
Faculty of Science and
Bio-Engineering Sciences
Department of Computer Science

A Multi-Agent Reinforcement Learning Approach to
Wind Farm Control

Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Science: Computer science

Timothy Verstraeten
Brussels, March 2021

Promotors: Prof. Dr. Ann Nowé
Prof. Dr. Jan Helsen

List of Jury Members

Prof. Dr. Elisa Gonzalez Boix Vrije Universiteit Brussel (Chair)

Prof. Dr. Bernard Manderick Vrije Universiteit Brussel (Secretary)

Prof. Dr. Ann Nowé Vrije Universiteit Brussel (Promotor)

Prof. Dr. Jan Helsen Vrije Universiteit Brussel (Co-promotor)

Prof. Dr. Nikolaos Deligiannis Vrije Universiteit Brussel

Prof. Dr. Jens Kober Delft University of Technology

Prof. Dr. Daniel Kudenko Leibniz University Hannover

Prof. Dr. Amir R. Nejad Norwegian University of Science and Technology

3

Summary

Recently, we drastically shifted our energy production toward renewable energy sources,
due to the pressing matter of climate change and the limited supply of fossil fuels. While
offshore wind farms are an important driver toward renewable energy generation, their
maintenance costs need to be significantly reduced to render them sustainable. Major
causes of the elevated maintenance costs are failures due to unanticipated stress on the
wind turbine components. Therefore, the health status of a wind turbine needs to be
accurately quantified and incorporated in wind farm control schemes, such that unnecessary
stress on high-risk turbines can be prevented. As this health status is determined
by a complex multi-dimensional spectrum of stress factors, AI-driven control strategies
are necessary. However, current wind farm controllers that use AI-driven optimization
techniques are not scalable to the size of contemporary wind farms. In this dissertation,
we focus on developing optimal and scalable AI-driven control methods. We adopt a multi-
tiered methodology, in which we investigate several properties of wind farms independently,
and then consolidate the acquired insights in a wind farm control solution. First, we develop
a control algorithm for multi-device systems, in which the devices have similar technical
specifications. The control method uses a similarity-based data exchange mechanism to
increase the confidence of the environment model for a specific learning agent, based
on relevant data of similar devices. We demonstrate that the use of such a mechanism
increases learning accuracy by reducing uncertainty and bias due to negative transfer.
Second, we propose a control method for generic multi-agent systems with a sparse
dependency structure. Specifically, we exploit this sparse structure to factorize large
multi-agent systems and learn optimal control decisions in the factored representation.
We demonstrate, both theoretically and empirically, that our method significantly reduces
the learning complexity when considering sparse dependency graphs, and thus can handle

5

Summary

the combinatorial explosion with respect to the joint action space when dealing with large
multi-agent systems. The developed control methods are applicable to a variety of multi-
agent systems that contain similar agents or have a loosely-coupled structure. Finally,
we combine the obtained insights on device similarity and sparse dependency structures
and extend our approaches to a AI-driven wind farm controller that is scalable and optimal
with respect to the complex cost-functions inherent to contemporary wind farms. We show
that our method is capable of closing the gap between power demand and the produced
farm-wide power, while still considering the penalties induced on high-risk turbines, by
preventing stressful control decisions.

6

Samenvatting

Recent hebben we onze energie productie drastisch verschoven naar hernieuwbare
energiebronnen, vanwege het probleem van klimaatverandering en het beperkte aanbod
van fossiele brandstoffen. Hoewel windparken een belangrijke factor zijn voor de opwekking
van hernieuwbare energie, moeten hun onderhoudskosten aanzienlijk worden verlaagd
om ze duurzaam te maken. Grote bijdragers aan de verhoogde onderhoudskosten zijn
storingen ten gevolge van onverwachte belasting van de windturbinecomponenten. Daarom
moet de gezondheidstoestand van een windturbine nauwkeurig worden bepaald en in
rekening gebracht worden bij de besturing van windparken om onnodige belasting van
risicovolle turbines te voorkomen. Aangezien deze gezondheidstoestand wordt bepaald
door een complex multidimensionaal spectrum van stressfactoren, zijn AI-gestuurde
controlestrategieën noodzakelijk. De huidige besturingssystemen van windparken die AI-
gestuurde optimalisatietechnieken gebruiken, zijn echter niet schaalbaar naar windparken
met een groot aantal turbines. In dit proefschrift richten we ons op het ontwikkelen
van optimale en schaalbare AI-gestuurde controlemethoden. We hanteren een gelaagde
methodologie, waarbij we verschillende eigenschappen van windparken onafhankelijk
onderzoeken en vervolgens de verworven inzichten consolideren in een controlestrategie
voor windparken. Ten eerste ontwikkelen we een besturingsalgoritme voor systemen met
meerdere apparaten, waarbij de apparaten vergelijkbare technische specificaties hebben.
De controlemethode maakt gebruik van gelijkenis-gebaseerde data-uitwisseling om de
onzekerheid op het omgevingsmodel voor een bepaalde leer-agent te verlagen, op basis
van relevante gegevens van vergelijkbare apparaten. We laten zien dat het gebruik van
een dergelijk mechanisme de leernauwkeurigheid vergroot door onzekerheid en negatieve
overdracht van data te verminderen. Ten tweede construeren we een controlemethode
voor generieke multi-agentsystemen met een beperkte afhankelijkheidsstructuur. Concreet

7

Samenvatting

maken we gebruik van deze structuur om grote multi-agentsystemen te ontleden en
optimale controlebeslissingen te leren in de ontbonden representatie. We demonstreren,
zowel theoretisch als experimenteel, dat onze methode de leercomplexiteit aanzienlijk
vermindert bij het beschouwen van structuren met beperkte afhankelijkheden, en dus de
combinatorische explosie met betrekking tot een groot aantal agenten. De ontwikkelde
controle methodes zijn toepasbaar in verschillende multi-agent systemen die gelijkaardige
agenten of een beperkte afhankelijkheidsstructuur hebben. Ten slotte combineren we
de verkregen inzichten over apparaatgelijkenis en schaarse afhankelijkheidsstructuren en
breiden we onze aanpak uit tot een volwaardig AI-gestuurd windparkbesturingsmethode
die schaalbaar en optimaal is met betrekking tot de complexe kostenfuncties die inherent
zijn aan hedendaagse windparken. We laten zien dat onze methode in staat is om een
balans te vinden tussen de vraag naar energie en de geproduceerde stroom in het windpark,
terwijl we toch rekening houden met de kosten die worden opgelegd aan risicovolle turbines,
door beslissingen die potentieel schade veroorzaken te voorkomen.

8

Acknowledgments

While I truly enjoyed the five-year long journey I followed, it would not have been possible
without a few people.
First and foremost, I would like to express my gratitude to my supervisors, prof. dr. Ann

Nowé and prof. dr. Jan Helsen, for granting me the opportunity to be part of their labs
and for their guidance during this journey. Thank you both for your close guidance and
for allowing me the scientific freedom to pursue what interested me most. I look forward
to continue to collaborate with both of you in the near future.
Next, I want to thank my jury, for reading this dissertation in great detail, and for

providing constructive criticism. Thanks prof. dr. Daniel Kudenko (Leibniz University
Hannover), prof. dr. Jens Kober (Delft University of Technology), prof. dr. Amir Nejad
(Norwegian University of Science and Technology), prof. dr. Nikolaos Deligiannis (VUB),
prof. dr. Bernard Manderick (VUB) and the president of the jury, prof. dr. Elisa
Gonzalez Boix (VUB). Your suggestions and feedback were inspiring, and significantly
improved this work.
In addition, I want to thank dr. Pieter Libin and dr. Diederik Roijers for the close

collaboration and guidance. The research outcomes in this dissertation would not have
been so solid if not for your insights and experience, for which I am grateful.
I would like to thank the Flemish research foundation (FWO) for funding my research the

past four years. This personal research grant supported me to develop new AI algorithms
and gave me the opportunity to connect with other researchers world-wide.
Thanks to all the colleagues from the AI Lab and AVRG, for the fruitful collaborations and

for creating a pleasant working environment. In particular, I want to speak out to a few of
you. Felipe, thanks for all the refreshing conversations at work and the fun climbing sessions
we had. Eugenio, thanks for all your useful insights on RL, meaning both ‘Reinforcement

9

Acknowledgments

Learning’ and ‘Rocket League’. And, Pieter, thanks for all the projects that we jointly
investigated. Your valuable input always made my work better and your scientific rigour
made me become a better scientist.
Thanks to my friends. Especially Krista and Sergiu, for inviting me to their place on

Friday evenings after a long week of work. I want to thank my parents, grandparents and
sister for their support, throughout all my life. Finally, I want to thank my lovely partner,
Roxana. “Baby, you’re my forever girl.”

10

Contents

List of Jury Members 3

Summary 5

Samenvatting 7

Acknowledgments 9

Contents 11

Nomenclature 15

Glossary 19

1 Introduction 21
1 Loads and Lifetime of Wind Turbines . 22
2 Wind Farm Control and Reinforcement Learning 26
3 Research Contributions . 28

2 Multi-Armed Bandits and Reinforcement Learning 33
1 Bayesian Inference . 33
2 Multi-Armed Bandits . 36

2.1 Upper Confidence Bound . 37
2.2 Thompson Sampling . 38

11

CONTENTS

3 Reinforcement Learning . 39

3 Policy Iteration for Pools of Devices 43
1 Background . 45

1.1 Gaussian Process . 45
1.2 Model-Based Reinforcement Learning using Gaussian Processes . . 46

2 Related Work . 48
3 Coregionalization over Multiple Transition Models 49
4 Analysis of the Sparse Coregionalization Matrix 52
5 Experiments . 55

5.1 Mountain Car . 56
5.2 Cart-Pole . 59
5.3 Wind Turbines . 60

6 Discussion . 63

4 Thompson Sampling for Multi-Agent Bandits 65
1 Background . 67

1.1 Multi-Agent Multi-Armed Bandits 67
1.2 Variable Elimination in Coordination Graphs 70

2 Related work . 73
3 Multi-Agent Thompson Sampling . 75
4 Bayesian Regret Analysis . 76
5 Experiments . 84

5.1 Synthetic Benchmarks . 84
5.2 Wind Farm Control Application 87

6 Discussion . 89

5 Scalable Hybrid Optimization for Wind Farm Control 93
1 Related Work . 95
2 Problem Statement . 96
3 Operational Regimes . 98
4 Factorization . 103
5 Set-Point Thompson Sampling . 104
6 Experiments . 107
7 Discussion . 112

12

CONTENTS

6 Discussion 115
1 Contributions . 115
2 Valorisation Potential . 116
3 Future Work . 118

A Appendices 121
1 Success Rates of PIPoD . 121
2 Sensitivity Analysis of PIPoD . 122
3 Comparison of Intrinsic Coregionalization Model with Sparse Variant . . . 124
4 Exhaustive List of Empirical Results for SPTS 125

