (Van Eecke, 2018,
p. 21), such as colour (Belpaeme, 2002; Belpaeme and Bleys, 2005a; Steels and Belpaeme,
2005; Bleys and Steels, 2009), spatial relations (Loetzsch et al., 2008a; Spranger, 2012, 2013),
action language (Steels et al., 2012) and vowel systems (de Boer, 2000; Oudeyer, 2001).

Emergence of Grammar

More recently, the focus of language game experiments has shi�ed towards the acquisi-
tion, emergence and evolution of grammar. �ese experiments are considerablymore com-
plex since the agents now need to learn mappings between larger semantic and morpho-
syntactic structures that may feature compositionality or hierarchy. In general, previous
experiments on the emergence of grammar have followed one of two approaches that will
be discussed below. Additionally, mechanisms that enhance the agents’ autonomy, robust-
ness and �exibility have been investigated in the context of grammar learning experiments.
Examples include re-entrance (Steels, 2003; Van Eecke, 2015), where the speaker creates a
model of the listener to detect possible ambiguities, and intrinsic motivation (Steels, 2004a;
Steels and Wellens, 2007; Cornudella Gaya, 2017), where the agents gauge the complexity
of their own communicative interactions and set up a learning trajectory.

�e �rst approach focusses on semantic strategies to dampen referential ambiguities. In
these experiments, the agents learn compositional semantic structures that capture rele-
vant distinctions in the world. Additionally, they learn grammatical structures that con-
vey information about these semantic structures, e.g. how semantic concepts interact by
structuring corresponding lexical items in an u�erance. �e grammatical structure pro-
vides cues for the listener in order to reduce the possible interpretations of this u�erance
or, put di�erently, dampen the referential ambiguity. �e main focus of these approaches
lies on the semantic aspect, namely on learning semantic concepts and the di�erent con-
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ceptualisation strategies that can be used to obtain the compositional semantic structures.
�is approach has been applied to various domains (Van Eecke, 2018, p. 22), such as colour
(Bleys and Steels, 2009; Bleys, 2016), spatial relations (Spranger et al., 2010; Spranger and
Steels, 2015; Spranger, 2015, 2016, 2017), quanti�ers (Pauw and Hilferty, 2012) and logical
operators (Sierra-Santibáñez, 2014; Sierra Santibáñez, 2018).

In the second approach, morpho-syntactic strategies are used to dampen the referential
ambiguity. Speci�cally, these experiments focus on the emergence and evolution of word
order or markers, such as case, gender or number, to indicate which words in the u�er-
ance belong together, thereby again reducing the ambiguity and the cognitive e�ort for
the listener. �is approach has been applied to case systems (Steels et al., 2012; van Trijp,
2013, 2016; Lestrade, 2016), agreement (Beuls et al., 2010; Beuls and Steels, 2013), word
order (Steels and Casademont, 2015; Garcia-Casademont and Steels, 2016), Russian aspect
(Gerasymova and Spranger, 2010, 2012), and the co-emergence of word order and gram-
matical categories (Van Eecke, 2018, Ch. 7).

�e experiments presented later on in this dissertation contribute, on the one hand, to the
literature on the acquisition of concepts (Chapters 4), and on the other hand, to the litera-
ture on the acquisition of grammar (Chapter 6). �ese experiments will push forward the
state of the art by doing away with certain sca�olds that were used in previous experi-
ments, and by operating on a larger scale in terms of the complexity of the input and the
linguistic phenomena considered.

2.2.4 Babel

As discussed in Section 2.2.2, operationalising language game experiments requires imple-
menting the various processes of the semiotic cycle (see Figure 2.1) in amulti-agent se�ing.
While there are a number of so�ware packages available, not all of them are suitable for
the language game paradigm. NetLogo (Wilensky, 1999), for example, is a well-known
platform that allows to model a variety of multi-agent systems from a complex systems
science perspective. It contains examples of multi-agent systems, such as predator-prey
systems, bird �ocking, or ant colonies. However, it focuses solely on se�ing up a multi-
agent architecture and does not contain su�cient functionality for se�ing up processes
on the conceptual or linguistic level. Alternatively, NaminggamesAL (Schueller, 2018) and
MoLE (Modelling Language Evolution) (Lestrade, 2017) o�er more functionality that is tar-
geted towards language game experiments. However, the former can only be used for
se�ing up naming games in simulated environments, while the la�er focuses exclusively
on the language level and in particular on the emergence of case systems (Lestrade, 2016).
Both of these tools thus lack the ability to set up language game experiments that make
use of all three levels described in the semiotic cycle. Finally, EGG (Kharitonov et al., 2019)
is a framework for se�ing up multi-agent emergent communication scenarios. Because
of its origins in the MARL research community, it su�ers from many of the shortcomings
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discussed in Section 2.2.1. To illustrate, the EGG framework provides several neural archi-
tectures, such as RNNs, GRUs, LSTMs or Transformers, to operationalise the ‘communi-
cation channels’ of the agents. �ese architectures, however, do not support bidirectional
communication. Furthermore, the framework only allows to specify agents as either being
‘senders’ or ‘receivers’. Hence, the agents cannot switch their discourse roles. �e Babel
so�ware package has been speci�cally designed to set up language game experiments in-
cluding all processes of the semiotic cycle. Since its inception in 1998 (McIntyre, 1998),
Babel has gone through several revisions (Loetzsch et al., 2008b; Steels and Loetzsch, 2010;
Nevens et al., 2019b). In the following paragraphs, I provide an overview of the so�ware
components that are currently integrated in Babel.

Multi-Agent Architecture

A language game experiment is a multi-agent system. Babel’s ��������������������
provides the necessary abstractions for creating a population of agents, keeping track of
the population structure, selecting agents to participate in an interaction and assigning
them the discourse roles of speaker or listener. By default, the ��������������������
structures the population as a fully-connected network, randomly selects two agents for
every interaction and randomly chooses one to be the speaker and the other to be the
listener. However, all of these aspects are fully customizable. Further, the �����������
��������� provides a generic ‘interact’ function that allows to specify the interaction
script of the language game in terms of the speaker and the listener, which have already
been determined by the framework. Finally, the framework provides functionalities for
running multiple experimental runs, either in series or in parallel.

Sensorimotor Level

�e agents’ action and perception capabilities can be handled either through simulation
or through embodiment using robots. In past experiments, Babel has been used with Sony
AIBO dog-like robots (Steels and Kaplan, 2000), Sony QRIO humanoid robots (Spranger
et al., 2012a), MYON humanoid robots (Hild et al., 2012; Steels et al., 2012), and the PER-
ACT vision system (van Trijp, 2016, Ch. 3). Later, Nevens et al. (2019b) introduced a stan-
dardized interface for connecting Babel to robotic platforms through the ���������������
package. �is package includes a standard set of functions that are useful for implement-
ing grounded language game experiments. Examples include scanning the robot’s envi-
ronment, speaking, listening and pointing. �ese functions are provided in a hardware-
independent manner, allowing Babel users to abstract away over the speci�c implemen-
tations of the robotic platforms and allowing Babel developers to easily add new robotic
platforms bymapping speci�c hardware instructions to these high-level functions. Nevens
et al. (2019b) demonstrated the ��������������� package by integrating the Nao hu-
manoid robot (Gouaillier et al., 2008) in Babel and using it in a didactic colour naming
game experiment.
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Conceptual Level

I���������� R���������� L������� (IRL) is used to bridge the gap between the agents’
world model and the semantic structures that need to be expressed by the speaker or in-
terpreted by the listener. When using IRL, the agents’ semantic structures are expressed
in terms of procedural semantics. Section 2.4 is dedicated to this system.

Language Level

F����C�����������G������ (FCG) is responsible formapping between semantic struc-
tures and linguistic u�erances through constructional language processing. �e agents’
linguistic knowledge is captured in the form of constructions, which are conventionalised
form-meaning mappings. Section 2.3 is dedicated to this system.

Experiment Monitoring

During a language game experiment, the �������� and ������������� frameworks can
be used to keep track of experimental parameters, logging data and evaluation metrics,
export them to data �les and create graphs. �e �������� framework uses an event-
based architecture that cleanly separates the game’s interaction script and processes from
the monitoring, recording and exporting of data. A number of useful events are provided
by default, e.g. at the start and end of every interaction or at the start and end of a series
of interactions. �e framework can be easily used to track experimental parameters or
collect metrics at various points throughout the experiment by specifying new events and
event handlers. �e ������������� framework is used to display the collected data in real
time using dynamically updating graphs or to create static graphs a�er the experimental
runs. Line plots or bar plots can be generated in order to compare di�erent metrics from
one experiment or to compare the same metric across di�erently con�gured experimental
runs. Multiple runs are automatically averaged and statistics, such as standard deviation
or percentiles, can be added.

In sum, the Babel so�ware package o�ers all the necessary tools for se�ing up language
game experiments, implementing all processes of the semiotic cycle and aggregating the
results. �ese tools are highly con�gurable, modular and available through an open-source
license via h�ps://emergent-languages.org. All experiments presented later on in this dis-
sertation are implemented using Babel.

2.2.5 Meta-Layer Architecture

An integral part of the Babel so�ware package is its meta-layer architecture. �rough
this architecture, two layers of processing can be discerned: routine processing and meta-
level processing. As noted by Doumen et al. (forthcoming), this separation follows insights
from cognitive architectures (Laird et al., 1987; Maes and Nardi, 1988), cognitive science

https://emergent-languages.org
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(Evans, 2003; Kahneman, 2011) and neurolinguistics (Osterhout and Holcomb, 1992; Ha-
goort et al., 1993). Routine processing deals with what is already known and can therefore
be implemented e�ciently, while the less e�cient meta-level deals with problem solving
and learning. �is is achieved by the integration of the following components (Beuls et al.,
2012; Van Eecke and Beuls, 2017; Van Eecke, 2018, p. 51-52):

• Diagnostics constantly monitor the processes going on during routine processing.
If one of the diagnostic tests fails, a problem is created. �e problem holds informa-
tion about the process that went wrong.

• Repairs are methods that will try to solve problems. Depending on the type of prob-
lem that was diagnosed, speci�c repairs will be triggered. When a repair can solve
the problem, it returns a �x. Using that �x, routine processing continues. When a
repair cannot generate a �x, other repairs that specialise on the diagnosed problem
can still be tried.

• Consolidation strategies are used at the end of an interaction. Speci�cally, when
the �x turns out to be successful, it can be consolidated into the agent’s memory.
�is �x is then available for routine processing in later interactions. When the �x
did not lead to a successful interaction, it can be discarded again.

In language game experiments, the meta-layer architecture can be used on three di�erent
levels (Beuls et al., 2012; Van Eecke, 2018, p. 52-53):

• Language Level. On this level, diagnostics and repairs operate over linguistic pro-
cessing in terms of constructions. Speci�cally, diagnostics are ran a�er every con-
struction application (see Section 2.3.4) and repairs typically produce �xes by means
of new constructions. For example, �xes can produce constructions that cover part
of the input that was not covered before. If this construction leads to a success-
ful comprehension or production process, it is consolidated for later re-use. �e
meta-layer architecture on the language level is illustrated in Figure 2.2. �e meta-
layer architecture is most tightly integratedwith the processes on the language level.
Concretely, initial versions of this integration were presented by Steels and van Trijp
(2011); Beuls et al. (2012) and van Trijp (2012). Later, a standard library of diagnostics
and repairs was integrated in Fluid Construction Grammar (Van Eecke and Beuls,
2017; Van Eecke, 2018).

• Process Level. On this level, diagnostics and repairs operate on the processes of the
semiotic cycle (see Figure 2.1). Concretely, problems can be diagnosed and repaired
during grounding, conceptualisation, production, comprehension or interpretation.
Note that these diagnostics and repairs operate over comprehension and production
as a whole, while the previous level of diagnostic and repairs are active within these
processes on the level of construction application. An example of a problem on the
process level is that the speaker does not know an u�erance that can express the



34 CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS

semantic structure it just conceptualised. �e process of invention then constitutes
a repair, e.g. by creating one or more new constructions that express the semantic
structure.

• Agent Level. On this level, diagnostics and repairs operate over multiple processes
of the semiotic cycle at once. �e prime example of this level of diagnostics and
repairs is re-entrance (Steels, 2003; Van Eecke, 2015), where the speaker creates a
model of the listener to detect possible ambiguities. �is requires the speaker to run
both comprehension and interpretation as a diagnostic, as if it were the listener, and
to restart its conceptualisation and production processes as a repair.

Figure 2.2: Meta-layer architecture illustrated on the language level. Diagnostic are ran
a�er every construction (cxn) application. Fixes consist of new constructions, which can
be consolidated into the agent’s memory (cxn inventory). Image from Van Eecke and Beuls
(2017)

�e separation between routine processing and meta-layer processing allows the agents
to deal with problem solving and learning on the �y and ensures both robustness and
open-endedness. In other words, it allows the agents to keep on learning and adapting
inde�nitely, which is a highly desirable property of intelligent systems. It also removes
the distinction between a training phase and an operational phase, as is typically found in
many other learning systems.

2.3 Computational Construction Grammar with FCG

�is section introduces Fluid Construction Grammar (FCG) (Steels, 2011a, 2017; van Trijp
et al., 2022, h�ps://fcg-net.org), the most advanced computational construction grammar
formalism. I start this section by providing an overview of the basic tenets of construction
grammar, the challenges and opportunities of computational construction grammar and
a number of computational construction grammar formalisms (Section 2.3.1). Next, I dis-
cuss the main ideas underlying FCG (Section 2.3.3) and how these can be operationalised
through the building blocks of FCG (Section 2.3.4). A�erwards, I zoom in on a recent ad-
dition to FCG that will be relevant later on in this dissertation, particularly in Chapter 6.
�is concerns the integration of a categorial network for modelling the emergence and
evolution of grammatical categories (Section 2.3.5). Finally, I present a novel contribution

https://fcg-net.org
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to FCG that uses recurrent neural networks for providing search heuristics that substan-
tially optimise the search process involved in large-scale construction grammars (Section
2.3.6).

2.3.1 Construction Grammar

�e research �eld of construction grammar (CxG) aims to develop an all-encompassing sci-
enti�c theory of language, from the representations of linguistic structures in the brain to
their usage, acquisition and evolution. In construction grammar, all linguistic knowledge
is captured in terms of constructions. �ese are bidirectional mappings between any kind
of form, i.e. phonology, morphology, syntax, prosody, etc., and any kind of meaning, i.e.
semantics and pragmatics. Construction grammar abandons the generative constituent
structure grammar approach (Chomsky, 1965) that focusses mostly on syntax. �is ap-
proach can also be called the dictionary-and-grammar approach (Taylor, 2012, p. 8), as
linguistic knowledge is captured as a dictionary of words together with grammar rules
for combining those words. While the list of grammar rules should su�ce to capture
every possible u�erance, the dictionary-and-grammar approach both overgenerates, i.e.
produces non-grammatical u�erances, and undergenerates, i.e. fails to produce certain
grammatical u�erances. �ere are, for example, u�erances that are not compositional on
either the form side, such as ‘many a year’, or the meaning side, such as ‘kick the bucket’,
and thus fall outside of the grammar rules. A possible solution is to keep a list of excep-
tions that are still grammatical but not covered by the grammar rules. However, Hilpert
(2014, p. 7) notes that in fact most u�erances have non-compositional aspects to them,
making the list of exceptions far exceed the list of grammar rules. As a result, the list of
grammar rules covers only a narrow subset of actual language use. �erefore, construc-
tion grammar advocates for using the same machinery to model both the compositional
and non-compositional aspects of language (Fillmore, 1988, p. 534). �is machinery is, as
mentioned, a set of constructions.

Basic Tenets

�e basic tenets of construction grammar were laid out by among others Fillmore (1988);
Goldberg (1995); Kay and Fillmore (1999); Cro� (2001) and Goldberg (2006), and can be
summarized in the following four points (van Trijp et al., 2022; Van Eecke, 2018, p. 28):

• All linguistic knowledge is captured by conventionalised form-meaning map-
pings, or constructions. What exactly constitutes form andmeaning can be broadly
interpreted. Everything that is provided as input to the comprehension process can
be considered form, e.g. phonology, morphology, syntax, prosody, intonation, etc.
Likewise, everything that is used as input for production can be consideredmeaning,
e.g. semantics and pragmatics.

• All constructions are situated somewhere on the lexicon-grammar continuum as
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no distinction is made between words and grammar rules. �is continuum stretches
from fully concrete constructions, mapping a speci�c form to a speci�c meaning, to
fully abstract constructions, such as argument structure constructions.

• Constructions cut through all layers of linguistic analysis. Instead of analysing
di�erent layers, such as morphology, phonology, syntax, semantics and pragmatics,
separately, constructions may contain information from any of these layers at the
same time.

• Construction grammars are dynamic systems. �ey capture the linguistic knowl-
edge of an individual. �is constantly changes as constructions become more or less
entrenched through language use or new constructions are learned.

Computational Construction Grammar

�e aim of computational construction grammar (CCxG) is to operationalise these basic
tenets, and to formalise insights and analyses from construction grammar into concrete
processing models (Van Eecke and Beuls, 2018). �ere are �ve main reasons for opera-
tionalising construction grammars in computational models (Steels, 2017; van Trijp et al.,
2022).

• For CxG to become an all-encompassing theory of language, this requires the mod-
elling of thousands of constructions and their intricate interactions. �is quickly
becomes intractable to do by hand. Computational construction grammar allows
to automatically verify (large-scale) construction grammars in terms of consistency
and preciseness.

• Computational construction grammar facilitates corpus studies. �is allows scholars
to automatically track the presence of constructions in texts or to verify the coverage
of a particular grammar.

• Computational construction grammar facilitates the standardisation of construction
grammar models by providing a single representation and processing mechanism
for constructions that is shared across the community. �is allows researchers to
compare, exchange and integrate their �ndings more easily.

• Computational construction grammar allows to integrate �ndings from construction
grammar in other domains of linguistics where computational techniques are used,
e.g. in historical linguistics, language acquisition and language evolution.

• Computational construction grammar allows to integrate �ndings from construction
grammar in language technology applications, such as visual question answering
(Nevens et al., 2019a), visual dialogue (Verheyen et al., 2021) and semantic frame
extraction (Willaert et al., 2020; Beuls et al., 2021; Willaert et al., 2021, 2022).
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Next to the opportunities that computational construction grammar brings, operationalis-
ing concrete processing models of construction grammar also involves a number of chal-
lenges. Speci�cally, it requires (i) a formalism to de�ne constructions in amachine-readable
format, (ii) a processing engine for applying these constructions in both the comprehension
and production direction, and (iii) a computational representation of form and meaning.
�e �rst two challenges have been tackled by several construction grammar formalisms. In
the following section, I provide an overview of these formalisms. For the third challenge,
namely a computational representation of form andmeaning, several options are available.
Linguistic forms can be represented using speech sounds or text. Typically, they are repre-
sented using strings, i.e. sequences of characters, that capture single characters, syllables
or words. For representing meaning, a variety of semantic representations are available.
Among others, one can use predicate logic, frame semantics (Fillmore and Baker, 2001),
Abstract Meaning Representation (AMR) (Banarescu et al., 2013), or procedural semantics
(Woods, 1968; Winograd, 1972; Johnson-Laird, 1977).

Grammar Formalisms

Several computational construction grammar formalisms have been developed, but not all
of them satisfyingly address the challenges posed in the previous paragraph (van Trijp
et al., 2022; Van Eecke, 2018, p. 28). Embodied Construction Grammar (ECG) (Bergen
and Chang, 2005; Feldman et al., 2009) maps forms onto conceptual representations that
parametrize mental simulations. In ECG, “understanding an u�erance thus involves at least
two distinct processes: analysis to determine which constructions the u�erance instantiates,
and simulation according to the parameters speci�ed by those constructions.” (Bergen and
Chang, 2005). However, ECG only supports comprehension and not production. Dynamic
Construction Grammar (DCG) (Dominey et al., 2017) uses neural networks to �nd pa�erns
in mappings between sentences and their argument structure. Because of this black-box
architecture, there is no explicit formalism to de�ne constructions in DCG. Similarly, Tem-
plate Construction Grammar (TCG) (Barrès and Lee, 2014; Barrès, 2017) uses neural net-
works to study the interaction between vision and language. For the same reason as DCG,
it thereby lacks a formalism to de�ne constructions. Sign-Based Construction Grammar
(SBCG) (Boas and Sag, 2012) integrates ideas from construction grammar into Head-Driven
Phrase Structure Grammar (HPSG), which has its origins in generative grammar. SBCG
thereby does not completely embrace the basic tenets of construction grammar. Finally,
Fluid Construction Grammar (Steels, 2011a, 2017; van Trijp et al., 2022) o�ers an open-
ended construction grammar formalism and processing engine that supports both com-
prehension and production. FCG stays close to the basic tenets of construction grammar
and aims to be as theory-neutral as possible with respect to the constructional analysis that
is being implemented. Instead of being a particular theory or a speci�c grammar, FCG can
be thought of as a special-purpose programming language that provides all the necessary
building blocks for operationalising any constructionist approach to language (van Trijp
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et al., 2022).

For a more in depth discussion on di�erences and similarities between computational con-
struction grammar formalisms, I refer to Chang et al. (2012) for ECG-FCG and van Trijp
(2013) for SBCG-FCG.

In the context of this dissertation, FCG is well suited to operationalise the language pro-
cessing capabilities of autonomous agents because of the computational operationalisation
of the basic tenets of construction grammar. Indeed, constructions o�er a tight integra-
tion between form and meaning which is crucial for implementing the basic function of
language, namely to produce u�erances as a speaker (i.e. map meanings to forms) and
to comprehend u�erances as a listener (i.e. map forms to meanings). Furthermore, by
being a dynamic, open-ended system, constructions can be added to FCG at any point in
time, which is crucial for implementing language game experiments on the emergence and
acquisition of grammar, and for learning generalisations of constructions somewhere on
the lexicon-grammar continuum. Finally, by including all layers of linguistic analysis in
constructions, autonomous agents can use them for solving commutative problems.

2.3.2 Fluid Construction Grammar

Over its 20 years of development, Fluid Construction Grammar (FCG) (Steels, 2011a, 2017;
van Trijp et al., 2022, h�ps://fcg-net.org) has become the most advanced and feature-rich
computational construction grammar formalism. Being part of the Babel toolkit, FCG was
initially developed for experiments on the emergence of grammar (see e.g. Steels (2004b);
De Beule and Bergen (2006); Bleys (2008); Beuls and Höfer (2011); Gerasymova et al. (2012);
Pauw and Hilferty (2012) and Steels et al. (2012)). Given these origins, FCG relies on many
of the same principles and ideas as found in the language game paradigm. For instance,
language processing should be bidirectional as this is required to model both the speaker’s
and the listener’s processes in the semiotic cycle. Further, constructions in FCG typically
keep a score, such that agents can self-organise their linguistic systems through variation,
selection and reinforcement learning over constructions. Apart from evolution experi-
ments, FCG was also used for case studies in linguistics from a construction grammar
perspective (see e.g. van Trijp (2011); Beuls (2012) and van Trijp (2014)). A new high-level
notation for FCG was introduced around 2015 and is described in Steels (2017) and Van
Eecke (2018, Ch. 3). �is notation is easier to learn and use for evolutionary linguists
and construction grammarians alike and has quickly become the standard. Since then,
FCG has been used in more advanced experiments on the emergence of grammar (see e.g.
Cornudella Gaya et al. (2016); Garcia-Casademont and Steels (2016), Van Eecke (2018, Ch.
7) and Doumen et al. (forthcoming)), linguistic case studies for various natural languages
(see e.g. Marques and Beuls (2016); Beuls et al. (2017); Beuls (2017); Van Eecke (2017)), a
range of language technology applications (see e.g. Nevens et al. (2019a); Verheyen et al.
(2021); Beuls et al. (2021); Willaert et al. (2020, 2021, 2022)) and an exploratory study on

https://fcg-net.org
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computational creativity (Van Eecke and Beuls, 2018). �e high-level notation of FCG also
facilitated the introduction of more advanced features, such as a library of general purpose
learning operators through pro- and anti-uni�cation of constructions that is integrated in
themeta-layer architecture (Van Eecke and Beuls, 2017; Van Eecke, 2018; Steels et al., 2022),
visualization of constructional dependencies (Hoorens et al., 2017), a categorial network
for modelling emergent grammatical categories (Van Eecke, 2018; Steels et al., 2022) (see
Section 2.3.5), and advanced search heuristics for large-scale grammars (see Section 2.3.6).
Finally, FCG is not only integrated in the Babel so�ware package, it is also made available
through a stand-alone integrated development environment: the FCG Editor (van Trijp
et al., 2022).

2.3.3 Language Processing as Problem Solving

�e main idea underlying FCG is that it treats constructional language processing as a
problem solving process (Bleys et al., 2011; Van Eecke and Beuls, 2017; Steels and Eecke,
2018). Following Van Eecke (2018, p. 33) and Steels and Eecke (2018), I will �rst lay out
the basic components of a state-space problem as de�ned by Russell and Norvig (2009, p.
66), illustrated via the sliding block puzzle of size eight, or the eight-puzzle (Russell and
Norvig, 2009, p. 70), and then map these basic components to constructional language
processing and FCG in particular.

�e eight-puzzle consists of a 3x3 grid with eight sequentially numbered tiles and one free
space. A tile that is adjacent to the free space can slide into it, creating a new free space.
Starting from a random con�guration of tiles, such as the one shown in Figure 2.3a, the
goal is to reach the state depicted in Figure 2.3b.

7 2 4

5 6

8 3 1

(a) Random initial state

1 2

3 4 5

6 7 8

(b)�e goal state

Figure 2.3: An instance of the sliding block puzzle of size eight.

�e problem posed by the eight-puzzle can be de�ned by the following four components:

• �e state representation captures all relevant information about the problem at a
certain point in time in a representation that can be computationally manipulated.
For the eight-puzzle problem, the state representation captures the current con�gu-
ration of tiles, e.g. in an array data structure.
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• �e initial state is the state representation before any problem solving has started.
For the eight-puzzle problem, this can be any randomly selected con�guration of
tiles, such as the one in Figure 2.3a.

• �e operators are actions that can be applied to a state representation and by doing
so create a new state representation. For the eight-puzzle problem, this involves
sliding a tile adjacent to the blank space into the blank space. �e new state consists
of the con�guration of tiles obtained by this move.

• �e goal test is a function that decides whether the current state representation is
a solution to the problem. For the eight-puzzle problem, the con�guration depicted
in Figure 2.3b is the only one that quali�es.

A problem solving process is a process that, starting from the initial state representation,
applies operators to state representations until the goal test is satis�ed. �is constitutes
a search process of �nding the sequence of operators that can transform the initial state
into the goal state. Certain sequences of operators might lead to a dead end, requiring the
search process to backtrack. When multiple operators are possible at every state, as is the
case in the eight-puzzle, a search space is formed. Such search spaces can grow very large
very rapidly. �erefore, heuristics are commonly used to traverse the search space in an
informed way, i.e. deciding which operator to apply in a given state.

�e four components of a state-space problem, illustrated through the eight-puzzle above,
can be mapped to constructional language processing, and in particular to FCG, as follows
(Van Eecke and Beuls, 2017; Steels and Eecke, 2018; Van Eecke, 2018, p. 34-35):

• �e state representation is called the transient structure. It holds all information
that is known up to the current point in processing the u�erance in comprehension
or the meaning representation in production. Represented as a feature structure,
it can hold any kind of linguistic information, including syntactic, semantic, prag-
matic, morphological, prosodic, phonological, phonetic and multi-modal informa-
tion.

• �e initial state is the initial transient structure. It represents the input to the
comprehension or production process as a feature structure. A process called de-
rendering transforms the input into a feature structure. In comprehension, strings
and ordering constraints between them are typically extracted from the input u�er-
ance. In formulation, the input meaning is typically represented as a set of predi-
cates, which can be directly captured as a feature structure.

• �e operators are the constructions. Constructions apply to transient structures and
in doing so create new transient structures. Speci�cally, a construction speci�es a
set of pre-conditions and post-conditions. When a construction’s pre-conditions are
satis�ed by the current transient structure, the construction applies andmanipulates
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the transient structure through its post-conditions. �e constructions are stored in
a construction inventory.

• �e goal test checks a�er each construction application if the current transient
structure is a solution. What exactly constitutes a solution di�ers depending on the
direction of processing. Typical goal tests for comprehension and production are
discussed later on.

�e search process faced by FCG consists in �nding the sequence of constructions to apply
in order to transform the initial transient structure into a transient structure that quali�es
as a solution, and ultimately to map an u�erance onto its meaning representation or vice
versa. �is search process is illustrated in Figure 2.4. From a theoretical perspective, con-
struction grammar allows for the free combination of constructions (Goldberg, 2006, p. 22),
i.e. allowing any construction to apply at any point in time as long as its pre-conditions are
satis�ed. Consequently, multiple constructions could apply at any time and thus �nding
this sequence of construction applications in FCG creates a search space. �is search space
is combinatorial in nature and becomes intractable as the construction inventory grows in
size. �erefore, heuristics that determine which branch to explore and which construction
to apply are necessary.

Figure 2.4: Schematic representation of FCG’s search process. Construction application
leads to the creation of new transient structures. When the transient structure turns out
to be a dead end, backtracking is required, exploring other construction applications. �e
goal test is applied to every transient structure to check for a solution. Image from Van
Eecke (2018, p. 36)
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2.3.4 Building Blocks of FCG

�e building blocks of FCG that were mentioned in the previous section, such as (initial)
transient structures, constructions, construction application, construction inventory, goal tests,
etc., will be described in greater detail in the following paragraphs. �roughout this sec-
tion, I will use a small grammar as a running example. �is grammar allows to map the
u�erance “�e linguist likes the mouse” onto a meaning representation in �rst-order logic
and vice versa2. �e meaning representation for this u�erance is {�����(�), �����(�),
��������(�), �����(�), ��������������(�,�)}. �is meaning representation is visualized
as a semantic network in Figure 2.9.

Transient Structures

�e transient structure is a data structure that holds all information up to the current point
in processing. Concretely, the transient structure is a feature structure that consists of a
number of units, each with a unit name and a unit body. �e unit body consists of a set of
feature-value pairs. Unit names and feature names are constants. Feature values can be of
di�erent types: symbols, logic variables (symbols preceded by a questionmark), sequences,
sets, sets of predicates, sequences of predicates or again feature-value pairs. �e feature
structures used in FCG are not typed and the set of possible features that can be used is
completely open-ended. FCG does not know about nouns, articles, noun phrases, mice or
linguists. �e only “meaning” that is assigned to the symbols in FCG is how these symbols
are used within the grammar.
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Figure 2.5: An example transient structure containing four units: ‘root’, ‘noun-phrase-
19’, ‘the-9’, and ‘mouse-6’. �e ‘constituents’ feature is used to draw the units in a tree
structure.

Figure 2.5 shows an example transient structure. It contains four units: ‘root’, ‘noun-

2�e same grammar can be used to map between “�e mouse likes the linguist” and its meaning representation.
�is grammar is included by default in FCG and the FCG Editor (van Trijp et al., 2022).
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phrase-19’, ‘the-9’, and ‘mouse-6’. �e ‘root’ unit is treated di�erently from the other
units and will be discussed later on. �e other units contain feature-value pairs of varying
types. �ese can be distinguished from each other by their notation. For instance, the
‘args’ feature is a set, denoted by the square brackets. �e ‘sem-cat’ feature has another
feature-value pair as its value, denoted by the indentation. Finally, both the ‘form’ and the
‘meaning’ feature have a set of predicates as their value, indicated by the curly braces.

�e units in Figure 2.5 are visualised as a tree data structure. �is is purely for visualization
purposes. In this example, FCG uses the ‘constituents’ feature, speci�ed as a set of values
in the ‘noun-phrase-19’ unit, to draw the units as such. �is is, however, completely con-
�gurable. Another feature can be speci�ed to control the structuring of units within the
transient structure, e.g. to highlight constituency or dependency structure.

Initial Transient Structure

�e initial transient structure constitutes the start of the search process. �e only infor-
mation it can hold at this point is a formal representation of the input that was provided to
the comprehension or production process. A process called de-rendering transforms this
input into a feature structure. Speci�cally, it will store the input as a feature structure in a
special unit called ‘root’.
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Figure 2.6: �e initial transient structure for the demo grammar in both the comprehension
and production direction.

In comprehension, the input of our running example is the u�erance “�e linguist likes
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the mouse”. �e result of the default de-rendering process is shown in Figure 2.6a. �e
input string is �rst tokenized and each token is given a unique identi�er. �e list of tokens
and ordering relations between them are then transformed into predicates that are stored
under the ‘form’ feature. Speci�cally, the ‘string’ predicate links tokens to identi�ers, the
‘meets’ predicate denotes adjacency, the ‘precedes’ predicate captures precedences and the
‘sequence’ predicate captures the entire list of tokens. Other de-renderers are available, e.g.
for only capturing ‘string’ and ‘meets’ predicates.

In production, the input in the example grammar is a set of predicates in �rst-order logic.
�is can be transformed into a feature-value pair in a straightforward manner, since a set
of predicates is a supported feature type in FCG. �e de-rendering process simply takes
the set of predicates and places them under the feature ‘meaning’ in the ‘root’ unit. �e
result is shown in Figure 2.6b.

Constructions

Constructions are at the heart of FCG. �ey are the search operators that allow FCG to
transform an initial transient structure into a solution transient structure, and ultimately
to map an u�erance onto a meaning representation or vice versa. Crucially, the same
constructions are used both for comprehension and production. Before diving into the
process of construction application, I �rst introduce the design of the constructions that
makes this bidirectional processing feasible.

Figure 2.7: Schematic representation of a construction. Constructions consist of a con-
tributing part, le� of the arrow, and a conditional part, right of the arrow. Units on the
conditional part are split in comprehension locks and production locks (also called formu-
lation locks). Image from Van Eecke (2018, p. 41).

Figure 2.7 shows a schematic representation of a construction. Just like transient struc-
tures, constructions are feature structures that consist of units. In contrast to transient
structures, the unit names in constructions are variables. A construction groups a number
of units under a particular name, such as ‘example-cxn’ in Figure 2.7, and structures them
in a particular way. Concretely, a construction consists of two parts: the conditional part
and the contributing part. �e conditional part is on the right side of the arrow and the
contributing part on the le� side.
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�e conditional part speci�es the construction’s pre-conditions and consists of one or more
units. �e pre-conditions di�er depending on the direction of processing, mainly because
di�erent information is present in the transient structure. �is could already be observed
at the initial transient structure in Figure 2.6. �erefore, units on the conditional part
are again split in two: comprehension locks and production locks. �e former specify the
construction’s pre-conditions in comprehension and the la�er specify the pre-conditions
in production. �e feature-value pairs of the comprehension lock are wri�en below the
line, and those of the production lock above the line. In Figure 2.7, the conditional part
consists of two units: ‘?unit-1’ and ‘?unit-2’.

�e contributing part speci�es the construction’s post-conditions and consists of zero or
more units. �ese do not di�er depending on the direction of processing. �e schematic
construction in Figure 2.7 has two units on the contributing part: ‘?unit-1’ and ‘?unit-3’.

Construction Application

Construction application consists of matching and merging. First, a construction checks
if its pre-conditions match with the transient structure. Matching is a uni�cation-based
process that succeeds when the active lock3 of every unit in the construction’s conditional
part can unify with a unit in the transient structure. When matching succeeds, merging
begins. Merging is another uni�cation-based process that succeeds when both the con-
struction’s contributing part and the non-active locks of the conditional part can unify
with units in the transient structure. Any information from the construction that was not
yet in the transient structure is added by the merge. If no con�icts arise during merge, the
construction has applied successfully.

Figure 2.8 illustrates the application of a single construction. �is �gure consists of the
construction (cxn) itself (Figure 2.8b), the transient structure used for matching (Figure
2.8a) and the transient structure a�er merge (Figure 2.8c). In this example, the �����
���������� applies during comprehension. Hence, it’s pre-conditions for comprehension
are highlighted in blue. �ese pre-conditions are met by unifying the cxn’s ‘?article’ unit
with the ‘the-2’ unit in the transient structure and the cxn’s ‘?noun’ unit with the ‘mouse-
2’ unit in the transient structure. During merge, the non-active locks of these units can
also unify and the only new information is the ‘dependants’ feature speci�ed in the cxn’s
‘?noun’ unit that is added to the ‘mouse-2’ unit in the transient structure. However, because
the cxn’s ‘?article’ unit and ‘?noun’ unit specify the same variable ‘?x’ in the ‘args’ feature,
these are also uni�ed during merge, resulting in the same value for the ‘args’ feature in
both the ‘the-2’ unit and the ‘mouse-2’ unit. �ese variables correspond to variables that
are used in the ‘meaning’ features of these units, thereby connecting the corresponding
�rst-order logic predicates.

3Comprehension locks during comprehension and production locks during production.



46 CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS

Comprehending "the mouse"

Applying

in comprehension

initial
structure

application
process

FCG CONSTRUCTION SET (7)

� 

transient structure

root

0, 0.00:
initial

* mouse-
cxn
(cxn 0.50),
the-cxn
(cxn 0.50)

succeeded, cxn-applied

status cxn-applied

source
structure

3, 3.00: noun-phrase-cxn (cxn 0.50)

� 

form:

meaning:
form:
sem-cat:

args:
syn-cat:

meaning:
form:
sem-cat:

args:
syn-cat:

transient structure

root
{meets(the-2, mouse-2)}

mouse-2
{mouse(?x-85)}

{string(mouse-2, "mouse")}

sem-class: physical-entity  
[?x-85]

lex-class: noun  

the-2
{unique(?x-90)}

{string(the-2, "the")}

sem-class: referent  
[?x-90]

lex-class: article  

(a) Source Structure

applied
construction

resulting
structure

resulting
bindings

((?x-90 . ?x-85) (?x . ?x-90)
(?noun-phrase . noun-phrase-4)
(?noun . mouse-2) (?article . the-2))

meaning (mouse ?x-85)

(unique ?x-85)

args:
sem-cat:

syn-cat:

constituents:

dependents:

?noun-phrase
[?x]

sem-class:
referring-expression  

lex-class:
noun-phrase  

[?article, ?noun]

?noun
[?article]

args:
sem-cat:

syn-cat:

args:
sem-cat:

syn-cat:

# form:

noun-phrase-cxn (cxn 0.50) show attributes

?article
[?x]

sem-class:
referent  

lex-class:
article  

?noun
[?x]

sem-class:
physical-entity  

lex-class: noun  

?noun-phrase
�

{meets(?article,
?noun)}

      �      

� 

form:

sem-cat:

syn-cat:

args:
constituents:

transient structure

root

noun-phrase-4

{meets(the-2, mouse-2)}

sem-class:
referring-expression  

lex-class:
noun-phrase  

[?x-85]

[the-2, mouse-2]

args:
sem-cat:

syn-cat:

form:

meaning:

dependents:

mouse-2
[?x-85]

sem-class:
physical-entity  

lex-class: noun  

{string(mouse-2,
"mouse")}

{mouse(?x-85)}
[the-2]

args:
sem-cat:

syn-cat:

form:

meaning:

the-2
[?x-85]

sem-class:
referent  

lex-class: article  

{string(the-2, "the")}

{unique(?x-85)}

(b) Applied Construction

applied
construction

resulting
structure

resulting
bindings

((?x-90 . ?x-85) (?x . ?x-90)
(?noun-phrase . noun-phrase-4)
(?noun . mouse-2) (?article . the-2))

meaning (mouse ?x-85)

(unique ?x-85)

args:
sem-cat:

syn-cat:

constituents:

dependents:

?noun-phrase
[?x]

sem-class:
referring-expression  

lex-class:
noun-phrase  

[?article, ?noun]

?noun
[?article]

args:
sem-cat:

syn-cat:

args:
sem-cat:

syn-cat:

# form:

noun-phrase-cxn (cxn 0.50) show attributes

?article
[?x]

sem-class:
referent  

lex-class:
article  

?noun
[?x]

sem-class:
physical-entity  

lex-class: noun  

?noun-phrase
�

{meets(?article,
?noun)}

      �      

� 

form:

sem-cat:

syn-cat:

args:
constituents:

transient structure

root

noun-phrase-4

{meets(the-2, mouse-2)}

sem-class:
referring-expression  

lex-class:
noun-phrase  

[?x-85]

[the-2, mouse-2]

args:
sem-cat:

syn-cat:

form:

meaning:

dependents:

mouse-2
[?x-85]

sem-class:
physical-entity  

lex-class: noun  

{string(mouse-2,
"mouse")}

{mouse(?x-85)}
[the-2]

args:
sem-cat:

syn-cat:

form:

meaning:

the-2
[?x-85]

sem-class:
referent  

lex-class: article  

{string(the-2, "the")}

{unique(?x-85)}

(c) Resulting Structure

Figure 2.8: Construction application process in comprehension illustrated through the
���������������.

�e ‘?noun-phrase’ unit does not match with any unit in the transient structure. However,
its pre-conditions contain the ‘hash’ special operator, indicated by the ‘#’ symbol. �is
operator is used to match on features speci�ed in the ‘root’ unit. In Figure 2.8, the com-
prehension lock of the ‘?noun-phrase’ unit can indeed unify with ‘root’. During merge,
the ‘hash’ operator will take these features out of the ‘root’ unit and place them in a new
unit, in this case ‘noun-phrase-4’. It is through this mechanism that constructions process
information from the input, both in comprehension and production.

�e construction application in Figure 2.8 can be summarised as follows. �e �����
���������� looks for something of type article, something of type noun and an adjacency
relation between the forms that are associated to these units. �is is applicable to ‘the-2’
and ‘mouse-2’. By its application, the construction creates something of type noun-phrase
that captures the article and the noun and links together their meaning representations,
such that they have the same referent ‘?x-85’. �is creates a new transient structure that
can again serve as the pre-conditions for other constructions.

Matching and merging are complex uni�cation-based processes. In fact, FCG uses a num-
ber of matching and merging algorithms, depending on the feature type that is being uni-
�ed. Furthermore, next to the ‘hash’ operator, several other operators are implemented in
FCG. For example, operators that prevent constructions from applying an in�nite number
of times (called footprints) or allow for calling an arbitrary function during matching and
merging of a particular feature (procedural a�achment). A complete description of these
features falls outside the scope of this chapter. I refer the reader to Van Eecke (2018, Ch. 3)
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for a complete overview of FCG’s features and to Steels and De Beule (2006) and De Beule
(2012) for a formal speci�cation of matching and merging.

Construction Inventory & Managing Search

�e construction inventory stores all constructions of a grammar and determines how they
are organised. �is can have a large impact on the processing e�ciency of the grammar.
By default, the construction inventory keeps all constructions in an unordered set and
the FCG engine explores the search space in a depth-�rst manner. Speci�cally, the engine
checks (in random order) which constructions can apply to the current transient structure
and creates new transient structures for each successful construction application result.
�ese transient structures are scored according to a heuristic, by default the depth in the
search tree, and the transient structure with the highest score is further explored. �is
process continues until a solution is found, as explained in Section 2.3.3. As the grammar
grows in size, depth-�rst exploration of the search space soon becomes intractable. Several
mechanisms are available for steering the search process (Van Eecke, 2018, p.46-49). I
discuss four of them:

• Construction Sets. Constructions can be structured in a number of ordered sets,
e.g. as in Beuls (2011). First, constructions from the �rst set are tried. If no more
constructions can apply, constructions from the second set are tried, and so on. �e
ordering of the sets depends on the direction of processing. For example, in compre-
hension, morphological constructions are typically tried before grammatical con-
structions. �is allows the grammatical constructions to build on the morphological
information from the input u�erance. In production, these sets are typically tried in
the reverse order such that the grammatical structure is built �rst and then instan-
tiated with morphological elements. While construction sets can drastically reduce
the search space, the idea of ordered sets is not in line with the free combination of
constructions (Goldberg, 2006, p. 22), it becomes tedious to manually determine this
kind of ordering relations between constructions in larger grammars, and it hinders
the automatic learning of construction grammars (Van Eecke et al., subm).

• Construction Networks. Constructions can be organised in priming networks
(Wellens and De Beule, 2010; Wellens, 2011). Organising constructions in a net-
work can be motivated from three di�erent perspectives. First, taxonomic links
or other types of relations between constructions can be an integral part of con-
struction grammar theories, e.g. family relations (Goldberg, 1995, Ch. 3) or priming
networks (Diessel, 2019). Second, relations between constructions can also emerge
from a usage-based perspective, e.g. through schematicity (Langacker, 2000) or co-
occurrences of syntactic pa�erns (Sa�ran, 2001). �ird, priming networks can be
used to operationalise the psychological phenomenon of priming where past obser-
vations non-consciously in�uence current behaviour (Schacter and Buckner, 1998).
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In FCG, priming networks can be used to operationalise either of these three per-
spectives. In terms of the la�er, priming networks capture frequent co-occurrences
of constructions by keeping weighted, directed links between them. �e construc-
tion inventory keeps separate priming networks for each direction of processing.
During constructional processing, when a construction applies, the constructions
that are primed by this application can be found via the outgoing links of the ap-
plied construction in the network. �e primed constructions are tried in the order
of their priming strength. �ese strengths can be learned from a corpus or emerge
in a usage-based manner during a language game, speci�cally by strengthening the
links between co-occurring constructions in successful comprehension or produc-
tion processes. Priming networks are one of the most e�cacious ways of reducing
the search space during constructional processing and can be learned in a straight-
forward manner. �e downsides of priming, however, are that it relies only on local
information, i.e. co-occurrences of constructions, and that the priming network be-
comes sparse and ine�cient when longer-distance links are added (Van Eecke et al.,
subm).

• Hashing Constructions. �e hashing of constructions, introduced by Van Eecke
(2018, p. 48), can optimise the search process involved for morphological and lexical
constructions, which typically make up the largest part of many grammars. �ese
types of constructions typically match on information from the input, making their
pre-conditions rather straightforward. Speci�cally, in comprehension, these con-
structions match on strings, while in production, they match on meaning predicates.
Processing of these constructions can be optimised by keeping two hash tables: one
for comprehension and one for production. �e former uses strings as keys and the
la�er uses meaning predicates as keys. �e values of these keys are the construc-
tions that match on these strings or predicates, respectively. Given the strings or
predicates present in the ‘root’ of the current transient structure, the FCG engine
can now retrieve the set of applicable morphological and lexical constructions in
constant time, without running the computationally expensive (uni�cation-based)
matching algorithm. When the ‘root’ is empty, the large set of morphological and
lexical constructions is no longer considered for matching.

• ScoringConstructions. Abest-�rst exploration of the search space can be obtained
by relying on the scores of constructions. �is strategy is typically used in evolu-
tionary experiments where the scores of constructions re�ect their entrenchment
(Langacker, 1987; Schmid, 2007; De Smet, 2017; �eakston, 2017). Put di�erently,
the score of a construction re�ects how con�dent the agent is that this construction
will lead to successful communication. In these experiments, the scores are typically
updated through lateral inhibition dynamics (Steels, 1995) (see also Section 2.2.2).
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Meaning Representations

FCG does not impose the use of one particular kind of meaning representation. By default,
it can handle any kind ofmeaning representation that consists of predicates that share their
arguments by linking variables, or any kind of meaning representation that can be trans-
formed into such predicates. Commonly used meaning representations in FCG include
�rst-order logic (as in the example grammar used in this section), frame semantics (Fill-
more, 1976) (as in Beuls et al. (2021)), Abstract Meaning Representation (AMR) (Banarescu
et al., 2013), and procedural cognitive semantics formalised through the Incremental Re-
cruitment Language (IRL) system (see Section 2.4).

Goal Tests and Solutions

A�er every construction application, one or multiple goal tests are ran over the resulting
transient structure to see if it quali�es as a solution. In comprehension, common goal
tests include (i) checking whether no more constructions can apply, (ii) checking whether
the resulting meaning predicates are integrated in a single network, and (iii) checking
whether all input strings have been processed. Goal tests in formulation typically check (i)
if there are no more applicable constructions and (ii) if all meaning predicates in the input
have been processed. If one of the speci�ed goal tests fail, the search process continues.
However, if no more constructions can apply to the transient structure, the FCG engine
returns the partial solution.

(unique ?y-14)

(mouse ?y-14)

(deep-affection ?x-49 ?y-14)

(linguist ?x-49)

(unique ?x-49)

Figure 2.9: Meaning representation of the u�erance “�e linguist likes the mouse”.

When a solution is found, or a partial solution needs to be used, the �nal process of the FCG
engine starts: rendering. Rendering consists of transforming the �nal transient structure
into the output. In comprehension, the output is a meaning representation that consists of
predicates. �us, the rendering process scans all units in the transient structure, extracts
the predicates from the ‘meaning’ feature and draws them as a network. Figure 2.9 illus-
trates the meaning network that results from the comprehension of the example u�erance
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“�e linguist likes the mouse”. In formulation, the output is an u�erance. Similar to com-
prehension, all units in the transient structure are scanned, but now the ‘form’ features
are extracted. �is yields a set of ‘string’ predicates and ordering relations between them.
�rough a search process, this set of strings is transformed into an u�erance that satis�es
the ordering relations.

2.3.5 Categorial Networks

A recent addition to FCG, that will play a central role in Chapter 6, is the integration of the
categorial network. Introduced by Van Eecke (2018, Ch. 4), the categorial network allows
to capture a network of emergent grammatical categories that integrates with construc-
tional language processing. Speci�cally, the categories in the categorial network allow to
generalise over feature values that are used in constructions.

Untyped Feature Structures

�e primary components of FCG, namely transient structures and constructions, e�ec-
tively boil down to feature structures. �e feature structures themselves are essentially
made up of features, which are constants, and values, which are constants and logic vari-
ables that can again be structured, e.g. in sequences, sets or feature-value pairs (see Section
2.3.4). Crucially, features in FCG are untyped. In other words, there is no underlying type
de�nition system that speci�es which features can or cannot be used in a grammar or
what type of value each feature can take. �is is a major strength of FCG, as it allows the
formalism to remain completely open-ended and introduce new features and values at any
time. Mainly, it is crucial for being able to learn new constructions on the �y through the
meta-layer architecture (see Section 2.2.5). However, the untyped feature structures also
make it impossible to specify that one particular feature is related to another feature in an
e�cient and scalable manner.

Motivation: Grammar Learning

�e main motivation for incorporating a mechanism that allows to generalise over cat-
egories in FCG is the automatic learning of construction grammars. To illustrate this, I
provide an example that foreshadows the experiment that I will present in Chapter 6. Part
of this experiment consists of a mechanistic model of the cognitive capability of pa�ern
�nding (Tomasello, 2003, 2009b). Pa�ern �nding plays a central role in theories of usage-
based language acquisition and allows language learners to generalise over reoccurring
form-meaning pa�erns in constructions and thereby capture the compositional structure
of language. Speci�cally, startingwith holophrastic constructions, which are idiomaticmap-
pings between complete u�erances and their underlyingmeanings, language learners gen-
eralise over these and learn item-based constructions and lexical constructions. Item-based
constructions capture similarities from holophrase constructions, both in terms of form
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and meaning, and provide open slots for the di�erences. Lexical constructions, on the
other hand, capture those di�erences and provide arguments for �lling those open slots.

Consider a grammar that contains two holophrase constructions: the �����������������
������������� and the�������������������������������4. One could imagine that it is
possible to learn the item-based construction �����������������?�����������5, together
with a ������� and a ��������. �e item-based construction needs a way to represent the
?� slot and a way to indicate which arguments can be used for that slot. �is can be done
by adding a unit to the item-based construction, e.g. the ‘?x-slot-unit’, which has a feature-
value pair that uniquely identi�es the slot, e.g. ‘lex-class: what-size-is-the-x-block-(x)’. To
indicate that both the ������� and the �������� are suitable arguments for that slot, the
same feature-value pair is added to each lexical construction. During processing, these
feature-value pairs can unify (because they are the same) causing either the ������� or
the �������� to �ll the slot of the item-based construction.

What if the ������� acts as an argument for another slot, e.g. in the item-based con-
struction ���������?�����������������������? To solve this, another value needs to
be added to the ‘lex-class’ feature of the �������, namely ‘lex-class: [what-size-is-the-x-
block-(x), how-many-x-objects-are-there-(x)]’. While this is a working solution, it is im-
mediately clear that it is not a scalable one. �e ‘lex-class’ feature in both the item-based
construction and the lexical construction would be an ever-growing list. �is is not only
inelegant, it is also ine�cient in terms of FCG’s matching and merging algorithm. Conse-
quently, there is a need to represent grammatical categories and their relations in a more
e�cient manner. As alluded to before, this will take the form of a network of categories.

�e Categorial Networks System

A few requirements need to be ful�lled to incorporate a network of categories in FCG.
First, the grammatical categories residing in the network need to be coupled to the con-
structions and the network should be consulted during constructional processing, and in
particular during matching and merging. Second, the network needs to be highly dynamic
and accommodate for the open-ended nature of FCG. Since new constructions can be in-
troduced at any point in time, this also holds for grammatical categories. Similarly, con-
structions might become useless or forgo�en, requiring the ability to remove categories
as well. �ird, it should be possible to strengthen or weaken the connection between cat-
egories since certain pa�erns, such as a particular argument for a particular slot, might
become more or less entrenched.

�e categorial networks system (Van Eecke, 2018, Ch. 4) meets the requirements outlined

4�is holophrase construction would map between the u�erance “What size is the blue block?” and its underlying
meaning representation, e.g. in terms of procedural semantics.

5�is item-based construction has an open slot both on the form side and on the meaning side. On the meaning
side, this constitutes an unconnected variable in the semantic representation.
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above. It consists of two parts. First, it contains a weighted graph data structure containing
grammatical categories and their links. �ese links can either be directed or undirected.
�is depends on the particular application. Functionalities for adding and removing cate-
gories, adding and removing links, updating link weights, etc. are provided. Second, the
system provides an adapted version of FCG’s matching and merging algorithm (see Van
Eecke (2018, p. 69-70)). Speci�cally, the algorithm will take the categorial network into
account when trying to unify feature values which are constants. Apart from the default
case, which checks whether both constants are equal, uni�cation now also succeeds when
these constants are connected in the categorial network. How exactly these constants
should be connected in the categorial network, i.e. as direct neighbours or via a path, can
be speci�ed on a per grammar basis.

Solution for Grammar Learning

Using the categorial network, the example outlined above is solved in an elegant and com-
putationally e�cient manner. �e solution is illustrated in Figure 2.10. �e lexical con-
struction ������� and the item-based construction �����������������?����������� are
shown at the top of the �gure. Both constructions have a ‘lex-class’ feature with a sin-
gle constant as value. �ese constants are represented in the categorial network as well.
�e link between ��� and�������������������������(�) in the network indicates that the
������� is a suitable argument for the ?� slot of the �����������������?�����������. In
the construction application process, shown at the bo�om of the �gure, the second node
shows the resulting transient structure a�er the ������� has applied. �is has created
the ‘red-5’ unit in the transient structure. In the following node, the �����������������
?����������� could apply and the ‘red-5’ unit could indeed �ll the slot of the item-based
construction. Speci�cally, the ‘red-5’ unit of the transient structure and the ‘?x-slot-unit’
in the item-based construction uni�ed successfully. As indicated in yellow, uni�cation of
these units succeeded due to the link in the categorial network of their respective ‘lex-class’
feature values.

If the ������� is observed as an argument for a slot in another item-based construction,
it su�ces to specify a ‘lex-class’ feature for the slot in the item-based construction, add
its value to the categorial network and create a link from that value to the ‘red’ category.
�e ������� itself can remain untouched. Similarly, if a new argument of the item-based
slot is observed (e.g. blue), the categorial network can be exploited to easily incorporate
this observation. It su�ces to create a new lexical construction �������� that has its own
unique ‘lex-class’ feature value and create a link from that feature value to the category
that indicates the slot of the item-based construction. �e weights on the links in the
categorial network can be used to re�ect entrenchment, e.g. when a particular argument
for a slot is more likely or preferred over another. In Figure 2.10, the weights are set to a
default value of 0.5.
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In sum, the categorial network allows to capture emergent generalisations over grammat-
ical categories in FCG without losing the bene�ts of an open-ended formalism. For other
use cases and examples of the categorial networks system, I refer to Van Eecke (2018, Ch.
4).

2.3.6 Neural Heuristics

In Section 2.3.3, I introduced constructional language processing as a state space search
problem. �e search space involved is combinatorial in nature and, as the grammar in-
creases in size, becomes intractable. �is intractability hinders the further development
of large-scale construction grammars and their deployment in several domains (van Trijp
et al., 2022), such as usage-based linguistics research (e.g. Diessel (2015)), language acqui-
sition models (e.g. Tomasello (2003)) and language technology applications (e.g. Willaert
et al. (2020, 2021, 2022); Beuls et al. (2021)). �e main challenge in overcoming this in-
tractability problem is to come up with good search heuristics. In FCG, this boils down to
determining which transient structure to expand and which construction to apply in order
to arrive at a solution.

I discussed several techniques for optimising the search process in Section 2.3.4. Con-
cretely, assigning scores to constructions is typically only used in experiments on the ac-
quisition and emergence of grammar, as these scores re�ect the agents’ entrenchment.
Assigning these scores by hand is not a scalable solution. Further, the hashing of con-
structions reduces the number of applicable constructions at every transient structure, but
is most e�ective for morphological and lexical constructions. �e search problem for other
types of constructions remains. Constructions sets are not in line with construction gram-
mar theory and become tedious to manage manually. Finally, priming networks currently
o�er the best approach for optimising FCG’s search process. �ey can be learned in a
straightforward manner, but they focus only on local information and su�er from scaling
issues when using non-local information.

Here, I introduce a novel methodology that allows to learn search heuristics for construc-
tional language processing using an encoder-decoder neural network architecture and its
integration in Fluid Construction Grammar. I developed this methodology during my PhD
project, but it is not central to the objectives of this dissertation. A paper on this topic has
been submi�ed as Van Eecke et al. (subm). �e paper not only introduces the methodology,
it also presents a case study on a large-scale grammar that covers more than onemillion ut-
terances in both the comprehension and production direction. �is case study shows that
the neural heuristics outperform both FCG’s default depth-�rst search strategy with back-
tracking and hashed constructions (see Section 2.3.4) as well as priming networks (Wellens
and De Beule, 2010; Wellens, 2011), both in terms of size of the search space and in terms
of processing time, and most markedly in the production direction. Importantly, the great-
est improvement on both of these metrics and in both directions of processing is achieved
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for the inputs that otherwise give rise to the largest search space. An interactive web
demonstration of this case study can be found at h�ps://ehai.ai.vub.ac.be/demos/neural-
heuristics/. However, a complete description of this case study and the experimental results
falls outside the scope of this chapter.

Methodology

�e neural heuristics methodology is inspired by recent successes in AI that exploit neu-
ral networks for their predictive strength and intelligently combine them with traditional
search techniques, e.g. as in AlphaGo (Silver et al., 2016) and planning problems (Taka-
hashi et al., 2019; Wang et al., 2019; Ferber et al., 2020). Applied to constructional language
processing, the neural network allows to compute a heuristic value for every transient
structure by providing an estimate of the probability that the application of a particular
construction to that transient structure will lead to a solution. To compute these proba-
bilities, the network relies on the input, i.e. an u�erance in comprehension or a meaning
representation in production, and on the sequence of constructions that have already ap-
plied in the current branch of the search tree. �e transient structures’ heuristic values
steer the construction application process via a best-�rst search.

�is methodology is operationalised by two recurrent neural networks (RNNs), one for
each direction of processing, that are organised in an encoder-decoder architecture. �e
encoder network encodes the input before the construction application process starts. Dur-
ing construction application, every transient structure queries the decoder. �is receives
as input the names of the constructions that have already applied, the encoded input and
the encoder’s hidden states. �e output is a probability distribution over all constructions
in the construction inventory. �en, the transient structure is expanded and the heuristic
values for the new transient structures are computed based on these probabilities. Specif-
ically, the heuristic value of the expanded transient structure is the sum of the heuristic
value of the previous transient structure and the probability of the applied construction.
Processing continues with the transient structure that has the highest heuristic value. �is
process is schematically illustrated in Figure 2.11.

