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Abstract

In the context of some machine learning applications, obtaining data points is a rel-
atively simple process, yet labeling them could become quite expensive or tedious.
Such scenarios lead to datasets with few labeled points and a higher number of unla-
beled ones. Semi-supervised classification techniques combine labeled and unlabeled
data during the learning process in order to improve baseline supervised methods
that use only labeled data. Unfortunately, most successful semi-supervised classifiers
are complex structures that do not allow explaining their predictions, thus behav-
ing like black boxes. However, there is an increasing number of problem domains
in which experts demand a clear understanding of the decision process. Intrinsically
interpretable classifiers (i.e., white-box models) are transparent structures that allow
performing predictions, obtaining an associated explanation, and inspecting the model
as a whole. Nevertheless, these advantages generally come at the cost of performance
in terms of accuracy.

In this thesis, we propose the self-labeling grey-box model, a semi-supervised classi-
fier aiming at providing a suitable balance between accuracy and interpretability. The
self-labeling grey-box uses an accurate black-box classifier for labeling the unlabeled
data and a white-box surrogate classifier for building an interpretable model. Since
the self-labeling process can propagate errors, we propose two amending procedures
based on class membership probabilities and certainty measures coming from the field
of rough sets theory. The experimental study shows the influence of increasing ratios of
labeled and unlabeled data across benchmark datasets. Moreover, we study the effect
of different black-box, white-box base classifiers, as well as the two proposed amend-
ing procedures in terms of both accuracy and interpretability. The results support
the interpretability of our classifier using simplicity and transparency as proxies while
attaining superior prediction rates when compared with state-of-the-art self-labeling
classifiers. Additionally, we illustrate the applicability of the self-labeling grey-box
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classifier with preliminary results in two case studies from the field of bioinformatics.
The first task concerns the detection of disease-causing genomic variants in a rare dis-
ease, while the second application tackles the prediction of early folding in proteins.
Both case studies require an interpretable model able to leverage extra unlabeled data.
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Samenvatting

In de context van Machine Learning is het verkrijgen van data punten meestal vrij
eenvoudig, het labelen van de data daarentegen kan een duur of tijdrovend proces
zijn. In dergelijke gevallen kunnen we werken met data sets waarvan slechts een
aantal datapunten gelabeled zijn. Semi-supervised classificatie, laat namelijk toe om
met deels gelabbelde data en deels ongelabelde data te werken, en resulteert in betere
modellen t.o.v. wanneer alleen de gelabelde data zou worden gebruikt. Een nadeel
van deze benadering is de complexiteit van de modellen, en het feit dat de classificatie
van nieuwe datapunten niet transparant is voor een gebruiker. Maw. de modellen
gedragen zich als zwarte dozen. Er is echter een toenemend aantal applicatiedomeinen
waar de gebruiker een transparante beslissing verwacht. Begijpbare classificatie (white-
boxes) bieden hier een antwoord. Het zijn transparante structuren die voorspellingen
maken en daarbij een uitleg. Desalniettemin zijn deze voordelen meestal ten koste van
performantie in termen van accuraatheid.

In dit proefschrift introduceren we een zelf-labeling en grijze modellen, d.i. een
semi- gesuperviseerde classificator die een goede balans bieden tussen accuraatheid
en interpreteerbaarheid. De zelf-labelende grijze dozen gebruiken een zwarte doos
classificator voor het labelen van ongelabelde data en een white-box surrogaat classifi-
cator garandeert de interpreteerbaarheid. Omdat het zelf-labelings proces fouten kan
propageren stellen we twee uitbreidingen voor. Een gebaseerd op gecalibreerde proba-
biliteiten en een tweede op basis van Rough Sets Theory. Experimenten tonen aan dat
onze aanpak een belangrijke meerwaarde biedt wanneer er beperkte data is en de ratio
van ongelabelde data versus de gelabelde data hoog is en dit voor verschillende ben-
chmark datasets. Daarnaast vergelijken we ook het effect van verschillende zwarte en
witte doos classificatoren en de twee voorgestelde aangepaste methoden in functie van
zowel accuraatheid als interpreteerbaarheid. De resultaten tonen aan dat de classifica-
tor interpreteerbaar is en superieure predicties maakt vergeleken met state-of-the-art
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self-labeling classifiers. Daarnaast illustreren we ook praktische de toepasbaarheid van
de zelf-labelende grijze doos classificator aan de hand van initiÃńle resultaten in twee
semi-gesuperviseerde classificatie taken uit de bio-informatica. De eerste betreft de
classificatie van pathogeniciteit van genomische varianten bij een zeldzame ziekte en
de tweede betreft de voorspelling van eiwitvouwing.
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List of Symbols

The next list describes several symbols which are used within the scope of the thesis:

Classification and prediction nomenclature

𝑓 Supervised classification function

𝐹 Hypothesis space of function 𝑓

ℎ Scoring function

𝑔 Semi-supervised classification function

𝑝 Probability function

𝑥 Instance, data point

𝑋 Set of instances

𝑦 Decision class

𝑌 Set of decision classes

𝑖 or 𝑗 Generic indexes for instances or decision classes.

𝑐 Number of decision classes

𝑎 Attribute, feature

𝐴 Set of attributes

𝑟 Number of attributes
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List of Symbols

𝑙 Labeled instance

𝐿 Set of labeled instances

𝑚 Number of labeled instances

𝑢 Unlabeled instance

𝑈 Set of unlabeled instances

𝑛 Number of unlabeled instances

𝑘 Index for unlabeled instances.

𝑤 Weight function

𝐿[𝑦𝑖] Subset of labeled instances with class 𝑖

𝐿[𝑦𝑚𝑖𝑛] Subset of labeled instances with minority class

Rough set theory nomenclature

𝐷𝑆 Decision system in Rough Sets Theory (RST)

𝒰 Universe of RST objects

𝑑 Decision class in RST, later 𝑑 = 𝑦

𝐵 Subset of attributes in 𝐴

𝑏 Attribute in 𝐵

𝑡 Index for attributes in 𝐵

𝑋[𝑦𝑖] Subset of 𝑋 with decision class 𝑖

𝐵𝑋 Lower approximation of 𝑋, according to attributes in B

𝐵𝑋 Upper approximation of 𝑋, according to attributes in B

[𝑥]𝐵 Equivalence class of 𝑥, according to 𝐵

𝒫(𝑋) Positive region of 𝑋

ℬ(𝑋) Boundary region of 𝑋

𝒩 (𝑋) Negative region of 𝑋

ℛ Similarity relation
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𝜓 Similarity function

𝛿 Distance function

𝜔 Attribute weight based on information gain

𝜌 Heterogeneous Euclidean-Overlap Metric function

𝜇 RST region membership degree

𝜑 Sigmoid function

Interpretability nomenclature

𝐸𝑔 Set of rules produced by the SlGb

𝐸𝑤 Set of rules produced by baseline white-box

Γ Growth ratio measure

ϒ Simplicity measure

𝜅 Cohen’s kappa measure

Ψ Utility measure
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𝜃2 Lower bound of generalized sigmoid function (simplicity measure)

𝜆 Slope of generalized sigmoid function (simplicity measure)

𝜂 Shift of generalized sigmoid function (simplicity measure)
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Other symbols for specific methods

𝛽 Independent term in linear regression

𝑒 Approximation error in linear regression

𝑘 Number of neighbors for 𝑘-nearest neighbors

𝜙 Shapley values

𝑒𝑥 Explanation function in robustness measure
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1 | Introduction

1.1 Motivation
The digitalization of society has enabled organizations to generate massive volumes
of data. However, getting valuable insights into the collected data continues to be
a challenge, even with the striking success of machine learning algorithms in solving
complex prediction tasks. When the goal is learning to make predictions based on
experience (i.e., supervised learning), these techniques need to learn from high amounts
of labeled data. In some domains, the process of labeling data points is often expensive
in terms of time, experts, or equipment.

For example, when using machine learning techniques as an aid in personalized
medicine, a large amount of data can be obtained from the patients’ records. These
data can be from the clinical, genomic, or psychosocial dimensions and can contain
valuable interactions that can be unveiled with machine learning techniques [121].
However, when tackling classification problems associated with rare diseases we have
limited labeled data, or in other words, per definition we only have limited data of
people tested for that disease. For example, identifying disease-causing mutations in
the genomic data of a patient with a rare disease is a process that needs experts and
time. Another example is the study of protein folding dynamics, which requires highly
time-sensitive and complex experiments [124]. As a result of this type of scenario, the
number of unlabeled data points largely exceeds the number labeled ones available for
supervised classification.

Semi-supervised classification (SSC) [188] emerged as an alternative to supervised
classification, aiming to leverage the unlabeled data as well. The main goal is to
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improve the performance compared to using the labeled data alone in a common
supervised task. However, SSC should not be seen just as a direct way of increasing
performance by adding unlabeled data. It is rather a suitable alternative for the
scenario where unlabeled data is available and can help obtain a classifier that reflects
better the data distribution. SSC techniques rely on a group of assumptions about
the distribution of the labeled and the unlabeled data. These different assumptions
produce a wide variety of SSC methods reporting attractive performance in terms of
accuracy.

However, the responsible use of machine learning [5] has added another variable
to this equation: the interpretability component. There exist multiple application
domains in which making a prediction with high accuracy is not enough. Often, it is
also required to explain why or how an intelligent algorithm made a decision or took
an action. That is particularly relevant for high stakes decisions affecting humans. For
example, when a machine learning model is used as an aid in personalized medicine
or for predicting recidivism of a convicted person. Ensuring interpretability can also
be a tool for inspecting for fairness or troubleshooting a prediction model.

While state-of-the-art SSC methods are capable of producing high prediction rates,
they regularly fail to provide an introspection mechanism into their decision process.
This means that they perform like black boxes, thus making them less suited for
application domains where interpretability is needed. This thesis tackles the lack of an
interpretability component involved in the state-of-the-art of SSC. We propose a rather
simple and versatile approach to solve structured SSC problems with high accuracy.
The fact that our proposal is simple and involves a white-box model is considered
an added value for gaining transparency. However, the accuracy and transparency of
machine learning models are often conflicting objectives. Reaching a trade-off between
these components is one of the most interesting challenges in today’s machine learning.

1.2 Scope and Research Goals
The aim of this research is to propose an interpretable semi-supervised classifier capable
of achieving a good balance between accuracy and interpretability. To fulfill our goal, we
build upon self-labeling methods, which are ensemble classifiers that use a base model
for predicting unlabeled data, assuming these predictions are correct to some extent.
Self-labeling offers room for incorporating interpretability into their model. However,
they are prone to propagate errors when assigning labels to unlabeled data. This
problem is taken into account in our solution by proposing amending strategies. In
addition, a proper evaluation of our proposal in terms of accuracy and interpretability
is needed. Therefore, the research aim can be divided into several research objectives
that address the aforementioned challenges:
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1. To propose a general architecture of an interpretable semi-supervised classifier,
based on the self-labeling technique.

2. To propose strategies for amending the errors generated in the self-labeling pro-
cess.

3. To propose measures for evaluating and comparing interpretability in the context
of the proposal.

4. To evaluate the influence of different choices of base classifiers on the accuracy
and interpretability of the proposed method.

5. To compare the prediction capability of the proposal with state-of-the-art self-
labeling methods in benchmark datasets.

6. To illustrate the usability of the proposal in case studies of semi-supervised
classification where interpretability is a requirement.

1.3 Overview of the Proposed Solution
In this research, we build upon the state-of-the-art in SSC. After analyzing the po-
tential for obtaining interpretability of different families of methods, we rely on the
self-labeling technique [177, 96, 158]. In self-labeling, a base classifier is trained on
limited labeled data points and subsequently used for predicting the labels of the unla-
beled data points, forming an enlarged dataset. This wrapper behavior encapsulating
a base classifier shows a clear connection with the use of a white-box classifier as a
global surrogate for gaining interpretability [64, 65, 53, 7]. Both strategies encapsulate
a base classifier for optimizing different objectives. While self-labeling attempts to im-
prove the accuracy in a semi-supervised setting, the global surrogate trains a white-box
model on mimicking the predictions of a base black box for improving interpretability.
This resemblance is the starting point of our proposal, combining a black-box classifier
for the self-labeling with a white-box one for gaining interpretability in what we call
a self-labeling grey-box (SlGb).

The assumption of self-labeling that their predictions are correct can potentially
propagate errors in the enlarged dataset. To overcome this drawback, we propose two
amending procedures that weigh the importance of each data point in the learning
process. The first amending strategy considers the class membership probability esti-
mated by the base classifier performing the self-labeling. The second amending is not
only limited to the class noise produced during self-labeling but also tackles the incon-
sistency that emerges in the entire enlarged dataset. Using rough sets theory (RST)
[128] for partitioning the decision space in regions of data with positive, negative, or
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hesitant evidence towards a given class, helps weight each data point according to
their membership to these regions. These weights are used for guiding the white-box
classifier in learning from the most confident information.

In addition, we propose some measures to evaluate the performance of our proposal
in terms of accuracy and interpretability. These interpretability measures are based
on using transparency as a proxy, and specifically, the number of rules that the grey
box produces as an indicator of the size of its structure. These measures are based
on a functional analysis approach [40] for evaluating interpretability, where no experts
are involved.

Finally, we illustrate the usability of SlGb through two SSC tasks. The first task
concerns the prediction of disease-causing (pathogenic [87]) genomic variants from a
rare disease [74]. The second case study involves the prediction of early folding residues
[135] in proteins. In both case studies, labeled data is difficult to obtain either because
it comes from a manual process involving experts or it needs complex experiments.
We show how different configurations of our proposal perform for these applications.

1.4 Main Contributions
This research comprises four main contributions, namely: 1) the SlGb classifier which
achieves a good balance between accuracy and interpretability, 2) the amending strate-
gies for the self-labeling process that guide the grey box towards learning from more
confident data points, 3) the interpretability measures for rule-based grey boxes, and
4) the application of the SlGb in real application problems from the bioinformatics
domain. These contributions are detailed as follows:

1. An interpretable semi-supervised classifier named self-labeling grey-box is pro-
posed. This classifier uses a black-box base classifier for labeling the unlabeled
data, using a self-labeling approach, and obtaining an enlarged dataset. Later on,
a second white-box classifier is trained for mimicking the predictions of the black
box, forming a grey-box model. This combination incorporates interpretability
in the semi-supervised classifier.

2. Two amending procedures are proposed for correcting the misclassifications of
the self-labeling in the enlarged dataset. The first one is based on the class
membership probabilities estimated by the black box, whereas the second one
considers the class noise that can emerge in the enlarged dataset. Using RST for
the second amending allows relying on positive, negative, and hesitant informa-
tion for guiding the grey box to learn explanations for the most confident data
points.
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3. Three measures related to interpretability are proposed. These measures are
based on the number of rules generated by the grey box as an indicator of the
size of the structure. The first measure is applicable in the context of self-labeling
and is the relative growth in structure compared to a white-box baseline. The
second measure uses a growth curve for estimating the simplicity of the model
and can be easily generalized to any white-box classifier. The third measure
combines performance and interpretability with a utility function.

4. Two case studies are used for illustrating the usability of the proposed SlGb in
real applications from the field of bioinformatics. In both case studies, we analyze
the performance of several configurations of SlGb. We show that, for these
applications, SlGb is a good-performing predictor that is also transparent and
allows obtaining explanations and an interpretable view of the predictions. In the
discussion with experts, some rules obtained by SlGb were identified as expected
patterns supported by domain knowledge, while others showed meaningful new
patterns that should be investigated further.

1.5 Thesis Organization
The rest of this thesis is organized as follows. Chapter 2 revises the state-of-the-art
on interpretable machine learning. It covers the fundamental concepts, methods, mea-
sures, and open problems in this re-emerging field. This chapter serves as a reference
for the terminology on interpretability that is used in the rest of the dissertation.

Chapter 3 studies the state-of-the-art of SSC, grouping each family of methods
based on assumptions that these methods need. This chapter contributes our view in
the interpretability potential of SSC methods which is a frequently neglected topic in
semi-supervised learning reviews.

Chapter 4 presents the main contribution of this research: the self-labeling grey-box
method. In addition, this chapter also discusses the amending procedures proposed
for the self-labeling correction. Additionally, we outline the requirements of the base
classifiers that are part of SlGb.

Chapter 5 evaluates the performance in terms of accuracy and interpretability
of SlGb in a wide collection of benchmark data. The experiments include exploring
different combinations of base classifiers and amending procedures, the influence of the
number of labeled and unlabeled data points, and comparing its performance against
other four state-of-the-art self-labeling classifiers.

Chapters 6 and 7 describe the application of SlGb in the prediction of disease-
causing genomic variants of a rare disease and the early folding residues in proteins.
Both are case studies from the bioinformatics field which explore the usability of SlGb
in real applications.
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Chapter 8 discusses the results and concluding remarks on this research. We outline
interesting future research directions that were identified through the course of this
research. Additionally, Appendixes A, B, and C complement the experimental results
from Chapters 5 and 6. Finally, the publications linked to this research and the
references cited through the document are listed.
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2 | Interpretability in Machine
Learning

This chapter introduces the state-of-the-art on interpretable machine learning and mo-
tivates the reasons to advocate for a broader explainable artificial intelligence concept.
Then, it focuses on the progress of machine learning interpretability, more specifically
on concepts, methods, measures and open problems in the field. This chapter serves
as the definition of the framework for interpretability that will be referred to in the
rest of the dissertation.

2.1 Explainable Artificial Intelligence
In recent years, artificial intelligence and particularly machine learning fields have
experienced a clear increase in interest from outside academia. The unprecedented
performance of machine learning algorithms in solving complex tasks from high volume
of structured and unstructured data caught the attention of industry, governments
and society. The use of sub-symbolic ensembles or deep learning techniques led to this
massive capacity of performance in very specific tasks. However, in contrast to what
is sometimes wrongly spread by media, current artificial intelligence solutions are far
from thinking by themselves or having some kind of consciousness.

Like any other technology or scientific breakthrough, it needs regulation and con-
trol for ensuring safe, responsible and meaningful use. This is evidenced by major
governmental efforts such as the well-known European Union’s right to explanation
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regulation [62] or United States’ DARPA explainable artificial intelligence (XAI) re-
search program [66]. Therefore, the research community should aim to provide artifi-
cial intelligence algorithms with the capacity of explaining their predictions or actions,
especially when these decisions affect humans’ lives.

The high performing sub-symbolic ensembles and deep learning techniques have the
disadvantage of being less interpretable compared to more symbolic approaches that
were integrated into industry solutions in the past (e.g. rule-based expert systems).
The need for interpretability, accountability and fairness for the responsible deploying
of artificial intelligence in society constitutes the main fuel of the XAI research field.

2.2 Interpretability in Machine Learning
The context of this work focus on the interpretability of machine learning techniques.
Initially, the notion of machine learning black boxes, as opposed to white boxes, was
taken from engineering. Black boxes refer to models which have been learned from data
and are difficult to understand at a global level. White boxes refer to models which are
built based on prior knowledge of the problem domain and/or learned from data but
their structure allows for a degree of interpretability since pure white boxes rarely exist
[116]. Grey-box models are somewhere in between the spectrum, referring to models
that provide some degree of interpretability. Generally speaking, black-box models
tend to be more accurate than white-box ones since they are able to approximate
better more complex functions, leading to a known trade-off between accuracy and
interpretability.

Recently, several efforts have been done in further defining and clarifying the termi-
nology around interpretability in machine learning. In a first approach, Lipton [101]
makes a distinction between the transparency notions of a machine learning model
(on the global model, parameters and algorithm level) and the post-hoc methods for
gaining on interpretability. Doshi-Velez and Kim [40] define a broad concept of inter-
pretability as “the ability to explain or to present in understandable terms to a human”
and focuses on general guidelines for evaluating interpretability with and without hu-
man intervention. Miller [110] also distinguishes between interpretable models and the
generation of explanations arguing that the XAI field should build upon research on
explanations from the philosophy, psychology, and cognitive science fields. Barredo
et al. [5] remark the dependency on the users when generating explanations. Other
concurrent review papers [1, 56, 39, 5] elaborate more detailed (re-)definitions which
sometimes result in overlapping or contradictory concepts. Therefore, the intention
of the remainder of this section is to set the terminology clear for the scope of the
dissertation.

Based on the current state-of-the-art, this work proposes the following definitions:
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Explanation: A justification given for a model prediction.

Interpretation: The action of giving an explanation that can be directly mapped
to the problem domain.

Explainability: The ability of a model to provide explanations.

Interpretability: The ability of a model to provide interpretations that allows a
human to reason about the model as a whole while mapping it to the problem
domain.

Explanations can be composed by cognitive units [40] such as raw features, pro-
totypes, derived features, instances, etc. Explanations can be formed in structured
ways such as rules, hierarchies, similar examples, etc., which determine its expressive
power [143]. When building an interpretable model or an explanations model, the
type of explanations being generated must comply with the purpose and the users of
the model [5, 73].

Transparency is defined as a property of a machine learning model that serves as
a proxy for interpretability. The levels of transparency of a machine learning model
[101] can be characterized as:

Algorithmically transparent: The condition of a model of being easy to inspect
by a human, thus allowing to obtain an output from an input in a transparent
process.

Decomposability: The condition of a model of being able to explain each of its
parts (e.g. input, parameters) without the need for additional tools, i.e. they
can be directly mapped to the problem domain.

Simulatability: The condition of a model of being reproducible or thought about
as a whole by a human, with a reasonable amount of effort. A simulatable model
needs to be algorithmically transparent and decomposable.

The third property is subjective in its definition. Therefore, this work considers a
model to be interpretable when it complies with the first two properties and with the
third one to some extent, depending on the purpose and the target users of the model.

The next section further explores the differences between intrinsically interpretable
and post-hoc methods for generating explanations while reviewing the state-of-the-art.

2.3 Methods for Interpretability and Explainability
Similarly to [101, 112, 5], this research makes a clear distinction between intrinsically
interpretable methods relying on transparency and post-hoc methods for generating
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explanations. Additionally, the section locates global surrogate models on a special
category in between.

2.3.1 Intrinsically Interpretable Models
According to the aforementioned definitions, a model is considered to be interpretable
if its level of transparency allows obtaining a transparent prediction, the components
can be mapped to the task domain and the model can be managed or thought about
as a whole to some extent. Next subsections describe well-known machine learning
techniques for obtaining interpretable models and how this definition of interpretability
applies to each of them.

Linear Regression

Linear regression models [70] predict the dependency of a continuous variable 𝑦 as a
weighted sum of a set of features 𝐴 using a set of instances 𝑋 as:

𝑦 = 𝛽 +
∑︁
𝑎∈𝐴

𝑤(𝑎)𝑥(𝑎) + 𝑒 (2.1)

where 𝑤(𝑎) is the weight or coefficient for attribute 𝑎, 𝑥(𝑎) is the value of instance
𝑥 for the attribute 𝑎, 𝛽 is the intercept and 𝑒 is the error of the approximation.
The simplicity of the linear relation described by the model makes it algorithmically
transparent, as it is possible for a human to inspect the process of getting an output
𝑦 from a given input 𝑥.

Each of the components of the model has a given interpretation adding decompos-
ability. However, the notion of interpreting the weights or coefficients 𝑤(𝑎) directly
as feature importance is incorrect. The interpretation of each weight is subject to its
statistical significance given by the confidence interval associated with it. Statistically
significant weights are interpreted as: “an increase in the feature 𝑎 by one unit changes
the estimated outcome 𝑦 by 𝑤(𝑎) units when the rest of the feature values are fixed”.
In case the feature is nominal instead of being numerical, then the interpretation is
subject to a reference category [112]: “a change from the reference category to another
category in feature 𝑎 changes the estimated outcome 𝑦 by 𝑤(𝑎) units when the rest of
the feature values are fixed”. The intercept 𝛽 can be interpreted as the prediction of
the model when all numerical features are zero-valued and the categorical ones are at
their reference value. This can be useful when the feature space is standardized and
the null instance represents the mean of the dataset [112]. Finally, 𝑒 represents the
approximation error of the model concerning the ground truth.

Regarding the simulatability of linear regression, sparsity (i.e. a small number of
non-zero coefficients) plays a fundamental role. Several optimization algorithms, e.g.
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Lasso heuristic, have been proposed for learning more sparse regression models [71].
A fewer number of coefficients to take into account allows the user to reason about
the model as a whole more easily.

Logistic Regression

Logistic regression [70] is an extension of linear regression for classification tasks with
two possible decisions, where the output 𝑦 is a probability of belonging to one of the
two classes. The sigmoid function is used for obtaining the probabilities:

𝑝(𝑦 = 1) = 1
1 + e−(𝛽+

∑︀
𝑤(𝑎)𝑥(𝑎))

. (2.2)

As an extension of linear regression, its interpretability analysis is similar regarding
the three properties. However, the interpretation of the coefficients is less straightfor-
ward since they influence the predicted probability in a non-linear way. The change in
the coefficient will now affect the odds ratio of one class over the other, a full mathe-
matical derivation of this can be found in [112]. The interpretation of a weight change
can be formulated as: “an increase in the feature 𝑎 by one unit, changes the estimated
odds of 𝑦 = 1 by a factor of e𝑤(𝑎) units, when the rest of the feature values are fixed”.
For a categorical feature, the change relies on a reference value and the multiplicative
increment in the odds is also expressed as a factor of e𝑤(𝑎).

A substantial disadvantage of linear and logistic regressions is their assumption of
the absence of multicollinearity. When multicollinearity is present, the precision of
the weights is less trustful since it is more difficult to attribute the changes between
two correlated features.

Decision Tree

Decision tree models have a flow-like structure where nodes represent subsets of data
or regions. Each internal node tests an attribute 𝑎, where one branch is assigned
for each possible value (nominal attribute) or a threshold is determined (numerical
attribute) obtaining generally two branches. The nodes are subsequently split until a
leaf node is reached. All instances must belong to a leaf and the prediction 𝑦 for an
instance 𝑥 can be obtained by traversing the tree from the root to the assigned leaf:

𝑦 =
∑︁

𝑐𝑟𝐼(𝑥 ∈ 𝑅𝑟) (2.3)

where 𝑅𝑟 represents the region of a leaf node 𝑟, 𝐼 is function returning 1 when 𝑥 ∈
𝑅𝑟 or 0 otherwise and 𝑐𝑟 is the expected prediction (mean or majority vote) for all
instances in the leaf 𝑟. There are several algorithms for learning the structure of the
tree, for example C4.5 [134] and CART [19]. C4.5 is used for growing decision trees
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when solving classification tasks where both categorical and numerical features are
present. At each step it greedily chooses the node that maximizes the information
gain to maximize the “purity” of the nodes, therefore minimizing the classification
error. CART is similar to C4.5 but it also supports regression tasks by minimizing
the variance of 𝑦. CART builds binary trees by splitting each node using a threshold
for numerical attributes or subgroups for nominal ones. When nominal attributes are
present, C4.5 tends to build shallower tree structures than CART.