4.1 Learning Curves . 126
4.2 Best Set-Point Configurations 134
4.3 Farm-Wide Power Productions 136

Curriculum Vitae 145

Bibliography 153

13

Nomenclature

Ber (ps) Bernoulli distribution with success probability ps, page 34

Beta (α, β) beta distribution with α successes and β failures, page 34

I{x} indicator function, which evaluates to 1 if event x is true and evaluates to
0 if event x is false, page 34

R real numbers, page 34

x,x scalar, vector, page 36

E [·] expectation operator, page 36

A arm/action space, page 36

R reward function, page 36

µ(a) unknown expected reward of arm a, page 36

a∗ optimal arm/action, page 37

at chosen arm/action at time t, page 37

π policy, decision strategy, page 37

R(T, π) cumulative regret at time T when executing policy π, page 37

∆(a) difference between the expected rewards of the optimal arm and arm a,
page 37

15

NOMENCLATURE

µ̂t−1(a) empirical mean reward of arm a at time t, page 37

nt−1(a) number of pulls of arm a at time t, page 37

Qa(·) prior distribution on mean reward of arm a at time t, page 38

Ht−1 history of observations at time t, page 38

p (·) probability measure, page 39

O(·) Big-O notation, page 39

M Markov decision process, page 40

S state space, page 40

τ transition model, page 40

γ discount factor, page 40

V value function, page 41

Q Q-value function, page 41

σ standard deviation, page 45

GP (µ, k) Gaussian process with mean function µ and covariance kernel k, page 45

k(x,x′) kernel describing the covariance between the two random variables
associated with inputs x and x′, page 45

KX,X′ matrix obtained by applying the covariance kernel pairwise on the elements
in matrix X and matrix X ′, page 45

kSEθ squared exponential covariance kernel with hyperparameters θ, page 46

V [·] variance operator, page 48

Ssupp support states in Gaussian process reinforcement learning, page 48

vsupp support values in Gaussian process reinforcement learning, page 48

MPoD Markov decision process for pool of devices, page 49

T set of transition models, page 49

Cov [·, ·] covariance operator, page 51

16

NOMENCLATURE

φ weight parameter, page 51

I identity matrix, page 51

F weight parameter, page 51

ρ number of groups in a multi-agent multi-armed bandit, page 68

D set of agents in a multi-agent multi-armed bandit, page 68

De eth group of agents in a multi-agent multi-armed bandit, page 68

Ae local joint action space of group De in a multi-agent multi-armed bandit,
page 68

µe(ae) unknown expected local reward of local joint action ae, page 68

G coordination/dependency graph, page 68

Ã number of local joint actions in a multi-agent multi-armed bandit, page 76

log natural logarithm, page 78

||·||1 absolute-value norm of a vector, page 81

||·||2 Euclidean norm of a vector, page 81

P (λ) Poisson distribution with rate parameter λ, page 87

Gamma(α, β) gamma distribution with parameters α and β, page 87

Z operational zones or regimes, page 97

W set of wind turbines, page 97

G(w) group of agents on which agent w depends according to the dependency
graph G, page 97

AG(w) local joint action space of group G(w), page 97

Pw (a) power production of wind turbine w associated with local joint action a,
page 97

Lw (a) load-based penalty for wind turbine w associated with local joint action a,
page 97

Pdem power demand, page 97

17

NOMENCLATURE

fz fraction of the power demand assigned to regime z, page 97

N (µ,K) multivariate normal distribution with mean vector µ and covariance matrix
K, page 100

NIW (θ) normal-inverse-Wishart distribution with parameters θ, page 100

Dir (α,K) symmetric Dirichlet distribution with concentration parameter α and K

components, page 100

N natural numbers, page 100

τ torque, page 100

ω angular rotor speed, page 100

N (µ, σ) normal distribution with mean µ and standard deviation σ, page 105

d wind direction, page 109

nrisk number of high-risk wind turbines, page 109

18

Glossary

agent (semi-)autonomous AI-driven entity that learns to perform a task. 26

arm action taken by an agent in a multi-armed bandit. 36

bearing mechanical component that reduces friction between moving parts. 23

dynamic load substantial stress applied to mechanical components during short-term
dynamic events. 22

fatigue weakening of a structural component due to the rotations performed in normal
operating conditions. 22

gearbox wind turbine component that increases rotational speed from a low-speed rotor
into a high-speed electrical generator. 23

likelihood probability of observing an outcome during an experiment, given the statistical
model. 34

load stress applied to mechanical components. 22

posterior probability distribution over statistical model parameters after an experiment
takes place and the outcome is observed. 34

prior probability distribution over statistical model parameters before an experiment takes
place. 34

19

Glossary

regret loss in reward when executing a sub-optimal action. 36

set-point threshold on the power production of a wind turbine. 93

torque tendency of a force to rotate the body to which it is applied. 93

wake area behind an operating wind turbine where the wind speed is reduced. 26

20

1 | Introduction

As a scientific community, we recognize the effects of climate change [Solomon et al., 2007;
Mukherjee et al., 2018]. Moreover, many European countries are phasing out nuclear power
generation [Glacer, 2012]. This reality presents an opportunity to strategically increase the
generation of renewable energy. In 2017, the worldwide installed wind capacity increased
by 10% [Global Wind Energy Council, 2018]. Offshore wind is expected to play a large
role, as the European offshore installations doubled in 2017 compared to 2016 [Fraile et al.,
2018], and is still increasing [REN21 Secretariat, 2020]. A major hurdle to the development
and adoption of renewable electricity sources is ensuring that these are cost competitive
with fossil fuel energy sources. More specifically, they need to meet or exceed the ratio
between expected production and lifetime costs, commonly defined as Levelized Cost Of
Energy (LCOE) [Short et al., 2005].
For long-term viability, offshore wind must significantly improve its cost efficiency [Irawan

et al., 2017]. Today, land-based wind energy is cost competitive at sites with strong wind
[Wiser and Bolinger, 2015]. However, in Europe ideal onshore sites are already becoming
exhausted, so expansion of wind farms will require placement in more remote locations,
resulting in higher logistics costs [Treviño Cantú, 2011; Huang et al., 2017]. To reduce
LCOE for wind energy, reliability of turbines must rapidly be improved, even in harsh
environments [Clark and DuPont, 2018].
We consider reliability to be the likelihood that a turbine and its components will meet

or exceed their prescribed design life [Ansell and Phillips, 1994]. In that sense, a robust
machine is optimized to perform its function in any condition that it may encounter during

21

CHAPTER 1. INTRODUCTION

its lifetime. Overdesigning the turbine is not a viable solution to improve its reliability, as
the capital cost of the turbine would increase significantly.
Truly robust implementation at the lowest cost requires that the loads, i.e., the stress

induced on the turbine, are intimately understood. The case of dynamically changing
multidimensional loads of such great magnitude, as found in wind turbines, is uncommon
with other industrial machinery, and insufficiently understood [Struggl et al., 2015; Junior
et al., 2017]. The loading conditions that lead to failure are often a combination of
environmental dynamics (i.e., rapidly fluctuating wind speeds) and electrical grid-based
events [Keller et al., 2016]. Site-specific conditions and corresponding turbine responses
play a significant role, because the most significant failures occur only on a subset of
turbines within the wind farm [Schiermeier, 2016]. Sites differ in wind resource, terrain,
seasonal events, and atmospheric changes. Additionally, the electricity grid covers different
subregions, each with specific utility interconnection requirements, and even changes in
behavior within the region [Muljadi et al., 2007]. This poses significantly fluctuating
loading conditions on the turbine that are at the origin of failure.
While it is tempting to consider a wind turbine as a generic entity, and impose

operational control from this perspective, in reality each individual mechanical unit is
unique. Therefore, maximum reliability can best be achieved by considering the wind farm
as a data-compiling collective, and capturing the similarities between turbines that exist on
a statistical level, while acknowledging the uniqueness in their specific operational behavior.
In this dissertation, we develop multi-agent control techniques that are scalable to the

size of contemporary wind farms, and can handle the complex cost-functions associated
with the multi-dimensional load spectrum. Although wind farm control research mainly
focuses on static loads and power production [Knudsen et al., 2015; Boersma et al., 2017],
the reduction of dynamic loads (i.e., loads induced by dynamic events, such as storms and
grid events) through operational measures has received less attention. However, dynamic
loading conditions have a significant impact on the probability of failure. Failures directly
affect the availability of the turbines and reduce lifetime costs [Clark and DuPont, 2018].
Therefore, it is crucial to investigate and to understand the link between dynamic loads
and failures, such that these measures can be implemented through targeted wind farm
control strategies.

1 Loads and Lifetime of Wind Turbines
Contemporary wind farm controllers only optimize loads due to fatigue, i.e., the weakening
of a structural component due to the rotations performed in normal operating conditions.
These loads are well-understood and are already considered during the design phase of the
turbine [Ansell and Phillips, 1994]. Still, turbine components can fail prematurely at only

22

1. LOADS AND LIFETIME OF WIND TURBINES

5% of their design life due to various loading conditions [Greco et al., 2013]. In this section,
we provide evidence that loads induced by specific dynamic events significantly increase
the probability of premature failure, which reduces the design life of turbine components.

Figure 1.1: Diagram that depicts the inside of a turbine [U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy, 2013].