During constructional processing, the neural network faces the task of predicting the next
token (i.e. construction), given a sequential input (i.e. u�erance or meaning represen-
tation) and a sequence of previous tokens. �is corresponds to a single step within a
sequence-to-sequence task and motives the choice for the encoder-decoder architecture.
However, instead of predicting the whole sequence in one go, the decoder is periodically
queried and can be interleaved with FCG’s search and backtracking facilities. RNN-based
architecture are typically good at handling this kind of tasks (Sutskever et al., 2014). How-
ever, CNN-based and Transformer-based architecture have also been successfully applied
to sequence-to-sequence problems (Gehring et al., 2017; Vaswani et al., 2017) and can be
readily substituted in the neural heuristics methodology.

https://ehai.ai.vub.ac.be/demos/neural-heuristics/
https://ehai.ai.vub.ac.be/demos/neural-heuristics/
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Figure 2.11: Schematic representation of constructional language processing with neural
heuristics. Each transient structure queries the encoder-decoder model to obtain a proba-
bility distribution over constructions. �is is used to compute the heuristic values (hv) of
the expanded transient structures. �e search space is explored through best-�rst search.
Figure from Van Eecke et al. (subm).

Training

Training the encoder-decoder architecture requires a dataset of sequential inputs, i.e. ut-
terances in comprehension or meaning representations in production, paired with a se-
quence of names of constructions that, when applied, leads to a solution. U�erances can
be naturally transformed to sequences by tokenizing them. Meaning representations that
are by default supported by FCG, namely predicates that share their arguments by link-
ing variables, can be transformed to sequences through reverse Polish notation or post�x
notation.

Crucially, in order to obtain training data for this methodology, one is facing the very
search problem that will be optimised. Speci�cally, the available data should �rst be pro-
cesses without neural heuristics before training the neural network can start. If this is
computationally not feasible, a spiral approach can be followed, where a neural network
is trained on part of the data that can be processed within reasonable time and without
any heuristics. �is �rst network can then be used to speed up the annotation of more
training data, which then allows to train a second neural network. �is process can be re-
peated several times until all data is annotated a�er which the �nal heuristic network can
be trained. Because of this circular relation between obtaining training data and being able
to train the neural network, the neural heuristics methodology is currently most suited for
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language technology applications or corpus studies with a relatively �xed grammar and
less so for experiments on the emergence of grammar where the construction inventory
is in constant �ux.

�e encoder-decoder network is trained only on the names of the constructions. It does
not rely on any other information, such as particular features, the number of units in a
construction or the transient structure or how these units are structured. �is kind of
information might further enhance the predictive capabilities of the neural network. In
particular, by using the names of the constructions, the network can predict which con-
struction to apply at any point in time. However, another source of ambiguity is the way
in which the constructions should be applied, speci�cally on which unit(s) of the transient
structure. �is ambiguity might be resolved by providing the neural network with more
information on features, units and their structure, as can be done with priming networks
(Wellens and De Beule, 2010; Wellens, 2011).

2.4 Procedural Semantics with IRL

�e third and �nal technical foundation is Incremental Recruitment Language (IRL) (Van
den Broeck, 2008; Spranger et al., 2012b), a special-purpose formalism for representing,
processing, learning, reasoning over and automatically constructing procedural semantic
representations. IRL allows to bridge the gap between agents’ sensorimotor processing
and language capabilities in language game experiments. �e theoretical foundations of
IRL can be found in procedural cognitive semantics (Section 2.4.1). A�er discussing these
foundations, I present the main ideas underlying IRL (Section 2.4.2) and how these are
operationalised through IRL’s building blocks (Section 2.4.3). Finally, I show how these
building blocks are used in language game experiments for operationalising the process of
interpretation as the execution of procedural semantic representations (Section 2.4.4) and
the process of conceptualisation as the goal-directed composition of procedural semantic
representations (Section 2.4.5). �roughout these sections, I draw parallels between the
Incremental Recruitment Language system on the one hand, and constraint programming
languages and constraint satisfaction on the other hand. Finally, in Sections 2.4.6 and 2.4.7,
I present two extensions to IRL’s composition mechanism, namely chunking and �exible
interpretation. �e former allows to group conventionalised ways of construing semantics
and thereby reduces the search process involved in composition, while the la�er allows to
hypothesise on how to complete partial semantic networks by combining the composition
process with uni�cation of semantic networks.

2.4.1 Procedural Semantics

Procedural semantics was developed quasi simultaneously by Woods et al. (1972) and
Winograd (1972). Both researchers developed computational systems that can respond to
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natural language questions or commands. �e LUNAR system (Woods et al., 1972) allows
researchers to query the chemical composition of moon rocks from the Apollo missions
through natural language questions. Similarly, the SHRDLU system (Winograd, 1972) can
hold coherent conversations with humans about a blocks world. �is includes executing
commands given in natural language, answering questions about the state of the world or
previous commands and asking for clari�cations when a command or question was un-
clear. �ese capabilities require sophisticated reasoning and grammar components. For
both of these systems, the researchers were looking for a way to represent the meaning
underlying natural language expressions. �ey drew parallels between natural and com-
puter programming languages and how these could be processed by humans andmachines,
respectively. �e main assertion of procedural semantics is that the meaning of linguistic
expressions can be captured in procedures that can be executed algorithmically. A�er LU-
NAR and SHRDLU, procedural semantics was further described by Johnson-Laird (1977)
and Woods (1981, 1968). Johnson-Laird (1977) describes procedural semantics through
the ‘compile and execute’ metaphor for natural language comprehension and production.
Speci�cally, in comprehension, the ‘compile’ step equates to mentally translating a linguis-
tic expression into a program that expresses its meaning and the ‘execute’ step equates to
applying or interpreting this meaning with respect to one’s own perception of the world.
In production, a speaker ‘compiles’ a program that it wants the listener to execute in order
to achieve a communicative goal.

Over the last decades, a wide range of approaches have been applied to operationalise
both the ‘compilation’ of natural language in procedural semantic representations and the
‘execution’ of those representations. Speci�cally, the compilation step has been tackled
by de�nite clause grammars (Pereira and Warren, 1980) (i.a. Warren and Pereira (1982);
Zelle and Mooney (1996) and Kanazawa (2007)), combinatory categorial grammar (CCG)
(Steedman, 1987) (i.a. Ze�lemoyer and Collins (2005); Kwiatkowksi et al. (2010); Krishna-
murthy and Mitchell (2012); Berant et al. (2013); Cai and Yates (2013); Reddy et al. (2014)
and Pasupat and Liang (2015)), Head-Driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994) (i.a. McFetridge et al. (1996) and Frank et al. (2007)), dependency parsing (i.a.
Andreas et al. (2016b,a)), context-free grammars (i.a. Wong and Mooney (2007) and Huang
et al. (2008)) or recurrent neural networks (i.a. Andreas et al. (2016a); Dong and Lapata
(2016); Zhong et al. (2017) and Cheng et al. (2019)). Finally, given that Fluid Construction
Grammar (Section 2.3) does not impose a particular kind of meaning representation, it is
also well suited for mapping between natural language u�erances and procedural seman-
tic representations. �is has been applied by, among others, Spranger (2016); Bleys (2016);
Pauw and Hilferty (2016) and Nevens et al. (2019a).

�e result of the ‘compilation’ process constitutes the procedural semantic representation.
�erefore, it should not only be straightforwardly executable, it should also be expressive
enough to capture natural language u�erances and, ideally, be able to capture the compo-
sitional and non-compositional aspects of natural languages. �e la�er facilitates jointly
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learning over linguistic and semantic structures through generalisation processes. �ree
di�erent approaches can be identi�ed for operationalising the ‘execution’ step. As a �rst
approach, natural language u�erances aremapped to query languages, such as SQL (Zhong
et al., 2017), FunQL (Cheng et al., 2019) or SPARQL (Yahya et al., 2012). �is ties the expres-
siveness of the semantic representation to the expressiveness of the query language. How-
ever, the applicability of these semantic structures is thereby limited to databases. Further,
query languages naturally capture interrogative linguistic expressions, but are less suited
for other types of expressions. �e structure of these query languages is also far removed
from the way information is structured in natural language. A second approach makes use
of logical forms, o�en in terms of lambda calculus (see e.g. the work cited above in the
context of CCG). Logical forms are inherently more expressive than query languages, they
are not restricted to interrogative linguistic expressions and more closely resemble how
information is structured in natural language (i.e. through compositionality). �e main
disadvantage of logical forms is that these are not directly executable. An additional step
is required to transform logical forms in executable procedures. A third approach, that
includes the Incremental Recruitment Language system, consists of formalisms that are
speci�cally designed to represent and execute procedural semantic representations. Hav-
ing special-purpose formalisms allows the semantic representations to be tailored towards
the task at hand and constructed to be�er re�ect the compositional nature of linguistic ex-
pressions. Another major bene�t is that special-purpose formalisms allow the procedures
to be operationalised in whatever way is best suited for the task. For instance, Andreas
et al. (2016b), Johnson et al. (2017b) and Ko�ur et al. (2018) use fully sub-symbolic proce-
dures in the form of several neural network architectures, Yi et al. (2018); Mao et al. (2019)
and Nevens et al. (2019a) use fully symbolic procedures and Manhaeve et al. (2018, 2021)
use a hybrid approach that combines symbolic and sub-symbolic procedures, speci�cally
by integrating neural networks in probabilistic logic programs. In Chapter 5 of this dis-
sertation, I develop a hybrid procedural semantics approach that is directly integrated in
Incremental Recruitment Language.

2.4.2 Incremental Recruitment Language

�e Incremental Recruitment Language (IRL) system was speci�cally designed in the con-
text the language game paradigm. �e development of IRL is motivated by two main ob-
servations. A �rst observation is that models of the emergence and evolution of language
not only need to explain lexical and grammatical aspects, but also the underlying semantic
aspects. In cognitive semantics, there is a consensus that the ability to use language draws
upon general cognitive mechanisms and therefore has to be grounded through embodied
sensorimotor experiences (Lako�, 1987; Cro� and Cruse, 2004; Spranger et al., 2012b, p.
154). Empirical research in this �eld has shown that human speakers conceptualise the
meaning they want to express in terms of categories, relations, sets, sequences, perspec-
tives, etc. before formulating this meaning through an u�erance (Talmy, 2000; Spranger
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et al., 2012b, p. 153). �is rich repertoire of conceptualisations has been shown to be
language-speci�c (see e.g. Kay and McDaniel (1978) for colour terms and Levinson (2003)
for spatial terms), indicating that these conceptualisations are not innate but acquired and
shaped through situated interactions (Spranger et al., 2012b, p. 153). A second observation
is that natural languages can express second-order semantics (Dowty et al., 2012). �is is
illustrated by (Bleys, 2016, p. 18) through the following example:

�e adverb ‘very’ in an expression like ‘very big’ modi�es the meaning of the
adjective ‘big’ instead of being a simple conjunction of predicates for ‘very’
and ‘big’. Furthermore, a ‘big’ predicate can be used in di�erent ways, e.g. to
restrict the set of possible referents (e.g. ‘the big ball’), to state a property of
an object (e.g. ‘the ball is big’), to make a statement about the predicate itself
(e.g. ‘big says something about size’), to compare elements (e.g. ‘this ball is
bigger than that one’, etc. (Bleys, 2016, p. 18)

�us, in order to further advance the research on the emergence and evolution of lan-
guage, especially in the direction of grammar, a formalism that can capture second-order
semantics and is tightly integrated in sensorimotor experience is required.

�e Incremental Recruitment Language system allows agents in language game exper-
iments to bridge the gap between their sensorimotor level and language level (see also
the semiotic cycle in Section 2.2.2). IRL operationalises procedural cognitive semantics by
treating the meanings of u�erances as semantic networks that capture the steps that the
speaker wants the listener to execute in order to arrive at the shared communicative goal.
�ese networks are made up of primitive cognitive operators and semantic entities. �e for-
mer capture the basic cognitive capacities of agents, while the la�er capture the agents’
conceptual inventories in terms of concepts, categories, prototypes, events, roles, perspec-
tives, etc., and are grounded the agents’ sensorimotor experiences. IRL provides the com-
putational infrastructure for (i) implementing primitive cognitive operators, (ii) represent-
ing networks of primitive cognitive operators and semantic entities, (iii) conceptualising
semantic networks that satisfy a communicative goal, (iv) interpreting semantic networks
in terms of sensorimotor experiences, (v) actively reconstructing semantic networks, (vi)
learning new semantic entities and (vii) conventionalising semantic (sub)networks.

Given its origins in the language game paradigm, IRL relies on many of the same ideas
and principles. For one, IRL is bidirectional, allowing the same formalism to be used by
the speaker, in conceptualisation, and the listener, in interpretation. Further, IRL is com-
pletely open-ended, both in terms of the cognitive operators and the semantic entities.
Speci�cally, IRL does not include any operators by default but is a general formalism that
allows to specify and operationalise such operators. New semantic entities can be added to
the agents’ conceptual inventories on the �y. Finally, as FCG does for linguistic structures,
IRL facilitates the self-organisation, selection, level formation and reinforcement learning
over semantic structures.
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�e initial version of IRL is described in Steels (2000a) and Steels and Bleys (2005). A
second stable version was presented by Van den Broeck (2007, 2008). More recently, the
systemwas renewed by Spranger et al. (2010, 2012b). Since then, it has been applied in lan-
guage game experiments on various domains, such as colour (Bleys, 2016), spatial language
(Spranger, 2016), quanti�ers (Pauw and Hilferty, 2012) and temporal language (Gerasy-
mova and Spranger, 2012).

2.4.3 Building Blocks of IRL

�e building blocks of IRL consist of primitive cognitive operators and semantic entities,
which are combined into semantic networks or IRL programs. An example IRL program
is shown in Figure 2.13. �e building blocks of IRL support its two main functionalities:
interpreting semantic networks by evaluating IRL programs and conceptualizing semantic
networks by composing IRL programs. �ese are discussed in Sections 2.4.4 and 2.4.5,
respectively.

Primitive Cognitive Operators

�e primitive cognitive operators (or cognitive operators or primitives) capture the basic cog-
nitive functions of an agent. �is includes �ltering a set, categorizing an object or event,
taking an element from a set, taking the union of two sets, performing a spatial transfor-
mation, counting a set, etc. In terms of operationalisation, primitives are not restricted to
symbolic operations, but they may also call upon neural networks, external web services
or APIs of robots or other hardware. A single semantic network can combine cognitive
operators that make use of any of these techniques.

Primitives are represented as logic predicates that have a name, e.g. ���������������,
and a list of arguments. Arguments of primitives are variables, e.g. ‘?target-set’, ‘?source-
set’ and ‘?color’, that are typed. �e complete predicate is wri�en as (���������������
?���������� ?���������� ?�����). By convention, arguments that are typically (but not
always) used as output come before arguments that are typically (but not always) used as
input. Primitives can be given scores, which re�ect their success in a language game ex-
periment. In order to construct semantic networks, primitives are declaratively combined
by reusing variable arguments. On the implementation level, semantic networks are thus
unordered sets of predicates.

A primitive cognitive operator represents a multidirectional relationship between its ar-
guments (Van den Broeck, 2007, 2008; Bleys, 2016, p. 18). Depending on the availability
of arguments, the cognitive operator uses a di�erent mode of operation. In other words,
there are several ways for data to �ow in and out of a cognitive operator. Because cog-
nitive operators are represented as predicates with variable arguments, they can also be
considered constraints (Van den Broeck, 2007, 2008; Steels and Bleys, 2005). �e domains
of the arguments depend on their types. In IRL, this is captured by the semantic entities.
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A semantic network is thus also a constraint program (Borning, 1981; Sussman and Steele,
1980). Compared to �rst-order logic, where concepts are typically represented as predi-
cates, these constraints can use concepts as their arguments. �is can be thought of as
a relational predicate, allowing to consider IRL as a second-order semantics (Steels and
Bleys, 2005; Bleys, 2008).

Figure 2.12 illustrates the multidirectionality of a ��������������� primitive. In this �gure,
incoming arrows denote that data is available for these arguments (i.e. bound arguments),
while outgoing arrows indicate that the primitive will compute values for those arguments
(i.e. unbound arguments). Primitive cognitive operators can bind multiple unbound argu-
ments, provide hypotheses by binding the same unbound argument multiple times, or both
of these simultaneously. �e four operational modes, or cases, of this primitive are used in
di�erent situations that occur in language games.

filter-by-
color

?source-set

{o1, o2, o3}

?color RED

?target-set

{o2}

(a) Categorisation

filter-by-
color

?source-set
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?target-set
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(b) Learning

filter-by-
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filter-by-
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Figure 2.12: Illustration of the multidirectionality of a primitive cognitive operator. De-
pending on the availability of arguments (incoming arrows), the cognitive operator can
bind values to di�erent (combinations of) unbound arguments (outgoing arrows).

Figure 2.12a illustrates a �rst case of the ��������������� primitive. Speci�cally, a source
set containing three objects, here represented as ‘{o1, o2, o3}’, should be �ltered on the
basis of a colour, in this case ‘red’. �e primitive computes a target set with just one
element, represented as ‘{o2}’. �is case is typically used by the listener during interpre-
tation, where the speaker has conveyed information through language, including the word
red which provides the binding for ‘?color’, and allows the listener to identify some object
in the environment. �e argument ‘?source-set’ is derived from the environment, e.g. an
already �ltered subset. Figure 2.12b illustrates a situation where both ‘?source-set’ and
‘?target-set’ are provided, and the primitive should compute the ‘?color’ that makes such
a �ltering operation possible. �is case typically occurs in a learning situation where the
u�erance contains a word that the listener does not know. �e listener indicates failure to
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the speaker, who then provides feedback, e.g. by pointing to the correct object. �e listener
can now derive the source set from the environment, and the target set from the speaker’s
feedback. �e ��������������� primitive now infers the concept that can discriminate the
object pointed to by the speaker. �is may involve creating a new concept on the �y. In
Figure 2.12c only the ‘?source-set’ ‘{o1, o2, o3}’ is provided to the ��������������� prim-
itive. In this case, the primitive can compute combinations of colours and resulting target
sets. �e speaker typically employs this case when it is constructing a semantic network
during conceptualisation. Each combination of colour and target set constitutes a possible
hypothesis that can be further explored in order to �nd a semantic network that, for exam-
ple, discriminates an object. Finally, Figure 2.12d illustrates the case where all arguments
are available. In this case, no arguments need to be computed and the primitive will check
whether the provided arguments are consistent with each other.

���� Special Operator

Primitive cognitive operators can have any name, except for ����. ���� is a special op-
erator that allows to introduce semantic entities in the semantic network by binding it
to a variable. Similar to primitives, a bind statement can be wri�en as a predicate, e.g.
(���� �������������� ?����� ���). In this notation, the semantic entity ���, of type
��������������, is bound to the variable ?�����. As a shorthand, ?����� ��� can be
used.

Cognitive operators internally make use of the special operator ���� to assign values to
one or multiple of their unbound arguments. Multiple hypotheses, as in Figure 2.12c, can
be created by calling ���� multiple times on the same variable(s). When the ���� special
operator is not called within a case that has unbound arguments, this indicates that the
primitive cannot compute values for the unbound arguments and the bound arguments are
invalidated. �e consistency check (Figure 2.12d) does not call ���� but returns a boolean
value. Finally, bindings can be given scores, e.g. ?����� 0.5 �� RED, which can be used to
re�ect the agent’s certainty or prior success about the semantic entity being bound.

Semantic Entities

Semantic entities constitute the data that is being manipulated by the cognitive operators.
�is includes (i) the conceptual inventory of an agent in terms of categories, prototypes,
roles, relations, events, etc., (ii) representations of the agent’s environment, e.g. a world
model obtained through grounding, and (iii) intermediate data structures that are passed
between cognitive operators, e.g. constructed views on the world model (Spranger et al.,
2012b, p. 158).

Semantic entities of the �rst type, i.e. concepts, are grounded in the agent’s sensorimotor
experiences. IRL does not enforce any particular way in which these concepts need to
be grounded. On the contrary, it allows to �exibly combine di�erent grounding methods



64 CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS

within the same semantic network. In previous research, a variety of methods have been
used for grounding semantic entities (Van den Broeck, 2007; Bleys, 2016, p. 19), e.g. using
discrimination trees (Steels, 1996), nearest neighbour classi�cation (Belpaeme and Bleys,
2005b; Spranger, 2013), or radial basis functions (Steels and Belpaeme, 2005).

�e same concept can be �exibly used in di�erent cognitive operators. For instance, a
��������������� primitive can be used to �nd all objects of a given colour, whereas an
������������������������������ can be used to �nd a single object that is closest to a
given colour, even if the object is not exactly that colour (example from Spranger et al.
(2012b, p. 158)). Both primitives use the same colour concepts in di�erent ways.

Semantic entities are typed. �is type information is used in two ways. First, it constrains
what semantic entities can be bound to the arguments of primitive cognitive operators
during the evaluation of semantic networks (see Section 2.4.4). Speci�cally, only types
of entities that are compatible with, i.e. the same type or a subtype of, the primitive’s
argument can be bound. Second, it constrains the way in which the cognitive operators
can be composed (see Section 2.4.5).

2.4.4 Evaluating Semantic Networks

Given that primitive cognitive operators are similar to constraints, the evaluation of an IRL
program corresponds to a constraint satisfaction problem (Van den Broeck, 2008) that is
solved through search with backtracking. Crucially, this evaluation process is completely
data-driven. �e order in which the primitives are executed cannot be derived from the
structure of the semantic network but depends on the availability of data, and on how
the data is shared between cognitive operators (Spranger et al., 2012b, p. 162). In turn, the
availability of data depends on the particular situationwithin a language game experiment.
�ree di�erent situations in which semantic networks are evaluated will be discussed later
on in this section. Before that, I describe the search process involved in the evaluation
of IRL programs via the four components of a state-space search problem as de�ned by
Russell and Norvig (2009, p. 66), similar to constructional language processing in FCG
(Section 2.3.3).

• �e state representation is the set of bindings of the variables in the semantic net-
work up to the current point in evaluation. �ese bindings hold the information on
how the semantic network �ts within the world model and the conceptual inventory
of the agent evaluating the network.

• �e initial state is the set of initial bindings that can be collected from the semantic
network. Speci�cally, the ���� statements are extracted from the provided network,
the semantic entities speci�ed in those statements are retrieved in the agent’s con-
ceptual inventory and those entities are bound to the variables in the ���� state-
ments. All other variables in the network are marked as unbound. �e initial state
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(unique-entity ?topic ?set2)

(filter-by-size ?set2 ?set1 ?size-category)

(filter-by-shape ?set1 ?source-set ?shape-category) (bind size-category ?size-category big)

(get-context ?source-set) (bind shape-category ?shape-category circle)

Figure 2.13: Example semantic network, or IRL program, containing four primitive cog-
nitive operators: �����������, ���������������, �������������� and ������������. Se-
mantic entities ������ and ��� are introduced in the network through ���� statements.
Bind statements and primitives are represented as predicates that are declaratively com-
bined by reusing variables.

is illustrated in the le�most box in Figure 2.14, showing the evaluation process of
the semantic network of Figure 2.13.

• �e operators are the primitives. Speci�cally, the evaluation engine cycles through
the primitives of the semantic network that have not yet been executed. For each
of these, the evaluation engine checks the primitive’s pre-conditions to see if it is
applicable. A primitive is applicable when elements from the current set of bindings
(i.e. current state) can be used as bound arguments in a mode of operation of that
primitive. �is is checked by matching the types of the values in the bindings to the
type speci�cations of the primitive’s arguments. When those pre-conditions aremet,
the primitive is executed. �e execution of a primitive can have three possible out-
comes: (i) new bindings for one or more of its unbound arguments, (ii) invalidating
the bound arguments or (iii) information on whether all arguments are consistent.
If the bound arguments are invalidated or all arguments were bound but turn out to
be inconsistent, that particular branch of the search process is not explored any fur-
ther and the evaluation engine can backtrack. If the primitive returns new bindings,
these make up the primitive’s post-conditions. A new set of bindings (i.e. a new state)
is created by adding the primitive’s post-conditions to the current set of bindings.
Separate branches in the search space are created when a primitive provides multi-
ple hypotheses for the same variable, and when multiple primitives are applicable
given the same set of bindings.

• �e goal test checks if the list of bindings is both complete and consistent (Spranger
et al., 2012b, p. 161). �is is the case when all variables in the semantic network are
bound (complete) and all primitives in the network have been executed (consistent).

�e search process faced by the IRL evaluation engine thus consists in �nding the evalua-
tion order of the primitive cognitive operators in the semantic network in order to �nd a
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complete and consistent set of bindings for all variables in the semantic network.

Evaluating irl program

irl program ((unique-entity ?topic ?set2)
(filter-by-size ?set2 ?set1 ?size-category)
(filter-by-shape ?set1 ?source-set ?shape-category)
(get-context ?source-set)
(bind size-category ?size-category big)
(bind shape-category ?shape-category circle))

(unique-entity ?topic ?set2)

(filter-by-size ?set2 ?set1 ?size-category)

(filter-by-shape ?set1 ?source-set ?shape-category) (bind size-category ?size-category big)

(get-context ?source-set) (bind shape-category ?shape-category circle)

Applying
IRL PRIMITIVE INVENTORY (5)
on the ontology
IRL ONTOLOGY (3)

evaluation
process

0, 1.00: initial
statuses initial
?source-set unbound

?set1 unbound

?set2 unbound

?topic unbound

?size-category
big
size-category

?shape-category
circle
shape-
category

Solutions:

solution 1
?topic
object-11
object
score: 1.000

?size-category
big
size-category
score: 1.000

?shape-category
circle
shape-category
score: 1.000

?source-set
context
object-set
score: 1.000

?set1
object-set-9
object-set
score: 1.000

?set2
object-set-10
object-set
score: 1.000

reset

1, 2.00: get-context
statuses evaluated
?source-set

context
object-set

?set1 unbound

?set2 unbound

?topic unbound

?size-category
big
size-category

?shape-category
circle
shape-
category

6, 3.00: filter-by-shape
statuses evaluated
?source-set

context
object-set

?set1
object-set-9
object-set

?set2 unbound

?topic unbound

?size-category
big
size-category

?shape-category
circle
shape-
category

9, 4.00: filter-by-size
statuses evaluated
?source-set

context
object-set

?set1
object-set-9
object-set

?set2
object-set-10
object-set

?topic unbound

?size-category
big
size-category

?shape-category
circle
shape-
category

10, 5.00: unique-entity
statuses succeeded,

evaluated
?source-set

context
object-set

?set1
object-set-9
object-set

?set2
object-set-10
object-set

?topic
object-11
object

?size-category
big
size-category

?shape-category
circle
shape-category

Figure 2.14: Evaluation process of the semantic network shown in Figure 2.13. From le� to
right, each node (box) represents a cognitive operator (or primitive) that is executed and
the resulting list of bindings. A set of bindings that is complete and consistent is found in
the rightmost node.

�e complete evaluation process of the semantic network from Figure 2.13 is illustrated in
Figure 2.14. Each consecutive state shows the primitive that was executed and the resulting
set of bindings. �e last state (dark green box) constitutes a set of bindings that is both
complete and consistent. �ere is no search in this evaluation process as already many
arguments of the cognitive operators in the semantic network are provided through ����
statements.

�e evaluation of semantic networks is used during interpretation, conceptualisation and
learning (Van den Broeck, 2007, 2008). In the following paragraphs, I brie�y illustrate the
evaluation of semantic networks in these three processes.

Interpretation

A semantic network such as the one illustrated in Figure 2.13 typically occurs in the inter-
pretation process of the listener during a language game experiment. When comprehen-
sion is successful, the listener will have a semantic network with several bound arguments,
typically via ���� statements, and how these arguments are structured. �e evaluation of
such a network corresponds to interpreting the speaker’s u�erance from the viewpoint
of the listener’s sensorimotor experience and conceptual inventory in order to arrive at
an action that needs to be performed in order to complete the communicative task, e.g.
pointing to an object. In technical terms, the semantic entity involved in completing the
communicative task can be retrieved via the network’s target variable. �is is the only
variable in the semantic network that occurs just once. In Figure 2.13, the target variable
is ‘?topic’.



2.4. PROCEDURAL SEMANTICS WITH IRL 67

(bind object ?topic <object object-11>)

(unique-entity ?topic ?set2)

(filter-by-size ?set2 ?set1 ?size-category)

(filter-by-shape ?set1 ?source-set ?shape-category)

(get-context ?source-set)

Figure 2.15: Example semantic network as is typically found during conceptualisation.
Only the variable ‘?topic’ has an initial binding. It is bound to the object that the speaker
wants to discriminate.

Conceptualisation

Semantic networks such as the one shown in Figure 2.13 typically do not occur during con-
ceptualisation. Instead, during conceptualisation, the speaker is constructing a semantic
network and wants to validate it with respect to its own communicative intention. In such
semantic networks, only one particular variable, namely the target variable, is typically
bound to a value, namely the topic or referent of the interaction. An example of such a
semantic network is shown in Figure 2.15. To check if the constructed network indeed sat-
is�es the communicative goal, i.e. leads to the expected topic, the speaker has to evaluate
this semantic network.

Part of the evaluation process of the semantic network from Figure 2.15 is shown in Figure
2.16. Since there are more unbound variables in the network, the evaluation process gen-
erates a larger search space. �is �gure also illustrates that whenever a primitive returns
more than one binding for the same variable, the search space splits and new state repre-
sentations are created for every possible binding of that variable. For example, the �������
�������� primitive returns three di�erent bindings for the variable ‘?shape-category’. For
one of those bindings, the search space splits again due to the �������������� primitive.
Some of the branches lead to dead ends, because the bindings are invalidated or inconsis-
tent. Only one branch, namely the one that discriminates the topic as a big circle, leads
to a solution (dark green node). O�en, IRL programs that are evaluated during concep-
tualisation have multiple solutions. By default, IRL explores the entire search space and
returns all sets of bindings that are both complete and consistent. �e sets of bindings
can be ordered by summing their scores. It is then up to the conceptualisation process to
determine which of these solutions is most useful. �is will be described in Section 2.4.5.
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Learning

(bind object ?topic <object object-11>)

(unique-entity ?topic ?set2)

(filter-by-size ?set2 ?set1 ?size-category)

(filter-by-shape ?set1 ?source-set ?shape-category)

(get-context ?source-set) (bind shape-category ?shape-category circle)

Figure 2.17: Example semantic network for learning a semantic entity. �e structure of
the network and the binding for ‘?shape-category’ is the result of comprehending the ut-
terance, while the ‘?topic’ variable is bound via the speaker’s feedback. A semantic entity
can be learned for the single missing variable ‘?size-category’.

Figure 2.17 illustrates a semantic network that can be used in a learning situation. In
this speci�c situation, the listener’s comprehension process resulted in a binding for the
variable ‘?shape-category’, while the variable ‘?size-category’ remained unbound. At the
end of the interaction, the listener was shown the topic ‘object-11’ by the speaker. By fully
exploiting the multidirectionality of cognitive operators, a binding for the open variable
‘?size-category’ can be inferred. �e �������������� primitive may create a new semantic
entity on the �y, based on the agent’s current observation, or re-use one from the agent’s
conceptual inventory if it leads to a solution when evaluating the network. If multiple
semantic entities lead to a successful evaluation of the semantic network, one of them can
be chosen for example based on discrimination or saliency. �e evaluation result of the
semantic network shown in Figure 2.17 can then be used to learn a new form-meaning
mapping, where the meaning constitutes the value found for the variable ‘?size-category’.
�e evaluation process is not illustrated, as it is very similar to the evaluation processes
shown in Figures 2.14 and 2.16.

2.4.5 Composing Semantic Networks

I now turn to the automatic composition of semantic networks. �is is necessary for the
conceptualisation process in language game experiments. In this process, the speaker is
“planning what to say” (Steels and Bleys, 2005). In other words, it tries to construct a se-
mantic network that achieves a particular communicative goal when interpreted by the
listener, e.g. discriminating a particular object in the current environment. Given that
semantic networks can be seen as constraint programs, conceptualisation involves the
composition of such constraint programs. �is is a combinatorial search problem, as the
constraints in IRL can share their variable arguments in many di�erent ways. IRL’s com-
poser mechanism uses a goal-directed, best-�rst search strategy to navigate this search
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space. During my PhD project, I re-implemented the composition process such that it is
easier to use and more highly con�gurable through a number of parameters. In what fol-
lows, I describe the default behaviour of the composer and I highlight the aspects that can
be con�gured.

�e composer’s search process interleaves constraint satisfaction, i.e. the evaluation of
the constructed constraint program, with eager and incremental search for expanding the
constructed constraint program (Van den Broeck, 2008). Similar to constructional lan-
guage processing (Section 2.3.3) and the evaluation of semantic networks (Section 2.4.4),
I describe this search process according to the four components of a state-space search
problem (Russell and Norvig, 2009, p. 66):

• �e state representation is the constraint program that has been constructed up
to the current point in the composition process, together with the target variable,
a list of open variables and a cost. �e target variable captures the communicative
goal of the interaction. It is bound to the semantic entity that the speaker wants the
listener to infer based on the constraint program that it is constructing. For example,
it can be bound to the object that the speaker wants to draw the listener’s a�ention
to. �e open variables represent sub-goals that need to be ful�lled in order to reach
the main goal. Concretely, these are unconnected variables in the current constraint
program. �e cost of a state is a heuristic value that is used to determine the order
in which states are explored.

• �e initial state is an empty constraint program, together with the target variable
as the only open variable.

• �e operators are the primitives that can be used to expand the constraint program.
Speci�cally, the composer cycles through the available primitives and checks their
pre-conditions. �ese pre-conditions hold when adding the current primitive to the
constraint program contributes to the data-�ow of that program. �is is true when
the primitive has a mode of operation which allows it to compute one or multiple of
the open variables of the current state. Speci�cally, type speci�cations of the open
variables are matched against the type speci�cations of the primitive’s unbound ar-
guments in that mode of operation. �e composer thus incrementally extends the
data-�ow of the constraint program backwards, starting from the communicative
goal (i.e. the target variable). When adding a constraint to ful�l that goal, this might
introduce new sub-goals which then need to be ful�lled recursively. �e primitive’s
post-conditions thus consist in extending the constraint program and updating the
list of open variables. At any point, multiple constraintsmay ful�l the pre-conditions
of the current state. �ese are then handled in separate branches of the search space.

• �e goal test checks if the constructed program ful�ls the communicative goal by
evaluating it (see Section 2.4.4). Speci�cally, in the case of discriminating a topic
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object, the goal is reached when there exists a data-�ow through the constructed
program that allows to infer that topic from the agent’s concept repertoire and en-
vironment. During this evaluation, the speaker uses its own concept repertoire and
worldmodel. �e goal test thus corresponds to a form of re-entrance (Steels, 2003). If
the evaluation process fails, this indicates that the constructed program is inconsis-
tent, allowing the composer to prune this branch of the search space and backtrack.
However, if the evaluation process is successful and allows to infer the topic, any
additional bindings that are generated by the evaluation process are added to the
constructed program and this program is returned as a solution of the composition
process.

�e search process faced by the composermechanism thus consists in composing primitive
cognitive operators into a semantic network such that the constructed network ful�ls the
communicative intention that the speaker wants to convey.

Figure 2.18 illustrates one branch of the composition process. �e initial state (top le�) has
an empty constraint program and the target variable ‘?topic’ as its only open variable. By
adding a constraint, in this case ������������, the following state has an extended con-
straint program and an updated list of open variables. �e target variable is no longer part
of the list of open variables, as the constraint was added to ful�l that goal. However, the
������������ constraint introduced a new open variable ‘?source-set-17’. �e �������
������� constraint could be added next because it has a case that can bind a variable of
type ‘object-set’, which corresponds to the type of the open variable ‘?source-set-17’. �is
process continues until the solution state (dark green box) on the bo�om right of Figure
2.18 is reached. �is state is a solution because the constraint satisfaction procedure on the
constructed program allows to infer the semantic entity that is bound to the target vari-
able. �e constraint satisfaction procedure introduced two additional bindings, namely
‘?shape-category-8’ ‘circle’ and ‘?size-category-7’ ‘big’, which are added to the solu-
tion.

Search Space

Following Van den Broeck (2008), the size of the search space of the composer can be
formally analysed in terms of multisets. A multiset is a modi�ed version of a set which
allows for multiple instances for each of its elements. �e number of instances of each
element is called the element’s multiplicity. For instance, in the multiset {a, b}, both a and
b have a multiplicity of 1, whereas in the multiset {a, a, a, b, b}, the multiplicity of a is 3
and that of b is 2. �e cardinality of a multiset is the sum of the multiplicities of all of its
elements. �e number of multisets of cardinality k, with elements taken from a �nite set
of cardinality n, is called the multiset coe�cient. It is equivalent to the number of subsets
of cardinality k from a set of cardinality n + k � 1, i.e. a binomial coe�cient. Given this
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Computing next composer solution
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(bind size-category ?size-category-7 big))

reset

initial (1.00)

unique-entity (1, 6.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-17 (object-set)

irl
program

((unique-entity ?topic
?source-set-17))

score 0.50

unique-entity (0.50)

chunk-1685 (0.50)

+

filter-by-size unique-entity (4, 12.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-19 (object-set), ?size-category-7 (size-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19
?size-category-7))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

score 0.50

filter-by-size (0.50)

unique-entity (0.50)

chunk-1691 (0.50)

filter-by-shape filter-by-size unique-entity (6, 18.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?source-set-18 (object-set),
?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

score 0.50

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1695 (0.50)

+

get-context filter-by-shape filter-by-size unique-entity (20, 20.00)
statuses solution

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

chunk
evaluation
results

circle, big (0.83)

get-context (0.50)

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1723 (0.50)

+

chunk-1723 (0.50)

4, 2.00: get-context

7, 3.00: filter-by-shape 10, 4.00: filter-by-size 12, 1.00: unique-entity

8, 3.00: filter-by-shape
14, 4.00: filter-by-size 16, 5.00: unique-entity

15, 4.00: filter-by-size 17, 5.00: unique-entity

9, 3.00: filter-by-shape 18, 4.00: filter-by-size 20, 5.00: unique-entity

Computing next composer solution

IRL CHUNK COMPOSER (4)

using ontology:

IRL ONTOLOGY (3)

Result
composition
process

initial (0, 0.00)
statuses expanded (initial)

next
handler

none

chunk

target
var

?topic (object)

open
vars

?topic (object)

irl
program

nil

score 1.00

Composer queue:

get-context filter-by-size filter-by-size unique-entity (17, 20.00) get-context filter-by-shape filter-by-shape unique-entity (14, 20.00) get-context filter-by-size filter-by-shape unique-entity (11, 20.00)

... and 8 more

Composer took 0 hours, 0 minutes and 0 seconds

Found 1 solutions:

circle, big (0.83)
chunk

target var ?topic (object)

open vars ?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl program ((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

evaluation process

0, 1.00: initial

target entity object-1
object

bindings ?source-set-18
context
object-set
score: 1.000

?shape-category-6
circle
shape-category
score: 1.000

?source-set-19
object-set-707
object-set
score: 1.000

?size-category-7
big
size-category
score: 1.000

?source-set-17
object-set-711
object-set
score: 1.000

?topic
object-1
object
score: 1.000

bind statements ((bind shape-category ?shape-category-6 circle)
(bind size-category ?size-category-7 big))

reset

initial (1.00)

unique-entity (1, 6.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-17 (object-set)

irl
program

((unique-entity ?topic
?source-set-17))

score 0.50

unique-entity (0.50)

chunk-1685 (0.50)

+

filter-by-size unique-entity (4, 12.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-19 (object-set), ?size-category-7 (size-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19
?size-category-7))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

score 0.50

filter-by-size (0.50)

unique-entity (0.50)

chunk-1691 (0.50)

filter-by-shape filter-by-size unique-entity (6, 18.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?source-set-18 (object-set),
?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

score 0.50

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1695 (0.50)

+

get-context filter-by-shape filter-by-size unique-entity (20, 20.00)
statuses solution

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

chunk
evaluation
results

circle, big (0.83)

get-context (0.50)

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1723 (0.50)

+

chunk-1723 (0.50)

4, 2.00: get-context

7, 3.00: filter-by-shape 10, 4.00: filter-by-size 12, 1.00: unique-entity

8, 3.00: filter-by-shape
14, 4.00: filter-by-size 16, 5.00: unique-entity

15, 4.00: filter-by-size 17, 5.00: unique-entity

9, 3.00: filter-by-shape 18, 4.00: filter-by-size 20, 5.00: unique-entity

Computing next composer solution

IRL CHUNK COMPOSER (4)

using ontology:

IRL ONTOLOGY (3)

Result
composition
process

initial (0, 0.00)
statuses expanded (initial)

next
handler

none

chunk

target
var

?topic (object)

open
vars

?topic (object)

irl
program

nil

score 1.00

Composer queue:

get-context filter-by-size filter-by-size unique-entity (17, 20.00) get-context filter-by-shape filter-by-shape unique-entity (14, 20.00) get-context filter-by-size filter-by-shape unique-entity (11, 20.00)

... and 8 more

Composer took 0 hours, 0 minutes and 0 seconds

Found 1 solutions:

circle, big (0.83)
chunk

target var ?topic (object)

open vars ?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl program ((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

evaluation process

0, 1.00: initial

target entity object-1
object

bindings ?source-set-18
context
object-set
score: 1.000

?shape-category-6
circle
shape-category
score: 1.000

?source-set-19
object-set-707
object-set
score: 1.000

?size-category-7
big
size-category
score: 1.000

?source-set-17
object-set-711
object-set
score: 1.000

?topic
object-1
object
score: 1.000

bind statements ((bind shape-category ?shape-category-6 circle)
(bind size-category ?size-category-7 big))

reset

initial (1.00)

unique-entity (1, 6.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-17 (object-set)

irl
program

((unique-entity ?topic
?source-set-17))

score 0.50

unique-entity (0.50)

chunk-1685 (0.50)

+

filter-by-size unique-entity (4, 12.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-19 (object-set), ?size-category-7 (size-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19
?size-category-7))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

score 0.50

filter-by-size (0.50)

unique-entity (0.50)

chunk-1691 (0.50)

filter-by-shape filter-by-size unique-entity (6, 18.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?source-set-18 (object-set),
?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

score 0.50

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1695 (0.50)

+

get-context filter-by-shape filter-by-size unique-entity (20, 20.00)
statuses solution

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

chunk
evaluation
results

circle, big (0.83)

get-context (0.50)

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1723 (0.50)

+

chunk-1723 (0.50)

4, 2.00: get-context

7, 3.00: filter-by-shape 10, 4.00: filter-by-size 12, 1.00: unique-entity

8, 3.00: filter-by-shape
14, 4.00: filter-by-size 16, 5.00: unique-entity

15, 4.00: filter-by-size 17, 5.00: unique-entity

9, 3.00: filter-by-shape 18, 4.00: filter-by-size 20, 5.00: unique-entity

Computing next composer solution

IRL CHUNK COMPOSER (4)

using ontology:

IRL ONTOLOGY (3)

Result
composition
process

initial (0, 0.00)
statuses expanded (initial)

next
handler

none

chunk

target
var

?topic (object)

open
vars

?topic (object)

irl
program

nil

score 1.00

Composer queue:

get-context filter-by-size filter-by-size unique-entity (17, 20.00) get-context filter-by-shape filter-by-shape unique-entity (14, 20.00) get-context filter-by-size filter-by-shape unique-entity (11, 20.00)

... and 8 more

Composer took 0 hours, 0 minutes and 0 seconds

Found 1 solutions:

circle, big (0.83)
chunk

target var ?topic (object)

open vars ?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl program ((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

evaluation process

0, 1.00: initial

target entity object-1
object

bindings ?source-set-18
context
object-set
score: 1.000

?shape-category-6
circle
shape-category
score: 1.000

?source-set-19
object-set-707
object-set
score: 1.000

?size-category-7
big
size-category
score: 1.000

?source-set-17
object-set-711
object-set
score: 1.000

?topic
object-1
object
score: 1.000

bind statements ((bind shape-category ?shape-category-6 circle)
(bind size-category ?size-category-7 big))

reset

initial (1.00)

unique-entity (1, 6.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-17 (object-set)

irl
program

((unique-entity ?topic
?source-set-17))

score 0.50

unique-entity (0.50)

chunk-1685 (0.50)

+

filter-by-size unique-entity (4, 12.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-19 (object-set), ?size-category-7 (size-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19
?size-category-7))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

score 0.50

filter-by-size (0.50)

unique-entity (0.50)

chunk-1691 (0.50)

filter-by-shape filter-by-size unique-entity (6, 18.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?source-set-18 (object-set),
?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

score 0.50

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1695 (0.50)

+

get-context filter-by-shape filter-by-size unique-entity (20, 20.00)
statuses solution

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

chunk
evaluation
results

circle, big (0.83)

get-context (0.50)

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1723 (0.50)

+

chunk-1723 (0.50)

4, 2.00: get-context

7, 3.00: filter-by-shape 10, 4.00: filter-by-size 12, 1.00: unique-entity

8, 3.00: filter-by-shape
14, 4.00: filter-by-size 16, 5.00: unique-entity

15, 4.00: filter-by-size 17, 5.00: unique-entity

9, 3.00: filter-by-shape 18, 4.00: filter-by-size 20, 5.00: unique-entity

Computing next composer solution

IRL CHUNK COMPOSER (4)

using ontology:

IRL ONTOLOGY (3)

Result
composition
process

initial (0, 0.00)
statuses expanded (initial)

next
handler

none

chunk

target
var

?topic (object)

open
vars

?topic (object)

irl
program

nil

score 1.00

Composer queue:

get-context filter-by-size filter-by-size unique-entity (17, 20.00) get-context filter-by-shape filter-by-shape unique-entity (14, 20.00) get-context filter-by-size filter-by-shape unique-entity (11, 20.00)

... and 8 more

Composer took 0 hours, 0 minutes and 0 seconds

Found 1 solutions:

circle, big (0.83)
chunk

target var ?topic (object)

open vars ?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl program ((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

evaluation process

0, 1.00: initial

target entity object-1
object

bindings ?source-set-18
context
object-set
score: 1.000

?shape-category-6
circle
shape-category
score: 1.000

?source-set-19
object-set-707
object-set
score: 1.000

?size-category-7
big
size-category
score: 1.000

?source-set-17
object-set-711
object-set
score: 1.000

?topic
object-1
object
score: 1.000

bind statements ((bind shape-category ?shape-category-6 circle)
(bind size-category ?size-category-7 big))

reset

initial (1.00)

unique-entity (1, 6.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-17 (object-set)

irl
program

((unique-entity ?topic
?source-set-17))

score 0.50

unique-entity (0.50)

chunk-1685 (0.50)

+

filter-by-size unique-entity (4, 12.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?source-set-19 (object-set), ?size-category-7 (size-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19
?size-category-7))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

score 0.50

filter-by-size (0.50)

unique-entity (0.50)

chunk-1691 (0.50)

filter-by-shape filter-by-size unique-entity (6, 18.00)
statuses expanded (no-evaluation-results)

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?source-set-18 (object-set),
?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6))

(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

score 0.50

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1695 (0.50)

+

get-context filter-by-shape filter-by-size unique-entity (20, 20.00)
statuses solution

next
handler

none

source
chunks

chunk

target
var

?topic (object)

open
vars

?size-category-7 (size-category), ?shape-category-6 (shape-category)

irl
program

((unique-entity ?topic ?source-set-17)
(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)
(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)
(get-context ?source-set-18))
(unique-entity ?topic ?source-set-17)

(filter-by-size ?source-set-17 ?source-set-19 ?size-category-7)

(filter-by-shape ?source-set-19 ?source-set-18 ?shape-category-6)

(get-context ?source-set-18)

score 0.50

chunk
evaluation
results

circle, big (0.83)

get-context (0.50)

filter-by-shape (0.50)

filter-by-size (0.50)

unique-entity (0.50)

chunk-1723 (0.50)

+

chunk-1723 (0.50)

4, 2.00: get-context

7, 3.00: filter-by-shape 10, 4.00: filter-by-size 12, 1.00: unique-entity

8, 3.00: filter-by-shape
14, 4.00: filter-by-size 16, 5.00: unique-entity

15, 4.00: filter-by-size 17, 5.00: unique-entity

9, 3.00: filter-by-shape 18, 4.00: filter-by-size 20, 5.00: unique-entity

Figure 2.18: One branch of an example composition process. Each node keeps track of
the target variable (‘?topic’), a list of open variables and the constructed constraint pro-
gram. �e cost of a node is the second number between parentheses in the node’s name.
Only constraints that ful�l a goal (i.e. connect to an open variable and have matching type
speci�cations) are added. �e last node constitutes a solution as the constraint satisfac-
tion process allows to infer the topic with two additional bindings: ‘?shape-category-8’ 
‘circle’ and ‘?size-category-7’ ‘big’.
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equivalence, the multiset coe�cient can be computed as follows:

⇣⇣
n

k

⌘⌘
=

✓
n+ k � 1

k

◆
=

(n+ k � 1)!

k!(n� 1)!
=

n(n+ 1)(n+ 2)...(n+ k � 1)

k!

In terms of the composer, the number of potential combinations of k primitive cognitive
operators from an inventory of n such operators is thus

��n
k

��
. Assuming an average arity a,

the number of potential links between the arguments of k primitives is given by s(k, a) =
(k � 1)a((k � 1)a+ 1)/2. �e total number of potential constraint programs of size k is
thus approximated by

��n
k

��
2s(k,a), while the total number of intermediate programs with

maximum length k, i.e. the size of the entire search space considered by the composer, is
approximated by

Pk
i=1

��n
i

��
2s(i,a).

Con�gurations

�ere are typically many di�erent programs that satisfy a given communicative goal.
�erefore, the composer keeps track of its current state and can be asked to generate mul-
tiple or all solutions up to a certain (con�gurable) depth. �e best program can be selected
based on a number of criteria (Van den Broeck, 2008), such as the cognitive e�ort or level
of ambiguity involved in evaluating the program or the expressibility of a corresponding
u�erance. �is can be con�gured via a function that computes a score and ranks the so-
lutions. Additional goal tests, apart from satisfying the communicative goal, can also be
speci�ed.

�e expansion operator as described above is the composer’s default behaviour. However,
the composer mechanisms allows to specify other expansion operators or even accepts
multiple expansion operators that can be combined. For example, an expansion operator
can try to connect existing open variables with matching type speci�cations in the con-
structed constraint program instead of adding new constraints that compute them. Next to
this, the composer also accepts node tests which can be used to prune unwanted interme-
diate programs that are generated by the expansion operator(s). �ese node tests are ran
before the expanded program is evaluated. �erefore, they rely only on information from
the node itself and the structure of the expanded program. Two default node tests are in
place. �e �rst limits the depth of the composer search process. �e second avoids nodes
with identical constraint programs. Indeed, depending on the arity of the constraints and
their cases, the same constraint program could be constructed via di�erent paths through
the search space. �is second node test avoids re-evaluating these constraint programs.

Cost Function

�e cost of a state is used to determine the order in which nodes are processed. By default,
states encountered early in the search space (d), that have few constraints (|p|), few open



74 CHAPTER 2. BACKGROUND AND TECHNICAL FOUNDATIONS

variables (|o|), few duplicate constraints (|pd|), and a high score (s) are preferred (Spranger
et al., 2012b, p. 166). �ese elements are combined into a cost function as follows:

c =
d+ |o|+ |p|+ 5|pd|

s
(2.1)

�e score of a state is, by default, determined by averaging the scores of the constraints
that make up the intermediate program of that state. �is cost function results in a best-
�rst search. Other cost functions or functions for scoring constraint programs can be
con�gured.

Both the depth in the search space and the number of primitives are considered in the cost
function as these do not necessarily correspond to each other. �e reason for this is the
chunking mechanism.

2.4.6 Chunking

�e chunking mechanism in IRL is inspired by the cognitive phenomenon of the same
name. Miller (1956) proposed chunks as being the basic organisational unit of human
memory that group together meaningful units of information and can be more easily re-
trieved from memory. In IRL, chunking allows to take (part of) a constraint program and
wrap it in a chunk such that it can be used by the composer as if it were an atomic con-
straint. Given (part of) a program, IRL automatically determines the target variable and
open variables of the chunk. A chunk’s open variables are variables that occur just one in
the provided (sub)program. �e target variable is the open variable that occurs as the �rst
argument of a constraint. �us, given values for the open variables, the chunk allows to
compute a value for the target variable. Figure 2.19 illustrates a chunk that is made up of
a constraint network of two constraints. A�er adding this chunk, the composer can use
the name of the chunk, i.e. ������7, to expand a constraint program in the same way
as a regular constraint. Speci�cally, ������7 can be used when there is an open vari-
able of type ‘object-set’, and it introduces itself three open variables of types ‘object-set’,
‘size-category’ and ‘shape-category’.

�e chunking mechanism is used when a certain constraint program led to a successful
communicative interaction. A chunking strategy can then be used to select part of or
the complete constraint program, and the resulting chunk can be added to the agent’s
memory. Hence, chunking can be implementing using the meta-layer architecture (see
Section 2.2.5) through diagnostics that check the outcome of the interaction and repairs
that implement chunking strategies. In previous research (i.a. Van den Broeck (2008) and
Spranger (2016)), only the most basic chunking strategy was used, namely to use the entire
constraint program as a chunk.

�e chunking mechanism is motivated both from a computational perspective and from
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target var ?output-set (object-set)
open vars ?source-set (object-set), ?size (size-category), ?shape (shape-category)
irl program ((filter-by-shape ?internal-set ?source-set ?shape)

(filter-by-size ?output-set ?internal-set ?size))
(filter-by-shape ?internal-set ?source-set ?shape)

(filter-by-size ?output-set ?internal-set ?size)

score 0.50

reset

chunk-7 (0.50)

Figure 2.19: A chunk made up of two constraints. IRL automatically determined the target
variable ‘?output-set’ and the open variables ‘?source-set’, ‘?size’ and ‘?shape’. �e chunk
keeps a score, in this case 0.5, that re�ects its entrenchment.

the perspective of language emergence and evolution. From a computational point of view,
chunking drastically reduces the complexity of the search space of the composition pro-
cess. Speci�cally, the number of possible constraint programs increases exponentially with
the number of available constraints. �is assumes, however, that all constraints can com-
bine with each other, which is typically not the case (see Van den Broeck (2008) for a
formal analysis of the size of the search space). Chunks reduce this complexity by adding
multiple constraints in one go, instead of adding one constraint at a time. �is avoids a
large number of nodes that need to be evaluated at every intermediate depth. �us, chunk-
ing (sub)programs that were used successfully in communicative interactions allows the
composition process to jump to a point in the search space that previously proved to be
successful (Van den Broeck, 2008). In the context of language emergence and evolution,
there is an important relationship between chunking and grammar (Spranger, 2016, p.
38). Speci�cally, chunks can be used to investigate the di�erent strategies used by agents
to conceptualise their environment, how these strategies spread and become convention-
alised in the population through communicative interactions. Chunks in IRL accommodate
for this by keeping a score, which can be used to re�ect this conventionalisation. �e rela-
tionship to grammar is that the syntactic structure is tightly connected to this underlying
conceptualisation strategy. �is suggests that certain syntactic markers, such as the use
of determiners in English noun phrases or the use of aspect in Russian verbs, are a con-
sequence of the di�erent ways in which speakers of these languages conceptualise their
environment (Spranger, 2016, p. 38).

In sum, chunking drastically reduces the cognitive load for the speaker during the concep-
tualisation process and allows agents to construct ever-more complex semantic structures,
e.g. by chunking constraint programs recursively. Additionally, chunks allow to compare
conceptualisation strategies and investigate their relationship to grammar.
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2.4.7 Flexible Interpretation

A �nal piece of functionality in IRL is the composer’s ability to propose completions of
partial constraint programs. In language game experiments, this is bene�cial for the ro-
bustness of the listener in case of misunderstanding or under-speci�cation of an u�erance.
In particular, the constraint program that results from comprehending the u�erance might
have missing ���� statements, missing constraints or missing links. When using �exible
interpretation, the search process of the composer is similar to the one described in Section
2.4.5. However, the composer does not start from an empty constraint program, but from
an incomplete one. �erefore, it searches for a constraint program that simultaneously
matches with the incomplete program and can infer the communicative goal. Only con-
straint programs that satisfy both of these conditions are valid solutions. �e matching
operation is performed at every step of the composition search process.

Matching is implemented as a uni�cation-based process between two constraint programs.
Spranger et al. (2012b, p. 169) formally describes matching a program n, resulting from
comprehension, to the constructed program c as follows:

• �e program n trivially matches the program c i� 1) for each bind statement in n

there is an open variable of the same type in c and 2) every primitive p of n is in c.

• �e program nmatches the program c i� there is a function f from the variables in n
to the variables in c such that f(n) = n

0 trivially matches c, where f(n) substitutes
every variable x in n for f(x).

�is matching process can return multiple solutions. Each solution describes a mapping
from variables in the comprehended program to variables in the constructed program.

Intuitively, when the composer starts from a partial program, the program that is being
constructed must preserve the constraints, the ���� statements and the variable links of
the partial program. �e ���� statements of the partial program are matched with the
open variables of the constructed program via their type information. In order to infer
the communicative goal, the composer may add more constraints or variable links to the
partial program resulting from comprehension.

2.5 Conclusion

In this chapter, I have introduced the computational tools and techniques that will be used
to operationalise subsequent chapters of this dissertation and the broader research context
in which these tools and techniques are embedded.

In Section 2.2, I presented the Babel so�ware package as a �exible toolkit that allows to
implement and run experiments within the language game paradigm. �is experimental
paradigm allows to study the emergence and evolution of languages from a cultural per-
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spective through multi-agent simulations. In particular, this paradigm tackles the question
of how an e�ective and e�cient communication system can emergence in a population
of autonomous arti�cial agents through local, decentralised, and situated communicative
interactions. Babel’s ubiquitous meta-layer architecture, which separates routine process-
ing from meta-level processing, allows agents to deal with problem solving, reasoning and
learning in a �exible manner across all layers of processing and ensures both robustness
and open-endedness.

Most research e�orts within the language game paradigm are currently oriented towards
the acquisition, emergence and evolution of grammar, which necessitates the use of pow-
erful tools for representing and processing more elaborate semantic and morpho-syntactic
structures. �e Babel so�ware package includes on the one hand Fluid Construction Gram-
mar (FCG) (Section 2.3) for operationalising processes on the linguistic level and on the
other hand Incremental Recruitment Language (IRL) (Section 2.4) for implementing pro-
cesses on the conceptual level.

Fluid Construction Grammar (FCG) is a special-purpose formalism that provides all the
necessary building blocks for operationalising bidirectional constructional language pro-
cessing. FCG stays close to the basic tenets of construction grammar and aims to be as
theory-neutral as possible with respect to the constructional analysis being implemented.
In FCG, constructional language processing is treated as a search process, �nding the se-
quence of constructions who’s application leads to a successful comprehension or produc-
tion process. �e integration of the categorial networks system allows to capture emergent
generalisations over constructions via a network of grammatical categories. FCG is an
open-ended formalism that easily allows to add constructions and grammatical categories
on the �y.

Incremental Recruitment Language (IRL) is a special-purpose formalism that provides the
necessary building blocks for representing, evaluating, composing, chunking and match-
ing procedural semantic representations. In IRL, the meanings underlying natural lan-
guage u�erances are expressed as constraint networks that capture second-order seman-
tics and can be executed algorithmically over the agent’s sensorimotor experiences and
inventories of concepts. �e individual constraints represent multidirectional relations be-
tween their arguments. �is makes the evaluation of constraint networks, i.e. constraint
satisfaction, a completely data-driven process, allowing data to �ow through the constraint
networks in several directions. �e �exibility that this brings forward allows agents in lan-
guage game experiments to use IRL in order to bridge the gap between their sensorimotor
processing and language capabilities both for interpretation and conceptualisation. �e
la�er is implemented by the composer mechanism, a highly con�gurable search process
for constructing semantic networks that satisfy a particular communicative goal.