Decision trees are algorithmically transparent since it is possible to obtain the
prediction of an instance by traversing the tree from the root to the relevant leaf. It
is considered a decomposable model since the decision nodes and branches represent
features and their possible values or thresholds of the problem domain. Decision trees
can be easily translated into a set of if-then rules with the form: “if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑎1) and
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑎2) (...) and 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑎𝑟) then 𝑦 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛”. In fact, the whole tree
can be represented as a disjunctive normal form, where a target value is true if and
only if the input attributes satisfy one of the paths leading to a leaf with the target
value [146]. Therefore, decision trees can be considered to be simulatable as long as
the structure is manageable by a human as a whole, otherwise, its interpretability is
confined only to algorithm transparency and decomposability. The number of leafs or
rules can help judge whether or not the structure is manageable, which is subject to
the target users and the purpose of the model. The depth of a path in the tree can
be seen as a local measure representing the maximum number of features needed to
produce an explanation for the prediction of a given instance. The usefulness of these
explanations depends on the accuracy and the support of the rule. More details on
measures will be discussed in Section 2.4.

Decision Lists

Decision lists are sets of if-then rules where the condition is a conjunction of feature
evaluations and the conclusion is the prediction of the target value. For an unseen
instance, decision lists are evaluated in order such that a default rule with no condition
is used when no other rule applies. The entire list can be analyzed as a whole by
interpreting conditions from more specific to more general.

Decision lists is a widely studied field with several algorithms for inducing rule
lists [54]. Sequential covering is a common divide-and-conquer strategy for building
decision lists. Here, a rule is induced from data and the covered instances are removed
before inducing the next rule, until all instances are covered by rules or a default
rule is needed. PART decision lists [49] is one of the many models implementing this
strategy, where rules are iteratively induced as the most covered one from a partial
decision tree. RIPPER [28] is another representative algorithm that uses reduced error
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pruning and the minimum description length heuristic to replace or revise the induced
rules.

Similarly to decision trees, decision lists are algorithmically transparent and easily
decomposable since the explanations that can be generated are rules using features and
values of the problem domain. Decision list algorithms tend to generate more compact
rule sets than those obtained from a decision tree while being equally expressive [112,
49], therefore making them more simulatable.

Naive Bayes Classifier

Naive Bayes classifier [3] models are a probabilistic classifiers based on Bayes’ theorem
assuming a strong feature independence. The class 𝑦 is assigned to an instance 𝑥 by
computing the class probability times the feature probability given that class:

𝑝(𝑦𝑖 | 𝑥) = 1
𝑍
𝑝(𝑦𝑖)

∏︁
𝑎

𝑝(𝑥(𝑎) | 𝑦𝑖) (2.4)

where 𝑍 is a normalizing constant based on the values of the features of 𝑥.
Naive Bayes classifiers are algorithmically transparent since it is possible to induce

the classification of an instance by taking the class with the highest probability from
the above function. It can be considered to be decomposable since the parameter
𝑍 is known and dependent on values from the domain. Conditional probabilities
are directly related to the problem domain and help elucidate how much a feature
contributes to a certain class prediction. However, the understanding of conditional
probabilities is subject to the target users of the model. A possible interpretation of a
prediction of Naive Bayes classifier is “𝑦𝑖 is the most probable value of 𝑦 for 𝑥 because
𝑥(𝑎1) = 𝑣1 and 𝑥(𝑎2) = 𝑣2 (...) and 𝑥(𝑎𝑟) = 𝑣𝑟 have a high probability when 𝑦 = 𝑦𝑖,
assuming independence of all features”. Regarding the simulatability, it is less clear
to think about the model as a whole, but it is reproducible for a small number of
features.

k-Nearest Neighbor

𝑘-Nearest Neighbors (𝑘NN) [3] is an instance-based learning technique where an in-
stance 𝑥 is given a prediction based on the expected 𝑦 value (mean or majority vote)
of its 𝑘 nearest instances in the feature space, relying on a distance metric. The re-
semblance with the human mechanism of decision making based on past events makes
this technique intuitively interpretable. However, 𝑘NN can be seen as a special case
in the sense that no actual model is built through learning, i.e. it uses lazy learning.
Alternatively seeing the metric and the examples as the model, then its transparency
heavily depends on the number of features, the number of neighbours and the distance
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metric. The distance function might not be completely transparent, especially if the
number of features is large, affecting its decomposability.

The simulatability can be affected by a large value of 𝑘. 𝑘NN cannot be thought
about as a whole, but rather as a generator of example-based explanations (see next
section). The type of interpretation obtained through 𝑘NN is “the prediction for 𝑦 is
𝑦𝑖 because 𝑥 is similar to these other 𝑘 examples”. In this case, the interpretations
are at different granularity level compared to the previously described models. They
express relations among instances instead of features of the problem. This is the case
of the explanations that can be obtained by other granular models [43].

2.3.2 Generating Explanations with Post-hoc Methods
Post-hoc techniques focus on generating explanations (i.e. explainability) for already
learned black-box models. The scope of the explanations can be local, i.e. for one
instance or a subset of instances, or global, that is for the entire model [112]. Post-hoc
techniques can produce different kinds of explanations such as visualization of fea-
tures dependency, feature importance metrics, explanations with (counter) examples,
etc. A wide review covering model-specific post-hoc approaches, including those tai-
lored to deep learning techniques, is presented in [5]. Next subsections focus on some
representative model-agnostic approaches.

Dependency Plots

Dependency plots are post-hoc methods that can be applied to a previously learned
black-box model. They attempt to generate explanations by visualizing the relation-
ship between features and the prediction. These visualizations can be either global or
local, but only relying on pairs of input and outputs of the black-box model.

Partial dependency plots (PDP) [51] show the marginal effect of up to two features
on the prediction generated by a black-box. It computes a partial function that rep-
resents the variation in the prediction for one or two features considering the average
of the rest of the features. Assuming independence of the features, the explanation
generated by the plot is “how the average prediction of 𝑦 changes when the feature 𝑎
changes”, see Figure 2.1 for an example. A major limitation of PDP is the assump-
tion of independence in the features, which leads to include average values of other
features that are unrealistic, given the value of the feature being analyzed. Besides,
the fact that the contribution is being averaged from the entire dataset could hide
heterogeneous contributions from different instances which are canceling each other
[112].

Individual Conditional Expectation plots (ICE) [58] aim to correct the drawbacks
of the global character of PDP plots. This method visualizes the dependency of the
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(a) One-dimensional PDP (b) Two-dimensional PDP

Figure 2.1: Partial dependency plots showing the individual (a) and joint (b) influence
of age and body mass index (bmi) in diabetes progression. The plots are generated
using a toy dataset from [42]. Features are standardized and the prediction variable is
a numerical indicator of the progression of the disease compared to a baseline. It can
be easily seen that the average prediction of the progression of the disease increases
with the body mass index.

prediction variable for individual instances. Similarly to PDP, each instance line can
be computed by fixing the rest of the features to a reference value and then varying the
value of the feature being studied. The reference values are possible combinations of
values of the fixed features, thus creating synthetic data for computing the prediction
of the underlying black-box model. The explanations of this plot are similar to PDP,
however, by looking at individual predictions instead of average lines, the heteroge-
neous contributions from different instances can be unveiled. It should be noticed that
ICE could show unrealistic data points which do not take place in the real joint feature
distribution.

Feature Importance

Feature importance –also known as variable importance– was first proposed by Breiman
[18] for random forests and was later extended by Fisher et al. [48] to make it model
agnostic. The underlying idea is to calculate the influence of a feature in the predic-
tion error of the model by randomizing its values along with the instances. In that
way, the generated explanation has the form “feature 𝑎 is more (less) important since
the black-box incurs in more (equal or less) prediction error when 𝑎 is shuffled”. An
alternative method consists in learning two models with and without the feature and
compare their results [55]. However, in the latter way, the measure does not reflect
how much either individual model relies on the feature.
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The extension of variable importance to model class reliance (MCR) by [48] aims
to mitigate the Rashomon effect [18], i.e. the fact that different models can achieve
attractive performance while relying on different features. MCR explains then “the
highest and lowest degree to which any well-performing model within a given class may
rely on a variable of interest for prediction accuracy”. This method can be especially
useful when models are private and cannot be inspected directly, but there are records
of their outputs. Therefore, by approximating the performance of the black-box model
with a class of other models, the likely reliance on certain features can be estimated.

When permuting the values of a feature along with the instances, feature impor-
tance measures also quantify the interactions with other features. However, similarly
to PDP, unlikely instances can appear when a feature is permuted and two or more
features are correlated. Furthermore, a highly correlated feature can lead to a decrease
in the relative importance of both features (the original one and the correlated one)
by “splitting” the importance between them [112].

Local Surrogates

Local surrogate models aim to explain the prediction of individual instances by locally
approximating an interpretable model. Therefore, it profits from the intrinsic inter-
pretability of other machine learning models. Here, the model acting as a surrogate
must be a good approximation of the black-box model for a subset of instances (and
possibly a subset of features), but not necessarily of the entire black-box. Local inter-
pretable model-agnostic explanations (LIME) [141] is a specific implementation of this
idea, where the instances are sampled with normal distribution and weighted according
to their distance to the instance to be explained. Later on, a linear regression model
is built on the synthetic dataset, from which feature contributions can be examined as
seen with linear regression (see Section 2.3.1). However, a major difference with linear
regression relies on the fact that the regression coefficients are not based on real data
points, but on synthetic weighted data points, therefore the interpretation is not valid
for the entire domain.

A weak point of LIME is the need to define the distance metric or the size of the
neighborhood to be deemed relevant for the instance that is being explained. The
resulting explanations are very sensitive to the choice of these metrics [4]. Similar to
other methods, the sampling of instances without taking into account the correlation
among features can result in unrealistic data points being used for building the expla-
nations. A strong point of local surrogates is that they provide the explanations via
another model instead of feature summarization measures, which can lead to a local
replacement of the black-box if needed.

LIME can be also used for text and image data, where words or groups of pixels
are perturbed by removing them from the instance, respectively. This method is espe-
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cially fitting for the scenario where a black-box is trained on derived non-interpretable
features (e.g. word embeddings) and the interpretable local surrogate is trained on
the original interpretable ones (e.g. words). This facilitates to build understandable
explanations while the prediction is approximated in a more complex feature space.

Shapley Values

Shapley values [151] is a post-hoc approach that comes from the field of coalitional
game theory and shows how much a feature brings in for a prediction, in addition to a
given subset of features. This can be calculated individually for an instance or globally
as an average over all instances. This average needs to be computed over all possible
combinations of features subsets (or coalitions), therefore it can be computationally
expensive.

More formally, a Shapley value 𝜑𝑎 represents the importance of the feature 𝑎 when
included in the model 𝑓 :

𝜙𝑎 =
∑︁

𝐵⊆𝐴∖{𝑎}

|𝐵|!(|𝐴| − |𝐵| − 1)!
|𝐴|!

(︀
𝑓𝐵∪{𝑎}(𝑥𝐵∪{𝑎})− 𝑓𝐵(𝑥𝐵)

)︀
(2.5)

where 𝐴 is the original feature set, 𝐵 are possible subsets of 𝐴 ∖ {𝑎}. Shapley val-
ues comply with the property of efficiency, i.e. the sum of all feature contributions
equals the difference of the prediction for 𝑥 and the average prediction. This method
is also the only one that complies with symmetry, linearity and null-player properties
simultaneously with efficiency, which implies that the feature contributions to the dif-
ference of a prediction with the average prediction are being fairly distributed [112].
However, similarly to feature importance methods, Shapley values can generate unre-
alistic data instances when features are correlated due to the marginalization of the
missing features on each coalition. Another drawback is that the explanation consists
of the feature contributions for all features, which could be less clear if the number of
features is high.

An alternative that also allows computing Shapley values for a subset of features is
the Shapley additive explanations (SHAP) method [104]. Interestingly, SHAP is also
applicable for groups of features, e.g. a group of pixels in an image. Lundberg and
Lee [104] build upon Shapley values theory and rewrite them as an additive feature
attribution method, i.e. a linear model. They propose a model-agnostic method
for estimation of the Shapley values called Kernel-SHAP using local linear regression
inspired in LIME for estimating the values. They also propose model-specific variants
(e.g. for deep learning). Recently, in [106] they propose Tree-SHAP, a more efficient
variant of SHAP for decision trees, random forests and gradient boosted trees which
uses the number of training examples traversing the tree to each leaf to represent the
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background distributions. A software library1 for the use of this method containing
a pool of attractive plots of the results supports the explainability by adding the
visualization resource. For example, the force plot portrays the “force” that each
feature executes (in both directions) for moving the actual prediction of an instance
away from the average prediction of the dataset (see Figure 2.2).

Figure 2.2: Force plot of SHAP values of different features predicting the diabetes
progression for a specific patient with linear regression. The plot is generated using a
toy dataset taken from [42]. Features are standardized and the prediction variable is
a numerical indicator of the progression of the disease compared to a baseline. The
average prediction of the dataset is represented as the base value. The bars represent
the contribution of each feature in obtaining the prediction. Blue bars move the
prediction to a higher value and orange bars move the prediction to a smaller value.

In general, SHAP is a very flexible model computing individual and fair feature
contributions for specific instances. It can be easily extended to the entire dataset by
averaging the absolute Shapley values per feature across the data, obtaining a feature
importance measure.

Example-based Explanations

Example-based explanations are another family of post-hoc methods which build ex-
planations with instances (either synthetic, real or prototypes), thus leveraging the
intuitiveness of human case-based reasoning. The first of these methods, k-nearest
neighbors, was already covered as a special case of intrinsically interpretable models
in Subsection 2.3.1.

Counterfactual explanations [163] is another approach which uses alternative in-
stances for formulating counterfactual if-then rules, e.g. “if feature 𝑎 = 𝑣2 instead of
𝑣1 the prediction changes to the desired value 𝑦𝑖”. Another way of reading this kind
of explanations is “if feature 𝑎 = 𝑣2 had not occurred, then 𝑦𝑖 would not have been
predicted”. Finding a counterfactual explanation for an instance involves optimizing
a loss function with two components: the distance of the counterfactual instance to
the instance to be explained and the distance of the counterfactual prediction to the

1https://github.com/slundberg/shap
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alternative desired prediction. In this way, a counterfactual instance that is close to
the original instance with minimal alterations will lead to the alternative desired pre-
diction. It should be noticed that equally good counterfactual instances proposing
different changes to obtain the desired prediction can be found. This Rashomon effect
(see Subsection 2.3.2) reflects the complexity of the real domain and therefore the
explanations should be evaluated or selected by domain experts. Recently, tools for
obtaining counterfactual explanations have been proposed in [59, 114].

2.3.3 Global Surrogates
The aforementioned post-hoc techniques while generating justifications of the predic-
tions do not necessarily enhance the transparency of the black-box model itself. An
idea in between is to use intrinsic interpretable models as global surrogates by learning
from the predictions of the already trained black box. The prediction function from
the black-box will be approximated by another function obtained with a more inter-
pretable model. The goal is to enhance the transparency of the final model as a whole
while trying to mimic the performance of the original one as much as possible. By
building an entire model view instead of providing statistics or examples, we consider
that this strategy is more in line with interpretability rather than explainability. Here,
a trade-off in preserving interpretability and accuracy naturally arises.

The choice of surrogate white-box could be any intrinsically interpretable model
(see Section 2.3.1) which can be trained using the data points and the black-box
predictions and satisfies the type of interpretation desired for the task at hand. The
surrogate model can be trained on all (weighted) data points, subsets or prototypes.
However, this could have an implication in the global character of the interpretability,
since a selection of rather local instances could lead to a local surrogate. During the
course of this research, the global surrogate models have being concurrently published
under different names: model simplification, model distillation, proxy model, mimic
model, hybrid models, twin-system approach, glass-box models or grey-box models.

There are multiple emerging model-specific implementations of global surrogates.
For example, in [22] the authors propose to mimic the learning of two types of deep
neural networks (variational autoencoders and long short term memories) by train-
ing a gradient boosting tree, which they claim to be interpretable. However, the
ensemble character of the chosen white-box component limits the interpretability to
the observation of the most important features in one of the trees that make up the
ensemble. In contrast, in [69] the authors use gradient boosting trees as a black-box
model and try to obtain a decision model that mimics the decision regions found by
the black-box. They create binary features for representing the decision regions and
try to approximate the new decisions boundaries by optimizing the prediction and the
regions using an expectation-maximization algorithm. The final model is expressed
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as rules representing each region. Although this could be a promising approach for
improving the interpretability of tree ensembles, the results of the paper are based on
only two datasets. A more general implementation is portrayed in [7] where random
forests, neural networks and the control policy of a reinforcement learning problem
are approximated with a CART decision tree using a sampling function for selecting
instances to be learned by the surrogate model.

More on the hybridization direction, another approach on combining neural net-
works and decision trees is proposed by Frosst and Hinton in [53], where the inner
nodes of a soft decision tree represent binary decisions made by a logistic regression
model. The parameters of the nodes (called filters) are then learned using a loss
function that minimizes the cross-entropy between each leaf using mini-batch gradi-
ent descent. For explaining the prediction of an instance the learned filters can be
examined through the path to the leaf. However, the hierarchy of nodes in the tree
represents a hierarchy of filters combining features rather than features alone, which
makes it difficult to inspect further than two levels.

Other approaches are linked with security, fairness2 and other fields of XAI. For
example, [126] is oriented to the field of adversarial machine learning. This approach
computes k-nearest neighbors on each layer of a deep neural network for estimating
the lack of support of a prediction in the neural network. It relies on the principle
that neighboring instances with the same prediction offer confidence in the current
prediction. At the same time, they leverage the explanation-by-example ability of
k-nearest neighbors with image data. Linked to the field of fairness, the authors in
[156] propose to train a surrogate model based on the predictions of a black box from
which the underlying model is not known (i.e. private model). By comparing the
surrogate with an alternative transparent model of the same class trained on available
data with potentially different features from the black-box model (audit data), they
compute the likelihood of the audit data is missing features that the black-box model
used for prediction. This serves as a way of auditing the features used by the private
black box.

In general, an extra advantage of global surrogates is the ability to compare differ-
ent black-boxes for the same task and gain insight into why some black boxes perform
better than others by using the holistic view of an interpretable model instead of
feature summaries alone.

2Fairness in AI studies individual and group fairness notions based on protected attributes. It
attempts to detect and mitigate the bias coming from data using fairness metrics and pre- or post-
processing algorithms.
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2.4 Evaluation and Measures
While the prediction performance of a machine learning algorithm is a well-defined
concept with several measures for comparing different techniques, the interpretabil-
ity measures remain as a less standardised and formalized terminology. This section
compiles the first steps of the community into proposing forms of evaluation, expla-
nations desiderata and quantitative measures for comparing the interpretability of
machine learning techniques or the quality of individual explanations from different
perspectives.

2.4.1 Interpretability Evaluation Frameworks
Doshi-Velez and Kim [40] formalize three evaluation frameworks for interpretability.

The first one, called function level evaluation, proposes to use a class of model
that is known to be interpretable, i.e. any method from Section 2.3. The evaluation
measure would be a characteristic of that model that serves as a proxy, e.g. sparseness
of a linear regression model or the number of rules in a decision list. This type of
evaluation is generally easier to perform in scenarios where involving humans is costly
or unethical.

The second type of evaluation called human level evaluation as its name indicates
involves humans, but not necessarily experts in the domain that could be expensive
to recruit. For this type of evaluation, a simplified task is defined and lay humans are
provided with pairs of explanations to choose the one they prefer. Another alternative
for testing the understanding of the user about a model is providing an explanation
and an input and request the user to find the output.

Finally, the most challenging type for evaluation is application level evaluation,
which is conceived for the specific application task and carried out with human experts
in the domain. Here, the explanations are evaluated by contrasting them to human-
generated explanations on the same task. The quality of the explanation should be
measured in terms of its end purpose, for example, identifying new relationships or
errors. This definition of interpretability evaluation in incremental stages can help
deploy an interpretable machine learning solution for a particular application task
while testing its interpretability from the beginning.

2.4.2 Desired Properties of Explanations
Another advance in the topic of evaluating interpretability is defining what constitutes
a good explanation. In this direction, the work of Robnik-Sikonja and Bohanec in [143]
gathers the desired properties of individual explanations:
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Accuracy: How well the explanations generalize to unseen test data. This is es-
pecially useful when explanations are intended to replace the underlying black
boxes for future predictions.

Fidelity: How well the explanations approximate the prediction of the underlying
black-box model.

Consistency: How much explanations built from different black-boxes differ, pro-
vided they are trained on the same task and their predictions are similar.

Stability: How much explanations for similar instances differ, provided they are
built with the same underlying black-box. This property is also extendable to
explanations generated by intrinsically interpretable models.

Comprehensibility: How well do humans understand the explanations. This prop-
erty can be addressed from different angles and there is no consensus on a model-
agnostic measure to date.

Certainty: How the explanations reproduce the certainty of the predictions of the
underlying black-box. This property can be measured when the black-box also
provides confidence measures of its predictions.

Degree of importance: Whether the explanations provide a degree of importance
of the features or the parts that compose the explanations.

Novelty: Related to certainty, how the explanations cover a data point coming from
a region of data not covered in the training data. With high novelty comes a
high risk of the model to be inaccurate and the certainty to be low.

Representativeness: How many instances the explanation covers, or whether the
explanation is local or global.

The properties accuracy, fidelity, consistency, stability, certainty and novelty are
measurable based on accuracy, support or confidence measures that are already estab-
lished in machine learning. The degrees of importance and representativeness depend
on the type of the explanation model being used, e.g. feature importance or SHAP
will provide importance measures while LIME has local representativeness. However,
comprehensibility (also referred to as understandability, readability, etc) is, in our
opinion, strongly dependent on the cognitive units and the structure that forms the
explanation. For example, it could be measured as the number of coefficients in a
linear model or the number of rules in a decision list, but these measures are still
limited to the class of the model and no agnostic measures are proposed to date.

In addition, in [143] define translucency and portability properties of interpretable
methods. Translucency describes to what extent the generated explanations rely on
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the parameters of the model being explained in contrast with manipulating inputs and
observing outputs (model-agnostic). Therefore, translucency aligns with the definition
of transparency in Section 2.2. Portability is also related to the difference between
intrinsically interpretable models and model-agnostic explanations since methods with
low translucency tend to have more portability. For example, global surrogates can
be applied in general to any class of black-box model.

The study published in [110] reviews how people create, perceive and evaluate
explanations from the philosophy, psychology, and cognitive science points of view.
The author argues that explanations are mostly contrastive, i.e. humans prefer coun-
terfactual explanations that contrast their situation with the desired one, instead of
the entire set of conditions that led to a prediction. Therefore, explanations are also
selected (with the consequent bias) since humans prefer to see one or two possible
causes of the outcome than the entire set of possible ones. This oversimplification of
the explanations must be handled with care and fairness should be specially taken
into account if those guidelines are followed. Finally, the author also emphasizes that
explanations are a social process and are presented as part of a conversation or inter-
action, therefore the users and the purpose of the model should be taken into account
when selecting the method of generating explanations.

2.4.3 Emerging Measures
Establishing a suitable trade-off between accuracy and interpretability is a challenging
task since generally, more complex models are able to approximate more complex
functions, but simplicity is a strong proxy for interpretability. Figure 2.3, adapted
from [66, 5] shows a fictional plot representing this conception. It should be noticed
that the ordering of classes of models concerning the spectrum of interpretability or
performance is not absolute nor necessarily true for individual models. For example,
a huge decision tree would not be necessarily more interpretable than a random forest
model.

Inspired by this known trade-off Bersimas et al. [14] propose a general framework
of interpretable paths for decomposing intrinsically interpretable models to building
blocks. This decomposition allows defining a generic interpretability loss that makes
one path more interpretable than others. In addition, using the interpretability loss,
they formulate the optimization problem of computing models that are on the Pareto
front of interpretability and predictive accuracy. However, this framework is only
applicable when the interpretable model can be built incrementally.

There are a few attempts in the literature to use metrics for measuring specific
properties of explanations. For example, in [141] the authors use local fidelity to the
underlying black-box as one of the components to optimize by LIME. The work in [4]
studies the robustness of explanations generated by LIME and SHAP model-agnostic
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Figure 2.3: Representation of the trade-off between accuracy and interpretability for
most known machine learning families of models. Adapted from figures published at
[66, 5].

methods and five other techniques tailored to deep learning classification of images.
The robustness notion here is related to the consistency and stability properties, since
it measures how locally similar are explanations inside a model and compare them
between different models for the same data points (anchor instances). The authors
propose a measure based on local Lipschitz continuity, which defines a local Lipschitz
estimate by optimizing:

ℒ𝑋(𝑥𝑖) = arg max
𝑥𝑗∈𝑁𝜖(𝑥𝑖)≤𝜖

‖𝑒𝑥(𝑥𝑖)− 𝑒𝑥(𝑥𝑗)‖2

‖𝑥𝑖 − 𝑥𝑗‖2
(2.6)

where instance 𝑥𝑗 is the 𝜖-neighbor of instance 𝑥𝑖 with the most dissimilar explanation
𝑒𝑥(𝑥𝑗) to the one of 𝑥𝑖. The Lipschitz estimates can be then aggregated for a sample
of anchor instances 𝑥𝑖 and compare models relative to each other for the same task.
However, this measure has no previously known ideal value or defined thresholds and
its values strongly depend on the data domain.

Current work on explainable AI measurements has a strong dependence on the
human-computer interaction field. Hoffman et al. [73] revises questionnaires and
interview methods for qualitatively measuring trust, satisfaction and curiosity in the
context of explainable AI. Similarly, Mohseni et al. [111] see users’ mental models as a
way of studying the understanding of the human about the intelligent system. These
techniques measure the a posteriori effect of explanations on the performance of the
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user in the given task. In general, more work is needed to define quantitative measures
for the a priori quality of the explanation coming from the method.

2.5 Concluding Note
Explainable artificial intelligence is a rapidly growing topic in the field3, although the
need for interpretability in machine learning has been always present. This chapter
covered different methods for obtaining interpretability and generating explanations
for data-driven approaches. We made a clear distinction between interpretability and
generating explanations.

On the one hand, intrinsically interpretable methods rely on their levels of trans-
parency for generating explanations by themselves but are prone to be less accurate
than black-box models. In this group, linear regression is perhaps the simplest in-
terpretable classifier allowing explanations involving the role of features, but it is
limited to approximating linear functions. Logistic regression is more flexible but its
interpretation of coefficients is more obscure. Decision trees and decision lists offer
a powerful prediction method that is entirely transparent, globally and for specific
instances. Decision trees are more prone to do overfitting especially if no pruning
is used, but decision lists provide more compact sets of rules. Naive Bayes is also a
powerful transparent classifier, but its interpretation is subject to the understanding
of the user of conditional probabilities. Finally, 𝑘-nearest neighbors resemble the hu-
man reasoning based on past events, although explanations are built at the level of
instances instead of based on the role of features. Intrinsically interpretable models
can be recommended when a transparent model that can be inspected as a whole is
needed and the prediction problem does not require a very powerful technique. De-
cision trees and decision lists seem, in general, the most accurate predictors that can
provide intrinsic interpretability when the structure is kept on a simulatable size.

On the other hand, model-agnostic post-hoc explanation methods compute expla-
nations from black-box models to preserve accuracy. For example, partial dependency
plots can provide a quick but limited view on how a given feature influences the pre-
diction, assuming independence from other features. The feature importance measure
does take into account the relationship with other features but tends to split the im-
portance of two correlated features. Shapley values correct this problem and distribute
the feature contribution fairly and efficiently. In particular, SHAP implementations
for particular black-box models seem to be very useful for explaining the prediction
of a given instance or obtaining a feature contribution measure for the entire dataset.
Local surrogate models approximate a prediction with local interpretable models such

3See Figure 1 in [5] for publication statistics on December 10th, 2019
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as linear regression, which leverages the intrinsic interpretability, but is limited to local
explanations.

