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Abstract

The emergence of honest (or reliable) signaling is a multi-disciplinary prob-
lem. Linguists and philosophers have long wondered how conventions, such
as human language, can emerge without a pre-existing language. Biologists
noticed that the many signals in nature can only exist because they are hon-
est. Otherwise they would be ignored and so, not worth the trouble sending.
Economists created a real breakthrough by recognizing that many interac-
tions are characterized by private information—where one party knows more
than the other—and signals may, or may not, reveal that information. It
explains, for example, why the free market does not work for health in-
surance: those willing to buy costly insurance are most likely those who
expect to need it the most. I contributed to this research in three domains:
common interest; costly signals; and costly, social punishment.

One reason why signals are honest is common interest: both the sender
and the receiver of the signal benefit from conveying the correct information.
Under common interest, the only question that remains is how a signal
acquires its meaning. One explanation that may also explain the origins of
language is that this happens by chance. My findings support this idea. In
Chapter 3,

e [ introduce a new behavioral rule, called ‘win-stay /lose-inaction’ or
‘WSLI:’ initially play random, repeat forever what was once success-
ful. When two repeatedly interacting players apply WSLI they always
end up signaling honestly in all Lewis signaling games (the standard
game-theoretic model to study the emergence of signaling under com-
mon interest). I prove that the expected number of iterations is only
polynomial in the number of signals. No such algorithm was known
before.

e I show that three well-known reinforcement learning algorithms (Q-

vii
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learning, Roth-Erev learning, and Learning Automata) behave exactly
like WSLI in Lewis signaling games for certain parameter configura-
tions.

e While WSLI is not robust to errors, these reinforcement learning algo-
rithms are robust for certain parameter configurations and still reach
honest signaling in a polynomial number of iterations.

Economists and biologists independently discovered that when inter-
ests conflict signals may be honest if they are costly. This is known as
the ‘handicap principle’ and is almost exclusively studied assuming infinite
populations and by means of static equilibrium analyses—verifying if honest
signaling is an equilibrium while ignoring the dynamics that may or may
not lead to it. In Chapter 4, I apply learning and evolutionary dynamics in
finite populations to the Philip Sidney game:

e In many cases where honest signaling is an equilibrium, it does not
emerge: equilibrium analyses wrongfully predict honest signaling.

e Dynamics reveal (partially) honest signaling in some cases where it
is not an equilibrium: equilibrium analyses fail to predict (partially)
honest signaling.

Costly, social punishment is known to promote the evolution of cooper-
ation but its effect on the evolution of honest signaling is merely studied.
In Chapter 5, I distinguish four ways of deviating from honest signaling:
the sender can lie or be timid and the receiver can be greedy or worried. I
extend the Philip Sidney game to explicitly allow for punishment of such
behavior and study its effect on the evolution of honest signaling:

e When punishment targets lying individuals, honest signaling emerges
also for cost-free signals. So, punishment provides an alternative to
the handicap principle.

e When punishment targets greedy individuals, honest signaling
emerges also in cases with strong conflicts, similar to the punishment
of defectors to promote cooperation.
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e The evolution of honest signaling does not benefit from punishment
of timid or worried individuals.






Samenvatting

Het ontstaan van eerlijke (of betrouwbare) signalen is een probleem in meer-
dere onderzoeksdomeinen. Taalkundigen en filosofen hebben lang gezocht
hoe conventies, zoals menselijke taal, kunnen ontstaan zonder vooraf be-
staande, gemeenschappelijke taal. Biologen hebben ontdekt dat veel signa-
len in de natuur enkel bestaan omdat ze eerlijk zijn. Zoniet zouden ze ge-
negeerd worden en dus nutteloos zijn. Economisten hebben een echte door-
braak teweeg gebracht toen ze ondervonden dat veel interacties gekenmerkt
worden door private informatie—een partij weet meer dan de anderen—en
signalen kunnen eventueel die informatie overbrengen. Het verklaart on-
der andere waarom de vrije markt niet werkt voor ziekteverzekeringen: zij
die een dure verzekering willen betalen zijn juist diegene die vermoeden
het meest nodig te hebben. Ik droeg bij aan dit onderzoek in drie domei-
nen: gemeenschappelijke belangen, kostelijke signalen en kostelijk, sociaal
straffen.

Eén reden waarom signalen eerlijk zijn is gemeenschappelijke belangen:
zowel de zender als de ontvanger van het signaal heeft baat bij het correct
overbrengen van de informatie. Bij gemeenschappelijke belangen is de enige
vraag hoe signalen hun betekenis krijgen. Een verklaring die ook de oor-
sprong van taal kan verklaren is dat dit gebeurt door toeval. Mijn onderzoek
ondersteunt deze verklaring. In Hoofdstuk 3 doe ik het volgende:

e Ik definieer een nieuwe gedragsregel, ‘win-stay /lose-inaction’ of kort-
weg ‘WSLI’: kies willekeurige acties en herhaal voor altijd de eerste
succesvolle actie. Wanneer twee individuen herhaaldelijk interage-
ren en WSLI toepassen, dan zullen ze uiteindelijk optimaal en eerlijk
communiceren in elk ‘Lewis signaling game’ (het standaard spel the-
oretisch model om het ontstaan van signalen bij gemeenschappelijke
belangen te bestuderen). Ik bewijs dat het verwachte aantal interac-
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ties slechts een veelterm is van het aantal signalen. Zo’n algoritme
was nog niet bekend.

e Ik toon aan dat drie bekende ‘reinforcement learning’ (leren door mid-
del van versterking) algoritmes (Q-leren, Roth-Erev leren en leerau-
tomaten) zich identiek gedragen als WSLI in Lewis signaling games
voor bepaalde parameters.

e Terwijl WSLI niet robuust is voor fouten, zijn deze reinforcement
learning algoritmes dat wel voor bepaalde parameters en kunnen ze
nog steeds optimaal communiceren na een veelterm van interacties.

Economisten en biologen ontdekten onafhankelijk van elkaar dat bij te-
genstrijdige belangen signalen toch eerlijk kunnen zijn als ze kostelijk zijn.
Dit staat bekend als het handicap principe. Het is bijna uitsluitend bestu-
deerd in de veronderstelling van oneindige populaties en door middel van
statische analyse van evenwichten—nagaan of het gebruik van eerlijke sig-
nalen in evenwicht is maar negeren of dynamische processen er wel of niet
toe leiden. In Hoofdstuk 4 pas ik dynamische processen, gebaseerd op leren
en evolutie, toe op eindige populaties en het Philip Sidney spel:

o In veel gevallen waar het gebruik van eerlijke signalen een evenwicht
vormt, ontstaat het niet: statische analyse van evenwichten voorspelt
verkeerdelijk het gebruik van eerlijke signalen.

e Dynamische processen leiden tot het (gedeeltelijk) gebruik van eerlijke
signalen in bepaalde gevallen waar het niet in evenwicht is: statische
analyse van evenwichten faalt om het (gedeeltelijk) gebruik van eer-
lijke signalen te voorspellen.

Kostelijk, sociaal straffen staat bekend om samenwerking te bespoedi-
gen maar het effect op het ontstaan van eerlijke signalen werd nauwelijks
bestudeerd. In Hoofdstuk 5 onderscheid ik vier manieren om af te wijken
van het gebruik van eerlijke signalen: de zender kan liegen of te bescheiden
zijn en de ontvanger kan hebzuchtig of overbezorgd zijn. Ik breid het Philip
Sidney spel uit zodat zo’n gedrag expliciet gestraft kan worden en bestudeer
het effect daarvan op het ontstaan van eerlijke signalen:
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e Wanneer leugenaars gestraft worden, kunnen ook goedkope signalen
eerlijk zijn. Dus, straffen is een alternatief voor het handicap principe.

e Wanneer hebzuchtige individuen gestraft worden, ontstaan er eerlijke
signalen in situaties met zeer tegenstrijdige belangen, gelijkaardig aan
hoe straffen van zij die niet meewerken samenwerking bespoedigt.

e Het ontstaan van eerlijke signalen wordt niet geholpen door het straf-
fen van te bescheiden of overbezorgde individuen.
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Chapter 1

Introduction

This chapter introduces the emergence of honest signaling, summarizes my
contributions to the subject, and lists my publications.
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2 CHAPTER 1. INTRODUCTION

1.1 Signaling

Signaling, or conveying information through arbitrary symbols and actions,
is everywhere in nature. Humans signal extensively, not only in the form
of human language but also by means of facial expressions (Ekman, 1992)
and unconscious body movements (Pentland, 2010). Two classic examples
in other animals are the vervet monkey’s alarm calls (Seyfarth et al., 1980)
and the honey bee’s waggle dance (Riley et al., 2005; Von Frisch, 1967).

Example 1.1. When a vervet monkey spots a predator, he uses an alarm
call to warn his group members. Which alarm call he uses depends on
the type of the predator: raptor, snake, or leopard. Vervet monkeys also
respond differently to different alarm calls: for raptors they hide in the
bushes, for snakes they stand up and look around, and for leopards they
quickly climb in the nearest tree.

Example 1.2. Honey bees communicate the direction and distance of flow-
ers to their colony members by performing a so-called ‘waggle dance’ (Fig-
ure 1.1). The bees repeatedly waggle in the direction of the flowers and
go back to their starting position alternately turning left and right. When
the dance is performed on a vertical surface, the upward direction refers to
the direction of the sun and the angle between the upward direction and
the direction of the waggle correlates with the angle between the direction
of sun and the direction of the flowers. The distance from the hive to the
flowers correlates with the duration of the waggle.

Here is a more general description of signaling. Signaling is a interaction
between two agents. One agent, like the monkey that spotted a leopard or
the bee that just discovered flowers full of nectar, has some private infor-
mation: he knows something that the other does not know. The informed
agent can signal to the uninformed one and share his information so that
the uninformed agent can respond appropriately to the current situation.
An agent’s private information is also called his ‘type.’

For clarity, let me contrast this with two examples of what signaling
is not. Conveying information unwillingly is not signaling. For example, a
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Figure 1.1: The honey bees’ waggle dance communicates the location and the di-
rection of flowers to their colony members. See Example 1.2 for more information.
(This figure was reproduced from (Jiippsche, 2011) with slight modifications.)

mouse that moves through the grass and makes noise, gives away its location
to a nearby predator, like a cat. I consider such noise not a signal from the
mouse to the cat, but rather an (unfortunate) side effect of the mouse’s
behavior (moving through the grass). Maynard Smith and Harper (2003)
call this a ‘cue.’

Forcing another agent to behave in some way is not signaling either. For
example, to get someone to leave the room, you can point with your finger
towards the door or push him towards and through the door. The former
is signaling, but the latter is not. Signaling informs the other agent, such
that he decides for himself what the best action is.

Signaling must benefit both the sender and the receiver of the signal.
The receiver must benefit from the information gained otherwise he would
ignore the signal and the signal must generate a response in its receiver that
benefits the sender otherwise he would have no interest in sending signals.
This requires that both the sender and receiver attach the same meaning
to the same signal and that the signals are reliable. This reliability can
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be disrupted if the communication channel is too noisy, which is studied in
information theory (Shannon, 1948), or if the agents are not ‘honest.’

Since this thesis concentrates on honesty, most of it assumes there is no
noise so that the signal that the sender intends to send is exactly the same
as what the receiver observes. Section 3.5 deviates from this setting and
introduces noise, not just in sending and receiving signals but in general.
There is a small probability that an agent misinterprets a situation or makes
a mistake.

Honesty refers to the agents’ intentions. First, the sender’s signals
should correlate with his type, or private information, so that as much
information is revealed as possible. This happens if the sender always uses
the same signal for the same type and every signal is used for only one type.
I will assume that there are exactly as many signals as types so that this
is always possible. If there are too many, some of them could go unused
or synonyms may emerge (Skyrms, 2010, ch. 9). If there are not enough
signals, agents could invent new ones (Skyrms, 2010, ch. 10). Second, an
honest signal should be maximally informative about the receiver’s response
and that response should correspond to the sender’s type. Which response
corresponds to which private information will depend on the exact model,
but in this thesis there will always be a unique one. Again, this assumption
seems reasonable (Skyrms, 2010, ch. 9). If there are too many responses,
some of them will go unused. If there are not enough responses, then there is
no use in distinguishing between some of the types and they can be mapped
to the same signal and response.

This rises two questions:

1. How do arbitrary symbols and actions acquire meaning?
2. Why are signals reliable or honest?

I call these two questions combined: ‘the emergence of honest signaling.’

The emergence of honest signaling is a multi-disciplinary problem. Lin-
guists and philosophers (Lewis, 1969; Skyrms, 2010; Steels, 1999) have long
wondered how conventions, such as human language, can emerge without a
preexisting language.
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Biologists noticed that animal signals can only exist because they are
honest. Otherwise they would be ignored and not worth the trouble sending.
Zahavi (1975, 1977) proposed that signals can be honest if they are costly
to send. The typical example is that of the peacock’s tail (Petrie et al.,
1991).

Example 1.3. The peacock has a large tail that signals his quality as
a parent to potential mating partners. Only the strongest peacocks can
afford the largest tails, because a large tail makes the peacock less agile and
increases the risk of being caught by predators. A large tail is also costly
because it requires a lot of resources that could otherwise be spent to defeat
diseases and parasites. These costs make the signal honest and peahens
trust it: they prefer males with longer tails.

Economists Akerlof (1970) and Spence (1973) created a real break-
through by recognizing that many interactions are characterized by private
information. With an example of the market of second hand cars Akerlof
(1970) illustrates how the free market may collapse under private informa-
tion.

Example 1.4. Higher quality cars deserve a higher price than lower quality
cars; but since the buyer does not know the quality of the second hand car,
a dishonest seller can sell a bad second hand car for the price of a good one.
This motivates buyers to offer a lower price and owners of good second hand
cars will step out of the market because their vehicle is worth more than the
market price. When good quality cars leave the market, the average quality
of a second hand car drops, which lowers the average price offer again, and
so on. In the end, no one is selling his second hand car even though many
buyers and sellers could benefit from trading.

The problem that the quality of the supply decreases with decreasing
price, is called adverse selection and is caused by private information. In
some cases, it can be avoided by signaling. Spence (1973) showed how this
may work in the job market.

Example 1.5. The job market is sensible to adverse selection, because an
employer cannot directly observe a potential employee’s productivity. If he
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decreases the wage offer, he will no longer attract the best candidates. But,
candidates can signal their productivity with a university degree. Education
is costly because of the time spent at university. Less skilled individuals
will not invest in higher education, since they will require too much time to
graduate, while highly skilled individuals need less time. Employers trust
the signal and offer higher wages to individuals with higher degrees.

This thesis contributes to a better understanding of the emergence of
signaling in two ways:

1. How do signals emerge?
2. Why are signals honest?

I first discuss these two problems separately. In the next section, I summa-
rize my contributions.

1.1.1 How do signals emerge?

For a signal to emerge, an otherwise arbitrary symbol or action must acquire
a meaning. It must refer to the same object or concept for both the sender
and receiver of the signal. There are roughly three ways how arbitrary
symbols and actions may acquire meaning: prearrangement, focal points,
and chance.

Some signals have prearranged meanings. The meaning of traffic signs,
mathematical symbols, and hand signals in financial trading floors was de-
cided and agreed upon. Prearrangement requires a preexisting common
language, so it cannot explain the origins of language, the vervet monkeys’
alarm calls (Example 1.1), or the honey bees’ waggle dance (Example 1.2).

Another explanation is that some signals have an obvious or natural
meaning, a so-called ‘focal point’ (Lewis, 1969; Schelling, 1960). When a
dog shows his teeth, the meaning is obvious: he is ready to attack and will
bite if he must. In many cases, the natural meaning requires some common
knowledge and the capacity to interpret the signal’s context. While the
dog showing his teeth, clearly expresses “I will bite you,” a human showing
his, is conveying a more friendly message: “I am happy.” A good example
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of a context-dependent signal is the ‘thumbs up’ sign. Scuba divers use
the signal to indicate they will go back to the surface (Recreational Scuba
Training Council, 2005), a broker on a financial trading floor uses it to
indicate an order is filled (Chicago Mercantile Exchange, 2006), sometimes
it means “I am OK.,” and in other contexts it has still other meanings.

The origins of language and signals such as smiling, can only be ex-
plained as follows: signals acquire their meaning by chance (Skyrms, 2010).
A signal’s meaning is a convention. It does not matter which signal has
which meaning, what matters is that everyone uses the same signal for the
same meaning. This thesis supports this idea and demonstrates on several
occasions how meaning emerges from random processes within learning in-
dividuals (Chapter 3 and Section 4.3) or evolving populations (Section 4.4
and Chapter 5).

1.1.2 Why are signals honest?

All signals observed in nature are honest (on average), because dishonest
signals would be ignored, thus become useless, and finally unused. This
thesis studies three reasons why signals are honest: common interest, costly
signals, and punishment. Szamado6 (2011) lists some extra possibilities.

The most obvious reason is common interest between the sender and
the receiver: it is in the sender’s best interest to correctly convey his infor-
mation and in the receiver’s best interest to correctly respond to the signal.
Common interest is the topic of Chapter 3.

Unfortunately, the interests of interacting agents often conflict. Pursuit-
deterrent signals seem to be obvious examples of signals used in conflict
situations (Hasson, 1991). When a gazelle spots an approaching cheetah,
it stots—jumping up and down in place—instead of running away. Some
birds, like skylarks, sing while hunted by a predator. Singing and stotting
clearly does not help prey to escape predators. On the contrary, it consumes
precious energy and oxygen needed to escape, so they are probably signals
meaning: “Do not bother chasing me. I am so fast I can afford to waste
time and energy by stotting/singing.”

Biologist Zahavi (1975, 1977) and economist Spence (1973) indepen-
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dently discovered that signals can still be honest under conflict of interest
if they are costly. This is known as the ‘handicap principle.” More specifi-
cally, signals must be costly such that, a signal has a lower cost or a higher
benefit when it is used honestly than when it is used dishonestly. A typical
example in biology is the peacock’s tail (Example 1.3) and in economics,
the job market (Example 1.5). Costly signals is the topic of Chapter 4.

Chapter 5 studies the effects of punishment on the emergence of honest
signaling. Punishment, even when costly to the punisher, is known to pro-
mote the evolution of cooperation (Boyd and Richerson, 1992) and may also
promote the evolution of honest signaling provided there is a possibility to
verify whether a signal was truthful or not. An example of punishment in
a signaling context is found rhesus macaques (Hauser and Marler, 1993).

Example 1.6. Rhesus macaques use food calls to alert group members
when food is found. Individuals that find food and refrain from sending
food calls (using the signal ‘quiet’ with the meaning ‘no food’) are punished
by their group members whenever they are discovered.

1.2 Overview and Contributions

The thesis is mostly based on four publications. In the overview below,
I mention which publications relate to each of the chapters. Section 1.3
provides a complete list of my publications.

To study the emergence of signaling, I rely on game theory which is a
mathematical framework that models interactions between agents, such as
signaling, by means of games. Game theory predicts the outcome of an
interaction by identifying equilibria—behavior from which no agent wants
to deviate. Some solution concepts verify equilibria without considering any
dynamics that may, or may not, lead to them, while other solution concepts
rely explicitly on dynamical processes that model learning or evolution.
Chapter 2 provides the minimal background on game theory needed to
understand the rest of the text. In later chapters (for example Chapter 4) I
will contrast the results from learning and evolution with those from static
equilibrium analyses.
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Chapter 3 studies the emergence of signaling under common interest
and is based on

David Catteeuw and Bernard Manderick (2014). “The Limits and
Robustness of Reinforcement Learning in Lewis Signaling Games.”
In: Connection Science 26.2, pp. 161-177.

When both sender and receiver benefit from conveying the correct informa-
tion and responding appropriately, the only question that remains is how a
signal acquires its meaning. My findings support the idea that this happens
by chance, as advocated by Skyrms (2010):

e [ introduce a new behavioral rule, called ‘win-stay /lose-inaction’ or

and

‘WSLI: initially play random and repeat forever what was once suc-
cessful. When two repeatedly interacting players apply WSLI they
always end up signaling honestly in all Lewis signaling games (the
standard game-theoretic model to study the emergence of signaling
under common interest). I prove that the expected number of itera-
tions is only polynomial in the number of signals. No such algorithm
was known before.

I show that three well-known reinforcement learning algorithms (Q-
learning, Roth-Erev learning, and learning automata) behave exactly
like WSLI in Lewis signaling games for certain parameter configura-
tions.

While WSLI is not robust to errors, these reinforcement learning algo-
rithms are robust for certain parameter configurations and still reach
honest signaling in a polynomial number of iterations.

Chapter 4 is based on

David Catteeuw and Bernard Manderick (in press). “Honesty and
deception in populations of selfish, adaptive individuals.” In: The
Knowledge Engineering Review 31.2
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David Catteeuw, Bernard Manderick, and The Anh Han (2013). “Evo-
lutionary Stability of Honest Signaling in Finite Populations.” In:
Proceedings of the IEEE Congress on Fvolutionary Computation. Ed.
by Luis Gerardo de la Fraga and Carlos A. Coello Coello. Cancun,
Mexico: IEEE Computer Society, pp. 2864-2870.

It studies the handicap principle: when interests conflict, signals can be
honest only if they are costly. Whereas most of the literature assumes in-
finite populations and considers only static equilibrium analyses—verifying
if honest signaling is an equilibrium while ignoring the dynamics that may
or may not lead to it—I consider both evolutionary and learning dynamics
in finite populations and find some surprising results:

e In many cases where honest signaling is an equilibrium, it does not
emerge: equilibrium analyses wrongfully predict honest signaling.

e Dynamics reveal (partially) honest signaling in some cases where it
is not an equilibrium: equilibrium analyses fail to predict (partially)
honest signaling.

Costly, social punishment is known to promote the evolution of cooper-
ation but its effect on the evolution of honest signaling is merely studied.
In Chapter 5, based on

David Catteeuw, The Anh Han, and Bernard Manderick (2014a).
“Evolution of Honest Signaling by Social Punishment.” In: Proceed-
ings of the 2014 Genetic and Fvolutionary Computation Conference.
Ed. by Christian Igel and Dirk V. Arnold. Vancouver, BC, Canada:
ACM Press, pp. 1563-160,

I distinguish four ways of deviating from honest signaling: the sender can lie
or be timid and the receiver can be greedy or worried. I extend the Philip
Sidney game to explicitly allow for punishment of such behavior and study
its effect on the evolution of honest signaling:

e When punishment targets lying individuals, honest signaling emerges
also for cost-free signals. So, punishment provides an alternative to
the handicap principle.
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e When punishment targets greedy individuals, honest signaling
emerges also in cases with strong conflicts, similar to the punishment
of defectors to promote cooperation.

e The evolution of honest signaling does not benefit from punishment
of timid or worried individuals.

Chapter 6 provides some discussion and a summary.

1.3 Publication List

The following is my complete publication list at the time of writing, includ-
ing work that does not concern signaling.

Articles in journals

1. David Catteeuw and Bernard Manderick (in press). “Honesty and decep-
tion in populations of selfish, adaptive individuals.” In: The Knowledge
Engineering Review 31.2.

2. David Catteeuw and Bernard Manderick (2014). “The Limits and Robust-
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3. David Cattecuw and Bernard Manderick (2011b). “Heterogeneous Popu-
lations of Learning Agents in the Minority Game.” In: Lecture Notes in
Computer Science, Adaptive and Learning Agents 7113, pp. 100-113.