A large majority of failures in the gearbox, i.e., the component that increases rotational
speed from a low-speed rotor into a high-speed electrical generator (see Figure 1.1), are
caused by microstructural cracks in the steel of the bearing [Link et al., 2011; National
Renewable Energy Laboratory, 2016]. Bearings are mechanical elements that reduce
friction between the moving parts in the gearbox. These elements are expected to fail
due to fatigue at the end of their predicted lifetime, which is determined during the
design phase. However, failure caused by microstructural cracks can result in a significant
reduction of the bearing’s design life (95%) [Greco et al., 2013]. Figure 1.2 shows an
example of bearing damage. While unveiling the failure mechanism that causes such
microstructural damage is still ongoing research [Pape et al., 2018], the associated loading
conditions are not anticipated during the design phase.
Rolling bearings reduce friction between the attached moving rings through the means

of rolling elements (e.g., balls), as shown in Figure 1.3. In a turbine’s gearbox, such a
bearing reduces friction between a rotating shaft and the stationary housing of the gearbox.
Under normal operating conditions, the rollers’ trajectories should be close to the optimal

23

CHAPTER 1. INTRODUCTION

Figure 1.2: Example of bearing damage due to microstructural cracking caused by roller
slipping [Gould and Aaron, 2015].

rolling path. For example, in Figure 1.3, if the inner ring is rotating and the outer ring
is non-stationary, the balls should roll smoothly over the outer ring with little friction.
Deviation from the optimal path induces slipping of the rollers, scratching the surface
of the rings. Excessive slipping damages bearings because of sliding effects between the
rollers and bearing rings, causing extensive wear and potentially crack initiation. This
slipping can be caused by loads induced by certain control actions, such as pitching of
the turbine’s blades, start-up, emergency braking or rotating, during dynamic wind or grid
events [Bruce et al., 2015; Greco et al., 2013].
To investigate the root causes of premature failure of wind turbine gearboxes, the USA’s

National Renewable Energy Lab (NREL) established the Gearbox Reliability Collaborative
(GRC) project. In the context of this project, a series of experiments was conducted on
a test setup that comprises a gearbox, mounted on a dynamometer that measures the
force, power and speed of the gearbox [LaCava et al., 2011; Link et al., 2013]. The
dynamometer has 4 degrees of freedom to control the load input to represent complex

24

1. LOADS AND LIFETIME OF WIND TURBINES

(a) Ball bearing (b) Diagram

Figure 1.3: Example of a small rolling bearing (a) with a diagram indicating the rolling
elements and two bearing rings (b). The relative motion of the rings causes the balls to
roll with little friction. (Photo of ball bearing by deel de/Pixabay)

wind flow patterns. Additionally, this experimental setting allows to perform simulations
of the electricity grid [Helsen et al., 2018a].
On the GRC setup, two fault scenarios were investigated, in which experimentally sampled

loads of a real wind turbine were used as load inputs on the dynamometer. First, grid-
loss events, i.e., a disconnection from the electricity grid during turbine operation, were
simulated. As this causes a sudden stop of the turbine operation, slipping of the rolling
bearings is investigated, which can lead to bearing damage [Guo et al., 2015; LaCava
et al., 2013]. To test the effects of grid instability, the gearbox was subjected to several
worst-case grid-loss events initiated at different power levels [Helsen et al., 2016b, 2018a].
During these events, the generator currents dropped to zero instantaneously. The system’s
response was consistent and resulted in multidimensional loading causing the rollers to
slip excessively [Helsen et al., 2016a]. Because these slip conditions increase the risk of
bearing damage, it follows that an electric event has the potential to cause unfavorable
dynamic loading and possible degradation of the gearbox system. Second, bearing damage
due to overloading caused by rotor moments was analyzed [Link et al., 2011]. While
rotor moments significantly contribute to bearing failures, they are currently insufficiently
understood. These moments are caused by overhung weight, excessive wind changes,
orienting out of the wind direction and certain turbine control actions (e.g., emergency
braking). These conditions lead to unfavorable loading on the turbine blades that, in many
turbine designs, is subsequently passed to the gearbox [Helsen et al., 2014]. The inability
to counteract bending of the turbine components, in combination with gear misalignment,
causes overloading of the bearings and hence significantly accelerates bearing failure
[LaCava et al., 2011; Keller et al., 2012].

25

CHAPTER 1. INTRODUCTION

These experiments demonstrate that a turbine’s response to dynamic wind and grid events
can initiate mechanical degradation of bearings, and ultimately lead to failure. Therefore,
it is important to consider dynamic loads in wind farm control strategies.

2 Wind Farm Control and Reinforcement Learning
The design of wind farm controllers is typically grounded in domain knowledge about the
physics of the system [Boersma et al., 2017; Siniscalchi-Minna et al., 2019]. For example,
one can recognize that upstream turbines, with respect to the dominant wind direction,
typically observe higher fatigue loads than downstream turbines [Jensen et al., 2016].
Therefore, control measures can be taken to reduce the power production of upstream
turbines, while maximizing the power production of downstream turbines. While such
heuristics drastically reduce the computational complexity of searching for optimal control
strategies, they fail to capture the full complexity of the dynamically-changing multi-
dimensional load spectrum. In order to develop advanced control strategies, it is necessary
to consider the full load spectrum to increase reliability and sustainability of wind farms.

In contrast to physics-based heuristics, wind farm controllers based on artificial
intelligence (AI) can learn strategies without requiring in-depth knowledge about the non-
linear dependencies that exist between the wind turbines that make up the farm. An
example of such a AI-driven framework is proposed by van Dijk et al. [2016], in which
reinforcement learning techniques are used to search for the optimal rotor orientation
to deflect wake away from downstream turbines. However, state-of-the-art control
optimization algorithms scale poorly to larger wind farms, as the number of possible
configurations grows exponentially with respect to the number of wind turbines. Therefore,
we argue that a hybrid approach, combining both flexible AI-driven methods and physics-
based domain knowledge, is key to guarantee both optimality and scalability of wind
farm controllers.

In this dissertation, we focus on developing optimal and scalable AI-driven methods
using reinforcement learning techniques [Sutton and Barto, 2018] and multi-armed bandit
algorithms [Lattimore and Szepesvári, 2020]. Our techniques allow devices, or agents,
to optimize their control strategy by interacting with the environment and assessing the
quality of control decisions within this environment through various data sources. Such
data-driven techniques do not require complete knowledge about the system dynamics,
which render them useful in complex, non-linear settings. However, as state-of-the-art
reinforcement learning and multi-armed bandit techniques typically require a large amount
of data to learn good control strategies, a key challenge is to increase sample-efficiency,
such that these techniques become viable in real-life applications [Yu, 2018]. In this regard,

26

2. WIND FARM CONTROL AND REINFORCEMENT LEARNING

Figure 1.4: Wake effect – Turbulent wind flow generated behind each turbine in the Horns
Rev wind farm in Denmark [Christian Steiness/Vattenfall/Flickr, 2010].

we note that in many applications there is an abundance of domain knowledge available
that can be used to guide the learning process.
In our case, wind farms exhibit properties that can be exploited to increase sample-

efficiency. On the one hand, turbines are expected to be highly similar in terms of their
operational behavior, as they typically have the same design specifications within a single
wind farm [Feng and Shen, 2017]. This property allows wind farm controllers to perform
data exchange between the turbines about suitable control strategies. However, there
may be discrepancies in the turbines’ conditions, e.g., due to production errors, their
location within the wind farm or degradation [Staffell and Green, 2014]. Therefore, it
is important to analyze the similarities between the turbines and perform data exchange
between two turbines only when it is relevant and appropriate. On the other hand, due
to the wind farm’s topology, the dependency structure between turbines is expected to be
sparse. As a wind farm is a large-scale multi-agent system, the wind farm controller has to
consider all relevant combinations of turbine-specific actions. This space of combinations
scales exponentially with the number of turbines. Therefore, it is important to exploit
the sparsity of the wind farm structure to ensure for a scalable coordination mechanism.
Indeed, within the wind farm’s topology, it is possible to create a graph structure, describing
the dependencies between turbines, and coordinate herein. For example, when upstream
turbines extract energy from wind, the power production of neighboring downstream
turbines is reduced. Figure 1.4 shows an example of this effect, in which we observe

27

CHAPTER 1. INTRODUCTION

that only a limited subset of downstream turbines is affected by the upstream turbines.
Although considering these dependencies is essential to learn control strategies in a feasible
manner, the optimization process is not trivial. Specifically, local optimization of the joint
control decisions within the turbine groups is not possible, as a turbine may be part of
multiple groups, and thus conflicting decisions in terms of local optimality may arise.
Thus, global optimality of the wind farm controller must be ensured, while still allowing
for local decision making.

3 Research Contributions
The ability to seamlessly include knowledge into the control mechanism is crucial to render
AI-driven wind farm control tractable. In this dissertation, we focus on three properties
that are inherent to wind farm technology. First, turbines are generally quasi-identical
in design [Feng and Shen, 2017]. Exploiting the similarities that exist between turbines
can significantly improve sample-efficiency. Second, due to the geographical structure of
wind farms, the operating condition of a single turbine mainly influences its neighbors.
This insight can prove to be useful to create a factored representation of the controller
optimization problem. Third, general knowledge about operational data/statistics is
often readily available. For example, the expected power production under specific wind
conditions for a single turbine is part of the turbine’s design specifications [Sohoni et al.,
2016]. Leveraging this knowledge, the controller learning process can be guided toward
viable solutions that are physically grounded.
We propose a multi-tiered approach to construct the wind farm controller (see

Figure 1.5). First, we investigate each of the aforementioned properties separately and
develop generic learning methods that focus on a subset of those properties. These
generic methods will be useful for a wide variety of applications. Still, we demonstrate
the practicality of every method on synthetic wind farm control tasks. Subsequently, we
compile the insights gained during the development of these methods and construct a
single wind farm control learning method that leverages the similarities between turbines,
the sparse topology of the wind farm, and prior knowledge about the data. All methods
will be developed within a Bayesian framework, which allows for the seamless integration
of domain knowledge in the form of prior and likelihood distributions.

1. Data exchange over a pool of devices with similar dynamics to improve sample-efficiency
of control learning methods

In many applications, multiple devices are instantiated to perform the same task.
Typically, these devices have the same or similar design specifications, as is for example

28

3. RESEARCH CONTRIBUTIONS

Exploitation of similar system specifications
(Chapter 3)

Status: Prone to failure
à Control: Reduce risk

Status: Normal
à Control: Performance

Coordination in sparse multi-agent topologies
(Chapter 4)

Scalable Wind Farm Control
(Chapter 5)

Photo by Christian Steiness / Vattenfall
(Horns Rev Offshore Wind Farm, Denmark)

Similar operational zones Sparse dependency structure

500 1000 1500 2000 2500 3000 3500 4000 4500
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
ti
on

 (
in

 m
)

Figure 1.5: Multi-tiered approach to scalable AI-driven control.

the case in wind farms [Feng and Shen, 2017]. We refer to such systems as pools
of devices. Due to the similarities that exist within a pool of devices1 (PoD), a
learned device-specific control strategy is expected to be reasonably representative
for all devices that make up the pool. While learning, information about promising
control strategies can be shared among members of the PoD. However, it is expected
that not all devices have identical operational behavior, due to differences in health
status or small design discrepancies. Therefore, it is important to identify similarities
between devices, and implement a smart data exchange mechanism that only shares
relevant control information between similar devices.
We propose a new reinforcement learning method, called policy iteration for pools

of devices (PIPoD), in which knowledge transfer about the operational behavior of
similar devices is possible without compromising the specificity of an individual’s
operational behavior. More specifically, we create a Bayesian reinforcement learning
method that detects correlations between the transition models of the PoD members
and uses them to transfer data between members. Additionally, the use of a
1In the literature, a pool of devices is sometimes referred to as a ‘fleet’. However, to prevent any

confusion with fleets in the context of vehicles (e.g., airplanes and ships), we opted for using the term
‘pool of devices’ to allow for a broader range of applications (e.g., wind farms and assembly lines).