To sum up, model-agnostic post-hoc methods generate explanations that are often
local or limited to feature attribution rather than a holistic view of the model. Ex-
planations provided by intrinsically interpretable models are more derived from their
structure and easily mappable to the problem domain. Global surrogates or grey-box
models take the best of both worlds while trying to find a suitable trade-off between
accuracy and interpretability. Being a black-box or a white-box model can be seen
as a spectrum, even between families of models. The next chapter studies the inter-
pretability potential of the state-of-the-art for semi-supervised classification based on
the terminology defined in this chapter.
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3 | Semi-Supervised
Classification

This chapter formalizes the semi-supervised learning problem with an emphasis on
pattern classification. The state-of-the-art for semi-supervised classification (SSC)
techniques is explored by grouping the methods with similar assumptions in families.
In addition, this chapter outlines the advantages and drawbacks of SSC methods, with
a special focus on their interpretability potential.

3.1 Semi-supervised Classification Problem
In several domains, gathering data examples for training a classifier is often simple,
but the process of assigning them labels can be costly in terms of money, time or
effort. For example, the scenario where labeled data is scarce is very common in
medical applications such as computer-aided diagnosis or prognosis analysis. This
is especially true in the context of rare diseases, where labeled data is scarce but
unlabeled data coming from other patients (not related to that disease) could help
with the classification task at hand. In this case, it may be difficult to build a reliable
supervised classifier based only on the labeled data, but an SSC method may be useful.

In supervised learning, the goal is to learn a function that maps inputs (described
as vectors) into outputs based on examples of input-output observations. These obser-
vations (hereinafter called instances) are often described by a set of numerical and/or
nominal attributes. More specifically, solving a supervised machine learning task im-
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plies to learn a mapping 𝑓 : 𝑋 → 𝑌 that assigns a label 𝑦 ∈ 𝑌 to each instance 𝑥 ∈ 𝑋,
described by an attribute set 𝐴 = {𝑎1 . . . , 𝑎𝑝}. The mapping is learned from data in a
supervised manner, i.e., by relying on a set of examples that are already labeled. Once
the learning process is done, the obtained model can be used to infer the label of an
unseen instance with a given certainty. On the other hand, in unsupervised learning,
the task is to learn the underlying characteristics of the instances that allow us to
group them, without information about a target output.

In general, semi-supervised learning techniques attempt to use both labeled and
unlabeled instances during the learning process to improve on the performance of
supervised methods that use only labeled data or unsupervised ones that use only
unlabeled data. In the case of SSC, unlabeled points could help better elucidate the
classification boundaries. While for semi-supervised clustering, information about the
labels could help group the instances in a better way. The scope of this research
focuses on SSC, but other related machine learning tasks are outlined in Section 3.4.

More formally, in a SSC scenario there exists a set of 𝑚 instances 𝐿 = {𝑙1, . . . , 𝑙𝑚}
which are associated with their respective class labels in 𝑌 , and a set of additional 𝑛
unlabeled instances 𝑈 = {𝑢1, . . . , 𝑢𝑛}, where usually 𝑛 > 𝑚. Following above notation,
𝐿 and 𝑈 are disjoint and 𝐿,𝑈 ⊂ 𝑋. SSC models can operate in two different settings.
In transductive learning, the classifier only attempts to predict the labels for the given
unlabeled instances in 𝑈 , but not for unseen data. In inductive learning on the other
hand, the classifier tries to infer a mapping 𝑔 : 𝑋 → 𝑌 , with 𝐿,𝑈 ⊂ 𝑋, in order to
predict the class label of any instance associated with the classification problem [188].

SSC relies on assumptions about the data for leveraging the extra unlabeled data
when compared to supervised classification baselines. The following section describes
these assumptions and reviews the main families of SSC methods analyzing their
interpretability potential.

3.2 State-of-the-art Review
Several families of methods have been proposed in the last decades, from the early
graph-based methods to the current use of deep learning techniques. The interest on
the application of semi-supervised approaches for unstructured data domains such as
image classification [119, 180], text classification [148], sentiment analysis [127, 173]
and video object segmentation [138, 176] has been on the rise since the success of
deep learning techniques often relies on the availability of a large number of labeled
data. However, semi-supervised learning continues to prove its relevance in other
machine learning tasks with structured (tabular) data. Particularly, in the context
of bioinformatics and medical informatics, semi-supervised techniques have proved in
several tasks such as predicting disease outcome from clinical data [24, 79], disease
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co-occurrence prediction [85], predicting active enhancers from gene expression data
[109], protein interaction sites predictions [168] or protein topology prediction [155].

This section first describes the assumptions about the data that need to be made
when using SSC methods. Different assumptions led to the emergence of different
families of methods. Next, the section provides a critical review of the most represen-
tative techniques in SSC, starting from graph-based methods, through semi-supervised
support vector machines, generative mixture models, the extension of the field to deep
learning and finalizes with self-labeling. However, it is not the intention to provide the
reader with an exhaustive review of all available methods. For an up-to-date review
on general semi-supervised learning the reader can refer to [159] and [188]. Addition-
ally, in [154] the authors provide a survey specific for graph-based methods, in [158]
the authors widely cover self-labeling techniques while in [36] the authors make an
overview of semi-supervised support vector machines. Lastly, this section adds our
vision on the potential interpretability of these families of methods, which is a topic
frequently neglected in semi-supervised learning review papers.

3.2.1 Semi-supervised Classification Assumptions
It is not evident how the semi-supervised prediction model 𝑔 : 𝑋 → 𝑌 can be improved
using unlabeled instances in 𝑋 since 𝑔 represents the mapping between 𝑋 and 𝑌 and
the unlabeled instances 𝑈 ⊂ 𝑋 do not have information about this mapping. The
key lies in the assumptions that need to be made regarding the relationship between
the distribution of the unlabeled data and the label. In general, the main assumption
of SSC is that the underlying marginal distribution 𝑝(𝑥) provides information on the
conditional distribution 𝑝(𝑦|𝑥), from where the labeled instances were sampled. When
this condition is met, it is possible to use the unlabeled data for gaining information
about 𝑝(𝑥) and hence 𝑝(𝑦|𝑥) [188]. However, the different interactions that 𝑝(𝑥) and
𝑝(𝑦|𝑥) have in real-world problems lead to specific assumptions that need to be made
when working with different methods.

A first assumption, also commonly found in supervised classification, is the smooth-
ness assumption, i.e. for two instances 𝑥𝑖, 𝑥𝑗 ∈ 𝑋 which are similar in the feature
space, the corresponding labels 𝑦𝑖 and 𝑦𝑗 should be the same. This assumption is
generally used with transitivity, which allows propagating the label to similar unla-
beled instances in a number of steps. A complementary supposition is the low-density
assumption, which states that the classification boundaries should be in regions of
the feature space that are not crowded with observed points. When placing decision
boundaries in low-density areas, at the same time the smoothness assumption is re-
spected since populations of similar data points will be assigned to the same label. A
third assumption refers to the manifold assumption, which states that the data points
described in a high-dimensional input space come from low-dimensional sub-spaces
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called manifolds. The data points that belong to the same manifold should share their
label. In that way identifying the manifolds and the points belonging to them allows
transferring the label from labeled instances to unlabeled ones. Finally, the cluster
assumption states that, when data points belong to the same cluster, they also share
the same label, based on a similarity measure. This assumption is often interchanged
with the other assumptions since it can be seen as a generalization of them [159]. Next
subsections review the main families of SSC methods while describing their connection
to the SSC assumptions.

3.2.2 Graph-based Methods
Graph-based methods [16] represent the data space as a graph, where each node de-
notes a training instance (both labeled or unlabeled) and edges describe relations
between them. The edges are weighted based on some similarity measure. Thus, they
assume label smoothness over the graph, i.e., if two instances are strongly connected,
then they likely belong to the same class. Graph-based methods also rely on the man-
ifold assumption, since they potentially provide a lower-dimensional representation
of the high-dimensional input data [159]. These methods were originally focusing on
transductive learning, i.e. predicting the label for the given set of unlabeled data rather
than finding a model capable of predicting the classification of unseen instances. Tra-
ditionally, computing the label for a new instance would require to relearn the model
including the new instance as a node.

Graph-based methods estimate a continuous function closely enough to the label
values, with the ultimate goal of propagating labels between similar instances. The
function is usually expressed with two terms by using a loss function and a regularizer.
The first term is a supervised loss function that keeps the predicted labels close to the
known labeled data and the regularizer term minimizes the difference of the predicted
labels to those of its neighbors. The goal of the regularizer is to keep the function
smooth through the graph. The main differences among graph-based approaches are
the choice of the functions for the two terms [188]. Reviews published in [159, 186, 188]
cover several regularization techniques for graph-based methods.

Label propagation [187] and its modification label spreading [182] are perhaps
the most used graph-based SSC methods. In these methods, each label is iteratively
computed from the weighted average of the neighbors’ labels until convergence. Label
propagation uses the graph Laplacian for regularizing the smoothness of the function
and a nearest neighbor kernel for spreading the labels while keeping the original labels
fixed. Label spreading modification uses the normalized graph Laplacian and the
original labels are allowed to change, thus it is more robust to noise. An analogy exists
between supervised kNN and label propagation. While kNN predicts the new labels
based on the labels of similar instances, graph-based methods extend the similarity
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to unlabeled data points. Figure 3.1 shows how label spreading works in a synthetic
dataset by using the unlabeled instances to separate classes, compared to a baseline
supervised kNN.

Figure 3.1: Label spreading compared to kNN method (using only labeled data and
Euclidean distance), for the circles dataset. The inner circle is known to be positive
and the outer circle is known to be negative. Label spreading is able to leverage the
proximity of unlabeled instances and propagates the correct label. This figure is an
extension of an example available in the documentation of scikit-learn library [129].

Recent works on label propagation methods are focused on the construction of an
effective graph over data with complex distribution [44] and in the reduction of the
risk of error propagation through outliers [60]. An interesting extension of label prop-
agation to the data stream scenario can be found in [164]. Although label propagation
variants are known to be computationally complex (with the worst-case scenario of
𝑂(𝑛3)) they are proven to converge to the approximate solution [12]. Graph-based
methods tend to be sensitive to class imbalance [188], thus leading to multiple works
using label proportions for regulating the influence of labeled instances [159].

In terms of interpretability, this family of methods tends to be more on the dark
grey part of the spectrum. For the specific methods were the prediction of an un-
labeled data point is equal to the average prediction of its neighbors, the algorithm
transparency is similar to that of 𝑘NN (see Section 2.3.1). The parallelism with the
human reasoning based on past experiences makes it look as intuitively interpretable,
thus allowing the generation of example-based explanations. However, its components
such as the function to be minimized, are not easily mappable to the domain. Regard-
ing the simulatability, the graph acting as a model could be only considered transparent
at the global level when the instances can be visualized in a low-dimensional space. In
this setting, visually examining the structure of the obtained graph could give some
holistic view of the model and the relations among data points, but it would become
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too complex for even medium-size graphs. The first work toward this direction can
be found in [147], where the authors propose a flow sub-graph framework which visu-
alizes the path along the information flow from a source labeled instance to a target
unlabeled instance. These sub-graphs can be seen as rather local explanations in the
form of visualizations of the model. Their usability is limited to data that can be
represented in the graph replacing the abstract representation of the node (e.g. im-
ages). A more general option is to obtain kNN-like explanations with examples by
leveraging the graph structure, e.g. “the predicted label of instance 𝑥𝑖 was propagated
from instances 𝑥1, 𝑥2 and 𝑥3”.

3.2.3 Semi-supervised Support Vector Machines
An alternative SSC approach is to assume low-density separation of the data, i.e. the
decision boundary should be in a low-density region. A well-known method in this
family is transductive support vector machines (tSVM) [80, 13], which uses unlabeled
data for maximizing the margin between the different classes by placing the decision
boundaries in sparse regions (see Figure 3.2). As a natural extension of support
vector machines (SVM), the algorithm enumerates all possible labeling of the unlabeled
points, builds one standard SVM for each labeling and chooses the SVM with the
largest margin. It is important to notice that, despite its name, tSVM are inductive
learners since the model is built over the entire space.

Given the fact that the complexity of the optimization problem increases in the
semi-supervised setting, the computational cost of this technique is very high and it
does not scale well for large-scale data. Recent studies [20, 100] try to overcome this
limitation by using a concave-convex procedure and variations of stochastic gradient
descent to solve the optimization problem.

Another interesting approach is connected to graph-based models and their as-
sumptions. Belkin et al. [8] proposed Laplacian support vector machines (LapSVM),
which extends the regularization framework of SVM with a manifold regularization
term. The manifold regularization is added as a Laplace operator, taking into ac-
count the geometry of the distribution of the unlabeled data. In contrast to some
graph-based methods, LapSVM is able to deal with transductive and inductive semi-
supervised learning. Compared to tSVM, LapSVM performs better in time complexity
[36]. A review on modified variants of these techniques for reducing time complexity
and supporting cost-sensitive classification can be found in [36].

Although SVMs are a powerful technique with a strong mathematical framework
for building classifiers, it has the drawback of working as a black box from the in-
terpretability point of view. The lack of transparency of SVMs does not allow them
to produce explanations or interpretations of the obtained model. Some scattered
works can be found on providing some degree of interpretability to supervised SVMs
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Figure 3.2: Supervised SVM vs. transductive SVM boundaries in a randomly gener-
ated binary classification problem. The solid green line represents the boundary found
by each method and the dashed lines are the geometric margins of the boundaries.
For SVM the boundary is guided by the labeled data only. While for tSVM, unlabeled
data guide the decision boundaries to more sparse regions of the space. This figure is
inspired by a similar figure in [188].

[137, 107], but no works were found for its semi-supervised flavor. In this case, the
use of post-hoc methods for generating explanations is necessary when requiring ex-
planations over the obtained predictions.

3.2.4 Generative Mixture Models
Generative models focus on learning a joint distribution 𝑝(𝑥, 𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑦) from
which the instances can be generated. This methods can be also used for classification
by assigning an instance 𝑥𝑖 the label 𝑦𝑗 that maximizes the conditional probability
𝑝(𝑦|𝑥). The conditional probability 𝑝(𝑦|𝑥) can be computed using the Bayes rule as
shown below:

𝑝(𝑦|𝑥) = 𝑝(𝑥|𝑦)𝑝(𝑦)∑︀
𝑦𝑗
𝑝(𝑥|𝑦𝑗)𝑝(𝑦𝑗) (3.1)

where 𝑝(𝑥|𝑦) is the class conditional probability of the instance, 𝑝(𝑦) is the prior
probability of class label 𝑦 and the denominator is the prior probability 𝑝(𝑥) expressed
as the law of total probabilities using each class value 𝑦𝑗 . Related to the cluster
assumption, the idea behind generative mixture models (GMM) is to assume that the
data follows a mixture of identifiable distributions (e.g. Gaussian distributions), where
each distribution represents a class label [188], as depicted in Figure 3.3.
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Figure 3.3: Gaussian mixture distributions of 1-dimensional instances in a randomly
generated binary classification problem. Each blue curve is the distribution 𝑝(𝑥|𝑦 =
−1) and the orange one is 𝑝(𝑥|𝑦 = +1). The instances are plotted as short bars in the
𝑥 axis, where the unlabeled ones are represented on light blue and the labeled ones in
the corresponding colors of each class label. The unlabeled instances help estimating
the parameters of the distribution of each class. This figure is inspired by a similar
figure in [188].

GMMs estimate the joint probability by assuming a type of distribution while learn-
ing its parameters using information from the labeled and the unlabeled data. In this
way, the information from unlabeled instances can help estimate the true mean of the
Gaussian distributions, for example. The expectation-maximization algorithm is used
for inferring the parameters that maximize the probability of generating such train-
ing data from the model. The theoretical foundations of expectation-maximization
ensure that with sufficiently large amounts of unlabeled data, a more probable model
(and therefore a more accurate classifier) can be found when compared to just using
the labeled data alone [81]. For example, in Figure 3.4 it can be observed how the
estimated model changes by using the distribution of unlabeled data as well.

This approach may be convenient when the available data produce well-separated
clusters, but in real-world applications, the joint distribution is not easily identifiable
[186]. The unlabeled data could actually harm if the distribution assumption is wrong,
therefore this technique should be used when there is evidence from the knowledge
domain that supports the chosen distribution.

From the interpretability point of view, the classification of a new instance can
leverage the Bayes rule for building a (rather abstract) explanation: “𝑦𝑗 is the most
probable value of 𝑦 for 𝑥𝑖 since the probability 𝑝(𝑥𝑖) is high when 𝑦 = 𝑦𝑖”. Moreover,
the estimated mixture distribution could only be visualized in a low-dimensional fea-
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Figure 3.4: Gaussian mixture distributions obtained when (a) using only labeled data
or (b) with labeled and unlabeled data combined. Each distribution from the mixture
is associated with a class label (positive or negative). The data points are randomly
generated in a binary classification problem for illustration purposes.

ture space for gaining insights into the clusters found by the model. In our opinion,
GMMs require the use of post-hoc methods or global surrogates for gaining in inter-
pretability of their results. An interesting work in this direction includes generating
rectangular regions from the clusters and transforming them into rules [23].

3.2.5 Deep Semi-supervised Learning
Deep architectures have also been introduced in the field of semi-supervised learning by
extending the generative models family. For example, generative adversarial networks
(GAN) [61] are based on the idea of learning a generative model and a discriminative
model at the same time. Implemented with neural networks, the generative model tries
to produce data points adjusted to the real distribution of data, while the discrimi-
nator tries to predict whether a data point is real or generated. GANs are originally
unsupervised but easily extensible to a supervised classification scenario by training
the discriminator to distinguish different classes instead of real or fake instances. The
authors in [122, 149] simultaneously proposed to use a discriminator for 𝑐 + 1 labels
instead of the binary “real/fake” distinction, where the first 𝑐 ones are the class labels
of the problem while 𝑐+ 1 corresponds with the generated instances. The authors in
[31] theoretically analyze whether a good generator and a good discriminator for semi-
supervised learning can be obtained at the same time. The study concludes that the
generator should be “bad” in the sense of assigning high probabilities to low-density
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regions of the input space according to the true distribution, in order to complement
the true data distribution and improve the semi-supervised performance.

Variational autoencoders (VAE) [35] are another line of work in extending gener-
ative models to deep learning architectures. VAEs suppose that each data point 𝑥 is
generated from a vector of latent variables 𝑧 and tries to find a distribution 𝑝(𝑧) from
which 𝑧 can be easily sampled. During the training process, an encoder network learns
the parameters for obtaining the distribution 𝑝(𝑧|𝑥) based on a data point 𝑥, and the
decoder learns the parameters for the correct reconstruction of 𝑥 after sampling 𝑝(𝑧).
The authors in [86] extend this model to the semi-supervised setting with a two-step
procedure. In the first step, one VAE is trained on labeled and unlabeled data in an
unsupervised way. Afterward, another VAE is trained such that it contains the label
information in the latent representation. For labeled data, this extra variable repre-
sents the true labels and for unlabeled data, it is an unconstrained latent variable.
Finally, a separate classification network which uses the latent features is used to infer
the predictions.

For completeness, we mention some methods that use unlabeled information for
adding a regularization component to the loss function in neural networks, as a nat-
ural extension of deep neural networks to semi-supervised settings. Weston et al.
[169] propose to learn unsupervised encodings at multiple layers of a deep architec-
ture jointly with a supervised task. Rasmus et al. [136] propose ladder networks as
autoencoder networks with skip connections for the semi-supervised setting achieving
outperforming results in the semi-supervised MNIST task [95]. This family of methods
continues to outperform state-of-the-art results mainly on semi-supervised versions of
image datasets such as SHVN [117] or CIFAR-10 [89], which have become the standard
for the empirical evaluation of deep classifiers [123].

Regarding interpretability, deep neural networks are black-box models that need
post-hoc procedures for generating explanations of their predictions. The majority
of contributions are focused on local surrogate models or feature importance methods
(see Subsection 2.3.2) specially designed for deep multilayer, convolutional or recurrent
neural networks. For a wide review on post-hocs for generating explanations in deep
learning the reader is referred to [21, 159]. Interesting works connected to the semi-
supervised setting include learning disentangled latent representations in a variational
autoencoder, i.e. latent variables with an interpretable meaning coming from labeled
data are added to the latent representation [115]. These latent interpretable variables
can be used later on for inspecting their influence in the prediction.

3.2.6 Self-labeling Techniques
While the above families of methods rely on specific assumptions about the distribu-
tion of unlabeled and labeled data, a less constrained strategy for SSC exists. Self-
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labeling methods refer to a wide family of versatile techniques which are extensions
of supervised ones. They are known also as wrapper methods since they encapsulate
supervised classifiers which are assumed to be good predictors. This means they use
one or more base classifiers for enlarging the available labeled dataset, assuming the
predictions they produce on the unlabeled data are correct. Self-labeling techniques
are commonly grouped in self-training and co-training methods based on whether they
need one or multiple classifiers for learning.

Self-training

Self-training methods are also found in the literature referred to as self-labeling and
pseudo-labeling. Self-training methods [177] rely on the prediction of one base classi-
fier. They repeatedly increase the size of the labeled dataset by predicting unlabeled
instances and retraining the base classifier. The criteria for including instances in the
next enlarged labeled dataset are generally based on the confidence of the prediction.

The instances can be added incrementally, in batch [68] or in an amending proce-
dure [98]. When adding instances incrementally, a fixed number of the most confident
instances is added to the enlarged dataset. This is the simplest of the approaches
but its main disadvantage is that the strictly incremental addition of instances can
propagate and reinforce self-labeling errors to the next iteration. Adding the instances
in batches is slightly different since, instead of a fixed number of instances, only those
that meet the criteria will be added on each iteration. The amending alternative allows
adding, removing or weighting the self-labeled instances to be used for enlarged la-
beled datasets according to a given criterion. The flexibility of an amending procedure
contributes to avoiding error reinforcement.

The standard self-training scheme has been explored with a variety of base classi-
fiers such as naive Bayes, 𝑘NN, C4.5 decision tree or support vector machines [158].
For example, the methods SETRED [98] and SNNRCE [167] use a graph cut edge
statistic as a measure of confidence in the classification for the amending procedure.
Logistic model trees [45] and rotation forests [46] have also been evaluated in bench-
mark datasets with competitive results. Other works have explored the potential of
fuzzy-rough sets models in self-training, suggesting them as good base classifiers based
on a preliminary study of prediction quality and stability [162]. Pseudo-label [96] has
been also used with deep neural networks in combination with dropout and a denois-
ing autoencoder, showing promising results in the semi-supervised version of MNIST
dataset.

Co-training

Co-training is often used as an umbrella term that refers to self-labeling methods that
use an ensemble of classifiers. However, the standard co-training approach [17] is a
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multi-view method which means it needs more than one description of the dataset for
its workings. The multi-view methods assume that the data space can be described
from two or more different viewpoints. These different views normally correspond
to distinct sets of attributes describing the same instances. In standard co-training,
the base classifiers are trained separately using each attribute subset. Thereafter, the
prediction of each classifier over the unlabeled dataset is used for enlarging the training
set of the other. The use of this method is advisable when the features split naturally
into two sets, e.g. a patient described with clinical and genomic data.

Other alternatives using multiple base classifiers which do not need multi-view
datasets are democratic co-learning [183], tri-training [184], co-training by commit-
tee [67] and co-forest [99]. For example, tri-training uses three base classifiers that
collaborate in the learning process by labeling an unlabeled example if the other two
classifiers agree. Co-training by committee explores different ensemble strategies with
bagging as the best performing one. Similarly, co-forest can be seen as the implemen-
tation of co-training using random forests as the base classifier. A wide experiment
conducted in [158] shows that co-training using support vector machines as a base
classifier [67], tri-training using C4.5 decision tree [184], co-bagging using C4.5 [67]
and democratic co-learning [183], are the best performing self-labeling classifiers for
structured (tabular) datasets.
In general, self-labeling techniques are easy to implement and apply to almost all ex-
isting classifiers. This means that when a given supervised classifier is known to be
good for solving a specific task, then it can be easily extended to the semi-supervised
setting with the self-labeling strategy. The supervised base classifier is completely
agnostic of the wrapper classifier when passing the self-labeled instances as regular
labeled instances. Thus, the performance relies on the generalization ability of the
base classifiers and the strategy for avoiding the propagation of misclassifications dur-
ing self-labeling. Compared to other families of SSC, there is no need of assuming
additional characteristics of the data, such as smoothness, clusters, manifolds, etc..

In terms of interpretability, a self-training scheme producing a simulatable model
(e.g. relatively simple tree structure) as the final classifier can be considered a trans-
parent model. However, in the same way, a self-training with a support vector machine
as a base classifier would be a black box. More complex approaches such as the multi-
classifier (e.g. tri-training, co-bagging, or co-forest) or multi-view ones (e.g. standard
co-training) are more difficult to interpret at a global level due to the collaborative
nature of the algorithms and the complexity of the resulting ensemble. Therefore, the
interpretability of a self-labeling technique depends on its base classifiers and their
connection.

It can be noticed that the self-labeling concept has a direct link with the global
surrogate technique for providing interpretability since they both can be seen as wrap-
per strategies. A black-box model known to be good for a certain task can be taken as
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the base classifier for the self-labeling process. This base classifier is independent of a
second wrapper classifier that can be in turn a white-box model. The wrapper will act
as a global surrogate trained on the self-labeled data, thus providing interpretability
as long as the features of the task are interpretable. This research takes this idea
as a starting point for proposing a general schema for solving SSC problems, where
interpretability is a requirement.

3.3 Empirical Evaluation of Semi-supervised Classi-
fiers

For empirically evaluating and comparing semi-supervised classifiers, the first decision
should be to identify whether the scenario is transductive or inductive. For trans-
ductive settings, only the unlabeled instances should be correctly classified. For the
inductive setting, the most commonly found in literature, the classifier should be able
to generalize to unseen instances. When compared with other algorithms, supervised
baselines should be included. Besides, when possible for the classification task, transfer
learning alternatives should also be compared [123].

Regarding the datasets, common benchmarks are the UCI Machine Learning repos-
itory [41] for structured (i.e. tabular) data and CIFAR [89], MNIST [95] and SVHN
[117] for unstructured image data. It is a generalized practice to partition the datasets
in labeled and unlabeled instances by using different fixed ratios. The unlabeled in-
stances are obtained from the training set by neglecting the label information when no
real unlabeled data is available. Test and validation sets are kept aside similarly to su-
pervised classification. Generally, only the ratio of labeled data is varied in benchmark
experiments. However, Oliver et al. [123] argue that for a more realistic evaluation of
the semi-supervised classifiers, both the labeled and unlabeled amount of data should
be varied. Since it is not possible to guarantee that adding more unlabeled data
will not degrade the performance, it is important to report the relative performance
compared to the supervised baseline. Performance degradation is a phenomenon ob-
served in practice, although, it is likely under-reported due to the lack of publication
of negative results [188].

3.4 What Semi-supervised Classification is Not
As mentioned before, the contribution of this thesis falls within the SSC field, which
gathers the majority of the contributions of semi-supervised learning. However, there
exist other machine learning tasks within the umbrella term of learning from weak
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labels which should not be confused with SSC. A compilation of these fields is outlined
below:

∙ Semi-supervised clustering: the goal of these methods is to improve the discov-
ering of the clusters using the labeled data for identifying pairwise constraints.
These constraints establish whether the cluster labels of two samples must be in
the same or not. A review on these techniques can be found in [6].