FCG and IRL are tightly integrated in the Babel so�ware package and can be used together
seamlessly. Combined, these tools and techniques are well suited to investigate the many
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aspects of the acquisition, emergence and evolution of conceptual, morpho-syntactic and
semantic structures through situated, communicative interactions.

2.5.1 Contributions

�roughout my PhD project, I made a number of contributions to each of the aforemen-
tioned tools. In Babel, the ‘robot-interface’ package, discussed in Section 2.2.4, for the �rst
time incorporates a standardised interface for connecting the Babel so�ware to robotic
platforms. �is allows researchers to more easily integrate new robotic platforms and
operationalise all processes required to set up language game experiments, including the
grounding process on the sensorimotor level. �is contribution is more extensively dis-
cussed in Nevens et al. (2019b).

�e novel methodology discussed in Section 2.3.6 allows to learn powerful heuristics for
constructional language processing, and in particular FCG, by using an encoder-decoder
neural network architecture. �is contribution is crucial when it comes to scaling con-
structionist approaches to language, in particular for situations where a relatively �xed
grammar needs to be processed e�ciently, such as in corpus studies or language technol-
ogy applications. In turn, these advances can have further implications in usage-based
linguistics or models of language acquisition. A paper discussing the neural heuristics
methodology and a case study demonstrating its potential on a large-scale grammar has
been submi�ed as Van Eecke et al. (subm).

My contribution to IRL is on the implementation level. Speci�cally, I re-implemented both
the evaluation process of semantic networks and the composition process of semantic net-
works. �e main goal of these re-implementations is to make them more easily con�g-
urable. In particular, given that both of these processes are tackled through search pro-
cesses, I added a number of con�gurable se�ing, e.g. node tests, goal tests, queue regula-
tors, heuristic functions, etc., that allow to steer these search processes in a more modular
way. �e names of those se�ings correspond to those used in FCG, which also implements
a search process. Additionally, these se�ings are stored, together with the inventory of
primitive cognitive operators, in a new and central ‘primitive inventory’ data structure,
reminiscent of FCG’s ‘construction inventory’ data structure. �ese parallels between IRL
and FCG further contribute to the integration of these systems within the Babel so�ware
package and make IRL easier to learn and use for both new and more experienced re-
searchers using Babel.
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3.1 Introduction

�e two main objectives of this dissertation, as laid out in Section 1.2, are (i) the introduc-
tion of novel representations and learning mechanisms that allow autonomous agents to
acquire linguistic structures through task-oriented, communicative interactions and that
exhibit characteristics found in human languages and (ii) the validation of these novel
representations and learning mechanisms through concrete case studies that tackle chal-
lenging communicative tasks in concrete environments. In this chapter, I focus on the
operationalisation of those case studies and particularly on the task that will be tackled
and the dataset that will be used. �e use of a standardised, freely accessible benchmark
dataset that tackles a well-known and clearly delineated task allows for meaningful com-
parison with past and future work and makes progress more easily quanti�able. �erefore,
I have opted to tackle the task of visual question answering (VQA) on the CLEVR bench-
mark dataset (Johnson et al., 2017a). In Section 3.2, I �rst lay out a number of requirements
that need to be ful�lled by any given benchmark dataset to be useful for the objectives of
this dissertation. A�erwards, in Section 3.3, I introduce the CLEVR dataset, elaborate on
its design and discuss how it meets the dataset requirements.

A�er choosing a benchmark dataset, it can be bene�cial to manually construct a solu-
tion for it as this can serve as the gold standard for the learning mechanisms introduced
in subsequent chapters. I present this solution, namely the CLEVR grammar, in Section
3.4. �e CLEVR grammar consists of a computational construction grammar, formalised
using Fluid Construction Grammar (FCG), that provides bidirectional mappings between
all questions of the CLEVR dataset and their underlying procedural semantic representa-
tions, together with an implementation of these procedural semantics through Incremen-
tal Recruitment Language (IRL). Together, these components e�ectively solve the CLEVR
benchmark task on the symbolic level. I motivate why the CLEVR grammar was created,
demonstrate its language processing capabilities, and discuss its main advantages. Finally,
in Section 3.5, I summarize the chapter and re�ect on its contributions.

3.2 Dataset Requirements

I specify �ve requirements that any benchmark dataset needs to meet in order to be useful
for the objectives of this dissertation as speci�ed in Section 1.2:

1. Grounded linguistic expressions. Languages are not learned in a vacuum. In-
stead, they are learned through interactions between interlocutors that are situated
in a speci�c environment (Hopper, 1987; Jasperson et al., 1994; Van Eecke, 2018, p.
16) and they draw upon general cognitive mechanisms that are grounded through
embodied sensorimotor experiences (Lako�, 1987; Cro� and Cruse, 2004). As laid
out in the objectives of this dissertation, the developed methodologies are aimed at
autonomous agents. �is entails, among others, that these agents have their own



3.3. THE CLEVR DATASET 81

sensors and actuators with which they can observe the environment, act in it and
ground their conversation in it. �erefore, the benchmark dataset should not only
contain linguistic u�erances, but also the environment in which these u�erances
are used. Such an environment can be realised through simulation, images, video,
virtual reality or robot hardware.

2. Task-oriented. �e benchmark dataset should be able to accommodate a commu-
nicative task. Common tasks include reference, (visual) question answering, (visual)
dialogue, navigation, etc. �e benchmark dataset should therefore not only include
linguistic u�erances situated in an environment, but it should also be possible to
extract or derive the ground-truth solutions to the task.

3. Scale and similarity. �e benchmark dataset needs to be large enough and contain
su�cient variation, both in terms of the linguistic expressions and the environment,
to make for a challenging learning problem. At the same time, it should contain
linguistic expressions that are su�ciently similar to each other, yet non-identical, as
this is a necessary precondition for any kind of generalisation process. �is is also
fully consistent with the prevailing hypothesis of how children acquire language
(Tomasello, 2003; Doumen et al., forthcoming).

4. Avoid biases. Ideally, the benchmark dataset should not contain any built-in biases,
or avoid them asmuch as possible, both in terms of the linguistic expressions and the
environment. Conditional biases between the linguistic expressions and the ground-
truth solutions to the task or between the environment and the solutions should
equally be avoided. Learning approaches might exploit any of these biases and learn
short-cuts instead of performing actual reasoning.

5. Semantically annotated (optional). Learning linguistic structures in terms of
construction grammar (see Section 2.3) requires not only linguistic u�erances, but
also a representation of their meaning since the basic unit of language, namely con-
structions, consist of form-meaning mappings. While it is perfectly possible to cre-
ate such a representation from scratch, it can be bene�cial to start from an existing
semantic annotation.

3.3 �e CLEVR Dataset

�e CLEVR benchark dataset (Johnson et al., 2017a) was designed to facilitate the devel-
opment and evaluation of intelligent systems that tackle the task of visual question an-
swering (VQA). First introduced by Antol et al. (2015), the VQA task has become a widely
used benchmark in arti�cial intelligence research as it involves answering natural lan-
guage questions about images and thereby requires the combination and integration of
language processing capabilities, perceptual abilities and multi-modal reasoning.
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• Q: Is there an equal number of large things and
metal cubes?

• Q: What size is the cylinder that is le� of the
brown metal things that is in front of the big
sphere?

• Q: �ere is a cylinder of the same size as the
brown metal cube; is it made of the same ma-
terial as the small green ball?

• Q: How many objects are either small cylinders
or red things?

Figure 3.1: An example image from the CLEVR dataset (le�) and a number of questions
(right) exemplifying the various reasoning skills: counting, comparison, a�ribute identi-
�cation, spatial relations and logical operations. Image and examples from Johnson et al.
(2017a).

Starting with the initial motivation and design choices of the CLEVR dataset in Section
3.3.1, I continue by describing the images (Section 3.3.2) and the natural language questions
(Section 3.3.3) of the dataset and how they are generated. A�erwards, I introduce the
CoGenT variant of the dataset (Section 3.3.4) and I provide a number of statistics on both
themain dataset and the CoGenT variant (Section 3.3.5). Finally, in Section 3.3.6, I motivate
the decision for using this benchmark dataset in light of the requirements outlined in the
previous section.

3.3.1 Motivation

�e CLEVR dataset was speci�cally created as a diagnostic dataset, enabling detailed anal-
ysis of the reasoning processes taking place in systems that tackle the visual question
answering task. Since the focus lies on the reasoning aspect, the images are kept simple.
�ey are arti�cially generated scenes containing a number of 3D shapes of various colours,
sizes and materials on a plain background. An example image is shown on the le� side of
Figure 3.1. Due to their simplicity, these images can be easily processed by o�-the-shelf
tools and techniques for object detection, instance segmentation or feature extraction. �e
questions, on the other hand, are designed to test a variety of reasoning abilities such as
counting (e.g. “How many spheres are there?” ), comparison (e.g. “Are there more spheres
than cubes?” ), a�ribute identi�cation (e.g. “What is the colour of the cube?” ), spatial rela-
tions (e.g. “What colour is the sphere le� of the cube?” ) and logical relations (e.g. “Howmany
things are either red spheres or blue cubes?” ). �e right side of Figure 3.1 shows example
questions featuring these reasoning skills.

�e CLEVR dataset was carefully designed to rule out biases and avoid short-cuts as much
as possible. �is is a common problem in other VQA datasets, as abundantly shown by
Agrawel et al. (2016), Goyal et al. (2017), Manjunatha et al. (2019) and Das et al. (2019).
To illustrate this problem, consider the following example from Agrawel et al. (2016). In a
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particular dataset, the question “What covers the ground?” will almost always be accom-
panied by an image of a snowy landscape. �is allows the VQA system to learn a strong
association between this question and the answer “snow”. �is associationwill be so strong
that the answer “snow” will be provided with any input image, without even considering
the image and without any reasoning taking place. In generating the CLEVR dataset, a
number of measures were taken to avoid these kinds of issues. Most importantly, contrary
to most other VQA datasets (e.g. Antol et al. (2015) and Goyal et al. (2017)), neither the
images nor the questions were scraped from the web or crowd-sourced. Instead, the scenes
are arti�cially generated with uniform probabilities, such that, for example, a cube is ap-
proximately as o�en blue, as it is green or yellow or red, etc. �e questions are generated
based on templates that can be automatically instantiated based on the scene. Rejection
sampling is used to minimise question-conditional biases (such as the snowy landscape
example above) and each question is checked against the image to avoid generating de-
generate questions. In sum, these controlled conditions aim to create a dataset that forces
the VQA systems to perform actual reasoning instead of �nding and exploiting statistical
biases from the input data.

3.3.2 Images

�e images of the CLEVR dataset contain between three and ten geometrical objects on
a plain grey background, generated using Blender (Blender, 2018). �e objects are placed
in the scene such that they are non-overlapping and not completely occluded by one an-
other. Objects can have di�erent shapes, sizes, colours and materials. An overview of the
available concepts is provided in Table 3.1. �e images are accompanied by a structured,
ground-truth annotation. �is contains the a�ributes of each object, their exact positions
on the X-, Y- and Z-axis and the spatial relations between them in terms of four spatial
relations: behind, le� of, right of and in front of. Two important remarks need to be made
with respect to the CLEVR images and their annotation. First, the size of the objects is
expressed in absolute terms. An object is either large or small, regardless of whether it is
placed near or far from the camera’s point of view. Second, the spatial relations operate by
projecting the camera’s viewpoint onto the ground plane. Hence, one object is in front or
behind another one if its central point is closer or further along the z-axis. Similar de�ni-
tions are used for le� and right, using the x-axis. While this is an unambiguous de�nition
for a computer, it can sometimes be di�cult to interpret for humans. For example, when
looking at the scene depicted in Figure 3.1, it can be hard to tell whether the le�most large
yellow cube is le� or right of the large cyan cylinder.

3.3.3 �estions

�e questions of the CLEVR dataset are automatically generated based on question tem-
plates. Each question template can express a particular question in a number of gram-
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Table 3.1: Overview of concepts used in the CLEVR dataset.

Category Concepts

shape sphere, cylinder, cube
colour blue, brown, cyan, grey, green, purple, red, yellow
size large, small
material metal, rubber

matically varied ways. For example, one question template contains both “What colour is
the <Z> <C> <M> <S>?” and “�e <Z> <C> <M> <S> is what colour?”. Here, the
‘<Z>’, ‘<C>’, ‘<M>’ and ‘<S>’ are template slots that need to be instantiated by a par-
ticular size, colour, material and shape, respectively. �ese instantiations allow for lexical
variety since the dataset provides a number of synonyms for shapes, material and sizes.
For example, ‘cube’ can also be ‘block’, ‘metal’ can also be ‘metallic’ or ‘shiny’ and ‘large’ is
the same as ‘huge’. Instantiations of template slots are sampled randomly from these syn-
onyms. An overview of the available synonyms is provided in Table 3.2. Template slots for
sizes, colours and materials can be le� out, resulting in many di�erent u�erances that can
be generated using the same template. For example, the template “What colour is the<Z>
<C> <M> <S>?” can be instantiated as “What colour is the large rubber cube?”, “What
colour is themetal thing?”, “What colour is the ball?”, etc. Across all question templates, fully
instantiated questions can contain anywhere between 5 and 45 words, and each question
template provides on average four grammatically di�erent forms. �e linguistic structure
of the question templates features noun phrases, prepositional phrases, anaphora, con-
junction and subordination. While these templates o�en do not re�ect actual language
use, and some of the larger ones become hardly comprehensible even for humans, they do
follow pa�erns that are consistent with typical English interrogative structures. In total,
the CLEVR dataset contains 90 question templates.

In order to properly analyse potential reasoning errors, the question templates not only
contain the linguistic form of the question, but also the ground-truth reasoning steps that
are required to answer that speci�c type of question. �ese reasoning steps are expressed
in terms of a library of reasoning functions. Examples of these reasoning functions in-
clude �����, for retrieving all objects in the present scene, ���� ������ for retrieving
the colour of a particular object, ����� for counting the number of objects in a set, etc.
An overview of the function catalogue designed by Johnson et al. (2017a), together with
examples of how to combine them into reasoning programs, is provided in Figure 3.2.

3.3.4 CLEVR CoGenT

Apart from the main dataset, Johnson et al. (2017a) also provide the CLEVR Compositional
Generalisation Test (CoGenT).�e goal of the CoGenT dataset is to test compositional gen-
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Table 3.2: Overview of terms and their synonyms available in the CLEVR dataset. Object
properties that are used in the CLEVR dataset but missing from this table, such as “cylin-
der”, “behind”, etc., do not have synonyms.

Term Synonyms

thing object
sphere ball
cube block
large big
small tiny
metal metallic, shiny
rubber ma�e
le� le� of, to the le� of, on the le� side of
right right of, to the right of, on the right side of
front in front of

eralisation abilities of VQA systems. Concretely, this dataset tests whether an intelligent
system has truly learned the concepts that are present in the dataset instead of memorising
their co-occurrences. �is is done by generating images and questions in two experimen-
tal conditions. In condition A, cubes can be grey, blue, brown or yellow, cylinders are
red, green, purple or cyan and spheres can have of any these colours. In condition B, the
colour options for cubes and cylinders are switched and those for spheres remain the same.
Apart from these constraints, the images and the questions are generated in the same way
as described above. To test the compositional generalisation abilities of a particular VQA
system, it should be trained on condition A and evaluated on condition B. Hence, the VQA
system will observe combinations of concepts during evaluation that were not observed
during training. If the system has really captured the underlying concepts, such as cube,
sphere, cylinder, blue, cyan, etc., it should have no issues in transitioning from condition
A to condition B.

3.3.5 Statistics

Statistics on the CLEVR dataset are provided in Table 3.3. Across all splits, the CLEVR
dataset contains 100,000 images and roughly 1 million questions. Across the three splits,
over 85% of the questions are unique. Approximately 12% of the questions from both the
validation split and the test split already occur in the training split. Finally, the ground-
truth annotations and the ground-truth answers are made available for the training split
and the validation split, but not for the test split.

Statistics on the CLEVR CoGenT dataset are provided in Table 3.4. In this table, a distinc-
tion is made between experimental conditions A and B.�e data splits are nearly identical
in size compared to the main dataset. Information on the number of unique questions or
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Figure 3.2: Overview of the CLEVR function catalogue (right) and two examples of how
these functions are combined into programs (le�). For both programs, the associated ques-
tion is provided. Figure from Johnson et al. (2017a).

the overlap with the training set is not reported by Johnson et al. (2017a). Similar to the
main dataset, ground-truth annotations and answers are made available for the training
split and the validation set, across experimental conditions, but not for the test split.

3.3.6 Requirement Analysis

�e CLEVR dataset �ts the requirements outlined in Section 3.2. Speci�cally, it provides a
large corpus of su�ciently similar, but non-identical, compositional u�erances due to its
template-based question generation process. �e u�erances are grounded in a speci�c en-
vironment that is realised through arti�cially generated images. For both the images and

Table 3.3: Statistics on the CLEVR dataset. Table from Johnson et al. (2017a).

Split # Images #�estions # Unique�estions Overlap with train

Total 100,000 999,986 853,554 -

Train 70,000 699,968 608,607 -
Val 15,000 149,991 140,448 17,338
Test 15,000 149,988 140,353 17,335
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Table 3.4: Statistics on CLEVR CoGenT dataset.

Condition Split # Images #�estions

A
Train 70,000 699,960
Val 15,000 150,000
Test 15,000 149,980

B Val 15,000 149,991
Test 15,000 149,992

the u�erances, measures are taken to avoid biases as much as possible. Even more so, the
CoGenT variation o�ers an additional instrument to check whether a particular VQA sys-
tem is prone to bias and is able to generalise. �e dataset accommodates a communicative
task by design, as it was created for visual question answering, but can also accommodate
others tasks such as referential tasks (as in Liu et al. (2019b)) or dialogues (as in Das et al.
(2019)). Finally, both the questions and the images are accompanied by ground-truth an-
notations. For the images, this speci�es the properties of the objects, their exact location
and the spatial relations between them. For the questions, the annotation details all rea-
soning steps that are required to answer them, which immediately corresponds to a kind
of (procedural) semantic representation.

3.4 �e CLEVR Grammar

In this section, I present the CLEVR grammar: a symbolic system that e�ectively solves
the CLEVR benchmark task. �is system consists of two components: (i) an FCG grammar
that captures bidirectional mappings between the questions and their underlying proce-
dural semantic representations and (ii) an implementation of the procedural semantic rep-
resentations through the Incremental Recruitment Language (IRL) system that allows to
compute the answers to the questions when executed on the symbolic annotation of the
CLEVR images. I refer to these components collectively as the CLEVR grammar. Impor-
tantly, the CLEVR grammar is not learned but designed by hand as its goal is to serve as
the gold standard or as sca�olding for the learning mechanisms that will be introduced in
subsequent chapters of this dissertation.

In what follows, I motivate the design of the CLEVR grammar (Section 3.4.1), discuss
the meaning representation used in the grammar (Section 3.4.2), demonstrate its bidirec-
tional language processing capabilities (Section 3.4.3), and present evaluation results of
the CLEVR grammar in terms of coverage and accuracy (Section 3.4.4). An interactive web
demonstration of the CLEVR grammar, including examples of the grammar in both the
comprehension and production direction and showcasing the symbolic execution of the
procedural semantic representations, can be found at h�ps://ehai.ai.vub.ac.be/demos/clevr-

https://ehai.ai.vub.ac.be/demos/clevr-grammar
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grammar.

3.4.1 Motivation

Both computational construction grammar and procedural semantics are good candidates
for tackling the CLEVR benchmark task. Computational construction grammar, in par-
ticular, o�ers an elegant and e�ective way of dealing with the compositional and non-
compositional nature of linguistic expressions, both in terms of form and meaning. �is is
due to the operationalisation of construction grammar’s basic tenets (described in Section
2.3.1), such as the lexicon-grammar continuum and the tight integration of morpho-syntax
and semantics. To illustrate, consider a ���������X�����Y construction. Using a single
construction, it captures all relevant linguistic information that is associated with u�er-
ances that instantiate this construction. �is includes, among others, the fact that the
meaning (�ltering on X �rst and then on Y and counting the result) only depends on the
values of X and Y, the fact that X needs to be a plural noun phrase and Y needs to agree
with X, and the fact that “many” cannot be replaced by another determiner or adjective,
such as “few” or “numerous”. �e main bene�t of procedural semantics is that it captures
the meaning underlying an u�erance in a representation that can be executed algorithmi-
cally. �is allows an agent that is situated in a CLEVR scene to analyse the question and
directly obtain the answer by evaluating the resulting meaning representation. It thereby
avoids the highly non-trivial step of transforming a semantic analysis of the question into
an executable query language.

Apart from motivating the tools and techniques used to operationalise the CLEVR gram-
mar, there are three main reasons for constructing this solution in the �rst place. First,
it shows that it is possible to solve the CLEVR benchmark task using the aforementioned
tools, namely FCG and IRL. �is is a good indicator that it will also be possible to learn
(parts of) the dataset using the same tools, as they have su�cient representational and
processing capabilities to accommodate the solution. Second, having a complete solution
allows to use some aspect of this solution as sca�olding, particularly when an experiment
focuses on learning only part the CLEVR benchmark task. For example, when trying to
learn the semantic concepts present in the dataset, the morpho-syntactic structures can
be taken from this solution. �ird, this solution can be used to evaluate the results of a
learning mechanism or serve as the gold standard.

3.4.2 Meaning Representation

�e CLEVR grammar maps the questions of the CLEVR dataset to meaning representa-
tions in terms of procedural semantics, implemented using IRL. Speci�cally, the meanings
of the questions consist of networks of primitive cognitive operators (or constraint net-
works), where each such operator (or constraint) captures a multidirectional relationship
between its arguments (see Section 2.4.3). �e repertoire of cognitive operators used in the

https://ehai.ai.vub.ac.be/demos/clevr-grammar
https://ehai.ai.vub.ac.be/demos/clevr-grammar
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semantic networks is derived from the catalogue of reasoning functions that is provided
with the question annotations of the dataset (see Figure 3.2). However, whereas the CLEVR
dataset uses reasoning functions, specifying a relation from input to output, the IRL prim-
itives are constraints. In Table 3.5, I provide a brief description of each of the 14 primitive
cognitive operators as used in the CLEVR grammar. �ese descriptions focus on the mode
of operation of these primitives that is mainly used during the VQA task. However, I also
indicate the directions of processing in which each primitive is implemented. �e notation
X Y ) Z indicates a mode of operation where ‘X’ and ‘Y’ are bound arguments and the
primitive tries to compute a value for ‘Z’.

Using the primitives outlined in Table 3.5, meaning networks can be built by linking them
together through the re-use of variable arguments. An example meaning network is given
in Figure 3.3. �is network is the semantic representation of the question “What material
is the red cube?”. It essentially captures the reasoning operations that need to be performed
in order to obtain the answer to that question. �e evaluation of this semantic network
proceeds as follows. First, the ����������� predicate retrieves all the objects in the scene
and binds this set to the variable ?�������. Next, this set is �ltered using the concepts
���� and ���, such that only red cubes remain. �e ����� predicate checks whether the
set of red cubes contains a single element and binds this element to the variable ?��������.
Finally, the material of the red cube is retrieved using ���� and bound to ?������. �e
binding of this variable is the answer to the question.

(get-context ?context)

(filter ?cube-set ?context ?shape-1)

(filter ?red-cube-set ?cube-set ?color-1) (bind shape-category ?shape-1 cube)

(unique ?red-cube ?red-cube-set) (bind color-category ?color-1 red)

(query ?target ?red-cube ?attribute-1)

(bind attribute-category ?attribute-1 material)

Figure 3.3: A semantic network for the question “What material is the red cube?”. Best read
from top right to bo�om le�.

Primitive cognitive operators in IRLmanipulate semantic entities, which capture concepts,
world models or intermediate data structures (see Section 2.4.3). �is is not di�erent for
the CLEVR grammar. Apart from the repertoire of primitives listed above, an inventory of
the concepts and categories that are present in the CLEVR dataset is provided. �is allows
to resolve the ���� statements for ����, ��� and �������� in the meaning network from
Figure 3.3. �e primitives are designed to operate over symbolic world models instead of
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directly processing the CLEVR images. �is is illustrated in Figure 3.4, showing an image
from the dataset on the le� side and the symbolic world model used by IRL on the right
side. Because of this symbolic input, the cognitive operators can be straightforwardly
implemented using arithmetic operations or set operations.

scene-4

obj-16
size: large
color: yellow
material: metal
shape: cube
clevr-object

obj-17
size: large
color: purple
material: metal
shape: cube
clevr-object

obj-18
size: large
color: gray
material: rubber
shape: cylinder
clevr-object

obj-19
size: large
color: green
material: rubber
shape: cylinder
clevr-object

clevr-scene

reset

View Scene

Figure 3.4: An example image from the CLEVR dataset (le�) and the corresponding sym-
bolic annotation (right).

3.4.3 Bidirectional Language Processing

�e CLEVR grammar consists of 170 constructions for mapping between the questions
and their underlying meaning representations. Fi�y-�ve of them are morphological and
lexical constructions that were automatically generated based on metadata provided with
the dataset. �e metadata contains the concepts and categories present in the CLEVR
data, together with the available synonyms (see Tables 3.1 and 3.2). �e remaining 115
constructions capture the grammatical structures of the questions. �ese were constructed
manually based on the question templates as described in Section 3.3.3.

In what follows, I demonstrate the CLEVR grammar in both the comprehension and the
production direction. �rough these examples, I provide a glimpse at the constructions
that are present in the CLEVR grammar. A�erwards, I highlight two design pa�erns that
were bene�cial for the development the CLEVR grammar, and which can be used for devel-
oping other grammars with FCG.When describing these pa�erns, I provide a great number
of details on the construction application process. However, the comprehension and pro-
duction examples should already provide the reader with an idea of how the CLEVR gram-
mar works, allowing the section on these design pa�erns to be skipped when desired. A
complete speci�cation of all constructions, together with interactive examples of compre-
hension and production, can be found at h�ps://ehai.ai.vub.ac.be/demos/clevr-grammar.
For a detailed description of constructional language processing using Fluid Construction
Grammar, I refer to Section 2.3.

Comprehension

I demonstrate the CLEVR grammar in comprehension by mapping the u�erance “What
material is the red cube?” to its underlying meaning representation which is shown in Fig-

https://ehai.ai.vub.ac.be/demos/clevr-grammar
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ure 3.3. Figure 3.5 gives a schematic overview of the comprehension process with respect
to themeaning representation that is gradually built up a�er each construction application.
�e �rst construction that applies is the ��������������. It does not add any meaning
to the transient structure, but only morphological features that can be used later on by
the ������������. Before the ������������ applies, both the ���������������� and the
����������� could apply. �ese three lexical constructions add meaning predicates to
the transient structure re�ecting the meanings of the words “material”, “red” and “cube”,
respectively. �ese meanings are expressed as ���� statements, introducing semantic en-
tities in the meaning network. Separating morphological and lexical constructions, e.g. to
analyse the word form “cube” by combining the �������������� and the ������������,
serves to elegantly handle the synonymy of the CLEVR dataset. �is design pa�ern will
be explored in depth later on.

A�er the lexical constructions, the ���������������� applies. It adds the ������ primi-
tive to the meaning network and its last argument is uni�ed with the variable of the ����
statement for “cube”. �is indicates that some set of objects, identi�ed by the variable
?�������49, needs to be �ltered for cubes. �e set of objects resulting from this operation
will be bound to the variable ?�������115. �e ����������� adds a second ������ prim-
itive, taking the set ?�������115 as its input. �is �lter operation is conditioned on “red”
through uni�cation between the ������’s last argument and the “red” ���� statement. Af-
terwards, the �������������������� applies, adding the ����� primitive that checks
whether the output of the second �lter operation yields a set with a single object in it.
Based on the arguments of the �lter operations, this should be a red cube. If this is the
case, the red cube is bound to the variable ?��������������31. �ese three construction
again constitute a design pa�ern present in the CLEVR grammar. �ey are capable of pro-
cessing variable-length determined noun phrases, such as “the red cube”, “the small metal
thing”, “the large rubber purple ball”, etc. A detailed analysis of this design pa�ern will
also be provided later on.

�e last two constructions that apply are the������������� and the������������������
���. �e former matches on the “What material is” from the input u�erance, adds the
���� primitive to the meaning and the last argument of this predicate is uni�ed with the
variable in the “material” ���� statement. �is speci�es that the material of something
bound to the variable ?�������88 needs to be retrieved. �e la�er construction ties this
query operation together with the determined noun phrase, constructed earlier. �rough
uni�cation of variables, it becomes clear that it is the material of the referent of the de-
termined noun phrase that should be queried. �e construction also introduces the ����
������� primitive, which retrieves the set of all objects in the scene, and links it to the
input of the �rst ������ predicate. �is completes the analysis of the u�erance “What ma-
terial is the red cube?” resulting in the fully-connected meaning network shown in Figure
3.3.
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Production

To demonstrate production in the CLEVR grammar, the meaning network shown in Fig-
ure 3.3 is provided as input. Figure 3.6 gives a schematic overview of the construction
application process with respect to the u�erance that is gradually built up. Below each
construction, the �gure shows part of the u�erance that has been constructed. If word
order constraints have been imposed on two or more elements, they are wri�en within a
single pair of quotation marks. Furthermore, symbols preceded by a question mark, such
as ?����, indicate that some constraints have been imposed, but the exact morphological
form is not yet decided on. �is happens later on in the construction application process,
based on a number of constraints added by other constructions. �e lexical constructions
�����������, ������������ and ���������������� apply �rst as they can match on the
���� statements provided in the input. �ese constructions add either concrete (i.e. “red”
and “material”) or underspeci�ed (i.e. ‘?cube’) word forms to the transient structure. �e
����������������, which applies next, does not add any word forms or word order con-
straints to the transient structure. �e �����������, however, imposes that “red” and
‘?cube’ must be adjacent. A�erwards, the ������������� adds the word forms “what”
and “is” and speci�es ordering constraints for “what material is”. Similar ordering con-
straints for “the red ?cube” are added by the ��������������������. �is construction
also imposes that ‘?cube’ must be singular via other features in the transient structure.
Finally, the ��������������������� imposes that “what material is” is adjacent to “the
red ?cube” and the �������������� applies due to the singular constraints added earlier
and provides the concrete morphological instantiation of ‘?cube’, namely “cube”.

�e CLEVR grammar features a considerable amount of lexical and syntactic variation, as
discussed in Section 3.3. As a result, the same meaning network can be expressed in many
di�erent ways. �e lexical variation is handled through the separation between morpho-
logical and lexical constructions. �e syntactic variation, on the other hand, is handled
by the free combinations of constructions, i.e. multiple constrictions that can apply to the
same meaning network and collaboratively produce an u�erance. �e syntactic variation
can be explored through FCG’s production process, speci�cally by exploring the entire
search space and returning all syntactically di�erent solutions. Leaving the lexical varia-
tion out of the equation, the meaning network shown in Figure 3.3 can be mapped to the
following u�erances:

• “What is the material of the red block?”

• “What material is the red cube?”

• “What material is the red cube made of?”

• “�e red block is made of what material?”

• “�ere is a red cube; what is its material?”
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1. red-lex-cxn

“red”

2. cube-lex-cxn

“red” ?cube

3. material-lex-cxn

“red” ?cube
“material”

4. base-nominal-cxn

“red” ?cube
“material”

5. nominal-cxn

“red ?cube”
“material”

6. what-t-is-cxn

“red ?cube” 
“what material is”

7. unique-determined-cxn

“the red ?cube”
“what material is”

8. hop-query-property-cxn

“what material is the red ?cube”

9. cube-morph-cxn

“what material is the red cube”

Figure 3.6: Overview of the construction application process in production, starting from
the meaning network in Figure 3.3. Below each construction, part of the u�erance that
has been constructed is shown. �otation marks are used to indicate which parts of the
u�erance are subject to word order constraints. Variables are used to indicate that the
exact morphological form of some part of the u�erance is not yet decided on.

• “�ere is a red block; what material is it?’

While producing u�erances is not necessary for the CLEVR benchmark task, it can be
useful for many other applications, such as chatbots or personal assistants. Furthermore,
having shown the possibility to generate syntactically di�erent u�erances, the CLEVR
grammar can also be used as a paraphrasing tool.

Design Patterns

�e CLEVR grammar features several design pa�erns that are commonly used when devel-
oping grammars in FCG. In what follows, two of these pa�erns will be explored in depth.
�is section is recommended for readers who are interested in a detailed description of the
construction application process in the CLEVR grammar.

Morphological and Lexical Constructions �e �rst pa�ern deals with the lexical syn-
onyms of the CLEVR dataset (see Table 3.2). �ese synonyms can be used interchangeably,
regardless of context, and thus all word forms should map to the same meaning. �is is
dealt with by separating morphological constructions from lexical constructions. �e ex-
ample for ‘cube’ is shown in Figure 3.7. �is �gure shows how the transient structure
changes by applying the constructions in comprehension. Starting from the top le�, the
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cube-morph-cxn

?cube-unit

lex-id:
syn-cat:
    lex-class:
    number:

form:

cube

noun
singular

#{string(?cube-unit, “cube”)}

meaning:

lex-id:
syn-cat:
    number:

#{bind(shape-category, ?shape-1, cube)}

cube

?number

?cube-unitargs:
    sources:
    target:
sem-cat:
    sem-class:
syn-cat:
    lex-class:
    syn-function:
    number:

∅
?shape-1

shape

noun
nominal
?number

?cube-unit

cube-lex-cxn

transient structure

root

{string(what-1, “what”),
 …,
 string(cube-1, “cube”),
 …,
 meets(the-1, red-1),
 meets(red-1, cube-1)}

form:

transient structure

root

{string(what-1, “what”),
 …,
 meets(the-1, red-1),
 meets(red-1, cube-1)}

form:

cube-1

lex-id:
syn-cat:
    lex-class:
    number:
form:

cube

noun
singular
{string(cube-1, “cube”)}

transient structure

root

{string(what-1, “what”),
 …,
 …,
 meets(red-1, cube-1)}

form:

cube-1

lex-id:
syn-cat:
    lex-class:
    number:
    syn-function:
form:
meaning:
sem-cat:
    sem-class:
args:
    sources:
    target:

cube

noun
singular
nominal
{string(cube-1, “cube”)}
{bind(shape-category, ?shape-2, cube)}

shape

∅
?shape-2

Figure 3.7: CLEVR’s synonymy is handled by separatingmorphological constructions from
lexical constructions. In comprehension, the former can match on a speci�c word form
from the u�erance. �e la�er matches on morphological features added by the former,
generalises over di�erent word forms and provides the meaning.
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initial transient structure contains only the ���� unit, capturing the input in a feature
structure. For space reasons, only a subset of form predicates describing the u�erance
are shown. In comprehension, morphological constructions match on speci�c word forms
observed in the u�erance. In this case, the �������������� matches on the form “cube”
from the ����. �is construction does not add any meaning features to the transient
structure, but only morphological features. In this case, it adds the lexical class noun, the
grammatical number singular and the lexical identi�er cube to the transient structure, in
a separate unit �����1. Other morphological constructions for synonyms of “cube”, such
as the ���������������, match on a di�erent word form (i.e. “block” ), but add the same
lexical identi�er to the transient structure. �is identi�er adds su�cient information for
the correct lexical construction to apply next, in this case the ������������. As can be
seen from the ������������, it matches not only on the lexical identi�er, but also cap-
tures the grammatical number provided by the morphological construction through the
variable ?number. �is is because the same lexical construction is used for both singular
and plural word forms. Speci�cally, the ������������ can match on information added by
the ��������������, the ���������������, but also by the ��������������� and the
����������������. All of these have the same meaning representation, namely the ����
statement that is shown in the formulation lock of the conditional part of the ���������
���. �rough this pa�ern, it is possible to generalise over various word forms which have
the same meaning. �is avoids having to provide separate constructions for each speci�c
word form, with many features duplicated across those constructions.

Variable-length Noun Phrases �e second design pa�ern deals with analysing the
variable-length noun phrases of the CLEVR dataset. In CLEVR, referents can be expressed
as “the red cube”, “the large red cube”, “the red metal cube”, “the large red metal cube”,
etc. Apart from the determiner, all of these are handled by using just two constructions:
the ���������������� and the �����������. Brie�y put, the ���������������� looks
for the head of a noun phrase and turn this into a nominal group. In CLEVR, the head of
a noun phrase is always a noun expressing the shape of an object, or ‘thing’ if the shape
is not explicitly speci�ed, or ‘object’ which is a synonym for ‘thing’. �e �����������
then looks for an adjective and a nominal group that are adjacent and puts them together
to create a new, larger nominal group. �is construction can apply recursively in order
to add a variable number of adjectives in front of the noun. To ensure that adjectives can
only be added in front, the ����������� can only match on the largest nominal group
in the transient structure. Additionally, the ����������� construction each time adds a
������ primitive to the meaning and correctly links it to the existing meaning network.

Figure 3.8 demonstrates how these construction combine to analyse the nominal group
“red cube” in comprehending the u�erance “What material is the red cube?”. At the top
le�, the transient structure is shown a�er all morphological and lexical constructions have
applied. �e ���������1 unit and the ����1 unit are collapsed for space reasons. First,
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the ���������������� can apply. It adds a new unit �������������1 to the transient
structure and modi�es the �����1 unit. �e �������������1 has a ������ primitive as its
meaning. Notice how the last argument of the ������ primitive is uni�edwith the ‘args tar-
get’ feature of the �����1 unit. �is indicates that some unknown set of objects (?������)
needs to be �ltered on cubes which results in another unknown set of objects (?������).
�ese arguments, namely ?������ and ?������, are added to the ‘args’ feature of the
�������������1 unit. Re-using variables from primitives into features allows other con-
structions to more easily match on them and thereby create links in the meaning network.
Furthermore, the �������������1 unit takes over the grammatical number of the �����1
unit and speci�es this unit as its subunit. FCG’s visualisation functions take the ��������
feature into account to draw these units hierarchically. Importantly, the �������������1
unit explicitly adds the feature ���������� with an empty value to indicate that this unit
corresponds to the largest nominal group at this point in processing. To avoid that the
�����1 unit is identi�ed as the largest nominal group, the feature ���������� is added
to it, pointing to the �������������1 unit. Finally, the �������������1 unit speci�es its
boundaries in the u�erance through the features ������������� and ��������������.
As larger structures are being built in the transient structure, it is necessary to keep track
of the units that correspond to the word forms at the edges of these larger structures, as
only word forms can be used in word order constraints. At this point, the �����1 unit is
both the le�most boundary and the rightmost boundary of the nominal group.

Next, the����������� applies. �e����������� looks in the transient structure for both
an adjective and the largest nominal group. Importantly, the adjective must be adjacent
to the le�most boundary of the nominal group, as speci�ed by the meets constraint in the
?������������������ of the �����������. �e largest nominal group can be retrieved
by matching on a unit with an empty value for the feature ����������. �ese conditions
are satis�ed by the �������������1 unit. �e ����������� adds another ������ primi-
tive to the meaning. �e last argument ?�������� of the primitive is uni�ed with the ‘args
target’ feature of the adjective. Hence, in this speci�c case, the �lter operation will look for
red objects. Additionally, the input set ?������� of the new ������ primitive is uni�ed
with the ‘args target’ feature of the matched nominal group. �rough this uni�cation, a
link is created in the meaning network. �e output of the �lter operation for cubes will be
the input of the �lter operation for red things. What is still unknown are the input of the
�lter operation for cubes and the output of the �lter operation for red things. �erefore,
these variables are put in the ‘args’ feature of the newly created �������������������1
unit. �is allows other constructions to match on these ‘args’ features to further expand
the meaning network. Apart from the ‘args’ feature, the �������������������1 unit also
keeps track of its boundaries (i.e. ����1 on the le� and �����1 on the right), takes over the
grammatical number of the nominal group it subsumes (i.e. singular) and adds both the
����1 unit and the �������������1 unit as its subunits, allowing for hierarchical visual-
isations. Also, the feature ���������� is added with an empty value to indicate that this
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is now the largest nominal group. Finally, the ���������� feature of the �������������1
is overwri�en, pointing to the �������������������1 unit, so that it is no longer eligible
as largest nominal group. �e ����1 unit also keeps this reference to the ��������������
�����1 unit. �e resulting transient structure is shown on the bo�om right of Figure 3.8.
In this transient structure, the �����1 unit is collapsed for space reasons.

�e ����������� can apply recursively. Each time, another adjective will be prepended to
the nominal group thereby create a larger nominal group, on which the ����������� can
again match. In comprehension, the word order constraints are su�cient to analyse these
nominal groups correctly. In production, however, these constraints are not available.
�is is why the ���������� feature is added, such that the largest nominal group can be
easily identi�ed and the ����������� can only match on that one. By matching on the
���������� feature, the word order constraints are added in the merging phase, allowing
the nominal groups to be expressed in the correct order.

�e ���������� feature is also used to turn the nominal group into a determined noun
phrase. Similar to the �����������, the �������������������� will look for two ele-
ments that are adjacent: a determiner and the largest nominal group. �e largest nominal
group is again found by matching on the ���������� feature with an empty value. �e
same mechanisms are used, i.e. a larger unit is created that takes both the determiner
and the nominal group as its subunits, a new primitive (namely �����) is added, certain
arguments in the meaning network are uni�ed, while other arguments, which are still un-
known, are passed to the larger unit in the ‘args’ feature such that these can be linked
later on. Finally, the larger unit gets an empty value for the ���������� feature, while this
value is overwri�en in the smaller units.

A similar recursive pa�ern is used to handle variable-length prepositional phrases that are
used to analyse questions with spatial relations. Also here, only two constructions, namely
the ��������������� and the ����������, are needed to handle questions such as “What
color is the large cube le� of the metal sphere?”, “What color is the large cube le� of the metal
sphere behind the purple cylinder?”, “What color is the large cube le� of the metal sphere
behind the purple cylinder right of the large metal thing?”, etc.

3.4.4 Evaluation

�e CLEVR grammar is evaluated in terms of coverage and accuracy. �e coverage of the
grammar is evaluated by comparing the output of comprehension, i.e. the meaning net-
works, to the ground-truth annotations of the questions, i.e. the reasoning programs. �is
essentially measures the performance on the language understanding part of the bench-
mark task. �e accuracy of the grammar is evaluated by computing the answer to every
question using the symbolic annotations of the scenes, and comparing against the ground-
truth answer. It is important to note that the aim of the CLEVR grammar is not to compete
on the benchmark task itself. �is would be an unfair comparison as this solution operates
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on the ground-truth, symbolic annotations of the scenes instead of processing the actual
images. Instead, the CLEVR grammar serves as sca�olding or as the gold standard solution
in subsequent chapters of this dissertation.

Coverage

Computing the coverage of the grammar consists of comparing two directed acyclic graphs
(DAGs). On the one hand, CLEVR’s reasoning programs (see Section 3.3) can be easily
transformed into a DAG. Every node captures a function with its arguments. �e root of
the DAG is the last function in the program. Each node thus points to the other node(s)
that provided its input. On the other hand, meaning networks as returned by FCG’s com-
prehension process can be transformed into similarly structured DAGs. Concretely, a node
is created for every IRL primitive, using the ���� statements in the meaning network to
provide the arguments, and the variables through which primitives are linked are used to
structure the graph. �e coverage of the grammar is now computed by simultaneously
traversing both graphs, starting from the root, and comparing each node in terms of the
function name and its arguments. If these are equal across all nodes, it can be concluded
that the graph data structures are equal and thus the meaning network returned by the
grammar is identical to the ground-truth reasoning program.

�e above procedure was used on the nearly 850,000 annotated question from training
split and the validation split of the CLEVR dataset and 100% coverage was achieved. Im-
portantly, none of these questions were during the development of the grammar. �e
design of the constructions was based purely on the question templates and hand-wri�en
instantiations of them. �is result shows that the CLEVR grammar e�ectively solves the
language understanding part of the CLEVR benchmark task.

Accuracy

�e accuracy of the CLEVR grammar consists of computing the answer to every question
by executing the procedural semantic representations with IRL and comparing the result
to the ground-truth. Provided to IRL are the inventory of primitives listed in Section 3.4.2,
a repertoire of semantic entities covering all concepts and categories present in the CLEVR
data, and a symbolic world model that is constructed by reading CLEVR’s symbolic scene
annotations from �le. Applied to both the training split and the validation split, totalling
almost 850,000 questions over 85,000 scenes, the accuracy of the CLEVR grammar is 100%.
�is result can be explained as the coverage of the grammar was already at 100% and
the IRL primitives operate over a symbolic representation of the images, which would
correspond to a �awless perception module operating over the images.
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3.5 Conclusion

In this chapter, I have introduced the visual question answering task and the CLEVR bench-
mark dataset that will be used in case studies to validate the novel representations and
learning mechanisms presented in subsequent chapters of this dissertation. First, in Sec-
tion 3.2, I laid out a number of requirements that any benchmark dataset need to ful�l
according to the objectives of this dissertation. Speci�cally, I require a dataset of linguistic
expressions of su�cient complexity and su�cient similarity which are u�ered in a con-
crete environment. �is environment should allow for the design of a communicative task
and the dataset should ideally provide the ground-truth solutions to this task. Dataset bi-
ases in the linguistic expressions, the environments or the solutions should be avoided at
all cost. �e CLEVR dataset and its CoGenT variant (Johnson et al., 2017a), introduced in
Section 3.3, �t these requirements.

A�erwards, in Section 3.4, I introduced the CLEVR grammar. �is consists of a gram-
mar, formalised using Fluid Construction Grammar, that provides bidirectional mappings
between all questions of the CLEVR dataset and their underlying procedural semantic rep-
resentations, together with an operationalisation of these procedural semantic represen-
tations through Incremental Recruitment Language. As shown in Section 3.4, the CLEVR
grammar o�ers both complete coverage and perfect accuracy on the CLEVR benchmark
task, when using the symbolic scene annotations. Given its dependency on the symbolic
scene annotations, the aim of the CLEVR grammar is not to compete on the benchmark
task. However, both the coverage and the accuracy of this symbolic solution allow to
con�dently use (parts of) it as sca�olding or as the gold standard solution in subsequent
chapters of this dissertation that will focus on learning (parts of) this grammar.

3.5.1 Contributions

�is chapter contributes to the objectives of this dissertation through the introduction of
the CLEVR grammar (C1). Speci�cally, I have introduced a computational system that has
su�cient representational capabilities to cover the benchmark dataset. �e representa-
tional capabilities are due to the integration of a computational construction grammar and
procedural semantic representations. On one hand, computational construction grammar
elegantly and e�ectively captures both the compositional and non-compositional aspects
of linguistic expressions, both in terms of form and meaning, due to the operationalisa-
tion of the basic tenets of construction grammar. Procedural semantics, on the other hand,
captures the meaning of these linguistic expressions as representations that are directly
executable, thereby establishing a tight integration between the semantics and the envi-
ronment and avoiding the highly non-trivial step of transforming linguistic analyses into
executable queries. �e learning mechanisms introduced in subsequent chapters of this
dissertation will now focus on how (parts of) these representations, i.e. constructions, pro-
cedural semantic representations and the underlying semantic concepts, can be learned.
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Additionally, subsequent chapters can use the CLEVR grammar as sca�olding or as the
desired outcome of the learning mechanism.

�is symbolic solution to the CLEVR benchmark task combines the main advantages of
grammar-based approaches with a level of accuracy that was previously only achieved
using deep learning techniques (e.g. Mascharka et al. (2018); Yi et al. (2018)). �ese ad-
vantages are threefold: (i) the representations used during linguistic processing and the
processing mechanisms themselves are completely transparent and human-interpretable,
(ii) the grammar is completely open-ended, in the sense that it can always be extended by
adding new constructions, e.g. when new concepts or interrogative structures needs to be
covered, and (iii) no annotated training data was required for building the grammar as it
relies on and captures expert linguistic knowledge.

�e CLEVR grammar constitutes a �rst contribution of this dissertation (C1). Concretely,
the CLEVR grammar is one of the �rst large-scale operational computational construc-
tion grammars, covering more than one million u�erances in both the comprehension and
production direction without sacri�cing processing e�ciency. It does thereby not only
contribute to the scaling of computational construction grammars, it also demonstrates
the potential of recent advances Fluid Construction Grammar, such as the introduction of
a new high-level notation or the hashing of constructions (Van Eecke, 2018). Finally, the
CLEVR grammar corroborates the theoretical underpinnings of the �eld of construction
grammar (see Section 2.3.1) in that it captures the compositional and non-compositional
aspects of language in a set of constructions that can freely combine to analyse questions
in comprehension or produce questions in formulation.
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Preface

�is chapter is based on “Nevens, J., Van Eecke, P., & Beuls, K. (2020). From Continuous
Observations to Symbolic Concepts: A Discrimination-Based Strategy for Grounded Concept
Learning. Frontiers in Robotics and AI, 7, 84.”

4.1 Introduction

Autonomous agents rely on their own sensors for perceiving the environment in which
they are situated, reading out streams of continuous sensorimotor data. Yet, in order to
reason and communicate about their environment, the agents require a repertoire of con-
cepts that abstracts away from the sensorimotor level. Without this layer of abstraction,
communication would happen by directly transmi�ing numerical observations from one
agent to another. Such a system easily leads to errors, for example when the agents observe
the world from di�erent perspectives, when the agents make use of di�erent sensors, or
when calibrating the agents is di�cult because of changing lighting conditions and other
external factors.

In this chapter, I propose a novel methodology that allows autonomous agents to repre-
sent and learn a repertoire of symbolic concepts that provides an abstraction layer over
their continuous-valued observations. I follow the de�nition of concept learning proposed
by Bruner et al. (1956, p. 233), namely “the search for and listing of a�ributes that can be
used to distinguish exemplars from non-exemplars of various categories”. Hence, a concept
consists of a combination of a�ributes, mapped to a symbolic label. For computationally
representing concepts and their a�ributes, I rely on prototype theory (Rosch and Mervis,
1975). In prototype theory, concepts specify a number of a�ributes that instances of that
concept tend to posses. �ese a�ributes have prototypical values and a graded degree of
belonging to the concept, with some a�ributes being more central than others. Building on
these two theoretical pillars, autonomous agents thus face two learning problems simul-
taneously in order to obtain a repertoire of grounded, symbolic concepts. First, the agents
need to �nd out which a�ributes are relevant for each concept. �is requires mechanisms
for identifying meaningful combinations of a�ributes from the sensorimotor data streams.
Second, the agents must be able to recognise instances of particular concepts and distin-
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guish concepts from each other. �is requires mechanisms for determining the semantic
similarity between concepts and instances in terms of their a�ributes, and for abstracting
out the prototypical values of the a�ributes from the observed instances.

�e proposed methodology is operationalised through a language game (see Section 2.2.2)
and extends earlier workwithin this paradigm. Speci�cally, earlier work focussed on learn-
ing concepts that were either limited to continuous data on a single feature channel, such
as colour (Bleys, 2016) or spatial position (Spranger, 2012, 2016), or non-continuous data on
multiple feature channels (Wellens and Loetzsch, 2012;Wellens, 2012). In this chapter, both
of these restrictions are li�ed at the same time. I set up a language game in a tutor-learner
scenario, situated in an environment that is derived from the CLEVR dataset (Johnson
et al., 2017a) (see also Section 3.3). Both the tutor and the learner can act as the speaker or
the listener in the language game. �rough the communicative task, the learner acquires
the perceptual concepts that are present in the dataset, such as �����, ���, ����, �����,
etc. Learning those concepts requires not only to �nd relevant a�ribute combinations (e.g.
“r”, “g” and “b” for ���), but also their prototypical values (e.g. “r:215”, “g:76” and “b:44”
for ���). Both agents make extensive use of the notion of discrimination, i.e. maximally
separating one object from the other objects in the scene, which is an o�en-used mecha-
nism in experiments on the emergence and evolution of language (see e.g. Steels (1997a);
Vogt (2002); Pauw and Hilferty (2012); Wellens (2012); Bleys (2016); Spranger (2016)) as
it ensures that the concepts are optimally relevant for the communicative task and the
environment in which they are learned and used.

�rough a number of experiments, I demonstrate that the learner extracts a set of human-
interpretable concepts from its sensorimotor observations and uses them for both concep-
tualisation, i.e. �nding a discriminative concept for an object as the speaker, and inter-
pretation, i.e. �nding an object that best matches with a particular concept as the listener.
Additionally, I show that the proposed methodology allows for a repertoire of concepts
that (i) generalises to unseen se�ings, (ii) adapts to the environment, and (iii) requires few
interactions to learn. Finally, I validate the acquired repertoire of grounded concepts by
integrating it in a “downstream” communicative task. Speci�cally, I incorporate the reper-
toire of grounded concepts as semantic entities in the procedural semantic representations
of the CLEVR grammar (see Section 3.4) and tackle the CLEVR benchmark task. �is con-
stitutes a system that is end-to-end human-interpretable, ranging from the perception and
categorisation of objects to the language processing of the questions and reasoning to �nd
the answer. I evaluate the agent’s performance in terms of its question answering accuracy.

�e remainder of this chapter is structured as follows. In Section 4.2, I discuss background
literature on prototype theory and I present existing computational approaches for rep-
resenting and learning grounded concept. Section 4.3 introduces the language game, in-
cluding the environment in which the agents operate and how they represent and learn
concepts. A�erwards, in Section 4.4, I introduce the experiments, each showcasing a desir-
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able property of the introduced methodology. �e results of the experiments are presented
and discussed in Section 4.5. �e integration of the repertoire of grounded concepts in the
CLEVR grammar is demonstrated in Section 4.6. Finally, Section 4.7 summarizes the chap-
ter and highlights its main contributions.

4.2 Background and Related Work

In this section, I �rst sketch the theoretical underpinnings of the concept representation
used in this chapter, namely prototype theory (Section 4.2.1), a�er which I present prior
computational models on grounded concept learning using a variety of approaches (Sec-
tion 4.2.2 to 4.2.6). For each of these, advantages and drawbacks are highlighted from the
viewpoint of operationalising the discussed approach in an autonomous agent. Lastly, in
Section 4.2.7, I discuss the work by Wellens (2012, Ch. 5), which has served as the basis of
the language game experiment presented in Section 4.3.

4.2.1 Prototype�eory

�ere is a large body of work from philosophy, psychology and linguistics on the study of
concepts, how they are represented in the brain, the role they play in cognition and how
they can be learned. In this section, I focus on prototype theory as originally conceived by
Rosch and Mervis (1975) and further developed by Hampton (1979) and Medin and Smith
(1981). �e main idea in this view is that concepts are represented through a summary
representation, i.e. summarizing one’s observations. A prototype consists of a number of
features that are usually found in the members of the concept. Some features can be more
central to the concept than other features, which is represented by weighing them. �e
weights of features can be derived by counting observations and by comparing features
across concepts. For example, if a feature o�en appears in one concept and hardly appears
in other concepts, it can be weighed more heavily than another feature which frequently
occurs in several concepts. Using this representation, observations can be assigned to con-
cepts by computing a similarity score, taking all features and their weights into account.
Importantly, a prototype does not represent the ‘single best example’ of a concept, as in
‘the ideal bird’ or ‘the prototypical bird’. Instead, seemingly contradictory features may
be listed in a single prototype. �is is illustrated by Murphy (2004, p. 43) using dogs as
an example. Under the assumption that there are somewhat more short-haired dogs than
long-haired dogs and very few dogs with no hair, all three of these features may be listed
in the ��� prototype using di�erent weights to re�ect their occurrence. �rough the same
reasoning, the representation of continuous features becomes somewhat more problem-
atic. Again exempli�ed by Murphy (2004, p. 43), it is intractable to list all possible sizes of
a particular bird species, as there are tiny di�erences between all birds of the same species.
One solution would be to treat certain features di�erently than others. For example, the
size feature of a particular bird species can be represented by averaging over the observa-
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tions, whereas the size feature of the concept of ����, compared to ��� or ��������, is
not.

As illustrated by the previous examples, several aspects of prototype theory are speci�ed
rather vaguely and are le� open to be �lled in by speci�c models. For example, do fea-
tures specify a prototypical value, a range of prototypical values or a boolean value? How
exactly should the features in a concept be organised? How are features obtained? How
are the weights determined? Do some features need to be treated di�erently than oth-
ers? How are concepts related to each other? Moreover, in psychological experiments,
exemplar theory has been shown to be�er explain how people use concepts in their minds
(Medin and Scha�er, 1978; Nosofsky, 1992). Exemplar theory is the complete opposite of
prototype theory. �ere, a concept is not represented by a summary representation but
instead it is argued that one remembers all observed exemplars of a concept. When need-
ing to categorise an instance, similar exemplars can be retrieved and used to determine the
most similar concept, e.g. by a majority vote. �is theory comes with its own disadvan-
tages, such as the enormous cognitive capacity that would be required for storing all those
exemplars. More recent theoretical work on concept representations, however, considers
a spectrum of concept representations with prototype theory and exemplar theory being
on the extreme ends. �ese models typically consider some point in between (i.a. Medin
et al. (1984); Anderson (1991); Love et al. (2004); Johansen and Kruschke (2005); Gri�ths
et al. (2007); Vanpaemel and Storms (2008)) for example using a mixture of prototypes and
exemplars for categorisation, or using exemplars in early learning and transitioning to
prototypes later on.

For the purposes of this chapter, prototype theory is used as the main theoretical guideline
for the concept representation used by the agents in the language game. Prototype theory
is preferred over exemplar theory due to the enormous storage capacity and processing
capacity that is required for the la�er.

4.2.2 Version Space Learning

One method for representing and learning concepts is through version spaces (Mitchell,
1982). In this method, a concept is represented as an area in an N-dimensional space. �e
dimensionality of the space equals the number of a�ributes of each concept. Additionally,
a concept is bounded by two hypotheses. On one side, the concept is bound by the most
speci�c consistent hypothesis. On the other side, it is bound by themost general consistent
hypothesis. A hypothesis is considered consistent when it agrees with all observed exam-
ples, i.e. when the hypothesis classi�es all observed positive examples as being positive and
all observed negative examples as being negative. With this representation, the simplest
way of learning concepts is through the candidate elimination algorithm (Mitchell, 1982).
Providedwith both positive and negative training examples, the algorithm loops over them
and updates both bounding hypotheses. �e most general hypothesis is updated such that
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it covers all positive training examples, including as much as possible of the remaining
N-dimensional a�ribute space, but excluding any negative examples. �is hypothesis typ-
ically captures an over-estimation of the concept in that it is bound only by the negative
training examples. Similarly, the most speci�c hypothesis also covers all positive training
examples, but covers as li�le as possible of the remaining a�ribute space. �is hypothe-
sis typically captures an under-estimation of the concept in that it is bound only by the
positive training examples. Updating the boundaries happens incrementally, looking for
the minimal specialization for the most general hypothesis and the minimal generalization
for the most speci�c hypothesis. A�er having observed all training examples, a concept
consists of a number of a�ributes with an allowed range of values somewhere in between
the two bounding hypotheses in the N-dimensional space. A novel observations can be
assigned to a concept by comparing it against the hypotheses learned by the algorithm.

A major drawback of the candidate elimination algorithm is its inability to handle noisy
data. Noisy or mislabelled training examples can incorrectly update one or both of the
boundaries and recovering from such errors is o�en di�cult. On the positive side, because
of the relatively simple representation and learning algorithm, concepts represented using
version spaces are o�en human-interpretable and transparent. Furthermore, when the
boundaries are allowed to be updated a�er training, the concepts remain adaptive over
time.

4.2.3 Neural Approaches

More recent approaches to concept learning are dominated by neural network-based tech-
niques. In the following paragraphs, I discuss deep learning approaches, visual-semantic
embeddings and neuro-symbolic systems.