29

CHAPTER 1. INTRODUCTION

Bayesian framework allows the inclusion of prior knowledge in terms of the operating
conditions. We evaluate our method against two baselines. On the one hand, we
compare against a learning agent that does not use a transfer mechanism. On
the other hand, we compare against an agent that uses the data of the entire
PoD, as if all PoD members are identical. As our results show, the latter leads
to negative transfer, in which the transfer of unrepresentative information biases
the learning process of the agent. Our method outperforms both baselines, which
demonstrates its ability to identify similar PoD members and share data between
them. Additionally, we demonstrate the applicability of our method on a synthetic
wind farm control task, in which multiple rows of two turbines have to sequentially
rotate the turbines with respect to the incoming wind vector in order to maximize
the row’s total power production. The efficiency of the electrical generator is varied
over turbine rows to simulate discrepancies in operational behavior. We show that
PIPoD successfully performs transfer between similar turbine rows and efficiently
learns the optimal orientation of the turbines.

2. Coordinated learning of joint control strategies in loosely-coupled multi-agent systems

Learning control strategies in multi-agent systems is challenging. Without prior
information about the structure of the problem, optimality can only be guaranteed by
learning over the full joint action space. As the joint action space scales exponentially
with the number of agents, it is infeasible to learn optimal control strategies. In this
regard, we note that wind farms have a sparse topology, i.e., dependencies between
turbines only exist locally. Specifically, it is expected that operational upstream
turbines only affect a small subset of turbines downstream [González-Longatt et al.,
2012]. When a sparse dependency structure is available, it is important to exploit it
to ensure the scalability of control learning methods to larger multi-agent systems.
We propose a new sample-efficient multi-armed bandit approach for coordinating

agents in multi-agent settings with a sparse topology, called multi-agent Thompson
sampling (MATS). We prove theoretically that, for subgaussian data distributions,
MATS can successfully factorize the joint action space, while still converging to
the optimal policy over time. Moreover, MATS achieves state-of-the-art empirical
performance on various benchmarks. Finally, we demonstrate the practical benefits
of MATS on a synthetic wind farm control task, in which 11 turbines have to orient
themselves with respect to the incoming wind vector to maximize the farm’s total
power production.

30

3. RESEARCH CONTRIBUTIONS

3. Scalable optimization for large-scale wind farm control

In the context of active power control, wind farm controllers need to assign thresholds
on the power production to meet a power demand imposed by the grid operator.
Such wind farm controllers are generally based on heuristics derived from physics-
based knowledge. Although such heuristics are accurate and efficient in terms of
reaching the demand, they fail to capture the complete load spectrum that defines
a turbine’s health status. As the load spectrum is highly complex, flexible AI-driven
control approaches are necessary. However, learning control strategies in large wind
farms is non-trivial and intractable when approached naively.
Therefore, we propose a new sample-efficient learning method for large-scale wind

farm control, called set-point Thompson sampling (SPTS), that consolidates the
previous contributions. Specifically, the learning method leverages similarities among
the turbines’ loading conditions and the sparse structure of the wind farm, to
determine the optimal farm configuration that matches the demand as closely as
possible, while considering the turbines’ health status. Additionally, we adopt the
Bayesian formalism to effectively include prior knowledge about statistics and the
shape of the data distribution. We demonstrate that SPTS effectively and efficiently
learns optimal set-point allocation strategies for contemporary wind farms.

We start by providing some background on multi-armed bandits and reinforcement
learning, two frameworks that will be used to conceptualize the settings for which our
methods are applicable, in Chapter 2. Next, we examine the possibility of data exchange
among similar control agents in a pool of devices in Chapter 3. Then, we investigate
how sparse coordination graphs can be incorporated in multi-agent control strategies
in Chapter 4. In Chapter 5, we leverage all previously investigated properties to learn
optimally advanced wind farm control strategies in a sample-efficient manner. Finally, we
conclude with a general discussion, highlighting potential valorisation steps and future
work, in Chapter 6.

The rationale of this dissertation and the survey on dynamic loads, described in this
chapter, were published in Renewable & Sustainable Energy Reviews:

• Verstraeten, T., Nowé, A., Keller, J., Guo, Y., Sheng, S. and Helsen, J. (2019),
Fleetwide data-enabled reliability improvement of wind turbines, Renewable &
Sustainable Energy Reviews, 109, 428–437

31

2 | Multi-Armed Bandits and
Reinforcement Learning

We focus on learning control policies through AI-driven methods. Throughout this
dissertation, we formalize our settings as both multi-armed bandits and Markov decision
processes, commonly used in reinforcement learning. Reinforcement learning considers
a set of techniques to solve decision making problems through trial-and-error learning
[Sutton and Barto, 2018]. These techniques allow an agent to optimize its control
strategy by interacting with its environment and assessing the quality of control decisions.
Whenever a long-term reward over a sequence of state-transitions must be optimized, the
environment is typically formalized as Markov decision process. In contrast, multi-armed
bandits are used to formalize stateless settings, in which the reward of a control strategy
as a whole must be maximized. In this chapter, we provide the necessary background
on both multi-armed bandits and stateful reinforcement learning. As we heavily rely on
Bayesian methodologies within this dissertation, we first introduce Bayesian inference.

1 Bayesian Inference
To provide an intuitive explanation of Bayesian inference, we start from a coin tossing
example, in which we attempt to derive the probability of landing on heads by tossing a
(loaded) coin repeatedly.

33

CHAPTER 2. MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING

Consider a coin with an unknown probability pH of landing on heads. The outcome of
a coin toss is modeled as a sample from a Bernoulli distribution.

x ∼ Ber (· | pH) , (2.1)

where x = H is heads and x = T is tails. This distribution is referred to as the likelihood
distribution, as it describes how likely it is for a specific outcome to occur.
The distribution assumes that the parameter pH is known. However, in the coin toss

experiment, this is not the case. From the Bayesian perspective, parameters that are
unknown to the person performing the experiment, i.e., the user, should be regarded as a
random variable. Therefore, in the coin toss experiment, we model the parameter pH as
a random variable. As the uncertainty of this variable can be fully described in terms of
the user’s knowledge, it is the user’s responsibility to formalize her/his prior uncertainty
about the variable through a prior distribution. For example, the user might be inclined
to construct a distribution centered around pH = 0.5 (i.e., it is equally probable that
the coin lands on heads or on tails), with a variance that represents the trust-worthiness
of the entity that provides the coin. Although the user is allowed to describe any type
of distribution, often priors that are conjugate to the likelihood are chosen, which allows
for analytic inference. In the coin toss experiment, the conjugate prior to the binomial
distribution is a Beta distribution, i.e.,

pH ∼ Beta (· | α0, β0) , (2.2)

where α0 and β0 represent how many heads and tails, respectively, are believed to have
been observed before the experiment is performed.
In practice, domain knowledge about the problem at hand is often available. However,

in case such information is unavailable, an uninformative prior distribution can be chosen,
such as the Jeffreys prior [Lunn et al., 2012], which is invariant under reparametrization.
In the coin tossing example, the Jeffreys prior would be Beta (α0 = 0.5, β0 = 0.5).
When tossing the coin, an outcome x (heads or tails) can be observed. We aim to derive

the posterior distribution over the parameter pH , which describes the information we have
about the coin, taking into account the observed outcome. Formally, using Bayes’ rule,
the posterior distribution can be derived as follows:

Beta (pH | α1, β1) = Ber (x | pH)Beta (pH | α0, β0)∫
R Ber (x | pH)Beta (pH | α0, β0) dpH

, (2.3)

where α1 = α0 + I{xi = H} and β1 = β0 + I{xi = T}, representing the total number
of times that heads and tails are observed, including the prior numbers α0 and β0. I{x}
is the indicator function, which evaluates to 1 if event x is true and evaluates to 0 if
event x is false.

34

1. BAYESIAN INFERENCE

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

0 heads, 0 tails

0.0 0.2 0.4 0.6 0.8 1.0
De

ns
ity

1 heads, 0 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

6 heads, 4 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity
34 heads, 16 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

69 heads, 31 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

144 heads, 56 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

352 heads, 148 tails

0.0 0.2 0.4 0.6 0.8 1.0

De
ns

ity

samples

Figure 2.1: Evolution of the posterior distribution, depicted for 0, 1, 10, 50, 100, 200, 500
and an infinite amount of coin tosses. As the coin is tossed and the outcome is observed,
the posterior’s mean converges to the true probability of heads (dashed line), while its
variance reduces.

35

CHAPTER 2. MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING

While the likelihood distribution describes the data observed during the experiment, the
prior and posterior distributions describe the beliefs of the user about unknown parameters.
Therefore, we often refer to priors and posteriors as belief distributions.
Figure 2.1 shows an example of the evolution of the belief distribution over repeated

coin tosses. The prior distribution is uniform, signifying maximum uncertainty about the
possible values for pH . When the coin is tossed multiple times, the belief distribution
converges toward a peak centered around the true value.

2 Multi-Armed Bandits
The term “multi-armed bandits” refers to slot machines that are used in casinos. In a
casino, the goal of a player is to pull the arm of the slot machine that has the highest
expected gain. Naturally, which slot machine is the best to pull is unknown information
beforehand, and must be found through trial-and-error without losing too much money
in the process. This example demonstrates the trade-off between exploration, i.e., trying
different arms to acquire information about which arm is best, and exploitation, i.e.,
focusing on the arm that is believed to be optimal. This formalism can be used to model
various decision making problems, such as on-line advertisement [Chapelle and Li, 2011;
Rhuggenaath et al., 2019], the mitigation of epidemics [Libin et al., 2019] and wind farm
control [Bargiacchi et al., 2018].
Formally, a multi-armed bandit considers a discrete set of arms (i.e., actions) that when

pulled (i.e., executed) return a stochastic reward [Auer et al., 2002].

Definition 1: Multi-armed bandit

The multi-armed bandit has a finite set of arms A, where each arm a ∈ A returns
a reward R(a) when it is pulled. Each arm a has an associated reward distribution
with an unknown expected reward, to which we refer as µ(a) = E [R(a)].

The objective is to minimize the expected cumulative regret, which is the cost incurred
over time when pulling a particular arm instead of the optimal one [Agrawal and Goyal,
2013a].

36

2. MULTI-ARMED BANDITS

Definition 2: Cumulative regret

The expected cumulative regret of pulling a sequence of arms until time step T

according to a policy π is

E [R(T, π)] = E
[
T∑
t=1

∆(at)

∣∣∣∣∣ π
]

(2.4)

with

∆(at) = µ(a∗)− µ(at) (2.5)

where a∗ is the optimal arm and at is the arm pulled at time t. For the sake of
brevity, we will omit π when the context is clear.