∙ Semi-supervised regression: similarly to SSC, this field focuses on improving the
prediction performance with extra unlabeled data, but for regression problems
instead. According to a recent review in [88] the most explored techniques are
regression based on the co-training paradigm, kernel regression and regression
via Laplacian regularization.

∙ Learning with positive and unlabeled data: in this type of problem, only positive
instances have the label available. Assuming the unlabeled data has both positive
and negative instances, these methods estimate the positive class conditional
probability 𝑝(𝑥|+) and 𝑝(𝑥). If the probability 𝑝(+) is known, they can estimate
𝑝(𝑥|−) and perform the classification via Bayes rule [33]. Other approaches
heuristically estimate negative examples from the unlabeled data [97].

∙ Learning from partial labels [30] or superset learning [76, 103]: in this type of
task, the label associated with a training instance is only characterized in terms
of a subset of possible classes including the correct one. Despite the “distracting
labels”, the classifier needs to learn how to disambiguate data and identify the
correct label.

∙ Multi-instance learning: for this kind of task, the instances are grouped into
bags that are labeled as a whole. A bag is labeled “positive” when containing at
least one positive instance, otherwise will be labeled “negative”. Zhou and Xu
[185] show how this problem can be reformulated as a special case of SSC and
solved using an SVM-based classifier.

∙ Active learning [50]: similarly to SSC, this field also tackles the context where
labeled data are difficult to obtain. The difference is that it relies on an oracle
(human or another system) to label selected instances of unlabeled data. The
wide variety of approaches differ in the strategy for selecting the query exam-
ples: maximum entropy, least confidence, the most disagreed by an ensemble of
classifiers, among others. A review on this topic can be found in [150].
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3.5 Concluding Note
This chapter elaborated on the state-of-the-art on SSC techniques, with an emphasis
on the assumptions they make and their potential for interpretability. SSC techniques
such as graph-based methods, transductive support vector machines, or generative
mixture models rely on assumptions about the unlabeled data and include them di-
rectly in their objective functions or the learning algorithms. Self-labeling methods,
on the other hand, are more flexible and applicable to any supervised base classifier,
thus making it easier the extension from the supervised scenario to the semi-supervised
one.

We discussed how to correctly evaluate an SSC technique, recommending to com-
pare to baseline supervised alternatives and to vary the amount of labeled and un-
labeled data. In general, SSC should not only be seen as a direct way of increasing
performance by adding unlabeled data. It is rather a suitable alternative for the sce-
nario where unlabeled data is available and can help obtain a classifier that adjusts
better to the problem domain. This is especially important when interpretability is a
requirement since the generated explanations will be better adjusted to the domain as
well.

Through the chapter, we have argued that graph-based methods, transductive
support vector machines, generative models, or their deep learning extensions do not
provide clear room for incorporating interpretability in their design. It seems that, for
the majority of them, the use of agnostic post-hoc explanation methods is necessary.
In contrast, self-labeling methods exhibit a clear connection in structure with the
global surrogate strategy for providing interpretability. Both techniques are wrapper
strategies that encapsulate a base classifier for optimizing different objectives. The self-
labeling attempts to improve the accuracy in a semi-supervised setting concerning its
supervised baseline. The global surrogate trains a white-box model on mimicking the
predictions of a base black box for improving interpretability. Combining an accurate
black box that performs the self-labeling with a surrogate white box that learns from
the self-labeled data seems to be a promising direction. In the next chapter, we
start from this idea to develop an interpretable semi-supervised classifier that aims to
achieve a good trade-off between accuracy and interpretability.
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In this chapter, we develop the main contribution of this research, namely an inter-
pretable semi-supervised classifier called self-labeling grey-box (SlGb). We combine the
self-labeling approach for semi-supervised learning with the global surrogate strategy
from the interpretability field. The aim is to find a good trade-off between accuracy
and interpretability in the semi-supervised setting. To mitigate the propagation of
mistakes in the self-labeling process, we propose two amending procedures. The first
one is based on the class membership probabilities estimated by the base classifier
doing the self-labeling. However, this strategy considers the labeled data as absolutely
correct while inconsistency in the class labels can be present due to the limited or
diverse sources of labeled data. Intending to tackle inconsistency using both labeled
and unlabeled data, we propose a second amending procedure based on rough sets
theory (RST). Additionally, through the chapter, we discuss the requirements of the
base classifiers that are part of the SlGb.

4.1 Self-labeling Grey-box Scheme
As mentioned in Chapter 2, we refer to a grey box as the combination of a black-box
model with a white-box one. Black boxes are normally more accurate techniques that
learn exclusively from data but are not interpretable at a global level. Some classic
examples of black-box models are (deep) neural networks, support vector machines
or ensemble classifiers. On the other hand, white boxes refer to models that are
built based on laws or principles of the problem domain. More frequently, they also
refer to those who are built from data but their structure allows for explanations or
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interpretation since pure white boxes rarely exist [116]. These are known in machine
learning as intrinsically interpretable methods (e.g. decision trees or lists) which were
covered in Section 2.3.1.

We propose SlGb as a self-labeling ensemble of two classifiers which combines a
base black-box predictor with a surrogate white box. The base black-box component
is the base supervised classifier in the self-labeling strategy (see Section 3.2.6). The
black box performs the self-labeling of unlabeled instances based on its training on
the available labeled data. The self-labeling assumes that the predictions are correct
to some extent. Then, instead of re-training the same black box with the enlarged
dataset, as it usually happens in self-labeling, a second white-box classifier is trained.
The wrapper white-box classifier acts as a global surrogate which tries to mimic the
predictions of the black box while keeping the inherent interpretability. The surrogate
white box can be later used for predicting the class of unseen instances and explain
(locally or globally) the predictions. Regarding performance, SlGb aims to achieve a
suitable trade-off between accuracy and interpretability by outperforming the white-
box base classifier while keeping a similar complexity in structure.

4.2 Architecture and Learning Algorithm
The learning process of SlGb is performed in sequential order. In a first step (self-
labeling), we provide the available labeled dataset (𝐿, 𝑌 ) to a black-box classifier for
training. The black box estimates a function 𝑓 : 𝐿 → 𝑌 , where 𝑓 ∈ 𝐹 , being 𝐹
the hypothesis space that associates each instance with a class label. The function
𝑓 can be computed from the scoring function ℎ : 𝐿 × 𝑌 → [0, 1] such that 𝑓(𝑙) =
𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 {ℎ(𝑙, 𝑦)}, 𝑙 ∈ 𝐿. For example, the function ℎ can be the class membership
probability, whose usefulness in this context will be explained in the coming sections.
Thereafter, the trained black-box component is used for generating new tuples (𝑢, 𝑦)
by mapping all or a subset of unlabeled instances 𝑢 ∈ 𝑈 to a class label 𝑦 ∈ 𝑌 .
This mapping is possible with the function 𝑓 as 𝑦 = 𝑓(𝑢), thus adding a self-labeling
character to the model. From this step, we obtain an enlarged training set (𝐿∪𝑈, 𝑌 )
comprising the originally labeled instances and the extra labeled ones. The process
of enlarging the labeled dataset can be performed iteratively, in batch or using an
amending strategy (see Section 3.2.6). In our proposal, we add all instances at once
with different amending procedures that will be detailed later in Sections 4.3.1 and
4.3.2.

In the second step, we want to approximate the function 𝑓 with a function 𝑔
subject to the restriction that 𝑔 is intrinsically interpretable. The enlarged training
set (𝐿 ∪ 𝑈, 𝑌 ) is used to learn the surrogate white-box classifier 𝑔 : (𝐿 ∪ 𝑈) → 𝑌
with 𝐿 ∪ 𝑈 ⊂ 𝑋, with 𝑋 being the set of instances (see Section 3.1). This results

70



4.2. ARCHITECTURE AND LEARNING ALGORITHM

in a classifier which is more likely to have better generalization capabilities than the
supervised white-box base component. Figure 4.1 summarizes the learning process.

Figure 4.1: Blueprint of the SlGb architecture. During the first step, labeled data is
used for training a black-box model, which assigns labels to the unlabeled data. Later
on, a white-box surrogate model is trained on the enlarged dataset, thus resulting in
an interpretable model.

When applying self-labeling, we should be aware of the risk of having imbalanced
data concerning the class labels. It might be easier to obtain unlabeled data of a
certain class, for example, in the context of rare diseases classification. To overcome
this problem, our approach additionally incorporates a simple strategy for balancing
instances as a preprocessing step. This weight is computed as:

𝑤(𝑙𝑗 ,𝑦𝑖) = |𝐿[𝑦𝑚𝑖𝑛]|/|𝐿[𝑦𝑖]| (4.1)
where 𝐿[𝑦𝑖], 𝐿[𝑦𝑚𝑖𝑛] ⊂ 𝐿 denote the sets of labeled instances that are mapped to the
class label 𝑦𝑖 and the minority class 𝑦𝑚𝑖𝑛, respectively. This preprocessing step assigns
a weight that is proportional to the size of the instances’ class. The minority class
receives the highest weight. It must be noticed that the balancing is performed on the
labeled data only, before training the black-box component. The aim is that the black
box learns, in the same proportion, from labels with different availability.

Being a self-labeling method, the SlGb classifier is only based on the general as-
sumption made by SSC: the distribution of unlabeled instances helps elucidate the
distribution of all examples. According to the taxonomy proposed in [158], our model
can be categorized as follows:

single-view: the SlGb classifier does not need different attribute sets for de-
scribing the instances, thus adding simplicity to the model;
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multi-classifier: two different base classifiers are used, connected in a sequential
process;

multi-learning: the learning process comprises two steps, where two different
learning algorithms are used, depending on the base classifiers.

It can be noticed that the performance of the SlGb classifier depends on two factors.
Firstly, the generalization capability of the underlying black box that performs the
self-labeling part. Errors in the classification of unlabeled instances can reinforce
themselves when the self-labeling is made in an iterative incremental way. Secondly,
the ability of the surrogate white box for approximating the predictions of the black
box as accurately as possible while keeping interpretability. For the second factor, we
will propose measures for empirically testing the behavior of the white box in Chapter
5. In the next section, we address the first factor by proposing two amending strategies
for weighting instances that are suspected to be misclassified, to prevent the errors
from propagating through the model.

4.3 Amending Strategies
Since self-labeling assumes that its classifications are correct, it comes with the po-
tential drawback of propagating errors in the enlarged dataset. Amending procedures
are used for removing, adding or weighting instances of the enlarged dataset in the
self-labeling process to avoid this problem. This process is guided by a heuristic that
tries to identify the possible misclassifications of unlabeled instances. In this section,
we describe two strategies for weighting the instances of the enlarged dataset. The
goal is to improve the performance of the SlGb model either in terms of accuracy or
interpretability. The first strategy uses the class membership probability estimated
by the baseline black box and the second one focuses on detecting class inconsistency
of the enlarged dataset. Therefore, both procedures assign more importance to more
reliable instances in the second learning step (i.e. the training of the white box), thus
avoiding the propagation of errors or superfluous information.

4.3.1 Amending based on Class Membership Probabilities
In the first strategy, the amending process is based on the class membership probability
computed by the black box. The weights are assigned to the originally unlabeled
instances after being labeled by the black box. They express a confidence degree
associated with the label produced by the black box. By assigning the weights to self-
labeled instances only, we assume that the ground truth labels are correct. The aim
is to induce the surrogate model to learn from the most confident instances after the
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self-labeling. Equation 4.2 shows how to compute the weight 𝑤(𝑢𝑘,𝑦𝑖) for the unlabeled
instances. This equation uses the scoring function of the black-box model ℎ(𝑢𝑘, 𝑦𝑖)
that expresses the probability of 𝑢𝑘 being correctly assigned to the 𝑦𝑖 class,

𝑤(𝑢𝑘,𝑦𝑖) = ℎ(𝑢𝑘, 𝑦𝑖). (4.2)

It is important to mention that the black-box classifier should be able to measure
calibrated probabilities to correctly interpret them as the confidence of its predictions.
By calibrated probabilities, we mean that the probabilities predicted by the model
match with the expected distribution of probabilities for each class. For example,
a binary prediction model is well-calibrated when, from those instances to which the
model assigns a probability near to 0.9, the 90% is actually from the positive class. Not
all machine learning models are able to provide well-calibrated probabilities. According
to a study on probability estimation for different supervised classifiers [118], maximum
margin methods such as boosted trees and support vector machines produce distorted
probabilities. Other methods such as logistic regression, multilayer perceptrons, and
bagged trees naturally provide well-calibrated probabilities.

Interpreting probabilities from models without calibration could constitute a source
of bias. An interesting example published in [181] shows that datasets for multi-label
object classification contains significant gender bias, which is further amplified when
learning a conditional random fields model [91]. In one of the analyzed datasets,
67% of cooking images are associated with women and the rest with men, while after
learning, the model labels women in 84% of cooking images.

When the calibration of probabilities is needed, two main options are available:
Platt’s scaling [132] and isotonic regression [178]. Platt’s scaling calibrates the prob-
abilities by fitting a logistic regression to the predicted scores. The logistic regression
predicts the calibrated probabilities from the output of the non-calibrated model. This
alternative is recommended especially for SVM and other techniques that describe a
sigmoid shape in the distortion of the probabilities. Alternatively, isotonic regression
is recommended for boosted naive Bayes, SVM or decision trees. This method fits an
isotonic (i.e. monotonic) free-form line that adjusts better to the data points. How-
ever, it requires a significant amount of data for avoiding overfitting. The choice of
calibration algorithm therefore heavily depends on the base classifier and the size of
the dataset available.

The proposed amending strategy constitutes an alternative to the use of incremen-
tal or batch procedures. Our amending does not need several iterations, thus reducing
the computational burden of the self-labeling process. The pseudo-code in Algorithm
1 formalizes the method and incorporates the amending step in the general scheme.

The amending based on class membership probabilities assumes the ground truth
labels are correct and induces the white box to focus its learning on instances that
are certain according to that. However, when dealing with limited labeled data we
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Data: Labeled instances (𝐿, 𝑌 ), Unlabeled instances 𝑈
Result: 𝑔 : (𝐿 ∪ 𝑈)→ 𝑌
begin

/* Preprocessing: Weight the labeled instances according to Eq. 4.1 */
forall (𝑙𝑗 , 𝑦𝑖) ∈ (𝐿, 𝑌 ) do

𝑤(𝑙𝑗 ,𝑦𝑖) ←− |𝐿𝑚𝑖𝑛|/|𝐿𝑖|
end
/* Train the black-box component with the weighted labeled data. Include

a calibration procedure if needed for the black box. */
𝑓, ℎ←− 𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑥𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟.𝑓𝑖𝑡(𝐿, 𝑌,𝑤)
/* Self-labeling process: Assign a label to the unlabeled instances using

the black-box inference */
forall 𝑢𝑘 ∈ 𝑈 do

𝑦𝑖 ←− 𝑓(𝑢𝑘)
/* Compute the weight of the unlabeled instance according to Eq. 4.2

*/
𝑤(𝑢𝑘,𝑦𝑖) ←− ℎ(𝑢𝑘, 𝑦𝑖)
/* Add the instance to the enlarged dataset */
(𝐿 ∪ 𝑈, 𝑌 ) ∪ {(𝑢𝑘, 𝑦𝑖)}

end
/* Train the white-box component with the weighted (𝐿 ∪ 𝑈, 𝑌 ) dataset */
𝑔 ←− 𝑤ℎ𝑖𝑡𝑒𝑏𝑜𝑥𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟.𝑓𝑖𝑡(𝐿 ∪ 𝑈, 𝑌,𝑤)
return 𝑔

end
Algorithm 1: SlGb learning algorithm with confidence amending. The learning is
performed in two steps and the self-labeled instances are weighted by the confidence-
based amending procedure.

should not discard the existence of noise in the class labels. This can generate class
inconsistency, especially when unlabeled data is added from different sources.

4.3.2 Amending based on Inclusion Degree from Rough Sets
Theory

We refer to a dataset as inconsistent, when identical or very similar instances have
different labels. Inconsistency can arise during the self-labeling process when adding
unlabeled data. This can happen because the black box predicted wrong labels for
unlabeled instances or because there is noise in the class labels of the originally labeled
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data. To address both issues, we propose another amending method which will be
applied to the entire enlarged dataset, instead of only the self-labeled instances.

This amending is based on the principles of RST [128]. This formalism allows han-
dling inconsistency through the computation of the lower and upper approximations
for any set in the decision space. Next, we describe how the rough regions associated
with these approximations can be used for weighting the instances after performing
the self-labeling process.

Rough Sets Theory

RST [128] is a mathematical formalism for handling uncertainty in the form of incon-
sistency. This theory is part of the granular computing paradigm [130], which aims
to recognize and exploit the knowledge present in data at various scales or levels of
resolution. An information granule can be defined as a collection of objects sharing a
specific property. Therefore, RST attempts to build information granules by assum-
ing that every pair of instances in a universe of data that have the same (or similar)
description are inseparable, according to a (sub)set of attributes.

Let 𝐷𝑆 = (𝒰 , 𝐴 ∪ {𝑑}) be a decision system where the universe of objects 𝒰 is
described by a non-empty finite set of attributes 𝐴 and its respective decision class 𝑑,
any concept (subset of objects) 𝑋 ∈ 𝒰 can be approximated by two crisp sets. These
sets are called lower and upper approximations of 𝑋 (𝐵𝑋 and 𝐵𝑋, respectively) and
can be computed taking into account an equivalence relation, as follows:

𝐵𝑋 = {𝑥 ∈ 𝒰 | [𝑥]𝐵 ⊆ 𝑋} (4.3)

𝐵𝑋 = {𝑥 ∈ 𝒰 | [𝑥]𝐵 ∩𝑋 ̸= ∅} (4.4)

The equivalence class [𝑥]𝐵 gathers the objects in the universe 𝒰 which are insepa-
rable according to a subset of attributes 𝐵 ⊆ 𝐴. From the formulations of upper and
lower approximation, we can derive the positive, negative and boundary regions of any
subset 𝑋 ∈ 𝒰 . The positive region 𝒫(𝑋) = 𝐵𝑋 includes those objects that are surely
contained in 𝑋; the negative region 𝒩 (𝑋) = 𝒰 − 𝐵𝑋 denotes those objects that are
surely not contained in 𝑋, while the boundary region ℬ(𝑋) = 𝐵𝑋 −𝐵𝑋 captures the
objects whose membership to the set 𝑋 is uncertain, i.e., they might or might be not
members of 𝑋.

The classic RST is regularly defined over a subset of discrete attributes, which
produces a partition of 𝒰 . A more relaxed formulation of RST establishes the insepa-
rability between objects based on a weak binary relation. Equation 4.5 formalizes the
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similarity relation used in this research, which defines whether two objects 𝑥𝑖 and 𝑥𝑗

can be considered similar or not,

ℛ : 𝑥𝑖ℛ𝑥𝑗 → 𝜓(𝑥𝑖, 𝑥𝑗) ≥ 𝜀 (4.5)

where 0 < 𝜓(𝑥𝑖, 𝑥𝑗) < 1 computes the extent to which 𝑥𝑖 and 𝑥𝑗 are deemed insepara-
ble as indicated by the similarity threshold 𝜀. Under this assumption, the universe is
arranged in similarity classes that are no longer disjoint but overlapping. Through this
work, 𝜀 = 0.98 and the similarity function 𝜓(𝑥𝑖, 𝑥𝑗) = 1 − 𝛿(𝑥𝑖, 𝑥𝑗), i.e. is defined as
the complement of a distance function, such as the Heterogeneous Euclidean-Overlap
Metric [171]. This distance function computes the normalized Euclidean distance be-
tween numerical attributes and an overlap metric for nominal attributes. Equations
4.6 and 4.7 define the distance function,

𝛿(𝑥𝑖, 𝑥𝑗) =

⎯⎸⎸⎷∑︀|𝐵|
𝑡=1 𝜔𝑡𝜌𝑡(𝑥𝑖, 𝑥𝑗)∑︀|𝐵|

𝑡=1 𝜔𝑡

(4.6)

with,

𝜌𝑡(𝑥𝑖, 𝑥𝑗) =

⎧⎪⎨⎪⎩
0 if 𝑏𝑡 is nominal ∧ 𝑥𝑖(𝑏𝑡) = 𝑥𝑗(𝑏𝑡)
1 if 𝑏𝑡 is nominal ∧ 𝑥𝑖(𝑏𝑡) ̸= 𝑥𝑗(𝑏𝑡)
(𝑥𝑖(𝑏𝑡)− 𝑥𝑗(𝑏𝑡))2 if 𝑏𝑡 is numerical

(4.7)

where 𝑥𝑖(𝑏𝑡) and 𝑥𝑗(𝑏𝑡) denote the normalized values of the 𝑡-th attribute 𝑏 ∈ 𝐵 for
heterogeneous instances 𝑥𝑖 and 𝑥𝑗 , respectively, and 𝜔𝑡 is the information gain[172] of
the 𝑏𝑡 attribute.

Once the covering of the decision space is generated according to the similarity
function, several RST-based measures can be computed for quantifying the uncertainty
contained in a dataset [9]. In the following subsection, we adopt one of these measures
to weight the instances belonging to the enlarged training set obtained after performing
the self-labeling process.

Inclusion Degree

The second amending strategy is based on the inclusion degree of both labeled and self-
labeled instances into the RST regions. Thus, let 𝑋 = 𝐿∪𝑈 represent all instances in
the enlarged dataset and 𝑑 = 𝑦, i.e. the decisions of 𝐷𝑆 be the class labels of the semi-
supervised problem. Each concept 𝑋[𝑦𝑖] to be approximated with RST represents the
subset of instances in 𝑋 that have class 𝑦𝑖. Each information granule, i.e. the positive
𝒫(𝑋[𝑦𝑖]), negative 𝒩 (𝑋[𝑦𝑖]) and boundary ℬ(𝑋[𝑦𝑖]) regions for each decision class are
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computed from the enlarged dataset containing labeled and self-labeled instances. Let
𝜇ℛ

𝒫[𝑦𝑖]
(𝑥), 𝜇ℛ

ℬ(𝑦𝑖)
(𝑥) and 𝜇ℛ

𝒩(𝑦𝑖)
(𝑥) denote the membership degrees of any instance 𝑥 to

the positive, boundary and negative region of its decision class 𝑦𝑖, respectively. These
membership degrees are computed from the inclusion degree [175] of the similarity
class of 𝑥 into each information granule,

𝜇ℛ
𝒫(𝑦𝑖)

(𝑥) =
|ℛ̄(𝑥) ∩ 𝒫(𝑋[𝑦𝑖])|
|𝒫(𝑋[𝑦𝑖])|

(4.8)

𝜇ℛ
ℬ(𝑦𝑖)(𝑥) =

|ℛ̄(𝑥) ∩ ℬ(𝑋[𝑦𝑖])|
|ℬ(𝑋[𝑦𝑖])|

(4.9)

𝜇ℛ
𝒩 (𝑦𝑖)(𝑥) =

|ℛ̄(𝑥) ∩𝒩 (𝑋[𝑦𝑖])|
|𝒩 (𝑋[𝑦𝑖])|

(4.10)

where ℛ̄(𝑥) is the similarity class associated with the instance 𝑥. The similarity class
of an instance 𝑥 groups all instances that are similar to 𝑥 according to the subset of
attributes taken into account. By computing how much 𝑥 and its similar instances are
included in the positive region of its class 𝑦𝑖, we are estimating how sure we are of this
classification. On the other hand, a high inclusion degree of ℛ̄(𝑥) on a negative region
of a class 𝑦𝑖 hints a misclassification by the black-box (when 𝑥 is from the self-labeled
subset) or a class noise (when 𝑥 is from the labeled instances). A high membership to
the boundary region can be considered positive evidence about the class label to some
extent, but less certain than the positive evidence.

Equation 4.11 computes the weight for the instance 𝑥 belonging to the enlarged
dataset, given its label 𝑦𝑖 and a similarity relation ℛ. The sigmoid function 𝜑(.) is
used to maintain the weight in the (0, 1) range.

𝑤(𝑥,𝑦𝑖) = 𝜑
(︁
𝜇ℛ

𝒫(𝑦𝑖)(𝑥) + 0.5 * 𝜇ℛ
ℬ(𝑦𝑖)(𝑥)− 𝜇ℛ

𝒩 (𝑦𝑖)(𝑥)
)︁

(4.11)

with

𝜑(𝑥) = 1
1 + 𝑒−𝑥

(4.12)

The intuition of this weight is aggregating all evidence from positive, negative and
even boundary regions. A high weight near one would indicate high confidence, while
a low weight near zero would identify the less reliable instances. Observe that the
boundary information is also interesting since a high inclusion degree of an instance
in the boundary region is, to some extent, positive evidence as well (see Equation
4.4). Therefore, we assign an importance of 0.5 to the evidence coming from the
boundary region. The boundary region role can be reinforced or diluted according to

77



CHAPTER 4. SELF-LABELING GREY-BOX

the evidence coming from the inclusion degrees in the other two regions. Ignoring the
boundary information by setting its importance to 0.0 decreases the weight towards
zero when the evidence from the positive region is not strong enough to counterfeit
the negative evidence. Considering that negative evidence tends to be strong, i.e. the
negative regions tend to be bigger, this will trigger that the training of the white box
heavily relies on very confident instances only. In contrast, when the positive evidence
is very weak and the boundary is taken into account with a positive weight, there is
still a chance for the instance to be assigned a weight larger than zero.

When using the RST-based amending, Equation 4.11 replaces Equation 4.2 in the
pseudo-code but the weighting is performed on the entire enlarged dataset. Algorithm
2 reflects this difference.

Finally, Figure 4.2 illustrates the inclusion of the amending procedures into the
learning scheme of the SlGb algorithm. When using RST-based amending, the en-
larged dataset is modified taking into account the class noise in the originally labeled
data as well.

Figure 4.2: Blueprint of the SlGb architecture using amending procedures for cor-
recting the influence of the misclassifications from the self-labeling process. When
RST-based amending is used, it also tackles class inconsistency coming from noise in
the labeled data.