4. David Catteeuw and Bernard Manderick (2011c¢). “Learning in Minority
Games with Multiple Resources.” In: Lecture Notes in Computer Science,
Advances in Artificial Life 5778. Ed. by George Kampis, Istvan Karsai, and
Eo6rs Szathméary, pp. 326-333.

Articles at international, peer-reviewed conferences
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Chapter 2

(Game Theory

This chapter reviews the necessary background on game theory (Section 2.2)
and learning in games (Section 2.3). Section 2.2 is largely based on the book
of Binmore (2007).
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2.1 Introduction

Signaling is an interaction, in the simplest case, between two agents: a
sender and a receiver. The former has some private information and sends
a signal. The latter observes that signal and responds. The signal may,
or may not, decrease the receiver’s uncertainty about the sender’s private
information and this may help him to choose an appropriate response.

To study signaling, this thesis relies on game theory (Neumann and Mor-
genstern, 1944) which is a mathematical framework to model interactions
between agents (which may be individuals, companies, countries, animals,

..) as games and predict their outcome.

This chapter introduces only those concepts of game theory necessary
to understand the rest of the text. Section 2.2 discusses basic concepts of
games (Section 2.2.1 and 2.2.2), two solution concepts (Section 2.2.3), and
situates signaling games in the broader classes of incomplete information
games and games in extensive form (Section 2.2.4). The former class mod-
els interactions where one or more agents have private information. The
latter class explicitly models sequential interactions, where the agents take
actions one at a time. This thesis studies two well-known signaling games:
the Lewis signaling game (Chapter 3) and the Philip Sidney game (Chap-
ter 4). It also introduces two extensions to these games: the Lewis signaling
game with noise (Section 3.5) and the Philip Sidney game with punishment
(Chapter 5). These are not signaling games but belong to the same class
of incomplete information games. All games in this thesis are two-player
games: one player is the sender, the other is the receiver.

Game theory provides different solution concepts. These are models that
predict a game’s outcome. The classic approach (Section 2.2.3) is to assume
that the agents are fully rational: they have unlimited computing power and
always choose the option that has the best expected outcome. Alternate
approaches do not assume agents are fully rational but only boundedly ra-
tional (Fudenberg and Levine, 1998a; Hart, 2005). They model evolution
(Section 2.3.1) or individual learning (Section 2.3.2). In evolution, popula-
tions of agents evolve, possibly towards rational behavior, while the agents
themselves are blindly executing their genetically determined strategy. In



2.2. GAME THEORY 17

individual learning, agents improve their behavior based on previous expe-
riences applying ‘trial-and-error.” In this thesis, I apply both evolution and
individual learning, and compare the results with the classic approach.

2.2 Game Theory

Game theory models interactions by games. The interacting agents are
called the players. The outcome of an interaction depends on the actions
of all players. Each player has clear preferences for each possible outcome,
but these are not necessarily aligned. For example, in the Lewis signaling
game (Chapter 3), the players’ preferences are perfectly aligned: they have
common interests. In the Philip Sidney game (Chapter 4) the players’
preferences are not always aligned: they may have conflicting interests.
Since your best action generally depends on what the other players do,
deciding what the best action is, is rarely trivial. A player’s preference for
different outcomes is modeled by a payoff function which assigns a payoff, a
real number, to each possible outcome. Higher payoffs are assigned to more
preferred outcomes.
Game theory assumes that all players

e know the rules of the game: the number of players, the possible actions
they have, which actions lead to which outcomes, and all players’
payoffs for all outcomes; and

e are rational.

The latter means players always take the action that will yield the highest
payoff, or, in the case of uncertainty, the action they expect to yield the
highest payoff. Game theory further assumes that the game’s rules and the
fact that all players are rational are common knowledge: everybody knows
it, everybody knows everybody knows it, everybody knows everybody knows
everybody knows it, and so on.

These assumptions are sufficient, but not necessary (Gintis, 2000), to
show that all players will, or should play a strategy that leads to an equilib-
rium outcome. See for example (Aumann and Brandenburger, 1995; Nash,
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1950b). Such outcomes are called ‘equilibria’ because players cannot im-
prove their payoff by deviating from it. Section 2.2.3 gives an example of
an equilibrium: the Nash equilibrium.

There are some problems with equilibria (Fudenberg and Levine, 1998b;
Gintis, 2000).

e The equilibrium selection problem (Harsanyi and Selten, 1988): which
equilibrium should you select if there is more than one?

e Humans do not always play equilibrium behavior and are only bound-
edly rational (Binmore, 2007, sect. 2.9.2).

e Players do not always know each other’s payoffs or preferences so what
is rational according to the game may not be rational from the player’s
point of view.

An alternate explanation is that an equilibrium is the end result of dy-
namical processes—evolution or learning—that maximize payoff by chang-
ing behavior until a stable fixed point (an equilibrium) is reached. I discuss
evolution in Section 2.3.1 and learning in Section 2.3.2.

2.2.1 Games in extensive form

Most interactions have a temporal aspect: actions are not taken simultane-
ously but one at a time. Such interactions are naturally modeled by games
in extensive form.

A game in extensive form or extensive form game is represented by a
tree, such as the one in Figure 2.1. At each non-terminal node of the tree,
one of the players must take an action. Non-terminal nodes are therefore
called ‘decision nodes.” Taking an action at a given node corresponds to
choosing a branch and going to the corresponding child node. At each
terminal node of the tree, the game ends and payoffs are defined for each
player. An outcome of a game corresponds to a path from the initial node
all the way down to a terminal node. It consists of an action at each of the
decision nodes on that path. Chance nodes represent stochasticity in an
interaction, such as rolling dice. They are implemented as decision nodes
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2,1 0,0 0,1 0,2

Figure 2.1: A game in extensive form is represented by a tree. Each non-terminal
node (circles) is labeled with the name of the player (in this case ‘1’ or ‘2’) who
decides which action (or branch) to take. Each terminal node represents a unique
outcome of the game and defines a payoff for each player. The payoffs are listed
in the order in which players appear in the tree (from top to bottom and from left
to right).

of Nature—a special player who does not play strategically but according
to a fixed strategy which is part of the game’s definition.

In Figure 2.1, at the root node, player 1 must choose between actions 0,
T, and B. At the two other decision nodes, player 2 can take either action
L or R. At each terminal node, payoffs are given. The first number is the
payoff for player 1, the second for player 2. So, if player 1 takes action T
and player 2 action L, the outcome of the game is (T,L) and the payoff is 2
for player 1 and 1 for player 2. I use u to represent the payoff function and
subscripts to refer to the payoff of a specific player, for example, u; (T,L) = 2
and u2(0) = 3 in Figure 2.1. For clarity, action names are printed in a
typewriter font.

Perfect vs. imperfect information

If there is a player that cannot uniquely identify all of his decision nodes, the
game is an imperfect information game. Two different nodes which cannot
be uniquely distinguished from each other are in the same information set.
In the game tree, such nodes are connected by a dashed line. Figure 2.2
shows an example of an imperfect information game. In that game, player
2 cannot distinguish between player 1’s actions T and B.
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2,1 0,0 0,1 0,2

Figure 2.2: An imperfect information game. The same game as in Figure 2.1, but
here player 2 does not know whether player 1 took action T or B. Both of player
2’s decision nodes are in the same information set.

When all players know exactly what actions were previously taken in the
game, the game is a perfect information game and the players can uniquely
identify each of their decision nodes. In other words, all information sets
are singletons.

Strategies

Three types of strategies are defined for games in extensive form: pure,
behavioral, and mixed strategies.

e A pure strategy consists of an action at each of a player’s decision
nodes. To avoid confusion, the elements of a pure strategy follow the
order of the decision nodes: from top to bottom and from left to right.
In Figure 2.1 player 2’s pure strategies (LL, LR, RL, and RR) have two
actions: one for his decision following action T and one for his decision
following action B.

e A mixed strategy is a probability distribution over all pure strategies
of a player and is represented by a linear combination. For example,
player 2’s mixed strategy 2/3LL + 1/3RL means he uses pure strategy
LL with probability 2/3 and pure strategy RL with probability 1/3.

o A behavioral strategy is a probability distribution over the actions in
each decision node of a player. For example, player 2’s behavioral
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strategy (2/3L + 1/3R,L) means that after action T he plays action L
with probability 2/3 and action R with probability 1/3 and after action B
he plays always action L. Again, the elements of a behavioral strategy
follow the order of the decision nodes: from top to bottom and from
left to right.

Given a strategy s; for each player ¢ = 1,2,..., M, s = (s1,...,SM)
is a strategy profile and player i’s payoff u;(s) given this strategy profile is
the payoff assigned to the outcome that results when each player ¢ sticks to
his strategy s;. For mixed and behavioral strategies or games with chance
nodes, more than one outcome is possible. In that case, player i’s payoff
u;(s) is the average of his payoff at every outcome weighted by the proba-
bility of each outcome.

This text only uses games with a finite number of players and a finite
number of pure strategies for each player, also called ‘finite games.’

2.2.2 Games in strategic form

Interactions where players act simultaneously and only once are usually
modeled by games in strategic form (also known as normal form). Such
games are represented by an M-dimensional table, where M is the number
of players. An example of a game in strategic form is shown in Figure 2.3.
Along each dimension ¢ = 1,2,..., M are the possible actions of player .
The combined actions of all players lead to a unique outcome with payoffs
for each player given in the corresponding entry of the table.

From extensive to strategic form

In Section 2.2.3 and also further on, I will describe some solution concepts.
These predict how players behave in a game or, from another point of view,
solution concepts advice players how to play. Some solution concepts (such
as the Nash equilibrium, Section 2.2.3) are only, or more easily, defined
for games in strategic form. Luckily, games in extensive form can also be
represented in strategic form.
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2
C D
1 Al11 22
B33 44

Figure 2.3: Two-player game in strategic form. Player 1 has actions A and B.
Player 2 has actions C and D. If player 1 plays action A and player 2 plays action
C, the outcome is (A, C) and both players get a payoff of 1.

LL LR RL RR

13 13 13 13
21 21 00 0,0
01 02 01 02

mw 44 O

Figure 2.4: Strategic form game of the extensive form game with perfect informa-
tion in Figure 2.1.
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2
A B A B
] Al11 23 Al 1 2
Bl32 44 B|] 3 4

Figure 2.5: Symmetric game in strategic form. Left: Standard representation.
Right: Simplified representation, where the names of the player roles are left out
and only the payoffs of the first player are given.

Figure 2.4 shows the strategic form of the game in Figure 2.1. Given a
game in extensive form, its strategic form is defined as follows.

Definition 2.1. The strategic form of a game in extensive form is a game
where:

e The players are the same as in the extensive form.

e The players’ actions correspond to their pure strategies in the exten-
sive form.

e The outcomes’ payoffs are the expected payoffs when applying the
corresponding pure strategies to the extensive form.

The resulting game in strategic form is not necessarily equivalent to the
original game in extensive form (for example (Cooper and Van Huyck, 2003,;
Harsanyi and Selten, 1988; Schelling, 1960; Seidenfeld, 1994)). Converting
a game from extensive form to strategic form may throw away information,
namely, the sequence in which players take actions.

Symmetric games

A game is symmetric if all player roles are equivalent. Figure 2.5 shows a
symmetric, two-player game. Its player roles are equivalent: both play-
ers have the same set of actions {A,B} and the payoff for player 1 for
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outcome (A,B) is the same as the payoff for player 2 for outcome (B,A):
u1(A,B) = wuz(B,A) = 2. The payoff function of a symmetric, two-player
game in strategic form can be given by a matrix with the payoffs of the first
player. I use standard matrix notation in that case: uyp = 2.

From asymmetric to symmetric

Some solution concepts (such as the evolutionarily stable strategy, Sec-
tion 2.3.1) are defined for symmetric games. An asymmetric game must
therefore be made symmetric before such a solution concept can be applied.

Assuming that each player can be in any role with equal probability, it
is easy to define the symmetric version of any asymmetric game (Sigmund,
2010, sect. 2.5).

Definition 2.2. The symmetrized game or the symmetric version of an
asymmetric game is a game where:

e The number of players is the same as in the asymmetric game.

e All players have the same action set: one action per element of the
Cartesian product of the original action sets.

e The payoffs are computed from the original game, assuming that each
player is equally likely to be in each of the player roles of the asym-
metric game.

Figure 2.6 shows an example of an asymmetric game and its symmetric
version with action set {AC, AD,BC,BD} each of which correspond to an ele-
ment of the Cartesian product of the original action sets {A,B} x {C,D} =
{(4,C), (A,D), (B,C), (B,D)}. The payoff for strategy AC against strategy BD

1S
1 1 1 1
UAC,BD 2u1( ) )+ 2u2< 7C> 2 + 20 ’

where u is the payoff function of the asymmetric game and v the payoff
function of the symmetric game.
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> AC AD BC BD

cC D AC 1 15 05 1

1 Al11 20 AD | 05 1 25 3
Bl|30 o04 BC 2 05 15 0
BD | 15 0 35 2

Figure 2.6: Left: Asymmetric game in strategic form. Right: The symmetric
version, simplified as in Figure 2.5, where each player is assumed to be half of
the time in role 1 of the asymmetric game and half of the time in role 2 of the
asymmetric game.

2.2.3 Solution concepts

Given a game, one likes to predict what the players will or should do. Several
solution concepts attempt this. Here, I discuss the Nash equilibrium. Later,
in Section 2.3.1, I also discuss evolutionarily stable strategies.

In the following, s is a strategy profile—a tuple of strategies, one per
player—where each player i plays strategy s; and s_; is a set of strategies
for all players except player i. So, (s—;,s}) is used to indicate that player i
deviates from the strategy profile s: all players j # ¢ play strategy s; but
player ¢ plays strategy sg.l

Definition 2.3. A Nash equilibrium of a game in strategic form is a strategy
profile s in pure or mixed strategies such that every player’s strategy is a
best response to the other players’ strategies: wu;(s) > wi(s—;,s;) for all
players ¢ and strategies s, (Nash, 1950a). A strict Nash equilibrium is a
Nash equilibrium where every player’s strategy is a unique best response:
wi(s) > wi(s—;,s;) for all players ¢ and strategies s;. A Nash equilibrium
that is not strict is sometimes called ‘weak.’

A player may still be able to improve his payoff if more than one player

!This notation is standard in game theory. It is used for example in (Gintis, 2000).
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| .
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Payoff player 2
[ ]

v

Payoff player 1

Figure 2.7: Three Pareto optimal equilibria e, €/, and €” which Pareto dominate
equilibrium e’”.

deviates at the same time. Any finite game, which has a finite number
of players with a finite number of pure strategies, has at least one Nash
equilibrium (Nash, 1950a). Since the Nash equilibrium is defined in pure
or mixed strategies, the Nash equilibria of a game in extensive form are the
same as those of its corresponding strategic form.

Many games have more than one equilibrium. It is not clear, in gen-
eral, which one is preferred, but there is an obvious partial order: Pareto
dominance

Definition 2.4. Equilibrium e Pareto dominates equilibrium ¢’ if none of
the players prefer ¢’ to e but some prefer e to €¢’: u;(e) > u;(e’) for all
players i and wu;(e) > u;(e’) for at least one player i. An equilibrium which
is not Pareto dominated is Pareto optimal.’

For a two-player game, Figure 2.7 shows three Pareto optimal equilibria
e, €/, and €¢” which Pareto dominate equilibrium €.
2.2.4 Private information

In some games, some player may know something right from the start of the
game that the others do not. Those are called games with private informa-

2Pareto optimal is sometimes called ‘Pareto efficient’ and Pareto dominant is some-
times called ‘payoff dominant.’
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tion, also known as incomplete information games. The private information
of a player is called his ‘type’ and the probability distribution over the dif-
ferent types is common knowledge. Just as in imperfect information games,
incomplete information games have at least one information set that con-
tains more than one decision node. Whereas in an imperfect information
game, a player is unable to distinguish different decision nodes, because he
cannot observe all actions; in an incomplete information game, a player is
unable to distinguish different decision nodes, because he lacks some infor-
mation right from the start. Figure 2.8 shows a classification of some games
and game classes according to these information criteria.

Representing incomplete information games

Interactions where one player has private information can be modeled by
letting Nature pick the type of that player before any player takes any action
(Harsanyi, 1967). Figure 2.9 shows an example where Sender has private
information. For each possible type, the root node of the game tree has a
branch and each of these branches is followed by a copy of the same subtree
T representing the actual decision nodes and actions of the players. Players
that cannot distinguish between Nature’s moves will have information sets
connecting all decision nodes occurring on the same position in the different
copies of the subtree 7. The payoffs for each subtree 7 may be different.
This technique can be generalized to games where more than one player has
private information (Harsanyi, 1967).

Adverse selection

The introduction of incomplete information games was a breakthrough for
economics, because such games model a huge set of real-world situations
that could not be captured before: insurance, advertising, and bargaining
are examples where one player has private information. A person seeking
health insurance is better informed about his condition than the insurance
company. A young adult whose family members all have the same genetic
disorder that can only be cured with costly surgery better gets a full-option
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Complete Incomplete
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Figure 2.8: Classification of games according to information. In imperfect infor-
mation games, some players cannot observe all actions. For example, in Stratego,
the players do not see how their opponents initially arranges his pieces. In incom-
plete information games, some players know something that others do not. For
example, in Texas Hold’em Poker, players receive two cards which their opponents
cannot see.
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Nature

t1 t2

Sender Sender

my m;

Receiver Receiver

ry Iy

1.1 0,0 1.1 0,0 0,0 1,1 0,0 1,1

Figure 2.9: A Lewis signaling game—an incomplete information game where Na-
ture decides Sender’s type (t1 or t, with equal probability) before any player takes
an action. Receiver cannot observe this type, so the corresponding nodes of the
two subtrees (following t; and tj) are part of the same information set (dashed
lines).

health insurance, while someone whose grandparents all died of old age
should go for a cheap insurance.

The key problem of private information is adverse selection: the qual-
ity of the supply decreases with decreasing price until the entire market
collapses. Akerlof (1970) introduced this concept with an example of the
market of second hand cars (Example 1.4). Higher quality cars deserve a
higher price than lower quality cars; but since the buyer does not know the
quality of the second hand car, a dishonest seller can sell a bad second hand
car for the price of a good one. This motivates buyers to offer a lower price
and owners of good second hand cars will step out of the market because
their vehicle is worth more than the market price. When good quality cars
leave the market, the average quality of a second hand car drops, which
lowers the average price offer again, and so on.

Adverse selection applies to consumer goods of unknown or hard to de-
termine quality just as to second hand cars. It also applies to insurance and
health insurance in particular (Harford, 2006). If the insurance premium
increases, the most healthy people will no longer take an insurance since
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they expect not to benefit from it and the average cost per client will rise
which in turn may force the insurance company to further increase the pre-
mium. To avoid market failures, health insurance is compulsory in many
countries (Harford, 2006).

In some situations, adverse selection can be avoided by means of sig-
nals. For example, an employer cannot directly observe a potential em-
ployee’s productivity, but the latter can signal his abilities with his educa-
tion (Spence, 1973). This was explained in Example 1.5. Another typical
example is car insurance. Car insurance companies provide a low cost, par-
tial insurance and a high cost, full insurance such that the customer can
signal his risk aversion with his choice (Wilson, 1977).

In the job market example the informed player (the student and po-
tential employee) moves first and signals by acquiring education while the
uninformed player (the employer) responds to the signal by hiring the poten-
tial employee or not. Game theory models such an interaction as a signaling
game. I discuss it in the next section.

In the car insurance market the uninformed player (the insurance com-
pany) moves first by setting insurance options and prices while the informed
player (the car owner) responds and signals by choosing an insurance op-
tion. Game theory models such an interaction as a screening game. This
thesis studies only signaling games. Riley (2001) reviews both signaling and
screening games.

Signaling games

Signaling games (see for example Figure 2.9) are two-player, incomplete
information games, where the first player, called Sender, has some private
information. Nature selects Sender’s type t (his private information) from
set T according to probability distribution 7. I denote the probability of
Sender having type t by m. Sender observes his type t, selects a signal m
from set M, and sends it to the second player, called Receiver, who observes
the signal m and selects a response r from set R. The set of types T, signals
M, and responses R are finite sets or real intervals. The set of signals M
may depend on type t and the set of possible responses R may depend on
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signal m. The payoff function u : 7 x M x R — R? determines a payoff for
both players for each possible outcome of the game. In this thesis, I only
consider signaling games where the available signals are independent of the
current type; the available responses are independent of the current signal;
and where the available types, signals, and responses are finite sets. So, I
define a signaling game as follows.

Definition 2.5. A signaling game is a two-player, incomplete information
game. The first player, called Sender, has a finite set of types 7 with distri-
bution 7. Each type ¢ occurs with non-zero probability (m; > 0). For each
type, Sender’s actions are the finite set of signals M. The second player,
called Receiver, has no private information. For each signal, his actions
are the finite set of responses R. A signaling game has a payoff function
u:T x M xR — R? and is fully described by the 5-tuple (7, M, R, 7, u).

Figure 2.9 shows an example of a signaling game (more particularly a
Lewis signaling game, see Chapter 3). In this game, Sender has two types
which occur with equal probability: 7 = {t1,t2} and 7 = (1/2,1/2). In both
cases he can choose between two signals: M = {m;,my}. Receiver observes
the signal, but not the type, hence the dashed lines connecting the two
decision nodes following signal my and those following signal my. He has two
options to respond: R = {ry,r5}.

This game is successful if Receiver’s response corresponds to Sender’s
type as follows:

1 ifj=1,

) for all players i = Sender, Receiver.
0 otherwise,

wi(ty, mg,ry) = {

Since both players always receive the same payoff, the game is fully coop-
erative and both players benefit from signaling. We expect Sender to send
signals that allow Receiver to infer his type and Receiver to respond corre-
spondingly. Game theory tries to predict the outcome by determining the
equilibria.
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Figure 2.10: Four equilibria in behavioral strategies for a signaling game with 3
types, 3 signals, and 3 responses. Sender’s strategies map types t; to signals m;
and Receiver’s strategies map signals m; to responses 7. A solid line represents
a probability of 1. A dashed line represents a probability between 0 and 1.
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Equilibria in signaling games

Signaling games have many Nash equilibria with different degrees of signal-
ing: separating, partial pooling, and pooling equilibria (Sobel, 2009). Some
also have babbling equilibria (Sobel, 2009). In a separating equilibrium (Fig-
ure 2.10a) Sender uses a different signal for all types allowing Receiver to
infer with certainty Sender’s type. In a pooling equilibrium (Figure 2.10c)
Sender uses the same signal for all types and Receiver can infer nothing.
In between the two extremes are partial pooling equilibria (Figure 2.10b)
where Sender uses the same signal for some, but not all, types. Some sig-
naling games, such as the one in Figure 2.9, have cost-free signals. These
are signals that do not influence the payoff function—though they may still
influence Receiver’s behavior. Such signaling games also have a babbling
equilibrium (Figure 2.10d) where Sender uses all signals with equal proba-
bility for all types (Sobel, 2009). Just as in pooling equilibria, in babbling
equilibria signals convey no information.