Note that the optimal arm a∗ in Definition 2 is considered to be a known value. However,
from the Bayesian perspective, it is often assumed that a∗ is a random variable. When the
regret is marginalised over the random variable a∗, and thus the regret becomes problem-
independent, we often use the term Bayesian regret. Although a∗ always refers to the
optimal arm throughout the dissertation, we often use it as a fixed value or as a random
variable when the context is clear.
To minimize the cumulative regret, a decision strategy π should be chosen that balances

exploration (i.e., searching for the optimal arm) and exploitation (i.e., pulling the arm that
is believed to be optimal given the acquired evidence).

2.1 Upper Confidence Bound
One of the most well-known decision strategies is the Upper Confidence Bound (UCB)
algorithm [Auer et al., 2002]. UCB is a frequentist approach that establishes confidence
bounds around the empirical mean of each arm, and balances exploration and exploitation
by optimistically selecting arms for which the upper confidence bound is high. Specifically,
at time t, it uses the following arm selection mechanism:

arg max
a

µ̂t−1(a)︸ ︷︷ ︸
sample mean

+ c

√
ln t

nt−1(a)︸ ︷︷ ︸
exploration term

, (2.6)

where c is a constant, µ̂t−1(a) is the sample mean, and nt−1(a) is the number of pulls of
arm a at time t. Intuitively, this mechanism prefers promising arms that were played less
(i.e., arms with a high sample mean and/or a high exploration term).

37

CHAPTER 2. MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING

One of the drawbacks of frequentist approaches is the difficulty to include prior knowledge
about the problem domain. For example, the exploration bound in Equation 2.6 is derived
for a wide variety of reward distributions, and ensures that the algorithm eventually
learns the optimal action [Auer et al., 2002; Lattimore and Szepesvári, 2020]. However,
when more information about the reward distribution (e.g., the shape) is available, it is
challenging to alter the exploration term to improve the learning speed. In many physical
applications, expert knowledge is available that can guide the exploration-exploitation
process toward arms that are believed to be good, and away from arms that are believed
to be bad. In such cases, Bayesian methods are often favored.

2.2 Thompson Sampling
Thompson sampling is another popular approach to solve multi-armed bandits [Thompson,
1933]. It employs a Bayesian statistical framework, which provides a natural way to
incorporate prior domain knowledge about available data and statistics. Thompson
sampling has been shown to be highly competitive with other popular methods, e.g., UCB
[Chapelle and Li, 2011]. Recently, theoretical guarantees on its regret have been established
[Agrawal and Goyal, 2012], which renders the method increasingly popular in the literature.
Additionally, due to its Bayesian nature, problem-specific priors can be specified. We argue
that this has strong relevance in many practical fields, such as advertisement selection
[Chapelle and Li, 2011] and influenza mitigation [Libin et al., 2018, 2019].
Thompson sampling adopts the Bayesian formalism, which means the user has to assert

their beliefs over the unknown means µ(a) in the form of a prior distribution, Qa. At
each time step t, Thompson sampling draws a sample µt(a) from the posterior, which
is the prior conditioned on the history, Ht−1, consisting of previously pulled arms and
observed rewards:

µt(a) ∼ Qa(· | Ht−1)
Ht−1 = ∪t−1

i=1{〈ai, ri(ai)〉}.
(2.7)

Thompson sampling chooses the arm with the highest sampled mean, i.e.,

at = arg max
a

µt(a). (2.8)

The chosen arm at is pulled, and a reward rt(at) is observed. The history is updated with
the observed evidence using Bayesian inference and the cycle repeats.
Note that Thompson sampling draws directly from the posterior over the unknown means.

This implies that the chosen action at and the unknown optimal action a∗ are conditionally
independent given the history of observations and identically distributed at time step t.

38

3. REINFORCEMENT LEARNING

This feature is called probability matching [Lattimore and Szepesvári, 2020], which reflects
that the posteriors maintained by the algorithm exactly matches the user’s beliefs after
observing the same evidence.

Definition 3

Probability matching is a decision strategy which chooses an arm with the same
probability as that arm being optimal, given history Ht−1, i.e.,

p (at = · | Ht−1) = p (a∗ = · | Ht−1) , (2.9)

where a∗ is the optimal arm and at is the pulled arm at time t.

It can be shown that, when using Thompson sampling for bounded reward distributions,
the cumulative regret until time T has an asymptotic upper bound of O

(√
AT log T

)
,

where A is the number of arms [Russo and Van Roy, 2014]. This bound is also valid
for subgaussian reward distributions, i.e., distributions of which the tails can be upper-
bounded by a Gaussian [Vershynin, 2018]. The theoretical upper bound provides insights
on how the performance of Thompson sampling evolves. First, the bound is sub-linear in
terms of time. This entails that the performance gap converges to 0, which suggests that
the chosen arm will improve over time. Second, the bound increases with the number of
arms. In single-agent settings, this is typically not a problem. However, in multi-agent
settings, the number of arms (and therefore, the regret bound) scales exponentially with
respect to the number of agents. As we describe in Chapter 4, it is possible to alleviate
this issue by leveraging the loose couplings that exist between agents.

3 Reinforcement Learning
Multi-armed bandits consider settings where the immediate rewards, gained when pulling a
sequence of arms, are optimized. However, there are many problems where it is necessary
to consider the long-term consequences of an action. Sequential decision making, in
which the control policy maximizes the cumulative reward in the long term, is called
reinforcement learning [Sutton and Barto, 2018].
Consider an agent playing chess, where a reward is given when the agent wins the game

and a penalty is given when the agent loses the game. To win the game, the agent has
to execute a sequence of moves based on the current state of the board. As it is often
necessary to perform actions that in the short-term may lead to bad board states (e.g.,
sacrificing chess pieces), it is important that the agent considers the long-term reward of
the game, which is only provided when it wins. Therefore, in this setting, the optimization

39

CHAPTER 2. MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING

criterion should be the cumulative reward, rather than the immediate reward, gained when
executing an action.
A reinforcement learning problem is typically formalized as a Markov decision process

[Puterman, 1994].

Definition 4

A Markov decision process is a tupleM = 〈S,A, τ, γ, R〉, where:

• S is the state space, which is a set of states containing contextual features
about the environment.

• A is the action space, which is a set of actions that the agent can take in each
state.

• τ : S ×A → S is a transition function returning the state s′ when executing
action a in state s,

• R : S ×A× S → R is the immediate reward function, and
• γ ∈ [0, 1) is the discount factor determining the importance of future rewards.

State 𝑠!

Action 𝑎!

State 𝑠!"# and reward 𝑟!"#

EnvironmentAgent

Figure 2.2: Reinforcement learning cycle – The agent first observes a state st at time
t. Based on this information, it decides on an action at to execute in the environment.
The environment returns a new state st+1 and a reward rt+1 for performing the transition
〈st, at, st+1〉.

An agent acts according to a policy π : S → A, which defines the action an agent should
take in a particular state. The expected long-term reward, when following a policy π, is
defined by a value function V π. This function can be written recursively as the sum of

40

3. REINFORCEMENT LEARNING

the expected immediate reward and future reward, i.e.,

V π(s) = E [R(s, π(s), s′) + γV π(s′) | s′ = τ(s, π(s))] . (2.10)

This is the sum of all possible long-term rewards weighted by their probability of occurrence
when executing a policy π. The expectation is taken over the possible trajectories that
can manifest according to the stochasticity in the transition model and reward function.
The goal of an agent is to learn the optimal policy,

π∗ : S → A, (2.11)

which maximizes the value function over all states. The reinforcement learning cycle is
depicted in Figure 2.2.
Many approaches exist to solve an MDP. One of the most popular techniques is Q-learning

[Sutton and Barto, 2018], which is a value-based approach that aims to find the policy that
greedily maximizes the total cumulative reward. It maintains Q-values, which describe the
quality of actions taken at a particular state, i.e., the expected cumulative reward when
first performing the action and then executing the current policy, and computes these
values iteratively over time according to the following update-rule:

Qt+1(st, at) = Qt(st, at) + αδt(st, at, st+1), (2.12)

where st and at are the state and action observed at time t, α is the learning rate and

δt(st, at, st+1) = R(st, at, st+1) + γmax
a

Qt(st+1, a)︸ ︷︷ ︸
new estimate

−Qt(st, at)︸ ︷︷ ︸
old estimate

(2.13)

is the temporal difference error at time t, i.e., the difference between the new and old
estimates for the expected cumulative reward of action at in state st. The full algorithm
is provided in Algorithm 1.
Temporal difference learning is a type of model-free reinforcement learning. Although

model-free methods are flexible toward many applications, they do not use (prior)
information about the environment to guide the learning process. Using a model of
the environment is often preferred, as these are readily available in many application
domains, such as robotics [Polydoros and Nalpantidis, 2017; Kober et al., 2013; Rastogi
et al., 2018], and significantly improve the sample-efficiency of reinforcement learning
methods. In model-based reinforcement learning, the transition and reward functions are
learned (or provided) to guide the optimization process of the control policy. In most
cases, alternative trajectories are simulated and evaluated using an estimated model of
the environment, in order to augment the real experiences of the agent [Sutton, 1990].

41

CHAPTER 2. MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING

Algorithm 1: Q-Learning [Sutton and Barto, 2018]
Given: learning rate α

1 for s ∈ S, a ∈ A do
2 initialize Q0 (s, a)
3 end
4 Initialize s0
5 for each time step: t ∈ [0, . . . ,+∞[do
6 Choose at in st using a policy derived from Q0 (s, a)
7 Take action at and observe reward rt+1 and the next state st+1
8 Qt+1 (st, at)← Qt (st, at) + α (rt+1 + γmaxaQt (st+1, a)−Q (st, at))
9 end

Under certain conditions, it is possible to analytically derive the value function from the
model [Deisenroth and Rasmussen, 2011].
In many situations, only partial information of the environment is available, and thus the

complete environment needs to be estimated using state transitions. A commonly used
estimator for modeling the environment is a Gaussian process [Deisenroth and Rasmussen,
2011; Rasmussen and Kuss, 2003]. Gaussian processes are Bayesian models that capture
the uncertainty about the model parameters and has the ability to seamlessly incorporate
prior knowledge about the data distribution, which renders them popular in many practical
applications [Chen et al., 2013a; Vanhatalo et al., 2010]. As they rely on the Bayesian
framework, Gaussian processes are updated through Bayesian inference.
In Chapter 3, we propose a new model-based reinforcement learning algorithm that uses

Gaussian processes to jointly model the state-transitions performed by multiple similar
learning agents. In Chapters 4 and 5, we introduce a variant of multi-armed bandits to
formalize multi-agent systems with sparse interactions between the agents.