4.4 Other Amending Alternatives
An alternative way of applying amending when using class membership probabilities
could be resetting the imbalance weight of labeled instances. This value could be
reset to 1.0, assuming that ground truth labels are 100% confident, or to its class
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Data: Labeled instances (𝐿, 𝑌 ), Unlabeled instances 𝑈
Result: 𝑔 : (𝐿 ∪ 𝑈)→ 𝑌
begin

/* Preprocessing: Weight the labeled instances according to Eq. 4.1 */
forall (𝑙𝑗 , 𝑦𝑖) ∈ (𝐿, 𝑌 ) do

𝑤(𝑙𝑗 ,𝑦𝑖) ←− |𝐿𝑚𝑖𝑛|/|𝐿𝑖|
end
/* Train the black-box component with weighted labeled data. Include a

calibration procedure if needed for the black box. */
𝑓, ℎ←− 𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑥𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟.𝑓𝑖𝑡(𝐿, 𝑌,𝑤)
/* Self-labeling process: Assign a label to unlabeled instances using the

black-box inference */
forall 𝑢𝑘 ∈ 𝑈 do

𝑦𝑖 ←− 𝑓(𝑢𝑘)
/* Add the instance to the enlarged dataset */
(𝐿 ∪ 𝑈, 𝑌 ) ∪ {(𝑢𝑘, 𝑦𝑖)}

end
forall 𝑥 ∈ 𝐿 ∪ 𝑈 do

/* Compute the weights of the enlarged dataset according to Eq. 4.11
*/

𝑤(𝑥,𝑦𝑖) = 𝜑
(︁
𝜇ℛ

𝒫(𝑦𝑖)(𝑥) + 0.5 * 𝜇ℛ
ℬ(𝑦𝑖)(𝑥)− 𝜇ℛ

𝒩 (𝑦𝑖)(𝑥)
)︁

end
/* Train the white-box component with the weighted (𝐿 ∪ 𝑈, 𝑌 ) dataset */
𝑔 ←− 𝑤ℎ𝑖𝑡𝑒𝑏𝑜𝑥𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟.𝑓𝑖𝑡(𝐿 ∪ 𝑈, 𝑌,𝑤)
return 𝑔

end
Algorithm 2: SlGb learning algorithm with RST-based amending. The learning is
performed in two steps and the enlarged dataset is weighted based on the inclusion
degrees.

membership probability, which is expected to be near 1.0 since it is part of the training
data. This modification would imply that all labeled instances would have similar and
high importance for the white box independently of their class label. This alternative
would be worth exploring in a scenario where the labeled data is very trustful, the
inherent imbalance in the explanations obtained is not an issue, and the interpretable
model must strongly reflect this knowledge.

In the RST-based amending, by using a similarity relation instead of an equiva-
lence relation for building the information granules, we create an overlap instead of a
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partition of the decision space. However, even with this flexible approach, an instance
with a noisy class can affect the positive region of a class. For example, when there
is a negative instance surrounded by positive ones, all similarity classes that include
the negative instance will be taken out of the class’s positive region and placed in the
boundary region. This situation can lead to small positive regions, and it could be
corrected by tuning the similarity relation threshold to leave the negative instance out
of the similarity class. A suitable alternative is to use more flexible flavors of RST,
such as Fuzzy RST [29], which allows the objects to belong to a concept with different
degrees. Fuzzy RST would remove the similarity threshold and allow each instance
to belong to the positive, negative, and boundary regions of each class with a certain
degree.

Another alternative applicable for both amending procedures is to exclude in-
stances with low confidence (either probability or RST-based). This option would
bias the white box to explain the most confident data points, gaining certainty but
reducing novelty, i.e., the ability to explain more rare data points (see Section 2.4).
As another option, low-confidence instances can be grouped in a new class label “un-
known” and either explore an active learning approach with them or see whether the
white box can identify common patterns.

4.5 Concluding Note
This chapter presented self-labeling grey-box, a semi-supervised classifier aiming to
provide a good balance between accuracy and interpretability. The SlGb uses an
accurate black-box component for labeling unlabeled data. A white-box classifier is
then used as a global surrogate model for building an interpretable model. To avoid
the propagation of errors in the self-labeling process, two amending procedures are
proposed. Both amending strategies aim to correct the misclassifications by weighting
the instances before the learning process of the white-box surrogate occurs. The
first strategy is based on class membership probabilities provided by the black box
in the self-labeling. The second strategy aims to also correct the inconsistency in the
labels in the enlarged dataset by computing the certainty of the classification based on
the RST inclusion degree. RST-based amending covers the two sources of class noise
commonly found in machine learning [189]: i) inconsistency: very similar examples are
labeled with different classifications, and ii) misclassifications: instances are labeled
with wrong classes. By considering the class inconsistency in the ground truth labels
together with the self-labeled ones, RST-based amending reduces the impact of the
class noise. Furthermore, the RST-based amending could have a positive influence on
reducing the number of explanations produced by the white box.
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The use of amending by weighting can have implications for the interpretability.
Assigning high weights to a small subset of instances transforms the global surrogate
model towards a more local one. In other words, the weighting of instances makes the
white box biased towards learning from the most confident ones, thus providing ex-
planations for some sub-spaces of the domain. Although, contrary to local surrogates,
these explanations are based on real data points and not synthetic ones. In addition,
it makes sense to provide interpretability or explanations over the predictions that are
most certain in the problem domain.

The next chapters study the effect of combining different black-box and white-box
base classifiers, as well as the influence of the two amending procedures in terms of
accuracy and interpretability. In Chapter 5, we perform this evaluation on extensive
benchmark data, while Chapters 6 and 7 focus on real application problems.
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5 | Evaluation on Benchmark
Datasets

In this chapter, we evaluate the predictive ability of the proposed SlGb classifier
through a three-step methodology using standard benchmark datasets. We evalu-
ate different settings of the SlGb in terms of performance and interpretability while
having different percentages of labeled instances. Additionally, we propose two new
evaluation measures related to interpretability and one that connects interpretability
and accuracy.

The first step of our empirical study is devoted to determining which black-box
classifier produces the best results in terms of prediction performance. This step is
quite important since the overall performance will depend on the discriminatory ability
of the black box. The second step is dedicated to determining which combination of
white box and amending approach reaches the best trade-off between prediction rates
and interpretability. As a third step, we further explore the impact of having different
percentages of labeled and unlabeled instances on the algorithm’s performance.

For completeness, in the last part of this chapter, we compare the proposed SlGb
against the best-performing state-of-the-art methods for structured data. For that sec-
tion, the evaluation is limited to prediction rates as the state-of-the-art methods used
for comparison are black boxes and cannot be interpreted. We show that SlGb is not
just simple and transparent, but also able to outperform other self-labeling methods
reported in the literature for classification tasks with structured tabular datasets.
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5.1 Benchmark Dataset Description
Our experimental design includes 55 challenging and diverse datasets for classification
tasks where features are structured (i.e. the dataset has tabular form) and there-
fore are potentially interpretable. Four ratios of labeled instances in the training set
(from 10% to 40%) allow studying the influence of the number of labeled examples on
the overall performance (see Section 3.3). Testing with a 10% ratio means that the
training set contains only a 10% of labeled instances and the rest of are unlabeled,
the instances in the test set are all labeled but set apart. These datasets comprise
different characteristics: the number of attributes ranges from 2 to 90, the number of
decision classes from 2 to 28, and the number of instances from 100 to 19,000. More-
over, we have 25 datasets with different degrees of class imbalance and roughly half of
the datasets are multiclass problems. Table A.1 in Appendix A show the detailed list
of benchmark datasets that were used.

These datasets are partitioned into training and test sets as done in a 10-fold cross-
validation process, but each training set consists of labeled and unlabeled instances.
The subset of unlabeled instances is obtained by performing a random selection with-
out replacement and neglecting the class label of such instances. The ratio (10% to
40%) determines the number of labeled instances that are kept in this process for each
training set. These datasets (including the cross-validation fold partitions) were pro-
vided as supplementary material in [158] and constitute an standard in the evaluation
of shallow SSC techniques. We use these datasets, including the partitions as a form
of guaranteeing a fair comparison against state-of-the-art SSC methods (see Section
5.7).

5.2 Base Classifiers and Parameter Settings
There are several algorithms that can be adopted as base classifiers. On one hand, the
selected classifier for the base black box should exhibit a strong predictive capability as
it is used to determine the decision class of unlabeled instances. Next, we describe three
mainstream supervised classifiers that will be used in the experiments for instantiating
the black-box component. Our choice is motivated by experimental evidence of their
superior performance in a wide range of classification problems [179, 47, 165] and their
ability to produce calibrated probabilities (except for support vector machines where
a calibration post-hoc is needed).

Black-box classifiers

∙ Random Forests (RF) [18]: Ensemble of decision trees that uses bagging tech-
nique for aggregating the results in order to reduce the high variance of indi-
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vidual decision trees. Individual decision trees are built with a random subset
of attributes and a random sample with replacement of instances. In our im-
plementation 100 trees are aggregated and the number of random attributes to
consider for each tree equals log2(|𝐴|).

∙ Multilayer Perceptron (MLP) [72]: Feed-forward neural network using backprop-
agation algorithm for adjusting its weights. Our implementation uses learning
rate equals to 0.3, momentum equals to 0.2, 500 epochs for learning and one
hidden layer with (|𝐴|+ |𝑌 |)/2 as the number of neurons.

∙ Support Vector Machine (SVM) [131, 83]: Support vector machine classifier us-
ing sequential minimal optimization algorithm for training. Our implementation
uses a polynomial kernel with Platt’s scaling (logistic) calibration of probabilities
(see Section 4.3.1).

On the other hand, for the white-box component any intrinsically interpretable
classifier can be used as a surrogate model (see Section 2.3.1). Therefore, the choice
of a white box must be driven by the type of explanations that are desired, e.g. rules,
feature coefficients, probabilities, examples, etc. We decide to explore decision trees
and decision lists alternatives as they provide both intuitive individual explanations
in the form of if-then rules and a view of the model as a whole. For decision trees, the
hierarchical structure provides this view and it can be considered transparent as long
as the size of the tree remains manageable. For the case of the decision lists, rules sets
are generally more concise than the ones extracted from decision trees. Additionally,
these algorithms are able to handle weighted instances in the learning process. Next,
we describe three classifiers explored in the scope of this experiment.

White-box classifiers

∙ Decision Tree (C45) [134]: For a general description of decision trees and their
interpretability see Section 2.3.1. Our implementation uses C4.5 algorithm for
inducing the decision tree. We allow two instances as the minimum number of
instances per leaf. The confidence factor for pruning is 0.25, where a lower value
incurs in more pruning. When pruning the sub-tree raising operation is used.

∙ PART Decision List (PART) [49]: For a general description of decision lists and
their interpretability see Section 2.3.1. PART uses the separate-and-conquer
strategy for building a rule set by generating a partial C4.5 decision tree and
making the most confident leaf into a rule. In the next iteration, all covered
instances are removed from the dataset and the process is repeated. Thus,
decision lists must be interpreted in order. Our implementation uses the same
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hyper-parameters of the decision tree described above for generating the partial
C4.5 decision trees.

∙ RIPPER Decision List (RIP) [28]: This method is a propositional rule learner
with a separate-and-conquer strategy, as described for PART. Additionally, the
training data is split into a growing set and a pruning set for performing reduced
error pruning. The rule set formed from the growing set is simplified with pruning
operations optimizing the error on the pruning set. For our implementation, the
minimum allowed support of a rule is two and the data is split in three folds where
one is used for pruning. Besides, two optimization iterations are performed.

For completeness, we repeat the amending procedures proposed in Chapter 4 that
will be tested in combination with the previous base classifiers.

Amending procedures

∙ No amending (NONE): The first option is not using amending. All self-labeled
instances are provided as extra data to the surrogate white box. This is used
as a baseline for evaluating the contribution of the two amending procedures
proposed.

∙ Amending based on class membership probabilities (CONF): Amending pro-
cedure based on calibrated class membership probabilities obtained from the
black-box base classifier, as proposed in Section 4.3.1.

∙ Amending based on RST inclusion degree measure (RST): Amending procedure
based on RST aiming to correct the inconsistency in the classifications, as de-
scribed in Subsection 4.3.2.

Hereinafter, when referring to a particular configuration of SlGb we denote it as
“bb-wb-am" where bb represents the base black box, wb represents the surrogate white
box and am represents the amending procedure. The code, datasets and results using
different measures (e.g., kappa, accuracy, number of rules) are available as supplemen-
tary material for reproducibility purposes1. All SlGb configurations were implemented
using weka library [172] and its default parameters listed above, yet obtaining com-
petitive results against state-of-the-art methods (see details in Section 5.7).

1gitlab.ai.vub.ac.be/igraugar/slgb_scripts/tree/paper
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5.3 Impact of the Black-Box Base Classifiers on the
Performance

This section focuses on evaluating the influence of the base black box on the perfor-
mance of the algorithm. Here no amending procedure is taken into account yet since it
does not directly affect the ability of the black box to produce correct classifications.

To measure the configurations in terms of prediction rates we report the Cohen’s
kappa coefficient [27]. This measure estimates the inter-rater agreement for categorical
items and ranges in [−1, 1], where −1 indicates no agreement between the prediction
and the actual values, 0 means no learning (i.e., random prediction), and 1 total
agreement or perfect performance. Additionally, other measures such as accuracy were
also computed and can be found the in aforementioned repository for reproducibility
purposes. While accuracy is considered mainstream when measuring classification
rates, the kappa is a more robust measure since this coefficient takes into account the
agreement occurring by chance, which is especially relevant for datasets with class
imbalance [78, 10].

Table 5.1 gives the mean and the standard deviation of the kappa coefficient over
the 10-fold cross-validation, achieved for each configuration of SlGb. We group the
results for different percentages of labeled instances. The numerical simulations in-
dicate that using RF as the black-box component leads to higher prediction rates.
In particular, the RF-PART-NONE configuration stands as the best performing one
for varying amounts of labeled instances, very closely followed by RF-C45-NONE and
RF-RIP-NONE.

To provide a rigorous statistical analysis of the differences, we compute the Fried-
man two-way analysis of variances by ranks [52], per ratio. The test suggests rejecting
the null hypotheses for all labeled ratios based on a confidence interval of 95% (see
Table B.1 in Appendix B2). This means that there exist significant differences between
at least two configurations on each ratio.

The next step is focused on determining whether RF black box is truly superior
compared to other configurations. To do so, we adopt the Wilcoxon signed-rank
test [170] and Holm’s post-hoc procedure [75] to correct the 𝑝-values, as suggested
by Benavoli et al. [11]. Table B.2 reports the unadjusted 𝑝-value computed by the
Wilcoxon test and the corrected 𝑝-value associated with each pairwise comparison. To
discover the influence of the black box we compare the pairs of configurations using
the same surrogate white box. Each section of the table represents the ratio of labeled
instances. The null hypothesis states that there is no significant difference between the
performance of each pair of configurations. All null hypotheses are rejected, except for

2All tables related to statistical tests are included in Appendix B.
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Table 5.1: Prediction rates (kappa) achieved by different combinations of black-box
and white-box algorithms without using amending. Results are grouped by ratio and
best results are highlighted in bold. Random forest as black-box component leads to
higher prediction rates.

Ratio 10% 20% 30% 40%

MLP-C45-NONE mean 0.50 0.53 0.55 0.56
stdev 0.28 0.28 0.28 0.28

MLP-PART-NONE mean 0.50 0.54 0.56 0.57
stdev 0.29 0.28 0.28 0.28

MLP-RIP-NONE mean 0.51 0.54 0.55 0.57
stdev 0.29 0.28 0.28 0.28

RF-C45-NONE mean 0.56 0.60 0.61 0.61
stdev 0.28 0.27 0.27 0.27

RF-PART-NONE mean 0.56 0.60 0.61 0.62
stdev 0.29 0.27 0.27 0.27

RF-RIP-NONE mean 0.55 0.60 0.61 0.62
stdev 0.28 0.27 0.27 0.27

SVM-C45-NONE mean 0.49 0.53 0.55 0.56
stdev 0.28 0.27 0.27 0.26

SVM-PART-NONE mean 0.50 0.53 0.56 0.57
stdev 0.28 0.28 0.28 0.27

SVM-RIP-NONE mean 0.50 0.53 0.55 0.57
stdev 0.28 0.28 0.27 0.27

RF-RIP-NONE vs. MLP-RIP-NONE in the 40% ratio (however RF still has higher
prediction rates).

This suggests that RF is clearly the best-performing base black box for the self-
learning grey-box. This result is not surprising since RF has proven to be a very
competent classifier in different experimental studies [179, 47, 165, 157]. Furthermore,
RF generally produces calibrated probabilities [118], which is a requirement for the
later use of the amending based on class membership probabilities.

Figure 5.1 compares the SlGb against the RF black-box and different white-box
baselines. Clearly, the SlGb outperforms the white box in terms of kappa, while it is
not as accurate as the black box. The less labeled data is available, the more attractive
results obtains the SlGb. It is important to remark that the goal is to outperform the
white box while keeping interpretability to some extent.
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Figure 5.1: Comparison of SlGb performance in terms of kappa against the RF baseline
and different white-box baselines. For the three combinations, the SlGb achieves less
performance than the RF black-box baseline, however it outperforms all the white-box
baselines.

5.4 Impact of Using Different White Boxes and
Amending Configurations

In this section, we study how different choices of the amending processes and white-
box surrogates impact the overall results. We propose some measures for evaluating
performance taking both accuracy and interpretability into account.

We first explore the influence on the prediction rates. Based on the selection of RF
as the black-box component, Table 5.2 shows very similar results across each ratio.
Going deeper with the statistical analysis, we apply Friedman and Wilcoxon tests
with post-hoc correction. Although the Friedman test finds significant differences in
the four groups (Table B.3), examining Wilcoxon corrected tests we ascertain that
the null hypothesis cannot be rejected for the vast majority of pairs compared (see
Tables B.4 and B.5 for details). This means that there are no statistically significant
differences in the prediction rates when comparing different amending procedures with
a fixed white box and vice versa. This behavior suggests that the overall prediction
rates of the approach mostly rely on the correct choice of the black-box algorithm.

However, when examining the number of rules obtained, the difference is signifi-
cantly visible. Figure 5.2 plots of the number of rules produced by each combination,
per ratio of labeled data. Two results are consistent across ratios: both amending
strategies (especially the RST-based one) reduce the number of rules while RIP as a
surrogate white box produces the lowest number of rules for all possible combinations.

Toward exploring this result further, we also propose two new measures to evaluate
models’ interpretability via a quantifiable proxy. The first measure can be used in the
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(a) Using 10% of labeled instances.
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(b) Using 20% of labeled instances.
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(c) Using 30% of labeled instances.

0

50

100

150

200

C45−NONE C45−CONF C45−RST PART−NONE PART−CONF PART−RST RIP−NONE RIP−CONF RIP−RST

N
um

be
r 

of
 r

ul
es

(d) Using 40% of labeled instances.

Figure 5.2: Number of rules produced by each combination of white box and amending,
using random forests as black box. Both amending strategies (specially RST) reduce
the number of rules while RIP white box produces the lowest number of rules.
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Table 5.2: Prediction rates (kappa) achieved by different combinations of white boxes
and amending strategies while using RF as black box. Results are grouped by ratio
and best results are highlighted in bold. No significant differences were found in the
kappa value when varying the choice of white box and amending.

Ratio 10% 20% 30% 40%

RF-C45-NONE mean 0.56 0.60 0.61 0.61
stdev 0.28 0.27 0.27 0.27

RF-PART-NONE mean 0.56 0.60 0.61 0.62
stdev 0.28 0.27 0.27 0.27

RF-RIP-NONE mean 0.55 0.60 0.61 0.62
stdev 0.28 0.27 0.27 0.27

RF-C45-CONF mean 0.55 0.59 0.61 0.61
stdev 0.29 0.28 0.28 0.28

RF-PART-CONF mean 0.56 0.60 0.61 0.62
stdev 0.29 0.27 0.27 0.27

RF-RIP-CONF mean 0.54 0.59 0.61 0.60
stdev 0.29 0.27 0.27 0.28

RF-C45-RST mean 0.56 0.60 0.62 0.62
stdev 0.29 0.27 0.27 0.28

RF-PART-RST mean 0.56 0.61 0.62 0.62
stdev 0.28 0.27 0.27 0.27

RF-RIP-RST mean 0.53 0.57 0.58 0.59
stdev 0.28 0.28 0.28 0.28

context of self-labeling and the second one applies to any model containing explana-
tion units. As mentioned in Section 2.4, there are three main forms of evaluating
interpretability: application-grounded, human-grounded and functionally-grounded
metrics. The functionally-grounded approach is the only form not requiring the in-
volvement of humans. As an alternative, it uses desiderata for interpretability (e.g.
transparency) as a proxy for assessing the interpretability of the model. Since we
are working with benchmark datasets, we use the functionally-grounded approach for
creating measures based on simplicity as a means to gain transparency and simulata-
bility (see definitions in section 2.2). The first measure can be used in the context of
self-labeling for base methods that produce tree structures, rules or decision lists. It
involves the number of rules in the decision lists (or equivalently the number of leaves
in a decision tree) and expresses the relative growth in structure as:

Γ = |𝐸𝑔|/|𝐸𝑤| (5.1)
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where 𝐸𝑔 is the set of rules produced by the self-labeling method (here the grey box)
and 𝐸𝑤 is the set of rules produced by the baseline white box when using only labeled
data. For this measure, a number much greater than one indicates that major growth
in the structure of the self-labeling method is needed when using the extra unlabeled
data. In that case, the balance between interpretability and performance must be
taken into account for further evaluation.

The second measure is more general and applicable to any model whose structure
is formed by quantifiable explanation units (e.g. rules, prototypes, features, derived
features, etc.). For our case, this measure estimates the simplicity of the model ac-
cording to the size of the structure in terms of the number of rules. Although the first
notion would be that the smaller the rule set the better, this is not necessarily a linear
relation. The desired simplicity in terms of the number of rules has a smooth behavior
which can drop quickly. Therefore, we propose to measure simplicity through a gener-
alized sigmoid function which has been historically used for fitting growth curves [15],
since it allows representing this relation with enough flexibility. The simplicity can be
formalized as the following equation:

ϒ(|𝐸𝑔|) = 𝜃1 + 𝜃2 − 𝜃1

(1 + 𝑒−𝜆(|𝐸𝑔|−𝜂))1/𝜈
(5.2)

where 𝜃1 = 1 and 𝜃2 = 0 represent the upper and lower asymptotes of the function
respectively, 𝜆 is the slope of the curve, 𝜂 regulates the shift over the 𝑥-axis and 𝜈
affects near which asymptote maximum growth occurs. In this way, a result value
of one indicates high simplicity and it decreases smoothly towards zero. A bigger 𝜆
would make the function less smooth, generating a drastic drop in simplicity after a
threshold in the number of rules is surpassed. The value of 𝜂 defines where the middle
value of the function is obtained. While a value of 𝜈 = 1 makes no change in the
curve, 𝜈 < 1 moves the growth toward the upper asymptote and 𝜈 > 1 toward the
lower one. Observe that both 𝜂 and 𝜈 influence where 0.5 simplicity is obtained. Given
the diversity of our benchmark data, we take 𝜆 = 0.1, 𝜂 = 30, 𝜈 = 0.5 for illustrating
a general setting (see Figure 5.3).

With these values, the function produces medium evaluations (around 0.5) when
the number of rules is around 40. Similarly, it obtains rather high simplicity (higher
than 0.8) when the number of rules goes below 30. In real application scenarios, these
parameters can be adjusted based on the feedback of domain experts. This highly
flexible function allows customizing the value of simplicity according to the specifics
of a given case study. The simplicity measure can be used as a proxy for transparency,
especially as an indicator of simulatability which is the most subjective property, as
seen in the definitions of Section 2.2.

Table 5.3 shows the average relative growth and simplicity achieved by the model,
over the 55 datasets tested for the four ratios. Regarding the relative growth, the
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Figure 5.3: Simplicity function with default parameters used for the benchmark
datasets. For specific applications these parameters are domain dependent.

increase in the structure of the grey-box is on average larger when using small amounts
of labeled data, while for bigger ratios this difference decreases. This growth in the
structure is an expected consequence of providing more unlabeled data to the white-
box surrogate in the grey-box scheme. However, the use of amending procedures
mitigates this effect by giving more importance to relevant unlabeled instances and
less weight to less relevant instances. In general, a smaller growth is observed when
using RST amending, especially in combination with PART as the white box, thus
resulting in the winning combination for all ratios.

Besides, the simplicity measure (the closer the value to one the better) indicates
that the use of amending is convenient for obtaining more concise sets of rules. It is also
evident that using RIP as a surrogate generates the least number of rules, followed by
PART. For this measure the absolute winner is RF-RIP-RST combination, exhibiting
the highest values of simplicity for all ratio values used for experimentation. Similar
statistical validation support this statement (see Tables B.6 and B.7), finding signif-
icant statistical differences when comparing RF-RIP-RST with other configurations
using simplicity as interpretability measure.

It is important to remark that the simplicity measure solely quantifies to what
extent it would be considered a simulatable model (see definition in Section 2.2).
Of course, a very simple model with only one rule and poor prediction rates is not
desirable, whereas for a very simple dataset three or four rules might be enough to
reach accurate results. That is why taking into account the prediction performance
is fundamental for a proper assessment. To measure algorithms’ quality based on
the balance between the prediction rates and the simplicity of the learned model, we
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Table 5.3: Mean (and standard deviation) of the relative growth and simplicity
achieved by different combinations of white boxes and amending strategies while using
RF as black box. Results are grouped by ratio and best results are highlighted in bold.

Ratio 10% 20% 30% 40%

RF-C45-NONE growth 4.24 (2.98) 3.22 (3.81) 3.00 (6.61) 3.95 (15.12)
simplicity 0.57 (0.44) 0.56 (0.45) 0.56 (0.45) 0.56 (0.45)

RF-PART-NONE growth 3.07 (0.92) 2.19 (0.62) 1.78 (0.51) 1.55 (0.47)
simplicity 0.70 (0.39) 0.70 (0.39) 0.69 (0.40) 0.69 (0.40)

RF-RIP-NONE growth 3.93 (4.78) 3.19 (4.13) 2.93 (4.48) 2.67 (4.37)
simplicity 0.85 (0.28) 0.84 (0.29) 0.84 (0.30) 0.84 (0.30)

RF-C45-CONF growth 2.74 (2.38) 2.34 (3.35) 2.43 (5.96) 3.39 (13.75)
simplicity 0.67 (0.42) 0.63 (0.44) 0.61 (0.45) 0.60 (0.45)

RF-PART-CONF growth 2.11 (0.59) 1.66 (0.47) 1.45 (0.43) 1.30 (0.40)
simplicity 0.81 (0.32) 0.78 (0.34) 0.75 (0.35) 0.74 (0.36)

RF-RIP-CONF growth 2.96 (2.94) 2.52 (3.17) 2.41 (3.94) 2.54 (5.87)
simplicity 0.89 (0.39) 0.88 (0.25) 0.87 (0.26) 0.86 (0.27)

RF-C45-RST growth 2.26 (0.93) 1.53 (0.61) 1.20 (0.59) 1.00 (0.33)
simplicity 0.71 (0.39) 0.71 (0.39) 0.71 (0.39) 0.71 (0.40)

RF-PART-RST growth 1.99 (0.49) 1.38 (0.31) 1.13 (0.24) 0.98 (0.21)
simplicity 0.82 (0.32) 0.81 (0.33) 0.81 (0.33) 0.81 (0.34)

RF-RIP-RST growth 2.42 (2.26) 1.69 (1.06) 1.39 (0.63) 1.20 (0.42)
simplicity 0.91 (0.23) 0.92 (0.21) 0.93 (0.19) 0.94 (0.18)

propose a third measure, called utility, combining the kappa (re-scaled to (0,1)) and
the simplicity values with a weighting parameter 𝛼,

Ψ(𝐸𝑔) = 𝛼 * 𝜅(𝐸𝑔)′ + (1− 𝛼) *ϒ(|𝐸𝑔|) (5.3)

where 𝛼 is set to 0.6 in our experimental setting, representing a scenario where the
accuracy and the interpretability have almost the same preference. Utility functions
are commonly used in multi-objective optimization for mapping a vector of pay-offs to
a single scalar value [145]. In this case, the utility function is a linear combination of
two terms parameterized by the weight 𝛼. This weighting parameter allows adjusting
the preference of the user for prioritizing the accuracy or the interpretability objectives.
Here, the two objectives are measured based on kappa and simplicity, respectively. It
would be interesting to extend the proposed utility to involve more objectives where
the parameters should be obtained from the preferences of a panel of domain experts
[190, 144].