Deep Learning

Deep learning approaches for concept learning vary strongly in the neural network archi-
tecture, the learning regime (e.g. classi�cation or unsupervised learning), the concept rep-
resentation (e.g. a label in a classi�er or a group of latent variables) and the task or domain
in which concepts are being learned (e.g. hand-wri�en characters or generated graphics).
Among others, this includes work by Wang et al. (2015), Xu et al. (2018), Dolgikh (2018)
and Rodriguez et al. (2019). One line of research within the deep learning paradigm takes
inspiration from human concept learning and incorporates this in the models, e.g. Higgins
et al. (2016) and Shi et al. (2019). Speci�cally, the human ability to acquire a concept a�er
only one or a few examples is incorporated through one-shot or few-shot learning. Simi-
larly, the ability to use concepts in order to recognize new exemplars is achieved through
incremental learning and memory modules. In general, these approaches yield high lev-
els of accuracy on their respective tasks but require huge amounts of training data and/or
training time. Additionally, the concepts are represented in a way that is o�en not human-
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interpretable and the set of concepts that needs to be learned is o�en prede�ned and �xed
over time. While some of the aforementioned approaches tackle one or two of these issues,
none of them tackle all together.

Visual-Semantic Embeddings

An alternative approach within the deep learning paradigm is to learn concepts through
visual-semantic embeddings. Speci�cally, these models learn an embedding space where
visual data, i.e. images or bounding boxes within images, is embedded close to the em-
beddings of the corresponding semantic labels. Typically, the embedding space is learned
from large-scale annotated corpora, as in Kiros et al. (2014); Faghri et al. (2017); Lu et al.
(2019); Chen et al. (2020, 2021) and others. Once trained, the task of the model is to ob-
tain a semantic label given visual data as input, or vice versa. Concept representations in
these models can be considered as mappings between embeddings of semantic labels and
embeddings of images, making both the internal representation and the processing mech-
anisms non-interpretable by humans. Additionally, the concepts to be learned should all
be speci�ed in advance in the training corpus. Hence, the repertoire of concepts cannot
be incrementally extended. �e resulting visual-semantic embeddings can be integrated
in tasks that require both a visual and a linguistic component, such as visual question
answering, referring expression comprehension or following navigation instructions.

Neuro-Symbolic Approaches

A repertoire of concepts can also be learned through various neuro-symbolic systems that
are aimed at tasks which require both a visual and a linguistic component. In these models,
concepts are represented as embeddings and learned during the visio-linguistic task. �e
neural aspect is used to process both the visual and linguistic inputs, while a symbolic
component is used to perform reasoning over these processed inputs. �is approach is used
by Mao et al. (2019); Han et al. (2019); Stammer et al. (2021) and Whitehead et al. (2021) for
visual question answering and by Mao et al. (2021) for grounded language acquisition. In
the work by Mao et al. (2019) and Han et al. (2019), di�erent types of concepts are mapped
to di�erent embedding spaces, e.g. a di�erent embedding space for colours than for shapes.
With this approach, concepts can be added incrementally, either by adding a new vector to
an existing embedding space or creating a completely new space for a new type of concept.
As with the other neural approaches, high levels of accuracy can be achieved, thereby
sacri�cing the interpretability of the learned concepts because of their representation as
embeddings. However, comparatively speaking, the aforementioned models require few
training data, using less than 10% of the available training dataset. As shown by Mao et al.
(2019); Han et al. (2019) andWhitehead et al. (2021), their models generalize well to unseen
combinations of a�ributes and were tested on multiple domains, ranging from generated
images and template-based questions to real-world images and crowd-sourced questions.
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4.2.4 Bayesian Approaches

�e Bayesian approach to concept learning consists of learning a probabilistic model for
a concept on the basis of observations. �ere are two main aspects to such a model: the
prior probability and the likelihood. �e prior probability, i.e. one’s belief about possi-
ble hypotheses, avoids generating overly speci�c hypotheses for a concept. On the other
hand, the likelihood, i.e. a probabilistic prediction of the observation, avoids overly gen-
eral hypotheses. For example, given three positive examples of dogs, the hypothesis that
the concept of dog refers to all animals of this particular species is most probable because
of both the prior probability and the likelihood. Indeed, some highly speci�c hypothesis,
such as ‘all dogs except Lassie’, is unlikely due to its low prior probability. Alternatively,
a more general hypothesis, such as ‘all animals’, has a low likelihood due to the observed
examples being very similar. Initial work in this line of research by Tenenbaum (1999a,b),
has been extended to word learning (Xu and Tenenbaum, 2007), rule-based learning (Good-
man et al., 2008) and visual concept learning (Jia et al., 2013), where concepts are learned
directly from image data in the la�er.

Extending this approach further is the research centred around the Omniglot dataset (Lake
et al., 2015). �is is a dataset of hand-wri�en characters from 50 di�erent alphabets. Each
character is wri�en by 20 di�erent people and stored as both image and pen stroke data.
�e main challenge consists of a within-alphabet one-shot classi�cation task: given an
exemplar character and an alphabet, identify to which character of the alphabet the ex-
emplar corresponds. �is task aims to replicate the ability of humans to acquire a new
concept with only a single example. Next to this, there are three other tasks designed to
test concept learning-related abilities: (i) parsing of exemplars into parts and their rela-
tions, (ii) generating new exemplars of a given concept and (iii) generating new concepts
of a particular type.

In their work, Lake et al. (2015) introduce Bayesian Program Learning (BPL) to tackle the
Omniglot challenge. Here, concepts are represented as probabilistic generative models
trained using the pen stroke data. �ey are built in a compositional way such that complex
concepts can be constructed from (parts of) simpler concepts. In this case, the model builds
a library of pen strokes. Characters can be generated by combining these pen strokes in
many di�erent ways. �is approach has many advantages, including the ability to do
one-shot learning and a powerful compositional representation of concepts that allows
not only to classify instances of concepts but also to generate them. While this model
achieves impressive results, learning through pen stroke data o�ers a limited range of
possibilities. Other researchers have tackled the Omniglot challenge, mostly using neural
approaches as reported by Lake et al. (2019). Almost all of them have focussed on the
one-shot classi�cation task using the image data as input. As a result, the BPL approach
remains the state-of-the-art model for all tasks in the Omniglot challenge.
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4.2.5 Reinforcement Learning

Concept learning has also been approached from a reinforcement learning perspective.
In this perspective, a concept is regarded as an abstraction over an agent’s states or ac-
tions. Abstraction over discrete states can be achieved through tile-coding (Su�on, 1996).
Recently, however, following advances in the domain of deep reinforcement learning, ab-
straction over continuous states is also possible, speci�cally through function approxima-
tion (Mnih et al., 2015). Abstraction over actions is commonly achieved through the use
of options (Su�on et al., 1999).

One line of research that is particularly relevant for this chapter is the work by Konidaris
and colleagues. In their initial work, they map symbols to sets of low-level discrete states
(Konidaris et al., 2014). �ese states were obtained from the continuous environment and
discretised by a classi�er. A planning problem is then solved using the symbols as oper-
ators in the environment. In later work, the set-based representation was replaced by a
probability distribution to be�er capture the uncertainty about the execution of each high-
level step (Konidaris et al., 2015, 2018). Similarly, this approach was validated through a
planning problem in a continuous state space, where policies for high-level planning prob-
lems in a game environment, such as ���������� or ���������������, could be computed
e�ciently.

�e aforementioned work by Konidaris et al. (2015) has a number of advantages and dis-
advantages. On the positive side, the symbolic high-level steps can be represented in a
human-interpretable way, as the pre- and post-conditions can be easily visualised in the
game environment. Additionally, the model can be learned e�ciently with relatively few
data points. Speci�cally, 40 iterations of 100 randomly chosen actions were used to extract
the high-level steps. However, as is typical in a reinforcement learning se�ing, the plan-
ning steps are learned through experience. Hence, new planning steps must be learned by
collecting new experiences speci�c to this concept and the resulting steps are relatively
domain-speci�c. No experiments are reported that investigate generality, e.g. would �����
���� generalize to other game se�ings, or adaptivity, e.g. does the concept ���������
change when the game physics change.

4.2.6 Robotics Approaches

�ere is a large body of work within the robotics community that considers various tasks
which are similar to what is referred to as concept learning in this chapter. In what follows,
I discuss a number of representative approaches that tackle these tasks.

Perceptual Anchoring

�e goal of perceptual anchoring is to establish and maintain a link between a symbol and
sensor data that refers to the same physical object (Coradeschi and Sa�o�i, 2003). �is link
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should remain stable through time and space, e.g. when an object moves through a robot’s
view, when it is covered by another object, or when it disappears and later reappears. A
perceptual anchoring systems consists of two components: the symbol system and the
sensor system. �e symbol system can manipulate individual symbols referring to objects
as a whole, but also predicates capturing properties of the objects. �e sensor system
can use di�erent representations for objects, e.g. a set of continuous-valued features or a
vector in some embedding space. An anchoring system can be implemented in a bo�om-
up manner, starting from the sensory level, and in a top-down manner, starting from the
symbolic level. In the context of perceptual anchoring, the combination of a symbol, a set
of predicates and sensor data can be considered as a single concept.

In recent work, a bo�om-up perceptual anchoring systemwas combined with a probabilis-
tic symbolic reasoning system (Persson et al., 2019). �is approach allowed to improve the
overall anchoring process by predicting, on the symbolic level, the state of objects that are
not directly perceived. �ere are multiple advantages to this approach. First, the authors
achieve high accuracy (96.4%) on anchoring objects and maintaining these anchors in dy-
namic scenes with occlusions, using relatively li�le training data (5400 scenes, 70% used for
training). Additionally, their system is completely open-ended and allows for incremen-
tal learning, since the anchor matching function will simply create new anchors when
it encounters previously unseen objects. �e anchor matching function, in some way a
similarity measure, is closely related to the notion of discrimination. �e di�erence being
that discrimination also takes the other objects in the context into account. Finally, the
representation of a concept can be human-interpretable, depending on the representation
of objects in the sensor system and the corresponding symbols and predicates.

A�ordance Learning

A�ordances focus on the interaction between the perceptual system and the motor system
of an autonomous agent. An a�ordance can be considered as a learned relation between
an action in the environment, caused by the motor system, and the e�ect observed in the
environment, captured by the perceptual system (Şahin et al., 2007). Building on this, the
agent can learn concepts in terms of a�ordances. As proposed by Ugur et al. (2011) and
further worked out in Ugur and Piater (2015a,b), a�ordances can be grouped together in
so-called e�ect categories. �ese e�ect categories are then mapped to object properties,
obtained through clustering, to form a particular concept. For example, the concept ����
is an object with spherical properties that exhibits the roll-e�ect when pushed. In these
models, the authors use concepts learned through their a�ordances in plan generation and
execution tasks, with an agent being capable of planning the necessary actions involving
speci�c objects to reach a given goal state. �is approach o�ers a more action-centric view
on the agent’s world, which is complementary to the approach proposed in this chapter.
It not only allows an agent to recognize and describe objects in the world in terms of
their features, but also correctly act on them. �e concepts that are acquired, combining
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e�ect categories with object properties, o�er a transparent and interpretable view. �e
e�ect categories are expressed in terms of change in visibility, shape and position, and
the object properties are stored in a numerical vector with explainable entries, such as
features relating to position and shape (Ugur et al., 2011). Additionally, since the con-
cepts are learned through unsupervised exploration, the proposed model is adaptive to the
environment. New concepts can be added incrementally through additional exploration
and learned concepts can be progressively updated (Ugur and Piater, 2015b). As is typical
in robotics, the proposed approach combines learning in simulation with �ne-tuning and
validation using physical robots. �e concepts considered by Ugur et al. (2011) could be
acquired a�er 4,000 simulated interactions. A robot is then used to validate these concepts
in several planning problems. Finally, as the agent assesses the object features that are rel-
evant for each e�ect category, the resulting mappings o�er some form of generality, e.g. a
ball exhibits the same e�ect categories regardless of its colour because these features are
not found to be relevant.

Symbol Emergence

Similar to Bayesian approaches, probabilistic models are o�en used for concept learn-
ing in robotics. Speci�cally, concepts are learned through unsupervised online learn-
ing algorithms, combining multi-modal data streams through statistical approaches such
as Bayesian generative models or latent semantic analysis (Nakamura et al., 2007; Aoki
et al., 2016; Taniguchi et al., 2016, 2017). �rough the integration of data streams, the ac-
quired concepts constitute mappings between words and objects, as studied by Nakamura
et al. (2007) and Aoki et al. (2016), or between words and spatial locations, as studied by
Taniguchi et al. (2016, 2017). �e la�er further used these concepts to aid a mobile robot in
generating a map of the environment without any prior information. �e statistical meth-
ods have the advantage of being able to infer a considerable amount of information from
a limited number of observations, and are therefore suitable for use in robotics scenar-
ios. Additionally, they o�er interpretability to a certain extent, through a graphical model
representation such as a Bayesian network. Finally, the proposed models are adaptive to
changes in the environment and o�er incremental learning through their online learning
algorithms. For amore comprehensive overview on symbol emergence from the viewpoint
of robotics, I refer to Taniguchi et al. (2018).

Language Grounding in Robotics

Alomari et al. (2022) present a model for language grounding and acquisition, opera-
tionalised using three di�erent robotic platforms. �eir model integrates components
for (i) learning visual concepts, (ii) grounding these in language through n-grams and
(iii) probabilistic grammar induction. Focussing on the visual concepts, these capture ob-
ject properties, spatial relations and actions. Speci�cally, a robot is presented with video
fragments where RGB-D data is available for every frame in the fragment. Objects can
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be recognised and tracked across the frames. Using unsupervised probabilistic methods,
speci�cally a Gaussian mixture model (GMM), speci�c features that are extracted from
each object in the RGB-D data are clustered. Such a cluster represents a concept, e.g. a
cluster of HSV values represents a colour concept. Spatial relations are learned in a similar
way, by clustering features that are extracted from pairs of objects. For each type of con-
cept, e.g. colours, the features used for clustering are speci�ed in advance, e.g. HSV. When
presented with a novel observation, the GMM can determine whether an existing cluster
should be updated or a new cluster should be learned. Complex concepts representing
robotic actions such as ‘put on top’ or ‘move’ are learned by �nding pa�erns in transitions
from one cluster (i.e. object features or spatial relations) to another over multiple frames
in the video. �e techniques and methodologies used in this work o�er a number of desir-
able properties, similar to those speci�ed in this chapter. Speci�cally, Alomari et al. (2022)
argue for an incremental approach, without the need to specify the number of concepts
to be learned in advance. Further, the representation of the concepts is completely trans-
parent and they can be obtained using relatively few data points, as compared to neural
approaches.

Among the various approaches to concept learning discussed so far, the approaches from
the robotics literature are most closely related to the approach proposed in this chapter,
as many of these studies deal with similar issues such as grounding, adaptivity, generality,
incremental learning and data-e�cient learning.

4.2.7 Discrimination-based Approaches

�e experiment presented by Wellens (2012, Ch. 5) serves as the basis for this chapter.
Wellens uses the language game methodology to study multi-dimensionality and com-
positionality during lexicon emergence in a population of agents. In his language game,
called the compositional guessing game, the speaker tries to draw the a�ention of the lis-
tener to a particular object in a shared scene. Each object in the scene is observed by the
agents as a collection of symbolic a�ributes, e.g. �������1 consists of the a�ributes {��1,
��2, ��3, ��4, ��5}. �e words used by the agents have one or multiple of these same sym-
bols as their meaning (multi-dimensionality). For example, the word “bolima” has the set
{��1, ��3, ��5} as its meaning and the word “wabazu” has {��2, ��4, ��5} as its meaning.
�e agents can use multiple words to describe a particular object (compositionality), e.g.
�������1 can be described by saying “bolima wabazu”. At the end of a game, the speaker
gives feedback on the outcome of the game and points to the intended object in case of
failure, allowing the listener to update its lexicon. �is setup leads to a large amount of
uncertainty for the agents, as they need to learn what part of the meaning corresponds to
what word in the multi-word u�erance.

In his work, Wellens proposes two distinct types of strategies for reducing this uncertainty:
competitive strategies and adaptive strategies. Bothmake use the notion of discrimination,
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i.e. maximally separating one object from the others, for both conceptualisation (used by
the speaker) and interpretation (used by the listener). In competitive strategies, the agents
explicitly enumerate competing hypotheses, i.e. identical words with a di�erent mean-
ing, each with a di�erent score. Mechanisms are in place to gradually prune this enu-
meration by increasing and decreasing scores. However, this enumeration soon becomes
intractable in environments with many objects or many a�ributes per object. Adaptive
strategies avoid this enumeration of competing hypotheses. Instead, only a single mean-
ing composed of a set of a�ributes is kept for eachword. Overmany games, this meaning is
gradually being shaped based on the feedback provided a�er each game. How this shaping
is implemented depends on the particular sub-strategy within the adaptive strategy. �e
main idea of adaptive strategies is to focus on re-use, allowing agents to use words to refer
to objects even when the associated meanings of the words are not (yet) fully compatible
with the object they want to refer to. Figure 4.1 illustrates the di�erence between the two
types of strategies.

“wabazu” a-5
0.85

“wabazu” a-140.1

“wabazu” a-30.97

(a) Competitive Strategies

“wabazu”

a-5

0.85

a-14

a-3

0.1

0.97

(b) (Weighted) Adaptive Strategies

Figure 4.1: In competitive strategies, competing hypotheses are enumerated in the agent’s
lexicon. Adaptive strategies allow the meaning of words to be shaped gradually by using
a set of a�ributes. Adding weights to each a�ribute allows for even more �ne-grained
updates.

Within the adaptive strategies, a distinction is made between the baseline adaptive strat-
egy and the weighted adaptive strategy. In the baseline adaptive strategy, the ideas under-
pinning adaptive strategies are implemented in a rather crude way. �e agents gradually
shape the meaning of words simply by adding or removing a�ributes from the set, based
on the feedback a�er the game. �e weighted adaptive strategy o�ers a more gradual
shaping of the meaning. Here, the meaning is represented as a weighted set of a�ributes.
Each a�ribute receives a score, expressing the certainty that the a�ribute is important for
the word it is linked to. Based on the received feedback, agents can not only add or remove
a�ributes, but also alter the scores of a�ributes to re�ect changes in certainty. Over time,
the meanings are shaped to capture a�ribute combinations that are functionally relevant
in the environment, driven by the communicative task and the notion of discrimination.
For more details about the compositional guessing game, the various strategies and exper-
imental results, I refer to Wellens (2012).
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In this chapter, concepts are also represented as weighted a�ribute sets. However, where
Wellens (2012) considers multiple, symbolic a�ributes, I extend this approach to multiple,
continuous-valued a�ributes, thereby introducing the need for more sophisticated repre-
sentations and processing mechanisms.

4.3 Methodology

�e goal of the experiment is for an agent to distil meaningful concepts from streams of
continuous sensory data through a series of task-oriented communicative interactions, i.e.
a language game (see Section 2.2.2). �ese interactions are set up in a tutor-learner sce-
nario and take place in an environment that is derived from the CLEVR dataset (Johnson
et al., 2017a) (see Section 3.3). Driven by the communicative task and the notion of discrim-
ination, the learner gradually shapes its repertoire of concepts such that it is functional in
the environment. In this section, I elaborate on the initial conditions for the tutor and
the learner (Section 4.3.1), the interaction script of the language game (Section 4.3.2), the
environment in which the agents operate (Section 4.3.3), the concept representation and
learning mechanism used by the learner (Section 4.3.4) and the mechanisms used by the
tutor (Section 4.3.5).

4.3.1 Tutor and Learner

�ere are only two agents in this language game: the tutor and the learner. �e tutor is an
agent with an established repertoire of concepts, while the learner starts the experiment
with an empty repertoire. Furthermore, the tutor has access to a high-level symbolic an-
notation of the scene, while the learner observes the objects in the scene through streams
of continuous data. �e tutor, in particular, uses the symbolic ground-truth annotations of
the scenes that are provided with the CLEVR dataset (see Section 3.3.2). �ese annotations
describe the objects in the scene with all of their properties. Using such a symbolic annota-
tions for the tutor avoids having to manually design a number of concepts in terms of the
continuous data streams, which could bias the system. How exactly the agents internally
represent these scenes will be explained in greater detail in Section 4.3.3.

4.3.2 Interaction Script

�e communicative task in the language game is a reference task. �e agents described
above are randomly assigned the discourse roles of speaker and listener. �en, the speaker
chooses an object, called the topic, and tries to describe it using a single word tied to
a concept that discriminates the topic. �e task of the listener is to point to the object
intended by the speaker. �is task is operationalised by following a prede�ned interaction
script according to the semiotic cycle (see Section 2.2.2). Figure 4.2 provides a schematic
overview of this script. It consists of the following steps:
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1. Role Selection (both agents) �e discourse roles of speaker and listener are ran-
domly assigned to the tutor and the learner, in contrast to the experiment described
in Nevens et al. (2020) where the tutor always acts as the speaker.

2. Scene Selection (both agents). A random scene is selected from theCLEVR dataset.

3. Feature Extraction (both agents). Both agents observe the scene. �e tutor ob-
tains the high-level symbolic annotation, while the learner extracts streams of con-
tinuous data.

4. Topic Selection (speaker). �e speaker chooses one object from the scene as the
topic.

5. Conceptualisation (speaker). In conceptualisation, the speaker tries to �nd a con-
cept that discriminates the topic. Before conceptualisation, however, the symbolic
scene annotation is �rst checked to see whether the topic can indeed be described
discriminatingly using a single concept. �is is not always possible due to the design
of the CLEVR dataset. When this is not possible, the speaker samples another object
or another scene altogether when all objects were tried unsuccessfully. When the
tutor acts as the speaker, it uses the symbolic annotation for conceptualisation. �e
learner, on the other hand, uses its own repertoire of concepts and the continuous
data-streams to �nd a discriminating concept for the topic. By looking for a concept
that is discriminative, the speaker is actively trying to help the listener in solving
the communicative task.

6. Production (speaker). In production, the speaker u�ers the word that is associated
with the concept chosen in the previous step.

7. Comprehension (listener). In comprehension, the listener receives the word ut-
tered by the speaker and checks its repertoire of concepts. If the concept denoted by
this word is unknown, the listener indicates failure. �is can only occur when the
tutor u�ers a word that has not yet been acquired by the learner.

8. Interpretation (listener). If the listener does know the word, it will try to interpret
the corresponding concept in the current scene. In other words, the listener will look
for the object that best matches the concept and point to it. As in conceptualisation,
the tutor uses the symbolic annotation to do this, while the learner makes use of the
continuous data-streams.

9. Feedback&Learning (both agents). �e speaker decides the outcome of the game
(success or failure) by checking if the listener pointed to the intended topic. In the
case of failure, the speaker provides feedback by pointing to the intended topic. De-
pending on the assigned discourse roles, learning is possible through the application
of the adoption or alignment operators.
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Figure 4.2: During a single interaction, both agents observe a scene from the CLEVR
dataset. �e speaker chooses a topic and produces a word denoting a concept that dis-
criminates this topic. �e listener looks up this word in his repertoire. If the word is
known, the listener tries to interpret it in the scene. Otherwise, the listener indicates fail-
ure. A�er the interaction, the tutor provides feedback to the learner, allowing it to learn.
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Adoption

If the learner acted as the listener and the word u�ered by the tutor was unknown, a new
word-concept mapping can be learned. At this point, the learner has no way of knowing
which a�ributes are important for the concept. It does know, however, that the tutor used
the concept of which the word was u�ered to discriminate the topic. Hence, the learner
stores an exact copy of the topic with all of its a�ributes as the initial hypothesis for the
concept. Each a�ribute receives an initial score of 0.5, re�ecting the uncertainty that the
a�ribute is relevant for the newly created concept. A�ributes scores are bound between 0
and 1.

Alignment

If the learner acted as the listener and it did know the word u�ered by the tutor, it can
re�ne its representation of the corresponding concept using the positive example acquired
via the tutor’s feedback. �is involves shi�ing the prototypical values towards the positive
example and updating the certainty scores of the a�ributes of the concept. �ese mech-
anisms are discussed in Section 4.3.4. Alternatively, if the learner acted as the speaker,
the only learning opportunity occurs when the interaction was successful. Indeed, a suc-
cessful interaction indicates that the topic is a positive example for the concept that the
learner used during conceptualisation. �is allows the learner to update this concept, both
in terms of the prototypical values and the certainty scores. In all other cases, the topic is
a negative example and no mechanisms are put in place to update the concept on the basis
of negative examples.

Metrics

To evaluate the learner agent, both communicative success and concept repertoire size are
measured. Communicative success indicateswhether or not the interactionwas successful.
In other words, it tells if the learner could successfully use a concept in conceptualisation
or interpretation. Also, it allows to monitor the number of interactions required to reach a
certain level of communicative success, indicating the speed at which the agent is learning.
A distinction is made between overall communicative success and communicative success
given conceptualisation. �e la�er metric, introduced by Loetzsch (2015, p. 97), measures
the success of the interaction taking into account whether or not the learner could �nd
a discriminating concept for the topic when acting as the speaker. If the learner failed at
conceptualisation, the success of the previous interaction is recorded. In all other cases, i.e.
if the learner could conceptualise or when it is not acting as the speaker, the success of the
current interaction is recorded. �e ‘communicative success given discriminative success’-
metric was not part of the experiment discussed in Nevens et al. (2020). �e second metric,
namely the learner’s concept repertoire size, allows to monitor the number of interactions
that are required for learning all concepts known by the tutor.
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4.3.3 Environment

�e agents’ environment is based on the CLEVR dataset (Johnson et al., 2017a). As dis-
cussed in Section 3.3, this dataset was speci�cally designed to avoid biases as much as
possible. In practice, this means that across the scenes, there will be as many blue objects
as red objects, as many cubes as cylinders, etc., making it adequate for concept learning
experiments. �ere are 19 concepts to be learned in total. �ese are summarised in Table
4.1. Note that the synonymy from the CLEVR dataset has been removed (compare to Table
3.2). For example, the learner agent only has to acquire a ������ concept and there is no
synonymous ���� concept. �ere is thus a one-to-one correspondence between words and
concepts in this experiment. In other words, the agent does not face the issues associated
with the introduction of synonyms or homonyms into the lexicon. However, overcoming
these issues has been extensively studied using the language game paradigm, particularly
in the Naming Game (Steels, 1995) and various guessing games (see Section 2.2.3).

Table 4.1: All 19 concepts in the experimental environment.

Shapes Colours Sizes Materials Positions

���� ���� ����� ����� ������
�������� ����� ����� ������ �����
������ ���� ����

���� �����
�����
������
���
������

�e learner agent observes the environment through streams of continuous-valued sensor
data. To achieve this, the symbolically annotated CLEVR scenes, as illustrated in Figure
4.3, need to be transformed into numerical data. Two ways of making this transformation
are considered. First, I discuss manually designed rules and procedures to transform the
symbolic annotation into numerical data. For the second method, I use a Mask R-CNN
model (Yi et al., 2018) to detect and segment the objects directly from the image, combined
with computer vision techniques for extracting features from the segmented objects.

Simulated Attributes

�e �rst method starts from the symbolic scene annotations and transforms these into
continuous-valued a�ributes based on simple rules and procedures. An overview of these
rules is provided in Table 4.2. Each symbolic a�ribute is mapped to one ormore continuous
a�ributes with a possible range of values, which can be an interval or a set. For example,
colour is mapped to three a�ributes, one for each channel of the RGB colour space, and
size is mapped to a single a�ribute, namely area. �e x-, y- and z-coordinates are taken
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{
  "color": "green",
  "size": "large",
  "rotation": 156.34024,
  "shape": "cylinder",
  "3D_coords": [...],
  "material": "rubber",
  "pixel_coords": [...]
}

Figure 4.3: Example image from the CLEVR dataset (le�) with the corresponding sym-
bolic annotation of a single object (right), namely the large rubber green cylinder. �e
“3D coords” and the “pixel coords” are the coordinates of the object with respect to the
3D rendering environment and the 2D pixel-space, respectively.

over from the symbolic scene annotations .

Table 4.2: Rules used to transform symbolic object properties to continuous-valued at-
tributes. Note that objects in the CLEVR dataset already have xyz-coordinates.

Symbolic Continuous Values Jitter

colour
R [0, 255] ±[0, 2]
G [0, 255] ±[0, 2]
B [0, 255] ±[0, 2]

shape
number of sides {1, 3, 6} /
number of corners {0, 2, 8} /
width-height ratio [0, 1] /

size area [0, 100] ±[0, 15]

material roughness [0, 10] ±[0, 2.5]

x-coordinate [0, 480] /

y-coordinate [0, 320] /

z-coordinate [�1, 1] /

�e range of values for the various a�ributes are not chosen arbitrarily. For colour con-
cepts, I use the RGB value that was used during the image rendering process of the CLEVR
dataset1. �is value is used as a seed value and random ji�er is added. �e same technique
is used for the size-related concepts ����� and �����, and for the concepts regarding the
objects’ material ������ and �����. �e continuous values for material-related concepts
are based on a measure of surface roughness. �e amount of ji�er that is added to each
a�ribute is shown in the rightmost column of Table 4.2. Finally, generating the continuous
1�is data is available at h�ps://github.com/facebookresearch/clevr-dataset-gen.

https://github.com/facebookresearch/clevr-dataset-gen
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a�ributes for the shape-related a�ributes proceeds as follows. A sphere is represented as
having 1 side, 0 corners and a width/height ratio of 1, a cylinder has 3 sides, 2 corners and
a width/height ratio of 0.5 and a cube has 6 sides, 8 corners and a width/height ratio of 1.

Obtaining sensory data in this way is very straightforward and creates a controlled en-
vironment. Indeed, even with the presence of random ji�er, there is no overlap between
di�erent instances of a particular type of concept. Speci�cally, di�erent colours such as
���� and ���� do not overlap in terms of the r, g and b features, or ����� and ����� do
not overlap in terms of the area feature. For each particular type of concept, every in-
stance takes up a disjoint area in the space of continuous-valued a�ributes. �is makes
the concept learning task easier and allows to validate the proposed learning mechanisms
before moving on to an environment with perceptual processing as could be used by an
embodied, autonomous agent.

Extracted Attributes

To test the approach using more advanced perceptual processing, a state-of-the-art in-
stance segmentation model is used. It detects and segments the objects directly from the
image. A�er segmentation, a number of numerical a�ributes is extracted from the pro-
posed regions using computer vision techniques. With this approach, di�erent instances
of the same type of concept (such as di�erent colours or shapes) will no longer take up
disjoint areas in the a�ribute space. Additionally, the numerical values will be subject to
more noise due to variations in the images such as overlapping objects, lighting conditions
or shade e�ects.

�e �rst step consists of object detection and segmentation. For this, a Mask R-CNNmodel
(He et al., 2017) from the Detectron framework (Girshick et al., 2018) pre-trained on a
separately generated set of CLEVR images by Yi et al. (2018) was used. Given an image,
the network generates a mask for each object in the scene. A mask is a matrix of the
same dimensionality as the image, containing a boolean value for every pixel in the input
image, denoting whether or not the pixel belongs to the detected object. All masks with
a certainty below 90% are removed. Each mask is multiplied with the original image to
obtain a speci�c highlighted region in that image. For full training regime details of the
Mask R-CNNmodel, I refer to Yi et al. (2018). No separate evaluation of the object detection
accuracy is reported.

Next, continuous-valued a�ributes are extracted from the highlighted regions using com-
puter vision techniques. �ese a�ributes are summarized in Table 4.3. Aswith the previous
environment, a number of continuous a�ributes are provided for each of the symbolic at-
tributes. �emean colour of each region is extracted and represented using the HSV colour
space. A�erwards, it is converted to the CIEL*A*B* colour space and split per channel. For
shapes, the estimated number of corners is extracted through the Ramer-Douglas-Peucker
algorithm (Ramer, 1972; Douglas and Peucker, 1973). �is algorithm approximates the
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contour of a region with a similar curve that uses fewer points. �e number of points
of the curve returned by the algorithm is used as the number of corners. Further, the
Hamming distance between the region’s contour and the enclosing circle is used, and the
width/height ratio. �e size-related a�ributes are self-explanatory, except for the last two.
�e bb-area ratio expresses the ratio between the area of the region and the area of the
rotated bounding box. �e rotated bounding box of a region is a bounding box that is ro-
tated such that the overlap with the region is maximised. Similarly, the image-area ratio
expresses the ratio between the region’s area and the area of the entire image. �e material
of objects is expressed by the ratio of both dark and bright pixels. A pixel is considered
dark when it has low brightness (< 20), captured in the ‘V’ dimension of the HSV colour
space. Conversely, a pixel is considered bright when it has high brightness (> 70) and low
saturation (< 50). �e brightness and darkness a�ributes are based on the idea that the
metal objects are more re�ective and thus contain more bright pixels. Finally, as before,
the x-, y- and z-coordinates are copied over from the symbolic scene annotation.

Table 4.3: Mapping from symbolic a�ributes to continuous a�ributes obtained by the im-
age segmentation process.

Symbolic Continuous Values

colour
mean-L [0, 100]
mean-A [�127, 128]
mean-B [�127, 128]

shape
number of corners R+

hamming distance [0, 1]
width-height ratio [0, 1]

size

width R+

height R+

area R+

bounding-box area R+

bb-area ratio [0, 1]
image-area ratio [0, 1]

material bright-pixels [0, 1]
dark-pixels [0, 1]

angle [0, 180]

x-coordinate [0, 480]

y-coordinate [0, 320]

z-coordinate [�1, 1]



126 CHAPTER 4. LEARNING CONCEPTS THROUGH DISCRIMINATION

4.3.4 Concept Representation

A concept is represented as a mapping from a symbolic label to a set of continuous-valued
a�ributes. Similar to Wellens (2012), I make use of a weighted set representation where
each concept-a�ribute link has a score s 2 [0, 1], representing the certainty that the given
a�ribute is important for the concept. In contrast to Wellens (2012), the a�ributes are
continuous-valued which enables the use of such concepts in grounded, embodied scenar-
ios. An example concept is shown in Figure 4.4.

cube

wh_ratio: 0.94, [0.78 - 1.10]

0.30

nr_of_sides: 6.00, [5.98 - 6.02]1.00

nr_of_corners: 8.00, [7.98 - 8.02]

1.00

Figure 4.4: �e concept ���� is linked to a weighted set of a�ributes. �e weight repre-
sents the certainty of an a�ribute belonging to the concept. Each a�ribute is modelled
as a normal distribution that keeps track of its prototypical value (i.e. the mean) and the
standard deviation. �e values between square brackets denote two standard deviations
away from the mean. �ese are not used in similarity calculations directly, but give an
indication of the observed range of values.

To computationally operationalize this concept representation in the interaction script out-
lined in Section 4.3.2, two pieces of functionality are required: (i) a similarity measure be-
tween concepts and objects, necessary during conceptualisation and interpretation and (ii)
mechanisms for updating concepts on the basis of positive exemplars during alignment.

Weighted Similarity

�e use of a weighted similarity measure is similar to the adaptive strategies of Wellens
(2012), since it allows an agent to use a concept even if it does not exactly match with a par-
ticular object. However, Wellens (2012) only considers symbolic a�ributes, allowing him
to implement such a measure using set operations. In this work, a continuous similarity
measure is used. Speci�cally, the similarity between a concept C and an object O can be
computed by the average similarity between each of their respective a�ributes, weighted
by the certainty of each a�ribute. Formally, the similarity S(C,O) is implemented as fol-
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lows:
S(C,O) =

1

|Ac|
X

a2AC

c(Ca) ⇤ S0(Ca, Oa) (4.1)

where AC is the set of a�ributes linked to concept C , |Ac| represents the number of at-
tributes, Ca and Oa represent the a�ribute value for the a�ribute a in the concept C and
object O respectively, and the function c(Ca) returns the certainty score for an a�ribute
a in concept C .

�e similarity measure S relies on the similarity measure S0 for comparing a concept C
and an object O on the level of the a�ribute a. Each a�ribute within a concept (Ca) is
modelled as a normal distribution and the similarity function S

0 is based on the z-score
of the a�ribute value of the object (Oa) with respect to this normal distribution. �e z-
score is additionally embedded in a linear function to transform a small z-score in a high
similarity value and a large z-score in a low similarity value. Speci�cally, this function
maps a z-score of 0 to a similarity of 1 and when the z-score reaches 2, the similarity has
reached 0. By the time the z-score would be larger than 4, the similarity is below -1. �e
similarity measure S0 is implemented as follows:

S
0(Ca, Oa) =

2� |z(Oa)|
2

(4.2)

where z(Oa) refers to the z-score of the a�ribute value of the objectOa with respect to the
normal distribution for the a�ribute of the concept Ca. Given that the similarity function
S
0 returns a value between -inf and 1 and the scores of a�ributes are always between 0

and 1, the similarity measure S also returns a value between -inf and 1. In Nevens et al.
(2020), the similarity score S

0 was cut o� at -1. �is cut-o� has been removed in order
to be able to rank all objects that are compared to a concept, which will be necessary for
integrating the concepts in the visual question answering task later on (see Section 4.6).

�e similarity measure S is used in both conceptualisation and interpretation. In concep-
tualisation, the aim is to �nd a conceptC that is discriminative for the topic T . Speci�cally,
the concept C is discriminative when its similarity to the topic S(C, T ) is larger than the
similarity S(C,O) for any other object O in the scene. If this condition holds for multiple
concepts, the concept that maximises the di�erence in similarity is chosen. Put di�erently,
during conceptualisation, the learner chooses the concept that makes the topic stand out
the most among the other objects in the scene. In interpretation, the learner �nds the ob-
ject in the scene that maximises the similarity with respect to the concept it could parse
from the tutor’s u�erance.

Concept Alignment

During alignment, the learner will update the concept that it used during the interaction
both in terms of the prototypical values and the certainty scores of the a�ributes. �is
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update is based on the feedback provided by the tutor, who points out a positive exemplar.
Speci�cally, the learner will shi� the a�ributes of the concept such that they are closer to
this positive exemplar and update the certainty scores of a�ributes such that the concept
can be�er discriminate the exemplar. �is way, the agent can gradually shape its repertoire
of concepts to �t the environment and the communicative task. �is update procedure
works in two steps.

1. Updating prototypical values. �e agent updates the prototypical values of all the
a�ributes in the concept. �e reason for updating all a�ributes, as oppose to only those
with high certainty scores for example, is to allow for �exibility. In particular, when an
a�ribute suddenly becomes important later on in the experiment, e.g. because of changes
in the environment, this a�ribute’s value should also re�ect the observed examples. �e
update mechanism makes use of Welford’s online algorithm (Welford, 1962). �is is an
online algorithm that speci�es recurrence relations for the mean and standard deviation of
normal distributions. It allows to recompute the mean and standard deviation on the basis
of a single observation, without the need to store all previous observations. Concretely,
each a�ribute keeps track of the number of observationsN , the prototypical value pn and
the sum of squares of di�erencesM2,n from the current prototypical value. �e n inM2,n

denotes the current interaction. Given a new observation xn, these values can be updated
using the following steps:

N = N + 1

�1 = xn � pn�1

pn = pn�1 +
�1

N

�2 = xn � pn

M2,n = M2,n�1 + (�1 ⇤ �2)

�e standard deviation, required for computing the z-score in the similarity measure, can
be computed from N andM2,n as follows:

� =

r
M2,n

N

2. Updating certainty scores. �e agent increases the certainty of the subset of a�ributes
that is most discriminative for the topic. �e certainty score is decreased for all other at-
tributes. A subset of a�ributes is discriminative when it is more similar to the topic than
to any other object in the scene. Since this can be true for multiple subsets, the most dis-
criminative subset is de�ned as the subset where the di�erence between the similarity to
the topic and to the next most similar object is maximised. �us, during alignment, the
agent not only uses the topic object itself, but also compares this to other objects in the



4.3. METHODOLOGY 129

scene. �is ensures that the combination of a�ributes, and ultimately the entire repertoire
of concepts, is functionally relevant in the agent’s environment. �e similarity functions
S and S0, de�ned above, are used to compute the most discriminative subset of a�ributes.
However, to reduce the computational load, not all subsets of a�ributes are considered.
Speci�cally, all subsets are �ltered to contain at least the set of a�ributes that are discrim-
inative on their own. �e procedure to update the certainty scores can be summarised as
follows:

• Using the similarity function S
0, the agent identi�es the discriminative a�ributes.

�is yields e.g. area and nr-of-corners.

• �e agent computes all subsets of a�ributes of the concept.

• �e agent �lters all subsets and keeps only those that contain at least the a�ributes
found in the �rst step. �is yields subsets such as {area, nr-of-corners}, {area, nr-of-
corners, wh-ratio}, {area, nr-of-corners, roughness}, etc.

• �e agent �nds discriminative subset(s) of a�ributes using similarity function S.

• �e previous step can produce multiple subsets. �e agent takes the one that max-
imises the di�erence in similarity between the topic and the next most similar object.

• �e agent increases the certainty score of the a�ributes in this subset, and decreases
the certainty score of all other a�ributes.

Discussion

While this concept representation is relatively easy to grasp, an important assumption was
made in its design, namely that the a�ribute values are modelled using normal distribu-
tions. Statistical testing, using the normality test by D’Agostino and Pearson (d’Agostino,
1971; d’Agostino and Pearson, 1973), has shown that this is not the case for any of the
a�ributes that were generated using the procedures explained in Section 4.3.3. �e distri-
butions of the a�ributes come close to normal distributions but have thinner tails at both
ends. Still, this can be viewed as odd, especially for some of the studied concepts. Take the
concept ���� as an example. It is important to note that the concept of ���� in this exper-
iment refers to ‘le� in the image’ and not ‘le� of another object’, although the la�er can
be derived from the former (see Section 4.6). With this de�nition of le�, the X-coordinate
is most likely to be an important a�ribute for this concept. In the images of the CLEVR
dataset, the X-coordinate of an object represents the central point of the object and can be
anywhere between 0 and 4802. �us, in theory, an object is considered to be ����when its
X-coordinate is smaller than 240. �e bulk of objects that can be considered ���� will not
be close to 0, nor close to 240, but somewhere in between, e.g. around X-coordinate 170.

2In practice, the objects will be far enough removed from the edges of the images such that they are completely
visible.
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Using the concept representation as described above, a normal distribution with a mean
value around 170 could be learned for the X-coordinates and allow the agent to commu-
nicative about objects on the le� side of the image. However, one could argue that objects
with an X-coordinate smaller than 170 can actually be considered “more le�”, while objects
with an X-coordinates larger than 170 are gradually “less le�”. Currently, this cannot be
captured by the concept representation as described above.

Another assumption is made concerning the size-related concepts ����� and �����. In the
CLEVR dataset, these concepts are considered in absolute terms. �e sizes of the objects
are not expressed relatively to each other, but an object is considered to be either small
or large. �is assumption, together with the closed world of the CLEVR dataset, allows
to use the concept representation as described above for these types of concepts. How-
ever, in more open domains, a di�erent kind of concept representation would be required,
e.g. to capture “the large mouse” or “the small elephant”. In these cases, the size-related
concept could learn which a�ributes of the concept tied to the noun are relevant and how
their prototypical values should be shi�ed. �is is currently not captured by the concept
representation described above.

4.3.5 Tutor Behaviour

�e tutor uses the symbolic scene annotation for both conceptualisation (i.e. acting as the
speaker) and interpretation (i.e. acting as the listener). Assume that the topic that can
be described symbolically as {�����, ����, �����, ������, ����, �����}. In conceptu-
alisation, the tutor will try to describe this object using a single concept. Traversing the
concepts of the topic in a random order, the tutor will check if no other objects in the
scene share this concept. For example, if the topic is the only cube in the scene, the con-
cept ����will be returned. In interpretation, the tutor looks for all object in the scene that
possess the a�ribute that was u�ered by the learner. If there is only one object that can be
found, interpretation succeeds and the tutor points to this object, indicating that it thinks
this object is the topic that was intended by the learner. If multiple objects were found,
interpretation stops and the interaction is considered a failure.

4.4 Experimental Setup

�is section describes three experiments that are designed to showcase the various desir-
able properties of the proposed methodology for grounded concept learning. In the �rst
experiment, the baseline performance is established (Section 4.4.1). In subsequent experi-
ments, I test how well the concepts generalise (Section 4.4.2), and how they can be learned
incrementally in a changing environment (Section 4.4.3).
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4.4.1 Main Experiment

�e �rst experiment validates the concept learning mechanisms via the language game
setup laid out in Section 4.3. �e learner’s performance is evaluated using both the simu-
lated features and the noisy features extracted directly from the images (see Section 4.3.3).
In both se�ings, scenes from the validation split of the CLEVR dataset are used. �is
split consists of 15,000 unique scenes, each containing between three and ten objects.
�e learner agent is evaluated in terms of communicative success, communicative suc-
cess given conceptualisation and concept repertoire size (see Section 4.3.2). �e goal is to
validate whether or not the agent can successfully acquire the concepts from the tutor and
use them in bidirectional communication. At the end of the experiment, the acquired con-
cepts can be inspected to see which combinations of a�ributes were found to be relevant
for the object reference task in the CLEVR environment.

4.4.2 Generalisation Experiment

Using the CLEVR CoGenT dataset (Johnson et al., 2017a) (see also Section 3.3.4), it is pos-
sible to test if the acquired concepts are general enough to extend to similar, yet unseen,
objects and combinations of a�ributes. �e CLEVR CoGenT dataset consists of two con-
ditions. In condition A, cubes can be grey, blue, brown, or yellow, cylinders are red, green,
purple, or cyan and spheres can have any of these colours. In condition B, the colour op-
tions for cubes and cylinders are swapped and the colour options for spheres remain the
same. Like the original CLEVR dataset, the CoGenT data comes with a symbolic anno-
tation that can be transformed into continuous-valued a�ributes using the two methods
described in Section 4.3.3. �e goal of this experiment is to validate if the agent truly
learns the concepts independently from the statistical distributions or co-occurrences in
the environment, which are o�en exploited in other types of models. �is is evaluated by
running a number of interactions in condition A, switching o� the learning operators, and
running a number of interactions in condition B to evaluate the communicative success.
When the communicative success remains stable a�er switching to condition B, this indi-
cates that the concepts acquired by the agent do not rely on a�ribute co-occurrences from
the environment, and that the concepts acquired by the learner are general enough to be
used in both conditions even though they were learned in the �rst condition. Additionally,
by varying the number of interactions used for learning in condition A, I gain insight into
the speed at which the learner can acquire concepts that are su�ciently functional in the
environment.

4.4.3 Incremental Learning Experiment

By incrementally expanding the environment, the adaptivity and open-endedness of the
concept learning approach is demonstrated. For this experiment, I created a novel variation
of the CLEVR dataset consisting of �ve splits. In each split, more concepts are added and
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less data is available. Speci�cally, in the �rst split, there are 10,000 images where all objects
are large, rubber cubes in four di�erent colours. In the second split, there are 8,000 images
and the cubes can be large or small. Spheres and cylinders are added in the third split and
the data is reduced to 4,000 scenes. �e fourth split again halves the amount of data and
metal objects are added. Finally, in the ��h split, four more colours are added and only
1000 scenes are available. �e splits are summarized in Table 4.4.

Table 4.4: Summary of the concepts in each split of the incremental learning dataset.

Split Concepts Scenes

1 ����, ���, ����, �����, ����, ������, ����� 10,000
2 Concepts from split 1 + ����� 8,000
3 Concepts from split 2 + ������, �������� 4,000
4 Concepts from split 3 + ����� 2,000
5 Concepts from split 4 + �����, ������, ����, ������ 1,000

�e agent is exposed to each of the splits consecutively, without rese�ing its repertoire of
concepts or switching o� the learning operators. �roughout the experiment, the commu-
nicative success and the concept repertoire size are monitored. �e goal of this experiment
is threefold. First, it shows that the learning mechanisms can easily and quickly adjust to
a changing environment and that there is no need to specify the number of concepts that
should be learned in advance nor to fully or even partially re-train the repertoire of con-
cepts when new concepts become available, as is o�en the case for other types of models
(see Section 4.2). Second, it demonstrates the transparency of the concept representation.
Indeed, as the environment changes, certain a�ributes might become more or less im-
portant. �is evolution can be easily monitored throughout the experiment. �ird, the
experiment shows the data e�ciency of the concept learning mechanism by reducing the
available number of scenes throughout the splits and still reaching communicative success.

4.5 Experimental Results

�is section presents the results of the experiments outlined in Section 4.4. All experiments
were ran for ten series of maximum 10,000 interactions and the metrics were averaged,
with the error bars showing the 5th and 95th percentile. �e plots for the communicative
success use a sliding window of 100 interactions. �e Babel so�ware package (see Section
2.2.4) was used to implement and run the experiments and plot the results.

4.5.1 Main Experiment

In the �rst experiment, the learning mechanisms are validated. Speci�cally, the learner’s
ability to successfully acquire the repertoire of concepts through communication is mea-
sured in terms of communicative success and concept repertoire size, both in the simulated
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(a) Simulated Environment
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(b) Noisy Environment

Figure 4.5: In both environments and across se�ings, the communicative success rises
quickly and converges to a stable level a�er merely⇠1000 interactions. �e agent acquires
exactly 19 concepts.

environment and in the more noisy environment. Figure 4.5 provides an overview of the
results. A distinction is made between three se�ings: (i) communicative success when the
learner always acts as the listener (solid teal-coloured line), (ii) communicative success
where both agents can be speaker or listener (dashed yellow line), and (iii) communica-
tive success given conceptualisation when both agents take on both roles (do�ed red line).
Figure 4.5a shows these metrics for the simulated environment, while Figure 4.5b reports
them for the noisy environment. In both environments and across the three se�ings, com-
municative success rises quickly and reaches a stable level a�er merely⇠1000 interactions.
Table 4.5 provides an overview of the communicative success that was reached a�er 5,000
of the 10,000 interactions in total. �e plots in Figure 4.5 are cut of at this point since all
metrics reached a stable level. Just like the communicative success, the concept repertoire
size increases rapidly and stabilizes at 19 concepts, which are all concepts present in the
agents’ environment.

Table 4.5: Communicative success a�er 5,000 interactions across the experimental se�ings
and environments (using a sliding window of 100 interactions).

Simulated (%) Noisy (%)

Communicative success (always listener) 99.7 92.0
Communicative success (both roles) 98.9 86.5
Communicative success if conceptualisation (both roles) 99.8 94.4

Error analysis has revealed that the small percentage of failed interactions in the simulated
environment is caused by the concepts capturing spatial relation. Without these concepts,
communicative success converges to 100% in all three se�ings a�er ⇠500 interactions. As
discussed in Section 4.3.4, these spatial relations are in absolute terms, i.e. the concept
���� denotes ‘le� in the image’. Inspection of these concepts’ a�ributes, such as xpos, ypos
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and zpos, shows that the learner acquires prototypes with mean values very close to the
center of the image and very wide tails at both ends. �is causes the agent to, for example,
mistakenly use the concept ���� whenever the topic is close to the centre of the image,
but still on the right side, and the other objects are further to the right in the image.

In the noisy environment, failed interactions cannot be a�ributed to one particular type
of concept. �e communicative task is inherently more di�cult due to the overlapping
feature values, as discussed in Section 4.3.3. Furthermore, the noisy environment clearly
illustrates that conceptualisation is a more di�cult process than interpretation. When
comparing the learner as listener to the learner taking on both roles, the communicative
success drops by 5.5 percentage points. However, the communicative success given a suc-
cessful conceptualisation is 2.4 percentage points higher on average than the success in
the listener-only se�ing. �is indicates that the decrease in success between the �rst and
the second se�ing can be explained by unsuccessful conceptualisations.

�e concept representation proposed in this chapter allows for a clear and easy to inter-
pret view on the learned concepts. �is is demonstrated in Figure 4.6, showing the concept
������ obtained a�er 5,000 interactions in both the simulated and noisy environments. In
both cases, few a�ributes are needed to discriminate the concept ������. �e importance
of these a�ributes is re�ected by their high certainty scores. In the simulated world, dis-
criminative a�ributes are number of corners and number of sides, while in the noisy world
these are thewidth/height ratio, the circle-distance and the bb-area-ratio. �e circle-distance
represents the Hamming distance between the contour of the object and the minimally en-
closing circle. �e bb-area-ratio represents the ratio between the area of the object and the
area of its bounding box. In both environments, all a�ributes with high scores are indeed
intuitively shape-related. An overview of all concepts acquired in a single experimental
run in both the simulated world and the noisy world is provided in Appendix A (Figures
A.1 and A.2).

sphere

nr_of_sides: 1.00, [0.98 - 1.02]
1.00

nr_of_corners: 0.00, [-0.02 - 0.02]1.00

(a) Simulated environment

sphere

bb_area_ratio: 0.81, [0.72 - 0.91]
1.00

wh_ratio: 1.01, [0.74 - 1.28]1.00

circle_distance: 0.84, [0.79 - 0.89]

1.00

(b) Noisy environment

Figure 4.6: �e acquired concepts are human-interpretable and capture discriminative
combinations of a�ributes. �e concept ������ focusses on a�ributes related to shape
in both environments. A�ributes with certainty score 0 are hidden.

With this experiment, I have shown that the learner agent can distil meaningful concepts
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from streams of continuous data in the form of discriminative subsets of a�ributes and
their prototypical values, and is able to successfully use them in communication. Further-
more, as these concepts are expressed using human-interpretable feature channels, both
the learning mechanisms and resulting repertoire of concepts are completely transparent.

In presenting the remainder of the experimental results, the distinction between an ‘al-
ways listener’ se�ing and ‘both speaker and listener’ se�ing will no longer be made. �e
la�er will be used by default, since bidirectionality is one of the key desirable properties
of human-like communication systems.

4.5.2 Generalisation Experiment

�e generalisation experiment demonstrates the agent’s ability to learn the concepts com-
pletely independently from the statistical distributions or a�ribute co-occurrences in the
dataset. Using the CLEVR CoGenT dataset, the agent learns concepts during a number
of interactions in condition A. A�erwards, the learning operators are turned o� and the
communicative success of the agents is evaluated in condition B for the remainder of the
interactions. When successful, the agents’ level of communicative success should remain
stable when transitioning from condition A to B. As before, both the simulated environ-
ment and the noisy environment are considered. Additionally, the amount of training in-
teractions in condition A is varied to test the speed at which the learner agent can acquire
a functional repertoire of concepts.
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(a) 500 interactions in condition A
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(b) 1000 interactions in condition A

Figure 4.7: Communicative success a�er learning for the speci�ed number of interac-
tions in condition A. �e concepts are learned completely independently from the co-
occurrences in the environment. Given at least 1000 interactions in condition A, the agents
achieve the same level of communicative success as in the bidirectional se�ing of the pre-
vious experiment.

Figure 4.7 shows the communicative success of the agents during the learning phase (in
condition A) and the evaluation phase (in condition B). Figures 4.7a and 4.7b vary in the
number of interactions that took place in condition A before transitioning to condition B.
From Figure 4.7a, it is clear that the learner agent cannot reach the same level of success as
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in the previous experiment a�er only 500 interactions in condition A. However, with 1000
interactions (Figure 4.7b), this level of success is achieved. �is indicates that the learner’s
repertoire of concepts is shaped rapidly and su�ciently to have successful interactions.
When transitioning from condition A to B, there is no decrease in communicative suc-
cess in the simulated environment and only a minor decrease in the noisy environment.
�is indicates that the concepts acquired by the agent abstract away over the observed
instances.
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Figure 4.8: A subset of the agent’s repertoire of concepts a�er the generalisation experi-
ment in the simulated environment. In condition A, the concepts ����, �����, ���� and
������ are always observed as cubes or spheres. In condition B, these colours are used
for cylinders and spheres. �e agent is not “distracted” by this and learns combinations of
a�ributes that are relevant for solving the communicative task.

To further investigate the generalisation abilities of the learner, the acquired concepts are
examined. Remember that in condition A in the CoGenT dataset, cubes can be grey, blue,
brown, or yellow, cylinders have a set of di�erent colours and spheres can be any colour.
Figure 4.8 shows the concept representation of the colours for cubes a�er being learned in
condition A for 1000 interactions in the simulated environment. If the agent would rely on
co-occurrences of the dataset, the concept representation of these colours could contain
a�ributes related to shape, since each time one of these colours occurs it is either a cube or
a sphere. Additionally, cubes and spheres have the same value for the wh-ratio a�ribute,
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so it could be considered discriminative. As can be seen in Figure 4.8, even though this
feature is present in the concept ������, its certainty score is very low. �e other colour
concepts only focus on feature channels r, g and b. Hence, the agent does not focus on
particular dataset co-occurrences and is able to generalize over various observations. �e
same is true for the shape-related concepts ����, �������� and ������. �ese are not
distracted by the �xed colour options of condition A and the switch in colour options in
condition B. �ese concepts are shown in Appendix A (Figures A.3 and A.4). �is can be
a�ributed to the notion of discrimination, which makes sure that only relevant a�ributes
obtain a high certainty score.

4.5.3 Incremental Learning Experiment

�e proposed methodology for grounded concept learning is completely open-ended and
has no problems dealing with a changing environment. �is is validated through the in-
cremental learning experiment where, over the course of 15,000 interactions, the number
of concepts in the environment increases. �e amount of interactions before new concepts
are introduced is varied between 500 and 1000 interactions. �e learning mechanisms are
able to adjust almost instantly to these changes, as is shown in Figure 4.9. In both environ-
ments, the communicative success drops when transitioning from one phase to the next.
However, the agent quickly acquires new concepts and ultimately reaches the same level
of communicative success as the main experiment of Section 4.5.1.
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(b) New concepts every 1000 interactions

Figure 4.9: Communicative success in the incremental learning experiment. New concepts
are introduced every 500 interactions (4.9a) or 1000 interactions (4.9b). �e learning mech-
anism is completely open-ended, allowing the agent to adapt to a changing environment.
Note that the x-axis of 4.9b is di�erent from 4.9a to best show the changes in communica-
tive success.

�e concepts in the incremental learning experiment have relevant a�ributes with high
certainty scores already a�er the �rst phase of the experiment (see Figure 4.10). Conse-
quently, these remain stable throughout the various other phases, while other a�ributes
come and go but never achieve high certainty scores.
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�e concepts at the end of the experiment have the same high-scoring a�ributes as those
obtained in the �rst experiment, independent of the phase in which they were introduced.
�is is illustrated in Figure 4.11.
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Figure 4.10: �e concept ���� a�er each of the �ve phases (1000 interactions per phase) in
the noisy environment. �e relevant a�ributes obtain a high certainty score a�er the �rst
phase of the experiment.
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Figure 4.11: �e �nal representation of three concepts introduced during various phases of
the experiment (1000 interactions per phase) in the noisy environment. �e concept ����
was introduced in phase 1, �������� in phase 3 and ������ in phase 4.

4.6 Fully Explainable Visual�estion Answering

In this section, the symbolic repertoire of grounded concepts is evaluated through a higher-
level reasoning task. Speci�cally, I integrate these concepts as semantic entities in the pro-
cedural semantic representations of the CLEVR grammar (see Section 3.4.2) and tackle the
CLEVR benchmark task. �is constitutes a system that is end-to-end transparent, explain-
able and human-interpretable, ranging from the perception and categorisation of objects



4.6. FULLY EXPLAINABLE VISUAL QUESTION ANSWERING 139

via the methodology presented in this chapter to the constructional language processing
of the question and symbolic reasoning via procedural semantics, both part of the CLEVR
grammar (Section 3.4). In Section 4.6.1, I describe this integration and the changes that
needed to be made. A�erwards, in Section 4.6.2, the results on the CLEVR benchmark task
are presented and discussed.

4.6.1 Integration with CLEVR Grammar

�e integration of the acquired concepts in the CLEVR grammar requires three modi�ca-
tions. First, the symbolic conceptual inventory of the agent, containing all concepts and
categories present in the CLEVR dataset, is replaced by the repertoire of concepts acquired
via the experiment outlined in Section 4.5.1. �e agent is provided with information on
which concepts belong to the same conceptual category. In other words, the agent knows
that the concepts of ����, ���, �����, etc. belong to the conceptual category colour. Learn-
ing this aspect during the language game experiment by, for example, grouping together
similar concepts on the basis of their a�ributes could be part of future work. �e acquired
grounded concepts are now the semantic entities used in the meaning networks, intro-
duced via ���� statements. Second, the primitive cognitive operators no longer operate
over the symbolic scene annotation. Instead, the objects in the scenes are transformed to
sets of continuous-valued a�ributes using the methods outlined in Section 4.3.3. In terms
of IRL, this constitutes the semantic entities that make up the world model (see Section
2.4.3). �ird, the primitive cognitive operators needed to be altered in order to operate
over the newly instantiated conceptual inventory and world model. In the paragraphs
that follow, the alterations that were made to each primitive operation are discussed in
more detail. Primitive operations that are not listed here could be used without changes,
or only minor modi�cations such as changing the type information of the arguments. �e
complete list of primitive operations can be found in Section 3.4.2.