42

3 | Policy Iteration for Pools
of Devices

Many control applications are comprised of multiple devices performing the same task,
such as autonomous vehicles [Gerla et al., 2014] and wind farms [Martin et al., 2016].
Often these devices have identical or highly similar design specifications [Feng and Shen,
2017], which leads to similar operational behaviors. We refer to such control applications
as a pool of devices (PoD).
PoDs are prominent in industrial applications. For example, devices may be managed as

a single system to reduce capital costs [Sarker and Faiz, 2017]. To this end, we present
a method that aggregates the data of the distinct PoD members, in contrast to the data
of a single device. The time is right for such a method, as the recent advances in the
Internet of Things allow PoD members to share data from modern wireless sensors using a
cloud-based architecture, rapidly providing a complete overview of the problem [Do et al.,
2020; Helsen et al., 2018b].
PoDs are typically complex environments. In the context of wind farm control, the health

status of a turbine is based on a multi-dimensional load spectrum and should be considered
in control strategies, as argued in Chapter 1. Still, incorporating health information in a
wind farm controller is challenging, as it requires optimizing a non-linear cost function.
Moreover, the link between controller actions and a turbine’s health is not fully known.
Therefore, it is challenging to develop a controller based on solely prior knowledge of
the system. The use of reinforcement learning is warranted, as this framework allows for

43

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

learning in complex environments with non-linear cost functions [Sutton and Barto, 2018].
However, as state-of-the-art reinforcement learning techniques typically require a large
amount of data, a key challenge in reinforcement learning is to increase sample-efficiency,
such that these techniques become viable in real-life applications [Yu, 2018].
As PoD members carry out the same task, they typically share the same design [Feng and

Shen, 2017]. In reality, PoD members differ slightly in terms of operating conditions, for
example due to production errors or degradation over time [Staffell and Green, 2014].
Thus, naively aggregating data over all members can be detrimental to the learning
process. Therefore, information should only be shared between PoD members that are
sufficiently similar.
In many physical applications, on-line reinforcement learning, in which data is collected

through exploration of the environment while learning, is either challenging or impossible.
For example, in the context of wind farm control, exploration of alternative control actions
is costly, as they might lead to a lower productivity or even failure. However, a data
set of previously observed controller actions and rewards/costs (e.g., power productions,
loads and failures) is typically available. Therefore, we investigate an off-line reinforcement
learning setting, which assumes the availability of a batch of training data prior to learning.
We propose policy iteration for pools of devices (PIPoD), a new off-line reinforcement

learning method for PoDs where knowledge transfer about operational behavior of similar
devices is possible without compromising the specificity of an individual’s behavior. More
specifically, we create a Bayesian reinforcement learning method that learns a Gaussian
process to represent the transition model of a PoD member, based on a batch of transition
samples over the entire PoD. Gaussian processes are Bayesian models known to successfully
capture complex non-linear surfaces using only a limited amount of data points. They have
previously been used in the context of reinforcement learning [Rasmussen and Kuss, 2003;
Engel et al., 2005; Deisenroth and Rasmussen, 2011] and are popular when high sample-
efficiency is required. In PIPoD, the transition model of a single PoD member is described
by a Gaussian process that learns correlations between that member’s model and the other
members’ models using coregionalization. Coregionalization was originally introduced in
geostatistics to generate valid covariance matrices for modeling multivariate data sets
[Goovaerts, 1997]. It has later been used in the context of multi-task learning to describe
correlations between a set of tasks [Bonilla et al., 2008]. In this chapter, we propose
a new sparse variant of coregionalization, which only considers correlations between a
chosen target member and every other member. Our sparse variant significantly reduces
the computational complexity of coregionalization in large PoDs (see Section 4).
We start by providing background information on Gaussian processes and the Gaussian

Process Reinforcement Learning (GPRL) method in Section 1. Then, we position our
research within existing literature in Section 2. Next, we construct our method in

44

1. BACKGROUND

Section 3 and analyse the computational complexity of the coregionalization step in
Section 4. Afterwards, we provide results on two synthetic benchmarks and a wind farm
control task in Section 5. Finally, we discuss our findings in Section 6.

The work presented in this chapter was published in the ECAI proceedings.

• Verstraeten, T., Libin, P. J. K. and Nowé, A. (2020), Fleet Control using
Coregionalized Gaussian Process Policy Iteration, Proceedings of the 24rd European
Conference on Artificial Intelligence (ECAI)

1 Background

1.1 Gaussian Process
Gaussian processes are an extension of multivariate normal distributions [Rasmussen
and Williams, 2006]. Similar to a multivariate normal distribution, a Gaussian process
describes a set of normally distributed random variables that are potentially correlated, i.e.,
knowledge about one variable gives information about another. However, the difference
with multivariate normal distributions is that a Gaussian process is defined over arbitrary
sets of annotated random variables. In a regression context, these random variables are
the outputs of an unknown function and their annotations are the inputs to that function.
Formally, assuming a zero-mean Gaussian process prior, i.e.,

f(x) ∼ GP (0, k(x,x′)) , (3.1)

and any arbitrary set of inputs X, we can model the associated latent function values f as

f | X ∼ N (0,K) (3.2)

where Kij = k(xi,xj) is the covariance between variables fi and fj . When regressing
over a training set (Xtr,ytr), we can compute the posterior statistics of (f | X,Xtr,ytr)
to obtain the predictive outputs f for inputs X. For the zero-mean Gaussian process
described in Equation 3.2, we have:

E [f | X,Xtr,ytr] = KX,XtrC
−1
Xtr,Xtr

ytr

V [f | X,Xtr,ytr] = KX,X −KX,XtrC
−1
Xtr,Xtr

KXtr,X

CXtr,Xtr = KXtr,Xtr + σ2
nI,

(3.3)

where KX,Xtr is a matrix containing the pair-wise covariances between sets X ⊂ RD and
Xtr ⊂ RD (with D the dimensionality of the inputs) according to the covariance kernel
and σ2

n is observational noise.

45

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

The choice of covariance kernel k(·, ·) is important, as it defines the various characteristics
about how the model should generalize from the training set. A commonly used kernel
is the squared exponential kernel, defined as:

kSEθSE(x,x′) = σs exp
(
−

D∑
d=1

(xd − x′d)2

2l2d

)
, (3.4)

where θSE contains the hyperparameters σs, which denotes the output’s scale, and ld,
which denotes the length scale along dimension d and characterizes the smoothness
of the unknown function. These hyperparameters can be optimized using maximum
likelihood optimization on the training set [Rasmussen and Williams, 2006]. The
squared exponential kernel has several properties, including continuity, differentiability and
stationarity, rendering it a popular choice for general modeling purposes.

1.2 Model-Based Reinforcement Learning using Gaussian Processes
Consider the Markov decision process M = 〈S,A, τ, γ, r〉 (see Definition 4). In this
chapter, we focus on learning similarities and differences in terms of transition models,
rather than control tasks. Therefore, we focus on learning the transition models, and
assume that the reward function is known.1 Specifically, we assume a goal-based reward
function that is described as a square-exponential function centered around a goal state
sgoal with width σR, i.e.,

R(s, a, s′) = 1√
2πσ2

R

exp
(
−
||s′ − sgoal||

2
2

2σ2
R

)
. (3.5)

The transition function is unknown, and a Gaussian process is used to model the
uncertainty about the function, prior to learning. In other words, we define the outputs
of the transition function as samples from Gaussian processes with a squared exponential
covariance kernel (see Equation 3.4), i.e.,

τe(s, a) ∼ GP
(

0, kSEθSEe

)
, (3.6)

for each output feature e.
The value function (see Equation 2.10) typically has no closed-form expression for

arbitrary continuous reward and transition functions. Therefore, we approximate the value
1If the reward function is unknown, it can be learned using a Gaussian process without jeopardizing

the analytical benefits of the GPRL method.

46

1. BACKGROUND

function using the Gaussian Process Reinforcement Learning (GPRL) method [Rasmussen
and Kuss, 2003]. After fitting the transition model on a batch of transitions sampled
from the environment, GPRL uses policy iteration to iteratively evaluate a policy π on a
discrete set of states and improves it until convergence.
During the policy evaluation step, GPRL computes the values of a finite, but dense,

vector of support points Ssupp = 〈s(i)〉Ni=1. We use Latin hypercube sampling [McKay
et al., 1979] to generate this vector, such that the state space is sufficiently covered. Note
that these support points do not have to match the training inputs of the transition model,
as the Gaussian process generalizes the training data to the selected support points. The
values of the support points can be computed analytically when the transition model and
value function are described by a Gaussian process, and the reward function is bell-shaped.
Formally, given a policy π, a reward function centered around sgoal with width σ2

R, and
an initial Gaussian process over the value function, the support values vsupp have the
recursive form [Rasmussen and Kuss, 2003]:

vsupp = r + γUvsupp (3.7)

with

ri = 1√
|2πC(i)|

exp
(
−1

2(sgoal − µ(i))TC(i)−1
(sgoal − µ(i))

)
C(i) = Σ(i) + σ2

RI

(3.8)

with the statistics of the transition model,

µ(i) = E
[
s′
∣∣∣ s′ = τ

(
s(i), π

(
s(i)
))]

Σ(i) = V
[
s′
∣∣∣ s′ = τ

(
s(i), π

(
s(i)
))]

,
(3.9)

and U a matrix that depends on the transition model and the value function:

U = W
(
KV + σ2

nI
)−1

Wi,j = σ2
V

∣∣∣Λ−1
V Σ(i) + I

∣∣∣−0.5

exp
(
−0.5

(
s(i) − µ(i)

)T (
Σ(i) + ΛV

)−1 (
s(i) − µ(i)

)) (3.10)

where KV is the covariance between the support values, σ2
V is the signal’s variance and

σ2
n is the noise parameter used by the value GP. The equation for the support values can

be rewritten as a closed-form expression:

vsupp = (I − γU)−1r. (3.11)

47

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

During the policy improvement step, a new Gaussian process is fitted over the value
function V π(·) using the support values to generalize over the state space. This function
is used to optimize π:

π(s)← arg max
a

E [R(s, a, s′) + γV π(s′) | s′ = τ(s, a)] . (3.12)

An expression similar to the one presented in Equation 3.7 can be obtained for arbitrary
actions using the vector of support states. The obtained closed-form expression of
Equation 3.12 can then be maximized through enumeration for discrete action spaces
or by using standard optimizers (such as gradient ascent) for continuous action spaces.