As a partial summary, Figure 5.4 visualizes the utility values in a heat-map plot.
From this figure, it is easy to see that the RIP algorithm, as a white-box surrogate,
positively contributes to the overall performance of the approach when taking both
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kappa and simplicity into account. Additionally, RST amending also increases the
value of utility when compared with CONF amending or not using amending at all.
This measure reflects that, in general, the best trade-off is reached when using the RF-
RIP-RST combination and the highest values are achieved when more labeled data is
available.

(a) Using 10% of labeled instances. (b) Using 20% of labeled instances.

(c) Using 30% of labeled instances. (d) Using 40% of labeled instances.

Figure 5.4: Mean utility values of each combination of white box and amending,
using random forests as the black-box base classifier. The use of RIP as a white-box
component in combination with the RST-based amending achieves the best trade-off
between accuracy and interpretability, for all explored ratios.
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5.5 Influence of the Number of Labeled and Unla-
beled Instances

In this section, we use RF-RIP-RST to explore the impact of having different amounts
of labeled and unlabeled instances on the algorithm’s results. In the evaluation of semi-
supervised techniques, it is a common strategy to vary the size of 𝐿 by systematically
neglecting the label of different amounts of instances and adding them to 𝑈 . But this
procedure does not explore the scenario where also the unlabeled instances could be
hard to obtain [123]. Observe that since this is a controlled experiment we can safely
assume that the unlabeled instances follow the same class distribution as the labeled
ones. In reality, one might need to re-balance the dataset after self-labeling if the
unlabeled instances per-class distribution significantly differs.

Because we do not have truly unlabeled instances, we use the same datasets from
the previous experiment. First, a test set with 20% of instances is kept aside for eval-
uation. Then, we divide the train set into two equally sized and disjoint subsets (each
with 40% of the total instances). Each subset is a source for labeled and unlabeled in-
stances, respectively, from where we vary the number of instances we use for training.
Figure 5.5 shows the surfaces resulting from the average of different measures over the
55 datasets.

From the first two surfaces (Figures 5.5a and 5.5b), it can be observed that the
prediction rates (accuracy and kappa) have a pronounced increment when adding
more labeled and unlabeled instances. The most dramatic change is observed when
adding labeled data to a few unlabeled instances (5%), which is an expected result as
it tends to be a more supervised setting. However, when labeled instances are very
limited (5% of the dataset), adding unlabeled instances clearly increases the overall
performance. In addition, even when more labeled data is available (40%), an increase
in performance is observed by adding more unlabeled data. This result confirms that
our approach fulfills the main aim of SSC approaches.

The number of rules (Figure 5.5c) increases almost linearly with the number of
training instances, either labeled or unlabeled. However, the relative growth (Figure
5.5d) is more sensitive to adding unlabeled data when labeled data is very scarce,
i.e. a bigger amount of unlabeled instances rapidly increases the structure and loses
in interpretability, compared with the baseline white box. However, the base white
boxes generally perform very poor when the labeled data is scarce. When the labeled
data is not so scarce, then the growth is more robust to adding more unlabeled data.
This means that even when a base white box can achieve good performance with some
labeled data, adding unlabeled data does not generate too much growth in structure
and can benefit the performance of the grey-box (Figures 5.5a and 5.5b).
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INSTANCES

(a) Accuracy. (b) Kappa.

(c) Number of rules. (d) Relative growth.

(e) Simplicity. (f) Utility.

Figure 5.5: Performance of RF-RIP-RST when varying the number of labeled and
unlabeled instances, for different measures. Axes 𝑥 and 𝑦 are expressed in percentage
of instances taken for training from each subset. Sub-figures (d) and (e) are rotated
for visualization purposes.

97



CHAPTER 5. EVALUATION ON BENCHMARK DATASETS

The simplicity (Figure 5.5e) shows the expected behavior: the best values of this
measure are observed with the least number of instances and it decreases uniformly in
both directions. This means that adding more unlabeled instances does not generate
a greater number of extra rules compared to adding more labeled instances. This is
a consequence of using amending procedures for adjusting the confidence of the unla-
beled instances, thus avoiding that the white box learns from inconsistent instances.
Finally, the utility surface (Figure 5.5f) summarizes all results reflecting the increase
in the overall performance when adding both labeled and unlabeled instances.

5.6 When the self-labeling grey-box works best?
In this section, we illustrate through an example when the use of SlGb can be advan-
tageous and when it does not represent a significant gain in performance compared to
baselines.

(a)

(b)

Figure 5.6: Decision boundaries for two datasets where SlGb significantly improves
the classification (upper row) and does not report a big gain in performance (lower
row). The first column portrays the boundaries computed by the white box baseline,
the middle grid cell adds the unlabeled data points in grey, and the third cell shows
how the boundaries are significantly changed (a) or left similar (b) by the SlGb.
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Figure 5.6 represents two datasets: (a) the well-known iris classification problem
and (b) the prediction of digenic effects of bi-locus genomic variants combinations
[161]. Both classification problems have three classes that are represented by different
colors in the space. For visualization purposes, we represent the boundaries drawn
in a two-dimensional space using two features. In the first case (a), we can see that
the boundaries drawn by the baseline white box, a C45 decision tree, are significantly
altered by the SlGb after adding the unlabeled data. Here, the unlabeled instances
provide useful information for adjusting these boundaries to fit all available data bet-
ter. The performance of the SlGb is superior, and new explanations come out of the
rules. On the other side (b), we can observe that the unlabeled data is not abundant
compared to the labeled data, and it is practically surrounded by the labeled data as
well. Consequently, the boundaries drawn by the SlGb are not significantly different
from the white box baseline. Here, there is no big gain in performance, and therefore
the use of a semi-supervised approach is not justified based on the available labeled and
unlabeled data. The incorporation of more informative unlabeled data could change
these results.

5.7 Comparing against State-of-the-Art
In this section, we compare the predictive capability of SlGb against the four best self-
labeling techniques reported in the review paper in [158]: co-training using support
vector machine [67] (CT(SMO)), tri-training using C45 decision tree [184] (TT(C45)),
co-bagging using C45 decision tree [67] (CB(C45)) and democratic co-learning [183]
(DCT). These four algorithms were evaluated against a pool of other 35 self-labeling
techniques, using the standard benchmark of datasets that have been used through
this chapter. These methods reported the best performance in inductive settings.
However, since they are not inherently interpretable we focus our comparison on the
prediction rates only. For this section, SlGb is instantiated with the RF-PART-RST
combination, which exhibits the best results in terms of kappa, as shown in Section
5.4.

Table 5.4 reports the mean and standard deviation of the Kappa coefficient for each
classifier, taking into account the four studied ratios. The results reveal that SlGb has
the highest mean for all ratios. In order to support this assertion, we compute the
Friedman 𝑝-value per ratio. The test suggests rejecting the null hypotheses for all
labeled ratios based on a confidence interval of 95% (see Table B.8). This means
that there is an indication that there exist significant differences between at least two
algorithms in each comparison.

The next step is focused on determining whether the superiority of the SlGb classi-
fier is responsible for the significant difference reported by the Friedman test. Similar
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Table 5.4: Mean and standard deviation of kappa coefficient obtained by SlGb and
four self-labeling methods from the state-of-the-art. SlGb outperforms the rest of the
algorithms with statistical significance.

10% 20% 30% 40%
mean stdev mean stdev mean stdev mean stdev

SlGb 0.56 0.29 0.61 0.27 0.62 0.27 0.62 0.27
TT(C45) 0.51 0.29 0.55 0.29 0.57 0.29 0.59 0.29
CB(C45) 0.51 0.29 0.55 0.29 0.57 0.29 0.56 0.28
DCT 0.49 0.32 0.54 0.30 0.58 0.28 0.59 0.28
CT(SMO) 0.48 0.31 0.55 0.29 0.58 0.29 0.60 0.29

to previous sections we use the Wilcoxon signed-rank test and the Holm’s post-hoc
procedure for computing the corrected 𝑝-values associated with each pairwise compar-
ison. Each section of the Table B.9 represents a ratio of labeled instances. The null
hypothesis states that there is no significant difference between the performance of
each pair of algorithms, taking SlGb as the control one.

From the statistical tests, we can draw the following conclusions. First, there is no
doubt about the superiority of the SlGb classifier when tested with datasets with ratios
of 10% and 20% of labeled instances, as all the null hypotheses were rejected. This
result, in combination with the first place in the Friedman ranking, demonstrates that
our algorithm significantly outperforms the other four algorithms in these settings. In
the case of datasets comprising 30% and 40% of labeled instances, the results show
that SlGb is the best-performing classifier, but with no significant differences observed
between the pairs SlGb vs. DCT (for 30%), and SlGb vs. CT(SMO) (for both ratios),
as these null hypotheses could not be rejected. However, DCT and CT(SMO) cannot
be considered transparent due to their complex structure involving support vector
machines and collaboration between base classifiers. Although our main goal was not
to outperform the SSC methods in terms of classification rates, the analysis reported
above supports our claim that we obtain a favorable balance between performance and
interpretability by using the SlGb approach for solving SSC problems.

5.8 Concluding Note
In this chapter, we have evaluated the performance of SlGb on several benchmark
datasets which are the standard for structured SSC tasks. The experiments showed
that using random forests as the base black box for the self-labeling process is the best
choice in terms of prediction rates. The choice of a white box and amending does not
significantly affect the prediction rates but it is relevant for the size of the structure.
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Three measures based on the number of rules were proposed for estimating the rel-
ative growth, simplicity, and utility of the SlGb. SlGb produces simpler models when
using decision lists instead of a C4.5 decision tree as surrogate white boxes, even when
no amending is performed. However, the amending procedures help further increase
the simplicity (and therefore transparency) without affecting the prediction rates by
giving more importance to confident instances in the self-labeling. Especially RST
based amending looks more promising since it does not need the black-box base clas-
sifier to provide calibrated probabilities. Furthermore, RST based amending could be
a good choice for a given case study where the uncertainty coming from inconsistency
is high, even on the available labeled data. Therefore, we strongly advise the use of
random forests as a base black box and RST for amending the self-labeling, while the
choice of white box is more flexible to the desired interpretability, either a decision
tree with rules or a decision list. Although, the best trade-off between accuracy and
interpretability (utility) is reached when using the RF-RIP-RST combination.

The study varying the number of unlabeled instances and labeled instances to-
gether shows that even when the number of labeled instances is not that scarce, the
SlGb is able to leverage unlabeled instances for increasing the performance. Another
conclusion is that adding unlabeled instances does not make the interpretability worse
compared to adding more labeled instances. This evidences that the amending pro-
cedure (in this case RST-based amending) avoids that the SlGb generates more rules
from inconsistent instances. Finally, the experimental comparison shows that our SlGb
method outperforms the state-of-the-art self-labeling approaches, yet being far more
simple in structure than these techniques.
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6 | Semi-supervised
Classification of Genomic

Variants

In this chapter, we illustrate the usability of SlGb in a SSC task from the medical
informatics field. The classification problem at hand is the prediction of disease-
causing variants in patients with a rare genetic disease. Since the labeling of the
genomic variants according to their pathogenicity is a process that is usually performed
manually, there exist a lot of unlabeled data available. Through the chapter, we
describe the characteristics of this particular application and show the results that
SlGb achieves.

6.1 Problem Description
The understanding of diseases has leaped forward since the introduction of the first
draft of the human genome sequence [92, 160]. With the emergence of high-throughput
sequencing technologies [139], targeted or whole exome and genome screening are
becoming standard diagnostic resources in clinical settings to identify the variants
associated with a genetic disease. The amount of data that is currently available has
made the creation of computational tools possible for this prediction problem [87, 125],
which have the potential to be an aid for personalized medicine.
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Brugada syndrome (BrS) [57] is a heart condition that causes alterations in the
normal rhythm of the heart (i.e. arrhythmia) which can lead to sudden cardiac arrest
and death. BrS is known to be a rare genetic disease [63] which is associated with
variants (i.e. differences in the DNA compared to a reference genome) in the SCN5A
gene and other 25 genes [113, 174], although their role is still not completely defined
[113]. The classification problem at hand aims to predict the pathogenicity of variants
in BrS patients. The pathogenicity indicates whether a genomic variant is considered
disease-causing. The pathogenicity can be described with five standard categories:
pathogenic, likely pathogenic, uncertain significance, likely benign, and benign [142].

The process for classifying a BrS variant in one of these categories follows a set of
recommendations formalized in a scheme published in [74]. This process is normally
carried out manually by a clinical geneticist, which results in a tedious and time-
consuming process. Thus, it makes the process of shaping the data to a curated
labeled dataset for supervised learning a significant effort.

6.2 Knowledge Acquisition for Semi-Automatic La-
beling

In an effort for generating more labeled data for this classification problem, we de-
veloped a semi-automated tool for knowledge acquisition [84]. GeVaCT, which stands
for Genomic Variant Classification Tool, implements a variant classification schema
for cardiac arrhythmia syndromes based on criteria from clinical geneticist from the
Centre of Medical Genetics at UZ Brussel. This approach is supported by a yield of
DNA testing over 15 years [74], between probands (i.e. a person serving as the starting
point for the genetic study of a family) with isolated/familial cases, and also between
probands with or without clear disease-specific clinical characteristics.

GeVaCT algorithm is implemented in two phases: pre-processing and labeling.
The details of the implementation of the following steps are described further in the
Appendix C. In the pre-processing phase, an annotated tab-delimited variant call file
[32] generated from the Alamut Batch software [77], is refined based on a gene list
for the disease of interest. This first step allows reducing the number of variants for
the analysis. Secondly, we filter the data based on variants that have been already
reported in the Human Genome Mutation Database [153] and in ClinVar [93, 94],
or those which have been previously detected and classified in an internal patient
population. And lastly, the variants are filtered based on their location in the genome
and their coding effect, followed by the check for minor allele frequency of the variant
in a control population [152]. These preprocessing steps select the variants of interest
of the expert for performing the pathogenicity classification.
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Thereafter, in the labeling phase, the filtered variants are grouped according to
their type in missense or nonsense and frameshift variants. Missense variants are
those that change a single nucleotide that results in a codon that codes for a different
amino acid, altering the protein. Nonsense and frameshift variants can cause the
premature termination of a protein. Altered proteins may be partially or completely
inactivated, resulting in a change or loss of the protein function [120].

For missense variants the labeling process is based on the values of following param-
eters: amino acid substitution and its impact on protein function [90, 2], biochemical
variation [108], conservation [133], frequency of variant alleles in a control population
[82], effects on splicing [34], family and phenotype information and functional anal-
ysis. Whereas for the nonsense and frameshift variants, the label is based on effects
on splicing, frequency of variant alleles in a control population, family and phenotype
information, and functional analysis.

The calculation of each parameter mentioned above is detailed in Appendix C. For
each computed parameter in the labeling process, a score is assigned to the variant,
which is subsequently accumulated. Finally, based on the cumulative score, each
variant is thereby labeled into one of the five classes of pathogenicity. A total of 65
variants were tested and validated as correct, by classifying them with GeVaCT and
comparing them to their actual label. For a detailed description of the algorithm
implemented in GeVaCT software as well as some images of the graphical and console
user interfaces, the reader is referred to Appendix C.

As a result of the execution of GeVaCT, we can obtain some labeled annotated
variants of BrS regarding its pathogenicity. However, some of the steps in GeVaCT
still require the manual input of experts’ criteria, thus making the labeling a semi-
automated process. In consequence, the limitation of the manual labeling process is
not removed and a large amount of data remains unlabeled for this classification task.
In the next section, we describe the characteristics of the dataset that result from
joining the labeled and unlabeled data.

6.3 Dataset Characterization
After preprocessing with GeVaCT, a dataset of 1181 samples was obtained. Extra
preprocessing steps included removing non-informative or redundant attributes gen-
erated by Alamut Batch software (e.g. with no variance, too much variance, related
with the location of the variant, etc.). This criterion was supported by interviews with
clinical geneticists. A total of 30 attributes were taken into account for classification.
From the resulting instances, the 69% are unlabeled instances, i.e. pathogenicity is
unknown. Figure 6.1 depicts the highly imbalanced class labels distributions.
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Figure 6.1: Distribution of variants according to their pathogenicity, where I means
non-pathogenic, II means unlikely pathogenic, III means unclear, IV means likely
pathogenic and V means pathogenic. The blue bar represents 815 variants with un-
known class which represents a 69% of unlabeled data with respect to the entire
dataset. In addition, from the 31% of labeled data (362 samples), a high imbalance
is observed, with class I having the majority of instances and class V having only 5
samples.

Table 6.1: Cost matrix for misclassifications based on expert criteria which reflects
the ordinal character of the classification problem.

True values I II III IV V
Classified as I 0.0 0.2 0.8 1.0 1.0

II 0.5 0.0 0.6 0.8 1.0
III 0.8 0.6 0.0 0.6 0.8
IV 1.0 1.0 0.5 0.0 0.2
V 1.0 1.0 1.0 0.5 0.0

Additionally, from the conception of the default approach implemented in GeVaCT
(see Appendix C), we realized that the cost of misclassifications in this problem is not
symmetric or equal. The last step of the labeling in GeVaCT (see Figure C.2) is a
manual input of a score based on the judgment of the expert about literature at the
moment, and information about the family of the patient. As a result of this input, it
is possible that the score that determines the class increases, e.g. from likely pathogenic
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to pathogenic, but it is less probable to change from unlikely pathogenic to pathogenic.
However, SlGb could predict a variant as pathogenic that the expert considered likely
pathogenic, because there was not enough information in the literature available at the
moment. After consultation with clinical geneticists, a cost matrix was conceived for
penalizing the errors of SlGb taking into account this characteristic (see Table 6.1).
This cost matrix is used for weighting the calculation of the confusion matrix and
the performance measures derived from it. During the learning process, it penalizes
the classifier harder when committing more relevant errors. The matrix reflects the
ordinal character of the classification problem.

6.4 Experimental Results and Discussion
In this section, we explore the SlGb performance through 10-fold stratified cross-
validation. On each iteration, an SlGb predictor is evaluated on a different 10% of data
(only labeled instances) while the remaining 90% (containing labeled and unlabeled
instances) is used for training. Following the recommendations for the evaluation of
semi-supervised classifiers (see Section 3.3) we also evaluate the supervised baselines
for comparison. In this case, we use only labeled instances and the same test data
for each fold. Following the results found in the experimentation with benchmark
data, RF was the best performing classifier for acting as the self-labeling base. In the
same way, we decide to use RST-based amending since it demonstrated to improve
interpretability in terms of simplicity while maintaining accuracy. Decision trees and
decision lists alternatives for white-boxes are explored. Tables 6.2 and 6.3 show the
results achieved in terms of accuracy and interpretability, respectively.

First, from Table 6.2 we can conclude that SlGb outperforms its white-box baselines
for the three configurations tested. Overall using PART as a white box provides the
best results in terms of accuracy and kappa values. The sensitivity shows that it is
easier to obtain true positives from class I and more difficult for class V, although the
specificity for class V is high, which means that almost no samples are misclassified as
pathogenic. Both kappa and Mathew’s correlation coefficient (Mcc.) values support
the performance of SlGb despite the high imbalance in the distribution of the classes.

Secondly, from Table 6.3 we can observe that PART and RST generated the least
number of rules. The resulting decision list generated by PART was especially concise
compared to its white-box baseline, even reducing in 9% the number of rules needed
for achieving better accuracy. Since PART is a sequential covering algorithm, this
indicates that the unlabeled data allowed PART to generate rules with more support
which were also more accurate. Having the least number of rules, the simplicity of
SlGb using RIP is very high with 0.96. Therefore, the utility, which gives a measure
of the trade-off between accuracy and interpretability, is best valued also with RIP.
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Table 6.2: Mean performance achieved by three configurations of SlGb, using differ-
ent white boxes. The performance is measured in accuracy (Acc.), Cohen’s kappa
(Kap.), Sensitivity (Sen.), Specificity (Spe.), Precision (Pre.) and Mathew’s Correla-
tion Coefficient (Mcc.). The last five measures are shown by class and as a weighted
average. All SlGb configurations outperform baseline white boxes, with SlGb using
PART decision list achieving the best results.

Algorithm Acc. Kap. Per Class Sen. Spe. Pre. Mcc.
SlGb (RF-C45-RST) 0.76 0.62 W.Ave. 0.76 0.88 0.75 0.65

I 0.92 0.83 0.85 0.75
II 0.54 0.95 0.64 0.51
III 0.68 0.92 0.65 0.59
IV 0.53 0.97 0.66 0.55
V 0.20 0.99 0.25 0.21

SlGb (RF-PART-RST) 0.78 0.66 W.Ave. 0.78 0.92 0.78 0.69
I 0.89 0.91 0.91 0.79
II 0.64 0.94 0.64 0.57
III 0.68 0.90 0.59 0.54
IV 0.65 0.98 0.75 0.66
V 0.20 0.99 0.33 0.25

SlGb (RF-RIP-RST) 0.75 0.60 W.Ave. 0.75 0.86 0.74 0.63
I 0.92 0.78 0.82 0.71
II 0.47 0.96 0.66 0.49
III 0.66 0.91 0.61 0.55
IV 0.53 0.97 0.68 0.56
V 0.40 1.0 1.0 0.63

RF 0.82 0.72 W.Ave. 0.82 0.91 0.82 0.75
C45 0.68 0.50 W.Ave. 0.68 0.87 0.68 0.55

PART 0.69 0.52 W.Ave. 0.69 0.89 0.69 0.57
RIP 0.68 0.47 W.Ave. 0.68 0.78 0.66 0.50

It should be noticed that RIP produces a decision list with rules covering from the
most rare class labels to the more common ones (see Figure 6.2). This means that this
model can be very useful for interpretation when a short set of rules uncovering the
rarest patterns is needed. On the contrary, PART (see Figure 6.3) builds a decision
list starting with the best supported and most confident rules of any class label.
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Table 6.3: Performance in terms of interpretability for each configuration of the SlGb.
The number of rules, relative growth (see Equation 5.1) and simplicity (see Equation
5.2) measure transparency as a proxy for interpretability. Utility (see Equation 5.3)
measures the trade-off between accuracy and interpretability. The most concise list of
rules is produced by SlGb using RIP as white box.

Algorithm Rules R.Growth Simplicity Utility
SlGb (RF-C45-RST) 41 1.10 0.43 0.66

SlGb (RF-PART-RST) 31 0.91 0.72 0.78
SlGb (RF-RIP-RST) 15 1.0 0.96 0.86

(phyloP >= 0.74) and (rsMAF >= 0.23) and (varAApolarity <= 0.45) => 

class=V (3.52/0.0) 

(phyloP >= 0.92) and (granthamDist >= 0.29) and (phyloP <= 0.94) => 

class=V (2.35/0.0) 

(AGVGDgd >= 0.64) => class=IV (13.61/0.0) 

(rsMAF <= 0.001) and (AGVGDgd >= 0.40) and (phastCons >= 0.98) => 

class=IV (5.44/0.0) 

(varCodonFreq >= 0.56) and (posAA >= 0.41) and (varCodonFreq <= 0.56) 

=> class=IV (6.35/0.0) 

(wtCodonFreq >= 1) and (wtAAcomposition >= 0.047) => class=IV (2.72/0.0) 

(exacAllFreq <= 0.003) and (granthamDist >= 0.42) and (SIFTweight >= 

0.02) and (posAA >= 0.28) => class=II (23.32/1.88) 

(exacAllFreq <= 0.00) and (wtAApolarity >= 0.79) => class=II (14.51/4.77) 

(posAA <= 0.02) and (phyloP >= 0.72) => class=II (9.71/2.89) 

(rsMAF <= 0.0004) and (AGVGDgv <= 0.24) => class=III (18.04/2.99) 

(rsValidations = Cluster/Frequency/HapMap/1000G) and (phyloP >= 0.64) => 

class=III (20.80/3.86) 

(exacAllFreq <= 0.00007) => class=III (9.47/2.89) 

(rsMAF <= 0.004) and (BLOSUM62 <= 0.16) and (varCodonFreq >= 0.36) => 

class=III (6.58/0.0) 

(posAA <= 0.01) and (wtAAcomposition >= 0.25) => class=III (3.76/0.0) 

otherwise => class=I (219.05/28.49) 

Figure 6.2: Decision list built by SlGb using RIP as a white box. It contains 15 rules
which need to be interpreted in order, from more rare patterns corresponding to class
V, to more common ones. The default rule assigns class I to the instances that were
not covered by any of the previous rules.
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AGVGDgd <= 0.64 AND rsValidated = no AND nOrthos <= 0.55 AND wtCodonFreq > 

0.14 AND nOrthos > 0.11: III (16.03/0.97)   

AGVGDgd > 0.64: IV (14.79/1.18)  

phyloP <= 0.70 AND distNearestSS <= 0.23 AND phastCons <= 0.008: II 

(10.75/1.01)  

phyloP <= 0.70 AND distNearestSS > 0.23 AND rsValidated = yes AND BLOSUM62 > 

0 AND granthamDist <= 0.56 AND rsValidations = Cluster/Frequency/1000G AND 

rsMAF > 0.004: I (79.65)  

nearestSSChange <= 0.569008: III (2.82)  

phyloP <= 0.64 AND rsValidated = yes AND varAAvolume <= 0.79 AND BLOSUM62 > 0 

AND distNearestSS > 0.23 AND granthamDist <= 0.45 AND AGVGDclass = C0 AND 

exacAllFreq > 0.00009 AND wtAApolarity <= 0.91 AND substType = transversion 

AND posAA > 0.039: I (33.27)  

SIFTweight > 0.20 AND granthamDist <= 0.32 AND phastCons <= 0.99: I 

(32.23/0.97) 

AGVGDgd > 0.37 AND phastCons <= 0.97 AND AGVGDgv <= 0.50: III (7.53) 

AGVGDgd > 0.37 AND phastCons > 0.97: IV (12.2/3.13) 

phyloP <= 0.82 AND varAApolarity <= 0 AND phyloP > 0.49: II (9.75) 

phyloP <= 0.82 AND varAApolarity <= 0.06 AND BLOSUM62 <= 0.16: III (7.53)  

phyloP <= 0.82 AND substType = transversion AND nearestSSType = 3 AND 

varAAvolume <= 0.17: II (6.82)  

phyloP <= 0.82 AND varCodonFreq > 0.07 AND substType = transversion AND 

conservedOrthos <= 0.53 AND exacAllFreq > 0.0003: III (5.71/1.01) 

phyloP <= 0.82 AND varCodonFreq <= 0.07: III (5.58/1.81)  

phyloP > 0.87 AND SIFTweight <= 0.15 AND rsMAF > 0: III (8.5/0.97)  

phyloP <= 0.87 AND phyloP > 0.63 AND BLOSUM62 <= 0.66 AND exacAllFreq <= 

0.003: II (13.61/0.94)  

phyloP <= 0.82 AND rsValidated = no AND distNearestSS > 0.23: II (2.92)  

rsValidated = yes AND exacAllFreq > 0.00007 AND phyloP <= 0.63 AND 

varAApolarity <= 0.82 AND varCodonFreq > 0.50: I (21.17)  

rsValidated = yes AND phyloP <= 0.61 AND varCodonFreq <= 0.43 AND BLOSUM62 > 

0.16 AND varAAcomposition > 0.23: I (12.1)  

rsValidated = yes AND wtAAcomposition > 0.33: II (5.81/0.94)  

rsValidated = no: IV (4.64/1.01)  

SIFTmedian <= 0.5 AND SIFTweight <= 0.16: IV (4.54)  

rsValidations = Cluster/1000G: I (7.19/2.15)  

conservedOrthos > 0.30 AND varCodonFreq <= 0.15: II (6.79/2.89)  

conservedOrthos > 0.30 AND varAApolarity <= 0.45 AND varAAcomposition <= 

0.07: I (4.03)  

conservedOrthos > 0.30 AND AGVGDgd <= 0.18 AND nOrthos > 0.11 AND 

varCodonFreq > 0.39: IV (5.55/1.01)  

conservedOrthos > 0.30 AND rsValidations = Cluster: III (5.65)  

wtAApolarity > 0.50 AND distNearestSS > 0.237235: I (4.03)  

distNearestSS > 0.23: II (2.92)   

distNearestSS <= 0.23: III (2.82) 

default: V (2.35) 

Figure 6.3: Decision list built by SlGb using PART as a white box. It contains 31
rules which need to be interpreted in order, from more confident patterns to a default
rule. The default rule assigns class V to the instances that were not covered by any
of the previous rules.
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Figures 6.2, 6.3, and 6.4 are shown to illustrate the interpretability that is possible
to obtain from SlGb in the form of if-then rules. For all models, the first number in
parenthesis after the conclusion of the rule denotes the weighted number of instances
that the rule covers. The second number, if present, represents the weighted number
of instances that were misclassified in that rule. By subtracting these two numbers we
obtain the weighted number of true positives of the class label that is being predicted
in that rule. In addition, since the values of the attributes are normalized due to
implementation details of the RST-amending, the conditions should be re-scaled to
their original values before literal interpretation. However, using the re-scaled values
gives a more qualitative interpretation of the interaction between small or large values
of different attributes in the antecedents of the rules.