Even the small signaling game of Figure 2.9 has many equilibria.® It has
two separating equilibria which are strict Nash equilibria: ((s1,s2), (r1,r2))
and ((s2,s1), (r2,r1)). The equilibria here are written as tuples of behav-
ioral strategies. So, the strategy (si,s2) means that Sender always uses
signal s; at his first decision node, which follows type t;, and always uses
signal s, at his second decision node, which follows type ty. The game in
Figure 2.9 also has a connected set of weak Nash equilibria which includes
pooling and babbling equilibria. The pooling equilibria are those where
Sender always sends s; or always sends s;. Receiver’s best responses to
these Sender strategies ((s1,s1), (S2,82), and (1/2s1 + 1/2s9,1/251 + 1/285))
are the strategies (zr1 + (1 — z)ro, 2r1 + (1 — 2)ry) Where x € [0, 1].

When many Nash equilibria exist it is hard for players to coordinate
on the same equilibrium (Harsanyi and Selten, 1988). Economists tried to
refine the set of Nash equilibria by means of extra rationality. Unfortu-
nately, these refinements do not restrict the possibilities to a single equi-

31 use Gambit’s implementation (McKelvey et al., 2014) of Mangasarian’s algorithm
(Mangasarian, 1964) to compute the equilibria of specific signaling games. The algorithm
is guaranteed to find all Nash equilibria of any finite two player game (Shapley, 1974).
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librium or are not always applicable to signaling games (Riley, 2001). This
made signaling an important testing ground for equilibrium refinements
(Appendix B).

The basic assumption of rationality and common knowledge is debatable
(Fudenberg and Levine, 1998b; Gintis, 2000), even more so the extra ratio-
nality needed for these equilibrium refinements. Therefore, this thesis takes
a different approach and looks at which equilibria are the likely outcome of
different dynamical processes modeling evolution or learning. I contrast the
results with those of static equilibrium analyses.

Applications of signaling

That signaling games model a wide variety of applications was clear from the
beginning. Philosopher Lewis (1969, ch. 4) introduced signaling games to
study the emergence of conventions, such as human language, in cooperative
settings. Economist Spence (1973) and biologist Zahavi (1975) both inde-
pendently suggested what is now known as the handicap principle—signals
must be costly in order to be honest if there is a conflict of interest—and
applied it to different domains. Spence (1973) suggested that university
degrees act as honest signals in the job market because they are costly to
acquire (Example 1.5). Zahavi (1975) suggested that the peacock’s tail is
a costly and hence honest signal of its quality as a mating partner (Ex-
ample 1.3). Riley (2001) and Sobel (2009) discuss several applications of
signaling games in great detail.

In the following chapters, I will use signaling games to study the emer-
gence of honest signaling in cooperative settings by means of the Lewis sig-
naling game (Chapter 3) and in competitive settings by means of the Philip
Sidney game and an extension thereof (Chapters 4 and 5). I introduce these
games in the relevant chapters.

2.3 Learning in Games

The classic interpretation of equilibria is that they are the outcome selected
by rational agents, assuming they know the rules of the game, know that
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the other players are also rational, and that all this is common knowledge
(Section 2.2). An alternate interpretation is that equilibria are the outcome
of dynamical processes such as evolution, imitation and experimentation,
or individual learning (Fudenberg and Levine, 1998b).

On the one hand, such processes have not been able to explain all equi-
librium concepts in literature. For example, it is currently known that there
cannot exist an ‘uncoupled’ dynamical process that leads to a Nash equilib-
rium in all games, where ‘uncoupled’ means that agents only see their own
payoff, not those of their opponents (Hart and Mansour, 2010; Hart and
Mas-Colell, 2003, 2006). On the other hand, they form a solution concept
on their own, that can even help to refine equilibrium concepts (Fudenberg
and Levine, 1998b).

This thesis considers models based on evolution, social learning, and
individual learning.

2.3.1 Evolution and social learning

Evolutionary game theory (Maynard Smith, 1982) studies how genetically
encoded strategies spread through a population of agents that repeatedly
and strategically interact so that a strategy’s success depends on the fre-
quencies of all strategies in the population—frequency dependent selection.
Offspring inherit the strategy of their parents and natural selection ensures
that the most successful agents (are more likely to) reproduce the fastest.
As a result, successful strategies take over the population while unsuccessful
strategies go extinct.

The same models that hold for strategies spreading through evolution
hold for strategies spreading through social learning, where agents prefer
to imitate the strategy of better performing agents (Fudenberg and Levine,
1998b; Hofbauer and Sigmund, 1998; Imhof et al., 2005; Sigmund, 2010;
Traulsen and Hauert, 2009).

Contrary to classic game theory, evolutionary game theory provides a
solution concept without relying on rationality. In evolution, the agents
execute the strategy they inherited from their parents, they do not even need
to make conscious decisions; in social learning, the agents simply imitate
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the strategies of better performing agents.

This section only discusses the concepts and techniques used in later
chapters: the evolutionarily stable strategy, an evolutionary dynamics in
finite populations, and the evolutionarily stable strategy in finite popula-
tions. All three assume well-mized populations: every agent is equally likely
to interact (play a game) with all other agents in the population. In this
thesis, the interactions are modeled by one of the games mentioned before
(the Lewis signaling game, the Philip Sidney game, and their extensions)
so they are pairwise. Each agent plays a pure strategy of the game and is
equally likely to take the role of Sender as the role of Receiver.

Evolutionarily stable strategies

The key solution concept of evolutionary game theory is the evolutionarily
stable strategy or ESS (Maynard Smith and Price, 1973). Assume a well-
mixed and infinitely large population where all agents adopt the (genetically
encoded) strategy W—the wild type.* Sooner or later, a mutant appears in
the population and adopts strategy M. Assuming pairwise and symmetric
interactions, we have a symmetric, two-player game with payoff matrix u
and can define the notion of evolutionary stability:

Definition 2.6. Strategy W is evolutionarily stable against strategy M if the
expected payoff fy of the wild type W is greater than the expected payoff fy
of the mutant strategy M:

(1 —€) uyy+euwym > (1 —€) umy + € unm, (2.1)

where € is the fraction of mutants in the population and wuyy is the payoff
of an X-strategist interacting with a Y-strategist. An evolutionarily stable
strategy (ESS) is a strategy that is evolutionarily stable against all other
strategies of the game.

4The initially most frequent strategy in the population is considered the wild type,
the one without mutation. ‘Initially,” since a mutant can appear that takes over the entire
population.
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Since the fraction of mutants is infinitely small, strategy W is evolution-
arily stable against M if either the wild type strategy W is a best response to
itself (uyw > umyu) or both W and M are best responses to W (uyy = umy) but
the wild type strategy W is a better response to the mutant strategy M, than
the mutant strategy itself (uyu > umm).

This leads to the following relation between the evolutionarily stable
strategy and the Nash equilibrium. All strict Nash equilibria are evolu-
tionarily stable strategies and all evolutionarily stable strategies are Nash
equilibria: strict Nash C ESS C Nash (Hofbauer and Sigmund, 1998). For
asymmetric games, the set of evolutionarily stable strategies and the set of
strict Nash equilibria coincide because the ESSs of an asymmetric game are
defined as those of its symmetric version and the set of ESSs of that sym-
metric game coincides with the set of strict Nash equilibria of the original
asymmetric game (Selten, 1980).

Evolutionary stability can be quickly verified, but, just as the Nash
equilibrium, it is defined for games in strategic form and it is a static solution
concept. The latter means it is only concerned with the stability of an
equilibrium, not with the paths that may, or may not, lead to it. In other
words, whether or not an equilibrium is likely to emerge remains unclear.

Evolutionary dynamics in finite populations

I now assume, contrary to the previous section, a finite population, and
consider the evolutionary dynamics as introduced by Taylor et al. (2004),
Nowak et al. (2004), Imhof et al. (2005), and Traulsen et al. (2006). It has
several benefits:

e Just like real systems it considers finite populations and is stochastic.

e It is more expressive than models of infinite populations. It allows
to vary the population size and see its effects. For large populations,
the results converge to those of infinite population models (Traulsen
and Hauert, 2009). For small populations, results may be surprisingly
different. For example, one strategy may be preferred over another
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while it is the other way around in large populations (Taylor et al.,
2004).

Figure 2.11 shows an overview of the model’s algorithm. In the next sec-
tion, I will redefine evolutionary stability for finite populations according to
Nowak et al. (2004).

This time, I explain the model from a social learning perspective. It
is generally accepted that social learning and evolution lead to the same
mathematical models (as mentioned at the beginning of this section), so
I substitute one for the other without worrying whether the application
concerns evolution or social learning.

The standard way to model social learning is with a pairwise comparison
process (Traulsen et al., 2006). It goes as follows. There’s a population of
N agents and at each time step two agents A and B are chosen at random.
The first observes the second agent’s expected payoff fp and his strategy.
Given, how much better B performs than A, A must decide whether or not
to adopt B’s strategy. The probability that agent A adopts the strategy of
another agent B is given by the Fermi function (Figure 2.12):

1

Pr(A = B) = 1 505,y

(2.2)
where f4 and fp are the expected payoffs of agents A and B respectively
and S is the selection pressure or imitation strength.

The Fermi function has two benefits. First, it allows to tune selection
between fully stochastic (selection pressure § = 0) and fully deterministic
(B — 0). For B = 0, A imitates B with probability 1/2 independent of
the expected payoffs f4 and fg. This is the limit of neutral or random
drift. For large 3, A imitates B if and only if B performs better (fz > fa).
The choice is deterministic. Second, the function allows analytical results
for any 8 (Traulsen et al., 2006). This is not the case for Nowak’s model
(Nowak and Sigmund, 2004) though both models are exactly the same for
low selection pressure (8 < 1) (Traulsen et al., 2006).

The pairwise comparison process always ends up in a monomorphic
state—where all agents use the same strategy—unless there is a small explo-
ration (or mutation) probability p. If it is very small, as is usually assumed,
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nxn payoff matrix u
selection pressure 8
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frequency dependent
expected payoff

allA allB
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distribution

Figure 2.11: Graphical overview of the algorithm that calculates the fixation proba-
bilities and stationary distribution for a symmetric, two-player game with n strate-
gies (A, B, ..., F), given population size N, and selection pressure . See text and
equations for more information.
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Pr(A->B)

Figure 2.12: The Fermi function (Equation (2.2)) for different values of selection
pressure 3.

then the population consists of at most two strategies at any time: the wild
type and a mutant (Wu et al., 2012). The latter either goes extinct or takes
over the entire population before another mutant emerges. This process is
visualized by the Markov chain® in the center of Figure 2.11. The probabil-
ity that one mutant takes over the entire population is called the ‘fization
probability.’

The resulting population dynamics can be represented by another
Markov chain: one where each state represents a monomorphic population
(one for each possible strategy) and each transition probability, say from
state A to B, is the fixation probability of a single mutant B in a population
of all As (Fudenberg and Imhof, 2006). The stationary distribution of this
Markov chain gives the average time the population spends in each of the
monomorphic states. This is visualized by the bottom part of Figure 2.11.

To calculate a mutant’s fixation probability, consider again the Markov
chain at the center of Figure 2.11. Each state is uniquely determined by
the number of mutants B in the population of size N: ¢ = 0,...,N. The
number of wild types A is always N — i. The two extreme states i = 0 and
i = N are monomorphic and absorbing (Ppo = Py n = 1). In all other
states i =1,..., N — 1, the process

e transitions to state i — 1 with probability P; ;1 (a mutant switches to

® Appendix A provides the necessary background on Markov chains.
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the wild type),

e transitions to state ¢ + 1 with probability P; ;11 (a wild type switches
to the mutant strategy), or

e remains in the same state with probability P;; =1 — P; ;1 — P ;11.

The probability that the number of mutants decreases is the product
of the probabilities that a mutant is selected (to observe), a wild type is
selected (to be observed), and the mutant decides to imitate the wild type:

i N—1 1

Pl = N TN T3 e PO

(2.3)

Similarly, the probability that the number of mutants increases is the
product of the probabilities that a wild type is selected (to observe), a
mutant is selected (to be observed), and the wild type decides to imitate
the mutant:

N—i1 1
N N1+ eBUs()-f®)"

A strategy’s expected payoff may depend on the number of agents using
each strategy: it is frequency dependent. For N agents of which ¢ are mutants
B the expected payoff of each strategy is (assuming random matching but
excluding self-play):

Piiv1= (2.4)

. i—1 N —i
fa() :ﬁUB,B+N_1UB,A7
. . (2.5)
fali) = i n N—-i-1
ING —7N_1UA,B 7]\,_1 Up,p,

where uy y stands for the payoff an X-strategist obtains in interaction with
a Y-strategist.

Given the row stochastic and tri-diagonal® matrix P B’s fixation proba-
bility, which is the probability that a single mutant B takes over a population

SA row stochastic matrix is a matrix where all elements are non-negative and each
row’s elements sum to one. A tri-diagonal matrix is a matrix where all elements that are
not on the diagonal or directly below or above it are zero.
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of As, is given by (Appendix A.4):

1
A—B — AP
’ S e
In the limit of random drift (selection pressure 8 = 0), the fixation probabil-
ity is the inverse of the population size: 1/N (Appendix A.4). A higher fix-
ation probability means imitation (or natural selection) prefers the mutant
strategy B. A lower fixation probability means the wild type A is preferred.
These fixation probabilities determine an n X n transition matrix 7,
where n is the number of strategies and 7;; is the probability that the
population ends up in state ¢ at time ¢ + 1 if it is in state j at time ¢. The
off-diagonal elements of the matrix are the normalized fixation probabilities
and the elements on the diagonal make sure the sum of each column adds
up to 1:

(2.6)

T, . — {Pj—n‘/(n_l) if i # j, (2.7)
7 1—->Ty; ifi=jand forall k#i.

The column stochastic matrix” 7' is the transition matrix of the Markov
chain whose states represent the n monomorphic populations.

The stationary distribution 7 is the normalized (right-hand) eigenvector

for eigenvalue 1 of T" and describes the relative time the population spends

in each of the monomorphic states (Appendix A.2):
m=TT7. (2.8)

Evolutionary stability in finite populations

In finite populations stability takes into account the population size N and
is based on the dynamics described above.

Definition 2.7. A population adopting an evolutionarily stable strategy in
finite populations (ESSy) resists invasion and replacement by any mutant
strategy (Nowak et al., 2004).

"A column stochastic matrix is a matrix where all elements are non-negative and
each column’s elements sum to one.
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Strategy W resists invasion if, in a population where all but one agent
uses strategy W, the single mutant’s expected payoff is lower than that of
the other agents:

fu(1) < fu(l) for all M # W.

Combined with Equation (2.5) this yields
(N - I)UM’W < 'LLW7M + (N - Q)UW’W for all M 7& W. (29)

Strategy W resists replacement if the probability that any mutant M fix-
ates in a population of Ws is smaller than the neutral fixation probability:

pu—sm < 1/N  for all M #£ W.
If the selection pressure is low (8 — 0), then W resists replacement if

unm(N — 2) + unu(2N — 1) < uyu(N + 1) + uyw(2N —4)  for all M # W.

(2.10)
Low selection pressure is biologically relevant since most evolutionary
changes are almost neutral (Ohta, 2002).

The relation between the traditional ESS concept (Definition 2.6) and
the one in finite populations (ESSy) is more clear when considering small
and large populations separately. Strategy W is evolutionarily stable against
M if uyy > umyw, or if uyy = umy and uyn > umy. For small populations
(N = 2), strategy W is ESSy against M if uyy > wumy. The traditional
ESS condition is thus neither necessary nor sufficient for ESSy. For large
populations, strategy W is ESSy against M if uyy > uyy and 2uyy + wyu >
2umy + umy, so ESS is necessary but not sufficient.

2.3.2 Individual learning

The process discussed in the previous section describes the dynamics at
the population level. In some settings, this is justified, for example, the
effects of microscopic (on the agent level) behavioral rules may average out
in large populations. If they do not, we must simulate the microscopic
behavioral rules. One class of such rules are the individual learning rules
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or adaptive heuristics I describe here. When an agent repeatedly ends up
and takes actions in the same situation, he can estimate the success of each
action and update these estimates. Over time, an agent who learns will
increasingly choose the most successful actions.

In this text, I consider two scenarios where agents can learn by repeat-
edly playing the same game: the fixed player model and the random match-
ing model (Fudenberg and Levine, 1998b). The game that is repeated is
called the ‘stage game.” In this thesis, the stage is the Lewis signaling game
with or without noise (Chapter 3), or the Philip Sidney game (Section 4.3).

In the fized player model, the same agents repeatedly play the stage game
in the same roles. This is probably the simplest model in which agents can
learn. Unfortunately the model also complicates matters. It allows agents
to ‘teach’ their opponents, for example, by sticking to one pure strategy and
being patient, letting opponents learn to best respond to this strategy.

To avoid such incentives, it suffices to let agents play against many
different opponents. This is the case in the random matching model. At
each iteration, M distinct players are randomly chosen from a well-mixed
population of N agents to play the M-player stage game (M = 2 in this
thesis). There are many more players than required to play the stage game
(N > M). When players can identify each other, the random matching
model leads to the same results as the fixed player model since each agent
adapts to each opponent separately. The random matching model assumes
the players cannot identify each other, so that each agent adapts to the
average behavior in the population. Another difference: in the fixed player
model, each agent always plays the same role, while in the random matching
model, an agent can be selected to play any of the roles of the stage game.

I discuss three adaptive heuristics:

e Roth-Erev learning (Roth and Erev, 1995),
e ()-learning (Watkins, 1989), and
e learning automata (Narendra and Thathachar, 1974).

Roth-Erev learning and Q-learning are so-called action value methods. Such
methods consist of an update rule, an action selection rule, and an action
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value gsq for each state-action pair (s,a) which indicates the quality of
taking action a in state s relative to the other actions in that state. The
update rule determines how action values are updated based on new experi-
ence. The action selection rule determines which action to select, given the
current state and the action values, by calculating the probability ps, of
taking action a in the current state s for all actions a. The usual constraints
on probabilities hold: p, , > 0 for all states s and actions a, and ), psq =1
for all states s. The basic idea is that action values of successful actions
increase and actions with higher values get selected more often than actions
with lower action values. Learning automata are similar but directly update
the probability distribution over the actions.

I apply these algorithms (see Chapters 3 and 4) directly to games in
extensive form and not to their corresponding strategic form to avoid infor-
mation loss. To do this, each information set corresponds to a state. For
signaling games, Sender needs an action value ¢ ,, and a probability p;
for all types t and signals m. Likewise, Receiver needs an action value gy, ,
and a probability p,,, for all signals m and responses r. So, signals take
the role of actions for Sender and the role of states for Receiver. Of course,
learning automata only have probabilities p; 4 for all state-action pairs (s, a)
and no action values gs,. When the game is finished, each agent updates
the action values (or action probabilities) for the state he observed. This
method works in extensive form games as long as a player only takes one
action per game. If a player takes more than one action per game, he must
apply some strategy to credit the obtained reward to the different actions
he took. Q-learning as introduced by Watkins (1989) is such a method—
it credits a fraction of the reward to actions which were taken some time
ago. Players do not need such capabilities in signaling games because they
reach just one state and take only one action per game. The reward is eas-
ily credited to that action. Therefore I only discuss a simplified version of
Q-learning: the so-called ‘single-state Q)-learning.’

Though these algorithms can handle stochastic rewards, I do not con-
sider such scenarios. As mentioned earlier, a payoff represents an agent’s
preference for an outcome and I consider these preferences deterministic as
is usual in game theory.
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All three algorithms belong to the class of reinforcement learning. One
of their advantages is simplicity: they require little information and little
computational capacity. For example, they are unaware of other agents
and learn as if they optimize against Nature. They are so-called bound-
edly rational and this makes them a more realistic model of the cognitive
capabilities of many living organisms, including humans, than the perfect
rationality assumed by classic game theory (Arthur, 1993). Their simplicity
also allows to execute them on constrained electronic devices, such as sensor
nodes (Mihaylov, 2012).

Another advantage of these algorithms is that they directly act on the
extensive form game. For example, Roth-Erev learning was developed as
a model of how people learn in extensive form games (Roth and Erev,
1995). Nash equilibria are only defined in strategic form and transform-
ing a game from extensive form to strategic form may incur information
loss (Section 2.2.2). There exist equilibria concepts which can be applied to
extensive form games based on the notion of sequential rationality—an equi-
librium strategy is optimal in all information sets, not just in those played
in equilibrium (Appendix B). In signaling games, the learning algorithms
are doing just that, they optimize their play in each information set.

Finally, I find e-greedy Q-learning (see further on) one of the most useful
adaptive heuristics there is since

e it poses no constraints on the payoffs,

e its action values are meaningful: each action value converges to the
action’s expected payoff if it is stationary and will otherwise fluctuate,

e although invented for single agent scenarios (Watkins, 1989), it is par-
ticularly suited to competitive multiagent scenarios where continuous
adaptation and exploration is needed to avoid being exploited by other
agents (Catteeuw and Manderick, 2011b), and

e in cooperative settings, where agents have common interests, it often
settles down on an equilibrium (Claus and Boutilier, 1998).
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Roth-Erev learning and learning automata do not have these benefits but
I introduce them here for the specific setting of Chapter 3 where all three
algorithms exhibit the same dynamics for certain parameters.

Roth-Erev learning

Roth-Erev learning (Roth and Erev, 1995) has two parameters:
e a discount factor A € [0,1] and
e an initial action value Qg > 0.

All action values are initialized to Q9. Given the current state s, action
a is selected with probability ps , proportional to its action value g 4:

o qs,a
Ps,a =
Za’ qs,a’

This assumes that all action values (and consequently, payoffs) are non-
negative: g5, > 0 for all states s and actions a. When all action values are
0, each action is selected with equal probability.

After taking action a and receiving payoff u, all action values for the
current state s are discounted by factor A and the action value of the current

action is incremented with payoff u:

. {)\q&a +u if action a was taken,
qs,a

As.a otherwise.

Action values for states other than the current one are not updated.

In Roth and Erev’s basic model the discount factor A = 1 and the initial
action value Qg = 1. A discount factor A < 1 helps forgetting old experience.
It bounds the action values to u/(1 — A\), which makes it possible for the
algorithm to settle down. If the discount factor A = 1, the action values are
unbounded and the system never settles down. Using small initial action
values (Qp < u) speeds up learning in the beginning because it increases
the importance of the payoffs .
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Single-state Q-learning

In Q-learning, all action values are initialized to Qg € R. High initial action
values increase the amount of exploration in the beginning of the learning
process (Sutton and Barto, 1998, sect. 2.7).

Q-learning can be combined with different action selection rules, like
e-greedy and softmax action selection. I describe and use both. With prob-
ability €, e-greedy action selection selects an action at random and with
probability 1 — €, it selects the action with the highest action. In the latter
case, if multiple actions have the maximum action value, they are selected
with equal probability. If € = 0 there is no exploration. I call this ‘greedy
action selection.’

Softmazx action selection selects an action a for current state s with
probability ps , according to the Boltzmann distribution:

e((Is,a/T)
STk

where temperature 7 controls the rate of exploration: much exploration at
high temperature, little exploration at low temperature.