2 Related Work
The type of learning we consider is related to multi-task (or inductive transfer)
reinforcement learning [Pan and Yang, 2009], where a set of control tasks is jointly learned,
leveraging potential similarities between them. In contrast to our setting, most work on
multi-task reinforcement learning considers different task parameters, while the system
specifications remain the same [Ijspeert et al., 2003; Lazaric and Ghavamzadeh, 2010;
Taylor and Stone, 2007; Wilson et al., 2007; Konidaris et al., 2012; Deisenroth et al.,
2014]. Specifically, Lazaric and Ghavamzadeh [2010] and Wilson et al. [2007] construct
a Bayesian (hierarchical) structure of tasks, where the task parameters are assumed to
be drawn from a set of priors shared among similar tasks. Recent work has focused
on Markov decision processes for which the system specifications are different, but the
reward function remains the same [Doshi-Velez and Konidaris, 2016; Killian et al., 2017;
Sæmundsson et al., 2018]. Typically, a latent embedding, or a clustering, of the system
specifications is learned in order to share information among various devices.
Our focus is different as it concerns settings in which we assume that the system

specifications are nearly identical except for degraded parts or small design discrepancies.
This means that a more targeted approach is feasible. Rather than having a single latent
embedding or cluster from which all members originate, a more directed transfer method
between pairs of members can be obtained through correlations. Such a direct transfer
mechanism is sample-efficient, as estimating the correlations within a PoD for a given
target is limited to learning a set of parameters linear in the size of the PoD.

48

3. COREGIONALIZATION OVER MULTIPLE TRANSITION MODELS

3 Coregionalization over Multiple Transition Models
To transfer knowledge between PoD members, we leverage the statistical properties
of Gaussian processes. Specifically, we assert that PoD members should only share
information when they are correlated. Intuitively, the Gaussian process’ covariance kernel
allows to generalize in the regression model by correlating unobserved outputs to observed
ones. Coregionalization extends this concept to the outputs of different Gaussian processes,
suggesting that information from one process can be generalized to another. The main
contribution in this work is the introduction of coregionalization to capture similarities
between multiple transition models in order to decide whether and how knowledge should
be transferred.
Formally, we define a PoD Markov decision process as:

MPoD = 〈S,A, T , γ, R〉,with
T = {τm}Mm=1.

(3.13)

Compared to the definition of a standard Markov decision process (see Definition 4), all
properties are the same, except that T is now a set of M transition models, one for each
member m in the PoD.
Consider a single member from the PoD, which we refer to as the target and the rest

of the PoD as the sources. We denote the target’s index as t, and the index of a source
as s. To achieve knowledge transfer from the sources to the target, we must define a
model that allows for data sharing. Specifically, for inputs x = [s, a], we consider this
model for the transition functions:

τt(x) =
∑
s6=t

φt,sgs(x) + αtlt(x)

∀s 6= t :
τs(x) = φs,sgs(x) + αsls(x).

(3.14)

The transition function of the target is modelled as a linear combination of M − 1 global
functions gs shared with every source s, and member-specific local functions (i.e., lt for the
target and ls for the sources) to model the member’s specific behavior. This ensures that
all sources can exchange information with the target without compromising the specifics
of a member’s transition model. The parameters αt and αs weigh the contribution of the
local components lt and ls to the transition models of the target and source s, respectively.
Additionally, the parameters φt,s and φs,s weigh the contribution of the global component
gs to the transition models of the target and source s, respectively. For example, when
source s has relevant information for the target t, the parameter φt,s should be high in order

49

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

Source A

Source CSource B

Target

Figure 3.1: Data exchange mechanism between PoD members. The model only estimates
correlations between the target and a source (blue arrows). The connections between
two sources (grey arrows) are not considered in the model, and their correlations are thus
assumed to be zero.

to transfer knowledge through function gs. In contrast, when the source has no relevant
information for the target, the parameter φt,s should be zero to model independence
between the source and the target. A schematic of the proposed data exchange framework
is depicted in Figure 3.1.
We define the unknown components gs, ls and lt as independent samples from a zero-

mean Gaussian process with covariance kernel kSEθSE (see Equation 3.6). This entails
that each of the transition functions is a linear combination of Gaussian process-
distributed random variables, and is thus also a Gaussian process-distributed random
variable [Rasmussen and Williams, 2006]. The mean functions of the transition models will
be zero, due to the linearity of expectation property and the fact that all components have
a mean of zero. Moreover, as the components are independently sampled, covariance can
only exist within a single component, which is defined through the kernel kSEθSE . The cross-
covariance between the transition functions can be derived using the linearity properties
(L) of the covariance operator and the fact that the covariance between independent
components is zero. For example, the cross-covariance between the transition functions

50

3. COREGIONALIZATION OVER MULTIPLE TRANSITION MODELS

of the target t and a source s is

Cov [τt(x), τs(x′)]

= Cov

∑
s′ 6=t

φt,s′gs′(x) + αtlt(x), φs,sgs(x′) + αsls(x′)

(L)= φt,sφs,sCov [gs(x), gs(x′)]
= φt,sφs,sk

SE
θSE

(x,x′).

(3.15)

In the last step, we use the fact that the components gs and lt are modelled using
a Gaussian process with the squared exponential kernel kSEθSE . Similar derivations can
be performed for the inter-source and target’s cross-covariances. The resulting cross-
covariances for all possible cases are

Cov [τt(x), τt(x′)] =

∑
s′ 6=t

φ2
t,s′ + α2

t

 kSEθSE(x,x′)

Cov [τs(x), τs(x′)] =
(
φ2
s,s + α2

s

)
kSEθSE(x,x′)

Cov [τt(x), τs(x′)] = (φt,sφs,s) kSEθSE(x,x′)
Cov [τs(x), τs′(x′)] = 0,

(3.16)

where s, s′ 6= t and s 6= s′.
From these statistics, we can reformulate the target’s transition function as a sample

from a Gaussian process with the following kernel:

kPoDθ(t) ([x,m], [x′,m′]) = kSEθSE(x,x′)Fm,m′

F = Φ +
(
α2)T I

Φ =
∑
s6=t

φsφ
T
s

(3.17)

where φs only has non-zero elements at indices t and s, and m,m′ are the indices of
two PoD members. The matrix Φ encodes relationships between the target and the
sources, while α contains independent terms for each member. The set θ(t) contains
now both the hyperparameters θSE of the SE kernel and of the matrix F , i.e., φ and α.
These parameters can be optimized using maximum likelihood optimization [Rasmussen
and Williams, 2006] on the training set (XPoD

tr ,yPoDtr) of the entire PoD, annotated with
the indices of its members.

51

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

Using the new covariance kernel, we can describe a single Gaussian process jointly over the
outputs of all PoD members (Equation 3.2) and compute the target’s posterior statistics
(Equation 3.3) for regression. Note that even though the new model uses the whole
PoD’s data set, the target can predict using its own transition function by computing the
posterior statistics using index t, i.e.,

τt | X(t), XPoD
tr ,yPoDtr . (3.18)

We can define such a model for each member in the PoD independently by setting that
member as the target, and thus construct the set T by sampling the transition model of
each member m from a Gaussian process:

τm(x) ∼ GP
(
0, kPoDθ(m) ([x,m], [x′,m′])

)
. (3.19)

GPRL can be used for policy iteration to learn the optimal value function and policy.
A high-level description of the complete policy iteration method for a given target is
provided in Algorithm 2.

4 Analysis of the Sparse Coregionalization Matrix
The proposed sparse coregionalization matrix F has several properties. First, the
decomposition of F yields a valid covariance matrix, as it is symmetric positive semidefinite
[Rasmussen and Williams, 2006], i.e.,

∀z 6= 0 : zTFz =
∑
s6=t

||zTφs||
2
2 + ||zTα||22 ≥ 0. (3.20)

Second, the matrix F contains 3M − 2 parameters per target (i.e., M in α and 2(M − 1)
in the weight matrix Φ) with M the number of PoD members. Therefore, the number
of parameter grows linearly per target with respect to the number members, and the
method can be executed in a distributed manner over the PoD. This renders the method
scalable to larger PoDs. Third, because of the sparsity of the defined covariances (see
Equation 3.16), it is possible to significantly reduce the computational complexity of the
matrix inversion in Equation 3.3. In the literature, inversion is achieved by performing
backward and forward substitution on the Cholesky factors of the covariance matrix, as it
faster and more numerically stable than direct inversion [Rasmussen and Williams, 2006].
This operation has a complexity of O(N3), where N signifies the number of rows. Given
the sparsity of our coregionalization matrix F , we can derive a faster operation.
Consider a fleet of M members. Each member m has a data set of Nm samples,

resulting in a total of N =
∑M
m=1 Nm samples. Without loss of generality, assume that

52

4. ANALYSIS OF THE SPARSE COREGIONALIZATION MATRIX

Algorithm 2: Policy Iteration for Pools of Devices (PIPoD)
Input: Reward function R, set of support points Ssupp, batch of transitions

(XPoD
tr ,yPoDtr) for all members of the PoD, target index t

Output: Learned policy π(s)
1 π(s)← random policy;
2

3 Initialize support values and fit the Gaussian process on the values.
4 vsupp ← Apply reward function R on Ssupp;
5 Define V ∼ GP

(
0, kSEθV

)
;

6 Fit V using (Ssupp,vsupp);
7

8 Given the batch of transitions, train the transition model using maximum
likelihood estimation on the hyperparameters and coregionalization matrix F .

9 (Section 4)
10 θ(t) ← arg max

θSE,F
p(yPoDtr | XPoD

tr , θSE, F);

11 Define τ ∼ GP(0, kPoD
θ(t));

12 Fit τ using (XPoD
tr ,yPoDtr);

13

14 Perform policy iteration (GPRL) using the pre-trained transition model and
support points. (Section 2)

15 while vsupp not converged do
16 vsupp ← Policy evaluation using Ssupp, R, τ , V and π;
17 Fit V using (Ssupp,vsupp);
18 π ← Policy improvement using Ssupp, R, τ and V ;
19 end

53

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

the target index is M and the sources’ indices are in [1, . . . , (M − 1)]. When we use the
PoD transition model, a covariance matrix needs to be inverted when fitting the GP. This
covariance matrix has the following block form:

K =
[
B C

CT KSE
M

]
, (3.21)

with block diagonal matrix

B =

K
SE
1 . . . 0
...
0 . . . KSE

M−1

 , (3.22)

where KSE
m is the covariance matrix of member m and C contains the cross-covariance

matrices between the target and each of the sources.
The Cholesky decomposition [Rasmussen and Williams, 2006] of the full covariance matrix
K is

K = LKL
T
K =

[
LB 0

(L−1
B C)T LS

] [
LTB L−1

B C

0 LTS

]
(3.23)

where LB and LS are the Cholesky factors of block B and its Schur complement:

S = KSE
M − CTB−1C

= KSE
M − CT (LBLTB)−1C

= KSE
M − (L−1

B C)TL−1
B C.