F����� Primitive

One mode of operation for the (������ ?���������� ?��������� ?�������) primitive is
to �lter an ?��������� on the basis of a given ?������� and bind the resulting set to
?����������. Now, the variable ?������� is bound to a concept using the weighted set
representation as introduced in Section 4.3.4 and the ?��������� contains a set of objects
as described in Section 4.3.3. To operationalise a �ltering operation, the weighted sim-
ilarity measure S described in Section 4.3.4 is used. Speci�cally, for every object in the
?���������, the weighted similarity between this object and every concept of the concep-
tual category of ?������� is computed. Each object gets assigned the concept with the
highest similarity. �e set of objects that has ?������� as the most similar concept are
bound to ?����������. As an example, consider a �ltering operation using the concept
������, applied to a set of three objects denoted {o1, o2, o3} for simplicity. For every
object in the ?���������, the weighted similarity to ������, ���� and �������� is com-
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puted. When objects ‘o1’ and ‘o3’ are most similar to ������, this set of objects is bound
to ?����������.

���� Primitive

In the (���� ?������� ?������ ?��������) primitive, in order to query a particular ?����
�����, such as colour, from a given ?������, the weighted similarity S between the ?���
���� and all concepts of ?�������� is computed. �e concept with the highest similarity
is bound to ?�������.

S��� Primitive

�e (���� ?��� ?������ ?��������) primitive is a combination of the ���� primitive
and the ������ primitive described above. First, the ���� primitive is used to obtain a
concept, of type ?��������, of the ?������. Next, the ������ primitive is used to obtain
the ��� of objects with the same concept, excluding ?������.

R����� Primitive

�e (������ ?��� ?������ ?����������������) primitive applies a spatial transformation
with respect to ?������ in order to apply the ?���������������� that was learned in ab-
solute terms, e.g. le� in the image, in relative terms, e.g. le� of ?������. Speci�cally, the
spatial relation learned in absolute terms has the centre of the image as its reference point,
both in terms of the x-, y- and z-coordinates. First, this reference point is shi�ed such that
it becomes the x-, y- and z-coordinate of ?������. �is shi� is applied to all objects in
the scene and to all spatial relation concept. A�erwards, similar to the ������ and ����
primitives, the weighted similarity measure S is computed for each pair of (shi�ed) ob-
jects and (shi�ed) spatial relations. �e set of objects that has the ?���������������� as
the most similar concept is bound to ?���. Because of the spatial transformation that was
applied, this ?��� contains the objects that have the given ?����������������with respect
to ?������.

4.6.2 Results

�e CLEVR grammar, with the acquired repertoire of concepts integrated as semantic en-
tities, is evaluated on the CLEVR benchmark task. Speci�cally, the evaluation was ran over
the validation split of the dataset, consisting of 150,000 questions over 15,000 scenes. Re-
sults are averaged over ten independent runs where each run uses a di�erent repertoire of
concepts learned over 10,000 interactions. In Section 3.4.4, I concluded that the symbolic
variant of the CLEVR grammar achieves 100% accuracy. �us, any errors in the current
evaluation are caused by the integration of the grounded concept representation.
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Table 4.6 presents the results in terms of precision, recall and F1-score, weighted accord-
ing to the answer distribution. �e weighted precision corresponds to the percentage of
correctly answered questions whenever the VQA system could e�ectively produce an an-
swer. Indeed, evaluation of a semantic network may fail when the execution of a primitive
operators does not return any new bindings. �is highlights the transparency and inter-
pretability of the reasoning process, as one can easily retrace the execution of the various
primitive operators and inspect why no answer was produced. �e weighted recall cor-
responds to the question answering accuracy, allowing to compare these results to other
state-of-the-art models where only accuracy is reported. �e models listed in this table
employ either modular neural network approaches or neuro-symbolic approaches. �ese
approacheswill be discussed in greater detail in Section 5.2, as they aremore closely related
to the topic of that chapter. �e main message here is that these approaches su�er from
many of the shortcomings discussed in Section 4.2. In particular, they rely on black-box
architectures that consume huge amounts of training data, they capture concept repre-
sentations in some latent non-interpretable space and they can be deceived by statistical
biases from the dataset. In comparison, the approach presented in this chapter is fully
transparent, can be learned in a data-e�cient manner, generalises well to similar, yet un-
seen, instances and allows for an open-ended repertoire of concepts, as demonstrated in
the experimental results in Section 4.5.

Table 4.6: Evaluation results on the CLEVR benchmark task.

Model Precision Recall F1-score
(weighted) (weighted) (weighted)

NMN3 (Andreas et al., 2016a) 72.1
IEP (Johnson et al., 2017b) 96.9
N2NMN (Hu et al., 2017a) 83.7
Stack-NMN (Hu et al., 2018) 96.5
MAC (Hudson and Manning, 2018) 98.9
TbD (Mascharka et al., 2018) 99.1
NS-VQA (Yi et al., 2018) 99.8
NSCL (Mao et al., 2019) 98.9

CLEVR grammar + concepts (simulated) 99.4 96.2 97.8
CLEVR grammar + concepts (noisy) 70.2 29.1 40.0

In the simulated environment, near perfect precision (99.4%) and a level of accuracy (i.e.
weighted recall) that is competitive with several state-of-the-art approaches is achieved. A
detailed error analysis has revealed that the lowest accuracy is achieved in questions that
have the ��������� (89.4%), ���� (94.2%) and ������ (92.1%) primitives in their underly-
ing meaning representation. �e ��������� and ���� primitives mostly occur in longer
questions, requiring many steps to answer. �is indicates that errors are caused by the
3Evaluation of the NMN model on the CLEVR dataset was carried out and reported by Mao et al. (2019).
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propagation of inaccuracies in the concept representations through the meaning network.
Of course, with longer meaning networks, more possible points of failure are introduced.
�e errors caused by the ������ primitive corresponds with the �ndings of the baseline
experiment in Section 4.5.1, in that the a�ribute representation using normal distributions
have some di�culty in modelling concepts that capture spatial relations.

In the noisy environment, the VQA system struggles to achieve high levels of accuracy
(i.e. weighted recall). �is can be a�ributed to various factors, including the propagation
and accumulation of errors in the acquired concepts, or di�culties in capturing concepts,
especially spatial relations, using normal distributions. �ese results also indicate that fea-
ture extraction plays a crucial role in the acquisition of concepts and their integration in
reasoning systems. Indeed, given that the methodology proposed in this chapter has been
shown to achieve high levels of communicative success and question answering accuracy
in the simulated environment, a di�erent set of features or more accuracy feature extrac-
tion might achieve the same or higher levels. Further analysis in this environment has
revealed that in 84% of the questions that are considered incorrect, the system actually did
not produce an answer. �is is re�ected through the weighted precision of 70.2%, which
indicates that whenever the system can produce an answer, it is fairly accurate at doing
so. As opposed to neural network-based approaches, this VQA system thus abstains from
guessing answers based on observed distributions, but only returns an answer when it can
infer one. However, a guessing mechanism based on answer distribution could be easily
added to boost the system’s performance.

4.7 Conclusion

In order to communicate and reason about their environment, autonomous agents must be
able to abstract away from low-level, sensorimotor data streams. �ey therefore require
an abstraction layer that links sensorimotor experiences to high-level, symbolic concepts
that are meaningful in the environment and for the task at hand. A repertoire of such
concepts provides the necessary building blocks for achieving success in higher-level cog-
nitive tasks, such as communication, reasoning or action planning. �erefore, these con-
cepts should be applicable both when acting as a speaker and as a listener. Similar to how
humans can grasp a concept a�er only a few exemplars, an autonomous agent should ac-
quire these concepts quickly and with relatively li�le data. Acquired concepts should be
general enough to extend to similar, yet unseen, situations and the learning methodology
should be adaptive and allow for incremental learning in order to support a changing en-
vironment or the introduction of new concepts. Finally, to truly understand the reasoning
processes of an autonomous agent, its learning mechanisms and representations should
be fully transparent and interpretable in human-understandable terms.

�e task of grounded concept learning has been considered in various sub-domains of AI,
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as discussed in Section 4.2. Deep learning approaches, for example, o�er a very powerful
paradigm to extract concepts from raw perceptual data, achieving impressive results but
thereby sacri�cing data e�ciency and model transparency. Version space learning o�ers a
more interpretable model but has di�culties in handling noisy observations. Most similar
to the approach presented in this chapter is work from the robotics literature, considering
tasks such as perceptual anchoring and a�ordance learning. However, these tasks mostly
focus on a single robot that passively extracts concepts from observations of its environ-
ment. In contrast, I argue for an interactive learning approach through the language game
paradigm, as presented in Section 4.3. �e notion of discrimination plays a central role in
forming the repertoire of concepts, thereby ensuring the generality and adaptivity of the
concepts such that they are relevant in the agent’s environment. Additionally, the pro-
posed methodology o�ers an explainable concept representation, acquired through a data
e�cient and incremental method. In Section 4.4, dedicated experiments were set up to
highlight each of these desirable properties. In sum, this chapter has presented a novel,
discrimination-based approach to learning meaningful concepts from streams of sensory
data. For each concept, the agent �nds discriminative a�ribute combinations and their
prototypical values. �e experimental results in Section 4.5 have shown that these con-
cepts (i) can be acquired quickly with relatively few data points, (ii) generalise well to
unseen instances, (iii) o�er a transparent and human-interpretable insight in the agent’s
memory and processing, and (iv) are adaptive to changes in the environment. �ese prop-
erties are highly valuable in the domains of robotics and interactive task learning, where
interpretability, open-endedness and adaptivity are important factors. Once a repertoire
of symbolic concepts, abstracting away over the sensorimotor level, has been acquired,
the autonomous agent can use it to tackle higher-level reasoning tasks such as naviga-
tion, (visual) dialogue and action planning. �is was demonstrated for the task of visual
question answering on the CLEVR benchmark task in Section 4.6. �e evaluation results
on this task have brought to light the importance of the feature extraction procedure, but
have also demonstrated the capabilities of the approach by achieving results that are com-
petitive with the state-of-the-art, while additionally highlighting the transparency of the
reasoning component. Namely, the system does not guess answers when it is uncertain,
but instead allows to inspect the various reasoning steps in order to understand why no
answer could be formulated.

In order to ensure that the acquired concepts are human-interpretable, the methodology
starts from a prede�ned set of human-interpretable features that are extracted from the
raw images. While I argue that this is necessary to achieve true interpretability, it can also
be seen as a limitation inherent to the methodology. However, this limitation cannot be
li�ed without losing the interpretability that the method brings. In the following chapter, a
di�erent methodology for concept learning that does not rely on such prede�ned features
is explored. However, as a consequence, it will becomemore di�cult to explain the agents’
internal representations and interpret their reasoning processes.



144 CHAPTER 4. LEARNING CONCEPTS THROUGH DISCRIMINATION

4.7.1 Contributions

�is chapter has presented two contributions of this dissertation. �e �rst contribution
consists of a novel concept representation and learning mechanism that allows an au-
tonomous agent to extract meaningful concepts from its sensorimotor experiences through
task-oriented communicative interactions (C2). In line with the main objective of this dis-
sertation (O1), the presented methodology focusses on key properties found in human
communication systems, such as adaptivity, robustness, bidirectional processing and learn-
ing e�ciency. �is methodology not only contributes to the research on the emergence
of concepts within the language game paradigm, it is also directly applicable and highly
relevant for research in robotics and interactive task learning due to the aforementioned
properties. �e la�er is additionally demonstrated by the second contribution of this chap-
ter, namely the integration of grounded concepts in a higher-level reasoning task (C3). Ap-
plied speci�cally to the task of visual question answering, all components in the presented
system are transparent and human-interpretable and ‘inherit’ the desirable properties of
the grounded concept learning methodology. �is directly contributes to the secondary
objective of this dissertation (O2).
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5.1 Introduction

In the previous chapter, I presented a discrimination-basedmethodology for grounded con-
cept learning where an agent learns to extract symbolic concepts from continuous streams
of sensorimotor data. Speci�cally, through situated, task-oriented, communicative inter-
actions, the agent simultaneously extracts discriminative a�ribute combinations and their
prototypical values from continuous data streams in order to construct a repertoire of con-
cepts that is functional in its environment and for the given task. �is methodology posits
a number of properties which are highly desirable in the domains of robotics and interac-
tive task learning, speci�cally its interpretability, open-endedness and adaptivity. Next to
these properties, the experimental results have shown that high levels of communicative
success could be reached with relatively few observations. However, it was also clear from
these results that a noisy environment with more realistic perceptual features proved to
be more challenging, leaving room for improvements. �is became especially clear when
the concepts acquired in this environment were integrated in the CLEVR benchmark task.
Concretely, the question answering accuracy degraded when an increasing number of con-
cepts is required to answer the question and their respective inaccuracies accumulate. Fi-
nally, as noted at the end of the previous chapter, the interpretability of the approach relies
on a set of prede�ned human-interpretable features that are extracted from the raw images
on beforehand.

In this chapter, I introduce a di�erent approach to grounded concept learning. Speci�cally,
the concept learning task is now embedded within the VQA task through hybrid procedu-
ral semantics. Hybrid procedural semantics follows the main idea of procedural semantics,
namely that the meanings underlying linguistic u�erances are captured in programs that
can be executed algorithmically (see Section 2.4.1), but extends this such that the programs
feature a combination of symbolic and sub-symbolic operations. �e sub-symbolic opera-
tions are implemented through one or more modular neural networks, also called (neural)
modules, which operate over continuous data streams, namely images, and produce either
image masks, i.e. highlighted regions within the image, or symbolic labels. Crucially, each
such module captures a particular concept. For instance, a module that captures the con-
cept ���� focusses exclusively on recognizing things in images that are blue, regardless
of the objects’ other features. Consequently, training these modules on raw image data
corresponds to learning the corresponding concepts and grounding them in the images.
�rough the integration of neural modules in procedural semantic representations, hybrid
procedural semantics combines the strengths of sub-symbolic techniques, namely pa�ern
recognition on unstructured data, with those of symbolic techniques, namely higher-level
reasoning on structured data. It allows for information to be shared between the sub-
symbolic level and the symbolic level in an elegant and highly �exible manner, steered by
the linguistic analysis of the u�erance that led to the procedural semantic representation.
�is novel methodology relies on ideas from procedural semantics (Woods, 1968; Wino-
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grad, 1972; Johnson-Laird, 1977), natural language interfaces for structured data (Woods
et al., 1972; Warren and Pereira, 1982; Liang et al., 2013; Pasupat and Liang, 2015), and neu-
ral module networks (Andreas et al., 2016b). My aim is to extend these ideas in order to
develop a methodology which on the one hand achieves high levels of accuracy on a given
task, and on the other hand exhibits the desirable properties found in human communi-
cation systems, such as open-endedness, transparency and data-e�ciency. In turn, this
allows to incorporate hybrid procedural semantics in the next wave of intelligent systems.

As in the previous chapter, the CLEVR benchmark task will be used as a case study to
demonstrate the hybrid procedural semantics approach. Speci�cally, the natural language
questions are �rst mapped to their underlying procedural semantic representation using
the CLEVR grammar (Section 3.4) a�er which this representation is executed in a hybrid
way via the integration ofmodular neural networks in primitive cognitive operators imple-
mented using IRL.�rough a number of experiments, I will demonstrate the performance
of hybrid procedural semantics on the CLEVR benchmark task and highlight its desirable
properties compared to other purely neural network-based approaches. I also discuss the
advantages and drawbacks in comparison to the discrimination-based methodology for
grounded concept learning from the previous chapter.

�e remainder of this chapter is structured as follows. Section 5.2 provides an overview of
relatedwork on visual question answeringwhich has inspiredmany of the design decisions
underlying hybrid procedural semantics. For background literature on procedural seman-
tics, I refer to Section 2.4.1. A�erwards, in Section 5.3, I provide a high-level overview
of the ideas underpinning hybrid procedural semantics. Section 5.4 operationalises these
ideas to tackle the CLEVR benchmark task. �is includes the choice of neural network
architectures, their training schemes and the integration with IRL. Section 5.5 presents
experimental results and in Section 5.6, I summarise the chapter and re�ect on its main
contributions.

5.2 Related Work

In this section, I introduce related work on the task of visual question answering (VQA).
Particularly, I focus on two approaches that have been predominantly used for this task
over the last �ve years. �ese are the modular neural networks approaches (Section 5.2.1)
and the neuro-symbolic approaches (Section 5.2.2). So-called monolithic approaches, i.e.
models that consist of a single, large neural network trained in an end-to-end manner,
were the �rst to tackle VQA tasks (see e.g. Gao et al. (2015); Ren et al. (2015) and Ma
et al. (2016)). However, these models are not considered in this section. Ever since the
inception of modular neural networks and neuro-symbolic models, monolithic models are
outperformed not only in terms of accuracy but particularly in terms of interpretability and
generalisation abilities. �ese and other properties are exactly what I set out to achieve
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in truly intelligent systems (see Section 1.2), making monolithic models irrelevant for the
purposes of this dissertation.

5.2.1 Modular Neural Networks

All models following themodular neural networks approach operate according to the same
basic outline. One component, called the program generator, maps the natural language
question onto a layout of neural modules. Another component, called the execution engine,
connects the neural modules as dictated by the program generator such that a single, large
neural network is formed. �e execution engine is typically fed with a high-dimensional
encoding of the input image. �ese encodings are obtained by feature extractors, such as
LeNet (LeCun et al., 1989), VGGNet (Simonyan and Zisserman, 2014) or ResNet (He et al.,
2016), pretrained on huge datasets of annotated images, such as ImageNet (Deng et al.,
2009) or MS-COCO (Lin et al., 2014). Consequently, the representations that are passed
in between modules typically consist of high-dimensional convolutions or a�entions over
these image encodings, making it di�cult to interpret intermediate results and the overall
reasoning (i.e. question answering) process. In most cases, di�erent types of modules with
speci�c neural architectures are designed depending on the task they need to perform.
For instance, distinct neural architectures are required for �nding all objects of a particu-
lar colour or for �nding all objects that have a particular spatial relation with respect to
another. Modules are typically trained through the execution engine. In other words, the
network of modules assembled by the execution engine is end-to-end di�erentiable and
updated with backpropagation as if it were a single neural network. Finally, modules typ-
ically capture a range of tasks (or concepts) and their behaviour can be conditioned on the
basis of prede�ned embeddings, such as GloVe (Pennington et al., 2014), or learned em-
beddings that capture part of the input question. For example, a single module can be used
to �nd objects of various colours, conditioned using the word embedding of one speci�c
colour.

State of the Art

Andreas et al. (2016b) were the �rst to combine semantic parsing with neural networks for
visual question answering. �eir Neural Module Networks (NMN) model uses an o�-the-
shelf parser (Klein and Manning, 2003) in combination with a set of hand-wri�en rules to
determine the composition of modules from the input question. �is allows the modules
to be trained on the basis of (question, image, answer) triples alone. A small set of mod-
ules was designed by the authors, each with a speci�c functionality and corresponding
architecture.

By the same authors, the D-NMN model (Andreas et al., 2016a) improves over NMN in
two ways. First, the structure of the module network is learned by passing both an LSTM
encoding of the question and a feature vector representing the dependency parse of the
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question through a multilayer perceptron. �is replaces the hand-cra�ed rules of the NMN
model. Second, the D-NMN model is applied to both images and structured knowledge
bases, using the same set of reusable modules. Similar to NMN, D-NMN only requires
(question, image, answer) triples.

Trading data e�ciency for improved accuracy, Johnson et al. (2017b) propose two major
changes compared to D-NMN. First, they get rid of the external parser that is required
to �nd the layout of the module network. Instead, the network structure is predicted
by passing the question through an LSTM that returns a sequence expressing the pre-
�x traversal of the network. While both the program generator and the execution engine
are now learned end-to-end, this comes at a cost. Unlike previous models, an additional
dataset of questions annotated with ground-truth network layouts is required for training
the LSTM. A second novelty is automatic module specialisation. Johnson et al. (2017b) did
not design speci�c architectures for speci�c types of modules. Instead, all modules use
the same generic architecture and learn to specialise on their respective task through the
joint training procedure. As a consequence of this architecture, convolutions are passed
in between modules, as opposed to a�entions. In what follows, I will refer to this model
as IEP, which is a shorthand for the title of the paper by Johnson et al. (2017b).

�e model by Hu et al. (2017a), called N2NMN, extends both IEP and D-NMN. Similar to
IEP, the entire model can be learned end-to-end. Similar to D-NMN, di�erent a�ention-
based module architectures are used. �e main novelty proposed by Hu et al. (2017a) is
the incorporation of a so� a�ention over question words provided to each module. �is
allows the model to learn the word embeddings that are used to condition the modules’
behaviour, instead of using �xed, prede�ned embeddings, as is done in IEP.

Building on both IEP and N2NMN, Hu et al. (2018) no longer require a dataset of questions
annotated with ground-truth network layouts. Instead, their Stack-NMN model predicts
a distribution over modules and produces a�entions over the input question to steer the
modules’ behaviour. Consequently, their model no longer makes a discrete decision on the
module layout, but a continuous one, allowing also this part of the model to be learned.
A di�erentiable stack data structure is added to store and retrieve intermediate module
outputs. Di�erent module architectures are used, as in N2NMN.

Hudson and Manning (2018) propose a novel, generic architecture for solving VQA tasks:
the Memory, A�ention and Composition (MAC) network. A MAC network is made up of
a number of MAC cells representing general-purpose, a�ention-based reasoning compo-
nents. A MAC cell explicitly separates control from memory, where the la�er consists of
a read unit and a write unit. �e control unit a�ends to part of the input question, thereby
specifying the operation that the MAC cell needs to perform. Based on that, the read unit
extracts relevant information from the encoded input image. �e write unit aggregates
the result of the operation into the memory structure, such that it can be read by the next
MAC cell. Encodings of both the input question and the input image are used throughout
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the MAC network. �rough their general-purpose design, MAC cells infer their behaviour
from the input data. Consequently, no explicit layout of MAC cells needs to be generated
as training data. Instead, the cells are always structured in a sequence with the length of
the sequence being a hyper-parameter that can be optimised. Additionally, MAC networks
are very data e�cient, requiring 5x less data compared to the previously discussed models
to achieve competitive results.

In the same year, Mascharka et al. (2018) extended both IEP and N2NMN in a di�erent
direction. Speci�cally, they combine the LSTM-based layout prediction of IEP with the
a�ention-based modules from N2NMN.�e architectures of the modules are altered such
that the intermediate outputs have the same dimensionality as the original image. In other
words, they produce image masks instead of high-dimensional a�entions over encoded
image features. �is allows to directly visualise and inspect the reasoning steps that are
taken during the execution of the module network, o�ering a level of transparency and
interpretability that goes well beyond previously discussed models. At the same time,
they achieve state of the art performance of 99.1% on the CLEVR dataset. �is model is
named Transparency By Design (TbD).

Focussing speci�cally on systematic generalisation, Bahdanau et al. (2019) developed an-
other modi�cation of the IEP model. Systematicity is the ability of humans to recombine
known skills in previously unseen combinations (Fodor and Pylyshyn, 1988). In the context
of VQA, this corresponds to the evaluation of a composition of modules at test time which
was not seen during training. As shown by Bahdanau et al. (2019), various modular neural
networks approaches struggle with this task. In response, Bahdanau et al. (2019) altered
the generic module architecture of IEP such that the intermediate representations are now
vector-valued, as oppose to tensor-valued. �rough this modi�cation, they obtain state-
of-the-art results on the CoGenT generalisation test and on their own CLOSURE dataset.
�e la�er speci�es a number of questions that were speci�cally designed to test systematic
generalisation by extending the possible combinations of modules beyond what is avail-
able in the CLEVR and CoGenT datasets. As in IEP, annotated questions were required for
training the program generator and the vector-valued intermediate representations are not
very transparent. �is model is referred to as Vector-NMN.

Recently, the Vector-NMN model was outperformed in terms of systematic generalisation
by Yamada et al. (2022). �ey introduced Transformer Module Networks (TMN), using
the Transformer architecture as the basis for modules. Other parts of the model, such as
the program generator, are taken over from IEP and Vector-NMN. TMN achieves be�er
accuracy both in-distribution and in systematic generalisation scenarios on the CoGenT
dataset as well as on the CLOSURE dataset.

Table 5.1 provides an overview of the aforementioned models, comparing them on the
criteria that were used throughout this section. In Section 5.3, the same criteria will be
discussed for the hybrid procedural semantics approach proposed in this chapter.
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Model Properties

At the time of writing, the model by Mascharka et al. (2018) is the modular neural network
approach obtaining state-of-the-art results on the CLEVR dataset (Johnson et al., 2017a). In
the following paragraphs, I discuss two approaches applied to the CLEVR dataset that have
not achieved state-of-the-art results, but that are relevant in light of the hybrid procedural
semantics methodology.

First, Castillo-Bolado et al. (2021) devised a novel trainingmethodologywhere neural mod-
ules can be trained independently from each other, without the need to generate module-
speci�c training datasets. �ey introduce the concept of a surrogate gradient module,
which can be used to train modules for which no direct supervision is available. �is sur-
rogate module bridges the gap from the output of the module that needs to be trained to
the ground-truth label. �eir results indicate that independent training improves compo-
sitional behaviour and systematic generalisation.

Second, D’Amario et al. (2021) investigate the specialisation of neural modules in VQA.
Speci�cally, they compare three levels of specialisation. �e �rst level consists of mod-
ules which can be conditioned on any type of input, e.g. colours and shapes and spatial
relations and so on. In the second level, modules can be conditioned on input categories,
e.g. one module for colours and one for shapes and so on. In the third level, modules are
even further specialised to the point that no conditioning is available. Instead, separate
modules are available for every concept, as in one module for blue, one for cube, one for
le� and so on. Apart from specialisation, D’Amario et al. (2021) distinguish three types of
modules. �ese are image encoders, intermediate modules and classi�er modules for pro-
ducing the �nal answer. In all approaches discussed thus far, the image encoders operate
on the �rst level of specialisation, while both intermediate modules and classi�ers operate
on the second level of specialisation. D’Amario et al. (2021) �nd that improvements in sys-
tematic generalisation can be obtained by also using image encoders at the second level of
specialisation.

Neural Modules in Other Tasks

Although the modular neural networks approach originates from work on natural lan-
guage interfaces for structured data querying and was �rst applied to VQA, its use has not
remained limited to this task. For instance, Manhaeve et al. (2018, 2021) have integrated
neural modules in probabilistic logic programs in a way that, very much like hybrid pro-
cedural semantics, combines the strengths of both paradigms. �ey demonstrate their
approach through logic predicates that can operate directly on the digit images from the
MNIST dataset (LeCun et al., 1998). Another domain where neural modules have been ap-
plied is in visual grounding or visual reference, where the goal is to ground (or localise)
u�erances and parts of u�erances in images, e.g. as in Hu et al. (2017b), Liu et al. (2019a),
and Subramanian et al. (2020). In robotics, modular neural networks were used to facili-
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tate transfer learning between tasks and between robots (Devin et al., 2017). Finally, the
task of visual dialogue, introduced by Das et al. (2017a), is a direct extension of VQA.
Consequently, approaches that have worked well for VQA have been extended for visual
dialogue, such as MAC networks (Hudson and Manning, 2018; Shah et al., 2020) and NMN
(Ko�ur et al., 2018; Cho and Kim, 2021).

5.2.2 Neuro-Symbolic Approaches

Neuro-symbolic approaches for visual question answering typically consist of three com-
ponents. Two neural network models are used to analyse the image and the u�erance,
respectively. �e third component is a symbolic execution engine that is steered by the re-
sult of the u�erance analysis and operates over the result of the image analysis. �e bene�t
of these approaches is that they combine the strengths of symbolic and sub-symbolic tech-
niques. Speci�cally, neural network techniques are applied to �nd pa�erns in unstructured
input, namely images and u�erances, while reasoning over these pa�erns is performed by
symbolic techniques. An additional bene�t of this approach, in particular of the symbolic
execution, is its level of transparency. �e reasoning process becomes easier to interpret
and reasoning errors can be diagnosed more rapidly.

Yi et al. (2018) were the �rst to propose a neuro-symbolic approach for VQA.�eir NS-VQA
model �rst ‘de-renders’ the image into a structured scene representation. �is represen-
tation can best be described as a table containing the properties (i.e. colour, size, shape
and material) and 3D coordinates of every object. A Mask R-CNN model (He et al., 2017)
was used to detect and segment the objects from the image and to predict their properties
simultaneously, while a ResNet model (He et al., 2016) was used to extract the 3D coordi-
nates. To train both of these models, the authors generated a dataset of 4,000 new CLEVR
images where each object is highlighted on the pixel level and symbolically annotated with
its properties. �e second part of the NS-VQA model consists of a BiLSTM for mapping
the question onto its underlying logical structure. As in IEP, this structure is expressed as
the pre�x traversal of the abstract syntax tree of the program that needs to be executed.
Execution is taken care of by purely symbolic functions. �e logical structure determines
which functions need to be executed and the structured scene representation is provided
as input. Given that both neural elements can be trained in advance and the execution
is handled symbolically, NS-VQA requires much less training data compared to the end-
to-end training paradigm used in modular neural network approaches. Indeed, only 4,000
images and 270 questions annotated with programs were used. With few data, state of the
art accuracy of 99.8% was achieved on the CLEVR dataset.

�e NS-VQAmodel was extended byMao et al. (2019) such that it is fully di�erentiable and
thus can be learned end-to-end. Instead of producing a symbolic table of object properties,
their perception component detects the objects in the image and represents each of them
as an embedding. As in NS-VQA, a Mask R-CNN (He et al., 2017) and a ResNet model (He
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et al., 2016) are used. Next to this, a bidirectional GRU (Cho et al., 2014) is used for semantic
parsing, i.e. mapping the input question to the pre�x traversal of the program tree. Im-
portantly, a�ributes that are used as function arguments in the program are implemented
as neural operators. For example, ����� and ������ are neural operators that map an
object embedding onto an embedding of its shape or colour, respectively. Furthermore,
the model learns concept embeddings, such as ���� or �����. Cosine similarity is used
to compare the output of the a�ribute neural operators to the concept embeddings to de-
termine which concept is meant. �e functions themselves are implemented symbolically,
operating over probability distributions of object embeddings and concept embeddings,
which allows the entire model to be di�erentiable. In sum, the Neuro-Symbolic Concept
Learner (NSCL) proposed by Mao et al. (2019) learns object embeddings, concept embed-
dings, neural operators and the semantic parsing component in an end-to-end manner. No
dataset of annotated questions was necessary and the model achieves competitive results
(99.2%), even on 10% on the training data (98.9%).

Han et al. (2019) further extend NSCL to the point that meta-questions about the acquired
concepts can be answered. In other words, the model does not only learn concepts, but also
conceptual categories over these concepts. Speci�cally, a�er having learned a number of
concept embeddings, one could ask the question if ��� and ����� describe the same kind
of concept. To achieve this, a meta-operator was added that veri�es this question given a
pair of concept embeddings. Apart from this, the methodology is identical to NSCL.

5.2.3 Discussion

�e hybrid procedural semantics methodology is inspired on both modular neural net-
works approaches and neuro-symbolic approaches. Similar to modular neural network ap-
proaches, hybrid procedural semantics combines a program generator (i.e. semantic pars-
ing) with an execution engine. Concretely, computational construction grammar (i.e. the
CLEVR grammar from Section 3.4) is used for semantic parsing. �is results in a procedural
semantic representations consisting of primitive cognitive operators implemented through
IRL. �e layout of this semantic representation is determined by the grammar’s linguistic
analysis of the question. Similar to neuro-symbolic approaches, hybrid procedural seman-
tics �exibly combines the strengths of symbolic and sub-symbolic techniques. Concretely,
primitive operators can be implemented either symbolically or sub-symbolically. Again
referring to modular approaches, the sub-symbolic primitives are implemented through
small, reusable and modular neural networks which have their own task-speci�c archi-
tecture. However, as I will discuss in the next section, hybrid procedural semantics also
di�ers from the aforementioned approaches in several ways in order to accommodate a
number of desirable properties.
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5.3 Methodology

In hybrid procedural semantics, the meaning underlying an u�erance is modelled as a pro-
gram that can be executed through a combination of symbolic and sub-symbolic primitive
cognitive operators. �e sub-symbolic primitives are responsible for pa�ern recognition
and are implemented through one or more neural modules, whereas the symbolic primi-
tives can use set operations, arithmetic, search, uni�cation, etc. to accommodate reasoning
functionality. Compared to the approaches discussed in Section 5.2, hybrid procedural se-
mantic focusses on a number of properties that allow it to be integrated in human-like
communication systems. In what follows, I provide an overview of these properties and
how they are operationalised in hybrid procedural semantics.

Compared to modular and neuro-symbolic approaches, hybrid procedural semantics aims
to provide a transparent and explainable reasoning process. Speci�cally, the neural mod-
ules supporting sub-symbolic primitives produce either image masks or symbolic labels.
Hence, all results produced by neural modules can be readily visualised and inspected.
Apart from Mascharka et al. (2018), no other modular neural network approach allows
for this. To further open up the black box, neural modules focus on a single, atomic
task that cannot be further decomposed, e.g. checking whether an object is a cube or
not, corresponding to the third level of specialisation proposed by D’Amario et al. (2021).
�e specialisation of modules allows to retrace reasoning errors to the behaviour of one
speci�c module, instead of a sub-behaviour of a more generic module. Combined with
grammar-based semantic parsing, this ensures that nearly the entire reasoning process is
transparent, human-interpretable and explainable.

�e specialisation of modules allows the modules to be small in terms of layers and train-
able parameters, making hybrid procedural semantics more data-e�cient than other ap-
proaches. Adding to the data-e�ciency is the fact that no questions annotated with se-
mantic representations need to be provided, due to the grammar-based semantic parser.

Hybrid procedural semantics aims to remain open-ended in terms of the concepts it can
use. �erefore, neural modules are trained independently from each other which allows
new modules, and hence new concepts, to be added more easily. Indeed, new modules can
be trained and added without the need to retrain or alter existing modules nor primitive
operators. �is is not possible when using more generic modules (i.e. specialisation level
one or two of D’Amario et al. (2021)) that are jointly trained, as is the case in all modular
neural network approaches. I did not make use of the independent training methodology
proposed by Castillo-Bolado et al. (2021), as separate training datasets could be generated
for each module.

�e integration of neural modules in IRL through primitive cognitive operators o�ers a
paradigm that is more powerful than the aforementioned modular and neuro-symbolic
approaches. Speci�cally, all aspects of IRL, as described in Section 2.4, are made available



156 CHAPTER 5. LEARNING CONCEPTS AS NEURAL MODULES

even with the integration of neural modules. Most prominently is the implementation of
primitive operators as constraints, as opposed to the functional implementation used in
most other approaches, with the exception of Manhaeve et al. (2018, 2021). Representing
semantics as constraint programs in IRL allows for the execution of semantic networks in
multiple directions depending on the data �ow, the possibility to return multiple possible
solutions and the goal-oriented composition of semantic networks.

5.4 Experimental Setup

�e hybrid procedural semanticsmethodology is demonstrated through a case study on the
CLEVR benchmark task. �e basis of this case study is the CLEVR grammar (Section 3.4),
tackling the benchmark task on the symbolic level. To operationalise hybrid procedural se-
mantics, the primitive cognitive operators used in the procedural semantic representations
of the CLEVR grammar need to be altered. I start this section by providing an overview
of the primitive cognitive operators and speci�cally highlight the sub-symbolic primitives
and their accompanying neural modules (Section 5.4.1). A�erwards, I focus on the neu-
ral network architectures of the modules (Section 5.4.2) and on their training procedure
(Section 5.4.3). Finally, I demonstrate how the symbolic and sub-symbolic primitives work
together and how they are integrated in IRL to tackle the benchmark task (Section 5.4.4).

5.4.1 Primitive Operators

To operationalise a hybrid procedural semantic representation for the CLEVR benchmark
task, I make use of the same set of primitive operators as introduced in Section 3.4.2. �is
set consists of 14 primitives, each of which model a particular cognitive ability. �e prim-
itives can be combined in many di�erent ways to represent the meanings underlying the
questions from the CLEVR dataset. While the inner workings of some primitives will re-
main unchanged, operating on the symbolic level, others will now operate completely on
the sub-symbolic level or map sub-symbolic input to symbolic output.

�e neural modules that support the sub-symbolic primitives will either perform binary
semantic segmentation or classi�cation. Semantic segmentation is the task of predicting
the membership to a class on the pixel level, e.g. highlighting and classifying all types
of animals in a picture of the savannah. In binary semantic segmentation, the module
is trained to recognise just a single class and separate it from the background and other
objects, e.g. highlighting only zebras in a picture of the savannah. A binary semantic
segmentation module produces an image mask, which is a binary matrix that speci�es
for every pixel of the input image whether or not the pixel is part of the module’s class.
In other words, it is a highlighted area within the original image where instances of the
class are found. An image mask can capture zero, one or multiple objects, i.e. a single
image mask may contain multiple zebras. However, from the image mask itself, there is



5.4. EXPERIMENTAL SETUP 157

no way of telling how many objects it contains. �is needs to be taken into account when
designing the primitives that use binary semantic segmentation modules. Classi�cation
modules take an image mask as input and predict membership to a symbolic class. For
example, a classi�cation module can be used to count the number of objects in the image
mask, predicting a number between zero and ten.

In the following sections, I provide a description of all primitive operators. �ese are
implemented in the same modes of operation, or directions of processing, as speci�ed in
Section 3.4.2. However, I will focus on the direction of processing that is used in the VQA
task. Finally, I note that all primitives can implicitly access the raw input image without
the need to bind this to one of the arguments.

G���C������ Primitive

�e (����������� ?�������) primitive operator applies binary semantic segmentation to
the image of the CLEVR scene and produces an image mask containing all objects in the
scene. �e resulting mask is bound to the variable ?�������. �e operator is illustrated in
Figure 5.1. �is primitive is used in the semantic representation of every question. Other
sub-symbolic primitives operate over the image mask produced by �����������.

F����� Primitive

�e (������ ?����������� ?���������� ?�������) primitive �lters the mask of a set of
objects (?����������) on the basis of a ?�������, such as ���� or ����. First, it uses a
semantic segmentation module to create an image mask containing all instances of ?����
���� from the raw input image. �ese modules are called ���� modules. Multiple highly
speci�c ����modules are available, namely one for each concept. Depending on the bind-
ing value of ?�������, the appropriatemodule is selected. A�erwards, amask intersection
operation is applied to the ?���������� and the image mask produced by the ���� mod-
ule. �is allows for consecutive ������ primitives, as the ?���������� may already be a
�ltered subset of the objects in the scene. �e resulting image mask is bound to ?�������
����. �is primitive operator is illustrated in Figure 5.2, where a ������[����] operator is
fed with the output of a ������[��������] operator, resulting in the set of blue cylinders
from the input image (in this case only one).

���� Primitive

�e (���� ?������� ?����������� ?��������) primitive operator queries the ?�����
����, such as ������ or ��������, of a particular ?�����������. �e object mask is �rst
multiplied with the input image and a classi�cation module is used to query the ?�����
���� of the highlighted object, returning a particular ?������� such as ����� or �����.
An example ���� operator is shown in Figure 5.3. In practice, the ���� primitive uses
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Figure 5.1: Schematic representation of the ����������� primitive operator.
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Figure 5.2: Schematic representation of the ������ primitive operator.
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a number of highly speci�c binary classi�cation modules, each of which make a yes-or-
no decision. For instance, when querying the material of an object as in Figure 5.3, a
����[�����] and a����[������]module are used. �e module with the highest prob-
ability for ‘yes’ wins and the associated concept is returned.

S��� Primitive

�e goal of the (���� ?����������� ?����������� ?��������) primitive is to compute
the set of objects (?�����������) that has the same value for the ?�������� as the cat-
egory of a given source object (?�����������), excluding the source object itself. For
example, it is used to �nd the set of all objects that has the same shape as a given ob-
ject. Internally, the ���� primitive �rst uses a ���� operator to access the concept of
the source object belonging to the given category, followed by a ���� module to �nd all
objects in the input image which possess that concept. Finally, the ?����������� is sub-
tracted from the mask computed by the ���� module to exclude the source object. Figure
5.4 illustrates this process. �is primitive is a clear example of the modularity of hybrid
procedural semantics, allowing to reuse modules across multiple primitive operators. As
before, highly speci�c ���� modules and ���� modules are used. Speci�cally, the ex-
ample illustrated in Figure 5.4 uses ����[����], ����[������], ����[��������] and
����[����].

R����� Primitive

�e (������ ?����������� ?����������� ?����������������) operator computes all ob-
jects for which the ?���������������� holds with respect to a source object (?�������
����). For example, the primitive can be used to compute all objects that are le� of a
given object. �e resulting image mask is bound to ?�����������. �is is achieved by
a semantic segmentation module that is fed with the ?����������� and the input image.
Multiple highly speci�c binary semantic segmentation models are available, namely one
for every spatial relation. �e correct one is selected on the basis of ?����������������.
An example for ������[����] is provided in Figure 5.5.

C���� Primitive

�e (����� ?������ ?����������) primitive computes the number of objects in the
?����������. Speci�cally, a classi�cation module is fed with the ?���������� multiplied
with the input image and predicts a number between zero and ten1. �e predicted number
is bound to ?������. Figure 5.6 provides an example.

1Scenes in the CLEVR dataset contain maximally ten objects.
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Figure 5.3: Schematic representation of the���� primitive operator.
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Figure 5.4: Schematic representation of the ���� primitive operator.
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Figure 5.5: Schematic representation of the ������ primitive operator.
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Figure 5.6: Schematic representation of the ����� primitive operator.
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E���� Primitive

�e (����� ?������� ?����������) primitive operator is used to check whether the set of
objects, represented through ?����������, is empty or not. Internally, it makes use of the
����� classi�cation module. If this returns zero, ?������� is bound to ��. In all other
cases, it is bound to ���. �is primitive is illustrated in Figure 5.7.

U���� Primitive

�e (����� ?����������� ?����������) primitive operator will check if ?����������
contains a single object. If so, ?����������� is bound to the same image mask as ?������
����. Otherwise, ?����������� remains unbound, causing the primitive operator to fail.
Internally, the ����� classi�cation module is used, as shown in Figure 5.8.

I�������� Primitive

�e (��������� ?����������� ?�����������1 ?�����������2) primitive operators com-
putes the intersection of both input masks. As these are binary matrices, an element-
wise min operation is used. �e result is bound to ?�����������. Figure 5.9 provides a
schematic visualisation.

U���� Primitive

�e (����� ?����������� ?�����������1 ?�����������2) primitive operators computes
the union of both input masks. As these are binary matrices, an element-wise max op-
eration is used. �e result is bound to ?�����������. Figure 5.10 provides a schematic
visualisation.

E��� Primitive

�e (���� ?������� ?��������1 ?��������2 ?��������) primitive operates on the sym-
bolic level. It receives two concepts of the same ?��������, e.g. ?��������1 being �����
and ?��������2 being ������, both of the �������� category, and checks whether these
are equal. �e ?������� is bound to ��� or ��.

E����I������ / L����T��� / G�������T��� Primitives

�e primitives (������������ ?������� ?�������1 ?�������2), (��������� ?�������
?�������1 ?�������2) and (������������ ?������� ?�������1 ?�������2) symboli-
cally compute whether the numbers bound to ?�������1 and ?�������2 are respectively
equal, less than or greater than one another.

Table 5.2 provides an overview of all primitive operators with respect to their input and
output data types. �e primitives can be categorised in three groups: (i) mapping sub-
symbolic input to sub-symbolic output, (ii) mapping sub-symbolic input to symbolic output
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and (iii) mapping symbolic input to symbolic output. �e �rst group of primitives operates
over the images and imagemasks. �e second group of primitives maps these image masks
to symbolic data. �e third group of primitives reasons over the symbolic data. As can
be seen from this table, there are no primitives mapping symbolic input to sub-symbolic
output. �e hybrid procedural semantics approach for CLEVR thus consists of a pipeline
in terms of the data types, passing along information from the sub-symbolic level to the
symbolic level.

Table 5.2: Overview of primitive operators categorised by the symbolic or sub-symbolic
nature of their input and output arguments.

Input
symbolic sub-symbolic

Output

symbolic

���� ����
������������ �����
��������� �����
������������

sub-symbolic

�����������
������
�����
������
����
���������
�����

5.4.2 Module Architectures

Having provided an overview of the primitive operators, I now discuss the architectures of
the neural modules that are used to implement them. Speci�cally, two types of modules are
used across the sub-symbolic primitive operators: binary semantic segmentation modules
and classi�cation modules. �e former rely on the U-Net architecture (Ronneberger et al.,
2015) and the la�er on the SqueezeNet architecture (Iandola et al., 2016). In what follows, I
discuss both of these architectures and provide a detailed speci�cation of the neural mod-
ules. All neural modules were implemented using the PyTorch framework (Paszke et al.,
2019).

Semantic Segmentation Modules

�e U-Net architecture by Ronneberger et al. (2015) was speci�cally designed for the
biomedical domain. In that domain, it is not only important to correctly classify (parts
of) images, e.g. cells being malignant or benign, but also to precisely localize these classes
in the imaging, e.g. which cells are malignant or benign. �is is exactly the task of seman-
tic segmentation. Moreover, a data-e�cient neural architecture was sought a�er, since it
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is di�cult to obtain large training corpora of annotated imaging.

Figure 5.11 provides a schematic overview of the U-Net architecture. It consists of a con-
tracting path and an expansive path, giving it the U-shaped network layout. �ese paths
are made up of a number of ‘blocks’. A single block consists of two 3x3 convolutional lay-
ers, each followed by a ReLU activation function. �e number of blocks that is used can
be adjusted according to the complexity of the task.

Figure 5.11: Schematic representation of the U-Net architecture from Ronneberger et al.
(2015). Blue boxes represent multi-channel feature maps, where the number of channels
is denoted at the top and the dimensions are marked on the le� side. White boxes are
feature maps copied from the contracting path that are concatenated to feature maps from
the expansive path.

�e contracting path reduces the dimensions of the input image and thereby captures con-
textual information (Ronneberger et al., 2015). Speci�cally, a�er each block, a 2x2 max
pooling operation is used for reducing the dimensions of the feature map while doubling
its number of channels.

�e expansive path again increases the number of dimensions and halves the number of
channels, providing precise localization (Ronneberger et al., 2015). On this path, blocks are
connected by upsampling layers through a 2x2 bilinear interpolation operation that is ap-
plied to the featuremap. �is operation uses neighbouring pixels to compute a pixel’s value
in the upsampled feature map. Blocks on the expansive path also make use of ‘skip connec-
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tions’ that concatenate the feature map from the corresponding depth on the contracting
path to the feature map on the expansive path. �e feature map from the contracting path
is cropped to account for border pixels that got lost by the unpadded convolutions2.

�e �nal layer consists of 1x1 convolutions and a sigmoid activation function to produce
the desired number of channels, namely one for each class. Each channel speci�es a ‘so�
a�ention’ for a class, i.e. a matrix that has roughly the same size as the input image where
every pixel has a value between 0 and 1, denoting the probability that the pixel belongs to
the class. �is is easily transformed into a single-channel mask by providing every pixel
with the label of the class that has the highest probability.

In the following paragraphs, detailed speci�cations of the neural modules are provided
detailing the modi�cations made to the original U-Net architecture.

Blocks. �e neural modules use a modi�ed ‘block’ layout, as compared to Ronneberger
et al. (2015). Speci�cally, a batch normalization layer is added in between the 3x3 convolu-
tional layer and the ReLU activation function. �is has become standard practice in recent
years as it allows for faster and more stable training of deep networks (Io�e and Szegedy,
2015). Arguably, it was not yet added to the U-Net architecture because it was introduced
in the same year.

G���C������ Module. Due to the relative simplicity of its task, the �����������
module uses only two blocks in both the contracting and the expansive path.

F��� Modules. Each ���� module consists of six blocks on both the contracting and
the expansive path. Except for the �rst block, the contracting path uses halve blocks, i.e.
a single 3x3 convolutional layer, batch normalisation layer and ReLU activation function.

R����� Modules. Each ������ module �rst combines the input image with an image
mask produced by another module. �is is done by applying a ‘block’ to each input and
multiplying the results. A�erwards, as in the ����module, six halve blocks are used in the
contracting path and six full blocks are used in the expansive path.

Classi�cation Modules

�e SqueezeNet architecture (Iandola et al., 2016) was speci�cally designed to achieve com-
petitive levels of accuracy on image classi�cation tasks with much fewer trainable param-
eters. �is has the advantage of (i) more e�cient training on distributed machines, as
fewer data needs to be communicated, (ii) smaller �le-sizes for trained models, allowing
for easier distribution and (iii) smaller memory requirements, allowing to use the model
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Figure 5.12: Schematic representation of the Fire module. Image from Iandola et al. (2016).

in embedded systems (Iandola et al., 2016).

�e major breakthrough in this architecture is the introduction of the ‘Fire module’, il-
lustrated in Figure 5.12. A Fire module consists of a squeeze layer, comprised of 1x1 con-
volutional �lters, followed by an expand layer, comprised of a mixture of 1x1 and 3x3
convolutional �lters. ReLU activation functions are added a�er each layer. �e design of
the Fire module helps to reduce the number of trainable parameters (Iandola et al., 2016).
Figure 5.13 illustrates the complete SqueezeNet architecture. Downsampling operations
are placed relatively late in the network architecture. �is allows the convolutions to op-
erate on larger feature maps with the aim of maximizing the accuracy on a limited budget
of parameters, due to the Fire modules.

conv fire conv softmax

“zebra”

maxpool/2 maxpool/2 maxpool/2

global avgpool

fire

3x

fire

4x

Figure 5.13: Schematic overview of the SqueezeNet architecture. Image adapted from Ian-
dola et al. (2016).

In the following paragraphs, detailed speci�cations of the neural modules are provided
detailing the modi�cations made to the original SqueezeNet architecture.

2Ronneberger et al. (2015) use unpadded convolutions, resulting in a �xed-width border that gets lost through
the contracting and expansive path.
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���� Modules. As discussed in Section 5.4.1, several highly speci�c ���� modules
are used, each trained to make a yes-or-no decision about the presence or absence of a
particular concept in an object. �is requires two modi�cations to the SqueezeNet archi-
tecture. First, the input of the ���� modules consists of the element-wise multiplication
of the input image and an image mask. Second, the last convolutional layer is changed
such that it outputs a feature map with two channels.

C����Module. �e �����module is trained to predict integers between zero and ten.
�erefore, the last convolutional layer of the SqueezeNet architecture produces a feature
map of 11 channels. �e input to the ����� module consists of an input image and an
image mask. Both are passed through a 3x3 convolutional layer, batch normalization layer,
ReLU activation function and 2x2 max pooling operation. �e element-wise multiplication
of these results is passed as input to the SqueezeNet architecture.

5.4.3 Training

To maximize the open-endedness of the hybrid procedural semantics approach, the neural
modules are trained independently from each other. �is allows to extend the library of
modules at any time. For example, when a new shape is introduced in the dataset, special-
ized ���� and���� modules can be trained to capture this concept, a�er which they are
added to the corresponding primitive operations without the need to retrain or adjust any
existing modules. Additionally, it allows to evaluate the neural modules independently
from each other. �is in contrast to other modular neural networks approaches where
modules can only be trained and evaluated in an end-to-end fashion. As a consequence
of the independent training procedure, separate training, validation and test sets for ev-
ery neural module needed to be generated. In the following sections, I describe this data
generation process and I provide an overview of the modules’ hyper-parameters that were
used during training. In total, 36 modules were trained using HPC infrastructure provided
by VSC (Vlaams Supercomputer Centrum) on modern CPU (Intel Xeon) and GPU (Nvidia
Tesla P100, Nvidia A100, Nvidia Volta V100) platforms.

Dataset Generation

To generate datasets for each of the modules, annotated samples needed to be provided.
For semantic segmentation modules, the inputs are images (����������� and ����) or
image masks (������) and the outputs are image masks. For classi�cation modules, the
inputs are image masks and the outputs are labels. �e main challenge in generating these
datasets thus consists in constructing image masks that contain only the desired objects.

To overcome this challenge, a Mask R-CNN model (He et al., 2017) pre-trained by Yi et al.
(2018) to detect and segment CLEVR objects was used. �is model provides a separate
image mask for every object in the image. �ese masks are matched with the symbolic an-
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notations of the scene provided by the CLEVR dataset (see Section 3.3), such that for every
object in the scene there is both a complete symbolic description of its properties and a
corresponding image mask containing only that object. �e matching operation computes
the Euclidean distance between the symbolically speci�ed coordinates and the coordinates
of the segmented objects. Each mask is assigned to the nearest object. With this combined
information, it becomes straightforward to generate the desired image masks. In the fol-
lowing paragraphs, the data generation process for each module is illustrated through an
example.

G���C������Module. �is module is trained to detect and segment all objects in the
scene. Output masks are obtained by combining all object masks of a scene into a single
mask. �us, a single sample can be generated for every CLEVR image.

F��� Module. A ����[����] module takes the image as input and should produce an
output that is an image mask containing only cubes. Using the symbolic annotation, all
cubes from the scene are selected and their respective image masks are combined into one.
With this method, a single sample can be generated for every image.

����Module. A����[������]module requires an input that is an imagemask con-
taining just a single object and an output that is either ‘yes’ or ‘no’. �e input is provided
by choosing a random object from the scene and taking the corresponding mask. �e sym-
bolic annotation of that object is used to determine the correct output label. Samples for
every object in every image can be generated as such.

R�����Module. �e ������[����] module takes a mask with a single object as input.
�e output masks are generated by combining all image masks of the objects that are le�
of the input object. �is is determined using the symbolic annotation. Such samples can
be generated for every object in every image.

C����Module. �e �����module takes an image mask as input and a symbolic label,
denoting a number, as output. Using the combined information, an image mask can be
generated for every subset of objects by combining their masks into one. �e output label
is added by taking the cardinality of the set of objects on the symbolic annotation level.

Table 5.3 provides an overview of the number of samples that could be generated for
each module. Since the data generation process relies on the symbolic scene annotations,
CLEVR’s original test split could not be used because the symbolic annotations of this
split is not released. �erefore, 10,000 images from the training set were kept separately
and used as a test set, thereby reducing the training set from 70,000 to 60,000 images.
CLEVR’s validation set, containing 15,000 images, was kept as is. For e�ciency reasons,
the datasets for the �����module were reduced in size. �e number of samples that were
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Table 5.3: Overview of the number of samples per neural module. �e notation ‘�nd[*]’
refers to the set of all ����modules. �e number of ����modules is added between paren-
theses.

Neural Module Training Set Validation Set Test Set

context 60,000 15,000 10,000
�nd[*] (15) 60,000 15,000 10,000
relate[*] (4) 390,805 97,358 64,827
query[*] (15) 390,805 97,358 64,827

count 15,453,136 3,813,376 2,542,688
(500,000) (100,000) (100,000)

used for training and evaluating this module is noted between parentheses in Table 5.3.
�ese samples were chosen at random.

Hyper-parameters

Table 5.4 provides an overview of the hyper-parameters of each module. BCE and NLL,
used in the ‘Loss Function’ column, refer to binary cross entropy loss and negative log like-
lihood loss, respectively. �e evaluation functions IOU and MC refer to intersection over
union and multi-class evaluation respectively. �e former is used to evaluate the semantic
segmentation modules. It divides the overlap (intersection) of the predicted segment and
the ground-truth segment by the union of those segments. �is returns a value between
0 and 1, with 1 corresponding to perfectly overlapping segments. �e la�er is used for
the classi�cation modules and simply counts the number of correctly predicted labels. All
modules were trained using the Adam optimizer (Kingma and Ba, 2014).

Table 5.4: Overview of hyper-parameters used for neural modules. �e notation ‘�nd[*]’
refers to the set of all ����modules. �e number of ����modules is added between paren-
theses.

Neural Learning Weight Batch Time- Loss Evaluation
Module Rate Decay Size steps Function Function

context 0.001 0 128 20,000 BCE IOU
�nd[*] (15) 0.001 0 128 20,000 BCE IOU
relate[*] (4) 0.001 0 128 20,000 BCE IOU
query[*] (15) 0.0001 0.0001 128 50,000 NLL MC
count 0.001 0 128 65,000 NLL MC

5.4.4 Neural Modules Interface

Before moving on to the experimental results, I discuss how the primitive operators, imple-
mented through IRL, interface with the neural modules, implemented in Python through
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the PyTorch framework. Speci�cally, this is operationalised using a client-server archi-
tecture, where the primitive operators in IRL act as clients, while the neural modules are
accessible through a Python server. Communication is handled over HTTP.

On the server side, a web service is set up using the Flask framework. Upon start-up,
the web service loads the trained neural modules in memory and makes them centrally
available. Inspired by RESTful so�ware architectures, resources on this Flask web service
are identi�ed through their URI. Speci�cally, one URI, or endpoint, is provided for every
primitive operator. For example, when needing to execute the ������ primitive operator,
an HTTP request is sent to ����://<��������������>/������.

In IRL, the primitive operators are implemented such that they make calls to their respec-
tive endpoints over HTTP. Concretely, these are HTTP POST requests that specify the ar-
guments of the primitive operator and their values. A null value is provided for unbound
arguments. Depending on the bound and unbound arguments, the web service can �gure
out how it should apply the neural module(s) associated to the endpoint that received the
HTTP POST request. For instance, if the arguments ?���������� and ?������� of the ����
��� primitive are bound, the ����module that is associated to that ?������� is retrieved,
e.g. ����[����] and applied to the ?����������. Alternatively, if the ?���������� and
the ?����������� are provided, all ����modules are applied to the ?���������� and the
concept of the ����module that maximises the IOU evaluation function over the resulting
mask and the provided ?����������� is determined. �e HTTP responses consist of new
bindings, i.e. one or multiple values for every unbound argument. �is set-up ensures
that the multidirectionality of primitive operators in IRL remains possible also in hybrid
procedural semantics. Synchronous communication is used, and requests and responses
are encoded in the JSON format.

�e communication scheme described above results in many HTTP requests, namely one
request for every sub-symbolically implemented primitive operator that is executed. To
make these requests and responses more lightweight, a�entions that are computed by
the neural modules are not transmi�ed over HTTP. Instead, they are stored centrally on
the server and each given a unique identi�er. IRL simply operates using these identi�ers.
When such an identi�er is used in a subsequent HTTP request, the server can look up the
corresponding a�ention and feed it as input to the correct neural module. For visualisation
and interpretability purposes, an endpoint ismade available throughwhich IRL can request
an a�ention with a given identi�er. Concretely, to retrieve the a�ention with identi�er
�����1, a HTTP GET request is sent to ����://<��������������>/����/�����1. Using
this endpoint, the execution of a semantic network and all masks that were computed
during this process can be visualised in Babel’s web interface.

A third and �nal endpoint is provided for loading the image associated to the CLEVR
scene in which the semantic network should be executed. Concretely, IRL sends a HTTP
POST request specifying the unique name of the CLEVR scene to the web service. In turn,
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the web service loads the image and makes it centrally available such that subsequent
primitive operators can access it. Additionally, the web service will clear all a�entions
that it computed during previous executions of semantic networks, as these are no longer
required. �is way, the memory of the web service does not over�ow.