To let the behavior stabilize, the exploration rate € or temperature 7 can
be decreased over time. I either decrease them fast: €(i) = min{e, €/i}, or
slow: €(i) = min{e, elog(i)/i}, where €(i) is the exploration rate used at the
ith iteration and € is determined by the user. For softmax action selection,

Ps,a =

simply replace € by 7.
After taking action a in state s and receiving payoff u, the action value
gs,q is updated while the other action values remain unchanged:

- {qs,a +a(u —qs4) if action a was taken,
Gs,a

Gs,a otherwise,

where o € [0,1] is the learning rate. A higher learning rate puts more
weight on more recent payoffs. If « is 0, nothing is ever learned; if « is 1,
the action value of an action simply equals the last payoff earned for that
action.

The algorithm has three parameters:
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e a learning rate a € [0, 1],
e an initial action value Qg € R, and

e an exploration rate € € [0, 1] in the case of e-greedy action selection
or a temperature 7 > 0 in the case of softmax action selection.

Learning automata

Learning automata (Narendra and Thathachar, 1989) directly update the
probability distribution over the actions and have two parameters:

e a reward factor a € [0,1] and
e a penalty factor 5 € [0, 1].

The probability distribution over the actions starts off uniform and changes
as follows after taking action a in state s and receiving payoff u:

Psatau(l—psq)—F(1—u)psa if action a was taken,
Ps,a < 1 .
Dsa — QUPsq+ L (1—u) <ﬁ — ps’a> otherwise,

where n is the number of actions in state s. The update rule requires that
the payoff u € [0, 1].

There are several well-known schemes, one is Linear-Reward-Inaction
(Lr—r1), another is Linear-Reward-e-Penalty (Lg_.p). In Linear-Reward-
Inaction, penalty factor S = 0, and thus, it only updates the action proba-
bilities on reward (payoff u > 0). In Linear-Reward-e-Penalty, (3 is a fraction
of &. When in doubt, it is often a good idea to set the reward factor « close
to 1 and the penalty factor 3 close to 0 (Catteeuw and Manderick, 2011b).
In strategic form games, Linear-Reward-Inaction will always converge to
a pure strategy Nash equilibrium if one exists, except in zero-sum games
(Wheeler and Narendra, 1986). These are games where the sum of the
players’ payoffs is zero and player’s have purely conflicting interests. One
player’s loss is the other’s gain.
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Conclusion and comparison

All three algorithms are variations on the same principle: actions yielding
higher payoffs are used more frequently. Still, they are not applicable in
the same settings and have different dynamics in general. These algorithms
have been extensively studied before but mostly in strategic form games.
In some settings, they converge to an equilibrium (Beggs, 2005; Claus and
Boutilier, 1998; Wheeler and Narendra, 1986). In Chapter 3, I will prove
that for some parameters all three algorithms will always reach a Pareto
optimal equilibrium in Lewis signaling games.

Here are the main similarities and differences between these algorithms:®

Payoff constraints Q-learning poses no constraints on the payoffs and
initial action values. Roth-Erev learning requires non-negative pay-
offs and initial action values: u, Qg > 0. Learning automata require
payoffs between 0 and 1: u € [0, 1].

Exploration Roth-Erev learning and learning automata have no direct
means of controlling the exploration rate. It is implicitly maintained
by the action selection rule. Q-learning has direct means of controlling
the exploration rate via the parameter €, and controlling the initial
exploration rate via the initial action value Q)g. Higher initial action
values increase initial exploration.

Learning rate The user can control the initial learning rate of Roth-Erev
learning via the initial action value Q¢ and the learning rate via dis-
count factor A. For both parameters, smaller values speed up learning.
Q-learning has a constant learning rate «. Learning automata have a
learning rate to reward and penalize: o and 3.

Action values Q-learning’s action values are an exponentially weighted
moving average of the actions’ observed payoffs. Roth-Erev’s action

8] am aware that many of these differences can be circumvented or are non-existent in
other versions of the same algorithms, but I prefer to limit this discussion to the variants
introduced here.
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values are the discounted sum of the actions’ observed payoffs. Learn-
ing automata have no action values.
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Chapter 3

Common Interest

This chapter concerns the first of three mechanisms that facilitate the emer-
gence of honest signaling. It is based on the publication (Catteeuw and
Manderick, 2014). The next two chapters concern the emergence of honest
signals when interests conflict.
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3.1 Introduction

This chapter discusses the emergence of signaling under common interest.
When signaling is in the best interest of both the informed and uninformed
agent, signals will definitely be honest. The question remains how signals
can acquire their meaning. This chapter provides evidence that meaning
can emerge due to very simple random processes.

The prototypical game for signaling under common interest is the Lewis
signaling game (Section 3.2). It has many equilibria. The separating ones
are Pareto optimal, the (partial) pooling ones are Pareto dominated. The
Lewis signaling game is thus a coordination game where the players need
to coordinate on the meaning of the signals.

I study the game with the fixed player model, where the same agents
repeatedly interact in the same role. Some adaptive heuristics easily get
stuck in a Pareto dominated pooling equilibrium while others always lead to
a separating equilibrium in theory, but require too much time in practice for
all but the smallest games (with no more than five or six types). Section 3.6
discusses this related work in detail.

In Section 3.3, I define the new adaptive heuristic win-stay/lose-inaction
(WSLI) which initially behaves randomly, then repeats forever what was
once successful. An analysis of WSLI in Lewis signaling games proves that
it always reaches a separating equilibrium and predicts the number of in-
teractions needed to do so. For Lewis signaling games with uniform type
distributions, the expected number of interactions needed to find a separat-
ing equilibrium is approximately n®, where n is the size, or the number of
types, of the game.

For some parameters, Roth-Erev learning, Q-learning, and learning au-
tomata (Section 2.3.2) behave exactly like WSLI (Section 3.4).

Section 3.5 introduces errors in the Lewis signaling game. The results
for WSLI in the original Lewis signaling game cannot be generalized to
this case since WSLI may learn suboptimal behavior and never forget it.
Roth-Erev learning, Q-learning, and learning automata still learn to signal
optimally provided the parameters are slightly adjusted: they always reach
a separating equilibrium in all Lewis signaling games in polynomial time
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even when errors may occur.

Contributions

e In Section 3.3, I define a new adaptive heuristic, called ‘win-stay /lose-
inaction’ (WSLI).

e I prove that it always reaches a separating equilibrium in all Lewis
signaling games in polynomial time: O(n?), where n is the size, or the
number of types, of the game. No such algorithm was known before.

e In Section 3.4, I show for which parameters Roth-Erev learning, Q-
learning, and learning automata behave exactly like WSLI.

e In Section 3.5, I show for which parameters Roth-Erev learning, Q-
learning, and learning automata still learn to signal optimally when
€rrors Occur.

3.2 The Lewis Signaling Game

A Lewis signaling game (Lewis, 1969) is completely determined by its type
distribution 7. Figure 3.1 shows the one with type distribution 7 = (1/2,1/2).
It is a signaling game (Section 2.2.4 and Definition 2.5) with three con-
straints:

e There are an equal number of types, signals, and responses: |T| =

M| = [R] = mn.

e The set of signals M is independent of the type and the set of re-
sponses R is independent of the signal.

e Both players i = Sender, Receiver have the same payoff function w;:

1 ifj=1,

0 otherwise

wi(ts, my,m) = {
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Nature

t1 t2

Sender Sender

Receiver Receiver

Iy ra

1,1 0,0 1,1 0,0 0,0 1,1 0,0 1,1

Figure 3.1: The Lewis signaling game with type distribution 7 = (1/2,1/2) and so
two types, signals, and responses (n = 2). It is a signaling game (Section 2.2.4
and Definition 2.5) with common interest since both players always get the same
payoff. The game is successful when Receiver chooses the response corresponding
to Sender’s type. If the players manage to coordinate on the meaning of the
signals, Receiver will be able to infer Sender’s type from his signal and they will
be rewarded.
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This payoff function has three characteristics:

e both players get the same payoff for all outcomes, so the game is fully
cooperative;

e the signal does not (directly) influence the payoff; and

e for each type ¢; there is exactly one correct response r;, similarly, each
response 7 is correct for exactly one type t;.

This game is fully cooperative, so it is in both players’ interest that
Receiver can reliably deduce Sender’s type. In essence: the agents face
a communication problem, which they can solve by establishing a shared
language or convention. Sender and Receiver should adopt mappings (from
types to signals and from signals to responses, respectively) which will be
compatible if they, when applied one after the other (first Sender’s, then
Receiver’s mapping), lead to the correct response for all types. Compatible
mappings correspond to separating equilibria that are Pareto optimal Nash
equilibria. Lewis calls them ‘signaling systems.” For a Lewis signaling game
with n types there are n! such equilibria, corresponding to the n! unique
mappings from types to signals and those from signals to responses. One
separating equilibrium is shown in Figure 3.2a for a game with three types
(n = 3). In this figure, the signaling success rate—the probability that
the two agents will have a successful interaction—is 1. Since the payoff for
success is 1 and the payoff for failure is 0, the expected payoff equals the
signaling success rate.

As most signaling games, a Lewis signaling game also has many pooling
or partial pooling equilibria especially when the number of types is larger
than two (n > 2). Such equilibria are Pareto dominated by the separating
equilibria, thus suboptimal. Figure 3.2b shows a partial pooling equilibrium
where Sender uses signal mg both for type t and t3. When observing signal
m3, Receiver can only guess what is the true type of Sender. Assuming that
all types are equally likely, the signaling success rate (and the expected
payoff) for the agents is 2/3: type t; always yields success, while type t,
and t3 yield success only half of the time. This state is an equilibrium,
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Sender Receiver Sender Receiver
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(a) A separating equilibrium. For (b) A partial pooling equilibrium.
each type t; Sender sends a distinct For both types t, and ts Sender
signal m;. sends the same signal m3.

Figure 3.2: Agent strategies for a Lewis signaling game with three types (n = 3).
Sender’s strategies map types t to signals m and Receiver’s strategies map signals
m to responses r. A solid line represents a probability of 1. A dashed line represents
a probability of 1/2.

since, neither Sender nor Receiver can change his strategy to increase his
payoff. Sender’s strategy is a best response to Receiver’s strategy, and vice
versa, Receiver’s strategy is a best response to Sender’s strategy. It is the
existence of many such suboptimal equilibria that makes it hard to find an
optimal one.

Another difficulty arises when the type distribution 7 is non-uniform,
such as m = (3/4,1/4) instead of m = (1/2,1/2). For example, if one of the
types has a probability of 90%, Receiver can simply ignore the signals, can
always pick the action corresponding to the most frequent type, and will
already be successful 90% of the time.

As briefly mentioned in Section 3.1 and more extensively discussed in
Section 3.6, many adaptive heuristics may get stuck in these suboptimal
equilibria and never reach a Pareto optimal one. Others are guaranteed to
find a Pareto optimal equilibrium in theory, but require too much time in
practice. In the next section, I introduce WSLI and show it overcomes both
difficulties and finds a Pareto optimal equilibrium fast.
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3.3 Win-Stay/Lose-Inaction (WSLI)

I define the new adaptive heuristic WSLI as follows:
e Initially, play random.
e Repeat forever the first action that yields success.

So, WSLI never changes its behavior after a failure, whether this is due to
an action that was randomly chosen or one that was previously successful.

3.3.1 WSLI in Lewis signaling games

As an example, consider how WSLI reaches a separating equilibrium in a
Lewis signaling game with two types (n = 2). Figure 3.3a shows the initial
strategies for both Sender (mapping types ¢ to signals m) and Receiver
(mapping signals m to responses 7). Their behavior is random and will
remain this way until the first successful interaction.

After the first success, one can relabel the successful type, signal, re-
sponse as t1, my, and ry, respectively, without loss of generality. From now
on, Sender will always use signal my when observing type t1 and Receiver
will always respond with ry to signal my. We say a path t; - my — ry is
learned for type t1. Behavior for other types and signals remains random
(Figure 3.3b). Several things can happen now.

1. Nature draws type t;. This will trigger Sender to send signal mj,
and consequently, Receiver will respond with r;. This always leads
to success, and the path t; — my — ry persists. In general, whenever
a type occurs for which a path was already learned, the interaction is
successful and the agents do not change their behavior.

2. Nature can also draw tg (or, more generally, a type for which no path
is yet learned). Sender will signal at random and there are again two
possibilities:

(a) If he picks signal my (or, more generally, a signal which is already
used in a learned path), then Receiver will definitely respond
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with r; and the game fails. The agents do not update their
behavior in that case.

(b) If he picks signal my (or, more generally, a signal which is not
yet used in a learned path), then Receiver either guesses the
incorrect response or the correct response. In the former case,
the behavior of the agents remains the same. In the latter case,
they update their behavior and a new path t; — my — ry is
learned.

The agents’ strategies are in a separating equilibrium and each interac-
tion will be successful (Figure 3.3c). It is straightforward to generalize the
reasoning above to all Lewis signaling games: strategies change only if

e Nature selects a type t that does not yet belong to a learned path,

e Sender selects a signal m that does not yet belong to a learned path,
and

e Receiver selects the correct response r.

In this case, a new path ¢ — m — r is learned and interactions for type
t will always succeed. When a path is learned for all types, agents are
in a separating equilibrium. Due to symmetry, each of the n! separating
equilibria is reached with equal probability.

3.3.2 The learning process modeled by a Markov chain

Given how WSLI behaves in Lewis signaling games, one can prove that it
always reaches a separating equilibrium and predict the average number of
iterations needed. The learning process can be modeled by a Markov chain
that has a state for each possible subset of the set of types 7. A state
represents the types for which a path is already learned and interactions are
always successful. Figure 3.4a shows the Markov chain for Lewis signaling
games with three types (T = {t1,t2,t3}). Since WSLI can never forget a
learned path, the Markov chain can never get into a state with fewer learned
paths than the current state. It either remains in the same state, or it goes
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(c) Final strategies form a separating equilibrium.

Figure 3.3: Emergence of a separating equilibrium in a Lewis signaling game with
two types (n = 2) when both Sender and Receiver apply WSLI. Each figure shows
Sender’s and Receiver’s strategy (mapping types ¢ to signals m and signals m to
responses 7, respectively). A solid line represents the probability 1. A dashed line
represents the probability 1/n = 1/2.

to a state where one extra path is learned. There are 2" states in total: one
initial state with no types ((8) = 1), n states with one type ((71‘) =mn), and
so on until one final state with all types ((I') = 1).

The probability to go from state £ to £', where £’ contains all types in
L and one other type t that is not in £, equals the probability that

e Nature selects type t,
e Sender selects a signal that is not yet used in a path, and
e Receiver selects the correct response.

The probability that Nature select type t is simply m;. The probability that
Sender selects an unused signal is ”T_l, where n is the number of signals
and [ is the number of learned paths and used signals. The probability of
selecting the correct response is 1/n, where n is the number of responses.

The product of these probabilities is the probability of learning a path for
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(a) General type distributions. Each state of the Markov chain is represented
by the set of types for which the game is always successful.

1 —po 1—pm 1—p

0 Do a b1 ~/2Q D2 o 3
_/ O/

(b) Uniform type distributions. Each state of the Markov chain is represented
by the number of types for which the game is always successful. The transition
probabilities p; for [ = 0, 1, and 2 are given by Equation (3.1).

1

[\

o

Figure 3.4: The Markov chains for Lewis signaling games with three types (n = 3).
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type t:
—11
Pr(f —tUL) =m—
n n

where | = |£| and ¢t ¢ L. The probability that the process remains in the
same state is
Pr(L—L)=1-)Y Pr(L—tUL).
t¢r

Proving that WSLI always reaches a separating equilibrium is trivial.

Theorem 1. For any Lewis signaling game, WSLI always reaches a sepa-
rating equilibrium.

Proof. For any Lewis signaling game with a probability distribution 7 over
its typeset T of size n, the learning process generated by WSLI can be
modeled by a Markov chain as described above.

For all states £ of the Markov chain that are a strict subset of T, the
probability to go to a state with one more type is greater than zero:

foral LCT,t¢ L: Pr(L—tUL)>D0.

So, these states are not absorbing and, by induction, the probability to go
from any of these states to the state with all types T is greater than zero.

The state that contains all types 7 is an absorbing state and it is the
only one:

Pr(£— L£)=1-) Pr(L—tUL)=1ifand only if £L=T.
teL

From the above follows that the process is always absorbed in the state
that contains all types 7 and since this state represents the separating
equilibria, the process always ends up in a separating equilibrium. O

3.3.3 Expected time until equilibrium

For any given Lewis signaling game, the method described in Appendix A
calculates the expected number of iterations needed to reach a separating
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equilibrium. Here, I derive a general formula for Lewis signaling games with
uniform type distributions and a lower and upper bound for Lewis signaling
games with non-uniform type distributions.

Uniform type distributions

For Lewis signaling games with uniform type distributions, the Markov
chain can be simplified, since all types have the same probability. For n
types, my = 1/n for all types t. The number of learned paths is sufficient
to discriminate all states [ = 0,1,...,n of the Markov chain (Figure 3.4b),
where n is the total number of types and [ the number of learned paths.
The probability p; to go from state [ to state [ + 1 equals the probability of
learning a new type-signal-response path which is the probability of selecting
a type for which no path yet exists (”771 because all types ¢t occur with
equal probability), selecting an unused signal (”T_l), and selecting the correct
response (1/n):
n—In—-11 _(n-1)>?

— = . 3.1
D e 3 (3.1)

The process remains in the same state [ with probability 1 — p;.

If, at each iteration, a new path is learned with probability p, then the
expected number of iterations to learn a new path is 1/p. The number of
iterations is distributed according to a geometric distribution with mean
1/p. The expected number of iterations E[T;] to learn a path for all n types
(a separating equilibrium) is the sum of the expected number of iterations
needed for each new path:

E[T)=> —. (3.2)



3.3. WIN-STAY /LOSE-INACTION (WSLI) 65

0.5 0.5
g 0.25fp=———-- - a 0.25
0 0
0 025 5,05 0 0.25 0.5
m|n{7ct} ((n=)/n) (n—I)2 /n3
(a) pr > o ming{m,} (b) pr < 7

Figure 3.5: The probability p; that WSLI learns a path for a new type given that
it has already learned ! paths is bounded from above and below (Equation (3.4)).
I verified this numerically for 10,000 randomly generated samples. The method is
explained in the text.

The expected number of iterations is polynomial in the number of types n,
E[T.] = O(n?), because the sum > I, 1/i> quickly converges to /6 ~ 1.64
while n goes to infinity (Daners, 2012).

Non-uniform type distributions

For Lewis signaling games with non-uniform type distributions I cannot
provide an exact formula. Deriving an exact formula is hard (or maybe
impossible) since there are many paths through the Markov chain. The
expected number of iterations to traverse a path varies from path to path
and so does the probability of taking each path.

It is possible to bound the probability p; to go from a state with [ types
to a state with [+ 1 types given that the process is currently in a state with

[ types:
(n—1)?°

nd ’

(n—1)?

5 (3.4)

' <p <
- mtln{me}_pz_

where min;{m;} is the probability of the rarest type. Figure 3.5 shows
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experimental evidence that these bounds hold. I generated 10,000 samples
by calculating p; for randomly chosen type distributions and different values
of . The probability p; for any given type distribution and given [ can be
derived from the transition matrix of the corresponding Markov chain (as
explained above) and the expected time spent in each state of the Markov
chain (Appendix A.3).

Using the same reasoning as for uniform type distributions, the expected
time E[T,] is given by substituting Equation (3.4) in Equation (3.2):

| n? .1
= <ET.) < ———— - 3.5
n ; i2 = [ C] — mint{ﬂ't} ; Z~2 ( )

For WSLI, Lewis signaling games with uniform type distributions are the
easiest one. It needs less time, on average, to reach a separating equilib-
rium when the type distribution is uniform than when it is non-uniform.
The good news is that the time needed for games with non-uniform type
distributions, is still polynomial in the size of the game n.

3.4 Reinforcement Learning

In this section, I show how to implement WSLI with three well-known re-
inforcement learning algorithms thereby explaining why they perform well
in Lewis signaling games. In the next section, I show that these algorithms
not only perform as well as WSLI but are also robust to errors.

3.4.1 Implementing WSLI

The three reinforcement learning rules from Section 2.3.2—Learning Au-
tomata, Roth-Erev learning, and Q-learning—implement WSLI in Lewis
signaling games for certain parameters (Table 3.1).

Learning automata do so when the reward factor @« = 1 and penalty
factor 5 = 0 (also known as ‘Linear-Reward-Inaction’). First, initial be-
havior is random. Second, when an interaction fails (payoff u = 0), the
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algorithm parameters
Learning automata o =1 8=0
Q-learning O<a<l €=0 Qo=0

Roth-Erev learning 0 <A <1 Qp=0

Table 3.1: The parameters for which the three reinforcement learning algorithms
implement WSLI.

probabilities over the actions do not change. This can be verified with the
update rule:

Psa+au(l—psq)—B(1—u)psa if action a was taken,
F
Ds,a Psa —QUPsq+ (1 —u) (ﬁ — p87a> otherwise,

Third, when an interaction succeeds (payoff u = 1), the probability of the
action taken becomes 1 and all others 0, independent of the current proba-
bilities. The first successful action is thus repeated forever. See again the
update rule.

Roth-Erev learning implements WSLI when the initial action values
Qo = 0 and the discount factor 0 < A < 1. Q-learning implements WSLI
when the initial action values @9 = 0, the learning rate 0 < o < 1, and
the exploration rate € = 0 (also known as ‘greedy’). For Roth-Erev and
Q-learning, it is somewhat harder to see this than for learning automata,
because the action values do change on failure (the action value of the
action resulting in failure is slightly decreased), but it would take an infinite
number of failures before the probability distribution over the actions also
changes.

The number of iterations WSLI needs, in theory, to reach a separating
equilibrium (Equation (3.3)) matches the experimental results for the three
reinforcement learning rules in different Lewis signaling games. Figure 3.6
shows this for learning automata (with reward factor & = 1 and penalty
factor § = 0) in Lewis signaling games with uniform type distributions 7.
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Figure 3.6: The theoretically expected number of iterations needed to find a sep-
arating equilibrium in Lewis signaling games with uniform type distributions for
WSLI (solid black line, WSLI) matches the results for learning automata with
reward factor & = 1 and penalty factor 5 = 0 (LA(1,0)). The blue circles show
the average number of iterations and the error bars show the standard deviation
over 1,000 simulations.

3.4.2 Experiments

I now turn to some experimental results with these algorithms to find other
parameter configurations where they perform well and concentrate on two
performance criteria:

e whether or not a separating equilibrium is reached and
e the number of iterations needed to reach a separating equilibrium.

Figure 3.7 shows the results for various configurations of the three algo-
rithms and the Lewis signaling game with type distribution 7 = (%, %,
33—6, %, 35—6, 3%, 3%, %). This Lewis signaling game is hard enough to show
a clear difference between well and badly performing parameter configura-
tions. Each experiment consisted of 1,000 runs. Per run, I recorded how
many iterations were needed to reach a separating equilibrium. If, after
100,000 iterations, still no separating equilibrium was reached, the run was

terminated and counted as a failure.
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A separating equilibrium is reached when the signaling success rate—the
probability that the next game will be successful—is above some threshold
0. A threshold § = 1 would be too strict, since some strategies cannot
reach this level even though they can perform nearly optimal. For example,
e-greedy Q-learning can never achieve a signaling success rate of 1, unless
the exploration rate ¢ = 0. Therefore, I chose to set the threshold 8 halfway
between the optimal value, which is 1, and the signaling success rate of the
best suboptimal equilibrium (a Pareto dominated partial pooling equilib-
rium). This allows to clearly distinguish between runs which do not end up
in a separating equilibrium but are very near and runs that are closer to a
partial pooling equilibrium than a separating one.