Some patterns observed in the rules show relations with the expert criteria imple-
mented in GeVaCT (see Appendix C). For example, high values of phyloP attribute
in combination with high values of granthamDist attribute led to identify the variant
as pathogenic. Further experiments and feedback from experts are needed to improve
the fitness of the model and validate the rules that can be obtained.

Finally, although less impressive in performance, the SlGb using decision trees
offers further possibilities for the integration of expert knowledge. The hierarchical
structure of the tree (see Figure 6.4) allows replacing one attribute by another one
that is related, for example in a superclass or subclass relation. For this particular
case study, we could take instead of the allele frequencies for specific populations,
the global value, or vice versa. These replacements could be supported by the use
of an ontology that describes the relations between the attributes considered in the
prediction problem. The involvement of the human experts in the loop is an interesting
future research direction.

6.5 Concluding Note
This chapter illustrated the usability of SlGb as a semi-supervised classifier for a
particular case study. We proposed GeVaCT, a software that automatizes a pipeline
of expert criteria for labeling variants according to their pathogenicity. Although the
intention was to facilitate the labeling of genomic variants, this software is still a semi-
automated solution. Some steps in GeVaCT depend on manual input based on the
experts’ experience and their knowledge of literature. Therefore, it does not remove
the limitation of manual labeling and thus the lack of labeled data. A total of 815
remaining unlabeled instances were leveraged for addressing this prediction problem
as SSC. We showed that SlGb is a good predictor of the pathogenicity of BrS variants
compared to its white box baselines. It not only produces better results in terms
of several measures of accuracy but also maintained or improved the interpretability
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when compared with the white-box baseline. Although some patterns related to the
GeVaCT pipeline were observed, further experiments and feedback from experts are
needed to adjust and validate the obtained rules.
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7 | Semi-supervised
Prediction of Early

Protein Folding

This chapter illustrates the application of SlGb in the prediction of the early folding in
proteins. Proteins are chains of amino acid residues that fold into a three-dimensional
structure that influences its function. Early folding mechanisms are crucial for the
protein folding and for understanding the protein behavior. Although very few labeled
residue-level data is available, a successful predictor named EFoldMine [135] is able
to identify early folding residues using features derived from the protein sequence.
Although EFoldMine is able to detect 75% of early folding residues, it is based on a
support vector machine classifier, which does not allow for direct interpretation. A
large amount of protein sequence data (without early folding labels) is available from
curated biological databases. Through this chapter, we investigate the use of SlGb to
gain mechanistic residue-level insights into the determinants of early folding regions
in proteins.
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7.1 Problem Description and Dataset Characteriza-
tion

The understanding of how a protein folds in a three-dimensional structure is fun-
damental for the study of their functionality and behavior [124]. When the folding
process of a protein is not successful it can lead to the appearance of diseases such
as Alzheimer’s, Parkinson’s, or type II diabetes [140, 38]. The early folding process is
led by amino acid residues that are close to each other in the protein sequence, thus
leading to overall structure formation. However, studying protein folding is a difficult
task that requires highly time-sensitive and complex experiments [124], therefore the
available labeled data is limited. In this regard, a curated database named Start2Fold
[124], collects data from those experiments and provides a source of labeled residues
(as early folding or not).

Even though this information is limited, a successful machine learning predictor
named EFoldMine [135] was proposed for detecting early folding residues. EFoldMine
was trained with data from 30 proteins from Start2Fold. This predictor uses numerical
features computed with DynaMine [25, 26] for representing the backbone dynamics of
each protein. For EFoldMine, the authors also compute four other features with a
similar approach to DynaMine (see [135] for details), which describe the side-chain
dynamics and the secondary structure formation propensity (alpha-helix, beta-strand
and coil).

For each numerical descriptor, the authors consider a window of -2 to +2 residues.
In this way, the vector of attributes describing each residue has values of the five
properties for the residue itself (denoted with suffix 0) and its neighboring residues
(with suffixes +2, +1, -1, and -2). This results in a vector of 25 attributes describing
each instance. There are a total of 3,398 labeled instances, from which 482 are labeled
as positive (early folding residue) and 2,916 as negative.

The EFoldMine predictor uses an SVM with a radial basis function kernel, with
hyper-parameters 𝐶 = 100 and 𝛾 = 0.04 while applying Platt’s scaling [132] for the
estimated probabilities. SVMs are known to be highly accurate classifiers based on
strong mathematical foundations, the resulting model is however a black box in terms
of interpretability. This hinders the possibility of extracting further knowledge about
the determinants of early folding in proteins. One alternative is the use of more
intrinsically interpretable machine learning techniques such as decision trees or rule-
based algorithms. However, as mentioned before, these algorithms tend to be less
performant compared to black boxes.

In addition, the labeled residue-level data available for extending this experimen-
tation to other machine learning approaches allowing interpretation is limited to the
data in Start2Fold. Therefore, we propose to tackle this problem as a SSC task. We
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leverage unlabeled data from other proteins without experimental information about
early folding, thus enlarging the current training data. The goal is to obtain better per-
formance compared to the use of a supervised interpretable classifier. Consequently,
we aim to obtain a model that can be still considered interpretable, as opposed to a
black-box one. In the next section, we explore the ability of the SlGb approach to
achieve a good trade-off between performance and interpretability.

7.2 Experimental Results and Discussion
In the following experiments, SlGb uses the EFoldMine predictor as a black-box base
classifier for labeling extra unlabeled data1. As white boxes, we explore the decision
tree (C45) and decision lists (PART and RIP) classifiers evaluated in Chapter 5. The
extra unlabeled data comes from the PISCES database [166], which contains only
proteins with a known overall structure. The unlabeled data comprises a total of
665,323 residues from 3,050 proteins. Similarly to EFoldMine, the class weight of the
labeled data is modified for taking into account the class imbalance (see Figure 7.1).

In order to avoid bias in the validation, a stratified cross-validation is performed.
Similarly to the EFoldMine validation, we divide the training set in 27 folds, each
representing labeled proteins (two folds contain data from more than one protein, see
[135] for details). In this way, we guarantee that residues from the same protein are
not split in the training and test set. For the semi-supervised setting, we add an equal
number of proteins from the unlabeled data to each fold. This means that all folds
have extra unlabeled residues coming from 113 proteins, except for the last one which
has 112 proteins. The total number of residues on each fold varies according to the
number of residues in the proteins included.

Table 7.1 summarizes the results in terms of the performance of the different con-
figurations of SlGb tested and its baseline classifiers. First, we conclude that SlGb
outperforms its white-box baselines for the three configurations tested, making it a
suitable alternative to using the white boxes alone. From the table, we conclude that
decision lists offer the best performance across different measures compared to the
EFoldMine black-box baseline. PART and RIP both have the best true positive rates
(sensitivity) with a value of 0.7 at a cost of a 0.31 and 0.28 false positive rate (1 -
specificity), respectively. For both of these configurations the low false positive rate
is also evidenced by the higher precision (ratio of true positive residues to the total
predicted positive residues). The decision tree configuration (C45) shows the best
true negative rate (specificity) but at a cost of being more “conservative” in detecting

1For code compatibility with the white boxes, we reproduced the EFoldMine predictor using weka
library [172] for the support vector machine instead of the original implementation with scikit-learn
library [129]

117



CHAPTER 7. SEMI-SUPERVISED PREDICTION OF EARLY PROTEIN
FOLDING

Figure 7.1: Distribution of residues according to their label, where ‘?’ means unknown,
‘N’ means not early folding residue and ‘F’ means early folding residue. The 𝑦-axis
is in log scale for better visualization. The blue bar represents 665,323 residues with
unknown class which accounts for the 99.5% of data. In addition, from the 0.5%
labeled data (3,398 residues), a high imbalance is observed, where 2,916 residues are
labeled as negative and 482 are labeled as positive.

early folding residues. The kappa and MCC measures, which both account for im-
balance in the dataset, support the conclusion that SlGb using PART or RIP are the
best performing configurations. This is inline with the results of the experiments on
benchmark datasets performed in Chapter 5.

Table 7.2 summarizes the results in terms of interpretability measures. SlGb using
RIP or PART generates more concise models compared to using the decision tree. The
relative growth of SlGb using RIP compared to its baseline white-box classifier is higher
compared to SlGb using PART or C45. However, the SlGb using RIP has the highest
simplicity and utility while SlGb using PART also achieves very competitive results.
Therefore, for this study, we recommend interpreting the results using decision lists
since they produce more transparent models (measured as simplicity). We discussed
these results with an expert which is the principal investigator of EFoldMine [135].
The recommendation above was confirmed by the expert, which found the decision lists
more concise than the decision tree, and in particular, the SlGb using RIP easier to
understand. In addition, some of the rules obtained in the decision lists were expected
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Table 7.1: Mean performance during 27-fold cross-validation achieved by three con-
figurations of SlGb, using different white boxes. The performance is measured in
sensitivity (Sen.), specificity (Spe.), accuracy (Acc.), balanced accuracy (Bac.), preci-
sion (Pre.), Mathew’s correlation coefficient (Mcc.), area under the ROC curve (Auc.)
and Cohen’s kappa (Kap.). Sen., Spe., Prec., Mcc., and Auc. are measured with
respect to the positive class. All SlGb configurations outperform baseline white boxes,
with SlGb using RIP decision list achieving the best results for the majority of the
measures.

Algorithm Sen. Spe. Acc. Bac. Pre. Mcc. Auc. Kap.
SlGb (SVM-C45-CONF) 0.59 0.78 0.66 0.68 0.69 0.35 0.68 0.32

SlGb (SVM-PART-CONF) 0.70 0.69 0.68 0.70 0.67 0.38 0.73 0.35
SlGb (SVM-RIP-CONF) 0.70 0.72 0.69 0.71 0.69 0.40 0.72 0.37

EFoldMine 0.73 0.76 0.73 0.74 0.36 0.35 0.81 0.40
C45 0.50 0.78 0.63 0.64 0.66 0.27 0.63 0.25

PART 0.57 0.66 0.61 0.62 0.61 0.23 0.65 0.21
RIP 0.68 0.68 0.66 0.68 0.66 0.35 0.70 0.32

Table 7.2: Performance in terms of interpretability for each configuration of the SlGb.
The number of rules, relative growth (see Equation 5.1) and simplicity (see Equation
5.2) measure transparency as a proxy for interpretability. Utility (see Equation 5.3)
measures the trade-off between accuracy and interpretability. The most concise list
of rules is produced by SlGb while using RIP as the white box, with PART offering
competitive results.

Algorithm Rules R.Growth Simplicity Utility
SlGb (SVM-C45-CONF) 215 1.23 1.8E-8 0.39

SlGb (SVM-PART-CONF) 58 1.38 0.11 0.44
SlGb (SVM-RIP-CONF) 55 4.23 0.14 0.46

and matched previous knowledge of the biophysical domain, while others exhibited
meaningful new patterns that should be investigated further.

7.2.1 Further Interpretation of the Decision Lists
Decision lists are interpreted in descending order by testing each rule until obtaining
a true antecedent or the default rule is reached. Figure 7.2 shows the structure and
interpretation of an individual rule generated by PART or RIP. While PART prioritizes
rules with the best confidence and support predicting any class label, RIP focuses on
the patterns that predict the minority class first. For this application, this implies
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that RIP decision lists will provide rules for identifying early folding residues, which
is the class label of interest.

Figure 7.2: Interpretation of the rules generated by PART (above) and RIPPER
(below) decision lists.

An additional layer of interpretability is used for extracting information from the
rules generated by SlGb using the RIP decision list. In an attempt to detect paired
relations between conditions (features and their values above given cut-offs) that de-
termine early folding, we plot the true positive count (early folding residues detected)
they yield accumulated over the set of rules. We performed this experiment for all
paired combinations of features and extracted the pairs of relations that lead to the
70% of true positives, i.e. the bottom 30% weaker relations were not considered. (see
Figure 7.3)2.

In this way, we visualize how pairs of features with a certain behavior are correctly
associated with early folding residues in the rules. For example, backbone-1>=0.8 is
associated with helix-2, sheet0 and sidechain0 in rules that detect a high number of
early folding residues. The thickness of the relation in the figure represents how many
true positives they detect together.

Figure 7.4 zooms in on the relations between backbone0 and backbone-1 with helix-
2 or sheet0, as well as helix-2 with sheet0. From Figure 7.4 (a) we can observe that
values of backbone0 and backbone-1 in the interval [0.8, 1.0] combined with values of
helix-2 in the interval [0.3,0.6] are associated with the majority of early folding residues
for this two features. In the same way, Figure 7.4 (b) shows that values of backbone0
and backbone-1 between [0.7,1.0] and values of sheet0 in [0.2,0.6] are associated with
early folding residues. In addition, residues with helix-2 in [0.3,0.6] and sheet0 in
[0.2,0.4], are also identified as early folding.

The use of this type of visualization is supported by the finding that, sometimes,
humans prefer to see one or two possible causes of the outcome than the entire set of
possible ones [110]. However, the limitation of showing only pairs of rules’ conditions
is a simplification that ignores the role of other conditions acting together. Although

2An animated version of this figure is available at https://codepen.io/igraugar/full/JjGmWMO.
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Figure 7.3: Pairwise combinations of attributes and cut-offs that lead to detecting
early folding residues. Each color represents a group of features, e.g. dark blue for
backbone. Each section in the chord diagram represents a condition in the rule, e.g.
backbone-1>=0.8 is highlighted. The thickness of the relations represents the total
number of correct early folding residues detected by the pair of features connected,
accumulated over the set of rules.
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(a) (b)

(c)

Figure 7.4: Pairwise combinations of attributes and cut-offs that lead to highest true
positive counts: (a) backbone0 and backbone-1 paired with helix-2, (b) backbone0 and
backbone-1 paired with sheet0 and (c) helix-2 paired with sheet0. Values in backbone
greater or equal to 0.8 combined with helix-2 or sheet0 with values greater or equal
to 0.4 are associated with the majority of early folding residues.
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(backbone >= 0.873) and (sidechain >= 0.614) and (sheet >= 0.473)  

 => Fold_Class=F (17081.55/48.89) 

(backbone >= 0.87) and (sidechain >= 0.597) and (sheet >= 0.386) and 

(helix-2 >= 0.44)  

 => Fold_Class=F (6335.33/18.77) 

(backbone-1 >= 0.873) and (sheet >= 0.232) and (helix-2 >= 0.619)  

 => Fold_Class=F (5803.80/17.47) 

(backbone-1 >= 0.911) and (sheet >= 0.292) and (helix-2 >= 0.513)  

 => Fold_Class=F (3030.10/23.43) 

(backbone >= 0.855) and (sheet >= 0.523) and (helix-2 >= 0.166)  

 => Fold_Class=F (3210.38/8.47) 

(backbone-1 >= 0.908) and (helix-2 >= 0.396) and (sidechain >= 0.623) 

and (sidechain-1 >= 0.658)  

 => Fold_Class=F (767.48/2.91) 

(backbone >= 0.868) and (backbone-1 >= 0.908) and (helix-2 >= 0.633)  

 => Fold_Class=F (1017.05/8.15) 

 

 

 

(a) SlGb using RIP.
backbone<=0.889 AND sidechain>0.552 AND sheet>0.521 

 : F (6104.15/9.17) 

backbone>0.891 AND sidechain-1>0.401 AND sidechain>0.618 AND sheet>0.524 

 : F (9804.29/11.65) 

backbone>0.896 AND sidechain>0.417 AND helix-2>0.46 AND sheet>0.337 

 : F (11096.67/37.57) 

backbone>0.914 AND helix-2>0.379 AND sidechain>0.6 AND sidechain-1>0.608 

 : F (3934.63/33.9) 

sheet>0.449 AND backbone-1>0.841 AND backbone-2>0.829 AND helix-2>0.311 

AND backbone<=0.926 AND sidechain>0.416 

 : F (2897.97/4.82) 

backbone>0.924 AND helix-2>0.512 

 : F (2973.82/52.91) 

sheet>0.483 AND backbone>0.852 AND sidechain>0.388 AND helix-2>0.16 

 : F (2913.31/30.01) 

(b) SlGb using PART.

Figure 7.5: First seven rules discovered by SlGb using (a) RIP and (b) PART (first
seven that predict folding as positive). The paired conditions identified as relevant
by the SlGb using RIP are also obtained in the decision list generated by SlGb using
PART.
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these visualizations were found interesting and understandable by the expert, a di-
agram that shows all conditions interacting together towards detecting early folding
would provide a more detailed explanation.

Finally, we extract rules of interest from the two SlGb models. Figure 7.5 (a) shows
the first seven rules obtained by SlGb using RIP as the white box. These rules are
the most confident ones predicting early folding class. Figure 7.5 (b) shows the first
seven rules for predicting early folding residues, obtained by SlGb using PART as the
white box. We can observe in the antecedents that, the features appearing as relevant
in Figure 7.3, are also obtained in the model built by SlGb using PART. This means
that SlGb is able to find consistent patterns across different choices of white boxes.
Further analysis of these patterns by associating the feature values with biophysical
domain knowledge is needed for unveiling insights on the early folding regions of the
proteins.

7.3 Concluding Note
In this chapter, we explored the use of SlGb in the prediction of early folding residues
in proteins. We show that SlGb is able to leverage extra unlabeled data available for
obtaining accurate prediction models that can be interpreted. We obtain the most
accurate and interpretable results when using RIP as a white-box component. While
SlGb using PART also achieves competitive performance and has low relative growth
in structure compared to its base white box. The decision list generated by RIP is
further interpreted by analyzing the pairs of features and their range of values that
appear together in the most confident rules. We created visualizations of these paired
interactions, which were found interesting and understandable by the expert. This
analysis shows how high values of backbone features interact with other features in
rules that detect early folding residues. Additionally, based on the interacting features,
we show that SlGb is able to find consistent patterns across different choices of white
boxes. The discussion of the results with an expert revealed that some rules obtained
by the SlGb using decision lists were expected patterns matching the knowledge from
the biophysical domain, while others were meaningful new patterns that should be
further validated.
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8 | Conclusions

This chapter outlines the main contributions of our research and the future research
directions that were identified.

8.1 Contributions and Discussion
In multiple application domains for machine learning methods, annotating data ac-
cording to a target characteristic when putting together a dataset for supervised clas-
sification is a costly or time-consuming process. This problem leads to datasets with
a limited number of labeled data, while a higher number of unlabeled data is avail-
able. Semi-supervised classification (SSC) attempts to leverage both sources of data
for learning models that reflect better the distribution of the data. Although the state-
of-the-art is extensive, these methods are mostly complex ensembles or deep learning
techniques that behave like black boxes. However, the interpretability requirement is
an increasing need for the appropriate and responsible use of machine learning tech-
niques in numerous applications.

In this research, we have proposed an interpretable semi-supervised classifier (called
SlGb), aiming to find a balance between accuracy and interpretability. We build upon
a self-labeling strategy for SSC, i.e., relying on the predictions of a base classifier for
assigning labels to unlabeled data. An accurate black-box classifier is taken as the
self-labeling component, but instead of re-training this base classifier in the enlarged
dataset, we use a second white-box classifier. The white-box component can be any
intrinsically interpretable classifier that acts as a surrogate model by mimicking the
predictions of the black-box. The role of the black box is to ensure the accuracy of
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CHAPTER 8. CONCLUSIONS

the predictions of the unlabeled instances, while the white box builds an interpretable
model that reflects the predictions made on the enlarged dataset.

As the self-labeling process’s predictions on the unlabeled data might be incorrect,
a mechanism for controlling the propagation of errors is needed. With this aim, we
proposed two amending procedures that weight the instances in the enlarged dataset
after the self-labeling. A first weighting strategy uses the class membership probability
that the black box produces together with its predictions. This weighting guides
the white-box component to learn from the most confident instances after the self-
labeling. However, there could be inconsistency in the class labels that emerge when
conforming the enlarged dataset. Therefore we propose a second amending procedure
that computes the certainty of the labels of all instances, the originally labeled ones
together with the self-labeled ones. For this purpose, we compute RST measures that
use a similarity relation and the granulation of the decision space in regions of instances
that are certainly from a class, certainly not from a class, or have boundary behavior.
The result is an estimation of how confident is the classification of the instance, based
not only on the positive evidence of the class but also on the negative and the doubtful
information about the instance and its similar ones.

We evaluated our proposal through experiments conducted on a standard and
comprehensive collection of structured benchmark datasets for SSC. We first evaluate
three mainstream classifiers for their role as a black box: random forest, support
vector machines, and multilayer perceptron neural networks. Random forests showed
to be the best choice across the datasets in terms of prediction accuracy. Secondly,
we evaluate the influence of using decision trees or two different decision lists as white
boxes, combined with the two proposed amending strategies. The choice of a particular
white box or amending strategy does not significantly affect the prediction rates, but
it is rather relevant for the interpretability of the model.

We measured interpretability based on the size of the grey box structure, with the
number of rules in the decision tree or the decision lists as an indicator of transparency.
We evaluated three measures related to interpretability: the growth in structure com-
pared to the base white box, the simplicity of the set of rules, and the balance between
accuracy and interpretability in the form of a utility function. When using decision
lists as surrogate white boxes, the grey box produces fewer rules than the C4.5 decision
tree, even when no amending is used. However, the amending helps decrease the size
of the structure without affecting the prediction rates by guiding the white box to
learn from the most confident instances. Notably, the RST-based amending prevents
the white box from focusing on learning inconsistencies in the labels that emerge from
the enlarged dataset. Therefore, as a general configuration of SlGb, we advise using
random forests as a base black box and amending the self-labeling with the RST-based
strategy. The choice of white box is more flexible to the desired interpretability, either
a decision tree with a set of rules or a decision list with ordered rules. The exper-
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8.1. CONTRIBUTIONS AND DISCUSSION

imental comparison against the state-of-the-art self-labeling approaches shows that
this configuration outperforms four self-labeling methods, yet being far more simple
in structure than these techniques.

As a final contribution, we illustrate the use of SlGb for two case studies from the
field of bioinformatics. The first application involves the prediction of disease-causing
genomic variants of a rare disease. In this case study, labeling genomic variants accord-
ing to their pathogenicity was a manual process based on literature guidelines. In an
attempt to generate more labeled data, we propose a tool named GeVaCT implement-
ing these guidelines and automating the process as much as possible. However, some
steps related to information about the family or the literature need the input from the
expert and cannot be automatized, therefore GeVaCT is not a solution for classifying
all data. This means that the limitations in the labeling process are not completely
removed and SlGb is a valuable approach. We showed that SlGb is a good predictor
of the pathogenicity of BrS variants compared to its white box baselines. It not only
produces better results in terms of several measures of accuracy but also maintained
or improved the interpretability when compared with the white-box baseline. When
analyzing the rules generated by SlGb, some patterns related to the GeVaCT pipeline
were observed. Further experiments and feedback from experts are needed to adjust
and validate the rules obtained.

The second application concerns the prediction of early folding residues in proteins.
In this domain, labeled data is limited due to it comes from controlled experiments.
SlGb is able to leverage extra unlabeled data from other proteins to obtain accurate
decision lists that can also be interpreted. We obtain the most accurate and inter-
pretable results when using RIP as a white-box component. Since RIP focuses on
finding rules for the minority class, it is more suitable for finding patterns in the
features that lead to early folding. The decision list generated by RIP is further inter-
preted by analyzing pairs of features and their range of values that appear together
in the most confident rules. This analysis shows how high values of backbone features
interact with other features in rules that detect early folding residues. Finally, based
on the interacting features, we show that SlGb is able to find consistent rules across
different choices of white boxes. The discussion of the results with an expert revealed
that some rules obtained by the SlGb using decision lists were expected patterns, while
others were meaningful and interesting new patterns that should be further validated.
Further interpretation of these patterns by associating the feature values with domain
knowledge is needed for unveiling insights in the early folding regions of the proteins.
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CHAPTER 8. CONCLUSIONS

8.2 Future Research Lines
From the research performed in this thesis, we have detected several ideas that are
worth exploring in the near future.

The extension of the proposed self-labeling grey-box to unstructured SSC prob-
lems is an appealing idea. However, mapping unstructured data (e.g., images, text)
to interpretable features that can be later used for building a white-box model is a
challenge. In this direction, there has been some progress in recent years using varia-
tional autoencoders for obtaining disentangled representations. The first contribution
to theory and metrics for learning disentangled representations taking into account
interpretability was recently published in [37]. Including concepts defined by humans
as constraints for the disentangled representation learning in an SSC setting is an
attractive research direction.

It would also be interesting to explore other changes in the representation space
before the white box training, e.g., the influence of adding more interpretable features
before training the white box. It would be important to determine whether incor-
porating more attributes from the same or different semantic dimensions helps the
white box obtain better performance or interpretability. Another alternative would be
further preprocessing of the original features with a technique such as discretization.
Discretization methods come with the advantage of reducing and simplifying the data,
potentially making the white box learn more compact sets of rules. Generally, dis-
crete attributes are considered easier to understand [102]. However, any discretization
method also comes with a certain loss of information that should be considered.

Regarding the amending procedures, a natural extension of the proposed RST-
based confidence measure is to partition the decision space with an extension of RST,
such as Fuzzy RST [29], for example. This extension would model every instance as
a member of all regions for each class with a certain degree, removing the need for
a similarity threshold parameter. The bias present in the SlGb pipeline through the
amending affects the interpretability since a strong preference for confident instances
would make the white box focus on discovering safe but rather apparent patterns.
The more uncertain instances are those more difficult to classify and generally lie near
classification boundaries. These instances can add novelty, although they are risky
due to their explanations have lower confidence. A softer approach to the amending
can potentially reduce the bias towards very confident but rather obvious patterns by
allowing instances to be confident and doubtful with different degrees. It would be
interesting to evaluate the influence of using Fuzzy RST amending in the accuracy
and interpretability of the SlGb.