Using this architecture, the evaluation of the CLEVR task through hybrid procedural se-
mantics proceeds as follows. �e CLEVR grammar (Section 3.4) maps the natural language
question onto its underlying meaning representation in the form of a semantic network.
Before evaluating this semantic network, the CLEVR image is loaded in memory on the
server side. �e primitive operators of the network are executed in a hybrid way, com-
bining the strengths of symbolic and sub-symbolic techniques. For the execution of sub-
symbolic primitives, HTTP requests are sent to the Python web service running the neural
modules. �is is illustrated in Figure 5.14. �e output of each neural module, in the form of
an a�ention, can be downloaded on request. �is happens automatically when visualising
the execution of semantic networks in Babel’s web interface. Crucially, the integration of
computational construction grammar and hybrid procedural semantics allows most of the
question answering process to be transparent, explainable and human-interpretable while
operating directly on raw image data.

5.5 Experimental Results

In this section, I present the experimental results of the hybrid procedural semantics ap-
proach. First, the neural modules described in Section 5.4 are evaluated independently
from each other. �ese results are discussed in Section 5.5.1. A�erwards, evaluation is
carried out through the CLEVR benchmark task in Section 5.5.2. Finally, in Section 5.5.3, I
test the systematic generalisation abilities of the neural modules. �roughout this section,
I compare hybrid procedural semantics both to the state-of-the-art models discussed in
Section 5.2 and to the grounded concept learning approach discussed in Chapter 4.

5.5.1 Neural Module Evaluation

�e neural modules are �rst evaluated on their respective held-out test sets, described
in Table 5.3. Both the loss and the accuracy are reported in Table 5.5. �is table lists the
semantic segmentation modules on the le� side and the classi�cation modules on the right
side. As can be seen from Table 5.5, all modules perform extremely well and consistently
achieve over 99% accuracy, with 15 out of 36 modules obtaining over 99.9% accuracy.

�e performance achieved by the individual neural modules is comparable to that of the
discrimination-based concepts learned in the simulated environment (Section 4.5.1), even
though the neural modules operate directly on the images. However, a number of key
di�erences should be noted. First, although the neural modules are designed to capture
atomic tasks in order to enhance the overall interpretability, the reasoning process that is
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Table 5.5: Evaluation results of each neural module on the held-out test set.

Neural Loss Accuracy
Module (BCE) (%)

get-context 0.010 99.20
�nd[blue] 0.002 99.91
�nd[brown] 0.002 99.90
�nd[cube] 0.005 99.67
�nd[cyan] 0.002 99.90
�nd[cylinder] 0.004 99.74
�nd[gray] 0.002 99.89
�nd[green] 0.002 99.90
�nd[large] 0.008 99.52
�nd[metal] 0.006 99.64
�nd[purple] 0.002 99.90
�nd[red] 0.002 99.90
�nd[rubber] 0.007 99.63
�nd[small] 0.007 99.74
�nd[sphere] 0.003 99.83
�nd[yellow] 0.002 99.89
relate[behind] 0.005 99.64
relate[front] 0.006 99.55
relate[le�] 0.005 99.65
relate[right] 0.004 99.66

Neural Loss Accuracy
Module (NLL) (%)

count 0.051 99.05
query[blue] 0.003 99.97
query[brown] 0.004 99.95
query[cube] 0.010 99.79
query[cyan] 0.003 99.97
query[cylinder] 0.010 99.80
query[gray] 0.004 99.95
query[green] 0.005 99.94
query[large] 0.012 99.82
query[metal] 0.008 99.87
query[purple] 0.005 99.94
query[red] 0.004 99.95
query[rubber] 0.008 99.87
query[small] 0.012 99.81
query[sphere] 0.006 99.91
query[yellow] 0.005 99.95
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internal to each module is still a black box. �ere is no way of knowing what features were
used to decide, for example, whether a particular object is of a given shape or not, in con-
trast to the grounded concepts which explicitly list those features and their prototypical
values. Second, the neural modules allow for internal inconsistencies as separate mod-
ules are required to capture one particular concept. Speci�cally, one module is required
to identify objects with a certain a�ribute (i.e. ���� modules) while another is required to
identify an a�ribute of a certain object (i.e. ���� modules). �ese modules do not rely
on the same internal concept representation, which allows these related modules to con-
tradict each other. �ird, even though the neural modules are data-e�cient compared to
other neural approaches, much more data and training time was needed when compared
to the grounded concept learning approach. Speci�cally, neural modules require multi-
ple ‘epochs’ of training, which consists of revisiting the entire training dataset multiple
times. In contrast, the grounded concepts could be used successfully in communication
a�er ⇠1000 interactions.

5.5.2 CLEVR Benchmark

A�er evaluating the neural modules independently, I present the evaluation results of the
complete hybrid procedural semantics approach applied to the CLEVR benchmark (John-
son et al., 2017a). �is consists in mapping each natural language question onto a semantic
network and executing the semantic network in a hybrid way, as described in Section 5.4.4.
�e evaluation is carried out using the questions that accompany the 10,000 images that
were held out as a test set. Since ten questions are available for every image in the CLEVR
dataset, the test set consists of 100,000 questions.

Table 5.6 provides an overview of the results. �e question answering accuracy is split per
‘question type’, which corresponds to the primitive operator that is used to compute the
�nal answer. �e last column in Table 5.6 provides the overall accuracy, i.e. the percent-
age of correctly answered questions, which is at 99.2%. �e question answering accuracy
is slightly lower than the accuracy of the individual modules as mistakes made by indi-
vidual modules may propagate and accumulate through the semantic network. Table 5.6
also compares hybrid procedural semantics against several state-of-the-art models from
Section 5.2. Hybrid procedural semantics achieves results that are directly comparable to
the state-of-the-art modular neural network approach (99.1% by Mascharka et al. (2018))
and the state-of-the-art neuro-symbolic approach (99.8% by Yi et al. (2018)). �e analysis
per question type reveals that questions requiring the ����� primitive operators are most
di�cult. �is can also be observed for all of the other models in Table 5.6.

Similar to the module-speci�c evaluation, the neural modules outperform the grounded
concepts in terms of the CLEVR task. Using the grounded concepts, a question answer-
ing accuracy of 96.2% in the simulated environment could be achieved (see Section 4.6),
whereas the neural modules nearly solve the task. However, as discussed in Section 5.5.1,
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the major advantages of the grounded concepts include their complete transparency and
interpretability, the internal consistency and the data-e�ciency.

5.5.3 Generalisation Experiment

�e third and �nal experiment tests the ability of hybrid procedural semantics to gen-
eralise to similar, yet unseen, combinations of visual features. �e experiment is opera-
tionalised through the CLEVR CoGenT dataset, previously introduced in Section 3.3.4. �e
CoGenT dataset consists of two experimental conditions where one set of feature combi-
nations is available for training and another set of feature combinations is available for
evaluation. Concretely, cubes and cylinders each have four possible colours in condition
A and these colour options are switched in condition B. Spheres can have any of the eight
available colours in both experimental conditions. �e neural modules are trained on the
images of condition A, using the same neural architectures, training procedure and hyper-
parameters as described in Section 5.4.3. A�erwards, they are evaluated on condition B,
both using a held-out module-speci�c test set and through the visual question answering
task. �e goal of the experiment is to investigate how well the neural modules truly cap-
ture the concept they are trained for. For instance, will the ������[����]module recognise
red cubes in condition B if it was only trained on di�erently coloured cubes in condition
A? Ideally, one would want that a ������[����] module is not “distracted” by the colour
of the cubes it is trained on and that it recognises cubes through shape-related features, as
was shown for the discrimination-based concepts in Section 4.5.2.

�e evaluation results on condition A of the CoGenT dataset are equivalent with those
reported in Sections 5.5.1 and 5.5.2. Namely, all neural modules achieve over 99% accuracy
on a held-out test set and perform equally well on the VQA task, namely 99.4% question an-
swering accuracy. For space reasons, the exact numbers are reported in the supplementary
materials accompanying this chapter (Appendix B, Table B.1).

On condition B, the speci�c neural modules that are listed in Table 5.7 show a decrease in
performance on the held-out test set. �ese results are reported on the le� side of Table 5.7,
under ‘Before FT’. Similarly, the overall question answering accuracy decreases from 99.4%
to 70.7%. For space reasons, the loss and accuracy of all neural modules and the question
answering accuracy per question type on condition B are provided in Appendix B, Table
B.2 and Table B.3, respectively. �ese results indicate that the neural modules responsible
for �nding and recognising cubes and cylinders have not truly learned the underlying con-
cepts. �ese are exactly the shapes for which the colour options are switched in between
condition A and B. Instead, these neural modules have learned to �nd and recognise these
shapes (partly) on the basis of their colour despite the fact that several colour options were
available for each shape.

�ese results stand in stark contrast with the results obtained in Section 4.5.2. �e agents
using the discriminated-based concept representation did not su�er any decrease in com-
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municative success when transitioning from condition A to B (see Figure 4.7). Speci�cally,
the various colour options that were available for cubes and cylinders in condition A were
su�cient for the agent to learn that the shape-related features are indeed discriminative.

Table 5.7: Loss and accuracy of selected neural modules on both conditions A and B before
and a�er �netuning (FT) on condition B.

Before FT A�er FT
Cond. A Cond. B Cond. A Cond. B

Neural Module Loss Acc. Loss Acc. Loss Acc. Loss Acc.

�nd[cube] 0.004 99.78 1.355 81.58 1.417 82.02 0.020 99.12
�nd[cylinder] 0.003 99.80 0.872 81.52 0.337 82.60 0.045 96.45
query[cube] 0.011 99.86 5.417 33.19 5.934 38.40 0.232 90.86
query[cylinder] 0.007 99.90 5.038 35.77 3.447 66.68 0.247 66.49

Following common practice in the neural network literature, ‘�netuning’may be applied to
the neural modules. Finetuning is a technique for using a neural network on a di�erent (yet
similar) dataset than the one it was trained on without completely retraining the network.
It consists of providing additional training examples from the new dataset using a fraction
of the samples compared the original training data. �e motivation for �netuning is that
only a few samples should be su�cient to steer the neural network’s weights in “the right
direction” such that it can be used on the new dataset. In this case, samples from condition
B are provided with the aim of steering the neural modules trained on condition A such
that they generalise over both experimental conditions of the CoGenT dataset. Following
Johnson et al. (2017b) and others, 3,000 images from condition B were used for �netuning
the neural modules listed in Table 5.7. �ese modules were not trained until convergence
on condition B, but only �netuned for a few epochs. Crucially, thanks to the independent
design and training of the neural modules in hybrid procedural semantics, these modules
could be �netuned separately. All other modules could be le� as is and perform equally
well on conditions A and B (see Appendix B). In other work, this is typically not possible
as all modules are trained in an end-to-end fashion and thus also need to be �netuned as
such.

�e loss and accuracy of the �netuned neural modules on the held-out test sets of condi-
tions A and B are reported on the right side Table 5.7, under ’A�er FT’ where FT stands for
�netuning. Generally speaking, the �netuned neural modules show a decrease in perfor-
mance on the data on which they were originally trained (condition A) and an increase in
performance on the data on which they are �netuned (condition B). In other words, these
modules seem to have traded their performance on condition A for performance on con-
dition B, achieving similar results on condition B as on condition A before �netuning and
similar results on condition A as on condition B before �netuning. �ese results seem to
suggest that the modules did not generalise over both conditions by �netuning them, but
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instead forgot about (parts of) condition A in favour of performing well on condition B.
�is is a well-known problem in neural networks, termed catastrophic forge�ing (French,
1999; Goodfellow et al., 2013). An exception to this is the����[��������]module, which
achieves similar accuracy (approximately 66%) on both experimental conditions a�er �ne-
tuning.

Table 5.8: Overall question answering accuracy on both conditions A and B before and
a�er �netuning (FT) on condition B.

Before FT A�er FT
Model Cond. A Cond. B Cond. A Cond. B

IEP (Johnson et al., 2017b) 96.6 73.7 76.1 92.7
TbD (Mascharka et al., 2018) 98.8 75.4 96.9 96.3
NS-VQA (Yi et al., 2018) 99.8 63.9 64.9 98.9
NSCL (Mao et al., 2019) 98.8 98.9 / /

Hybrid Procedural Semantics 99.4 70.7 71.3 94.4

To further test the e�ects of �netuning, the �netuned modules are evaluated through the
CLEVR benchmark task. �ese results are summarised in Table 5.8 and compared against
other work where the same experiment was conducted. �e visual question answering
accuracy goes from 99.4% to 71.3% on condition A and from 70.7% to 94.4% on condition
B.�is corresponds with the results obtained in the individual evaluation of the modules,
reported in Table 5.7. In sum, the modules do not seem to generalise well over both exper-
imental conditions even a�er �netuning.

5.6 Conclusion

In this chapter, I have introduced a novel methodology for visual question answering
that combines insights from modular neural networks approaches and neuro-symbolic
approaches, namely hybrid procedural semantics. In hybrid procedural semantics, task-
speci�c and modular neural networks are integrated in procedural semantic representa-
tions through a number of sub-symbolic primitive operators. Interwovenwith purely sym-
bolic primitive operators, these hybrid procedural semantic representations can compute
the answer to a question given the raw input image. Compared to the state of the art (Sec-
tion 5.2), hybrid procedural semantics o�ers a number of key bene�ts. First, it elegantly
and �exibly combines the strengths of symbolic and sub-symbolic techniques through pro-
cedural semantic representations. �e sub-symbolic primitives are implemented through
neural modules, where each module performs a single, atomic task and thereby captures
a speci�c concept. �e specialisation of modules not only enhances their transparency, it
also allows tomore easily retrace the source of reasoning errors. Apart from this, the neural
modules are (i) trained independently from each other, allowing the repertoire of modules
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to remain open-ended, (ii) highly modular such that they can be freely combined, (iii) com-
pact in terms of layers and trainable parameters, thus more data-e�cient, and (iv) designed
to produce transparent and interpretable intermediate results (Section 5.3). �rough the
integration with computational construction grammar, speci�cally the CLEVR grammar
(see Section 3.4), nearly the entire visual question answering process becomes transpar-
ent, explainable and human-interpretable. �e only exception to this are the modules’
internal decision processes. �e experimental results in Section 5.5 have shown that the
neural modules individually achieve near-perfect levels of accuracy and that the results
obtained by hybrid procedural semantics on the CLEVR benchmark task are competitive
with state-of-the-art results, with the main novelty of hybrid procedural semantics being
the bene�cial properties just discussed. However, experimental results have also shown
that the neural modules do not generalise well to similar, yet unseen, feature combinations
even with additional �netuning.

Although hybrid procedural semantics o�ers high levels of accuracy and operates directly
on raw image data, I argue that the discrimination-based concept learning approach of
Chapter 4 has di�erent, yet highly valuable properties. First, the grounded concepts o�er
complete transparency and human-interpretability, both in terms of the concepts and the
entire reasoning process during visual question answering. While the neural modules have
been speci�cally designed to focus on atomic tasks and to produce interpretable results,
their internal decision making processes remain hidden. What exactly the neural modules
have learned can only be investigated through additional testing, such as the generalisa-
tion experiment in Section 5.5.3. In contrast, the concepts from Chapter 4 explicitly list
their discriminative features and prototypical values. Second, the grounded concepts can
be learned using much fewer data than the neural modules. Whereas the neural modules
require several epochs of training, the agents using the grounded concepts achieve com-
municative success a�er merely ⇠1000 interactions. �ird, the neural modules allow for
internal inconsistencies as separate modules need to be designed for performing di�erent
operations on the same concept. For example, both ����[����] and����[����]modules
are required since di�erent neural architectures are necessary for either �nding cubes in
images or identifying whether some part of an image is a cube. �ese modules may contra-
dict each other, e.g. when a cube found by the ����module is rejected by the����[����]
module. �is does not occur when using the grounded concept representation from Chap-
ter 4. �ere, exactly the same concept could be integrated in both the ������ primitive and
the ���� primitive. Fourth, the grounded concepts e�ortlessly generalise over unseen
combinations of a�ributes, whereas the neural modules require an additional �netuning
procedure. Even then, the performance of these modules su�ers as they insu�ciently
generalise over the experimental conditions of the CoGenT dataset. Finally, in Chapter 4,
I have shown how additional concepts can be added to the agent’s repertoire on the �y.
�is is not possible with neural modules. Here, the set of modules (i.e. concepts) needs
to be speci�ed and trained in advance. However, in comparison to other modular neu-
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ral network approaches, the repertoire of neural modules in hybrid procedural semantics
can be more easily expanded without the need to retrain any existing modules. In sum,
the hybrid procedural semantics approach is best suited for a speci�c task that remains
static over time whereas the discrimination-based concept learning approach of Chapter
4, due to the properties outlined above, is more suited for autonomous agents that face a
dynamic environment and require an open-ended set of concepts that can be acquired and
successfully used in communication a�er only a few interactions.

In both this and the previous chapter, I have introduced methodologies for learning and
grounding concepts and for integrating these concepts in (hybrid) procedural semantic
representations. I have demonstrated these methodologies through the task of visual ques-
tion answering on the CLEVR dataset. To obtain the procedural semantic representations
underlying the CLEVR questions, I made use of the CLEVR grammar introduced in Chap-
ter 3. �is is a hand-wri�en grammar that o�ers complete coverage of the questions in
the CLEVR dataset. In the following chapter, I will take up the challenge of learning this
grammar.

5.6.1 Contributions

Hybrid procedural semantics constitutes a contribution of this dissertation (C4) that is di-
rectly applicable in a wide range of intelligent systems, such as conversational agents, in-
telligent tutoring systems, and human-robot interaction systems. �is methodology fully
exploits the pa�ern recognition capabilities of neural networks, combined with higher-
level reasoning capabilities of symbolic approaches. �e modular neural networks, in
particular, are designed as to maximise the open-endedness, transparency and learning
e�ciency of the entire system, while their integration with symbolic reasoning processes
further maximises the �exibility and adaptivity of the approach. Hybrid procedural se-
mantics directly contributes to the primary objective of this dissertation (O1), as it paves
the way for future intelligent systems with more explainable and coherent reasoning capa-
bilities, grounded in the domain of the application. In terms of visual question answering
(O2), the hybrid procedural semantics methodology provides a radically di�erent approach
that achieves results that are competitive with the state of the art and possesses the afore-
mentioned desirable properties.
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6.1 Introduction

�is chapter presents the third and �nal experiment of this dissertation. �e experiment
investigates how an agent can simultaneously acquire the morpho-syntactic and seman-
tic structures underlying linguistic u�erances and capture them in the form of a com-
putational construction grammar. �is is achieved through a novel methodology where
the agent is endowed with two learning mechanisms inspired from usage-based theories
of language acquisition, namely intention reading and pa�ern �nding (Tomasello, 2003,
2009b). Intention reading allows to identify and reconstruct the goals and communicative
intentions of an interlocutor. Pa�ern �nding, on the other hand, allows to detect di�er-
ences and similarities in sensorimotor experiences and create abstractions over them. �e-
oretical and empirical evidence for both intention reading (Bruner, 1983; Sperber and Wil-
son, 1986; Meltzo�, 1995; Nelson, 1998) and pa�ern �nding (Goldberg, 1995; Cro�, 2000;
Diessel, 2004; Goldberg, 2006) is abundant (Doumen et al., forthcoming). In this experi-
ment, however, I argue that the interplay of these cognitive capacities is crucial for boot-
strapping language. Importantly, the goal of this experiment is not to construct a realistic
model of child language acquisition. However, as these mechanisms are the only ones
known to successfully bootstrap language, namely in children, I rely on them to opera-
tionalise an intelligent, autonomous agents and learn a successful communication system.
Furthermore, by relying on mechanisms from child language acquisition, the agent’s com-
munication system will exhibit the same bene�cial properties, such as robustness, �exibil-
ity, adaptivity and open-endedness.

�e mechanistic model of intention reading and pa�ern �nding presented in this chapter
is operationalised through a language game (see Section 2.2.2) in a tutor-learner scenario,
where the agents are situated in scenes from the CLEVR dataset (Section 3.3). �e tutor
has an established grammar, speci�cally the CLEVR grammar (Section 3.4), whereas the
learner starts with an empty linguistic inventory. �e agents play an elicitation gamewhere
the speaker has a particular concept in mind and asks a question to the listener about the
objects in their shared environment in order to elicit that concept. �e correct concept, i.e.
the speaker’s intention, is provided as feedback in the end. �is game e�ectively models
an interactive version of the CLEVR visual question answering task. �e learning prob-
lem involved is twofold. First, the meanings underlying the observed questions need to
be reconstructed by relying solely on the provided answer and the observed scene (i.e.
intention reading). Second, there is the generalisation over constructions based on pairs
of observed questions and reconstructed meanings (i.e. pa�ern �nding). �e interplay
of intention reading and pa�ern �nding tackles these learning problems and allows the
agent to gradually acquire a productive grammar, consisting of form-meaning mappings,
that can be used for both language comprehension and production, without ever having
observed the meanings.

Intention reading is used to reconstruct the meaning underlying the observed question,
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given the provided intention and the scene. In other words, the agent engages in a process
ofmeaning creation. �is is implemented through Incremental Recruitment Language (IRL)
(Section 2.4), speci�cally by the composition of semantic networks (Section 2.4.5) using the
primitive cognitive operators designed for the CLEVR grammar (Section 3.4).

Pairing the reconstructedmeaningwith the observed question yields a form-meaningmap-
ping, or a construction. Initially, the agent does not know which parts of the form corre-
spond to which parts of the meaning. Hence, the form-meaning mapping is stored holisti-
cally. A�er observing more and more form-meaning mappings, pa�ern �nding is used to
abstract over re-occurring form-meaning pa�erns and to capture the compositional struc-
ture of language via a network of grammatical categories. Constructional language pro-
cessing is implemented through Fluid Construction Grammar (FCG) (Section 2.3), with the
categorial network (Section 2.3.5) playing a central role. �e operationalisation of pa�ern
�nding strategies in FCG is an adaptation of the work by Doumen et al. (forthcoming).

�e main challenge of this experiment lies in the vast search space of possible meanings
intended by the tutor. Particularly, many di�erent semantic networks can lead to any given
concept in any given scene scene, butmost of these networks do not capture the truemean-
ing underlying the observed question and do not generalise to other scenes. I will show
that the interplay of intention reading and pa�ern �nding allows to overcome this chal-
lenge. Speci�cally, I show that intention reading facilitates pa�ern �nding by providing
meaning hypotheses and, in turn, pa�ern �nding narrows down the search space faced by
intention reading. Combined with mechanisms that model the entrenchment of construc-
tions, this ensures that only constructions that can be used successfully in communication
remain.

�e mechanistic model of intention reading and pa�ern �nding presented in this chapter
constitutes the most important contribution of this dissertation. It not only provides com-
putational evidence for the cognitive plausibility of these cognitive capacities, it also pro-
vides one of the �rst accounts on the computational representation, processing and learn-
ing of large-scale, bidirectional, and open-ended construction grammars through commu-
nicative interactions and, most importantly, chie�y contributes to the objectives of this
dissertation by pushing forward the state of the art in the development of autonomous
agents with human-like communication systems.

�e remainder of this chapter is structured as follows. In Section 6.2, I �rst provide an
overview of the �eld of usage-based language acquisition, which serves as the theoreti-
cal and empirical underpinnings of the experiment. Also in this section, computational
models following the usage-based approach are discussed. I focus separately on models
implementing pa�ern �nding, intention reading or both capacities. Important di�erences
and shortcomings are highlighted. �e experiment itself is discussed in Section 6.3. �is
section gives a detailed description of the design and implementation of the experiment. It
also explains in depth how intention reading and pa�ern �nding are operationalised using
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IRL and FCG, respectively. A�erwards, the evaluation metrics and experimental results
are presented in Section 6.4. Finally, Section 6.5 highlights the main contributions of this
chapter and discusses them in the broader context of this dissertation.

6.2 Background and Related Work

6.2.1 Usage-based Language Acquisition

�e contributions of this dissertation are aligned with theories from cognitive science, de-
velopmental psychology and linguistics stating that language is a dynamic system inwhich
all linguistic structures are emergent through a gradual process of communicative interac-
tions using general cognitive processes (Peters, 1983; Hopper, 1987; Jasperson et al., 1994;
Cro�, 2001; Tomasello, 2003; Ambridge and Lieven, 2015) (see also Section 2.2.1). During
this gradual process, linguistic structures become more abstract, organised and e�cacious
for serving the main purpose of language: to communicate. Notably, Tomasello (2003,
2009b) identi�es two cognitive processes that play a crucial role in learning language: in-
tention reading and pa�ern �nding.

Intention Reading

Intention reading refers to the functional or semantic dimension of linguistic communi-
cation (Tomasello, 2003). It is a set of skills that allows to discover the communicative in-
tentions of the interlocutor and thereby learn the linguistic conventions they use through
the process of cultural transmission. �is skill set includes, among others, understanding
animate action, understanding the pursuit of goals and means to a goal, sharing a�en-
tion to objects and events, actively directing a�ention through gestures, etc. Intention
reading allows to learn the intentions of others, imitate them and predict them. Children
continuously use these processes to make sense of the situation, taking into account their
environment, the interlocutor and past experiences.

Intention reading is one aspect of what is called shared intentionality (Tomasello et al.,
2005; Tomasello and Carpenter, 2007). Shared intentionality encompasses the ability to
partake in collaborative activities having shared goals and intentions. It is identi�ed as
a crucial di�erence between human cognition and that of other species (Tomasello et al.,
2005). Next to intention reading, shared intentionality also requires cultural learning skills,
a motivation to share psychological states with others and cognitive representations that
are su�ciently well-developed for doing so. In turn, shared intentionality enables cultural
cognition and evolution, which then allows for the establishment of social constructions
and institutions, e.g. language, maths, marriage, government, etc. �e development of
shared intentionality happens during a child’s �rst 14 months (Tomasello et al., 2005).
Two pathways of development, which are very closely related, have been identi�ed:
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• Pathway 1. �e ability to understand others as animate, goal-directed and inten-
tional agents.

• Pathway 2. �e motivation to share emotions, experiences and activities with oth-
ers.

For both of these pathways, children go through several stages of development.

Pathway 1. �e �rst pathway explains how children learn to understand intentional
actions. Already a few months a�er birth, infants can tell the di�erence between an an-
imate action, produced by some actor, and inanimate, caused motions (Bertenthal, 1996).
Together with following the actor’s gaze (D’Entremont et al., 1997), this forms the basis
of understanding intentional actions. By 10 months of age, children learn to recognise
goals. �ey understand that an actor is pursuing a certain goal and persists until the goal
is reached (Gergely et al., 1995; Behne et al., 2005). �ey also understand the emotional re-
sponse that follows when a goal is or is not reached (Behne et al., 2005). Recognising goals
also implies an understanding of the actor’s perception. Indeed, the child understands that
the actor perceives the environment and that this helps to guide the actor’s actions and
to determine if its goal is reached or not (Moll and Tomasello, 2004). Finally, around their
�rst birthday, children not only understand the pursuit of goals, but also recognise plans
towards goals. In particular, the child understands that the actor considers several actions
plans (Gergely et al., 2002) and that the actor a�ends to certain objects in order to reach the
goal (Tomasello and Haberl, 2003). Understanding intentional action allows for cultural,
imitative learning. Children learn that when they have the same goal, they can use the
same means as observed before to reach their goal. �is is not only useful for predicting
what others will do, but also learning how things are done conventionally.

Pathway 2. �e second pathway explains how children learn to share (and want to
share) intentions with others. Similar to the �rst pathway, three stages of development
can be identi�ed. Not coincidentally, these stages occur around the same age as those of
the �rst pathway. A�er a few months, children share and exchange emotions with in-
terlocutors through so-called protoconversations (Hobson, 2002). �is not only requires
the understanding that the interlocutor is an animate agent, but also the motivation and
cognitive capacity for doing so. Later on, around 10 months, children share goals and per-
ceptions. �eir gaze becomes coordinated with the interlocutor and shared goals serve to
coordinate actions, e.g. building a tower of blocks together (Hay, 1979; Hay and Murray,
1982; Verba, 1994). Finally, around 12 months, children not only understand the shared
goals, but also the role of each participant. �ere is a motivation to help the other ful�l
its role (Ross and Lollis, 1987; Warneken et al., 2006) and a deeper understanding of inten-
tional actions allows for role-reversal (Carpenter et al., 2005). Also, perception becomes
even more coordinated and the child actively a�empts to establish joint a�ention, e.g. by
pointing (Liszkowski et al., 2006).
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Relation to Language. �e development of shared intentionality culminates in chil-
dren’s �rst linguistic communication. Many aspects of the aforementioned pathways can
also be recognised in language. First, linguistic symbols can be seen as bidirectional coor-
dination devices. Children understand and learn to play both roles: speaker and listener.
Role reversal and imitation are crucial as children learn to use linguistic symbols towards
others in the same way as others have used them. Similarly, coordinated perception and
joint a�ention allows children to learn that people a�end to particular things and can
express this in various ways through language (Clark, 1997; Tomasello, 2009a). Second,
communication is a collaborative activity (Pickering and Garrod, 2004). �ere is a joint
goal to reorient the listener’s a�ention such that it aligns with that of the speaker. Both
participants are aware of their own and each others’ role and actively collaborate in pursuit
of the common goal. In particular, the speaker collaborates by expressing its intention in a
way that is potentially comprehensible for the listener. In turn, the listener collaborates by
following the gaze or pointing gestures of the speaker, by making inferences or by asking
for clari�cation (Golinko�, 1993). In all of this, the capacity to read and share intentions is
at the foundation. Intention reading makes it possible to understand goals and means to
reach them. Together with the desire to share these goals and intentions, this allows for
the emergence of linguistic communication and many other skills of cultural cognition.

Pattern Finding

Pa�ern �nding refers to the structural or grammatical dimension of linguistic commu-
nication (Tomasello, 2003). It allows to detect pa�erns in sensorimotor input and create
abstractions over these pa�erns. �is includes, among others, categorisation on both the
perceptual and the conceptual level, schema-formation from recurrent pa�erns, the cre-
ation of analogies and statistical distributional analyses of perceptual sequences. From the
perspective of construction grammar, the process of pa�ern �nding allows to create com-
positional generalisations over constructions, taking both the form and the meaning into
account. Tomasello (2003) identi�es several stages of generalisations children go through
when learning language.

Learning Holophrases. Children’s early linguistic inventory consists of holophrase
constructions. �ese are idiom-like, holistic constructions mapping the entire form that
was observed directly to the entire meaning that could be reconstructed through inten-
tion reading. Holophrase constructions can correspond to single words, such as “birdie!”
or “hold!”, or multi-word expressions that are compositional in adult speech but not so in
early child language, e.g. “there-ya-go” or “lemme-see” (examples from Tomasello (2006,
2009b)). Both the form and the reconstructed meaning are kept as a whole.

Generalising over Holophrases. In a later stage of linguistic development, children
learn item-based constructions. �ese are compositional generalisations over holophrase



6.2. BACKGROUND AND RELATED WORK 189

constructions. �ey emerge through the processes of pa�ern �nding by looking for simi-
larities and di�erences across holophrase constructions, considering both the form and the
meaning. In particular, the child discovers that some part of the form of the holophrase cor-
responds to some part of its meaning. �e di�erences across holophrases can be extracted
and stored as separate constructions. �e parts of form and meaning that are similar make
up a pa�ern with one or multiple slots. �ese slots can be �lled by other constructions,
such as the di�erences that were just extracted, but also others. �is mechanism is illus-
trated in Figure 6.1. In this example, the child already knows a holophrase construction
mapping the form “dog wants ball” to its meaning. When the child observes the u�erance
“dog wants food” and reconstructs its meaning through intention reading, the pa�ern �nd-
ing capacity becomes active. Aminimal di�erence between these holophrase constructions
is found and extracted, leading to a ���� construction and a ���� construction. Addition-
ally, a pa�ern of the form “dog wants ?X” is created, which captures some wanting event
by the dog. It has a single slot, denoted by ‘?X’ on the form side, that can be �lled with
various items that act as the object in the wanting event. Slots in item-based constructions
are not only intended for lexical constructions, like in this example. Similar processes of
abstraction are used for further generalisations of item-based constructions. Continuing
the example of Figure 6.1, further abstraction could lead to a ?X ����� ?Y construction
and ultimately to a fully abstract transitive construction ?NP�1 ?V ?NP�2. In general, fur-
ther abstraction would allow slots to be �lled by again using item-based constructions, e.g.
to construct the form “the lazy brown dog” for ‘?NP-1’. Hence, constructions of varying
degrees of abstraction can be used to �ll slots.

Grammatical Categories. Not all constructions are equally likely to �ll a particular slot
of an item-based construction. While the slot of the item-based construction ��� �����
?X might be tied to ���� and ����, it is highly unlikely that the ��� construction will be
used instead. �e distribution of item-based slots and their �llers can be represented in the
form a network. Such a network essentially captures the grammatical categories underly-
ing an individuals grammatical knowledge. Just like constructions, grammatical categories
are emergent and are acquired in a gradual process through communicative interactions
and pa�ern �nding (Pine and Lieven, 1997; Cro�, 2001). In the example above, grammati-
cal categories emerge both for the slot of the item-based construction ��������� ?X and
for the lexical �llers ���� and ����. Both lexical �llers are linked to the slot in the network
of grammatical categories.

Intention Reading and Pattern Finding

�e interplay of these cognitive processes in the context of usage-based language acqui-
sition is crucial. Intention reading, de�ned as reconstructing the interlocutor’s intended
meaning, is extremely di�cult. Indeed, the possibilities faced by intention reading con-
sists of every possible meaning that could be intended by the interlocutor. To make this
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Pattern Finding

“dog-wants-food”

Intention Reading

“food”

“ball”

“dog-wants ?X”

?

“dog-wants-ball”

Known construction

Figure 6.1: Considering both form and meaning, pa�ern �nding looks for di�erences and
similarities across holophrase constructions. �e di�erences are extracted and stored as
separate constructions: the ���� construction and the ���� construction. �e remainder
constitutes a usage pa�ern with one or multiple slots: the ��������� ?X construction.

“food”

Partial Analysis “cat-wants food”

Intention Reading

“cat-wants ?X”

?

“?Y wants ?X”

?
?

“dog”

“cat”

Constraints

Pattern Finding

Figure 6.2: Intention reading and pa�ern �nding are highly complementary. �e ����
construction, created earlier through pa�ern �nding, provides constraints on the intention
reading process when observing the unknown u�erance “cat wants food”. In turn, pa�ern
�nding uses the u�erance and the reconstructed meaning to create a new pa�ern.
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feasible, intention reading relies on many di�erent sources of information: the observed
u�erance, the current environment, past experiences, the linguistic inventory, the inter-
locutor’s gaze, actions and emotions, shared cultural background, etc. As intention reading
is about reconstructing meaning, it also facilitates the creation of constructions. Indeed,
a construction requires both a form and a meaning. While the form is typically observed,
the interlocutor’s intended meaning has to be reconstructed through intention reading. A
crucial source of information for intention reading is provided through pa�ern �nding.
Indeed, the process of pa�ern �nding allows to create abstractions over constructions,
taking both the form and the meaning into account. �ese abstractions can already pro-
vide a partial understanding of the u�erance or, in other words, a partial reconstruction
of the intended meaning. �is provides constraints on the intention reading process, as it
should take this partial meaning into account. A�er completing the partial meaning, pat-
tern �nding can again be used to create other constructions and abstractions over them.
�is mechanisms is illustrated in Figure 6.2. Observing the u�erance “cat wants food”, the
previously acquired ���� construction provides a partial understanding of the u�erance.
In other words, some of the meaning of the u�erance is already known. In order to recon-
struct the intended meaning of the u�erance, the process of intention reading make use of
this additional information. Speci�cally, the partial meaning provides constraints on the
enormous search space of possible meanings. Once intention reading is �nished, pa�ern
�nding can again take over and create a pa�ern in which the ���� construction can be
used. Depending on the state of the linguistic inventory, various pa�erns are possible, as
illustrated on the right side of the �gure.

6.2.2 Computational Models

In prior work, three groups of computational models can be identi�ed: models focusing ex-
clusively on intention reading, models focusing exclusively on pa�ern �nding and models
that incorporate both cognitive capacities. In what follows, I discuss each of these groups
in more detail.

Intention Reading

Computational models of intention reading are mostly situated in the �eld of robotics.
Various studies on intention reading make use of a robotic arm that is situated on some
playing �eld and equipped with various sensors and actuators. �e sensors are used for
observing the playing �eld and the interlocutor, being either another robot or a human,
while the actuators serve to control the robot arm and make changes in the playing �eld.
Various cognitive processes that can be a�ributed to intention reading, as discussed in
Section 6.2.1, are studied using this methodology.

In the work by Vinanzi et al. (2019, 2020), the robotic arm is trained to recognise inten-
tions. Speci�cally, the robot’s task is to learn from task demonstrations and subsequently
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identify the correct intention as fast as possible. To achieve this, the robot observes a hu-
man interlocutor arrange four coloured blocks in a particular order. A�er learning from
various such observations, the robot should be able discover the ordering of the blocks
intended by the human demonstrator as soon as possible. �is is learned in a three step
process. First, skeleton data points and eye gaze direction are represented in a common
feature space. Next, (hierarchical) clusters are identi�ed in that feature space, representing
certain key combinations of postures and eye gaze directions. Finally, transitions between
these clusters are learned. A particular sequence of clusters will then be labelled as a par-
ticular intention. At test time, the model will then estimate probabilities for each of the
possible intentions (i.e. arrangement of blocks), given the already observed postures and
eye gaze directions. �e model is evaluated on both its accuracy and the time required to
make a prediction.

A similar experimental setup is used by Jansen (2006) and Jansen and Belpaeme (2006a,b)
to study the imitation of intentions. Here, two robotic arms interact with each other where
one is a tutor and the other is a learner. An intention is expressed as a set of predicates
concerning the arrangement of three blocks (A, B and C) on a two-dimensional grid, e.g.
above?(C, A) ^ le�-of?(A, B). �e learner should not only correctly identify the tutor’s in-
tention, but also correctly imitate it. In line with �ndings from the psychological literature,
the imitation behaviour focusses on the goal and not on the exact trajectory towards that
goal (Bekkering et al., 2000; Gleissner et al., 2000;Wohlschläger et al., 2003). In other words,
the actions performed by the robot can be completely di�erent, as long as the goal state is
the same. Even more, the robots are given two di�erent, yet equally expressive, represen-
tations for expressing goals (e.g. one uses above? while the other uses below?) and two
distinct playing boards with di�erent starting con�gurations. �is avoids that the learner
merely copies the tutor’s end state or the tutor’s actions and guides the model towards
learning the tutor’s true intentions. Jansen (2006) and Jansen and Belpaeme (2006a,b) em-
ploy an interactive task learning methodology, learning new representations only when
necessary and rewarding representations that are used successfully while punishing their
competitors. �ey show that the learner can successfully imitate the tutor under various
experimental conditions.

Finally, Dominey andWarneken (2011) incorporate even more aspects of intention reading
in their computational model, again using a robotic arm platform. Not only is the robot ca-
pable of recognising and imitating intentions, it can also actively cooperate in a given task
or perform a task with role reversal. �ese skills are also a�ributed to intention reading
capabilities as shown byWarneken et al. (2006) for cooperation and Carpenter et al. (2005)
for role reversal. Concretely, the robot incorporates these skills by storing intentions as a
series of actions and representing each action in a so-called “we intention” structure. �is
structure can be easily transformed into a “me intention” for executing the action, or a “you
intention” for recognising the action. Cooperation amounts to �rst matching the observed
actions to an intention and then predicting and executing the following action(s). Role
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reversal can be implemented by ‘replaying’ the same action sequence with each intention
transformed into the opposite perspective (i.e. “me intention” becomes “you intention”
and vice versa). Dominey and Warneken (2011) report �ve successful runs of each of the
following experimental conditions: recognition, imitation, cooperation and role reversal.

While the models outlined above represent crucial steps in understanding the various as-
pects of intention reading, none of them study intention reading capabilities in relation to
language. Even though the model by Dominey and Warneken (2011) includes a linguistic
component, this is merely used to steer the control �ow of the task. �e linguistic struc-
tures used in this case are given a priori. None of them are learned. �is is where pa�ern
�nding could be used.

Pattern Finding

In this section, I discuss computational models for the pa�ern �nding capability. Specif-
ically, I only consider models that learn form-meaning mappings. Models focussing only
on form-pa�erns are less relevant for the purposes of this chapter. Here, form-meaning
mappings are conceived in the broadest possible sense, ranging from phonemes and words
on the form side, to procedural semantics, �rst order logic or distributional semantics on
the meaning side. I discuss three groups of pa�ern �nding models as identi�ed by Doumen
et al. (forthcoming).

One approach to model pa�ern �nding is by extracting constructions from annotated cor-
pora through inductive learning methods. Such methods have been applied using either
parse trees (Zuidema, 2006) or u�erances annotated with POS tags, semantic tags and de-
pendency relations (Dunn, 2017, 2018) as their input. �ese inductive learning methods
capture a minimal grammar that has maximum coverage over the corpus. However, the
resulting grammars cannot be used for language comprehension and production, making
these models irrelevant for an autonomous agent, as is considered in this chapter.

�e model by Gaspers et al. (2011) studies construction learning under referential uncer-
tainty. Speci�cally, the model makes use of the RoboCup Soccer corpus. �is corpus pro-
vides u�erances accompanied by a description of the situational context, represented as a
set of logic predicates. One of the predicates corresponds to the meaning of the u�erance.
For example, the u�erance “purple10 kicks to purple7” is accompanied by {ballstopped,
badPass(pink1, purple10), …, pass(purple10, purple7)}. �e task of the agent is twofold: to
learn which of the predicates corresponds to the u�erance and to learn item-based con-
structions over pa�erns occurring in the u�erances and the predicates. Next to construc-
tions, the model also learns a network of associations between lexical items and slots in
item-based constructions, corresponding to a system of grammatical categories. From the
example above and other observations, the item-based construction mapping “E1 kicks to
E2” to pass(E1, E2) could be learned. �ese mappings are learned through probabilistic
cross-situational learning. Gaspers et al. (2011) initially demonstrate their methodology
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starting from the word level. In later versions, the starting point is changed to graphemes
and phonemes (Gaspers and Cimiano, 2012, 2014; Gaspers et al., 2016). �e problem de�-
nition speci�ed in these models, i.e. learning constructions under referential uncertainty,
falls outside the scope of this chapter. Speci�cally because it is assumed that the inten-
tion reading process will reconstruct the meaning of an observed u�erance without such
uncertainty. Additionally, the u�erances used in the corpus are rather short and always
correspond to a single predicate of the situational context, limiting the applicability and
scope of the approach. In this chapter, I go beyond single predicate meanings.

�emodels that aremost relevant for this chapter are those learning from a corpus of u�er-
ances annotated with their meaning representation and resulting in productive grammars.
Gerasymova and Spranger (2010, 2012) and Gerasymova et al. (2012) use the language
game methodology and FCG to implement a single agent capable of learning holophrases,
item-based constructions and abstract constructions for the aspectual marking system in
Russian. �e agent in their model observes Russian u�erances paired with a semantic an-
notation of their temporal event structure. �e samemethodology is applied by Beuls et al.
(2010) to the conjugation of verbs in Hungarian, speci�cally on the agreement marking
system. Extending this approach to a population of agents, Van Eecke (2018, Ch. 7) studies
the emergence of a range of constructions of varying degrees of abstractions along with a
network of grammatical categories. In these experiments, the population of agents has to
agree on which word order to use for primitive noun phrases in English. �e experiments
rely on FCG’s meta-level architecture (Van Eecke and Beuls, 2017) and generalisation and
specialisation operators that create new constructions based on existing constructions and
observations (Van Eecke and Beuls, 2018; Van Eecke, 2018). Using these, the population of
agents converges to a stable solution. Other such learning operators have been introduced
byChang (2008). Starting from an initial inventory of lexical constructions, novel construc-
tions are learnt either from input data, associating an observed form with its meaning, or
by reasoning over existing constructions. �ree such operators for recombining structural
elements of existing constructions are de�ned: 1. merging (‘throw-block’ + ‘throw-ball’
! ‘throw-toy’), 2. joining (‘human-throw’ + ‘throw-bo�le’! ‘human-throw-bo�le’) and
3. spli�ing (‘throw-frisbee’ + ‘throw’! ‘frisbee’). Finally, Dominey (2005a,b, 2006) makes
use of neural network techniques for the acquisition of holophrase, item-based and ab-
stract constructions centred around argument structure relations. Starting with the ability
to di�erentiate closed-class and open-class words, the model learns a mapping between
slots in the argument structure construction and their semantic roles. While all of these
models have studied interesting ideas, either they are focused on a very speci�c linguistic
phenomenon, or the complexity of the input data is rather limited. Also, all aforemen-
tioned models have access to additional information next to the raw u�erances and the
meaning representations, e.g. a precomputed segmentation of the u�erance, a prede�ned
lexicon or a collection of prede�ned grammatical categories.
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Intention Reading and Pattern Finding

In the third group of computational models, both intention reading and pa�ern �nding
are studied. Spranger and Steels (2015), Spranger (2015) and Spranger (2017) apply the
language game methodology to a single agent learning English spatial expressions from a
tutor agent. �e tutor actively guides the agent’s learning process by gradually providing
more di�cult examples in more di�cult scenes. �is could be compared to child directed
speech. On the one hand, the techniques introduced by Gerasymova and Spranger (2012)
for learning holophrase constructions, item-based constructions and abstract construc-
tions with FCG are extended, allowing more �nd-grained semantic-based generalisations.
However, a domain-speci�c hierarchy of semantic categories on which the generalisations
are based is given in advance. For example, the meanings of lexical items such as ‘near’
and ‘far’, ‘front’ and ‘back’, ‘north’ and ‘south’ etc. are categorised as proximal, projective
and absolute spatial relations respectively. Additional subcategories such as horizontal and
vertical projective relations are given as well. On the other hand, they introduce mecha-
nisms for reconstructing the meaning of an u�erance based on the interlocutors intention.
�is reconstruction process uses IRL and consists of a heuristic search process. During
the search process, a network of IRL predicates is expanded incrementally until it leads
to the interlocutors intention. While these models are most relevant for the purposes of
this chapter, similar to the pa�ern �nding models, the linguistic domain on which they
are applied is rather limited. For example, the tutor agent uses a repertoire of only seven
meanings to express the various spatial expressions (Spranger and Steels, 2015). Addi-
tionally, various sca�olds are put in place to aid learning, such as the provided hierarchy
of spatial categories. Finally, comparison with or reproduction of these models was not
feasible because of insu�cient methodological details.

In general, the methodology presented in this chapter aims to push forward the state of art
as described above in three ways. First, the methodology presented here operationalises
both intention reading and pa�ern �nding, and importantly, also the cooperation between
these processes. Second, the experiment operates on a much larger scale compared to
the aforementioned models and does not focus on a speci�c linguistic phenomenon, such
as the Russian aspectual system (Gerasymova and Spranger, 2010), the Hungarian agree-
ment system (Beuls et al., 2010) or English spatial language (Spranger and Steels, 2015).
�e CLEVR dataset, as used in this experiment, is much larger in comparison to those
used in previous work and contains u�erances of considerable complexity, both in terms
of morpho-syntax and semantics. �ird, the methodology is such that there are as few
sca�olds as possible. �e agent does not receive a prede�ned lexicon as in Beuls et al.
(2010) or a taxonomy of semantic categories that guides the generalisation process of con-
structions as in Spranger and Steels (2015). While the agent does receive a prede�ned
repertoire of semantic concepts, these are not used during the pa�ern �nding processes1.

1�e methodologies presented in Chapters 4 and 5 show how to learn such a repertoire of concepts.
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Apart from that, the agent only receives a number of primitive cognitive operators. All
other structures used by the agent, being constructions, semantic networks and a network
of grammatical categories, can be acquired from scratch using general learning operators.

6.3 Methodology

�is section describes all aspects of the language game experiment in depth. In Section
6.3.1, I �rst provide a high-level overview of the elicitation game and sketch the main dif-
�culties of the learning problem faced by the agent. Subsequent sections dive deeper into
the design and implementation of the game. �is includes the design of the tutor and the
learner agent (Section 6.3.2), the environment in which they operate (Section 6.3.3) and
the interaction script they follow (Section 6.3.4). A�erwards, I discuss the three learning
mechanisms taking place on the agent’s meta-level. I start with the implementation of in-
tention reading (Section 6.3.5), which is an extension of IRL’s mechanism for goal-oriented
composition of procedural semantic representations (see Section 2.4.5). Next, I discuss the
implementation of pa�ern �nding with FCG (Section 6.3.6), which is based earlier work
by Doumen et al. (forthcoming). �e pa�ern �nding strategies of Doumen et al. (forth-
coming) are adapted to incorporate intention reading. Section 6.3.7 discusses how these
learning mechanisms are organised in the agent’s meta-level. �e third learning mech-
anism, namely alignment, for modelling the entrenchment of constructions is discussed
in Section 6.3.8. Section 6.3.9 discusses the strategies used by the tutor. Finally, with both
agents, their environment, the interaction script, learningmechanisms and tutoring strate-
gies in place, I provide an overview of the learning dynamics in Section 6.3.10.

6.3.1 �e Elicitation Game

�e goal of the elicitation game is to allow an agent to learn the morpho-syntactic and
semantic structures underlying linguistic u�erances in the form of a construction gram-
mar and use this grammar successfully in communication. �is is achieved by having two
agents, a tutor and a learner, partake in a series of scripted, communicative interactions
modelling the task of visual question answering. �e learner is endowed with three learn-
ing mechanisms, namely the cognitive capacities of intention reading and pa�ern �nding
together with entrenchment dynamics.

High-Level Overview

�e elicitation game goes as follows. �e speaker has a particular concept in mind and
wants to elicit this concept as a reaction from the listener by asking it a question about the
scene. �e listener’s task is to try and understand the question and provide the answer.
Both tutor and learner can take on either of the discourse roles in the game. At the end
of the game, regardless of their discourse roles, the tutor reveals the true answer to the
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question. �e success of the interaction is determined by checking whether the listener’s
answer is the same as the concept that the speaker had in mind.

To make this game more concrete, imagine a parent and a child browsing an animated
children’s book. On a page with drawings of animals, the parent would ask the child
“What sound does the cow make?”. �e parent is not trying to learn about animal sounds,
but instead trying to elicit a particular reaction from the child. From the child’s perspec-
tive, however, the parent simply wants an answer to the question it just asked. If the
child replies by shouting “moo!”, the parent gives a positive reaction. However, if the child
doesn’t know or replies with “woof!”, the parent replies by providing the correct answer.
�e parent has revealed its intention. In both cases, the child realises that the parent ac-
tually wanted the child to reply “moo!”, which allows the child to learn something about
the u�erance “What sound does the cow make?” and its underlying meaning based on the
current se�ing and the provided answer “moo!”.

In the elicitation game, the learner uses intention reading to reconstruct a possiblemeaning
that could underlie the observed u�erance, such that it leads to the provided answer in the
current scene. In the example, the child mentally constructs a constellation of cognitive
operations that leads to “moo!” in the current environment. For example, �rst focus on the
book, then �nd the animal with black and white hair and then think about the sound it
makes. Pairing the reconstructed meaning with the observed u�erance constitutes a form-
meaningmapping or a construction. Pa�ern �nding is then used to generalise over this and
other form-meaningmappings, e.g. “What sound does the dogmake?”, and its reconstructed
meaning, resulting in constructions of varying degrees of abstraction. Speci�cally, over the
course of multiple elicitation games, the learner transitions from holophrase constructions
to compositional item-based and lexical constructions, while a network of grammatical
categories that captures the compositional relations between those constructions emerges.
At the same time, the entrenchment dynamics ensure that only form-meaning mappings
leading to successful communication remain.

When the learner acts as the speaker in the elicitation game, this serves as a kind of hy-
pothesis testing. �e concept revealed by the tutor in the end then allows the learner to
validate or reject its hypothesis, namely the constructions that it used in producing its
question. �is is also taken care of by the entrenchment dynamics.

Main Challenges

�ere are two main challenges in the elicitation game, namely (i) to constrain the search
space of intention reading and (ii) to overcome the acquisition of incorrect form-meaning
mappings through pa�ern �nding. Intention reading constitutes an enormous search prob-
lem since it faces the search space of all possible meanings that could be intended by the
tutor. �is space is vast and di�cult to navigate. �erefore, the learner has to use as many
resources as possible, such as the observed u�erance, the answer (or more generally, the
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intention) revealed by tutor, the current environment, past experiences and known con-
structions. A crucial aspect in narrowing down this search space even further is the inter-
play between intention reading and pa�ern �nding. Speci�cally, acquired item-based or
lexical constructions can provide a partial understanding of a previously unobserved u�er-
ance. �is results in a partial meaning that provides constraints on the intention reading
process. Indeed, part of the meaning is already provided and intention reading should now
reconstruct the remainder. Crucially, it is not guaranteed that the reconstructed meaning
will be correct, e.g. as it may focus on particularities of the current scene and thus fail
to generalise to other scenes. Consequently, incorrect form-meaning mappings may still
be learned. �e mechanisms modelling the entrenchment of constructions overcome this
by ensuring that over the course of many elicitation games only constructions that are
used successfully in communication remain and unsuccessful constructions gradually dis-
appear.

6.3.2 Tutor and Learner

�e elicitation game requires the modelling of a tutor agent with an established grammar,
and a learner agent that starts with an empty linguistic inventory.

Tutor

�e tutor’s linguistic inventory is the CLEVR grammar (Section 3.4). �is grammar not
only o�ers complete coverage of all questions from the CLEVR dataset, it’s procedural
semantics also allows the tutor to correctly compute all answers. Importantly, the tutor
uses a subset of this grammar for the elicitation game. Speci�cally, all questions which
have a meaning representation using cognitive operators that concern comparison, spa-
tial relationships and logical operations have been le� out. �e main reason for this is
that these are more complex cognitive operators that are o�en associated with longer and
more complex u�erances. As this experiment models processes involved in child language
acquisition, it is more logical to start with the simplest u�erances, as an adult would do
when speaking to a child. For the CLEVR dataset, the simplest questions are on a�ribute
identi�cation (e.g. ‘What color is the large metal cube?’), counting (e.g. ‘How many tiny red
spheres are there?’) and existence (e.g. ‘Is there a small rubber cylinder?’). Table 6.1 shows
an overview of the primitive cognitive operators necessary for these types of questions.
�e complete overview of cognitive operators in the CLEVR grammar can be found in
Section 3.4.2.

Learner

Next to the subset of primitive operators shown in Table 6.1, the learner is given three
learning mechanisms and a collection of semantic concepts from the CLEVR dataset. �is
collection includes the various colours, shapes, sizes and materials present in the CLEVR
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Table 6.1: Subset of the primitive cognitive operators from the CLEVR grammar used in
the elicitation game.

Primitive Cognitive Operator

(����������� ?�������)
(������ ?���������� ?��������� ?���������)

(���� ?����� ?������ ?���������)
(����� ?������ ?���)
(����� ?������� ?���)
(����� ?������ ?���)

dataset in a symbolic representation, but also numbers and booleans. �ese concepts are
necessary for evaluating the semantic networks as they serve as the semantic entities used
in IRL (see Section 2.4.3). �ese concepts are given as a sca�old because the main focus
of this experiment lies on the acquisition of morpho-syntactic and semantic structures.
However, they could also be learned using the methodology outlined in Chapter 4. Al-
ternatively, the primitive operators could be operationalised through hybrid procedural
semantics, thereby also capturing the semantic concepts, as outlined in Chapter 5.

All of the learner’s linguistic knowledge is captured in its construction inventory, which
is initially empty. �e learner only considers holophrase constructions, lexical construc-
tions and item-based constructions. Constructions keep a score between 0 and 1, re�ect-
ing their entrenchment. �ese scores are based on past communicative success and a�ect
the order in which constructions are considered during language processing. Speci�cally,
constructions with a higher score are preferred over constructions with a lower score as
they were used more successfully in the past. By increasing or decreasing these scores,
the learner can shape its construction inventory. Put together, this constitutes a positive
feedback loop between the success and use of constructions. �e slot-and-�ller relations
between item-based constructions and lexical constructions are captured in a network of
grammatical categories (see Section 2.3.5). Similar to constructions, links in the categorial
network keep a score, re�ecting the association strength between a slot and its �ller. How-
ever, these scores are based on frequency rather than success. Speci�cally, the score of a
link is increased whenever that link is used in a successful comprehension or production
process and it is never decreased. �ese scores are not considered during language pro-
cessing. Nodes in the categorial network with a similar distribution of links can be seen
as similar grammatical categories. �e similarity between categories can be quanti�ed
using weighted cosine similarity. Modelling the entrenchment of both constructions and
grammatical categories corroborates �ndings from psychological and linguistic research
showing that this plays an important role in the formation of one’s linguistic inventory
(Doumen et al., forthcoming), see e.g. Langacker (1987); Schmid (2007); De Smet (2017);
�eakston (2017).
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6.3.3 Environment

�e agents are situated in the scenes from the CLEVR dataset. A full description of these
scenes can be found in Section 3.3. In the elicitation game, the 15,000 scenes from CLEVR’s
validation split are used. �e agents obtain symbolic representations of the scenes. In other
words, they can perfectly categorise the size, colour, material and shape of each object in
terms of the semantic concepts given to them. An example scene together with the agents’
internal representation of it is provided in Figure 6.3.

scene-4

obj-16
size: large
color: yellow
material: metal
shape: cube
clevr-object

obj-17
size: large
color: purple
material: metal
shape: cube
clevr-object

obj-18
size: large
color: gray
material: rubber
shape: cylinder
clevr-object

obj-19
size: large
color: green
material: rubber
shape: cylinder
clevr-object

clevr-scene

reset

View Scene

Figure 6.3: An example scene from the CLEVR dataset containing four objects (le�) and
the agents’ internal representation of it (right).

6.3.4 Interaction Script

Following the semiotic cycle (see Section 2.2.2), both the speaker and the listener go through
a number of processes during every interaction of the elicitation game. Figure 6.4 provides
a schematic visualisation of the interaction script, with all of processes numbered from 1
to 8. In the following paragraphs, each process of the interaction script is discussed.

Step 1: Role Selection (both agents)

�e discourse roles of speaker and listener are randomly assigned to the tutor and the
learner.

Step 2: Scene Selection (both agents)

A random scene from the validation split of the CLEVR dataset is selected and both agents
receive a symbolic representation of it (see Figure 6.3).

Step 3: Topic Selection (speaker)

�e speaker randomly selects the topic for the interaction. �e topic can be any semantic
concept from the CLEVR dataset. Concretely, this can be an a�ribute of an object (colour,
size, material or shape), a number between 0 and 10, ‘yes’ or ‘no’. �e only constraint
on topic selection is that there should exist a question about the current scene having the
topic as the answer.
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CLEVR dataset

2. Scene Selection

5. Formulation 6. Comprehension

CLEVR scene

Speaker Listener

Tutor & Learner

1. Role Selection1. Role Selection

Chosen Topic

CYAN

3. Topic Selection

4. Conceptualisation

“What color is the cylinder?”

7. Interpretation8. Feedback & Learning

Hypothesis

PURPLE

(get-context ?scene)

(filter ?set-1 ?scene ?category-1)

(unique ?object-1 ?set-1) (bind shape-category ?category-1 cylinder)

(query ?answer ?object-1 ?category-2)

(bind attribute-category ?category-2 color)

(get-context ?scene)

(filter ?set-1 ?scene ?category-1)

(unique ?object-1 ?set-1) (bind shape-category ?category-1 cube)

(query ?answer ?object-1 ?category-2)

(bind attribute-category ?category-2 color)

Figure 6.4: A schematic visualisation of the interaction script of the elicitation game.
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Step 4: Conceptualisation (speaker)

A�er having selected a topic, it is now the task of the speaker to come up with a ques-
tion that has the topic as the answer. �is process, called conceptualisation, is handled
di�erently by the tutor and the learner.

For the learner, conceptualisation is implemented using IRL’s composer mechanism (see
Section 2.4.5). �e composer constructs a meaning network that satis�es a particular com-
municative goal. In this case, the goal of the speaker is to lead the listener to the topic in
the current scene. �us, it constructs a semantic network that, when executed, results in
the topic.