The best suboptimal equilibrium has a signaling success rate of 1 minus
the probability of the rarest type: 1—min; (7). The best suboptimal equilib-
rium is a partial pooling equilibrium, such as the one in Figure 3.2b, where
Sender uses the same signal mz for different types. When seeing this signal
m3, Receiver cannot distinguish between the types to and ts, and hence can
do no better than assuming the most frequent type. So, whenever the other
type occurs, the game fails. In all other cases, the game succeeds. Thus, the
signaling success rate in the best partial pooling equilibrium is determined
by the frequency of the rarest type. For the example in Figure 3.7, the
rarest type is t; = mins{m} with probability 7, = 1/36 and the threshold
is at # = 71/72, halfway between 1 and 1 — min,{m;} = 35/36.

The experiments revealed the following:

e Roth-Erev learning performs best with a small but positive discount
factor (0 < A <« 1, Figure 3.7a). It performs better when initial action
values are very small and performs best when they are zero (Qy = 0,
Figure 3.7b). This was also reported by Skyrms (2010, p 97).

e QQ-learning performs well at any learning rate 0 < o < 1 (Figure 3.7¢),
and best when playing greedy (exploration rate e = 0, Figure 3.7d).
Combining Q-learning with other action selection strategies also re-
vealed that playing greedy works best. Q-learning with softmax action
selection performs well at low temperatures 7. Both e-greedy and soft-
max Q-learning performs well with decreasing exploration rates € and
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temperatures 7. Decreasing these parameters fast works better than
decreasing them slowly. The rest of the text therefore only discusses
e-greedy action selection with a constant exploration rate e.

e Learning automata perform better for high reward factors a (Fig-
ure 3.7¢) and low penalty factors 8 (Figure 3.7f). They performs best
when the ¢ =1 and 8 = 0.

e Finally, all three algorithms perform equally well in the best case:
they need slightly more than 2,000 iterations on average and always
find a separating equilibrium in less than 100,000 iterations. For other
Lewis signaling games we found similar results. As you may expect,
more types and non-uniform distributions require more iterations.

All three algorithms perform best when they mimic WSLI. Performance
remains optimal for (slight) deviations of some parameters. Roth-Erev
learning, for example, is also optimal for non-zero initial action values
(Qo # 0) if the discount factor is small enough (0 < A <« 1). In the
next section, I show how this allows the three algorithms to be robust to
errors while WSLI cannot.

For completeness, I mention some algorithms that yielded unsatisfactory
results. UCB1 (Auer et al., 2002) always found a separating equilibrium but
is a factor slower than WSLI. Some algorithms sometimes, or always, failed
to find a separating equilibrium. These are EXP3, EXP3.1, EXP3.S (Auer
et al., 2003), and the Reinforcement Comparison and Pursuit method from
(Sutton and Barto, 1998, ch. 2). In the remainder of the text, I focus on
Roth-Erev learning, e-greedy Q-learning, and learning automata.

3.5 Robustness

The results of the experiments in this section show that the reinforcement
learning algorithms are robust to errors in the Lewis signaling game. Three
types of errors may occur:

1. the type t’ observed by Sender may be different from the true type t,
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Figure 3.8: Flow diagrams representing Lewis signaling games. See Section 3.2 for
a full explanation of the game.

2. the signal m’ observed by Receiver may be different from Sender’s
intended signal m, and

3. the true response r’ may be different from Receiver’s intended response
T.

The flow diagrams in Figure 3.8 illustrate the difference between the original
game and the game with errors. Per interaction, at most three errors can
occur. Each type of error occurs with a (small) fixed probability pe, called
the ‘error rate.” The probability that no error occurs is (1 — pe)3.

An algorithm which is robust to errors should avoid getting locked into
suboptimal behavior which it cannot ‘unlearn.” Unfortunately, this is a key
characteristic of WSLI and hence it is not robust to errors. Whenever an
error occurs and the interaction fails, no harm is done since WSLI does
not update its behavior on failure. But whenever an error occurs and the
interaction succeeds, chances are WSLI learns the wrong thing and will
forever repeat its unsuccessful behavior. Consider the following example
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algorithm parameters
Learning automata o =1 0<pfx1
Q-learning O<a<l €=0 Qo >0

Roth-Erev learning 0 < A<1 Q¢ >0

Table 3.2: The parameters for which the three reinforcement learning algorithms
are robust to errors but still perform close to their optimal in the original Lewis
signaling game.

that leads to success, but where one error occurs. Nature selects tyi as
Sender’s true type but Sender wrongfully observes to. Next, Sender selects
signal my and Receiver responds with r1. Since the true type t; and the true
response r; match, the interaction succeeds. The agents have now learned
the path to — my — ry which fails under normal circumstances. WSLI can
also learn correct behavior even though an error occurs, namely when errors
‘cancel out.’

WSLI is only an idealized version of the reinforcement learning algo-
rithms. Slight modifications of the most successful parameter configura-
tions avoid getting locked in and make the algorithms robust to errors.
A positive initial action value (Qo > 0) does that for Roth-Erev learning
and Q-learning. A positive penalty factor (5 > 0) does that for learning
automata. Figure 3.9 shows the performance of these robust algorithms
in Lewis signaling games with uniform type distributions and error rate
pe = 1/100. On the one hand, Q-learning performs slightly worse than the
other two algorithms (a factor, not bigger than two and decreasing with the
size of the game n). On the other hand, Q-learning is more reliable (its
standard deviation is only half of that of the other two algorithms).

The learning algorithms are now capable of unlearning previous experi-
ence but this does not decrease their performance in Lewis signaling games
without errors provided that the discount factor of Roth-Erev learning A < 1
and the penalty factor of learning automata § < 1. Table 3.2 summarizes
these parameters. Previously successful behavior is only forgotten after
some consecutive failures. For small error rates, truly successful behavior
will rarely lead to failure and even more rarely to a long enough sequence of
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Figure 3.9: With error rate p. = /100, the robust algorithms perform almost as

well as theory predicts for

WSLI without errors (WSLI, black solid line). The

data show the number of iterations, averaged over 100 runs, needed to reach a
separating equilibrium in Lewis signaling games with uniform type distributions

of different sizesn = 2,3, ...

;9. The algorithms are learning automata with reward

factor @ = 1 and penalty factor 5 = 0.1 (LA(1,0.1), blue circles); Q-learning with
learning rate o = 0.1, exploration rate ¢ = 0, and initial action value Q¢ = 1
(Q(0.1,0,1), green triangles); and Roth-Erev learning with discount factor A = 0.1
and initial action value Qo = 0.5 (RE(0.1,0.5), red asterisk).
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failures, and thus will never be forgotten. Behavior that was only successful
due to errors will soon yield a long sequence of failures and be forgotten.

3.6 Related Work

I briefly discuss the other work applying the fixed player model in Lewis
signaling games (without errors).

Argiento et al. (2009) have proven that basic Roth-Erev learning (with
initial action values Qo = 1 and discount factor A = 1) always converges to
a separating equilibrium in the Lewis signaling game with two equiprobable
types (m = (3,3)). Basic Roth-Erev learning fails for games with more
than two types (n > 2) and for games with non-uniform type distributions
7 (Barrett, 2006; Catteeuw et al., 2011; Huttegger, 2007). Skyrms (2010,
p 97) reported that smaller initial action values (Qo < 1) increase the
probability of reaching a separating equilibrium, even when the number of
types is larger than two (n > 2) and the probability distribution over the
types 7 is non-uniform. Here, I was able to explain this.

Barrett and Zollman (2009) apply win-stay/lose-randomize to Lewis sig-
naling games and prove that it always reaches a separating equilibrium.
Win-stay /lose-randomize repeats what is successful but chooses a random
action after a failure. In the Lewis signaling game, it is equal to Roth-Erev
learning when the discount factor A = 0. Although this is theoretically very
interesting, experiments show that the number of interactions needed to
reach a separating equilibrium increases exponentially with the size of the
game (Catteeuw et al., 2011). Catteeuw et al. (2011) show experimentally
how Roth-Erev learning with a discount factor 0 < A < 1 always reaches
a separating equilibrium and is much faster than win-stay /lose-randomize.
Barrett (2006) studied two other variations of Roth-Erev learning for sig-
naling games with an arbitrary number of types (n > 2) but uniform type
distributions. One variation allows for negative rewards, the other ran-
domizes action values. Both variations seem to help reaching a separating
equilibrium, but do not guarantee it.

Barrett and Zollman (2009) also discuss softmaz Q-learning (but call it
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‘smoothed reinforcement learning’) and a more complex learning rule called
‘ARP’ (Bereby-Meyer and Erev, 1998). They conclude that forgetting old
experience increases chances of finding a separating equilibrium. I found
that this is unnecessary except for Lewis signaling games where errors occur.

Win-stay/lose-shift (which Skyrms (2010) calls ‘best response’) does not
work in Lewis signaling games with two types (n = 2), since the process
may get into endless loops. When there are more than two types (n > 2),
the process must be redefined. For example, when loosing, it could pick
any of the alternatives at random with equal probability. Skyrms (2010,
pp 103-105) calls this process ‘best response for all we know.” Still, this
process cannot handle the case for n = 2 types, and Zollman proposes to
add inertia: only now and then apply the best response rule. The rest of
the time behavior is not updated.

3.7 Conclusion

In order to gain more insight into the emergence of signaling under common
interest, I studied the Lewis signaling game in the fixed player model with
different adaptive heuristics. There are three main results.

1. I introduced the new adaptive process WSLI. Markov chain analysis
proves that it always reaches a separating equilibrium in all Lewis
signaling games and predicts that the expected number of iterations
needed is polynomial in the number of types: E[T,] = O(n?).

2. Three reinforcement learning algorithms mimic WSLI in Lewis signal-
ing games: learning automata with reward factor &« = 1 and penalty
factor 8 = 0; greedy Q-learning with initial action value Qg = 0 and
learning rate 0 < a < 1; and Roth-Erev learning with initial action
value Qg = 0 and discount factor 0 < A < 1.

3. Slight adaptations render these algorithms robust without decreasing
their performance in the original Lewis signaling game. The resulting
configurations are: learning automata with reward factor « = 1 and
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small positive penalty factor 0 < g < 1; greedy Q-learning with
positive initial action value Q)¢9 > 0 and learning rate 0 < a < 1;
and Roth-Erev learning with positive initial action value Qg > 0 and
discount factor 0 < A < 1.

These results tell us that under very weak assumptions signaling can
emerge by chance and can do this reasonably fast. Though the number of
interactions needed to reach a separating equilibrium is polynomial in the
number types n, there is already some successful signaling while learning.
Admittedly, for large communication systems, one would prefer time grows
only linear or even sublinear with the number of types n, and so other
solutions are necessary. For example, if an agent could know which signal
he uses for which type, he could avoid using that same signal for other types.
This would definitely speed up learning, but it imposes extra requirements
on the agents’ cognitive capabilities. This is exactly what researchers in the
domain of language games are doing (De Beule et al., 2006; Steels, 1999,
2001).



78

CHAPTER 3. COMMON INTEREST



Chapter 4

Costly Signals

The previous chapter studied the emergence of signaling under common in-
terest, but most interactions are characterized by conflicting interests. This
chapter examines when costly signals allow the emergence of signaling if in-
terests conflict. It is based on the publications (Catteeuw and Manderick, in
press; Catteeuw et al., 2013). The next chapter studies another alternative:

punishment.
Contents
4.1 Introduction ... ... .......... . ..., 80
4.2 The Philip Sidney Game . . . ... ... ..... 82
4.2.1 Evolutionary stability . . .. ... .. ... ... 85
4.2.2  Conflict and costly signals . . . . ... ... ... 88
4.3 Individual Learning . ... ... ... ....... 88
4.3.1 Experiments and results . . . . . ... ... ... 89
4.3.2 Summary . . .. ... 97
4.4 Evolution in Finite Populations . . . . . ... .. 98
4.4.1 Effect of selection pressure. . . . . . ... .. .. 98
4.4.2 Effect of population size . . . . . .. ... ... 100
4.4.3 Stationary distribution vs. evolutionary stability 102
444 Summary . . ... 103
4.5 Related Work . ... ... ... ... ........ 104
4.6 Conclusion . ........ .. 00000 105

79



80 CHAPTER 4. COSTLY SIGNALS

4.1 Introduction

In economics, Spence’s job market model (Spence, 1973) (Example 1.5)
shows that a university degree can work as an honest signal when applying
for a job since there is a cost of acquiring that degree. More importantly,
the degree is increasingly more costly to acquire for less skilled employees.
As such, higher skilled employees invest in a higher degree than lower skilled
employees and the employer, who is unable to directly observe the employ-
ees’ abilities, has good reasons to believe that job candidates with higher
degrees have higher abilities.

Honest signaling is important in many other economic applications with
private information, such as product advertisement where the seller does
and the buyer does not know the quality of the product. The seller can
invest in costly advertisement to signal the quality of his product. Riley
(2001) provides an overview of signaling in economics.

Zahavi (1975, 1977) discovered the same principle independently and
named it the ‘handicap principle.’ He claims that male characteristics used
for sexual selection, such as the peacock’s tail, the extra large antlers of
deer, or the colorful plumage of male birds, are honest signals of the males’
quality because they are a handicap. The peacock’s tail (Example 1.3), for
example, makes it harder for the peacock to escape from predators. Since
only the fittest can afford the largest tails, females can reliably infer which
males would make better mates from the size of their tails. Maynard Smith
and Harper (2003) provide an overview of signaling in animals.

The Philip Sidney game (Section 4.2) is the classic game theoretic model
for signaling when interests conflict. While Grafen (1990) proved that the
handicap principle can work, Maynard Smith (1991) introduced the Philip
Sidney game as a simplification of Grafen’s model that still captures all
necessary details to illustrate that concept (Maynard Smith and Harper,
2003, ch. 2).

Until now, both economists and biologists have almost exclusively re-
lied on static analyses of honest signaling. In a static analysis, one merely
verifies stability according to some equilibrium concept. Economists are
mostly concerned with the necessary requirements for which honest signal-
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ing is a unique Nash equilibrium or a refinement thereof. See Appendix B
for more information on equilibria in signaling games. Similarly, biologists
show when honest signaling can or cannot be an equilibrium (in this case,
an evolutionarily stable strategy) in many variations of the Philip Sidney
game. See for example (Bergstrom and Lachmann, 1997, 1998; Brilot and
Johnstone, 2003; Grafen, 1990; Lachmann and Bergstrom, 1998; Maynard
Smith, 1991).

But stability is not sufficient for honest signaling to emerge, it merely
says that if it emerges it will persist (Lachmann and Bergstrom, 1998).
The same critique has been formulated by Huttegger and Zollman (2010).
Instead of investigating the evolutionary stability of honest signaling in
the Philip Sidney game, they focus on the evolutionary dynamics of the
game. They employed the replicator dynamics (Hofbauer and Sigmund,
1998; Maynard Smith, 1982) which describes how strategies may spread in
an infinite, well-mixed population under the influence of natural selection.
They discovered that in some cases honest signaling is less likely to evolve
in the replicator dynamics than is otherwise suggested by the analysis of
evolutionarily stable strategies (ESSs). Section 4.5 discusses this related
work in more detail.

This chapter shows that honest signaling can emerge from initially ran-
dom behavior through adaptive processes even when there is a conflict of
interest. I consider two adaptive processes: individual learning dynamics
(Section 4.3) and evolutionary dynamics in finite populations (Section 4.4).
Each time, I show under which conditions honest signaling is an equilib-
rium but not the result of a dynamical process. When the signal cost or
the degree of common interest is too high, the cost of signaling outweighs
its benefit, so non-signaling equilibria emerge. The opposite also occurs:
(partial) signaling emerges in settings where it cannot be stable because
signals are too cheap.

Contributions

Section 4.3 contrasts individual learning (e-greedy Q-learning in the random
matching model) with the Nash equilibrium. Section 4.4 contrasts evolu-
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tionary dynamics in finite populations with evolutionary stability in finite
and infinite populations.

e In individual learning dynamics, honest signaling emerges only if it is
a Pareto optimal Nash equilibrium. This is possible when the signal
cost and the degree of common interest are relatively low, otherwise
the cost of signaling outweighs its benefits and non-signaling equilibria
emerge.

e In individual learning dynamics, when signals are too cheap for hon-
est signaling to be stable, partial signaling—where agents sometimes
signal or respond honestly and sometimes dishonestly—emerged.

e [ compare the evolutionary stability of honest signaling in finite and
infinite populations and show the effect of population size and selec-
tion pressure. For high signal cost and low selection pressure, honest
signaling may be evolutionarily stable in infinite but not in finite pop-
ulations. In large populations with high selection pressure, honest
signaling is stable under the same circumstances.

e Honest signaling is observed under the same circumstances in the
evolutionary dynamics as in the individual learning dynamics. It is
possible that honest signaling is not stable but still the most frequent
strategy in evolutionary dynamics.

4.2 The Philip Sidney Game

In biology, the standard model of costly signaling is the Philip Sidney game
(Maynard Smith, 1991). It is a signaling game (Section 2.2.4) and shown
in Figure 4.1. Sender has two types: healthy and needy with probabilities
p and 1 — p, respectively, so the probability distribution over the types is
7 = (p,1—p). In both cases, he can either signal at some cost ¢ or be quiet
at no cost. Receiver does not know Sender’s type, but he observes whether
or not Sender signals. He has a resource and must decide whether or not
to donate it to Sender.
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Figure 4.1: The Philip Sidney game is a signaling game with two types, two signals,
and two responses. See Table 4.1 for the players’ payoffs at each outcome.

To vary between conflicting and common interest, each player’s payoff
(Table 4.1) is the sum of his own survival probability plus a fraction R of
the other player’s survival probability. R is the players’ degree of common
interest. If R = 1, both players receive the same payoffs and interests are
perfectly aligned. If R = 0, the players’ interests are conflicting: Sender
prefers to receive the resource while Receiver prefers to keep it.

In biology, R could represent the players’ coefficient of relatedness—the
fraction of genes that two organisms share through descent. The principle of
inclusive fitness (Hamilton, 1964) states that genetically related organisms
have some common interest: they benefit from each other’s survival because
they have more genes in common than two random organisms in the same
population.

Remember that an outcome of a game in extensive form is a path from
the root of the tree to a leaf node. For the Philip Sidney game these are
3-tuples (t,m,r) and consist of a type ¢ € {healthy,needy}, a signal m €
{signal,quiet}, and a response r € {donate, keep}.

The survival probabilities are normalized and depend on the outcome
of the game. Receiver is sure to survive if he keeps the resource, but if he
donates the resource he survives with probability S < 1. If Sender receives
the resource he is sure to survive, otherwise his survival probability depends
on his type: if he is needy, he will die; if he is healthy, he will survive with
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Table 4.1: Sender’s and Receiver’s payoffs for all possible outcomes of the Philip
Sidney game. To vary the degree of common interest, a player’s payoff is the sum
of his own survival probability plus R times the other player’s survival probabil-
ity. See the text for an explanation of the players’ survival probabilities. The
parameters are listed below.

signal quiet
Sender  Receiver Sender  Receiver
healthy donate l1—¢c+RS S+R(1-¢) 14+RS S+R
keep Vl-¢)+R 1+RV(l—¢) V+R 1+4+RV

needy donate l1—c+RS S+R(1-¢ 14+RS S+R
keep 0+R 14+ RO 0+R 14+ RO

parameter meaning

0 <p<1 probability that Sender is healthy

0 < R<1 degree of common interest

0 < S <1 Receiwer’s survival probability without the re-
source

0 <V <1 Sender’s survival probability when healthy
without the resource

0<c<1 signal cost

probability V' < 1. As already mentioned, signaling is costly: Sender’s
survival probability is decreased by a factor (1 — ¢) if he signals. Table 4.1
shows all payoffs depending on the outcome and lists all parameters and
their domain and meaning.

In the Philip Sidney game, both players have four pure strategies (Ta-
ble 4.2). Sender’s pure strategies are S, (always signal), Sy (never signal),
Sy (signal only when healthy), and Sy (signal only when needy). Receiver’s
strategies are Dy (always donate), Dy (never donate), Ds (donate only when
signal), and Dg (donate only when quiet). The strategic form of the Philip
Sidney game can be derived from these pure strategies (Definition 2.1). Its
payoff table is given in Appendix C.
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Table 4.2: In the Philip Sidney game, both players have four pure strategies.

strategy meaning

Sender Sa always signal
Sp never signal
Sy signal only when needy
Sy signal only when healthy

Receiver Dy always donate

Dy never donate
Ds donate only when signal
Dq donate only when quiet

The symmetric Philip Sidney game, which is the symmetric version of
the Philip Sidney game in strategic form (Definition 2.1 and 2.2), has sixteen
pure strategies. They are represented by tuples (X,Y"). The first component
determines what to do when in the role of Sender and the second one
determines what to do when in the role of Receiver. For example, the
honest signaling strategy is (Sy,Ds) (signal only when needy, donate only
when signal). The payoffs of these pure strategies are calculated as explained
at the end of Section 2.2.2.

There exist other variants of the Philip Sidney game, for example with
continuous types, signals, or responses, but these yield qualitatively the
same result (Maynard Smith and Harper, 2003, ch. 3).

The next sections, study the Philip Sidney game in more detail: the
link with the handicap principle, the circumstances that make honestly
signaling an evolutionarily stable strategy, and a classification of different
types of conflict.

4.2.1 Evolutionary stability

On the one hand, the Philip Sidney game is a good model for the handicap
principle since signals can be costly and Sender benefits more from receiving
the resource when he is needy than when he is healthy. On the other
hand, the cost of signaling does not depend on the state of Sender, but
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benefit when needy

benefit when healthy

cost

Benefit and cost

t >
a b Signal intensity

Figure 4.2: Visual representation of the handicap principle where signal cost and
benefits increase with signal intensity. The benefit for a needy individual is higher
than for a healthy one such that the optimal signaling intensity for needy individ-
uals is higher than for healthy individuals: a < b.

only on the signal’s intensity. Figure 4.2 visualizes this (assuming there
is a continuum of possible signals, which is not the case for the Philip
Sidney game, but the reasoning remains the same). Godfray (1991) and
Johnstone and Grafen (1992b) use similar models where the signal indicates
a level of need and depends only on its intensity, but Sender benefits’ vary
depending on his type. A typical example is a chick begging his mother
for food to indicate it is hungry. In (Grafen, 1990) and (Johnstone and
Grafen, 1992a) the signal indicates a quality and the same signal is more
costly for low quality types than for high quality types. Another example
is the peacock which signals his quality as a mate and parent with his tail
(Example 1.3). In both scenarios, there exists an optimal signal intensity
where the benefits maximally outweigh the costs (a and b in Figure 4.2).
Depending on the parameters of the Philip Sidney game the optimal signal
intensity for needy individuals may be higher than for healthy individuals
(a < b as in Figure 4.2), so that healthy individuals cannot profit from being
dishonest: honest signaling is a Nash equilibrium.