From our literature review on machine learning interpretability, we can conclude
that more work is needed in conceiving measures for the quality of explanations. An
exciting idea derived from the proposed measures is to model the accuracy and inter-
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8.2. FUTURE RESEARCH LINES

pretability trade-off as a multi-objective optimization problem. Considering several
measures of accuracy and interpretability, together with weights specified by a panel
of experts, can be further explored.

Concerning the application of our pipeline in real case studies, it would be attractive
to explore its results by contrasting them with traditional statistical analyses of the
data or with established expert systems. We can separate the SlGb explanations
related to domain rules from the new patterns that need to be studied. Known patterns
are useful to validate the confidence of the predictions and explanations of the SlGb,
while new patterns increase novelty by explaining instances that are not covered by the
traditional analysis. Those new patterns that the expert considers plausible hypotheses
can be further confirmed or rejected by traditional techniques using more data collected
for this purpose. The novel patterns that the experts discard could be used as feedback
and integrated as constraints when retraining our model. One step forward would be
to integrate our model with second-generation expert systems, where the reasoning
through rules have a more hierarchical organization with intermediate goals. More
advanced rule mining algorithms that combine data with background knowledge would
be needed for the white-box component.

In both of the case studies presented in this thesis, further validation of the obtained
explanations with the help of experts is necessary. The guidelines published in [73]
revising questionnaires and interview methods for the context of XAI are a good
starting point for this aim. These questionnaires aim to measure the extent to which
the user’s mental model about the domain is refined after obtaining explanations. The
interaction with the user helps assess the goodness of explanations in several aspects
such as satisfaction, understanding, curiosity, and trust. Therefore, the validation
of the explanations is fundamental for an appropriate deployment of an XAI tool
based on our pipeline. Additionally, we want to explore the formalization of the
expert’s feedback in knowledge representations such as ontologies or knowledge graphs.
The ontologies could be used for re-adjusting the models to the users’ preferences or
expectations. In the same direction, providing an interface using natural language,
such as conversational agents (an idea we are currently exploring in another project),
is an exciting way of incorporating the human in the loop.
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APPENDIX A. DESCRIPTION OF THE BENCHMARK DATASETS
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APPENDIX B. DETAILED RESULTS OF THE STATISTICAL TESTS

Table B.1: Friedman’s 𝑝-values for all ratios when testing different black-box base
classifiers. The prediction rates are measured using kappa coefficient. There are
significant differences among all the configurations compared.

Ratio Friedman’s 𝑝-value 𝐻0
10% 2.10E-08 Rejected
20% 8.91E-13 Rejected
30% 9.87E-06 Rejected
40% 5.35E-04 Rejected

Table B.2: Wilcoxon’s 𝑝-values and Holm’s post-hoc correction when comparing differ-
ent black-boxes configurations. The test supports the superiority of RF as black-box
base classifier when comparing prediction rates.

Labeled ratio Pair of configurations Wilcoxon’s 𝑝-value 𝑅− 𝑅+ Holm’s 𝑝-value 𝐻0

10%

RF-PART - MLP-PART 2.08E-05 13 39 1.25E-04 Rejected
RF-PART - SVM-PART 2.77E-04 16 39 1.38E-03 Rejected

RF-C45 - SVM-C45 6.91E-04 16 39 2.76E-03 Rejected
RF-RIP - MLP-RIP 9.63E-04 15 40 2.89E-03 Rejected
RF-C45 - MLP-C45 1.6E-03 15 39 3.2E-03 Rejected
RF-RIP - SVM-RIP 5.84E-03 19 36 5.84E-03 Rejected

20%

RF-C45 - MLP-C45 5.58E-06 9 45 3.35E-05 Rejected
RF-PART - SVM-PART 2.1E-05 15 39 1.05E-04 Rejected
RF-PART - MLP-PART 4.56E-05 13 41 1.83E-04 Rejected

RF-RIP - SVM-RIP 1.83E-04 17 37 5.5E-04 Rejected
RF-C45 - SVM-C45 3.04E-04 15 39 6.08E-04 Rejected
RF-RIP - MLP-RIP 3.56E-03 18 36 3.56E-03 Rejected

30%

RF-RIP - MLP-RIP 1.18E-03 15 38 7.06E-03 Rejected
RF-C45 - MLP-C45 1.19E-03 16 38 7.06E-03 Rejected
RF-C45 - SVM-C45 1.75E-03 16 38 7.06E-03 Rejected
RF-RIP - SVM-RIP 2.93E-03 18 36 8.79E-03 Rejected

RF-PART - MLP-PART 5.64E-03 20 34 1.13E-02 Rejected
RF-PART - SVM-PART 7.7E-03 20 34 1.13E-02 Rejected

40%

RF-RIP - SVM-RIP 1.55E-03 16 38 9.33E-03 Rejected
RF-PART - MLP-PART 6.26E-03 19 35 3.13E-02 Rejected

RF-C45 - MLP-C45 8.75E-03 20 34 3.5E-02 Rejected
RF-PART - SVM-PART 1.43E-02 19 35 4.29E-02 Rejected

RF-C45 - SVM-C45 2.28E-02 22 32 4.55E-02 Rejected
RF-RIP - MLP-RIP 7.68E-02 23 31 7.68E-02 Not Rejected
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Table B.3: Friedman’s 𝑝-values for all ratios when testing the prediction performance
(kappa) for different white-box and amending configurations. There are statistical
differences in the prediction rates in at least one pair of the configurations compared.

Ratio Friedman’s 𝑝-value 𝐻0
10% 4.02E-07 Rejected
20% 9.27E-07 Rejected
30% 1.67E-03 Rejected
40% 7.35E-05 Rejected

Table B.4: Wilcoxon’s 𝑝-values and Holm’s post-hoc correction when comparing dif-
ferent white-box and amending configurations, for 10% and 20% ratio. Per ratio,
first subsection compares using different amending procedures while fixing the white
box and the second subsection fixes the amending for comparing the influence of white
boxes. The vast majority of null hypothesis cannot be rejected, indicating that amend-
ing or white-box alternatives do not strongly influence the prediction rates.

Labeled ratio Pair of configurations Wilcoxon’s 𝑝-value 𝑅− 𝑅+ Holm’s 𝑝-value 𝐻0

10%

RF-RIP-RST - RF-RIP-NONE 2.57E-03 40 12 1.54E-02 Rejected
RF-C45-RST - RF-C45-NONE 3.4E-02 36 17 0.170 Not Rejected

RF-RIP-CONF - RF-RIP-NONE 4.23E-02 33 19 0.170 Not Rejected
RF-PART-RST - RF-PART-NONE 5.24E-02 31 21 0.170 Not Rejected
RF-C45-CONF - RF-C45-NONE 0.224 30 23 0.447 Not Rejected

RF-PART-CONF - RF-PART-NONE 0.344 27 25 0.447 Not Rejected
RF-RIP-CONF - RF-PART-CONF 7.09E-04 35 18 6.38E-03 Rejected

RF-RIP-RST - RF-PART-RST 1.44E-02 35 18 0.115 Not Rejected
RF-RIP-NONE - RF-PART-NONE 1.97E-02 34 19 0.138 Not Rejected

RF-RIP-RST - RF-C45-RST 2.01E-02 33 20 0.138 Not Rejected
RF-RIP-CONF - RF-C45-CONF 3.25E-02 33 20 0.163 Not Rejected

RF-PART-CONF - RF-C45-CONF 9.52E-02 18 33 0.381 Not Rejected
RF-PART-NONE - RF-C45-NONE 0.166 23 29 0.499 Not Rejected

RF-PART-RST - RF-C45-RST 0.188 20 30 0.499 Not Rejected
RF-RIP-NONE - RF-C45-NONE 0.510 31 23 0.510 Not Rejected

20%

RF-RIP-RST - RF-RIP-NONE 8.04E-05 38 14 4.82E-04 Rejected
RF-C45-CONF - RF-C45-NONE 4.89E-03 36 14 2.45E-02 Rejected

RF-PART-RST - RF-PART-NONE 4.92E-02 33 19 0.197 Not Rejected
RF-PART-CONF - RF-PART-NONE 5.23E-02 33 18 0.197 Not Rejected

RF-C45-RST - RF-C45-NONE 5.82E-02 34 18 0.197 Not Rejected
RF-RIP-CONF - RF-RIP-NONE 0.169 31 21 0.197 Not Rejected
RF-RIP-RST - RF-PART-RST 1.6E-03 39 14 1.44E-02 Rejected
RF-RIP-RST - RF-C45-RST 6.12E-03 36 16 4.9E-02 Rejected

RF-RIP-NONE - RF-PART-NONE 2.78E-02 36 17 0.195 Not Rejected
RF-RIP-NONE - RF-C45-NONE 4.53E-02 36 18 0.272 Not Rejected
RF-RIP-CONF - RF-C45-CONF 0.169 30 22 0.854 Not Rejected

RF-RIP-CONF - RF-PART-CONF 0.259 28 25 1.000 Not Rejected
RF-PART-RST - RF-C45-RST 0.769 26 23 1.000 Not Rejected

RF-PART-NONE - RF-C45-NONE 0.827 27 25 1.000 Not Rejected
RF-PART-CONF - RF-C45-CONF 0.889 27 23 1.000 Not Rejected
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Table B.5: Wilcoxon’s 𝑝-values and Holm’s post-hoc correction when comparing dif-
ferent white-box and amending configurations, for 30% and 40% ratio. Per ratio,
first subsection compares using different amending procedures while fixing the white
box and the second subsection fixes the amending for comparing the influence of white
boxes. The vast majority of null hypothesis cannot be rejected, indicating that amend-
ing or white-box alternatives do not strongly influence the prediction rates.

Labeled ratio Pair of configurations Wilcoxon’s 𝑝-value 𝑅− 𝑅+ Holm’s 𝑝-value 𝐻0

30%

RF-RIP-RST - RF-RIP-NONE 2.18E-04 37 15 1.31E-03 Rejected
RF-C45-RST - RF-C45-NONE 8.45E-03 37 16 4.22E-02 Rejected

RF-RIP-CONF - RF-RIP-NONE 4.14E-02 32 20 0.165 Not Rejected
RF-C45-CONF - RF-C45-NONE 0.193 28 24 0.578 Not Rejected

RF-PART-CONF - RF-PART-NONE 0.362 28 24 0.725 Not Rejected
RF-PART-RST - RF-PART-NONE 0.388 28 25 0.725 Not Rejected

RF-RIP-RST - RF-PART-RST 1.68E-03 37 15 1.51E-02 Rejected
RF-RIP-RST - RF-C45-RST 7.03E-03 35 17 5.62E-02 Not Rejected

RF-RIP-CONF - RF-C45-CONF 0.147 30 24 1.000 Not Rejected
RF-PART-RST - RF-C45-RST 0.259 22 27 1.000 Not Rejected

RF-RIP-CONF - RF-PART-CONF 0.324 30 24 1.000 Not Rejected
RF-RIP-NONE - RF-PART-NONE 0.355 31 22 1.000 Not Rejected
RF-RIP-NONE - RF-C45-NONE 0.498 28 25 1.000 Not Rejected

RF-PART-NONE - RF-C45-NONE 0.555 22 29 1.000 Not Rejected
RF-PART-CONF - RF-C45-CONF 0.573 23 25 1.000 Not Rejected

40%

RF-RIP-RST - RF-RIP-NONE 1.35E-05 40 13 8.13E-05 Rejected
RF-RIP-CONF - RF-RIP-NONE 7.03E-03 31 21 3.51E-02 Rejected

RF-PART-RST - RF-PART-NONE 0.136 30 23 0.543 Not Rejected
RF-PART-CONF - RF-PART-NONE 0.579 28 24 1.000 Not Rejected

RF-C45-RST - RF-C45-NONE 0.662 26 26 1.000 Not Rejected
RF-C45-CONF - RF-C45-NONE 0.761 26 24 1.000 Not Rejected

RF-RIP-RST - RF-C45-RST 2.9E-03 39 13 2.61E-02 Rejected
RF-RIP-CONF - RF-PART-CONF 2.13E-02 36 18 0.170 Not Rejected
RF-RIP-CONF - RF-C45-CONF 3.25E-02 33 20 0.228 Not Rejected
RF-RIP-RST - RF-PART-RST 3.96E-02 33 20 0.237 Not Rejected

RF-RIP-NONE - RF-PART-NONE 0.254 33 21 1.000 Not Rejected
RF-PART-NONE - RF-C45-NONE 0.267 23 30 1.000 Not Rejected
RF-PART-CONF - RF-C45-CONF 0.606 26 24 1.000 Not Rejected
RF-RIP-NONE - RF-C45-NONE 0.806 29 23 1.000 Not Rejected
RF-PART-RST - RF-C45-RST 0.858 26 24 1.000 Not Rejected

Table B.6: Friedman’s 𝑝-values for all ratios when comparing the interpretability in
terms of simplicity, for different white-box and amending configurations. There are
significant differences among all the configurations compared, where RF-RIP-RST
exhibits the highest mean for all ratios (see Table 5.3).

Ratio Friedman’s 𝑝-value 𝐻0
10% 3.14E-73 Rejected
20% 3.02E-75 Rejected
30% 3.96E-72 Rejected
40% 2.41E-71 Rejected
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Table B.7: Wilcoxon’s 𝑝-values and Holm’s post-hoc correction when comparing dif-
ferent white-box and amending configurations against the highest mean simplicity
combination: RF-RIP-RST. All null hypothesis can be safely rejected, showing statis-
tically significant superiority in terms of simplicity.

Labeled ratio Pair of configurations Wilcoxon’s 𝑝-value 𝑅− 𝑅+ Holm’s 𝑝-value 𝐻0

10%

RF-RIP-RST - RF-C45-NONE 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-PART-NONE 1.17E-10 1 54 8.86E-10 Rejected
RF-RIP-RST - RF-C45-CONF 1.63E-10 0 54 9.75E-10 Rejected
RF-RIP-RST - RF-C45-RST 1.63E-10 0 54 9.75E-10 Rejected

RF-RIP-RST - RF-RIP-NONE 2.39E-10 0 53 9.75E-10 Rejected
RF-RIP-RST - RF-PART-CONF 3.97E-10 2 52 1.19E-09 Rejected
RF-RIP-RST - RF-PART-RST 4.08E-09 3 51 8.17E-09 Rejected
RF-RIP-RST - RF-RIP-CONF 2.18E-07 5 46 2.18E-07 Rejected

20%

RF-RIP-RST - RF-C45-NONE 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-PART-NONE 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-C45-CONF 1.11E-10 0 55 8.86E-10 Rejected

RF-RIP-RST - RF-PART-CONF 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-C45-RST 1.63E-10 0 54 8.86E-10 Rejected

RF-RIP-RST - RF-RIP-NONE 2.39E-10 0 53 8.86E-10 Rejected
RF-RIP-RST - RF-RIP-CONF 8.76E-10 1 52 1.75E-09 Rejected
RF-RIP-RST - RF-PART-RST 3.95E-08 3 50 3.95E-08 Rejected

30%

RF-RIP-RST - RF-C45-NONE 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-C45-CONF 1.11E-10 0 55 8.86E-10 Rejected

RF-RIP-RST - RF-PART-NONE 1.24E-10 1 54 8.86E-10 Rejected
RF-RIP-RST - RF-C45-RST 1.24E-10 1 54 8.86E-10 Rejected

RF-RIP-RST - RF-PART-CONF 1.31E-10 2 53 8.86E-10 Rejected
RF-RIP-RST - RF-RIP-NONE 2.6E-10 1 52 8.86E-10 Rejected
RF-RIP-RST - RF-RIP-CONF 8.03E-10 1 49 1.61E-09 Rejected
RF-RIP-RST - RF-PART-RST 1.18E-09 3 51 1.61E-09 Rejected

40%

RF-RIP-RST - RF-C45-NONE 1.11E-10 0 55 8.86E-10 Rejected
RF-RIP-RST - RF-C45-CONF 1.11E-10 0 55 8.86E-10 Rejected

RF-RIP-RST - RF-PART-NONE 1.24E-10 1 54 8.86E-10 Rejected
RF-RIP-RST - RF-PART-CONF 1.31E-10 1 54 8.86E-10 Rejected

RF-RIP-RST - RF-C45-RST 1.63E-10 0 54 8.86E-10 Rejected
RF-RIP-RST - RF-RIP-NONE 2.68E-10 1 52 8.86E-10 Rejected
RF-RIP-RST - RF-RIP-CONF 3.18E-10 2 51 8.86E-10 Rejected
RF-RIP-RST - RF-PART-RST 2.7E-09 4 51 2.7E-09 Rejected

Table B.8: Friedman’s 𝑝-values for all ratios when comparing SlGb (RF-PART-RST)
with state-of-the-art semi-supervised classifiers in terms of prediction rates (kappa).
There are significant differences for all ratios, where SlGb exhibits the highest mean
(see Table 5.4).

Ratio Friedman’s 𝑝-value 𝐻0
10% 1.91E-06 Rejected
20% 7.62E-07 Rejected
30% 3.50E-06 Rejected
40% 2.19E-03 Rejected
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Table B.9: Wilcoxon’s 𝑝-values and Holm’s post-hoc correction using SlGb approach as
control method against state-of-the-art semi-supervised classifiers. SlGb significantly
outperforms other methods except for CT(SMO) and DCT when using 30% and 40%
of labeled instances.

Labeled ratio SSC algorithm Wilcoxon’s 𝑝-value 𝑅− 𝑅+ Holm’s 𝑝-value 𝐻0

10%

CB(C45) 3.6E-06 12 43 1.44E-05 Rejected
TT(C45) 4.23E-06 13 42 1.44E-05 Rejected

DCT 1.86E-05 12 43 3.71E-05 Rejected
CT(SMO) 1.74E-04 16 39 1.74E-04 Rejected

20%

CB(C45) 1.3E-07 9 46 5.21E-07 Rejected
TT(C45) 8.37E-07 9 46 2.51E-06 Rejected

DCT 2.77E-04 15 40 5.53E-04 Rejected
CT(SMO) 2.35E-03 19 36 2.35E-03 Rejected

30%

CB(C45) 1.64E-07 9 46 6.54E-07 Rejected
TT(C45) 4.84E-07 9 45 1.45E-06 Rejected

DCT 7.16E-03 19 36 1.43E-02 Rejected
CT(SMO) 5.4E-02 20 35 5.4E-02 Not Rejected

40%

TT(C45) 6.58E-05 12 42 2.63E-04 Rejected
CB(C45) 8.18E-05 15 39 2.63E-04 Rejected

DCT 0.172 24 31 0.344 Not Rejected
CT(SMO) 0.633 27 28 0.633 Not Rejected
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This appendix describes some implementation details of the GeVaCT software.
GeVaCT is a semi-automated knowledge engineer software for the pathogenicity clas-
sification of BrS (see Section 6.2). It is based on a published study [74] and experience
of clinical geneticist of the Center for Medical Genetics of the Universitair Ziekenhuis
Brussel (UZBrussel) with whom we closely collaborated. GeVaCT can be executed
through a graphical user interface or a console interface.

GeVaCT preprocess and labels BrS variants according to their pathogenic-
ity in five classes:

∙ Class I: Non-pathogenic

∙ Class II: Unlikely pathogenic

∙ Class III: Unclear

∙ Class IV: Likely pathogenic

∙ Class V: Pathogenic

Input:

∙ Tab delimited annotated VCF file generated as output from Alamut Batch soft-
ware [77].

∙ Optionally: A text file with a list of genes that will be analyzed.

Preprocessing steps (see Figure C.1):

1. Filter the variants based on the gene list (if provided)

2. Refer to the attribute hgmdSubCategory. Retain records with values: DM and
DM?.

3. Refer to the attribute clinVarClinSignifis. Retain records with values: pathogenic,
likely pathogenic.

4. Refer to the attributes comment_DD and class (these attributes are added as
internal process of UZBrussel). Retain records with values: VUS2, VUS3 and
pathogenic.

5. Refer to the attribute varLocation. If attribute clinVarClinSignifis has value
pathogenic or likely pathogenic retain records with values: exon, splice site, ex-
ception - intron, UTR and downstream. Otherwise retain records with values:
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exon and splice site. Look into attribute codingEffect and retain all records
except for value synonymous.

6. Select the attribute rsMAF (dbSNP [105] Minor Allele Frequency) and select
variants with rsMAF < 0.1 (10%).

7. Separate variants in two groups: missense and nonsense or frameshift.

Labeling steps for missense variants:

1. Refer to the attributes hdiv_prediction and hvar_prediction from Polyphen
database, filtering using attributes: chrom, pos, gene, wtNuc, varNuc, wtAA,
varAA and transcript. Accumulate score value 1.0 if probably damaging, 0.5 if
possibly damaging and 0.0 if benign.

2. Refer to the attributes SIFTprediction (deleterious or tolerated) and SIFTWeight
(values from 0 to 1). Accumulate score value 1.0 if deleterious and SIFTWeight
is in the interval (0.0, 0.05), accumulate 0.0 otherwise.

3. Refer to the attribute granthamDIST. If the value is larger than 140, accumulate
score 2.0, otherwise if larger than 70, accumulate 1.0, else accumulate 0.0.

4. Refer to the attribute AGVGDclass. For each possible value accumulate the
corresponding score:

∙ C65 most likely −→ score 1.25
∙ C55 −→ score 1.0
∙ C45 −→ score 0.75
∙ C35 −→ score 0.5
∙ C15/25 −→ score 0.25
∙ C0 −→ score 0.0

5. Refer to the attribute BLOSUM62 and accumulate score 1.0 if value is less or
equal than -2, 0.5 if value is exactly -1, and 0.0 otherwise.

6. Refer to the attribute PhyloP and accumulate score 0.0 if value is less than 1,
0.5 if value is greater or equal than 1 and less than 2.5, and 1.0 otherwise.

7. Refer to the attribute espEAMAF or espAAMAF, depending on ethnical back-
ground of the patient. The ethnical background is obtained from a man-
ual input step. For each possible value accumulate the corresponding score:

∙ equal to 0 −→ 2.0
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∙ greater than 0 and less or equal to 0.002 −→ 1.5
∙ greater than 0.002 and less or equal to 0.005 −→ 1.0
∙ greater than 0.005 and less or equal to 0.01 −→ 0.5
∙ greater than 0.01 −→ 0.0

8. Refer to the attribute localSpliceEffect. If localSpliceEffect is not missing, for
each possible value accumulate the corresponding score:

∙ New Donor Site −→ 1.0
∙ Cryptic Donor Strongly Activated −→ 1.0
∙ New Acceptor Site −→ 1.0
∙ Cryptic Acceptor Strongly Activated −→ 1.0
∙ Cryptic Donor Weakly Activated −→ 0.5
∙ Cryptic Acceptor Weakly Activated −→ 0.5

When localSpliceEffect is missing, refer to the attributes wtSSFScore, wtMax-
EntScore, wtNNSScore, wtGSScore, wtHSFScore, varSSFScore, varMaxEntScore,
varNNSScore, varGSScore and varHSFScore. Compute the percentage relative
differences between each pair of variant and wild type variables, for example:

𝑑 = 𝑎𝑏𝑠(𝑤𝑡𝑆𝑆𝐹𝑆𝑐𝑜𝑟𝑒−𝑣𝑎𝑟𝑆𝑆𝐹𝑆𝑐𝑜𝑟𝑒)/𝑚𝑎𝑥(𝑤𝑡𝑆𝑆𝐹𝑆𝑐𝑜𝑟𝑒, 𝑣𝑎𝑟𝑆𝑆𝐹𝑆𝑐𝑜𝑟𝑒)*100.

For each possible value accumulate the corresponding score:

∙ if at least two differences have value less than 40% −→ 2.0
∙ else if at least one difference has value less than 40% −→ 1.0
∙ else if at least one difference has value less than 70% −→ 0.5
∙ else all differences are greater or equal to 70% −→ 0.0

9. Compute the cumulative score and assign the first label according to:

∙ if cumulative score is greater or equal than 70% −→ Class IV
∙ else if cumulative score is greater or equal than 45% −→ Class III
∙ else if cumulative score is greater or equal than 25% −→ Class II
∙ else cumulative score is lower than 25% −→ Class I
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Labeling steps for nonsense and frameshift variants:

1. Refer to the attribute codingEffect. If nonsense or frameshift add 4.0 to cumu-
lative score. Otherwise, apply step 8 for missense variants.

2. Ask user for manual input of whether the variant type fits with the
disease. The scores assigned in this step are based on knowledge from literature,
adding a still manual and subjective component to the labeling (see Figure C.3
for question asked in the console version of GeVaCT).

3. Analyze frequency in control population. Refer to step 7 for missense variants.
Involves manual input of ethnical background.

4. Compute the cumulative score and assign the first label. Refer to step 9 for
missense variants.

Final steps:

1. Ask user for manual input of family information or phenotype and
functional analysis. The scores assigned in this step are based on expert’s
criteria and experience, adding a still manual and subjective component to the
labeling (see Figure C.2).
For family information the scores are the following:

∙ Very likely pathogenic: de novo mutation or âĽě6 affected family members
with the mutation and no affected without the mutation −→ 4.0
∙ Probably co-segregation: 5 affected family members with the mutation and

no affected without the mutation −→ 3.0
∙ Possible co-segregation: 3-4 affected family members with the mutation and

no affected without the mutation −→ 2.0
∙ Co-segregation unclear: 2 affected family members with the mutation and

no affected without the mutation −→ 1.0
∙ Only index −→ 0.0
∙ No co-segregation: Affected family member without mutation −→ 0.0
∙ No score −→ 0.0

For functional analysis the following question is asked to the user: “Is the variant
functionally tested in vitro, in culture or in an animal model? If so judge based
on the method used and the experimental data how convincing the conclusion
is. This is important because functional assays are often not well validated.”
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∙ Convincingly functionally aberrant −→ 3.0
∙ Possibly functionally aberrant −→ 1.0
∙ Unclear or not functionally aberrant −→ 0.0
∙ No score −→ 0.0

2. Refer to cumulative score from step 9 for missense variants and step 4 for non-
sense and frameshift. Compute final label based on scores from previous steps
and cumulative score:

∙ A combined score of 2.0 or 3.0 for family information or phenotype and
functional analysis, upgrades the score from the first label one level.
∙ A maximum score for functional analysis and a score 0.0 for family informa-

tion or phenotype, upgrades Classes I to III to Class IV (likely pathogenic).
∙ A combined score of 4.0 for family information or phenotype and functional

analysis with none of the parts having a maximum score, upgrades the
Classes I to III to Class IV (likely pathogenic).
∙ A maximum score for family information or phenotype, upgrades all classes

to Class V (pathogenic).
∙ A combined score of 5.0 or 6.0 for family information or phenotype and

functional analysis and family information or phenotype has not the maxi-
mum score, upgrade all classes to Class V (pathogenic).
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Figure C.2: After assigning the first label the cumulative score is used together with
the feedback from the expert to compute the label for each sample. This constitutes
a manual step, thus the semi-automated character of GeVaCT.
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Figure C.3: GeVaCT is also executable from a console interface. The figure portrays
the question in step 2 for nonsense and frameshift variants, which rely on the expert
criteria based on literature.
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