�e tutor, on the other hand, takes a short-cut when it comes to both conceptualisation
and formulation (the next step in the interaction script). Speci�cally, the tutor randomly
samples a question from the validation split of the CLEVR dataset that has the selected
topic as the answer. �is information is computed prior to the experiment. Taking into
account the available primitives (Table 6.1), this results in 10,044 unique questions that can
be u�ered by the tutor.

�is short-cut results in certain artefacts that stem from the design of the CLEVR dataset.
For instance, the tutor will not always u�er the most optimal question leading to a partic-
ular topic. �estions can contain super�uous words to identify some referent, e.g. asking
about “the small blue cube” when there are only small objects in the scene and hence “the
blue cube” would have been su�cient. Similarly, the tutor does not take into account the
most salient features or the most discriminative object to come up with a question. Both
of these artefacts do not pose an issue for the elicitation game, but could lead to faster
learning as the tutor would be more actively dampening referential ambiguities for the
learner.

Step 5: Formulation (speaker)

�e speaker uses its construction inventory to produce an u�erance that expresses the
meaning network constructed in conceptualisation. �e process of formulation succeeds
when no more construction can apply and the entire meaning network is consumed. �e
tutor does not need to run the formulation process since it uses the short-cut described
above. For the learner, on the other hand, formulation may fail when its construction in-
ventory is inadequate for expressing the conceptualised meaning. When this occurs, a
diagnostic signals the problem and triggers a jump to the meta-layer (see Section 2.2.5).
Here, the learning mechanisms described in later sections will become active and try to
repair the problem. When successful, routine processing continues and the formulated
u�erance is passed from the speaker to the listener. Otherwise, the learner restarts the
conceptualisation process, but further explores the space of possible meaning networks
that lead to the topic in the current scene. �e learner a�empts to express each new con-
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ceptualisation until one of them succeeds. When none of the conceptualisations can be
expressed by the learner’s current construction inventory, the game ends and counts as
a failure. �ere is no learning opportunity in this case, as the tutor cannot provide any
useful feedback without an u�erance.

Step 6: Comprehension (listener)

In comprehension, the listener uses its construction inventory to analyse the observed
u�erance. It is successful when no more constructions can apply and the entire u�erance
was consumed. When successful, comprehension results in a meaning network. Similar
to formulation, comprehension may fail for the learner. Speci�cally, the u�erance may be
completely unknown or parts of it are known resulting in a partial analysis. In both of
these cases, the learner signals failure to the tutor, and the agents proceed to feedback and
learning (step 8).

Step 7: Interpretation (listener)

When comprehension was successful, the listener interprets the resulting meaning net-
work with respect to its own observation of the current scene. �is results in an action
that is relevant for the communicative task. In this case, the listener computes the answer
to the observed question.

Step 8: Feedback & Learning through Intention Reading, Pattern Finding and
Alignment (both agents)

At the end of the game, the agents determine if their interaction was successful. �is is the
case when the listener’s answer corresponds to the topic (i.e. the semantic concept) that
the speaker had in mind. Conversely, the interaction may fail in any of the following cases:
(i) the speaker’s conceptualisation and production processes failed, (ii) the listener could
not comprehend the u�erance, (iii) the listener’s interpretation led to an incorrect concept
or (iv) the listener’s interpretation failed to compute an answer all together. �e outcome
of the interaction provides insights to the learner about the constructions it used during
the interaction, if any. �e alignment mechanism will alter the scores of the constructions
on this basis.

Regardless of the outcome of the game, the tutor provides feedback to the learner. �is
feedback is the correct answer to the u�ered question, regardless of who u�ered it. Con-
cretely, when the tutor was the speaker, it provides the intended topic (step 3). Conversely,
when the listener was the speaker, the tutor provides the answer to the question formu-
lated by the listener, if any. Together with the observed u�erance, the current scene, past
experiences and known constructions, the tutor’s feedback allows the agent to learn a�er
a failed interaction. Learning consists of acquiring new construction(s) and/or adding new
links in the categorial network in order to remedy an incorrect construction that was used
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during the interaction or allow to comprehend/produce the u�erance in the �rst place. �is
is where the meta-level diagnostics and repairs operationalising intention reading and pat-
tern �nding come into play. Speci�cally, intention reading allows to hypothesise about a
possible meaning underlying the observed question, relying on the current scene, past ex-
periences and the tutor’s feedback. �e reconstructed meaning allows for the creation of
one or several constructions by pairing it with the observed u�erance and applying pa�ern
�nding to this and previously acquired constructions. In what follows, the implementa-
tion of these various learning mechanisms will be discussed: intention reading in Section
6.3.5, pa�ern �nding in Section 6.3.6 and alignment mechanisms in Section 6.3.8. Finally,
in Section 6.3.10, I discuss how these three learning mechanisms work together and allow
the learner to bootstrap a successful communication system in the form of a construction
grammar.

6.3.5 Intention Reading with IRL

�e goal of intention reading is to reconstruct a possible meaning that could underlie the
observed question, taking into account the tutor’s intention, the current scene, past ex-
periences and known constructions. It is implemented using a modi�ed version of IRL’s
composer mechanism (see Section 2.4.5). In Section 2.4, I argued that semantic networks
in IRL are equivalent to constraint programs and that evaluating semantic networks cor-
responds to constraint satisfaction with respect to the agent’s world model and repertoire
of semantic concepts. In a nutshell, the composer performs a heuristically guided search
process that starts from an empty meaning network, recursively adds cognitive operators
and links them together until the composed network satis�es a particular communica-
tive goal. In the case of intention reading, the communicative goal for the listener is to
reconstruct the tutor’s intention. In IRL-speci�c terms, it is to construct a constraint pro-
gram in which there exists a data-�ow that allows to infer the semantic concept provided
by the tutor from the listener’s world model, concept repertoire and a memory of past
experiences. �e addition of a memory structure is crucial in operationalising intention
reading, as opposed to the conceptualisation process which also relies on IRL’s composer
mechanism.

Main Challenges

�e main challenges of the elicitation game, outlined in Section 6.3.1, can be reformu-
lated in terms of IRL and the composer mechanism. �e �rst challenge is to manage the
huge search space faced by intention reading, which is the space of all possible meanings
intended by the tutor. In terms of the composer, the primitive operators, which are the
building blocks of constraint networks, can combine in many di�erent ways with the only
restriction being the type de�nitions of their arguments. Even more, each intermediate
constraint network is considered for constraint satisfaction which can return multiple so-
lutions, depending on the bindings from the agent’s world model and concept repertoire
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that can be made. Both the construction of constraint networks and constraint satisfaction
are combinatorial processes in IRL.

�e search space faced by the composer in this experiment can be analysed according to
the description in Section 2.4.5. Concretely, the primitive inventory has size n = 6, with
an average arity of a = 2.16, and the maximum program size k = 7 (see Table 6.1). �e
composer’s search space thus consists of

Pk
i=1

��n
i

��
2s(i,a) = 1.3494104e30 intermediate

constraint programs that can be constructed. Crucially, this analysis allows to combine
any primitive with any other primitive and does not take into account the type de�nitions
of the arguments, which already drastically reduces the potential number of constraint
programs.

�e second challenge consists of intelligently revising incorrect constructions acquired
via pa�ern �nding. If it turns out, due to a failed interaction, that some construction is
incorrect, the learner will want to create a new, competing construction that has the same
form, but a di�erent meaning. Intention reading is required to obtain a new meaning
hypothesis. However, with its default con�gurations, nothing stops the composer from
constructing exactly the same constraint network as the one that was just found out to be
incorrect.

Inwhat follows, I discuss themechanisms that are put in place in the composer to overcome
these two challenges. Speci�cally, node tests are used for the �rst challenge, a memory
mechanism is introduced to overcome the second challenge and partial analyses help in
tackling both challenges. �e composer is a highly con�gurable system and not all aspects
of it needed to be modi�ed for implementing intention reading. �erefore, I also refer to
Section 2.4.5, which o�ers a complete and in-depth description of the composer, including
all con�gurations and their default se�ings.

Node Tests

Node tests are used to accept or reject intermediate constraint networks during the com-
position process before constraint satisfaction takes place. �ese tests are used to prune
the search space of the composer. To operationalise intention reading, two node tests are
put in place. A �rst node tests restricts the maximum length of the composed constraint
network. Any network that contains more than 10 constraints is rejected. �is covers all
possible constraint networks that are required for the experiment and avoids an exhaustive
search of the massive space of constraint networks. A second node test is responsible for
detecting duplicates in the composed constraint networks. If a certain constraint network
was already constructed and did not satisfy the communicative goal, the same constraint
network constructed via a di�erent path in the search space will also not work.
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Memory

To ensure that the composer does not reconstruct the same constraint network for the same
u�erance multiple times, the learner stores past experiences in a memory. Speci�cally, the
learner remembers the observed question, its answer and the scene inwhich the interaction
took place. �ese experiences are then consulted during intention reading. Speci�cally,
the reconstructed constraint network should not only lead to the answer in the current
scene, but it should also lead to the previously remembered answers in the previously
remembered scenes where the same question occurred. �e composer keeps expanding
the network until this additional goal test is satis�ed. E�ectively, the learner’s memory
allows it to perform mental simulation of similar past experiences to guide its intention
reading process.

“What shape is the large purple metal object?”
Scene 1

SPHERE

SPHERE

Scene 2

(get-context ?scene)

(filter ?gray-set ?scene ?gray)

(unique ?gray-object ?gray-set) (bind color-category ?gray gray)

(query ?target ?gray-object ?shape)

(bind attribute-category ?shape shape)

(get-context ?scene)

(filter ?purple-set ?scene ?purple)

(filter ?large-purple-set ?purple-set ?large) (bind color-category ?purple purple)

(unique ?large-purple-object ?large-purple-set) (bind size-category ?large large)

(query ?target ?large-purple-object ?shape)

(bind attribute-category ?shape shape)

Created through
intention reading

Not a
ppli

cab
le

Created through
intention reading

with memory

Solution

“What shape is the large purple metal object?”

Figure 6.5: On �rst occurrence of the u�erance (top), the learner composes the shortest
constraint network leading to the answer (top right). �is program is not applicable in a
later scene (bo�om le�). To revise the program, the learner keeps track of past experiences,
storing observed question, scenes and answers. A reconstructed constraint network is
considered a solution when it can be satis�ed in the current scene, but also in previous
scenes where the same question was observed. �is is true for the second constructed
constraint network, shown on the bo�om right.

�e memory mechanism is illustrated in Figure 6.5. In the �rst scene, shown in the top
le� of the �gure, the learner observes the question “What shape is the large purple metal
object?”. Never having encountered this u�erance before, the learner signals failure and
the tutor reveals the answer: ������. �e learner’s intention reading process reconstructs
a constraint network leading to ������, shown on the top right of the �gure. Concretely,
this constraint network �lters the scene for a single grey object and queries its shape, cor-
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rectly resulting in a sphere. Many other constraint networks would also lead to ������ in
this scene, e.g. by �ltering on a large purple object or a large yellow metal object. How-
ever, due to the default best-�rst search strategy (see Section 2.4.5), the provided constraint
program is encountered �rst by the composer’s search process. Using this constraint pro-
gram, the learner creates a holophrase construction, pairing the entire question with the
entire network. Finally, the learner stores this experience in its memory. �e experience
consists of the observed question, the scene and the answer revealed by the tutor.

In a later stage of the game, the same question is observed in another scene, marked by
‘Scene 2’ in Figure 6.5. In this scene, the answer is again ������. �e learner is now able to
analyse this u�erance using its previously acquired holophrase constructions. However,
it will not get past the interpretation step as the meaning is not applicable in the scene.
Indeed, there is not a single grey object in ‘Scene 2’, but there are multiple, causing the
����� operator in the constraint network to invalidate its arguments. To remedy the
problem, the learner reconstructs a new constraint network, now taking into account not
only the observed question, the tutor’s answer and the current scene, but also its past expe-
riences. As before, many possible networks would lead to ������ in ‘Scene 2’. For example,
������ can be found by �ltering on a purple object, �ltering on a purple metal object, etc.
However, only the network provided on the bo�om right of the �gure, which �lters on
a large metal object, satis�es both the current combination of scene and answer and the
previously stored combination of scene and answer in the learner’s memory. Hence, this
constraint network will be accepted as a valid solution by the composer. Leaving pa�ern
�nding out of the equation, the learner can now create a competing holophrase construc-
tion.

�e observant reader will notice this constraint network still does not correspond to the
ground truth constraint network for the question, in particular because the word metal
is not represented in the meaning. �e learner would need to observe the same question
in yet another scene with just the right conditions to revise the constraint network once
again. In the meantime, the two holophrase constructions are in competition with each
other, which is dealt with by the alignment mechanisms (Section 6.3.8).

Partial Analyses

�e composer fully exploits the interplay between intention reading and pa�ern �nding.
Speci�cally, constructions created through pa�ern �nding can provide a partial meaning
of a previously unobserved u�erance in comprehension. For example, imagine the learner
observes the question “Are there any red cubes?”. Additionally, imagine the learner has
two constructions in its construction inventory: the �������, mapping the form “red” to
the meaning (���� �������������� ?��� ���), and the ���������, mapping the form
“cubes” to the meaning (���� �������������� ?����� ����). When comprehending the
u�erance, the resulting meaning will consists of these two ���� statements. �is partial
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meaning provides constraints for the composer. In particular, the constraint network being
constructed should not only satisfy the communicative goal (i.e. lead to tutor’s intention
in terms of a semantic concept), but also match the partial meaning that is provided. A
technical description of completing partial programs via the composer is provided in Sec-
tion 2.4.7. As discussed there, the search process that is performed by the composer during
matching is essentially the same, but the information that guides the search is di�erent.
Speci�cally, part of the constraint network is kept �xed while the composer tries to com-
plete it, taking into account the communicative goal and the current scene. Depending on
the size of the partial meaning, this drastically reduces the composer’s search space. In the
example, only constraint networks containing the two ���� statements will be considered
as valid solutions. �is allows the composer to rule out a signi�cant number of results
during its constraint satisfaction phase. Additionally, this indirectly informs the composer
that at least two operators which can link to ���� statements are required, allowing it to
skip the evaluation of a large number of composed networks because the matching oper-
ation will fail.

While partial meanings typically constrain the composer’s search space, they can also
completely prevent the composer from reconstructing a constraint network. �is occurs
whenever the learner’s pa�ern �nding has made some incorrect generalisation over con-
structions. As an example, consider an interaction in a very simple scene: two green ob-
jects and one blue object. Furthermore, consider the construction ���������, which (in-
correctly) maps the form “green” to the meaning (���� �������������� ?� ������). �e
tutor, acting as the speaker, might ask the question “How many green objects are there?”.
Assuming the learner cannot fully comprehend this u�erance, the tutor reveals the an-
swer, namely ‘2’, and the learner tries to reconstruct a constraint network using the afore-
mentioned construction and the provided answer. Speci�cally, the composer starts from
(���� �������������� ?� ������) as the initial meaning, and exhaustively searches the
space of possible networks, but never �nds one that leads to ‘2’ in this particular scene as
there are no yellow objects. Nevertheless, from the tutor’s perspective, this is a perfectly
valid question. It is only because of the learner’s incorrect form-meaning mapping that
intention reading failed. Later on, speci�cally in Section 6.3.7, I will describe how other
repair strategies on the agent’s meta-level can take over in cases like this and allow the
agent to learn constructions a�er all. However, based on this failure during learning, the
learner might want to reconsider the construction(s) that caused intention reading to fail,
speci�cally by decreasing their entrenchment scores. �is way, intention reading also con-
tributes to overcoming incorrect generalisations made by pa�ern �nding. Additionally, it
makes intention reading more e�cient, as exhaustive searches like in the example above
are avoided.
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6.3.6 Pattern Finding with FCG

A�er intention reading follows pa�ern �nding. �e input to pa�ern �nding consists of the
observed question and the meaning network reconstructed by intention reading. In order
to �nd pa�erns, the learner compares this newly created form-meaning mapping against
the constructions in its construction inventory, both with respect to form and meaning.
�e goal is not to create speci�c constructions for every observed u�erance, but to acquire
more general constructions that cover multiple u�erances, including novel ones. Depend-
ing on the applied strategy, the result of pa�ern �nding is one or several new construc-
tions and/or links in the categorial network, both of which can be used for comprehension
and production. �ree types of constructions are covered by the pa�ern �nding mecha-
nisms: holophrase constructions, lexical constructions and item-based constructions. �e
categorial network captures the slot-and-�ller relations between item-based and lexical
constructions.

I discuss four pa�ern �nding strategies that allow to learn constructions through induc-
tive reasoning over di�erences and similarities between observed questions, reconstructed
meanings and existing constructions. �e strategies presented here are based on the work
by Doumen et al. (forthcoming), where these are applied to a semantically annotated cor-
pus of u�erances. Hence, they assume that the intention reading process has already taken
place and has reconstructed the correct meaning network. In order to simplify the presen-
tation of the pa�ern �nding strategies in this section, I will make the same assumption.
However, it is crucial to note that this assumption does not hold during the experiment, for
reasons outlined in Section 6.3.5. Nevertheless, the pa�ern �nding strategies will operate
over any form-meaning mapping, as long as they �nd useful di�erences and similarities.

Before discussing the four pa�ern �nding strategies, I brie�y illustrate the construction
application process of holophrase constructions, item-based constructions and lexical con-
structions. Speci�cally, I show how item-based constructions and lexical constructions can
combine to analyse an u�erance and highlight the role of the categorial network (see also
Section 2.3.5).

Application of Holophrase Constructions

Holophrase constructions constitute an exact mapping between an u�erance and its mean-
ing. Neither the form nor the meaning are decomposed in any way. While such a construc-
tion is productive, it only allows to comprehend the exact same u�erance or produce the
exact same meaning. �e application of a holophrase construction, both in comprehen-
sion and production, is illustrated in Figure 6.6. Note that the construction is presented in
a schematic representation, rather than its actual representation in FCG. At the bo�om of
the schematic representation, it is indicated whether the construction provides any slots
or any arguments that can �ll slots. Holophrase constructions, however, provide neither.
�e comprehension process is shown from top to bo�om. �e �����������������������
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“What is the tiny block made of?”

(get-context ?source)

(filter ?object-set-1 ?source ?category-1)

(bind attribute-category ?category-3 material)

(query ?answer ?object ?category-3)

(bind shape-category ?category-1 cube)(filter ?object-set-2 ?object-set-1 ?category-2)

(bind size-category ?category-2 small)(unique ?object ?object-set-2)

(get-context ?source)

(filter ?object-set-1 ?source ?category-1)

(bind attribute-category ?category-3 material)

(query ?answer ?object ?category-3)

(bind shape-category ?category-1 cube)(filter ?object-set-2 ?object-set-1 ?category-2)

(bind size-category ?category-2 small)(unique ?object ?object-set-2)

“What is the tiny 
block made of?”

Slots: [ ]

Arguments: [ ]

what-is-the-tiny-block-made-of?-cxn
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Figure 6.6: Construction application of the ������������������������������?���� in
comprehension (top to bo�om) and formulation (bo�om to top). Note that the construction
is presented in a schematic representation, rather than its actual representation in FCG.
A holophrase construction has no slots and does not provide any argument. Figure from
Doumen et al. (forthcoming).
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�������?���� can only apply if the observed u�erance exactly matches the form side of
the construction. �e result is the meaning side of the construction. �e production pro-
cess is shown from bo�om to top. Similarly, the construction is applicable whenever the
meaning to express exactly matches the meaning side of the construction, resulting in the
form side of the construction.

Application of Item-Based and Lexical Constructions

(get-context ?source)

(filter ?object-set-1 ?source ?category-1)

(bind attribute-category ?category-3 material)

(query ?answer ?object ?category-3)

(bind shape-category ?category-1 cube)(filter ?object-set-2 ?object-set-1 ?category-2)

(bind size-category ?category-2 small)(unique ?object ?object-set-2)

[ tiny ↔ ?category  ] 

(bind size-category ?category small)“tiny”

Slots: [ ]

Arguments:

tiny-cxn

“What is the ?X 
block made of?”

(get-context ?source)

(filter ?object-set-1 ?source ?category-1)

(bind attribute-category ?category-3 material)

(query ?answer ?object ?category-3)

(bind shape-category ?category-1 cube)(filter ?object-set-2 ?object-set-1 ?category-2)

(unique ?object ?object-set-2)

Slots: [ what-is-the-?x-block-made-of?(?X) ↔  ?category-2 ]

Arguments: [ ]

tiny
what-is-the-?x-
block-made-of?

(?X)

“What is the tiny block made of?”
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what-is-the-?X-block-made-of?-cxn

Figure 6.7: Construction application of the������������?���������������?���� and the
�������� in comprehension (top to bo�om) and formulation (bo�om to top). Both con-
structions collaboratively process the u�erance in comprehension or the meaning in for-
mulation. Slots and arguments are tied together via the categorial network on the form
side and via uni�cation on the meaning side. Figure from Doumen et al. (forthcoming).

Generalisation over holophrase constructions leads to both item-based and lexical con-
structions. Item-based constructions are constructions providing one or several slots, while
lexical constructions provide arguments for �lling those slots. Both slots and arguments
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are tied to a particular construction and they are represented in the categorial network.
Figure 6.7 illustrates how an item-based construction and a lexical construction collabo-
ratively analyse an u�erance in comprehension and express a meaning in production. In
particular, the item-based construction ������������?���������������?���� maps be-
tween the form pa�ern ‘What is the ?X block made of?’ and a meaning network that �l-
ters the scene for cubes, �lters the resulting set for some variable category ‘?category-2’,
checks whether the resulting set contains a single element and queries the material of that
element. �e construction contains an open slot on both the form side, indicated by the
yellow ‘?X’ in the �gure, and on the meaning side, indicated by the green ‘?category-2’
in the �gure. �e coupling between these open slots is indicated at the bo�om of the
construction. �e slot speci�cation of the item-based construction states that the open
slots can be �lled by another construction that provides a mapping between something of
category ‘what-is-the-?x-block-made-of?(?X)’, which represents the ’?X’ slot in the form
pa�ern, and something that can unify with ‘?category-2’, i.e. the unbound variable in the
construction’s meaning. �e lexical �������� provides just that. It maps the string “tiny”
to the bind statement (���� ������������� ?�������� �����). �e slots of the ��������
����?���������������?���� can be �lled by the arguments of the �������� on both the
form side and on the meaning side. On the form side, the ‘tiny’ category is linked to the
‘what-is-the-?x-block-made-of?(?X)’ category in the categorial network. On the meaning
side, the ‘?category’ variable of the lexical construction can be uni�ed with the ‘?category-
2’ variable of the item-based construction during construction application. As a result, the
arguments of the lexical construction are “inserted” in the slots of the item-based construc-
tion. �is yields a complete meaning network for the u�erance in comprehension and a
complete u�erance for the meaning network in production.

Learning Holophrases

�e most basic pa�ern �nding strategy is for learning holophrases. At the start of the
experiment, the learner’s construction inventory is empty. When the learner observes its
very �rst u�erance, the only thing it can do is to reconstruct its meaning using intention
reading, and store an exactmapping between the u�erance and the reconstructedmeaning.
�is constitutes a holophrase construction. While the strategy for learning holophrases
does not make any generalisations over constructions, the resulting holophrase construc-
tions do form the basis of the learning process. Indeed, because this repair always suc-
ceeds, it allows to create many holophrase constructions at the start of the experiment.
Later on, other strategies can compare against these holophrase constructions and create
generalisations over them.

Generalising over Holophrases

By analysing similarities and di�erences between a novel observation and an existing
holophrase construction, item-based constructions and lexical constructions can be learned.
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�e former capture the similarities and abstract away over the di�erences, while the la�er
capture those di�erences. Importantly, this pa�ern �nding strategy is restricted to capture
minimal di�erences. In other words, it only copes with a single di�erence on both the form
side and the meaning side. �ree variants of this pa�ern �nding strategy exist.

“What is the 
block made of?”

Slots: [ ]
Arguments: [ ]

A

BC

D

E

the-large-shiny-cube-has-what-color?-cxn

“What is the 
block made of?”

Slots: [ ]
Arguments: [ ]

A
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D

E

how-many-spheres-are-there?-cxn

“What is the 
block made of?”

Slots: [ ]
Arguments: [ ]

A
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D

E

what-is-the-block-made-of?-cxn
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“What is the cylinder made of?”

+ +
“What is the ?X
made of?”

Slots:
Arguments:

[ what-is-the-?x-made-of?(?X) ↔ ?c ]
[ ]

A

CE

what-is-the-?X-made-of?-cxn

D

?c

cylinder

what-is-the-?x-
made-of?(?X)

block

Slots:
Arguments:

[ ]
[ cylinder ↔ ?f ]

“cylinder” F?f

cylinder-cxn

Slots:
Arguments:

[ ]
[ block ↔ ?b ]

“block” B?b

block-cxn

Construction Inventory Intention Reading

Pattern Finding Results

Figure 6.8: By analysing similarities and di�erences between an existing holophrase con-
struction and a new observation, the substitutionmechanism allows to learn an item-based
construction, two lexical constructions and links in the categorial network. Figure adapted
from Doumen et al. (forthcoming).

Substitution. �e main idea behind this strategy is illustrated in Figure 6.8. �e red
box represents the learner’s current construction inventory. Among others, it contains the
�������������������������?����, a holophrase construction mapping the form “What
is the block made of?” to a representation of its meaning. For space reasons, the meaning
is represented in a schematic way, rather than the complete constraint network. Nodes in
this schematic representation can correspond to either primitives or bind statements. A
novel u�erance “What is the cylinder made of?”, shown at the top of the �gure, is observed
by the learner. As the u�erance is novel, its meaning has to be reconstructed through
intention reading. �e resulting meaning network is shown in the green box2. �e substi-
tution strategy now computes similarities and di�erences between the observation, i.e. the
observed u�erance and its reconstructed meaning, and the previously learned holophrase

2Remember that, for clarity reasons, it is assumed here that intention reading immediately reconstructs the
correct meaning network, but that this is not necessarily the case during the experiment.
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construction, both in terms of form and meaning. In this case, it �nds a minimal di�erence
on the form side (“cylinder” and “block” ) and on the meaning side (‘F’ and ‘B’).�ese di�er-
ences are highlighted in red. �is minimal di�erence on both sides allows to construct four
items, shown in the blue box at the bo�om of the �gure. First, an item-based construction
������������?���������?���� is created, capturing the similarities. �e di�erences have
been replaced by the slot ‘?X’ on the form side and by a variable ’?c’ on the meaning side.
Next, two lexical constructions can be created, which capture the di�erences on both form
andmeaning side. Speci�cally, the ������������maps the form “cylinder” to the meaning
‘F’ and the ���������maps the form “block” to the meaning ‘B’. Finally, links are made in
the categorial network between the slot of the item-based construction and the arguments
of both lexical constructions. �ese links allow the item-based construction and the lexical
constructions to work together. Speci�cally, they allow the grammatical categories of the
constructions to match through the categorial network, while the open variables in their
respective meaning representations can be uni�ed. �rough these links, the generalisation
mechanism reveals that ‘cylinder’ and ‘block’ can appear in the same slot and therefore
similar grammatical categories.
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Figure 6.9: By analysing similarities and di�erences between an existing holophrase con-
struction and a new observation, the addition mechanism allows to learn an item-based
construction, a lexical construction and a link in the categorial network. Figure adapted
from Doumen et al. (forthcoming).

Addition. �e addition mechanism covers the scenario where an observed u�erance
and its reconstructed meaning extend a previously acquired holophrase construction by
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a single element on both the form side and the meaning side. Speci�cally, in Figure 6.9,
the u�erance “What is the tiny block made of?” and its reconstructed meaning extend the
holophrastic�������������������������?����, both on the form side and on the mean-
ing side. �e extension is highlighted in red. Here, the learner assumes that it will be
possible to extend the holophrase construction in a variety of ways. �erefore, it creates
the item-based construction ������������?���������������?����, the lexical construc-
tion �������� and links in the categorial network between the grammatical categories of
these constructions. As before, the item-based construction o�ers a pa�ern on the form
side tied to an open variable on the meaning side. Together, this constituting a slot. On
the form side, this is denoted by ‘?X’ and on the meaning side by ‘?f’. �e lexical construc-
tion o�ers arguments to �ll the slot. Speci�cally, some argument of type ‘tiny’ is bound to
the variable ‘?g’. Finally, the link in the categorial network ensures that the slot and the
argument can be used together during comprehension or production.
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Figure 6.10: By analysing similarities and di�erences between an existing holophrase con-
struction and a new observation, the deletion mechanism allows to learn a holophrase
construction, an item-based construction, a lexical construction and a link in the catego-
rial network. Figure adapted from Doumen et al. (forthcoming).

Deletion. Generalisation through deletion is the inverse of generalisation through ad-
dition. In particular, it handles cases where the observed u�erance and its reconstructed
meaning are a reduction of a learned holophrase construction by a single element on both
the form side and the meaning side. An example is provided in Figure 6.10. �e u�er-
ance “What is the block made of?” is observed, its entire meaning is reconstructed and
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the ������������������������������?���� already exists. �e di�erences that trigger
the deletion mechanism are again highlighted in red. From this, the deletion mechanism
is able to create (i) a holophrase construction �������������������������?���� cover-
ing the observation, (ii) an item-based construction������������?�������������������,
(iii) a lexical construction �������� and (iv) links in the categorial network, associating the
slot of the item-based construction to the argument of the lexical construction. Apart from
the holophrase construction, these serve to generalise over the already existing holophrase
construction that was used as input to the deletion mechanism.

Learning Constructions from Partial Analysis

�e third pa�ern �nding strategy allows to learn constructions based on a partial analysis
of the observed u�erance. �is strategy is more tightly integrated with intention reading
compared to the previous ones. As discussed, a partial analysis provides constraints on the
meaning that is being reconstructed. When intention reading is successful, both the form
and the meaning of the constructions providing the partial analysis can be removed from
the observed u�erance and the reconstructed meaning, respectively. A new construction
is created using the remainder of the form and the meaning. �us, the pa�ern �nding
strategy discussed here allows to create new constructions that work together with exist-
ing constructions in order to process the entire observation. While the missing elements
of the observation from the form side can be extracted from the observed u�erance, in-
tention reading is needed to reconstruct the missing elements of the observation from the
meaning side. Two scenarios can be identi�ed.

Learning from Lexical Constructions. In the �rst scenario, one or more lexical con-
structions provide the partial analysis. An example of such a scenario is given in Figure
6.11. In this example, the learner observes the u�erance “What is the red block made of?”.
�e previously acquired lexical constructions ��������� and ������� apply and provide
a partial analysis. On the form side, both “red” and “block” are covered and the partial
meaning consists of ‘B’ and ‘F’.�en, intention reading takes over, reconstructing a mean-
ing network for the observed u�erance, taking the partial meaning into account. �is
results in the meaning network shown in the green box. Based on the u�erance and the
reconstructed meaning, a new item-based construction can be created that incorporates
all aspects of the form and the meaning that are not covered by the partial analysis. �e
former is extracted from the observed u�erance, while the la�er relies on the intention
reading result. In this example, the result is the ������������?��?���������?���� map-
ping the pa�ern “What is the ?X ?Y made of?” to a meaning network with two open
variables. Note that this item-based construction provides two open slots and that the pat-
tern �nding mechanism creates two separate links in the categorial network. �e �rst link
allows the ������� to �ll the ‘?X’ slot of the item-based construction, while the second
link allows the ��������� to �ll the ‘?Y’ slot of the item-based construction.
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Figure 6.11: From a partial analysis provided by lexical constructions, a novel item-based
construction is learned and links are added to the categorial network. �e observed ut-
terance can now be analysed by combining the existing constructions and the novel con-
struction. Figure adapted from Doumen et al. (forthcoming).
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Figure 6.12: From a partial analysis provided by an item-based construction, a novel lex-
ical construction is learned and links are added to the categorial network. �e observed
u�erance can now be analysed by combining the existing constructions and the novel con-
struction. Figure adapted from Doumen et al. (forthcoming).
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Learning from Item-Based Constructions. In the second scenario, an item-based
construction provides the partial analysis. An instantiation of this strategy is shown in
Figure 6.12. �e learner observes the u�erance “What is the block made of?”. �e item-
based construction, shown in the red box, almost completely covers this u�erance. How-
ever, there is no construction that covers the word ‘block’. As in the previous scenario, the
partial meaning is passed along to intention reading. A meaning network for the u�erance
is reconstructed, taking into account the partial meaning, and the meaning of the partial
analysis is subtracted. With the remainder, a new lexical construction ��������� can be
created. �is construction now covers part of the u�erance that was not yet covered and
obtained its meaning through intention reading. Speci�cally, it maps the form “block” to
‘B’. Also, a link in the categorial network is made to tie the slot of the existing item-based
construction to the argument of the newly created lexical construction.

�is second scenario also handles cases where the partial analysis consists of an item-based
construction together with one or several lexical constructions. However, it is only appli-
cable if a single element is missing on both the form side and the meaning side. If multiple
elements are missing, e.g. through the application an item-based construction with two
slots and no lexical constructions, it would still be possible to derive lexical constructions.
However, in such a case, there is referential uncertainty as the learner would need to make
hypotheses on which part of the not yet covered form corresponds to which part of the
not yet covered meaning. �is is currently not explored in this pa�ern �nding strategy.

Extending the Categorial Network

�e �nal pa�ern �nding strategy handles cases where previously acquired item-based and
lexical constructions completely cover the observed u�erance, but the combination of the
item-based slot and the lexical argument(s) has not been observed before. Here, the anal-
ysis can be completed by adding all missing links in the categorial network. An example
with a single missing link is given in Figure 6.13. In the example, the learner observes
the u�erance “What is the sphere made of?”. �e constructions shown in the construction
inventory completely cover the u�erance but they cannot combine due to a missing link
between the ‘what-is-the-?x-made-of?(?X)’ category and the ‘sphere’ category in the cat-
egorial network. �e repair detects this and adds the missing link, shown on the bo�om
of the �gure. Note that this strategy does not rely on any form of external information,
such as the tutor’s feedback, nor any intention reading is required. Hence, the green box
in Figure 6.13 is empty.

�is pa�ern �nding strategy is also used by the learner in formulation, as it relies solely on
information that is already present in the construction inventory. Whenever some com-
bination of item-based and lexical constructions completely covers the meaning network
the learner wants to express, but these constructions cannot combine due to missing links
in the categorial network, the learner will try to add them. Two additional measures are
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Figure 6.13: When existing item-based and lexical constructions cover the observed u�er-
ance, but that slot and �ller combination was not observed before, the categorial network
needs to be extended. Figure adapted from Doumen et al. (forthcoming).

taken into account when applying this strategy in formulation. First, the learner will not
just add any link to the categorial network, but �rst check whether the grammatical cat-
egories are related by looking for a path between them in the categorial network. �is
avoids situations where an item-based slot that is always �lled by a shape, such as the ‘?X‘
slot in the ������������?���������?����, suddenly gets �lled by a colour. Second, the
link will only be consolidated if the interaction turns out to be successful. By adding new
links, the learner is creatively creating new combinations of slots and �llers. However, if
this new combination does not lead to communicative success, it will not be tried again in
the future.

6.3.7 Competition between Repair Strategies

Intention reading and pa�ern �nding take place on the agent’s meta-level, operationalised
through a number of diagnostics and repairs. Each repair implements one of the pa�ern
�nding strategies outlined in the previous section and all but one of these strategies re-
quires intention reading. �e repairs are in competition with each other, since in many
cases it is possible to make several generalisations from the same observation.

A schematic overview of the diagnostics, the repairs and the order in which they are tried
is given in Figure 6.14. �e learner will always try to complete the interaction through
routing processing, shown below the dashed line, before applying meta-level reasoning
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and learning, shown above the dashed line. Both the comprehension and interpretation
processes are checked by several diagnostics and each of these diagnostics can trigger
multiple repairs. �e repairs are tried from bo�om to top as outlined in the �gure. When
a repair produces a �x, routine processing continues with that �x. Otherwise, control is
returned to the diagnostic, which then triggers the next repair until one of them succeeds.
�e ‘learn holophrase’ repair, which is tried last by all diagnostics, always succeeds. In the
following paragraphs, the diagnostics and the repairs are discussed in detail.

Routine Processing

Meta-Level Processing

Comprehension Interpretation

Diagnostics

Repairs Generalise over 
Holophrase

Empty Analysis

Learn Holophrase Learn from
Partial Analysis

Extend 
Categorial Network

Partial Analyses

Generalise over 
Holophrase

Learn Holophrase

No Answer

Generalise over 
Holophrase

Learn Holophrase

Figure 6.14: Schematic overview of diagnostics and repairs. Each diagnostic can trigger
multiple repairs. �e repairs are tried from bo�om to top. When a repair does not produce
a �x, the next repair is tried until one of them succeeds. �e �x is integrated and routine
processing continuous.

Empty Analysis. �is diagnostic checks whether comprehension resulted in an empty
analysis, i.e. when no constructions could apply. �e learner �rst tries to solve this prob-
lem by using the repair which generalises over existing holophrase constructions, thereby
creating item-based constructions and lexical constructions. If this repair does not produce
a �x, the learner simply creates a new holophrase construction, which always succeeds.

Partial Analyses. �e second diagnostic checks whether comprehension resulted in
partial analyses. Here, the learner prefers to solve the problem by creating new links in
the categorial network. �is requires that the applied constructions completely cover the
observed u�erance, but lack one or multiple links in the categorial network. If this repair
cannot �x the problem, the diagnostic will a�empt to apply the repairs which learn new
constructions from these partial analyses. Importantly, the learner a�empts to learn from
every partial analysis that is available, since multiple partial analyses frequently occur in
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the elicitation game. To illustrate this, consider an interaction in a scene that does not
contain any spheres and where the learner’s construction inventory has the following
constructions:

• ��������: “cube” $ (���� �������������� ?���� ������).

• ��������1: “red” $ (���� �������������� ?��� �����).

• ��������2: “red” $ (���� �������������� ?��� ���).

When observing the u�erance “What size is the red cube?”, �ve partial analyses are avail-
able: (i) Applying both �������� and ��������1, (ii) applying both �������� and ����
����2, (iii) applying only ��������, (iv) applying only ��������1 and (v) applying only
��������2. �e repair strategy considers the partial analyses in the same order as provided
during comprehension, namely on the basis of the highest scoring constructions. Assum-
ing the ordering of the partial analyses as provided above, repairs using partial analyses (i),
(ii) and (iii) will not yield any �xes because intention reading will not be able to construct
any meaning networks that match the provided ���� statements and can be evaluated in
the current scene. �is is due to the incorrect form-meaning mapping of the �������� and
the absence of spheres in the scene. Using partial analysis (iv) in the repair might lead to
a solution in intention reading, but only if there is a green object in the scene. If there are
no green object, only the repair using partial analysis (v) will lead to a result.

When a partial analysis repair cannot produce a �x, the learner can deduce that the con-
structions used in the repair are incorrect. �e learner uses this information to update
their entrenchment scores, but only a�er a successful repair. Speci�cally, when learning
from partial analysis (iv), the learner can decrease the entrenchment score of the �����
���, as it was unable to reconstruct a meaning network using both the �������� and the
��������1, but successful when using only the ��������1. Alternatively, when learning
from partial analysis (v), the learner can punish the �������� and the ��������1, as both
were used in unsuccessful repairs.

To summarise the learner tries all partial analyses that are available, in the same order as
they are created during the construction application process, which is based on the scores
of the constructions. If a partial analysis repair produces a �x, no other repairs are tried.
Constructions used in unsuccessful repairs are punished. If all partial analysis repairs fail,
however, all partial analyses are ignored, all applied constructions are punished and the
u�erance is treated as if it were observed for the �rst time. Similar to the ’empty analysis’
diagnostic, the generalisation repair is tried �rst and the ‘learn holophrase’ repair is only
considered a�erwards.

No Answer. �is diagnostic checks whether the interpretation process has failed, i.e.
when it was not possible to evaluate the meaning network resulting from comprehension.
�is can have two possible causes. First, because an incorrect form-meaning mapping was
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used during routine processing in comprehension. �e resulting meaning network might
be nonsensical in the current scene, e.g. trying to identify a yellow object if there are none
in the scene. Second, because the ‘extend categorial network’ repair added a link to the
categorial network, which also allows the comprehension process to produce a nonsensical
meaning. When applied a�er any of the other repairs, interpretation will always succeed
because these repairs all include intention reading. Hence, the meaning network used in
interpretation was just now created on the basis of, among others, the current scene.

When this diagnostic is triggered, the u�erance is again treated as if it were novel. No
information from the construction application process is used. �e reasoning behind this
is as follows. If a holophrase construction applied and resulted in a nonsensical meaning,
the only thing that can be done is to create a new holophrase construction with the same
form but a di�erent meaning (or generalise over a similar holophrase, a�er constructing
a new meaning). If, however, an item-based construction and some lexical constructions
applied, it is di�cult to know which partial information is useful for repairing the problem
and which is not. �erefore, the learner does not try to dissect the applied constructions,
but immediately learns new ones. As a failed interpretation process is treated as a failed
interaction, the entrenchment score of all applied constructions will be lowered anyway.

6.3.8 Alignment

While intention reading and pa�ern �nding are used to acquire new constructions, the
goal of alignment is to update the entrenchment scores of constructions such that they are
more e�cacious for the communicative task. �is process corresponds with the concepts
of statistical pre-emption (Goldberg, 2011; Boyd and Goldberg, 2011; Goldberg, 2019, Ch.
5) and self-organisation through lateral inhibition (Steels, 1995) (see also Section 2.2.2). I
will discuss the alignment mechanism in terms of the la�er.

Punishment and Reward

Lateral inhibition rewards and punishes constructions depending on the outcome of the
game. If the game fails, the scores of the constructions used during the game are decreased
by �f = 0.4. Indeed, these constructions were inadequate for solving the communicative
task. �ey should therefore be less entrenched in the agent’s construction inventory and
consequently used less o�en in the future. However, if the game is a success, the construc-
tions that were used become more entrenched. �eir score is increased by �s = 0.1. A
score of 1.0 corresponds to maximal entrenchment. Once reached, the score of a construc-
tion is not increased any further.

Competing Constructions

Lateral inhibition regulates competition between constructions. Competing constructions
are constructions that could also have contributed to the agent’s comprehension process,
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regardless of whether these are more or less abstract than the applied constructions. In
comprehension, competing constructions are constructions with the same form, but a dif-
ferent meaning. As other constructions were more suitable for solving the communicative
task, the scores of these competing constructions are decreased by �c = 0.1.

In the elicitation game, competing constructions are not considered a�er production. �is
is due to the template-based design of the questions of the CLEVR dataset, in particular
because of its synonymy on the lexical and the grammatical level (see Section 3.3). For
example, ‘cube’ and ‘block’ are lexical synonyms, while ‘�ere is a X; what is its Y?’ and
‘What Y is the X?’ are grammatical synonyms. �ese are true synonyms in the sense that
they are completely interchangeable, regardless of the context in which they are used.
Lateral inhibition, on the other hand, steers the agent towards a system with one-to-one
mappings, where every form is expressed by a single meaning and vice versa. �is is
not desirable for the communicative task using this particular dataset. �erefore, lateral
inhibition a�er production only rewards or punishes the constructions that were used
during the interaction and ignores competitors with the same meaning, but a di�erent
form.

Removing Constructions and Links

If a construction reaches a score of 0, it is removed from the construction inventory. At
the same time, the associated grammatical categories are removed from the categorial net-
work, together with all of their links.

� Values

�e exact values by which constructions are rewarded and punished does not in�uence
the global dynamics of the learning process, as long as these values are positive and neg-
ative respectively. However, it can in�uence the speed at which the agents converge to a
successful communication system.

6.3.9 Tutor Behaviour

While previous sections have focussed on the mechanisms used by the learner, the be-
haviour of the tutor also a�ects the learning dynamics. I consider two tutoring strategies,
used whenever the tutor acts as the speaker in the elicitation game:

• Baseline Strategy. �e tutor selects a random scene and a random question. �e
tutor’s only concern is whether the question actually makes sense in the scene, e.g.
not asking about the shape of a brown object when there is no brown object in the
scene.

• Probabilistic Strategy. �e tutor monitors the learner’s success on a per question
basis. Speci�cally, the tutor keeps track of how o�en the learner has observed each
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question and counts howmany times each question has led to an unsuccessful game,
while scenes are still chosen at random. �e tutor chooses between u�ering a novel
question, sampled randomly, or one that was observed before. In case of the la�er,
the tutor samples a question according to the probability distribution over the usage
and success statistics that it keeps. Speci�cally, if a particular question resulted in
many failed interactions, this question gets a higher probability of being chosen. In-
deed, questions leading to failed interactions are more interesting, as they indicate
that this part of learner’s construction inventory is not yet su�ciently developed.
Using this strategy, the tutor is helping the learner by asking more di�cult ques-
tions in a variety of di�erent scenes and thereby accelerating the development of
the constructions involved.

6.3.10 Learning Dynamics

�e setup of the elicitation game and the learning mechanisms outlined in Sections 6.3.1
to 6.3.8 enable the learner to bootstrap an e�ective and e�cient communication system in
the form of a construction grammar. �e learning dynamics of the elicitation game can be
summarised as follows.

Whenever the learner cannot complete the interaction acting as the listener, the tutor re-
veals the answer to the question it asked. �is is e�ectively the tutor’s intention, as the
tutor wanted the learner to come up with a network in comprehension, use it in inter-
pretation and ultimately end up with that answer in mind. Meta-level diagnostics and
repairs become active in order to expand the learner’s construction inventory. In particu-
lar, using intention reading, the learner hypothesises about a semantic network that leads
to the provided answer in the current scene. �e reconstruction of meaning is a huge
search problem. �erefore, the learner relies on multiple sources of information, namely
the observed u�erance, the current scene, past experiences, known constructions and the
answer to the question given by the tutor. Nevertheless, the reconstructed meaning might
be incorrect. A�erwards, the reconstructed meaning is paired with the observed u�erance.
Pa�ern �nding is used to look for di�erences and similarities between this newly created
form-meaning pairing and previously acquired constructions. Di�erent pa�ern �nding
strategies are implemented for learning either holophrase constructions, item-based con-
structions, or lexical constructions. Simultaneously, a network of grammatical categories
modelling slot-and-�ller relations emerges. �e cognitive capacities of intention reading
and pa�ern �nding are tightly interwoven. Speci�cally, intention reading relies on the
partial analyses provided by previously acquired constructions (if any) to constrain its
search space, while pa�ern �nding relies on the result of intention reading to create con-
structions and compositional generalisations over them. �e alignment dynamics create
a positive feedback loop between the use and success of constructions. �is ensures that
constructions that can be used successfully become highly entrenched, while unsuccess-
ful and competing constructions become less entrenched and eventually disappear. �e
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alignment mechanism thus enables the agent to eventually remove constructions with in-
correctly reconstructed meanings since these cannot be used to successfully complete the
communicative task. �e memory mechanism added to intention reading allows to recon-
struct a di�erent, more accurate meaning, taking past experiences into account.

Importantly, the presented learning mechanisms do not posit a build-in bias towards more
abstract constructions. However, more abstract constructions are inherently applicable in
a wider range of situations and will therefore be used more frequently. Due to the align-
ment dynamics, this will result in higher entrenchment scores for more abstract construc-
tions and in lower scores and generally fewer less abstract constructions. On the contrary,
the learner will only learn new constructions when it cannot complete the game with its
current construction inventory. Hence, a�er a series of elicitation games, the learner’s
construction inventory will consist of a blend of abstract and less abstract constructions,
speci�cally tailored for the communicative task at hand.

6.4 Experiments

�is section presents the experimental results obtained in the elicitation game. First, in
Section 6.4.1, I describe a number of metrics for evaluating the learner and comparing dif-
ferent strategies. Next, Section 6.4.2 presents the main results in terms of these metrics. By
default, the tutor uses the baseline strategy (see Section 6.3.9). However, in section 6.4.3, I
present the e�ects of the probabilistic tutoring strategy. All experiments are implemented
using the Babel so�ware package (see Section 2.2.4). Unless otherwise speci�ed, the pre-
sented results are based on ten independent runs of 250,000 interactions each. �e �lled
areas around the lines on the plots represent the 5th and 95th percentile.

6.4.1 Metrics

�e learning process during the elicitation game is evaluated through four quantitative
metrics that were introduced by Doumen et al. (forthcoming) and one additional metric
introduced here:

• Communicative success over time is computed by comparing the listener’s answer
to the speaker’s intended topic. If both the speaker and the listener could complete
the interaction through routine processing and the listener’s answer is correct, the
interaction is assigned a value of 1. In all other cases, the interaction is assigned
a 0. �us, if the learner requires meta-layer reasoning and learning to complete
the game, if the listener’s answer is incorrect, or if the listener fails to provide an
answer the interaction has failed. �ere is a single exception to this scheme, which
is the repair strategy that extends the categorial network. If this repair was used,
the interaction can still be counted as a success if the answer is correct because this
particular repair strategy does not require any external information or feedback. �e
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1’s and 0’s returned by the communicative success metric are plo�ed using a sliding
window of 100 interactions.

• Grammar size over time is computed by counting the number of constructions in
the learner’s construction inventory a�er every interaction.

• Number of constructions per type over time also counts the constructions in the
learner’s inventory, but divides them into three groups: holophrase constructions,
lexical constructions and item-based constructions.

• Active repair strategies over time keeps track for each of the repair strategies
whether it was used in the current interaction. �is is recorded as a 1, if it was
active, or a 0, if it was not active. �ese values are plo�ed using a sliding window of
250 interactions.

• Grammatical categories and links over time keeps track of the number of nodes
and the number of edges in the learner’s categorial network.

6.4.2 Main Results

�e metrics just introduced are presented for the elicitation game in Figures 6.15 to 6.19.

Communicative Success

Figure 6.15 shows the communicative success (solid teal line on the le� y-axis) and the
grammar size (dashed yellow line on the right y-axis) as a function of the number of games
played (x-axis). Figure 6.15a shows all 250,000 interactions, whereas Figure 6.15b zooms
in on the �rst 25,000 interactions.

Both the communicative success and the grammar size start at 0, as the learner starts
with an empty construction inventory. However, the communicative success rises quickly,
with 78.7% of the interactions being successful a�er only 5,000 interactions, rising to 98.9%
a�er 10,000 interactions. �is is a remarkable achievement as the learner only could have
observed half of the 10,044 unique questions that can be u�ered by the tutor. Indeed,
in every interaction, the discourse roles of the agents are randomly decided with equal
probability and thus, in only half of the interactions is the tutor chosen as the speaker,
allowing the learner to observe some u�erance. Evenmore, as the u�erances are randomly
sampled by the tutor, there is no guarantee that the tutor will u�er a novel u�erance when
it is the speaker.

A�er 25,000 interactions, when the learner hasmost likely observed all possible u�erances,
the communicative success is over 99.9% and it remains so until the end of the experiment.
Depending on where exactly the sliding window of the communicative success is com-
puted, the success does not completely converge to 100% a�er 25,000 interactions. �is is
because it takes a large number of interactions for all incorrect hypotheses (i.e. incorrect
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constructions) to be removed from the construction inventory, which occasionally causes
an interaction to fail. �is is due to the tutor’s baseline strategy, presenting u�erances in
random order. In order to remove some incorrect construction, the learner would need
to observe a relevant u�erance in just the right scene such that the interaction fails and
the construction is punished. Even more, this would need to occur several times such that
the incorrect construction is punished enough times and its score reaches zero such that it
gets removed from the construction inventory, without any successful interactions using
that construction in the meantime.
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(a) Overview of all 250,000 interactions.
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(b) Zooming in on the �rst 25,000 interactions.

Figure 6.15: Evolution of the communicative success (solid teal line on le� y-axis) and
the grammar size (dashed yellow line on right y-axis). Both metrics rise very quickly.
Communicative success rapidly converges, while it does take a very long time to get rid of
all incorrect form-meaning mappings, as indicated by the much slower decline in grammar
size.

Grammar Size

�e evolution of the grammar size shown in Figure 6.15 clearly shows that it takes a large
number of interactions to converge to a stable construction inventory. At �rst, there is
an explosion of constructions. A�er 5,000 interactions, on average 1,048 constructions
were learned. At this point, the construction inventory contains many competing con-
structions. For example, holophrase constructions or lexical constructions with the same
form, or item-based constructions with form pa�erns that subsume one another. Due to
the alignment dynamics, the construction inventory gradually reduces in size, reaching
on average 491.9 constructions a�er 25,000 interactions. �e rate of decrease is rapid at
�rst but decreases as the experiment progresses. �e construction inventory reaches on
average 149.3 constructions a�er 250,000 interactions. It is important to note that it is not
the goal to learn one particular set of constructions. For example, the learner will not be
evaluated on whether its construction inventory is identical, or even has the same number
of constructions as the tutor’s inventory. Instead, the goal of the learner is to be successful
at the communicative task and learn an e�cient construction inventory for doing so. �is
is exactly what the learner achieves, as shown by the metrics in Figure 6.15.
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Number of Constructions per Type
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(a) Overview of all 250,000 interactions
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(b) Zooming in on the �rst 10,000 interactions

Figure 6.16: Evolution over time of the number of construction per type, including
holophrase constructions (solid teal line), item-based constructions (dashed yellow line)
and lexical constructions (do�ed red line).

Figure 6.16 breaks down the evolution of the grammar size per construction type. A com-
plete picture is provided in Figure 6.16a, while Figure 6.16b zooms in on the �rst 10,000
interactions. A distinction is made between holophrase constructions (solid teal line), lex-
ical constructions (dashed yellow line) and item-based constructions (do�ed red line).

At the start of the experiment, only holophrase constructions are learned. Soon a�er, the
learner is able to generalise over them and create both item-based and lexical constructions.
�ere is an abundance of item-based constructions, with as many as 837.6 constructions on
average a�er 5,000 interactions. As more general item-based constructions are applicable
in a wider number of cases, they become dominant and take over their less abstract com-
petitors. �is is clearly seen in Figure 6.16a by the rapid decline of item-based construction
from interaction 5,000 onwards. At the end of the experiment, a�er 250,000 interactions,
there are on average 85.2 item-based constructions remaining.

�ere is less competition among the lexicon constructions, steadily climbing to 26.4 con-
structions a�er 5,000 interactions and reaching on average 32.5 constructions a�er 10,000
interactions. �is number only increases slightly, to 32.8 constructions on average, at the
end of the experiment. �e theoretical limit of 35 lexical constructions was reached in four
out of ten experimental runs. In these four cases, there are generally fewer item-based
constructions (67.8 compared to 96.8 in the other six runs) because the additional lexical
constructions allow for more generalisations. I argue that the theoretical limit of 35 lexical
constructions is not consistently achieved due to the interplay between the (random) order
in which questions are observed and the restriction to minimal di�erences employed by
some of the pa�ern �nding strategies. I discuss this ma�er more in depth in light of the
experimental results concerning the grammatical categories and links.

�e number of holophrase constructions keeps rising for the �rst 5,000 interactions, reach-
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ing 184 on average. A�erwards, however, there is a slow decline in holophrase construc-
tions as the agent learns to combine item-based constructions and lexical constructions to
cover the same u�erances. Nevertheless, the holophrase construction have not yet com-
pletely disappeared a�er 250,000 interactions. �ere are still on average 31.3 holophrase
constructions remaining.

Active Repair Strategies
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(a) Overview of all 250,000 interactions
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(b) Zooming in on the �rst 25,000 interactions

Figure 6.17: Active repair strategies over time. Note that the y-axis only goes up to 0.5
because most repairs are applied when the learner acts as the listener, which is in half of
the interactions.

Figure 6.17 presents the active repair strategies over time. Figure 6.17b focusses on the �rst
25,000 interactions. Note that the y-axis in this �gure goes up to 0.5 since most repairs are
active when the learner acts as the listener, which is in half of the interactions. �e repair
strategy that generalises over holophrases (dashed yellow line) contains the subtitution
variant, the addition variant and the deletion variant. �e partial analysis repair strategy
was split up, depending on whether the partial analysis contained at least an item-based
construction (dark-blue dash-do�ed line) or only lexical construction(s) (do�ed red line).

�e �gure clearly highlights several stages during learning. At �rst, the repair strategy
for learning holophrases is most active. With only a few holophrases, the learner is al-
ready able to generalise over some of them. �is results in a spike for the partial analysis
repair using lexical constructions. �e few lexical constructions that are learned at this
point seem to appear in many newly observed u�erances, allowing the agent to use them
in partial analyses. During this spike, the repair strategies for learning holophrases and
generalising over holophrases are also still active, but they are in decline. �ese repair
strategies now only apply to u�erances that do not contain any of the already learned lex-
ical constructions. Together with the holophrase generalisation repair, the partial analysis
repair strategy with lexical constructions causes item-based constructions to �ourish, as
was seen in previous �gures. �is now allows for a new stage in learning where the par-
tial analysis repair with item-based constructions and the repair extending the categorial
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network becomemore active. Once enough item-based constructions and lexical construc-
tions are in place, due to the other repairs, the repair for extending the categorial network
becomes most active and is su�cient to handle all problems diagnosed by the learner. In
other words, su�cient item-based and lexical constructions where learned, but now it is
only a ma�er of learning which �llers can be used in which slots. A�er 25,000 interactions,
nearly all interactions are handled by routine processing. Either one of the partial analysis
repairs or the repair for extending the categorial network sporadically apply. In case of the
former, this is due to an incorrect construction that took a large number of interactions
to be removed from the linguistic inventory, as discussed before. Once this happens, new
construction(s) need to be learned to take its place and cover the observed u�erance. For
the la�er repair strategy, this is due to the learner acting as the speaker and exploring a
new slot-�ller combination, or due to a previously unobserved slot-�ller combination that
occurs in comprehension. In the second case, this does not necessarily mean that the ut-
terance triggering the repair was observed for the �rst time. Instead, it can also mean that
some holophrase construction or less abstract item-based construction was just removed
from the construction inventory and a more abstract item-based construction has taken
over its role. �e slot-�ller combination that was previously covered by other construc-
tion(s) now also needs to be covered by this more abstract construction, hence requiring
the repair strategy for extending the categorial network.

Grammatical categories and links
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Figure 6.18: Evolution over time of the number of nodes (solid teal line, le� y-axis) and
edges (dashed yellow line, right y-axis) in the categorial network.

�e categorial network captures the slot-and-�ller relations between item-based construc-
tions and lexical constructions. It is gradually built up during the experiment through
the application of the repair strategies. Entrenchment scores on these relations are incre-
mented a�er a successful comprehension or production process. Figure 6.18 shows the
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evolution of the number of nodes and the number of edges in the categorial network over
the course of 250,000 interactions. Near the start of the experiment, there is an explosion of
nodes, which is consistent with the previously discussed results. Consequently, the num-
ber of edges also rises quickly. Over time, the number of nodes decreases as the number of
item-based constructions goes down. �e links in the network also decrease, but to a lesser
extend as more slot and �ller relations are discovered. �is is indicated by the spike of the
repair for extending the categorial network in Figure 6.17. At the end of the experiment,
there are on average 213.1 nodes and 1164.9 links between them.

A fragment of the categorial network resulting from one experimental run is shown in
Figure 6.19. �e entrenchment scores were omi�ed from the �gure for readability. Nodes
which have links to many common nodes are drawn such that they are closer together.
�ereby, this �gure highlights the similarity between grammatical categories that has
emerged during the experiment and is captured through the distribution of links between
nodes. For instance, on the top le�, there is a cluster of grammatical categories which
captures plural nouns depicting the shape of objects. For example, the argument pro-
vided by the ����������� can be used to �ll three slots in three di�erent item-based
constructions. �ese are the ‘?x’ slot in the ��������?��?�������������, the ‘?x’ slot in
the���������������?��?��?��?��������������� and the ‘?x’ slot in the ���������?��
�������������. Other arguments that are compatible with all three aforementioned ‘?x’
slots are those provided by the �����������, the ���������, etc.