The handicap principle only indicates that there is a possibility that
honest signaling is stable. To verify its stability biologists usually rely on
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Figure 4.3: (a) Stability of honest signaling and (b) regions of conflict for all
combinations of the signal cost ¢ and the degree of common interest R, where the
players’ survival probability without the resource S = V = 4/5s. Both figures are
independent of the probability p that Sender is healthy.

the concept of evolutionarily stable strategies (Definition 2.6). For two-
player asymmetric games, the evolutionarily stable strategies coincide with
the strict Nash equilibria (Section 2.3.1), so honest signaling (Sy,Ds) is evo-
lutionarily stable if Sender’s strategy Sy is the best response to Receiver’s
strategy Dg and Receiver’s strategy Dg is the best response to Sender’s strat-
egy Sy (Maynard Smith, 1991).

Straightforward algebra shows that Sy is the best response to Ds when-
ever R<1—c+ RS and 1 —c+ RS < V + R. Similarly, Dg is the best
response to Sy whenever 1 + RV > S+ R and S+ R(1 — ¢) > 1 (Maynard
Smith, 1991). For the Philip Sidney game where S =V = 4/5, Figure 4.3a
shows for which combinations of the signal cost ¢ and the degree of common
interest R honest signaling is evolutionarily stable. The probability p that
Sender is healthy has no influence.
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4.2.2 Conflict and costly signals

Let us now verify when there is a conflict of interest. That is, when would
Sender prefer a different outcome than Receiver. When Sender is needy, he
prefers to receive the resource if R(1 —S5) < 1 (which is always satisfied)
and Receiver prefers to keep it if S+ R < 1 or R < 1 — 5. The case
where Sender does not want the resource, but Receiver wants to donate it
is impossible. When Sender is healthy, he prefers to receive the resource if
R(1—-95) <1—V and Receiver prefers to keep it if R(1—V) <1—S. The
effect of the degree of common interest R is as expected. For R = 0 these
conditions always hold, so there is a conflict. For R = 1 the conditions
cannot hold at the same time, so there is no conflict. For the Philip Sidney
game where S = V = 4/5, Figure 4.3b shows there is a conflict when Sender
is needy when R < 1/5 and there is a conflict when Sender is healthy when
R < 1. The latter holds whenever S = V. Just as the stability of honest
signaling, conflicts are not influenced by the probability p that Sender is
healthy.

According to the handicap principle, if interest conflict, honest signaling
can only be stable when signals are costly. Maynard Smith (1991) further
shows that this holds in the Philip Sidney game. For the current parameters
(S = V = 4/5) there is a conflict if R < 1. The only case where honest
signaling is stable but signals are cost-free is when R = 1.

4.3 Individual Learning

This section randomly matches Senders and Receivers to play the Philip
Sidney game: the random matching model (Section 2.3.2). The agents use
e-greedy Q-learning (Section 2.3.2). This algorithm is ideal for learning in
populations with conflicting interests for several reasons:

e It poses no constraints on the agents’ rewards, so it can be directly
applied to the Philip Sidney game whose payoffs 0 < u < 2. Learning
automata would require the rewards to be scaled to the closed range

[0,1].
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e Agents stay adaptive. When an action’s expected payoff changes and
that action is used, the agent will adjust the action’s value at the
same fixed rate o no matter how long the agent has been learning. A
constant exploration rate e allows agents to (re)discover actions whose
expected payoff has improved.

e Agents explore forever at a fixed but small exploration rate e. This
ensures that each possible information set is reached and forces the
opponent(s) to optimize at each information set, not just those along
the usual path of play. This implements sequential rationality (Ap-
pendix B).

e [t is possible to increase the amount of exploration at the beginning of
the learning process by optimistically initializing the Q-values (Sutton
and Barto, 1998, p 40). In these experiments, I set the initial Q-value
Qo = 2 which is the highest possible payoff in any Philip Sidney game.

Staying adaptive and exploring forever is a necessary requirement in com-
petitive environments as they tend to be non-stationary. Whereas in a
stationary environment exploration can be ignored once enough informa-
tion has been collected, in a non-stationary environment the agent has to
continue exploring in order to track changes in the environment.

4.3.1 Experiments and results

I used the following parameters for all experiments reported in this sec-
tion: the learning rate a = 1/10, the exploration rate ¢ = 1/100, the initial
action value Qg = 2, and the population size N = 100. At each of the
106 iterations, I randomly selected two agents to play the game (on av-
erage, each agent was selected 10* times as Sender and 10* times as Re-
ceiver). After these 109 iterations, I recorded the outcome of 100 games
and computed the frequency of each possible outcome. Each outcome is a
type t € {healthy,needy}, a signal m € {signal,quiet}, and a response
r € {donate,keep}. Finally, these results were averaged over 100 simula-
tions per experiment. Figure 4.4 shows an example of an experiment where
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the signal cost ¢ = 1/10, the degree of common interest R = 1/4, the players’
survival probability without the resource S =V = 4/5 and the probability
that Sender is healthy p = 1/2. It shows the evolution of the frequencies of
each of the outcomes over time.

Figure 4.5 shows for which combinations of signal cost ¢ and degree of
common interest R honest signaling evolves. Honest signaling is the strategy
pair (Sy,Ds), so the frequency of honest signaling is the sum of the frequen-
cies of the outcomes (healthy,quiet,keep) and (needy, signal,donate).
In particular, dark red in the figure indicates honest signaling was always
observed, dark blue indicates that honest signaling was never observed.

Three things are remarkable:

e First, it is particularly surprising that in a large part of the area where
honest signaling is an equilibrium (the area enclosed by the solid black
line), honest signaling does not evolve! It only does so near the lower

tip of that region at (¢, R) = (0.153,0.236).

e Second, there is a region where honest signaling evolves but is not an
equilibrium (red/orange/yellow region to the left of the lower tip).

e Finally, the green area in the lower part of the figure seems to indicate
honest signaling is observed 50% of the time, though this is just an
artifact.

I now explain each of these observations.

When honest signaling is stable

In the region where honest signaling is stable, it is observed only near the
lower tip (Figure 4.5). No signaling was observed when the common interest
R was too high (R > 1/2). Honest signaling not necessarily emerges when it
is an equilibrium since an other equilibrium may dominate it. For example
the strategies (Sp, ADy + (1 — \)Dg) for all A € [0, 1]. In this example (Philip
Sidney games with parameters S =V = 4/5 and p = 1/2), this set of weak

Nash equilibria Pareto dominates honest signaling (Sy,Ds) when R > ﬁ
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Pr(outcome)

Figure 4.4: The evolution of the outcomes in the Philip Sidney game with the signal
cost ¢ = 1/10, the degree of common interest R = 1/4, the players’ survival proba-
bility without the resource S = V' = 4/5, and the probability that Sender is healthy
p = 1/2. Outcomes are abbreviated by the first letter of each component, so ‘nsd’
denotes (needy, signal,donate), ‘hqk’ denotes (healthy, quiet, keep), etc. Each
outcome occurred at most half of the time, since the type ¢ € {healthy,needy} is
included in the outcome and the type distribution was fixed at (p,1—p) = (1/2,1/2).
At the end of this experiment, when Sender was needy he almost always signaled
and Receiver mostly donated (‘nsd’). When Sender was healthy, about half of the
time he remained quiet and Receiver kept the resource (‘hgk’). The other half of
the time Sender lied and got the resource (‘hsd’).
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Figure 4.5: Frequency of honest signaling (by summing the frequencies of
(healthy,quiet, keep) and (needy, signal,donate)) for all combinations of sig-
nal cost ¢ and degree of common interest R. The probability that Sender is healthy
p = 1/2 and the players’ survival probability without the resource S =V = 4/s.

This was also observed in the experiments. More than 90% of the time
Sender did not signal and Receiver donated in that region (Figure 4.6).

Figure 4.7 shows for which Philip Sidney games honest signaling is
Pareto dominated by an other Nash equilibrium. In the region where honest
signaling is the unique Pareto optimal Nash equilibrium, it always emerged.
In the region where honest signaling is a Pareto optimal Nash equilibrium
that is not unique, honest signaling emerged although not exclusively. In the
region where honest signaling is a Pareto dominated Nash equilibrium, it
never emerged. Whether or not honest signaling is a Nash equilibrium does
not depend on the probability p that Sender is healthy (Section 4.2.1 and
Figure 4.3a), but Pareto optimality of the equilibria does depend on prob-
ability p. Still, the same effects were found for other values of probability
.

Clearly, other equilibria may be more important and must be taken into
account in order to predict the outcome of a game. By considering honest
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Figure 4.6: Sum of the frequency of outcomes (healthy,quiet,donate) and
(needy, quiet, donate) for all combinations of signal cost ¢ and degree of com-
mon interest R. The probability that Sender is healthy p = 1/2 and the players’
survival probability without the resource S =V = 4/s.

signaling alone and determining whether it is an evolutionarily stable strat-
egy (ESS) or not, one overlooks other equilibria. Another problem is that
strategies like (Sp, 2Dy + (1 —)Dg) are not even ESS, because they are weak
Nash equilibria in an asymmetric two-player game (Section 2.3.1). Even
after considering all ESSs, one would still conclude that honest signaling is
the only equilibrium and will necessarily emerge.

An alternative is to find all Nash equilibria and determine their im-
portance by means of Pareto optimality. Unfortunately, it is possible that
multiple Pareto optimal Nash equilibria exist in which case multiple equi-
libria may emerge.

Partial communication

There are cases where signaling took place but honest signaling is not an
equilibrium. The region with the signal cost ¢ < (1—R)/5 and the degree of
common interest R just above 1/(5 — 5¢) (Figure 4.5) showed the following



94 CHAPTER 4. COSTLY SIGNALS

1
o
E”: Nash
o
=05
c
o
S .
S Pareto optimal
3 unique
0
0 0.5 1
signal cost ¢

Figure 4.7: For which combinations of signal cost ¢ and common interest R honest
signaling is a Nash equilibrium. The probability that Sender is healthy p = 1/2
and the players’ survival probability without the resource S = V = 4/5. In the
biggest part of that area honest signaling is a Nash equilibrium Pareto dominated
by another equilibrium (‘Nash’). In the region below it, it is Pareto optimal (not
Pareto dominated), but there is an other Nash equilibrium that is also Pareto
optimal (‘Pareto optimal’). Finally in the lower tip, honest signaling is a unique
Pareto optimal Nash equilibrium (‘unique’).

healthy quiet keep
P °
needy signal donate

Figure 4.8: Mixed strategies representing partial signaling. Sender always signals
when needy. Receiver always keeps the resource when Sender is quiet. When
healthy, Sender is sometimes quiet (honest) and sometimes signals (dishonest).

When Sender signals Receiver sometimes donates (honest) and sometimes keeps
the resource (dishonest).
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(a) For varying signal cost c. (b) For signal cost ¢ = 0.05.

Figure 4.9: Frequency of lying where the probability that Sender is healthy p = 1/2
and the players’ survival probability without the resource S =V = 4/s.

behavior (Figure 4.8). When needy, Sender always signaled; when healthy,
he was sometimes quiet and sometimes signaled—he lied. When Sender
was quiet, Receiver always kept the resource; when Sender signaled, he
sometimes donated the resource and sometimes kept it. The experiment
shown in Figure 4.4 is an example.

The behavior observed in that experiment was (0.48S, + 0.52Sy, 0.92Dg
+ 0.8Dy) which is close to one of the Nash equilibria of that game (p = 1/2,
S =V =4/, ¢c=1/10,and R =1/4): (0.17Sy + 0.83 Sy, 0.62Ds + 0.38 Dy).
These strategy profiles may not seem close, but they are close in terms of
payoffs: Sender cannot improve his payoff by switching from the observed
behavior to the equilibrium behavior and Receiver can improve his payoff
merely 0.7% when switching from the observed behavior to the equilibrium
behavior.

Figure 4.9 shows the frequency at which Sender lied. It peaked for
a degree of common interest about R = 3/10. For weaker conflicts (R >
3/10) lying was less frequent until, at some point, signaling does not pay
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Figure 4.10: Frequency of outcome (healthy, quiet, keep) for all combinations of
signal cost ¢ and degree of common interest R. The probability that Sender is
healthy p = 1/2 and the players’ survival probability without the resource S =V =

4fs.

off at all because Receiver prefers to donate no matter Sender’s type. For
stronger conflicts (R < 3/10) lying was less frequent while honest signaling
increased until signaling no longer pays off because Receiver prefers to keep
the resource no matter Sender’s type (R < 1/(5 — 5c¢)). Intensifying the
conflict (decreasing R from 3/10 to 1/5) decreased lying and at the same time
increased honest signaling. Lying almost always payed off, which means the
players learned to lie at the optimal rate, above which Receiver would no
longer trust the signal.

While ESS analysis predicts that a minimal signal cost is required for
honest signaling (¢ > 1 — 5R), these experiments predict that signaling is
still possible. Although lying emerges, Receivers still benefit by trusting the
signal most of the time.
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Artifact

The seemingly 50% of honest signaling observed in the Philip Sidney games
in the lower part of Figure 4.5 (common interest R < 1/4) is an artifact and
is entirely due to the outcome (healthy, quiet, keep) (Figure 4.10). In that
region, it does not pay off Receiver to donate no matter Sender’s type, so
it does not pay off Sender to signal. The observed strategy in that region
is (Sy,Dp) (never signal, never donate) which partially overlaps with honest
signaling (Sy,Ds) but is in fact a pooling equilibrium: Sender always uses
the same signal, so there is no communication.

Meaning reversed

The Philip Sidney game has two separating equilibria: (Sy,Ds) and (Sg,Dg).
These are equilibria where Sender uses a different signal when he is healthy
and when he is needy, so that Receiver can perfectly infer Sender’s type. In-
tuitively, (Sg,Dq) (signal when healthy, donate when quiet) seems weird, but
is also honest signaling. It simply has the meaning of the signals reversed:
quiet means you are in need, signal means you are healthy. When signals
are cost-free, as was the case in Chapter 3, both separating equilibria are
equivalent and the meaning of the signal is purely conventional. In the ex-
periments both equilibria were equally likely to emerge. When signal costs
more than quiet, the asymmetry creates an obvious, or natural, meaning
and an obscure one. The second equilibrium was not observed in the ex-
periments and the conditions under which it is an equilibrium rarely hold.
For example, it cannot be an equilibrium when Sender’s survival probabil-
ity when healthy but without the resource is less than Receiver’s survival
probability without the resource (V' < S). Never signal (Sp) is then a better
response to donate when quiet (Dg) than signal when healthy (Sg).

4.3.2 Summary

Randomly matching Senders and Receivers that learn individually predicts
honest signaling differently than ESS in two ways:
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e When the degree of common interest is too high, signaling is no longer
beneficial since Receiver donates his resource no matter Sender’s type.

e When the signal cost is below the minimum needed for honest signal-
ing to be an equilibrium, signaling does not abruptly break down, but
some lying emerges.

The model discussed here is based on individual learning. In the next
section, the model is based on social learning and evolution.

4.4 Evolution in Finite Populations

This section analyzes evolutionary stability and dynamics in finite popu-
lations (Section 2.3.1) for the Philip Sidney game. Section 4.4.1 and 4.4.2
study the effects of the selection pressure and the population size, respec-
tively, on the emergence of honest signaling. Section 4.4.3 analyzes the
dynamics and compares its long term outcome to predictions of evolution-
ary stability.

4.4.1 Effect of selection pressure

Recall that a strategy W is an evolutionarily stable in finite populations
(ESSn) (Definition 2.7) if natural selection (or social learning)

e opposes any mutant invading the population of W’s, and
e opposes any mutant strategy replacing an entire population of W’s.

Strategy W resists invasion if the fitness of the single mutant M is lower than
the fitness of the wild type W in a population of N — 1 W’s and one mutant
M: fu(1) < fu(1) for all M # W (Equation (2.9)). While the first condition is
independent of the selection pressure (, the second one is not. Strategy W is
resistant to replacement if the fixation probability of any mutant strategy
M is less than the fixation probability under random drift: py_y < 1/N. For
low selection pressure § < 1, the condition simplifies to Equation (2.10),
but in general each case must be numerically verified. Figure 4.11 shows
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Figure 4.11: The effect of selection pressure 5 on the evolutionary stability of hon-
est signaling (ESSy) in the Philip Sidney game when the probability that Sender
is healthy p = 1/2 and the players’ survival probabilities without the resource
S =V = 4/5. The population size N = 100. For increasing selection pressure
(8 = 0.01, 0.1 and 0.5) honest signaling resists replacement and is evolutionarily
stable (red shaded area) for larger signal costs c. There is a large set of cases
where honest signaling is resistant to invasion (area labeled ‘invasion’), but not to
replacement by any mutant. If, by chance, a few mutants manage to survive in a
population of honest signalers, they have good chances to take over the population.
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Figure 4.12: The Philip Sidney games where honest signaling is evolutionary stable
in infinite populations (ESS) and/or in finite populations (ESSy). These games
represent about 7% of 10° games randomly selected from the entire space of Philip
Sidney games. In 22% to 35% of these games, honest signaling is only evolution-
arily stable under the assumption of infinite populations (ESS). For very small
populations, there are some games where honest signaling is ESSy but not ESS.

the result for the Philip Sidney games where the probability that Sender is
healthy p = 1/2 and the players’ survival probabilities without the resource
S = V = 4/5. The higher the selection pressure, the more cases where
honest signaling resists replacement by any mutant. Since resistance to
replacement is the most restrictive condition for ESSy (Figure 4.11), higher
selection pressure favors the evolutionary stability of honest signaling. Since
ESSy is a subset of ESS for sufficiently large populations (Nowak et al.,
2004), ESSN approaches ESS for increasing selection pressure 3.

4.4.2 Effect of population size

Similarly to the methods described in (Gokhale and Traulsen, 2010; Han
et al., 2012), I randomly sampled 10° parameter configurations from the
game’s entire parameter space (see Table 4.1 for the game’s parameters)
and found that honest signaling (Sy,Ds) is evolutionarily stable in slightly
less than 7% of the games.

In finite populations, however, in an important part (22% to 35%) of the
games where honest signaling is ESS it is not ESSy (evolutionarily stable in
finite populations), see Figure 4.12. For small populations there are, on the
one hand, less cases where honest signaling is ESSy than ESS, and on the
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Figure 4.13: The effect of population size NV on the evolutionary stability of honest
signaling (ESSx) in the Philip Sidney game when the probability that Sender
is healthy p = 1/2 and the players’ survival probabilities without the resource
S =V =4/5. As the population size increases (N = 10,100, and 1000) there are
more cases where honest signaling is ESSy (area surrounded by a black, solid line
and labeled ‘ESSy’). But they remain a subset of the cases where it is ESS (area
surrounded by a red, dashed line and labeled ‘ESS’). There is a large set of cases
where honest signaling is resistant to invasion (area surrounded by a blue, solid
line and labeled ‘invasion’), but not to replacement by any mutant.

other hand, a marginal fraction of cases appear where honest signaling is
ESSx but not ESS. For reasonable population sizes (N > 100), the number
of such cases is negligible. The net effect is that, for finite populations,
there are a lot less cases where honest signaling is evolutionarily stable than
what the infinite population model suggests.

For a slice of the space of Philip Sidney games (p = 12, S =V = 4/5)
Figure 4.13 shows the regions where honest signaling is ESS and ESSy for
population sizes N = 10,100, and 1000. These results are in accordance
with the theory (Section 2.3.1). For large populations, every strategy that
is ESSy is also ESS. For small populations, the ESS conditions are neither
necessary nor sufficient for ESSy. These experiments show to what extent
this holds for honest signaling in the Philip Sidney game.

These results have two implications. First of all, they suggest that hon-
est signaling is not as widespread as was previously suggested by the ESS
concept. Second, given that there is still an important overlap between
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Figure 4.14: Frequency of honest signaling (white means the entire population
never adopts honest signaling, while black means the entire population always
uses honest signaling) in the Philip Sidney game when the probability that Sender
is healthy p = 1/2 and the players’ survival probabilities S = V' = 4/5. The selection
pressure 8 = /10 and the population size varies (N = 200, 500, 1000, and 2000).

games where honest signaling is evolutionarily stable in finite populations
(ESSn) and where it is evolutionarily stable in infinite populations (ESS),
there is increased evidence that there are indeed settings where honest sig-
naling is a viable strategy. Figure 4.13 shows that especially in games with
higher signal cost ¢ honest signaling is no longer an ESSy and that the
maximum signal cost ¢ decreases with increased common interest R. For
smaller populations, the minimum signal cost ¢ and the minimum degree of
common interest R at which honest signaling is stable increase slightly.

4.4.3 Stationary distribution vs. evolutionary stability

Finally, I show that there is an important difference between the stability of
honest signaling and whether or not it is the most prevalent strategy in the
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population. Using the methods described in Section 2.3.1, I compute the
time the entire population adopts each of the sixteen strategies described
above (Section 4.2) and analyze whether and when honest signaling is the
most frequent strategy. Two interesting and important observations follow.

First, with increasing population size N, the fitness of each strategy
becomes more important. The population size N has an effect similar to the
selection pressure 8. For smaller populations, the frequency of the strategies
approaches that of neutral selection: the fitness of a strategy is irrelevant
and all strategies occur with equal frequency, which is 1/16. Figure 4.14
illustrates this as the frequency of honest signaling for most games is closer
to 1/16 when the population size N = 200 than when N = 2000.

Second, there is a considerable difference between the cases where honest
signaling is evolutionarily stable and where it is the most prevalent strategy.
On the one hand, there are cases where honest signaling is evolutionarily
stable but not viable (it has frequency 0 in the stationary distribution).
In Figure 4.14, for population size N = 2000, the games in a wide area
around signal cost ¢ = 1/2 and common interest R = 7/10 are such cases.
Interestingly, almost all of the games in which honest signaling is ESS but
not ESSy are such cases. On the other hand, even though honest signaling
is neither ESSy nor ESS, it may still be the most frequent strategy. This
is illustrated by the gray areas in Figure 4.14 outside the ‘ESS’ region. An
extreme example is the game with ¢ = 1/2 and R = 1/4 (N = 2000) where
honest signaling is the most frequent strategy. (It has frequency above 50%,
but note that a strategy can be the most frequent strategy even though its
frequency is less than 50% since there are more than two strategies.)

4.4.4 Summary

The evolutionary stability of honest signaling in finite populations (ESSy)
differs from evolutionary stability in infinite populations (ESS) as follows:

e ESSy does not predict honest signaling at high signal costs where ESS
does.

e For smaller populations, the minimum signal cost ¢ and minimum
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degree of common interest R for honest signaling to be ESSy increases
slightly. For larger populations, the minima are the same as those for

ESS.

e For higher selection pressure, honest signaling becomes resistant to
replacement at higher signal costs and ESSy approaches ESS since at
reasonably large populations ESSy is a subset of ESS.

The evolutionary dynamics yield the same qualitative results as those of
the individual learning (Section 4.3). Honest signaling has high frequencies
in both models in similar regions. Again, cases occurred where honest sig-
naling is stable but does not evolve, or where honest signaling is not stable
but still evolves and even is the most frequent strategy.

The predictions of these dynamics resemble those of ESSy more than
those of ESS. The dynamics and ESSy predict honest signaling is not a
viable strategy when the signal cost is high whereas ESS does.

4.5 Related Work

Bergstrom and Lachmann (1997) show that honest signaling can be Pareto
dominated by pooling equilibria in both the discrete and continuous Philip
Sidney game because the minimal signal cost needed at equilibrium is too
high.