Even within a cluster of nodes, there can still be subtle di�erences. For example, the cluster
on the top right captures the grammatical categories for conceptual categories. However,
the argument provided by the ��������� seems to be compatible with a number of di�er-
ent slots compared to the arguments of the ������������, ��������� and ��������. A
similar pa�ern is in found in the cluster in the middle of the �gure for the arguments of
the ��������� and ���������� as compared to the arguments of the ��������, ��������,
����������, ������������ and the ���������.

�e cluster on the bo�om of Figure 6.19 captures adjectives used to describe properties of
objects from the CLEVR dataset, i.e. material, colour and size. �ese are grouped together
in the same cluster of grammatical categories as many slots of item-based constructions
are compatible with multiple of the arguments provided by these types of constructions.
For example, the ‘?x’ slot in the �����������?��?����� is compatible with, among others,
the arguments of the ���������, the ������� and the ���������.

�e four clusters shown in Figure 6.19 have emerged in four out of ten experimental runs.
�is corresponds with the theoretical maximum of 35 lexical constructions that were also
learned in four out of ten runs. In the other six runs, it is always the cluster of gram-
matical categories capturing conceptual categories (top right) that is missing. I argue
that this is due to the interplay between the random order in which questions are ob-
served and the restriction tominimal di�erences employed by some of the pa�ern �nding
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Figure 6.19: Fragment of the categorial network constructed throughout the experiment.
Entrenchment scores on links have been le� out for readability. Four distinct clusters of
grammatical categories have emerged.
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strategies. Because of this restriction, generalisations that capture conceptual categories
would need to be learned through pa�ern �nding over holophrase constructions of the
kind ������������������<NP>���� and �����������������<NP>����, where <NP>
is a placeholder for a fully-instantiated, variable-length noun phrase such as ‘green cube’,
‘large metal sphere’, ‘tiny purple rubber block’, etc. However, due to the design of the
CLEVR questions, holophrase constructions which have a minimal di�erence concerning
the shape, colour, size or material of objects and have identical conceptual categories are
more common than holophrase constructions which have a minimal di�erence concerning
the conceptual categories and have identical shapes, colours, sizes and materials. �ere-
fore, in four out of six experimental runs, the agent can more rapidly acquire item-based
constructions of the kind ������������������<?X>����, where <?X> is a placeholder
for a variable number of slots, compared to an item-based construction of the kind�����
?X��������<NP>����. A�er learning such a construction, it becomes more di�cult to
learn a ��������� due to the design of the pa�ern �nding strategies and speci�cally the
lack of strategies that can generalise over item-based constructions. Additionally, there
are more opportunities for learning generalisations over shapes, colors, sizes and materi-
als as compared to conceptual categories since the former occur in all types of questions,
while the la�er are only part of the type of questions for querying a�ributes of objects.
Li�ing this minimal di�erence restriction is crucial for further scaling the pa�ern �nding
strategies and is part of future work.

6.4.3 Probabilistic Tutor Strategy

�e main di�erences between the tutor’s baseline strategy and the probabilistic strategy
are illustrated in Figure 6.20. In this �gure, the tutoring strategies are compared across the
metrics introduced in Section 6.4.1.

Figure 6.20a, which compares the communicative success, shows that the agents are more
successful in communicating early on in the experiment when the tutor uses its proba-
bilistic strategy. For instance, a�er 5,000 interactions, there is communicative success in
78.7% of the interactions using the baseline strategy as compared to 85.7% when using the
probabilistic strategy. However, a�er 10,000 interactions, this di�erence has disappeared
and the agents reach a stable level of communicative success. From interaction 25,000
onwards, the communicative success does not drop below 99.9%.

Figures 6.20b to 6.20e compare the tutoring strategies with respect to the number of con-
structions, either aggregate or per type. �e probabilistic tutor strategy allows the learner
to converge to a stable construction inventory more rapidly. Additionally, there is less
competition between constructions during learning, indicated by the smaller peak at the
start of the experiment in Figure 6.20b. In other words, by using the probabilistic tutor
strategy, the tutor is helping the learner to remove incorrect constructions more rapidly
from its construction inventory. �is is easily explained by the characteristics of this tu-
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(c) Number of holophrase constructions
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(d) Number of lexical constructions

0

100

200

300

400

500

600

700

800

900

1000

0 50000 100000 150000 200000 250000

N
um

be
ro
fI
te
m
-B
as
ed

C
on
st
ru
ct
io
ns

Number of Games
baseline tutor probabilistic tutor

(e) Number of item-based constructions

Figure 6.20: Comparing the tutor’s baseline strategy (solid teal lines) to the probabilistic
strategy (dashed yellow lines) across several metrics. �e probabilistic strategy allows for
faster convergence and more abstraction, resulting in fewer constructions.
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toring strategy. Speci�cally, the tutor keeps track of which u�erances are di�cult for the
learner (i.e. o�en lead to unsuccessful interactions) and repeats these u�erances more
o�en. �is allows the learner to acquire one or several constructions that can correctly
handle those u�erances. Once the correct constructions have been learned, the tutor’s
statistics are still trailing behind. �ese u�erances, which can now be handled success-
fully, will still be observed several times before the probability for sampling this question
decreases. �is allows the newly acquired constructions to be used several times and be-
come strongly entrenched. Additionally, this allows the competing constructions to be
removed more rapidly from the construction inventory, thereby explaining the more rapid
decrease in grammar size.

Table 6.2: Comparing the number of constructions learned a�er 250,000 interactions across
both tutor strategies.

Holophrase Lexical Item-Based All

Baseline 31.3 32.8 85.2 149.3
Probabilistic 24.5 (-6.8) 34.0 (+1.2) 74.6 (-10.6) 133.1 (-16.2)

�e probabilistic tutor strategy allows for slightly more generalisations over constructions.
�is is illustrated through Table 6.2, comparing the number of constructions at the end
of 250,000 interactions across both strategies. On average, the learner is able to acquire
slightly more lexical constructions. In seven out of ten experimental runs, the theoretical
maximumof 35 lexical constructionswas learned. For the baseline strategy, this was in four
out of ten runs. Together with the competing constructions being removedmore e�ciently
from the construction inventory, the larger amount of lexical constructions also allows for
fewer item-based constructions, as these will be more abstract and cover a wider range
of u�erances. However, it is important to note that the total number of constructions,
as indicated in Table 6.2, is not the end goal of the experiment. Rather, it is about the
evolution of the size of the construction inventory and being able to successfully complete
the communicative task between agents.

6.5 Conclusion

In this chapter, I have presented the third and �nal experiment of this dissertation. �e
theoretical and empirical foundations of this experiment can be found in usage-based the-
ories of language acquisition (Section 6.2.1). Speci�cally, the cognitive capacities of inten-
tion reading and pa�ern �nding, as introduced by Tomasello (2003, 2009b), are central in
this chapter. Both intention reading and pa�ern �nding have been investigated through
several computational models (Section 6.2.2). �e experiment presented in this chapter
pushes forward the state of the art in three ways. First, it not only investigates intention
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reading and pa�ern �nding separately, but focusses on how these processes jointly facili-
tate language acquisition. Second, the experiment takes place on a much larger scale than
previous work. �ird, the agent relies on much fewer sca�olds as compared to previous
work. Crucially, the goal of the experiment is not to construct a realistic computational
model of how children acquire language through intention reading and pa�ern �nding.
Instead, the goal is to construct a mechanistic model of these cognitive capacities such
that they can be used by an intelligent, autonomous agent in order to acquire a commu-
nication system in the form of a construction grammar. In the experiment, as described
in Section 6.3, intention reading and pa�ern �nding have been implemented through IRL
and FCG, respectively. Concretely, intention reading consists of composing primitive cog-
nitive operators, provided to the agent, into semantic networks that allows to infer the
interlocutor’s intentions. Pa�ern �nding consists of di�erent strategies for analysing dif-
ferences and similarities across form and meaning, and thereby learn compositional gen-
eralisations over constructions. �is extends earlier work by Doumen et al. (forthcoming).
Together with alignment dynamics, intention reading and pa�ern �nding are provided
as meta-level learning operators. Together with a tutor agent, who has an established
communication system, the learner agent plays the elicitation game. �is game models
an interactive version of the visual question answering task and relies on data from the
CLEVR dataset. Over the course of many such games, the meta-level learning operators
allow the agent to gradually shape its construction inventory such that it becomes e�-
cacious for the communicative task. �e agents’ communication is evaluated through a
number of quantitative metrics (Section 6.4). �ese convincingly show that the agent is
able to gradually shape an e�ective and e�cient communication system, in the form of
a construction grammar, together with an emergent network of grammatical categories.
�e grammar can be used successfully for both language comprehension and production
in order to solve the communicative task of visual question answering.

6.5.1 Contributions

�is experiment directly contributes to the primary objective of this dissertation (O1).
Speci�cally, it introduces adequate representations and learning mechanisms in order to
acquire both the morpho-syntactic and semantic structures underlying linguistic u�er-
ances. �e representations used by the agents are constructions, a network of grammati-
cal categories and procedural representations of meaning. �e learning mechanisms take
the form of repair strategies, acting on the agent’s meta-level and intervening whenever
the agent’s current construction inventory is unable to complete a comprehension or pro-
duction task. �ey are based on the cognitive capacities of intention reading and pa�ern
�nding (Tomasello, 2003, 2009b) and on alignment dynamics (Garrod and Doherty, 1994;
Pickering and Garrod, 2006). Together, these representations and learning mechanisms
allow to agent to acquire a productive communication system that can be used to solve a
challenging communicative task (O2), in this case visual question answering on the CLEVR
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dataset.

�e contribution and potential impact of this chapter spans �ve areas:

• Evolutionary Linguistics �e origins, emergence, evolution and acquisition of
grammar is a focal point of the research within the language game paradigm. Prior
language game experiments have studied the constructivist co-acquisition of syn-
tax and semantics (Gerasymova and Spranger, 2010; Beuls et al., 2010; Spranger and
Steels, 2015). However, the experiment presented in this chapter advances the state
of the art in two ways. First, it operates on a much larger scale, using u�erances
of considerable complexity both in terms of morpho-syntax and semantics, and it
does not focus on a speci�c linguistic phenomenon, such as the Russian aspectual
system (Gerasymova and Spranger, 2010), the Hungarian agreement system (Beuls
et al., 2010) or English spatial language (Spranger and Steels, 2015). Second, there
are fewer sca�olds in the experiment compared to prior work. For instance, the
agent does not receive a prede�ned lexicon as in Beuls et al. (2010) or a taxonomy
of semantic concepts that guides the generalisation process of constructions as in
Spranger and Steels (2015). In this experiment, the agent only receives a number
of primitive cognitive operators and a repertoire of semantic concepts.�e la�er are
not used to steer generalisation processes and could also be acquired through the
methodologies outlined in Chapter 4 or Chapter 5.

• Usage-based Language Acquisition. Similar to the work by Doumen et al. (forth-
coming), the experiment presented in this chapter provides computational evidence
for the cognitive plausibility of theories from usage-based language acquisition, in
particular Tomasello (2003)’s intention reading and pa�ern �nding. By operational-
ising these cognitive capacities and their interplay in an agent-based simulation,
learning dynamics that are similar to those observed in the psycholinguistics liter-
ature (i.a. Pine and Lieven (1997); Tomasello (2003); Ambridge and Lieven (2015))
have been revealed. Speci�cally, starting out with holistic mappings between form
and meaning, the agent learns to generalise over them compositionally, resulting in
more abstract item-based and lexical constructions, along with a network of gram-
matical categories that captures the distribution of item-based slots and their lexical
�llers.

• Construction Grammar. Also similar to Doumen et al. (forthcoming), the ex-
periment supports the theoretical underpinnings of the �eld of construction gram-
mar (see Section 2.3.1 for the basic tenets). It provides a computational account
on the representation, processing and learning of form-meaning mappings, or con-
structions. �ese constructions capture all linguistic knowledge of the agents in
a dynamic system that gradually becomes conventionalised through an entrench-
ment process that corresponds with statistical pre-emption (Goldberg, 2011) or self-
organisation through lateral inhibition (Steels, 1995). �e constructions are all sit-
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uated on the lexicon-grammar continuum, ranging from fully concrete construc-
tions, e.g. holophrase constructions, to more abstract constructions, e.g. item-based
constructions. �e achieved degree of abstraction gives a unique insight into the
compositional and non-compositional aspects of the learned language through the
pa�ern �nding strategies. Next to constructions, a network of construction-speci�c
and functionally motivated grammatical categories emerges, in the spirit of Cro�
(2001)’s radical construction grammar.

• Visual �estion Answering. �e elicitation game models an interactive version
of the task of visual question answering. As discussed in Section 5.2, VQA is typi-
cally tackled in one of three ways: (i) monolithic approaches (i.a. Gao et al. (2015);
Ren et al. (2015); Ma et al. (2016)), (ii) modular neural network approaches (i.a. An-
dreas et al. (2016b); Johnson et al. (2017b); Hu et al. (2017a, 2018); Mascharka et al.
(2018); Bahdanau et al. (2019)) or (iii) neuro-symbolic approaches (i.a. Yi et al. (2018);
Mao et al. (2019); Han et al. (2019)). All of these approaches rely on huge amounts of
training data. �e �rst approach is easily deceived by statistical biases or shows poor
generalisation, as shown by Agrawel et al. (2016); Goyal et al. (2017); Manjunatha
et al. (2019); Das et al. (2019). �e second approach typically overcomes these issues
but o�en requires semantically annotated questions in order to train a model to per-
form semantic analysis on the question. �is data is not always available. Finally,
black-box architectures are used in most of the aforementioned models, making it
unclear how and why a particular answer was given. �e methodology presented
in this chapter stands in stark contrast with these approaches to VQA. Similar to
the monolithic approaches, the agent is only presented with scenes, questions and
their answers. No examples of semantically annotated questions need to be pro-
vided since the agent autonomously discovers the actions required to compute the
answer through a process of meaning creation. Furthermore, the presented method-
ology is much more data-e�cient, as very high levels of success are achieved a�er
a single epoch (i.e. observing every possible question just once), and the agent’s
representations and reasoning processes are completely transparent and human-
interpretable. Finally, the agent’s communication system is completely open-ended
and operates bidirectionally using the same representations and processing mecha-
nisms, an achievement that cannot be matched by the previously cited works.

• Intelligent Systems. Most importantly, this chapter pushes forward the state of the
art in the development of autonomous, intelligent agents with human-like commu-
nication systems (Mikolov et al., 2016; Shah et al., 2019). In particular, this chapter
introduces a novel methodology that allows an intelligent agent to acquire an inven-
tory of constructions that is suitable for solving a communicative task through sit-
uated communicative interactions with indirect supervision only. Indeed, the agent
never directly observes the exact form-meaning mappings that should be learned
nor the meaning underlying any of the u�erances. Given only u�erances, feedback
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on their underlying intentions and a collection of primitive cognitive operators, the
agent engages in a highly non-trivial process ofmeaning creation, i.e. intention read-
ing, and combines this with a process of form-meaning abstraction, i.e. pa�ern �nd-
ing. Cooperatively, these processes allow to bootstrap a successful communication
system. �e presented methodology is completely transparent, both in terms of the
applied learning strategies and the resulting inventory of constructions. �rough
the online and incremental learning approach, the agent acquires useful linguistic
knowledge even a�er a single interaction. Moreover, as there is no separation be-
tween a training phase and an operational phrase, the alignment dynamics enable
the agent to remain ever-adaptive, for example when the environment or the com-
municative task should change. �is chapter thus paves the way for autonomous,
intelligent agents that incrementally learn a human-like communication system in
the form of a large-scale, open-ended grammar that facilitates both language com-
prehension and production and solves a particular communicative task, in this case
visual question answering.

Together with the previous chapters, this chapter completes the major objectives of this
dissertation in that it provides adequate representations and learning mechanisms that
enable autonomous agents to acquire linguistic structures on the conceptual, morpho-
syntactic and semantic level that are suitable for solving communicative tasks in their
environment and that bring to bear the key desirable properties of human languages, such
as robustness, �exibility, adaptivity, learning e�ciency and expressivity. �ese representa-
tions and learningmechanisms have been validated on challenging communicative tasks in
concrete environments, speci�cally the task of visual questions answering on the CLEVR
dataset (Johnson et al., 2017a). Apart from completing this objective, this chapter also ties
together all previous chapters. Speci�cally, it o�ers a methodology for learning construc-
tions through situated interactions, instead of manually designing them, as was done for
the CLEVR grammar (Chapter 3). A collection of semantic concepts was provided here
as a sca�old, but these can also be learned from the environment through discrimination
(Chapter 4). Alternatively, instead of using the agent’s perception which operates on the
symbolic level, it could also operate on both the symbolic and the sub-symbolic level using
hybrid procedural semantics (Chapter 5).
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7.1 Introduction

�e primary objective of this dissertation, as laid out in Chapter 1, was to introduce novel
representations and learning mechanisms that enable autonomous agents to acquire lin-
guistic structures on the conceptual, morpho-syntactic and semantic level, that are suitable
for solving communicative tasks in the agents’ environment, and that bring to bear the key
desirable properties of human languages, such as robustness, �exibility, adaptivity, learn-
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ing e�ciency and expressiveness. �e representation, processing and learning of linguistic
structures on the conceptual level allows agents to link their low-level sensorimotor expe-
riences to higher-level symbolic concepts that are meaningful in the environment and for
the communicative task and can be used for reasoning, while structures on the morpho-
syntactic and semantic level allow agents to convey information on how these concepts
interact and how they can be used to dampen referential ambiguities through grammar.

�e presented representations and learning mechanisms are intended to advance the state
of the art in the development of autonomous agents with human-like communication sys-
tems. Prior work in this area was either limited in terms of the complexity of the developed
communication systems (Doumen et al., forthcoming) (i.a. Dominey (2006); Chang (2008);
Gaspers and Cimiano (2014); Abend et al. (2017)), applied to speci�c linguistic phenom-
ena (Doumen et al., forthcoming) (i.a. Gerasymova and Spranger (2012); Spranger (2017);
Beuls et al. (2010)), or had di�culties in capturing the conditions in which human lan-
guages emerge and evolve (i.a. Das et al. (2017b); Foerster et al. (2016); Lazaridou et al.
(2016b); Mordatch and Abbeel (2018)), which has important repercussions on the emerged
languages (Van Eecke and Beuls, 2020). In contrast, the novel representations and learning
mechanisms presented in this dissertation operate on a larger scale compared to previ-
ous work on learning communication systems through task-based, situated interactions,
both in terms of the complexity of the input and the linguistic phenomena considered.
Additionally, they focus on the key desirable properties of human communication sys-
tems, and, from a computational point of view, are designed to be transparent and human-
interpretable. In turn, the developments in agent-based human-like communication sys-
tems allow for more advanced experiments on the emergence and evolution of languages,
especially in the direction of grammars, and facilitate the development of more capable in-
telligent autonomous agents that can interact among themselves or with humans through
natural language.

In Chapter 2, I have situated the primary objective within the cultural perspective on lan-
guage evolution, and more speci�cally within the language game paradigm (Steels, 1995).
�is paradigm tackles the question of how linguistic conventions can emerge through lo-
cal interactions and coordination in a population of autonomous agents that are situated
in their native environment. I have presented constructions, i.e. conventionalised form-
meaning mappings, and procedural cognitive semantics, i.e. algorithmically executable
representations of meaning, as two representations that play a central role in achieving the
objectives of this dissertation. I introduced Fluid Construction Grammar (FCG) and Incre-
mental Recruitment Language (IRL) as powerful formalisms that allow to computationally
represent, process and learn constructions and procedural semantic representations, re-
spectively. By exploiting principles from evolutionary systems, that are well known for
solving problems in a manner that is robust, �exible and adaptive to the environment, the
language game paradigm is aimed at learning human-like communication systems that
exhibit the same key properties. Because of their tight integration within this paradigm
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and by operationalising insights from linguistics and cognition, both FCG and IRL focus
on bidirectional processing on the conceptual and linguistic level that is robust, �exible,
adaptive, e�cient and expressive.

�e secondary objective of this dissertation was to validate the novel representations and
learning mechanisms through case studies that tackle challenging communicative tasks
in concrete environments. In Chapter 3, this objective was anchored in the task of visual
question answering, and more speci�cally using the CLEVR benchmark dataset (Johnson
et al., 2017a). Answering natural language questions about images requires perceptual,
linguistic and reasoning abilities. By placing both the linguistic and reasoning abilities at
the forefront, the CLEVR benchmark task iswell suited for the purposes of this dissertation.

�e representations and learning mechanisms for conceptual, morpho-syntactic and se-
mantic structures introduced in Chapters 4, 5 and 6 are concretely operationalised within
the language game paradigm and tightly integrated with FCG and IRL. By tackling various
aspects of the CLEVR benchmark task, I have shown that the introduced representations
and learning mechanisms allow autonomous agents to acquire communication systems
with which they can solve the visual question answering task and that exhibit many of the
same properties as found in human languages.

In the remainder of this chapter, I present an overview of the achievements of this dis-
sertation in Section 7.2. A�erwards, in Section 7.3, I discuss a number of limitations of
the presented contributions and the avenues of future research that can be pursued by
addressing these limitations.

7.2 Achievements

�e two objectives of this dissertation have materialised into �ve concrete achievements.
�ese are (i) a large-scale computational construction grammar for solving the CLEVR
benchmark task (Section 7.2.1), (ii) a methodology for learning grounded concepts through
discrimination (Section 7.2.2), (iii) a fully explainable grounded language processing sys-
tem applied to visual question answering (Section 7.2.3), (iv) hybrid procedural seman-
tics (Section 7.2.4) and, for the most important contribution, (v) a mechanistic model of
intention reading and pa�ern �nding that allows to learn an open-ended, bidirectional
construction grammar through communicative interactions (Section 7.2.5).

7.2.1 Large-Scale Computational Construction Grammar

I have developed a computational construction grammar with FCG and accompanying
procedural semantic representation with IRL that together solve the CLEVR benchmark
task on the symbolic level. Concretely, the constructions cover all questions of the dataset
in both the comprehension and production direction. In other words, all questions can
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be correctly mapped to their underlying meaning representation and vice versa. �e pro-
cedural semantic representations allow to correctly compute the answer to all questions
when executed on symbolic annotations of the CLEVR scenes. Both the constructions and
the procedural semantic representations were designed on the basis of annotated data pro-
vided with the CLEVR dataset. �eir respective processingmechanisms, i.e. constructional
language processing and evaluation of semantic networks, are completely transparent and
human-interpretable, support the integration of new constructions or primitive cognitive
operators, and do not rely on annotated training data. Because of its 100% coverage and
accuracy, parts of this system can be con�dently re-used in subsequent chapters of this
dissertation as sca�olding or as the gold-standard. �is computational construction gram-
mar corroborates the theoretical underpinnings of the �eld of construction grammar, e.g.
by demonstrating the lexicon-grammar continuum and the tight integration of morpho-
syntax and semantics, and contributes to the scaling of computational construction gram-
mars. In particular, this grammar is one of the �rst grammars that operates on this scale,
covering more than one million u�erances in both directions of processing. It thereby
demonstrates the capabilities of Fluid Construction Grammar for operationalising large-
scale constructionist approaches to language. An interactive web demonstration of the
CLEVR grammar can be found at h�ps://ehai.ai.vub.ac.be/demos/clevr-grammar.

7.2.2 Learning Grounded Concepts through Discrimination

I have presented an interactive learning approach, through the language game paradigm,
which allows an autonomous agent to extract meaningful, symbolic concepts from contin-
uous streams of sensorimotor data and thereby bridge the gap from low-level observations
to higher-level reasoning and communication. �e concept representation is inspired by
prototype theory (Rosch, 1973) and the learning mechanisms extend earlier work within
the language game paradigm (Wellens, 2012). Learning these concepts in terms of con-
tinuous data-streams requires the agent to simultaneously extract relevant features and
determine their prototypical values. �e notion of discrimination plays a central role in
overcoming this learning problem. �rough a series of communicative interactions mod-
elling an object reference task, the agent was tasked with learning the various perceptual
concepts that are present in the CLEVR dataset. �is task was operationalised in two set-
tings which di�er in the sensorimotor data-stream provided to the agent, namely the sim-
ulated se�ing and the noisy se�ing. In both se�ings, the agent could successfully acquire
the perceptual concepts that are present in the CLEVR dataset and use them near-perfectly
in bidirectional communication. Dedicated experiments were set up to investigate various
aspects of the presented approach, including its data-e�ciency, generality, transparency
and adaptivity. �e experimental results have convincingly shown that the approach ex-
hibits these desirable properties and thereby make it highly valuable for the domains of
robotics and interactive task learning, where fast, data-e�cient, and adaptive learning
mechanisms grounded in the environment are crucial. Moreover, the approach advances

https://ehai.ai.vub.ac.be/demos/clevr-grammar
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the research on the emergence and acquisition of conceptual systems within the language
game paradigm.

7.2.3 Fully Explainable Grounded Language Processing System

I have demonstrated the integration of grounded, symbolic concepts in a higher-level rea-
soning task. Concretely, an agent equipped with the CLEVR grammar uses the acquired
repertoire of concepts from the previous experiment to ground the lexical items occurring
in the CLEVR questions in its sensorimotor data streams. �is integration constitutes a lan-
guage processing system that is fully explainable, ranging from the low-level perception
and categorisation to the higher-level language processing and reasoning. �is integration
was evaluated through the CLEVR benchmark task. On the one hand, the evaluation has
revealed that inaccuracies in the acquired concepts can propagate and accumulate through
the semantic networks, and highlighted the crucial role of the feature extraction process
prior to the concept learning methodology. On the other hand, the evaluation has demon-
strated that the system will only produce answers when it can con�dently infer them,
and yielded results that are competitive with state-of-the-art approaches in the simulated
se�ing.

7.2.4 Hybrid Procedural Semantics

I have presented hybrid procedural semantics as a methodology that elegantly and �exibly
combines the strengths of symbolic operations on structured data with sub-symbolic op-
erations on unstructured data through procedural semantic representations. Speci�cally,
primitives operating on the sub-symbolic level are operationalised by small and modular
neural networks that perform classi�cation or semantic segmentation tasks directly on im-
age data. �ese are combined with primitives operating on the symbolic level performing
higher-level reasoning tasks on structured representations. �e modular neural networks
are highly specialised such that each network corresponds to one particular concept that is
grounded in image data. Additionally, each neural module produces human-interpretable
outputs in the form of symbolic labels (i.e. through classi�cation) or image masks (i.e.
through semantic segmentation). �ese two aspects greatly enhance the system’s over-
all transparency since the source of potential reasoning errors can be more easily traced
back to one speci�c neural network and the output of these neural networks can be visu-
ally inspected. Furthermore, by separating each concept in distinct, yet modular, neural
networks, the repertoire of available concepts can be easily expanded without needing to
retrain or adjust existing components. Evaluation of hybrid procedural semantics on the
CLEVR benchmark task resulted in a level of accuracy that is competitive with state-of-
the-art approaches which, crucially, do not possess the aforementioned highly desirable
properties. Given its dependency on trained neural modules, the hybrid procedural se-
mantics approach is adequate for operationalising transparent and explainable processing
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in intelligent systems that tackle a speci�c task.

7.2.5 Mechanistic Model of Intention Reading and Pattern Finding

For the most important achievement of this dissertation, I have developed a mechanistic
model of the cognitive capacities of intention reading and pa�ern �nding, as described by
Tomasello (2003, 2009b). �is mechanistic model allows an autonomous agent to incre-
mentally and e�ciently acquire an open-ended grammar, in the form of an inventory of
constructions, that is well suited for solving a communicative task. Concretely, a learner
agent is provided with a number of primitive cognitive operators, which serve as the build-
ing blocks of meaning, and human-interpretable learning operators that implement inten-
tion reading, pa�ern �nding and entrenchment dynamics. �ese learning operators are
operationalised using the agent’s meta-level architecture. Together with a tutor agent,
the learner engages in a language game where they ask and answer questions to each
other, called the elicitation game. When a game cannot be completed, the learner’s meta-
level operators kick in. On the one hand, intention reading allows the agent to hypoth-
esise about a possible meaning underlying an observed question. �is is implemented in
IRL through the composition of cognitive operators into a semantic network that allows
to infer the interlocutor’s intention. �e addition of a memory component that stores
past experiences to IRL’s composer mechanism was crucial in order to overcome incorrect
meaning hypotheses. On the other hand, pa�ern �nding consists of a number of strategies
for generalising over observed questions and reconstructed meanings, and for capturing
a network of emergent grammatical categories. �ese strategies are based on work by
Doumen et al. (forthcoming) and have been extended to incorporate intention reading.
Speci�cally, the pa�ern �nding strategies allow the agent to transition from holophrastic
mappings between forms and meanings to item-based and lexical mappings, which pro-
vide insights into the compositional and non-compositional aspects of the language. �e
agent’s meta-level tries out several of these strategies in order to extend the agent’s inven-
tory of constructions, such that it is be�er suited for future question answering and covers
not only the observed questions, but also similar novel ones.

�e major challenge in the acquisition of a construction grammar through communicative
interactions is the search space faced by intention reading, as this consists of every pos-
sible meaning that could underlie an u�erance in the given context. �is search space is
in�nitely large and di�cult to navigate. Moreover, only indirect supervision is available
as the agent can only observe the context, the u�erance and the interlocutor’s intention,
but never the underlying meaning.

I have argued, and shown through the presented experiments, that it is the interplay of
intention reading and pa�ern �nding that allows to overcome this challenge. Speci�cally,
intention reading provides meaning hypotheses, which are necessary for bootstrapping
the pa�ern �nding strategies. In turn, generalisations made through pa�ern �nding allow
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for a partial understanding of previously unobserved u�erances. �e partial meanings �x
part of the search space faced by intention reading, thereby reducing the search problem.
Combined with mechanisms that model the entrenchment of constructions, this allows
the agent to overcome competing form-meaning hypotheses, keep constructions that can
be used successfully in communication and discard unsuccessful constructions, and thus
gradually shape an e�ective and e�cient construction grammar that is adequate for solv-
ing the communicative task, namely asking and answering questions.

In sum, I have presented a number of transparent and human-interpretable learning mech-
anisms that together model the cognitive capacities of intention reading and pa�ern �nd-
ing, and entrenchment dynamics. �ese allow the agent, which is only equipped with a
number of primitive cognitive operators, to engage in the highly non-trivial processes of
meaning reconstruction and schema abstraction in order to learn a communication system
in the form of a construction grammar that solves the communicative task in the environ-
ment. Similar to Doumen et al. (forthcoming), these cognitive capacities have been im-
plemented as truthfully as possible with respect to Tomasello (2003)’s work and the same
outcomes as empirically observed have been obtained. �ereby, this experiment provides
computational evidence for the cognitive plausibility of these theories. Also similar to
Doumen et al. (forthcoming), the experiment demonstrates how the operationalisation
of theoretical �ndings from the �eld of construction grammar result in a computational
account of usage-based construction grammar learning. Finally, and most importantly,
the experiment pushes forward the state of the art in the development of human-like
communication systems for autonomous agents and paves the way for future intelligent
agents that can acquire sophisticated communication systems with human-like properties
through communicative interactions.

7.3 Limitations and Avenues for Future Research

In this section, I discuss a number of limitations of the achievements presented in Section
7.2, together with avenues for future research that come within reach by building further
on my contributions and addressing these limitations. Concretely, I discuss (i) the integra-
tion of my achievements (Section 7.3.1), (ii) the evaluation of the agent’s representations
and learning mechanisms from an end-user’s perspective (Section 7.3.2), (iii) the extension
of methodologies for learning conceptual structures beyond visual concepts (Section 7.3.3),
(iv) the transition from language acquisition to language emergence experiments (Section
7.3.4), (v) the problem of determining the symbolic/sub-symbolic boundary in hybrid sys-
tems (Section 7.3.5) and (vi) the scaling of the mechanistic model of intention reading and
pa�ern �nding, in terms of the language, modality and complexity of the input (Section
7.3.6).



248 CHAPTER 7. CONCLUSIONS

7.3.1 Integration

One direction of future research consists in the integration of the methodologies for learn-
ing conceptual structures and for learningmorpho-syntactic and semantic structures. Con-
cretely, both the grounded concept learning methodology of Chapter 4 and the hybrid
procedural semantics approach of Chapter 5 can be integrated with the methodology for
learning construction grammars from Chapter 6. Integrating these methodologies, par-
ticularly Chapters 4 and 6, would allow to investigate a number of questions concerning
the interplay of learning concepts and learning grammars. For example, should the visual
concepts be acquired prior to the acquisition of grammatical structures or should these
learning processes overlap? Should there be feedback loops between the learning mecha-
nisms for these two types of linguistic structures? How does the conceptualisation of the
environment in�uence the learning of grammatical structures? Should semantic categories
that group together related concepts be learned separately, or do they emerge through lan-
guage use during grammar learning? Using the CLEVR dataset as an example, integrating
these methodologies would constitute a language acquisition experiment where the agent
learns both (i) an open-ended repertoire of human-interpretable visual concepts from con-
tinuous, sensorimotor data, and (ii) an e�ective and e�cient open-ended, bidirectional
grammar that can be used to ask and answer questions about the objects in the environ-
ment. �e results of these experiments may further contribute to a be�er understanding
of the mechanisms underlying language acquisition through situated, communicative in-
teractions and their operationalisation in autonomous agents.

7.3.2 Evaluating Explainability

As part of the primary objective of this dissertation, I focus on representations and learning
mechanisms that are designed to be transparent and human-interpretable. �is explain-
ability is considered from a technical perspective. Speci�cally, throughout my contribu-
tions, I have made use of symbolic feature structures, sets of predicates, networks, and
numerical values representing normal distributions, scores, probabilities, etc. �e sym-
bolic structures make use of symbols that are meaningful from a human observant per-
spective and the numerical structures can be straightforwardly interpreted in terms of the
task or the environment. �is in contrast to, for example, neural networks where addi-
tional procedures need to be ran in order to visualise and interpret the weights of trained
networks. What was not considered in this dissertation is the viewpoint of Explainable
Agency (Langley et al., 2017), where an agent actively explains its own decisions and rea-
soning processes, or an end-user perspective, e.g. a person interactingwith an autonomous
agent that acquires a grammar through intention reading and pa�ern �nding. In case of
the former, I argued that the use of symbolic structures facilitates this explanation process.
�e la�er, namely whether end-users �nd the agent’s representations useful and are able
to interpret what the agent is learning, would require additional evaluation, e.g. through
questionnaires and user studies. �is could be pursued in future research in collaboration
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with experts in the �eld of human-robot interaction or digital media and society.

7.3.3 Beyond Visual Concepts

Both methodologies for learning conceptual structures (Chapter 4 and Chapter 5) focus on
visual concepts. To expand the communicative capabilities of autonomous agents, future
research could build further on these methodologies in order to go beyond visual concepts.

In terms of Chapter 4, the same methodology could be explored for learning concepts
that are based on function, audio or timing rather than visual perception. �ese kinds
of concepts are o�en learned prelinguistically and require operationalising the presented
methodology in a richer environment where these other modalities are available, e.g.
through virtual reality where all aspects of the environment can be exactly parametrised.

�e hybrid procedural semantics methodology of Chapter 5 can be extended to incorpo-
rate multiple sources of information. In one such extension, developed by Verheyen et al.
(submi�ed), the hybrid procedural semantics methodology has been extended from a Vi-
sual �estion Answering task (Antol et al., 2015) to a Visual Dialogue task (Das et al.,
2017a). In this task, the system has to keep track of the information that is incrementally
conveyed during a dialogue. �is information is stored in a symbolic data structure, called
the conversion memory, that explicitly and incrementally represents the information that
is expressed in subsequent turns of a dialogue. �e strength of hybrid procedural seman-
tics is that is allows to elegantly and �exibly reason over perceptual observations and the
conversation memory simultaneously. A similar extension could focus on combining in-
formation from images with large-scale knowledge graphs. Such an extension exploits the
strengths of hybrid procedural semantics for tasks that require reasoning over perceptual
observations and ontological knowledge. �e results of both of these experiments may
contribute to the growing body of work in arti�cial intelligence that tackles tasks through
a combination of sub-symbolic processing over unstructured data and symbolic reasoning
over structured data (see e.g. Yi et al. (2018); Manhaeve et al. (2018, 2021); Dumančić et al.
(2019); Mandi et al. (2020); Badreddine et al. (2022); van Krieken et al. (2022).

7.3.4 From Language Acquisition to Language Emergence

In Chapters 4 and 6, I have set up language game experiments that focus on the acquisition
of visual concepts and construction grammars, respectively. �ese experiments were set
up in a tutor-learner scenario, where a tutor has an established communication system
and a learner is tasked with learning linguistic structures that allow it to communicate
successfully with the tutor. Such a se�ing allows to investigate and operationalise the
learning mechanisms that allow the agent to acquire a speci�c linguistic phenomenon.
With these learning mechanisms in place, future work can address the emergence of vi-
sual concepts and construction grammars. Emergence experiments study how linguistic
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phenomena can originate, spread, evolve and become conventionalised in a population of
autonomous agents where none of these agents has an established communication sys-
tem from the start (see also Section 2.2.2). In terms of the concept learning methodology
of Chapter 4, a population se�ing would give the agents the freedom to select relevant
combinations of feature channels for each concept. �ey are less bound to the concepts
known by the tutor in a tutor-learner scenario. As a consequence, they might come up
with feature combinations that do not necessarily correspond to visual concepts that are
used in English, such as colours and shapes. �is is not a problem in itself, as long as
the concepts the agents come up with are well suited for the communicative task in the
environment. Extending the construction grammar learning experiment of Chapter 6 to a
population se�ing introduces a number of questions and challenges, most notably about
how morpho-syntactic and semantic structures originate and evolve. �ese questions can
be investigated through the language game experimental paradigm, and by taking inspira-
tion from usage-based models of language (e.g. Tomasello (2003)), grammaticalisation (e.g.
Hopper and Traugo� (2003)) or other methodologies and processes from linguistics. �e
results of all of these experiments may contribute to a be�er understanding of the mech-
anisms through which natural languages can be acquired, emerge, and evolve through
communicative interactions, and how human-like communication systems can be opera-
tionalised in autonomous agents.

7.3.5 Symbolic/Sub-Symbolic Boundary

�e hybrid procedural semantics methodology presented in Chapter 5 is one of a growing
number of systems that combines sub-symbolic processing over unstructured data (here
image-processing neural networks) with symbolic processing over structured data (here
higher-level reasoning) (see also Section 5.2.2). �ese approaches are aimed at providing
more explainable systems that can perform symbolic reasoning while integrating with and
maintaining high performance on perceptual tasks. �e challenging aspect in developing
these hybrid systems is where to draw the boundary between the two levels of processing.
�e view that was presented in Chapter 5 argues for using sub-symbolic processing for
low-level perception tasks, while using symbolic processing for all higher-level reasoning.
�e sub-symbolic level thus abstract away over the perceptual level and provides meaning-
ful symbols, which the symbolic level can use for reasoning. However, a limitation of the
operationalisation presented in Chapter 5 is that it does not completely re�ect this view.
For instance, a separate neural module ����� is trained for determining the arity of a set of
objects, with the ����� and �����modules rely on that module, while the ������������
module operates on the symbolic level. However, it is somewhat counter-intuitive to oper-
ationalise a counting operation on the sub-symbolic level, especially considering the fact
that all objects have already been observed by another module, namely �����������. An
important avenue of future research thus consists in shi�ing the symbolic/sub-symbolic
boundary to be�er re�ect the ideas presented in Chapter 5. Shi�ing this boundary requires
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taking into account the trade-o� between performance and explainability, especially on
the sub-symbolic level. Concretely, �e use of sub-symbolic processing for a larger por-
tion of the task might increase the overall performance, as neural networks are generally
able to achieve high levels of accuracy on perceptual tasks, but the overall explainability
of the system is reduced. In contrast, using sub-symbolic processing for a smaller portion
of the task shi�s more responsibility to the symbolic reasoning component, and thereby
increases the overall explainability. In general, inconsistencies in the reasoning process
should be avoided at all cost. �ese can occur when results of sub-symbolic procedures
contradict each other on the symbolic level, regardless of whether these results are correct
or not.

7.3.6 Scaling Intention Reading and Pattern Finding

Many exciting experiments that build further on the methodology for learning construc-
tion grammars (Chapter 6) can be pursued. In particular, I discuss three avenues for future
research. Broadly speaking, each of these avenues addresses the scaling of the presented
methodology, either in terms of the language of the input, the modality of the input or the
complexity of the input.

A �rst avenue of future research concerns the language of the input. Speci�cally, given
that the presented learning mechanisms have been developed and tested using the English
questions from the CLEVR dataset, they rely on the strict word order that is used in English
in order to identify di�erences and similarities across constructions. �is poses an issue
for applying the exact same learning mechanisms to other languages with less strict word
order or languages where other markers, such as case, number or gender, are used to
indicate which words in an u�erance belong together. In future work, pa�ern �nding
mechanisms that also take these other markers into account can be developed in order to
increase the applicability of themechanistic model of intention reading and pa�ern �nding
to di�erent languages.

A second avenue of future research concerns the modality of the observed u�erances.
Speci�cally, the form side of constructions is represented using a textual representation, in
particular sets of predicates that capture tokens from the u�erance and adjacency relations
between them. However, the problem that children face in terms of pa�ern �nding is far
more di�cult, as they observe u�erances in terms of speech signals. In future work, the
mechanistic model of intention reading and pa�ern �nding can be extended to include
speech signals. �is will require algorithms that can identify and extract di�erences and
similarities across those signals, and make compositional generalisations over them. �e
challenge here is that two speech signals are never exactly the same, and thus adequate
similarity metrics are necessary to compute these generalisations. �is avenue of future
research can be pursued in collaboration with experts in the �eld of signal processing.
Moreover, future research in this direction contributes to a growing body of work onmulti-
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modal construction grammar (see e.g. Steen and Turner (2013); Zima and Bergs (2017);
Ho�mann (2021)).

A third avenue of future research consists in scaling the complexity of the inputs. While
already operating on a larger scale, relying on fewer sca�olds and considering inputs of
greater complexity compared to prior work (see Section 6.2.2), the presented methodol-
ogy could not be applied to the entire CLEVR dataset. Scaling the complexity of the input
can be achieved by presenting u�erances with more complex morpho-syntactic structures
on the one hand, and providing the agent with a larger inventory of primitive cognitive
operators on the other hand. �e la�er is used to build more complex semantic struc-
tures. �e introduction of more complex inputs requires technical advances both in terms
of intention reading and pa�ern �nding. In terms of intention reading, the chunking of
semantic networks (see Section 2.4.6) would gain a more important role. �rough chunk-
ing, the agent can learn conventionalised ways of construing semantics and use these
in order to reduce the search space faced by intention reading. Chunking strategies, i.e.
choosing which semantic (sub)network to conventionalise, together with entrenchment
dynamics over chunks would need to be developed. In terms of pa�ern �nding, more
advanced strategies that support the acquisition of modular and recursive constructions
are necessary. Speci�cally, modular constructions are constructions in which slots can
be �lled by other constructions which have slots themselves. Consequently, a recursive
construction is construction where the open slots can be �lled by the construction itself.
Moving towards modular and recursive constructions requires li�ing the restriction that
is currently applied to pa�ern �nding, namely that generalisation can only occur when
a minimal di�erence between form and meaning (i.e. a di�erence of a single predicate)
is found. In fact, this restriction could already be li�ed in experiments for construction
grammar learning from annotated corpora (Doumen et al., forthcoming), where both form
and meaning are provided as input and thus intention reading is not necessary. �ere, it
has allowed the agent to make more generalistions with fewer observations and to acquire
modular and recursive constructions. In terms of the experiment presented in Chapter
6, the question would be how these more powerful generalisation capabilities cope with
possibly incorrect meaning hypotheses that intention reading generates. �e aforemen-
tioned mechanisms, namely chunking andmodular constructions, are undoubtedly related
and further experiments would also shed light on their interaction. Finally, when scaling
to more complex morpho-syntactic and semantic structures, another aspect that is cru-
cial is the ability to compute generalisations over them on the technical level. Concretely,
both form and meaning are represented as unordered sets of predicates that are declar-
atively combined by sharing variables (see Section 2.3.4). �e algorithm for computing
di�erences and similarities is currently restricted to certain kinds of structures, e.g. sets of
predicates where the variable links do not introduce cycles. However, cycles do occur in
more elaborate semantic networks, e.g. in the CLEVR dataset. A more general approach
for generalising over semantic networks would be to operationalise the process of anti-
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uni�cation, which allows to �nd the least general generalisation (LGG) over two symbolic
expressions. While most approaches focus on anti-uni�cation over ordered symbolic ex-
pressions, here, anti-uni�cation over unordered sets of predicates is required, e.g. as in
Yernaux and Vanhoof (2019, 2022). In terms of pa�ern �nding, the LGG corresponds to
the similarities across two semantic networks, while the symbols or predicates that the
anti-uni�cation process generalises over can be used to identify the di�erences between
the two semantic networks.

In sum, the avenues for future research that are described above include bothmethodologi-
cal innovations and technical advances, andmay further extend the powerful methodology
for learning sophisticated communication systems with human-like properties through
communicative interactions to include multiple languages, multiple modalities and the ac-
quisition of more complex morpho-syntactic and semantic structures.

7.4 Final Remarks

In my dissertation, I have introduced novel representations and learning mechanisms
that allow autonomous agents to acquire linguistic structures on the conceptual, morpho-
syntactic and semantic level. �e agents incorporate these linguistic structures in commu-
nication systems that exhibit highly desirable properties also found in human languages,
such as robustness, �exibility, adaptivity, learning e�ciency and expressiveness. More-
over, from a computational point of view, the introduced representations and learning
mechanisms are transparent and explainable in human-interpretable terms, thereby al-
lowing to more easily validate their internal correctness and consistency, and elicit trust. I
am con�dent that the proposed representations and learning mechanisms as developed in
this dissertation can serve three main purposes. First, the developments in terms of (com-
putational) construction grammar, such as contributing to the scaling of computational
construction grammars and the methodology for usage-based learning of construction
grammars, contribute to and accelerate the wide-spread use of constructionist approaches
to language in many sub-�elds of linguistics, such as historical linguistics, language ac-
quisition, evolution and change, language learning and teaching, and psycholinguistics,
and corroborate many of the theoretical �ndings of the �eld. Second, my contributions
can lead to more advanced agent-based experiments on the origins, emergence and evo-
lution of natural languages in the �eld of evolutionary linguistics, especially concerning
grammatical structures. In turn, these experiments allow to gain more insights into hu-
man languages and cognition, and contribute to the hypothesis that linguistic structures
are emergent through gradual evolutionary processes taking place during communicative
interactions. Finally, this dissertation contributes to the development of future intelligent
systems where autonomous agents interact among themselves or with human interlocu-
tors through natural language in order to solve a particular task, such as visual question
answering systems, conversational agents, personal assistants, human-robot interaction
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systems and intelligent tutoring systems. In these systems, truly intelligent communicative
behaviour can only be obtained through precise mechanistic models of the mechanisms
underlying the acquisition and evolution of human languages, which is exactly what the
representations and learning mechanisms presented in this dissertation contribute to. By
building further on these contributions, the next wave of intelligent systems will have ro-
bust, bidirectional language processing capabilities that are tailored to the environment,
support an open-ended set of tasks, remain ever-adaptive to a changing environment, and
can explain their own reasoning processes.
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Dumančić, S., Guns, T., Meert, W., and Blockeel, H. (2019). Learning relational represen-
tations with auto-encoding logic programs. In 28th International Joint Conference on
Arti�cial Intelligence, IJCAI 2019, pages 6081–6087. International Joint Conferences on
Arti�cial Intelligence.

Dunbar, R. (1998). �eory of mind and the evolution of language. In Approaches to the
Evolution of Language, pages 92–110. Cambridge University Press, Cambridge.

Dunn, J. (2017). Computational learning of construction grammars. Language and Cogni-
tion, 9(2):254–292.

Dunn, J. (2018). Modeling the complexity and descriptive adequacy of construction gram-
mars. In Proceedings of the Society for Computation in Linguistics (SCiL) 2018, pages
81–90.

Evans, J. S. B. (2003). In two minds: dual-process accounts of reasoning. Trends in cognitive
sciences, 7(10):454–459.

Faghri, F., Fleet, D. J., Kiros, J. R., and Fidler, S. (2017). VSE++: Improving visual-semantic
embeddings with hard negatives. arXiv preprint arXiv:1707.05612.

Feldman, J., Dodge, E., and Bryant, J. (2009). Embodied Construction Grammar. In Heine,
B. and Narrog, H., editors, �e Oxford Handbook of Linguistic Analysis, pages 121–146.
Oxford University Press, Oxford.

Ferber, P., Helmert, M., and Ho�mann, J. (2020). Neural network heuristics for classical
planning: A study of hyperparameter space. In 24th European Conference on Arti�cial
Intelligence, pages 2346–2353.

Fillmore, C. (1976). Frame semantics and the nature of language. In Annals of the New York
Academy of Sciences: Conference on the origin and development of language and speech,
volume 280, pages 20–32. New York.

Fillmore, C. J. (1988). �e mechanisms of “construction grammar”. In Annual Meeting of
the Berkeley Linguistics Society, volume 14, pages 35–55.

Fillmore, C. J. and Baker, C. F. (2001). Frame semantics for text understanding. In Proceed-
ings of WordNet and Other Lexical Resources Workshop, NAACL, volume 6.

Fitch, W. T. (2000). �e evolution of speech: a comparative review. Trends in cognitive
sciences, 4(7):258–267.

Fitch, W. T. (2010). �e evolution of language. Cambridge University Press, Cambridge.



264 BIBLIOGRAPHY

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1-2):3–71.

Foerster, J., Assael, I. A., de Freitas, N., and Whiteson, S. (2016). Learning to communicate
with deep multi-agent reinforcement learning. In Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., and Garne�, R., editors, Advances in Neural Information Processing Systems,
volume 29, pages 2137–2145. Curran Associates, Inc.

Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg, B., and Schäfer, U.
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behind

ypos: 108.15, [77.17 - 139.13]
1.00

zpos: 12.30, [10.56 - 14.03]1.00

blue

r: 43.98, [41.68 - 46.28]

1.00

g: 76.10, [73.70 - 78.49]1.00

b: 214.99, [212.72 - 217.26]

1.00

brown

r: 125.94, [123.56 - 128.31]
1.00

g: 71.98, [69.70 - 74.26]1.00

b: 25.00, [22.60 - 27.40]

1.00

cube

nr_of_sides: 6.00, [5.97 - 6.03]
1.00

nr_of_corners: 8.00, [7.97 - 8.03]1.00

Figure A.1: All concepts acquired in one experimental run in the simulated environment.
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cyan

r: 39.96, [37.66 - 42.26]

1.00

g: 208.05, [205.78 - 210.33]1.00

b: 208.06, [205.70 - 210.42]

1.00

cylinder

wh_ratio: 0.51, [0.22 - 0.80]

1.00

nr_of_sides: 3.00, [2.97 - 3.03]1.00

nr_of_corners: 2.00, [1.97 - 2.03]

1.00

front

ypos: 172.41, [117.06 - 227.76]
1.00

zpos: 9.80, [8.16 - 11.44]1.00

gray

r: 86.97, [84.75 - 89.19]
1.00

g: 87.10, [84.81 - 89.39]1.00

b: 86.93, [84.55 - 89.32]

1.00

green

r: 29.02, [26.73 - 31.30]

1.00

g: 104.93, [102.67 - 107.19]1.00

b: 20.01, [17.72 - 22.29]

1.00
large area: 70.65, [52.75 - 88.55]1.00

left

xpos: 162.76, [59.15 - 266.37]
1.00

zpos: 11.39, [8.63 - 14.15]1.00

metal roughness: 8.09, [5.22 - 10.96]1.00

purple

r: 130.01, [127.60 - 132.43]
1.00

g: 39.09, [36.80 - 41.39]1.00

b: 191.97, [189.63 - 194.30]

1.00

red

r: 173.07, [170.74 - 175.40]
1.00

g: 34.04, [31.76 - 36.32]1.00

b: 34.93, [32.71 - 37.15]

1.00

Figure A.1: All concepts acquired in one experimental run in the simulated environment.
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right

xpos: 310.06, [215.31 - 404.81]
1.00

area: 43.79, [5.00 - 82.59]0.50

rubber roughness: 2.05, [-0.56 - 4.67]1.00

small area: 29.62, [12.03 - 47.20]1.00 sphere

nr_of_sides: 1.00, [0.97 - 1.03]
1.00

nr_of_corners: 0.00, [-0.03 - 0.03]1.00

yellow

r: 254.52, [253.26 - 255.79]
1.00

g: 237.94, [235.66 - 240.23]1.00

b: 50.97, [48.72 - 53.21]

1.00

Figure A.1: All concepts acquired in one experimental run in the simulated environment.

behind ypos: 115.40, [83.05 - 147.75]1.00 blue

mean_a: 5.82, [3.02 - 8.61]
1.00

mean_b: -29.33, [-33.02 - -25.65]1.00

brown

mean_a: 9.17, [6.70 - 11.64]
1.00

mean_b: 24.31, [20.74 - 27.88]1.00

cube

wh_ratio: 0.97, [0.56 - 1.38]
0.80

circle_distance: 0.93, [0.86 - 1.01]0.80

Figure A.2: All concepts acquired in one experimental run in the extracted environment.
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cyan

mean_l: 42.16, [31.03 - 53.30]

1.00

mean_a: -31.03, [-36.76 - -25.29]1.00

mean_b: -8.03, [-10.66 - -5.40]

1.00

cylinder

bb_area_ratio: 0.89, [0.72 - 1.05]
1.00

wh_ratio: 0.86, [0.47 - 1.25]0.80

circle_distance: 0.94, [0.89 - 0.99]

1.00

front ypos: 178.43, [124.73 - 232.13]1.00 gray

mean_a: 0.76, [-1.26 - 2.78]
1.00

mean_b: 1.07, [-1.21 - 3.35]1.00

green

mean_a: -35.28, [-39.11 - -31.46]
1.00

mean_b: 24.21, [20.88 - 27.53]1.00

large

width: 79.08, [48.46 - 109.70]

1.00

height: 83.09, [45.68 - 120.51]

1.00

area: 5766.02, [1294.71 - 10237.33]1.00

relative_area: 0.04, [-0.03 - 0.11]

1.00

white_level: 0.01, [-0.06 - 0.08]

0.80

left

mean_a: -4.01, [-52.98 - 44.95]
0.10

xpos: 174.15, [86.05 - 262.24]1.00

white_level: 0.02, [-0.08 - 0.12]

0.20

metal ypos: 146.22, [66.53 - 225.91]0.80

purple

mean_a: 34.04, [29.36 - 38.72]
1.00

mean_b: -24.98, [-28.12 - -21.83]1.00

red

mean_a: 31.64, [27.23 - 36.05]
1.00

mean_b: 16.40, [12.76 - 20.03]1.00

Figure A.2: All concepts acquired in one experimental run in the extracted environment.
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right xpos: 303.14, [217.42 - 388.87]1.00 rubber mean_l: 36.82, [23.50 - 50.15]1.00

small

width: 37.05, [17.16 - 56.93]

1.00

height: 42.44, [22.38 - 62.51]

1.00

area: 1402.83, [75.93 - 2729.72]1.00

relative_area: 0.01, [-0.04 - 0.06]

1.00

black_level: 0.86, [-1.76 - 3.48]

0.90

sphere

bb_area_ratio: 0.81, [0.70 - 0.93]
0.70

wh_ratio: 1.02, [0.70 - 1.34]1.00

circle_distance: 0.84, [0.77 - 0.90]

1.00

yellow

mean_l: 49.33, [37.23 - 61.44]
1.00

mean_a: -6.78, [-10.34 - -3.23]1.00

mean_b: 37.73, [31.57 - 43.88]

1.00

Figure A.2: All concepts acquired in one experimental run in the extracted environment.

cube

nr_of_sides: 6.00, [5.94 - 6.06]
1.00

nr_of_corners: 8.00, [7.94 - 8.06]1.00

cylinder

wh_ratio: 0.51, [0.22 - 0.80]

1.00

nr_of_sides: 3.00, [2.94 - 3.06]1.00

nr_of_corners: 2.00, [1.94 - 2.06]

1.00

sphere

nr_of_sides: 1.00, [0.94 - 1.06]
1.00

nr_of_corners: 0.00, [-0.06 - 0.06]1.00

Figure A.3: Shape-related concept acquired in the simulated environment during the gen-
eralisation experiment.

.
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cube

mean_a: 3.22, [-8.59 - 15.03]
1.00

circle_distance: 0.94, [0.81 - 1.06]1.00

cylinder

mean_l: 35.64, [21.12 - 50.15]

0.40

bb_area_ratio: 0.91, [0.78 - 1.04]
1.00

wh_ratio: 0.76, [0.59 - 0.94]1.00

circle_distance: 0.94, [0.84 - 1.04]

1.00

sphere

bb_area_ratio: 0.81, [0.69 - 0.93]
1.00

circle_distance: 0.83, [0.71 - 0.95]1.00

Figure A.4: Shape-related concept acquired in the noisy environment during the generali-
sation experiment.

.
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Table B.1: Evaluation results of the neural modules on a held-out test set on the CoGenT
dataset (condition A).

Neural Loss Accuracy
Module (BCE) (%)

get-context 0.008 99.36
�nd[blue] 0.001 99.92
�nd[brown] 0.001 99.91
�nd[cube] 0.004 99.78
�nd[cyan] 0.001 99.92
�nd[cylinder] 0.003 99.80
�nd[gray] 0.002 99.91
�nd[green] 0.001 99.92
�nd[large] 0.005 99.59
�nd[metal] 0.004 99.70
�nd[purple] 0.001 99.93
�nd[red] 0.001 99.93
�nd[rubber] 0.004 99.72
�nd[small] 0.002 99.85
�nd[sphere] 0.002 99.85
�nd[yellow] 0.001 99.91
relate[behind] 0.004 99.73
relate[front] 0.005 99.63
relate[le�] 0.003 99.73
relate[right] 0.003 99.74

Neural Loss Accuracy
Module (NLL) (%)

count 0.028 99.47
query[blue] 0.004 99.97
query[brown] 0.004 99.97
query[cube] 0.011 99.86
query[cyan] 0.005 99.95
query[cylinder] 0.007 99.90
query[gray] 0.005 99.96
query[green] 0.006 99.94
query[large] 0.011 99.86
query[metal] 0.007 99.89
query[purple] 0.004 99.96
query[red] 0.005 99.94
query[rubber] 0.009 99.89
query[small] 0.011 99.85
query[sphere] 0.009 99.86
query[yellow] 0.005 99.95
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Table B.2: Evaluation results of the neural modules on a held-out test set on the CoGenT
dataset (condition B).

Neural Loss Accuracy
Module (BCE) (%)

get-context 0.009 99.35
�nd[blue] 0.001 99.92
�nd[brown] 0.001 99.92
�nd[cube] 1.355 81.58
�nd[cyan] 0.001 99.90
�nd[cylinder] 0.872 81.52
�nd[gray] 0.002 99.91
�nd[green] 0.002 99.90
�nd[large] 0.006 99.57
�nd[metal] 0.004 99.69
�nd[purple] 0.002 99.90
�nd[red] 0.002 99.90
�nd[rubber] 0.004 99.70
�nd[small] 0.003 99.84
�nd[sphere] 0.002 99.86
�nd[yellow] 0.001 99.92
relate[behind] 0.004 99.73
relate[front] 0.005 99.62
relate[le�] 0.003 99.73
relate[right] 0.003 99.73

Neural Loss Accuracy
Module (NLL) (%)

count 0.024 99.51
query[blue] 0.006 99.94
query[brown] 0.002 99.99
query[cube] 5.417 33.19
query[cyan] 0.003 99.97
query[cylinder] 5.038 35.77
query[gray] 0.005 99.95
query[green] 0.004 99.96
query[large] 0.012 99.87
query[metal] 0.008 99.89
query[purple] 0.005 99.96
query[red] 0.004 99.95
query[rubber] 0.009 99.88
query[small] 0.009 99.89
query[sphere] 0.006 99.90
query[yellow] 0.003 99.98
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