Lachmann and Bergstrom (1998) suggested that dynamic analyses are
crucial for predicting the emergence and hence the existence of honest sig-
naling. As far as I know, the first dynamic analysis of the Philip Sidney
game is the work of Huttegger and Zollman (2010). They apply the repli-
cator dynamics—evolutionary dynamics assuming well-mixed infinite pop-
ulations and no mutations—and contrast their results to those obtained by
calculating the evolutionarily stable strategies, which is a static equilibrium
analysis. They find that in many cases honest signaling has far smaller
basins of attraction than other equilibria and is thus less likely to emerge.

Whereas 100% reliable signaling is too costly, partially reliable signaling
turns out to be much less costly. Examples are the so-called ‘partial pool-
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ing equilibria’ where the same signal is used by similar types (Lachmann
and Bergstrom, 1998) and mixed equilibria where signals may sometimes be
truthful and sometimes be deceptive (Huttegger and Zollman, 2010; Zoll-
man et al., 2013). In the replicator dynamics, the basins of attraction of
these mixed equilibria are equally large as those of honest signaling and are
thus equally likely to emerge.

4.6 Conclusion

This chapter examined whether honest signaling can emerge if interests
conflict but signals are costly. Traditionally, biologists tested when hon-
est signaling is an evolutionarily stable strategy in the Philip Sidney game.
Since, stability analyses do not reveal whether an equilibrium can emerge, I
compared their results with dynamic models: individual learning in the ran-
dom matching model in Section 4.3 and evolutionary stability and dynamics
in finite populations in Section 4.4.
I can draw three main conclusions regarding honest signaling.

1. When honest signaling is stable, it will not necessarily evolve either
because the signals cost too much or the common interest is too high.
Both the individual learning in Section 4.3 as the evolutionary dynam-
ics in Section 4.4 showed this. Individual learning also revealed that
when the signal cost or degree of common interest is too high, honest
signaling is Pareto dominated by an other equilibrium. The evolu-
tionary dynamics showed similar results. The evolutionary stability
in finite populations (ESSy) differs from the one in infinite popula-
tions (ESS) in that it does not predict honest signaling to be stable at
high signal costs. Although for large populations and high selection
pressure, ESSy approaches ESS. Whereas Chapter 3 showed how com-
mon interest was beneficial to the emergence of honest signaling, this
chapter revealed how common interest may render it useless. When
the degree of common interest is high, not signaling Pareto dominates
honest signaling because, no matter what, Receiver prefers to donate
his resource to Sender.
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2. When honest signaling is not stable, there may still be signaling. In
Section 4.3 partially reliable signaling emerged in the form of a mixed
equilibrium where Sender is sometimes honest and sometimes dishon-
est. Similarly to honest signaling this equilibrium does not emerge for
high common interest, but contrary to honest signaling this equilib-
rium emerges for very cheap signals.

3. Even unstable strategies may be the most likely to emerge. Section 4.4
showed an example.

I can also draw some conclusions regarding dynamic versus static anal-
yses:

e When a strategy is an ESS, it may still be evolutionarily less likely
to emerge. For example, because it is Pareto dominated by another
equilibrium. You should thus consider all ESSs, not just the strategy
you are interested in.

e Some equilibria may be Pareto optimal even when they are not ESS.
These equilibria may be evolutionarily more likely to emerge than the
ESS it dominates. You should thus consider all Nash equilibria and
verify whether or not it dominates the strategy of interest.

e A strategy may not be an equilibrium at all, but it can still be evolu-
tionarily important. Only dynamic analyses can reveal such phenom-
ena.



Chapter 5

Costly, Social Punishment

The previous chapter studied how costly signals allow honest signaling to
emerge when interests conflict. This chapter, based on the publication (Cat-
teeuw et al., 2014a), studies an alternate explanation: punishment. Can
punishment of dishonesty allow the emergence of honest signaling if inter-
ests conflict even when punishment is costly for the punisher?
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5.1 Introduction

In the previous chapter, an honest signal was costly. It is also possible,
to make dishonest signals costly and honest ones cost-free. For example,
Lachmann et al. (2001) study cost functions such as “it is free to signal
below quality but lethal to signal above quality,” where ‘quality’ refers to
Sender’s type. For example, the peacock’s quality or type is his quality
as a peahen’s mating partner (Example 1.3). Such cost functions have the
advantage that the cost is paid for dishonest, out-of-equilibrium behavior
and honest signaling is a cost-free equilibrium. They could arise due to
punishment.

People and animals are willing to pay a cost in order to punish those
that infringed their interests (Clutton-Brock and Parker, 1995; Fehr and
Géchter, 2002; Guala, 2012). Here are three examples of punishment among
animals in signaling contexts:

e Some species, like house sparrows (Moller, 1987) and paper wasps
(Tibbetts and Izzo, 2010), punish liars. They wear colored patches,
called ‘badges,” that indicate fighting ability and are used to resolve
small conflicts without a costly fight, because weaker animals can
avoid stronger ones. Only conflicts between equally ranked individu-
als often escalate. Moller (1987) and Tibbetts and Izzo (2010) exper-
imentally changed badges and/or fighting ability and discovered that
if a conflict does escalate and one individual lied or bluffed by exag-
gerating his fighting ability, his opponent reacted extra aggressively.
A liar willing to retreat when his opponent charges still gets attacked
and suffers a punishment. (See a more extensive discussion on signals
in animal contests and punishment in Section 5.4).

e Another example is seen in Rhesus macaques where individuals are
punished for the lack of signaling. Animals that do not send food
calls (they signal quiet instead of food) and are caught with food are
often punished (Hauser and Marler, 1993).

e The signal’s receiver can also be punished. In many social primates,
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females that do not responds to a male’s attempt to mate (a signal)
are often attacked and such punishment is effective (Nadler and Miller,
1982; Smuts and Smuts, 1993).

Punishment promotes cooperation, for example in the prisoner’s
dilemma and the public goods game (Hauert et al., 2007; Hilbe and
Traulsen, 2012; Sigmund et al., 2010), but the effect of punishment in sig-
naling contexts is merely studied implicitly by assuming cost functions like
the one mentioned above (for example (Lachmann et al., 2001)).

In Section 5.2, I define a new game that is based on the Philip Sidney
game and explicitly includes punishment of the four types of dishonest be-
havior that can occur in signaling contexts (Table 5.1): lying (signal when
healthy), timid (quiet when needy), greedy (keep when signal), and worried
behavior (donate when quiet).

I applied evolutionary dynamics in finite populations (Section 2.3.1)
to study the effects of punishment on the evolution of honest signaling.
In Section 5.3, I present the results and compare them with those from
Section 4.4.

Contributions

e | define a new game based on the Philip Sidney game to explicitly
study the effect of punishment on the emergence of honest signaling
(in both Senders and Receivers).

e Evolutionary dynamics in finite populations shows that: punishing
liars increases the emergence of honest signaling for cheap and cost-
free signals; punishing greedy individuals increases the emergence of
honest signaling for low common interest and costly signals; but pun-
ishing worried and timid individuals does not.

5.2 Philip Sidney Game with Explicit Punishment

The model is based on the symmetric Philip Sidney game (Section 4.2)
which has sixteen strategies (Table 4.2) but adds new honest signaling
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Table 5.1: There are four ways to deviate from honest signaling. This table lists
the name of such behavior, by which player it is performed, to what behavior and
strategies it corresponds in the Philip Sidney game, and by which strategy it is
punished.

name behavior and strategies punishing strategy
Sender lying signal when healthy: Sy, Sy P
timid quiet when needy: Sy, Sy P
Receiver greedy  keep when signal: Dg, Dy Pq
worried donate when quiet: Dg, Dy Py

strategies that punish dishonest behavior. I distinguish four different strate-
gies (Table 5.1) that target each of the possible deviations from honest sig-
naling: punishment of lying Pr, of greedy Pg, of timid Pr, and of worried
opponents Py. An individual is lying (or simply a liar) if he signals when
healthy; greedy if he keeps when Sender signals; timid if he remains quiet
when needy; and worried if he donates when Sender is quiet.

For simplicity, only honest signalers can punish but some agents can be
punished on several occasions. For example, the strategy (Sg,Dgq) is lying,
greedy, timid, and worried simultaneously, albeit on different occasions.
When adopting this strategy, a healthy Sender is deemed a liar, while a
needy Sender is deemed a timid.

In the new game, a player’s survival probability is decreased by ¢’ if he
punishes his opponent and decreased by ¢’ if he is punished. As before, a
player’s payoff includes a fraction R of his opponent’s survival probability.
Punishing your opponent always lowers your own payoff even if the cost to
punish ¢ = 0 due to the degree of common interest with your opponent
(R > 0) and decreasing his survival probability decreases your payoff. For
example, if Sender punishes Receiver, Sender earns ug = (vg — )+ R(vg —
") and Receiver ug = (vp—c")+ R(vs — '), where Sender’s and Receiver’s
survival probability, vg and vg, depend on the game’s outcome as shown in
Table 4.1. If Receiver punishes Sender, the costs ¢ and ¢’ are swapped. If
no one punishes, the costs ¢ and ¢ are left out (as in the original Philip
Sidney game).
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Table 5.2: Parameters of the Philip Sidney game with punishment. The new
parameters are p’, ¢/, and ¢”. The others are the same as in the Philip Sidney
game (Section 4.2 and Table 4.1).

new parameter meaning
0 <p<1 probability that Sender is healthy
v 0<p <1 probability that Sender’s type is revealed

0 < R<1 degree of common interest

0< S <1 Receiver’s survival probability without the re-
source

0 <V <1 Sender’s survival probability when healthy
without the resource

0<c<1 signal cost
v 0<d <1 costpayed to punish the opponent
v 0<d" <1 costincurred when punished

While greedy and worried behavior is always noticed and hence always
punished by strategies such as Pg and Py, lying and timid behavior may go
unnoticed. To discover lying and timid agents, their type must be revealed.
This happens with probability p’ < 1. With probability 1 — p’ their type
remains private and they cannot be punished. Table 5.2 shows the param-
eters of this new game including those of the original Philip Sidney game
(Section 4.2 and Table 4.1).

To study the effect of punishing dishonest behavior on the evolution
of honest signaling, I considered a finite population of the sixteen pure
strategies of the symmetric Philip Sidney game together with one of the
punishment strategies described above. For different parameter configura-
tions, I numerically computed the stationary distributions of the strategies
using the evolutionary dynamics described in Section 2.3.1.
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common interest R

0 0.5 10 0.5 1
signal cost ¢ signal cost ¢

Figure 5.1: a) Total frequency of honest signaling in the Philip Sidney game with
punishment of the liars (Pr). b) Increase in frequency of honest signaling when
P, is present compared to when it is absent (being replaced with another pure
honest signaling strategy). For small signal costs there is a clear increase in the
frequency of honest signaling. There is also a region where punishment has a
slightly negative effect (=~ —1072 inside the O-contour line). Both figures were
obtained for population size N = 100, selection pressure 5 = 5, and varying signal
cost ¢ and common interest R. The other parameters of the game are p = p’ = 1/2,
S=V =4/, =1/ and ¢ = 1. See Table 5.2 for their meaning.

5.3 Experiments and Results

5.3.1 Punishing liars boosts honesty

First, consider Pr: the honest signaling strategy that punishes liars. Fig-
ure 5.la shows the frequency of honest signaling (that is, the sum of the
frequencies of Py and of the pure honest signaling strategy (Sy,Ds)) as a
function of the signal cost ¢ and the common interest R. There is a high
level of honest signaling for a wide range of ¢ and R, and even for low values
of c. This was not the case in the original Philip Sidney game (Chapter 4).
So, punishment of liars can provide an alternative for the handicap principle
(Section 4.1): honest signaling can emerge for cheap and cost-free signals if
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Sender’s type may get revealed and he runs the risk of getting punished.

The effect of punishing liars on the level of honest signaling is clearer in
Figure 5.1b. It shows the increase in frequency of honest signaling when P,
is present in the population compared to the case where Py is replaced by
another pure honest signaling strategy. Irrespective of the common interest
R, when signal cost ¢ is small enough, the presence of Py increases the level
of honest signaling.

For higher signal costs ¢, the cost of punishment and honesty may not
outweigh the benefits. Figure 5.1b shows a region where punishment has
no effect and even slightly decreases the level of honest signaling (approxi-
mately —1073).

The increase in honest signaling can be explained as follows. Py is effec-
tive for small signal costs ¢ since it is resistant to invasion by any mutant in
that region whereas honest signaling without punishment can be invaded by
mutants that always signal (S,) (Figure 5.2). In the original Philip Sidney
game, honest signaling can be stable only if there is a non-zero signal cost
(¢ > 0). In the new model, honest signaling with punishment cannot be sta-
ble, since it can always be replaced by honest signaling without punishment
through random drift. But, except for the pure honest signaling strategy,
punishment is stable even for cost-free signals (¢ = 0).

Moreover, punishment directly affects liars and indirectly affects other
strategies that can replace liars. Figure 5.3 shows the Markov chain and
the transition probabilities of the Philip Sidney game with and without
P, (ignoring the state Py and the arrows connected to it). The strategies
(Sa,Ds), and (Sx,Dg) can replace honest signaling, but not honest signaling
with punishment of liars. The latter can only be replaced through random
drift by honest signaling itself. Lying is less frequent when the punisher Py, is
present. For example, the frequency of (Sy,Dp) and (Sg,Dq) dropped below
the average frequency (which is 1/n if n is the number of strategies). Since
liars are less frequent, other strategies that replace liars are also affected.
For example, the frequency of (Sp,Dpy) also dropped below the averaged
frequency.

Here, I call (Sg,Dq) a liar, but it is also honest in some sense. As men-
tioned at the end of Section 4.3.1, this strategy simply has the meaning of



114 CHAPTER 5. COSTLY, SOCIAL PUNISHMENT

(@) (Sn.Ds) (b) PL (c) Py efficient

x 1

17

o

]

£ 05}

c

]

1S

(S

8 ok . ! . Ik . ,

0 0.5 10 0.5 10 0.5 1

signal cost ¢ signal cost ¢ signal cost ¢

Figure 5.2: Evolutionary stability in finite populations (ESSy, Definition 2.7) in
the Philip Sidney game with punishment for varying signal cost ¢ and common
interest R. The purple shaded areas indicate ESSy while the blue shaded areas
indicate resistance to invasion. The figures were obtained for population size N =
100 and selection pressure S — 0. The probability that Sender is healthy p = 1/2
and the players’ survival probabilities without the resource S = V = 4/5. (a)
Honest signaling (Sy,Ds) can be ESSy only if the signal cost ¢ > (1 — R)/5. (b)
Punishment of liars Py is ESSy for smaller signal costs. Here, the probability that
Sender’s type is revealed p’ = !/i0, the cost to punish ¢ = 1/2, and the cost of
being punished ¢ = 1. (¢) The ESSy region extends more towards the point
(¢,7) = (0,1/5), if punishment is more efficient. Here, p’ = 1/2 instead of 1/10.
Honest signaling and punishment of liars cannot be evolutionarily stable against
each other because they behave identical when they interact with each other.
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Sa

Figure 5.3: Markov chain of transitions between monomorphic populations (Sec-
tion 2.3.1) for all strategies (Table 4.2) of the Philip Sidney game with and without
punishment of liars. Punishment of liars Py can only be replaced by honest sig-
naling (Sy,Ds) through random drift. Black borders indicate strategies which have
above average frequency (> 1/n). Dashed black borders indicate strategies drops
below average after the introduction of the punishment strategy Pp. Dashed lines
indicate random drift. For clarity, I only drew transitions departing from strategies
with above average frequency and transitions to the punishment strategy P.. The
figure was obtained for signal cost ¢ = 1/100 and the common interest R = 3/10.
The other parameters are the same as in Figure 5.1.
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the signals signal and quiet reversed. When the signal cost c is very small
(for example ¢ = 1/100 as in Figure 5.3), this strategy is only slightly worse
than honest signaling. When the signal cost ¢ = 0, both strategies behave
symmetrically and perform equally well. When signals have different costs,
individuals have a common preference of when to signal what and end up
using the same signal under the same circumstances: the cost creates an
obvious, or natural, meaning and an obscure one. When signals are cost-
free there is no a priori common preference for one signal or the other. This
does not only make lying cheap, but also creates two equally valid hon-
est signaling strategies: one where signal means needy and quiet means
healthy, and the other where signal means healthy and quiet means
needy. Punishment deters lying, but can also ‘teach’ others the preferred
meanings.

These results show that costly, social punishment is indeed an alternative
explanation for honest signaling. Signals do not need to be costly as the
handicap principle suggests: the cost may be paid by liars and punishers.
This cost deters liars and so, is rarely paid.

5.3.2 Punishing timid senders is ineffective

The effect of Pt, the honest signaling strategy that punishes timid behavior,
on the frequency of honest signaling is mostly neutral and sometimes nega-
tive (Figure 5.4 and 5.6). This means that the cost of punishment does not
outweigh its benefits. For more efficient punishment (larger ¢’/¢ and prob-
ability that Sender’s type is revealed p'), I observed a small improvement
for high signal cost ¢ and low common interest R.

5.3.3 Punishing greedy and worried receivers

Receiver can deviate from honest signaling in two ways (Table 5.1): he can
be greedy (keep when Sender signals) or worried (donate when Sender is
quiet). Sender can always detect such behavior. The strategy Pg punishes
greedy behavior and the strategy Py punishes worried behavior.

Punishing greedy individuals improves honest signaling for low common
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Figure 5.4: Increase in frequency of honest signaling when adding punishment of
timid individuals Pr. The parameters are the same as in Figure 5.1.

interest if signals are costly (R < 3/10 and ¢ > 1/5 in Figure 5.5a). This
region characterizes high conflicts of interest, where greed (Dy) pays off in
the original Philip Sidney game (Chapter 4). It also decreases the frequency
of honest signaling for small signal costs (blue region near (¢, R) = (1/10,3/10)
in Figure 5.5a).

Punishing worried individuals slightly improves honest signaling if there
is a full conflict or no conflict at all. The improvement is too small to
be visible in Figures 5.5b and 5.6. Its effect is mostly neutral and even
negative when there is only a conflict when Sender is healthy (blue region
where 1/5 < R < 1 — ¢ in Figure 5.5b).

Greedy and worried behavior can always be detected, while lying and
timid behavior can only be detected with probability p’. This is the prob-
ability that Sender’s type is revealed. In the experiments reported here,
p’ = 1/2. But punishing greedy and worried behavior is not necessarily
more effective than punishing lying and timid behavior.
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Figure 5.5: Increase in frequency of honest signaling when punishing a) greedy
individuals Pg and b) worried individuals Py. The parameters are the same as in
Figure 5.1.

5.3.4 Overall effects of punishment

To better understand the overall effects of different forms of punishment, I
measured the average total frequency of honest signaling in different regions
of conflict (Section 4.2). Figure 5.6 shows for varying signal cost ¢ and
common interest R the result for the region with a conflict only when Sender
is healthy and the region of full conflict. The baseline mode replaces the
punishment strategy with another pure honest signaling strategy and is
labeled ‘none.’

Punishing lying individuals is most effective when there is a conflict only
when Sender is healthy and slightly effective when there is a full conflict.
Punishing greedy individuals is very effective when there is a full conflict.
Punishing worried individuals is ineffective and punishing timid individuals
is, on average, even counterproductive for the evolution of honest signaling.
Additional analysis shows that these results are robust for varying proba-
bility p" of detecting lying and timid behavior, effectiveness of punishment
<’ [, and selection pressure [.
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Figure 5.6: Frequency of honest signaling for different forms of punishment av-
eraged over different regions of conflict as described in Section 4.2. The baseline
model (column ‘none’) includes two honest signaling strategies without punish-
ment. Punishing lying individuals is most effective when there is a conflict only
when Sender is healthy. Punishing lying individuals (column ‘lying’) is most ef-
fective when there is a conflict only when Sender is healthy and slightly effective
when there is a full conflict. Punishing timid individuals (column ‘timid’) is, on
average, even counterproductive for the evolution of honest signaling. Punishing
greedy individuals (column ‘greedy’) is very effective when there is a full conflict
and punishing worried individuals (column ‘worried’) is ineffective. The parame-
ters are the same as in Figure 5.1.
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5.4 Related Work

The only related work is the study of signaling in animal contests (Enquist,
1985; Hurd, 1997; Hurd and Enquist, 1998). Such contests may lead to
costly escalations which can be avoided by signaling (Maynard Smith and
Price, 1973). House sparrows (Moller, 1987) and paper wasps (Tibbetts
et al., 2010), for example, use badges as cost-free signals of fighting ability
and avoid risky escalations. Enquist (1985) and Hurd (1997) constructed
game theoretic models of animal contest which show that cost-free signaling
can be an evolutionarily stable strategy since it is risky to exaggerate your
fighting ability.

Many authors, including Maynard Smith and Harper (2003), interpret
this as a form of punishment, though I find this disputable. Punishment
assumes that one individual thinks or knows that the other cheated and
responds aggressively towards the cheater. In the example of house sparrows
and paper wasps (Section 5.1), when one animal cheats its opponent does
not know that and there is no reason why it should think the other cheated
since, more often than not, the signals are honest. An animal will attack
its opponent because, for itself, this is the best response to a signal of high
fighting ability and perhaps because it wants to find out whether or not his
opponent signals truthfully. It cannot attack to punish his opponent for
signaling dishonestly since it has yet to find out.

I believe individuals do not lie in these scenarios because of the uncer-
tain effect of a dishonest signal. Since players are uncertain about their
opponent’s fighting ability they do not know whether a dishonest signal
will scare off the opponent or encourage an escalation. Furthermore, the
stronger animals run less risk by exaggerating their strength by the same
amount than a weaker one.

In animal contests both players have private information: they are both
Sender and Receiver at the same time. This makes it difficult to interpret
what happens. In my extension of the Philip Sidney game, only one player
has private information and punishment is modeled explicitly. It allows to
clearly distinguish between punishment and Receiver’s response to a signal,
and between different types of punishment (punishment of dishonest Sender
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by Receivers and vice versa).

5.5 Conclusion

I studied whether or not punishment increases the emergence of honest sig-
naling. In my extension of the Philip Sidney game, I distinguished four
different forms of dishonest behavior: lying, timid, greedy, and worried
behavior. Punishing lying individuals increases the frequency of honest sig-
naling when the signals are cheap and even cost-free. This suggests an
alternative for the handicap principle which is the most influential explana-
tion for the evolution of honest signaling when interests conflict. Punishing
greedy individuals increases the frequency of honest signaling when com-
mon interest is low and signals are sufficiently costly. Punishing timid or
worried individuals is mostly counterproductive. They do not lead to any
clear improvement in general and even result in an overall decrease of the
frequency of honest signaling.

This chapter did not take antisocial punishment (punishing honest sig-
nalers) and spiteful punishment (punishing everyone) into account (Hilbe
and Traulsen, 2012). While social punishment may promote the evolution
of cooperation (Hauert et al., 2007; Hilbe and Traulsen, 2012; Sigmund
et al., 2010), antisocial and spiteful punishment may destroy these benefits
(Hilbe and Traulsen, 2012; Rand and Nowak, 2011). But antisocial and
spiteful punishment may be avoided if reputation effects are taken into ac-
count (Hilbe and Traulsen, 2012) or prior agreements are made (Han et al.,
2013). Future work could analyze whether these mechanisms can still deal
with antisocial and spiteful punishment in the context honest signaling.

In general, social punishment (punishing those that defect or do not con-
tribute to the public good) promotes the evolution of cooperation (Hauert
et al., 2007; Hilbe and Traulsen, 2012; Sigmund et al., 2010). In my exten-
sion of the Philip Sidney game, this is not the case. Punishment is more
complex, showing diverse possibilities which result in different outcomes.
Greedy individuals in the Philip Sidney game are similar to defectors in a
public goods game or the prisoners’ dilemma, but the other types of dis-
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honest behavior (lying, timid and worried) are not present in these games.

In short, this chapter demonstrates that punishing dishonest behavior
promotes the evolution of honest signaling in several situations. Signaling
provides a richer and more complex framework for the study of the evolu-
tionary roles of punishment than the context of cooperation. More effort
is required to clarify the role of antisocial punishment in the evolution of
honest signaling.



Chapter 6

Conclusion

This chapter gives a brief summary, some critique, and three directions for
future work.
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6.1 Summary

This thesis studied the emergence of honest signaling, a problem which is
related to philosophy, linguistics, economics, and biology. It consists of two
questions: “How do signals emerge?” and “Why are signals honest?”.

Throughout the thesis, I provide evidence that signals emerge by chance.
The meaning of signals is the outcome of stochastic processes that simu-
late individual learning, social learning, or evolution. In the Lewis signal-
ing game all separating equilibria—states of perfect communication—are
equally preferred and emerge with equal probability. In the Philip Sidney
game, there are two separating equilibria, but the signal cost renders one,
honest signaling, more preferable than the other, inverse honest signaling.
Still, both emerge, honest signaling simply has higher probability than the
other separating equilibrium.

The thesis supports several answers to the second question (“Why are
signals honest?”). The first answer is that signaling can emerge when agents
have common interests. This was demonstrated in Chapter 3. First, I
invented a new behavioral rule: win-stay /lose-inaction (WSLI) and proved
that two individuals repeatedly interacting in any Lewis signaling game
always reach a separating equilibrium if they apply WSLI. Moreover, the
number of iterations they need is only polynomial in the number of signals
of the game: O(n?). Second, I gave some reinforcement learning algorithms
that perform as well as WSLI but can also cope with errors (in observation
or execution).

The second answer, given in Chapter 4, is that signaling can emerge
when agents have conflicting interest, provided that the signals are costly:
the handicap principle. Most biologists study this by evaluating whether
or not honest signaling is an equilibrium of the Philip Sidney game or any
of its variants. Because static equilibrium analyses do not reveal whether
signaling can emerge, I applied learning and evolutionary dynamics. This
lead to two insights. First, independent of the dynamics, there are many
cases where honest signaling is an equilibrium but where the dynamics does
not lead to it. Learning dynamics lead to honest signaling only when it was
a Pareto optimal Nash equilibrium. Evolutionary dynamics in finite popu-
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lations lead to honest signaling in a region quite similar to that of learning
dynamics, and very different from the region where honest signaling is an
equilibrium. Second, both dynamics revealed some cases where honest sig-
naling is not an equilibrium but where some signaling still emerged. Learn-
ing dynamics revealed that for cheap signals, individuals were sometimes
honest and sometimes dishonest. The evolutionary dynamics revealed that
honest signaling can still be the most frequent strategy.

The third answer, given in Chapter 5, is that signaling can emerge if
honest agents can punish dishonest ones even though they have conflicting
interests and signals are cheap or cost-free. I invented a new game to model
this: the Philip Sidney game with punishment. Evolutionary dynamics
in finite populations revealed that punishing liars is effective when signals
are cheap hence showing that punishment is indeed an alternative for the
handicap principle. Punishing greedy individuals is effective when common
interest is low but signals are costly. Punishing worried or timid individuals
is not effective.

6.2 Critique

In Chapter 3, where two agents applied WSLI and interacted in the Lewis
signaling game, I did not discuss how this generalizes to games with more
or less signals than the number of types or to populations of agents that are
randomly matched. The generalization from Lewis signaling games to sig-
naling games with more signals than types and responses is straightforward:
the excess signals will remain unused. The generalization to signaling games
with less signals than types and responses is as follows. WSLI will lead to
a Nash equilibrium where only as many types as signals are successfully
communicated. The most frequent types have the highest probability to be
successfully communicated. So, for uniform type distributions, WSLI will
still reach one of the Pareto optimal Nash equilibria, but for non-uniform
type distributions this is no longer guaranteed. Though, the more equilibria
an equilibrium dominates, the higher its chances. Alternately, it is possible
to equip the agents with the capacity to invent signals (Skyrms, 2010, ch.
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10).

For several dynamics, the generalization from two agents to popula-
tions leads to dialects (Zollman, 2005). Mechanism, such as social structure
(Wagner, 2009) or combining evolution and learning (Zollman and Smead,
2010), may counter this effect. Preliminary experiments show that this is
also the case for WSLI and its robust implementations.

Though I mentioned how signaling is important for understanding the
origins of language and many phenomena in economics and biology, I did
not give any applications or implications for computer science. I think this
research is still valuable for computer science or engineering, especially for
the design of multiagent systems. The designer of a multiagent system usu-
ally implements a shared coordination protocol which allows the agents to
coordinate (Tambe, 1997). Agents who do not share a common coordina-
tion protocol, may still coordinate if they share a common language (Barrett
et al., 2013). If the agents can learn or bootstrap a language, the system
designer does not even need to design the language beforehand—he may
simply provide the agents with the necessary learning capabilities. A lan-
guage invented by the agents themselves may be more efficient than what
a system designer can come up with, since the language will be adapted to
the specific coordination problem the agents face and may even coevolve
with the problem.

Servin and Kudenko (2008) implemented a multiagent system to detect
intrusions into a computer network. At different locations in the network,
a ‘sensor’ agent monitors traffic. Some sensor agent are on routers, others
on end user computers. They detect different features that may or may
not indicate an attack. Detecting an attack by monitoring only one node is
unreliable, so the sensor agents send signals to a ‘response’ agent. The lat-
ter decides whether or not to warn the network administrator of a possible
attack. In this example, the system designer did not know in advance what
information should be transmitted, the system had to learn what to com-
municate when. My work shows what type of algorithm could work well for
such a scenario: learning to signal in a cooperative setting. Servin and Ku-
denko (2008) chose Q-learning with decreasing softmax which corresponds
to what I proposed.
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Another example is ‘vehicular ad hoc networks’ or VANETs where cars
exchange information in case of natural disasters (Camara et al., 2010),
road accidents (Xu et al., 2004), or special road conditions (Yang et al.,
2004). Users must be able to fully trust this information. Haddadou and
Rachedi (2013) propose that sending messages is costly but when a message
is validated the sender is rewarded. My research warns that to calculate
the necessary cost, you cannot simply rely on equilibrium analysis. You
should use multiple static and dynamic models, to increase the evidence
that no cheating will emerge. It also shows that you could punish and
use cheap(er) signals. Punishing those that exaggerate a situation (liars)
is probably efficient while punishing those that underestimate a situation
(timid individuals) is not.

6.3 Future Work

This work can be extended in many ways. I discuss three of them.

From signaling games to more complex signaling problems

Lewis signaling games can be extended to more complex communication
problems: games with multiple senders or receivers; dialogues, where the
game consists of two stages and the players’ roles are reversed in the second
stage; signaling chains, where a player’s private information is the signal sent
by the previous player; etc. (Skyrms, 2010, ch. 11 and 13). Future work
could investigate whether WSLI still leads to efficient signaling in these
more complex problems and what happens if the players have an incentive
to cheat like in the Philip Sidney game.

Everyone can punish everyone

Chapter 5 was restricted to social punishment: only honest individuals could
punish and only dishonest individuals could be punished. Future work could
allow everyone to punish everyone. It is unclear how this will affect hon-
est signaling though the effect on the evolution of cooperation was studied



128 CHAPTER 6. CONCLUSION

before. Antisocial (punishing cooperators) and spiteful punishment (pun-
ishing everyone) destroys the benefits that social punishment provides for
the evolution of cooperation (Hilbe and Traulsen, 2012; Rand and Nowak,
2011) but mechanisms like reputation (Hilbe and Traulsen, 2012) and prior
agreement (Han et al., 2013) counter these effects. Future work could an-
alyze whether these mechanisms can still deal with antisocial and spiteful
punishment in the context honest signaling.

Other mechanisms that promote honest signaling

Future work could investigate other mechanisms to promote honest sig-
naling between agents with conflicting interests than those studied in this
thesis: costly signals and punishment. (Szamado, 2011; Zollman, 2013)
proposed many mechanisms all of which, I think, can be categorized in two
groups: cost based mechanisms and correlation based mechanisms. Cost
based mechanisms like costly signals and punishment alter the payoffs in
a way that benefits honest signaling. A proximity risk is an other exam-
ple: animals often use threat displays to settle conflicts but these are only
reliable when performed within ‘striking distance,” close enough to the op-
ponent such that the animal runs a risk that his opponent strikes. This
risk, like punishment, is a potential cost to cheating. Correlation based
mechanisms alter the individuals with which players interact. For exam-
ple, players could avoid individuals they do not trust or the social network
structure could protect clusters of honest individuals.



Appendix A

Finite Markov Chains

This appendix gives some definitions and properties of finite Markov chains.
You can find these in any classic textbook on the subject (for example Meyn
and Tweedie (1993)), but they are mentioned here for convenience.

Finite Markov chains occur in several places in this thesis. In Sec-
tion 3.3.2, T model the learning process of win-stay/lose-inaction in Lewis
signaling games with an absorbing Markov chain (Appendix A.3). The
evolutionary dynamics in finite populations of Section 2.3.1 uses a Markov
chain twice. Once to calculate the probability that one mutant takes over an
entire population, also known as the ‘fixation probability’ (Appendix A.4)
and once to calculate the relative amount of time each strategy is used by
the entire population (Appendix A.2).

A.1 Definition

A finite Markov chain is a stochastic process that is discrete in time and
state space and is memoryless: the future only depends on the current state
and not on the history.

Let the random variable X,, be the state of the process at time n € N
and take values s, € § = {1,2,...,m}.

Definition A.1. The sequence of random variables Xg, X1, Xo, X3,... is
a Markov chain if the probability distribution over X,,;; only depends on
the current state X,, and not on the history X,,_1, X,,—o,..., Xo:

PI‘ (Xn+1 ‘ Xn = San—l = Sp—1y---, X() = S()) = Pr (Xn—i-l ’ Xn = Sn) .
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Definition A.2. A Markov chain is time-homogeneous if the conditional
probabilities Pr (X, 11 | X,, = s,) are independent of time n.

From hereon, I use ‘Markov chain’ to refer to finite, time-homogeneous
Markov chains. The statements below do not necessarily hold for infinite
Markov chains or Markov chains that are not time-homogeneous.

A Markov chain with m states is defined by an m x m transition matriz
P. Each element FP;; of that matrix represents the probability that the
process transitions from state ¢ to j given that it is in state i:

P;j =Pr(X,41 =j| X, =1i) for any n.

P is a row-stochastic matrix: on each row of the transition matrix the
elements sum up to 1 and no element is negative. The probability to go
from state ¢ to j in k steps is denoted (Pk)m-7 it is the element in the ith
row and jth column of matrix P* (the transition matrix P to the power k).

Given the current probability distribution Pr(X),,) over all states S, the
next distribution is Pr(X,4;) = Pr(X,)P. The probability distribution
Pr(X,4) over the states after k steps is Pr(X,,)P*.

Each Markov chain has a corresponding directed graph that has a node
for each state and an edge from node ¢ to j if the Markov chain can make
the transition from state i to j in one step: P;; > 0.

A.2 Stationary Distribution

Definition A.3. A stationary distribution m of a Markov chain with transi-
tion matrix P is a probability distribution over all states such that 7P = .
Once the process reaches a stationary distribution, it remains there.

According to the Perron-Frobenius theorem, every stochastic matrix P
that has only positive elements (P;; > 0) has an eigenvalue 1 and the
corresponding eigenvector m has only positive components (m; > 0). The
vector 7 is unique up to a constant factor, so it must be normalized to be
a valid probability distribution (3, m; = 1).
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The stationary distribution 7 is a long-term prediction of the process
independent of the initial distribution and also gives the fraction of time
spent in each state.

A.3 Absorbing Markov Chains

A special class of Markov chains are those that end up in a state from which
the process can no longer escape. These are called ‘absorbing Markov chains’
and the states from which the process cannot escape are called ‘absorbing
states.” Given an initial state, it is possible to calculate the probability of
ending up in any of the absorbing states and also the number of steps before
reaching an absorbing state.

First some definitions.

Definition A.4. State ¢ is accessible from state j if there is a path in the
Markov chain’s graph from state j to .

Definition A.5. An absorbing state i is a state of the Markov chain from
which it is impossible to escape: P;; = 1 and thus P;; = 0 for all j # 7.

Definition A.6. An absorbing Markov chain is a Markov chain with at
least one absorbing state and a path in the Markov chain’s graph from
every state to an absorbing state.

Definition A.7. In an absorbing Markov chain, a state which is not ab-
sorbing is a transient state.

Now, consider the canonical form P’ of the transition matrix P. It
has the states of transition matrix P reordered such that first ¢ states are
transient and the last r states are absorbing:

R

P = @ .

Here, I denotes the r x r identity matrix. Z the r X t-matrix that contains
only zeros. R is the t x r-matrix with the transition probabilities from every
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transient state to every absorbing state. At least some elements in R are
nonzero. () is the ¢ x t-matrix with the transition probabilities between all
transient states.

Finally, consider the t x t fundamental matriz F'. Each element F; ; is
the number of times the process is in transient state j when it started from
the transient state 7:

F=) Q"
k=0
=T+Q+Q*+Q*+...
=(I-Q!

It is now possible to calculate the absorption probabilities and the ex-
pected time till absorption. Given the fundamental matrix F' the probability
that transient state i leads to absorbing state j is B; ; where B = F'R and
the number of steps until transient state ¢ leads to any absorbing state is

the i’th component of F1, where 1 is the column vector whose elements are
all 1.

A.4 Absorption Probability in a Moran Process

A Moran process (Moran, 1958) is a stochastic process that can be repre-
sented by a Markov chain with N+1 states S = {0,1,..., N} and transition
matrix P (Figure A.1). From every state i, only states i — 1, 4, and i + 1
are accessible in one step: F;; > 0 implies j = ¢ — 1,7, or 7« + 1. States 0
and N are absorbing: Phg= Py ny = 1.

Theorem 2. Assume that the Moran process with transition matriz P (Fig-
ure A.1) starts in state 1. The probability x1 that the process ends up in
state N 1s )

- N—-1y1i Pjj-1°
L+ 350 e 79

I
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Poo=1 Pyy=1
Py_1n
|l———— —_
P

P

Figure A.1: A Markov chain with transition matrix P and states i = 0,1,..., N.
From every state 4, only states ¢ — 1, ¢, and ¢ + 1 are accessible in one step. States
0 and N are absorbing.

Proof. Let p; be the probability to reach state N from state i. Because
states 0 and N are absorbing, the probability to reach state N from state
0is 0 (po = 0) and the probability to reach state N from state N itself is 1
(pny = 1). The probability to reach state N from state i = 1,2,..., N — 1 is

pi = Pii—1pic1 + Piipi + Piit1 pit1
=P 1pi-1+ (1 —Pii—1— Piiv1)pi + Piiv1 pig1

This can be rewritten by grouping F; ;41 on the left and P;; 1 on the
right hand side of the equation:

P iv1(piv1 —pi) = Pii—1(pi — pi—1)
or

P
P

(Pit1 —pi) = (pi — pi-1).

By working out the recursion above, p; 1 —p; can be written as a function
of p1, because pg = 0 and so p1 — py = p1:

i
P
Pi+1 —Pi = D1 H —hi— (A1)

o1 D
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The sum over p;+1 —p; from 0 to N — 1 is 1, because pg = 0 and py = 1:

N-1
> (pir1—pi) = (1 —po) + (P2 —p1) + ... + (pv — Pv-1)
i=0

=DPN — Do

~ 1 (A.2)

The probability p; to reach state N from state 1 can be expressed as a
function of the transition matrix P by combining Equation (A.1) and (A.2):

N-1

_ ) — Jj—1
1_Z(pz+1 pz)—Z(pl PH+1)
=0 =0 j=1

N—1 1
NI
i 7]+1

SO
1
p1 = 1
Z H] lpj;_,_l
1

T
1+Z H] 1P;;+1

O

When P; ;11 = P;;_1 for all states 4, the probability p; only depends on
the number of states IV:

1
p1=
1+ 5 T 1ij+1
B 1
1+Z HJ 1



Appendix B

The Nash Equilibrium and its
Refinements in Signaling Games

The Nash equilibria (Nash, 1950a) of a signaling game (Definition 2.5) are
the Nash equilibria of its corresponding strategic form—just as for all other
finite extensive form games. Since different mixed strategies—probability
distributions over the set of pure strategies—may cause the same behavior
and correspond to the same behavioral strategy, it makes more sense to
define equilibria in terms of behavioral strategies (Gintis, 2000). Remember
that a behavioral strategy for a player is a probability distribution over all
actions at each of his information sets. Sender’s behavioral strategy (i
defines a probability distribution over the signals m € M for all typest € T
and Receiver’s behavioral strategy (o defines a probability distribution over
the responses r € R for all signals m € M. For example, (1(m|t) is the
probability that Sender uses signal m when observing type t. The strategy
profile (31, 82) is a Nash equilibrium of the signaling game (7, M, R, 7, u)
when:

e For each type t, Sender only uses signals m* that maximize his payoff

against Receiver’s strategy [a:

For all typest € T :
B1(m*|t) > 0 implies m* = arg maxZﬁg(ﬂm) ui(t,m,r). (B.1)

r

e For each signal m used in equilibrium, Receiver only uses responses
r* that maximize his payoff against Sender’s strategy (1 (m|t) and the

135



136 APPENDIX B. NASH EQUILIBRIUM AND REFINEMENTS

1 2
A B
, , |cc co bc bp
c 5 . N) 1 Al44)(44) 00 00
B|35 19 35 (19)
44 00 35 1,9 !

Figure B.1: Left: An extensive form game. At each decision node, the action
maximizing payoff is drawn in black and the other actions are drawn in gray. The
subgame perfect equilibrium outcome is (4, C). Right: The corresponding strategic
form which has three pure strategy Nash equilibria: (4,CC), (4,CD), and (B,DD).
From the point of view of the extensive form, only the second one seems rational.
The others consist of a so-called incredible threat by player 2.

type distribution m:

For all signals m € M such that Zﬁl(m\t) m >0
t
B2(r*|m) > 0 implies r* = arg maXZPr(t]m) ug(t,m,r), (B.2)
T
t

where Pr(t|m) denotes the Receiver’s belief that Sender has type t

when sending signal m. These posterior beliefs must be consistent

with Sender’s strategy and the prior type distribution according to

Bayes’ rule:

B B1(mlt) m
Dver Bulmlt') my

Signaling games have many Nash equilibria and game theory cannot
predict what players will or should do. To solve this equilibrium selection
problem refinements try to restrict the set of equilibria.

The subgame perfect equilibrium (Selten, 1965) is a refinement for games
in extensive form (Section 2.2.1). It requires equilibrium strategies to be
optimal in every subgame—a subtree that does not split up any informa-
tion set—and not only on the path of equilibrium play. It excludes Nash

Pr(t|m)

(B.3)
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equilibria that involve so-called ‘incredible threats.” For example, the pure
Nash equilibria of the extensive form game in Figure B.1 are the same as
those of its corresponding strategic form: (A,CC), (A,CD), and (B,DD). The
last one is based on player 2’s threat to play D after A which is incredible
since, once A is played the best player 2 can do is to play C, not D. Similarly,
the Nash equilibrium (A, CC) is based on an incredible threat. The only
subgame perfect equilibrium is (A, CD).

The subgame perfect equilibrium has no effect on extensive form games
with incomplete information (Section 2.2.4) because they have no proper
subgames. The only subgame is the entire game itself because the infor-
mation sets of uninformed players contain a decision node which have the
root node as their only common predecessor. Any Nash equilibrium of an
incomplete information game is subgame perfect.

The perfect Bayesian equilibrium (Fudenberg and Tirole, 1991a) is sim-
ilar to subgame perfection but can refine Nash equilibria in incomplete in-
formation games. Each player must play optimal at each information set as
opposed to each subgame. For signaling games, it is easily defined in terms
of Nash equilibria in behavioral strategies: it is a Nash equilibrium where
Receiver’s strategy is optimal for all signals, including those observed with
zero probability in equilibrium. In other words, Equation (B.2) should hold
for all signals m € M, not just for those used in equilibrium. Receiver’s be-
lief Pr(t|m) for unobserved signals m is arbitrary. This refinement does not
rule out strict Nash equilibria or Nash equilibria where every signal is used.
It only rules out some equilibria where multiple best replies are available
(Binmore, 2007, ch. 14). For incomplete information games, the perfect
Bayesian equilibrium is stronger than the subgame perfect equilibrium.

Another refinement for extensive form games is the sequential equilib-
rium (Kreps and Wilson, 1982). For incomplete information games with
at most two types or at most two stages the set of sequential equilibria
coincides with the set of perfect Bayesian equilibria (Fudenberg and Tirole,
1991b). Since signaling games are two-stage games (first Sender plays, then
Receiver) all perfect Bayesian equilibria are sequential equilibria and vice
versa.
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Other refinements further restrict the possible beliefs of Receiver by
imposing extra requirements on the players’ rationality. The research was
started by Cho and Kreps (1987) and lead to a whole range of refinements
for signaling games, none of which are generally applicable or agreed upon.
Examples of such refinements are Condition D1, Divinity, and the Intuitive
Criterion (Sobel, 2009). They require players to be ‘unrealistically’ rational
and are still a source of much debate. See for example (Riley, 2001) and
(Binmore, 2007, ch. 14).



Appendix C

The Philip Sidney Game in Strate-
gic Form

This appendix gives the payoff table of the Philip Sidney game in strategic
form.
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D, Dy Dg Dq
o d+ RS pVd+ R d+ RS pVd+ R
A S+ Rd 1+ pRVd S+ Rd 1+ pRVd
o 1+ RS pV+R pV + R 1+ RS
0 S+ R 14 pRV 1+ pRV S+R
g d+RS+pc pV+R - p(V+R)+qld+RS) p(1+ RS) +¢R
Y S+ Rd+pRec 1+pRV  p(l+ RV)+q(S+ Rd) p(S+R)+q
g 1TRS—pc R+pVd p(d+ RS) + qR p(Vd+ R) 4+ q(1+ RS)
" S+ R(1—pe) 1+4pRVd p(S + Rd) + q p(1+ RVd) + q(S+ R)

Table C.1: Payoff table for the Philip Sidney game in strategic form. Each entry gives Sender’s payoff
on the first line and Receiver’s payoff on the second line. To be able to fit everything on one page, 1
substituted 1 — p by ¢ and 1 — ¢ by d. The meaning of the parameters is given in Table 4.1 and the
meaning of the strategies is given in Table 4.2.
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waggle dance, 2, 3, 6
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WSLI, see win-stay /lose-inaction
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