(3.24)

Note that

LB =

LKSE

1
. . . 0

...
0 . . . LKSE

M−1

 . (3.25)

The only matrices for which a Cholesky factor needs to be computed are matrices S
and KSE

m . The Cholesky decomposition has a cubic complexity in the number of rows.
Thus, as each block in B can be processed separately, the computational complexity of
the Cholesky decomposition on matrix B is O

(∑M
m=1 N

3
m

)
. The size of S is NM ×NM ,

and therefore computing its Cholesky factor is equal to O
(
N3
M

)
. As the multiplication

of LBC can also be decomposed per member (i.e., per block in the matrix LB), the

54

5. EXPERIMENTS

complexity of this operation is O
(∑M

m=1 NMN
2
m

)
. Thus, the combined complexity of

our sparse matrix inversion is

O

(
M∑
m=1

N3
m +NMN

2
m

)
, (3.26)

which is significantly smaller than the cubic complexity on the full data set, i.e.,

O

(M∑
m=1

Nm

)3 . (3.27)

The improved complexity of the matrix inversion renders the method scalable to larger
PoD data sets.

5 Experiments
First, we experimentally analyze our method on the well-known mountain car [Moore,
1993] and cart-pole [Barto et al., 1983] benchmark problems. We consider a PoD of 3
members. The PoD consists of a target, a similar source member A and a significantly
different source member B.
We adopt an off-line reinforcement learning setting, in which a batch of transition samples

for the complete PoD is available to the method prior to learning. To construct this batch,
we sample the environments of sources A and B sufficiently, such that the operational
behaviors are well-represented by the transition model of the respective PoD members.
We provide the target with a limited amount of data sampled from its own environment.
The target cannot sufficiently estimate its transition model based on these samples, making
it challenging to find the optimal policy. Therefore, transferring knowledge from member
A will assist the target in finding the optimal policy. However, the environment in which
member B operates is different from the target’s environment, and sharing samples with
member B would misinform the target’s transition model. Therefore, the objective of the
target is to estimate a sufficiently accurate transition model by estimating the correlations
with all sources and use the sources’ knowledge proportional to the estimated correlation.
Next, we apply our method on a state-of-the-art wind farm simulator [Gebraad et al.,

2017] to demonstrate our method’s real-world benefits on larger PoDs. We consider a
PoD of 8 members. Again, we have a single target and sample the environments of the
other PoD members. We assume that 3 sources are similar to the target, while the other
4 sources are different.

55

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

Once the transition model is learned, we compute the optimal value function and
policy using the GPRL method presented in Section 1.2. We consider an off-line
batch reinforcement learning setting and provide the learner with a random batch of
transition samples. The benchmarks are deterministic environments, and we thus set
the observational noise of the Gaussian process to 10−8 to ensure numerical stability. The
discount factor γ is set to 0.99 and the observational noise of the Gaussian process fitted
on the values is set to 0.1 to prevent overfitting.
In all experiments, we compare our method against two baselines, i.e., learning with a

single target and learning with a joint target. The single target only uses its own samples to
learn a transition model, while the joint target considers all PoD data jointly, assuming all
members are identical. Specifically, we construct transition models that use the squared-
exponential kernel described in Equation 3.4, fitted only on the target’s own samples for
the single target type, or using all PoD samples for the joint target type. For the PoD
target type, we use our method to fit a transition model, using the PoD kernel described
in Equation 3.17, based on all PoD samples.2

5.1 Mountain Car
To illustrate our method, we set up the continuous mountain car domain [Moore, 1990].
The car is positioned in a valley and its objective is to reach the top of the right-most hill.
However, the slope is too steep for the car to simply accelerate to the top. Thus, it has to
first drive up the opposite side of the valley and then accelerate from there to reach the top.
In this problem, a state consists of the position of the car (in [−1.2, 0.6]) and the velocity

of the car (in [−0.07, 0.07]), while an action is a force applied to either side of the car
(in [−1, 1] multiplied by a power parameter). The start and goal states are, respectively,
given by sstart = [−0.5, 0] and sgoal = [0.45, 0], i.e., the bottom and top of the hill when
the car is at a standstill. The start state is depicted in Figure 3.2. The standard deviation
of the reward function σR is set to 0.05. We use 200 support points, generated using
Latin hypercube sampling [McKay et al., 1979], for which GPRL will estimate the values
during the policy evaluation step.
We consider a PoD of three mountain cars: a target with a power of 1.5 · 10−3 units,

source A with power 10−3 and source B with power 10−4. For each source, we provide
a batch of 100 transitions sampled uniformly random from its environment. We do the
same for the target, but only sample 20 times, resulting in a total of 220 samples. We run
the experiment 50 times for the three target types: single, joint and PoD.

2The source code to reproduce the experiments is publicly available at:
https://github.com/timo-verstraeten/fwpi-experiments

56

https://github.com/timo-verstraeten/fwpi-experiments

5. EXPERIMENTS

Figure 3.2: Mountain car environment from OpenAI gym [Brockman et al., 2016].

Joint Single PIPoD

140

S
um

 o
f
sq

ua
re

d
di

st
an

ce
s

to
 g

oa
l

120

100

80

60

(a) Mountain car

Joint Single PIPoD

1000

S
um

 o
f
sq

ua
re

d
di

st
an

ce
s

to
 g

oa
l

800

600

400

200

0

(b) Cart-Pole

Figure 3.3: Boxplot of the total sum of squared distances to the goal state for the mountain
car (a) and cart-pole (b) benchmarks during 200 time steps. The experiment is repeated
50 times for each benchmark.

We measure the performance of the methods by reporting the total sum of squared
distances to the goal state during 200 time steps.3 The results are shown in Figure 3.3a.
We observe that the joint target (i.e., learning from the full data set without the PoD

3The success rates of solving the task for each of the target types are reported in Appendix 1.

57

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

kernel) rarely reaches the goal. This is because the target uses the data of source B,
which does not have enough power to reach the goal. Therefore, the target does not
expect to reach the goal and is often remaining at the bottom of the hill during runs. The
single target (i.e., learning from own experiences) can sometimes achieve good results,
but is unable to accurately represent its operational behavior, due to the limited amount
of data it can learn from. Because of the uncertainty in the transition model, the car is
often incapable of finding a suitable policy. The PoD target consistently achieves good
results, as the target is able to figure out which source is most useful to share data with
through the PoD kernel.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

0
150
300
450
600
750
900
1050

Value

(a) Single

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

500
400
300
200
100

0
100
200
300

Value

(b) Joint

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ve
lo

cit
y

60
80
100
120
140
160
180
200

Value

(c) PIPoD

Figure 3.4: Mountain car – Contour plots of the learned value functions (means of the
Gaussian processes) during the best runs of each target type. The value (color) is depicted
for all states (axes) and for each type of learning, i.e., single learning (a), joint learning
(b) and PIPoD (c).

In Figure 3.4, we show the resulting value function during the best performant run for
each of the target types. We can see that that the region with highest value matches the
goal state for the PoD target, while the single and joint targets misidentify this region.
The average standard deviation over the surface of the Gaussian processes fitted on the
values is 115 for the PoD target, 590 for the joint target and 3906 for the single target.
This indicates that the single target is not confident about its value function, due to the
lack of data.
Next, we plot the correlation matrices learned by the PoD target, averaged over all runs.

Given the optimized cross-covariance matrix F from Equation 3.17, we can compute the
correlation matrix

corr(F) = (diag(F))−0.5F (diag(F))−0.5, (3.28)

where diag(F) is the diagonal matrix constructed from the diagonal elements of F . The
element-wise means of these matrices over all runs are given in Figure 3.5. The PoD target

58

5. EXPERIMENTS

1 0.71 -0.18

0.71 1 0

-0.18 0 1
0.8

0.4

0.0

0.4

0.8

C
or

re
la

tio
n

target source A source B

ta
rg

et
so

ur
ce

 A
so

ur
ce

 B

(a) Position

1 0.74 -0.058

0.74 1 0

-0.058 0 1
0.8

0.4

0.0

0.4

0.8

C
or

re
la

tio
n

target source A source B

ta
rg

et
so

ur
ce

 A
so

ur
ce

 B
(b) Velocity

Figure 3.5: Mountain car – Optimized correlation matrix between the PoD members, i.e.,
target, source A and source B for both state dimensions.

successfully identifies source A to be similar, while assigning a notably lower correlation
value to source B.

5.2 Cart-Pole
In the cart-pole domain, the goal is to keep a pole balanced on top of a controllable cart.
Cart-pole is an underactuated system, which means that the system has more degrees of
freedom than actuators. Balancing the pole is challenging, as its equilibrium is highly
unstable.
In this problem, a state consists of the position of the cart (in [−4.8, 4.8]), the angular

position of the pole (in [−0.42, 0.42]), the velocity of the cart (in [−2, 2]) and the angular
velocity of the pole (in [−2, 2]). The start and goal state are the same, namely, at the
equilibrium, i.e., sstart = sgoal = [0, 0]. The start state is depicted in Figure 3.6. The
standard deviation of the reward function σR is set to 0.2. We set the number of support
points to 300.
We consider a PoD of three carts: a target with a pole mass of 0.1 units, source A with

mass 0.2 and source B with mass 0.5. For each source, we provide a batch of 50 transitions
sampled uniformly random from its environment. We do the same for the target, but only
sample 5 times, resulting in a total of 105 transitions. We run the experiment 50 times
for the three target types: single, joint and PoD.

59

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

Figure 3.6: Cart-pole environment from OpenAI gym [Brockman et al., 2016].

We measure the performance of the methods by reporting the total sum of squared
distances from the equilibrium during 200 time steps.3 The results are shown in Figure 3.3b.
Due to the instability of the equilibrium, it is necessary to accurately represent the transition
model. The joint target fails to achieve this, as it aggregates samples over different
transition models. The single target achieves better results, but is often uncertain about
its transition model, leading to suboptimal behavior. The PoD target consistently manages
to keep the pole around its equilibrium.

5.3 Wind Turbines
To demonstrate the need for our method in practical applications, we introduce a new
setting in the context of wind energy. Current wind turbine controllers position the rotors
toward the measured incoming wind vector to ensure high productivity [Boersma et al.,
2017]. However, as wind passes through upstream turbines, the wind speed is reduced
and the energy extracted by downstream turbines is significantly lower, which is referred
to as the wake effect. When considering wind farms (i.e., groups of wind turbines), it
is essential to take this effect in consideration [González-Longatt et al., 2012]. In recent
work, steering wake through rotor misalignment is investigated [Gebraad et al., 2017;
Bargiacchi et al., 2018]. For example, in a setting with two wind turbines, the upstream
turbine slightly misaligns its rotor to deflect the wake effect and improve the productivity
of the downstream turbine.

60

5. EXPERIMENTS

WIND

. . .

1 target with full
generator efficiency

7 sources with varying
generator efficiencies

Figure 3.7: Wind turbine control benchmark with 1 target and 7 sources with varying
generator efficiencies.

Due to the complexity of the wake effect and incomplete knowledge about a turbine’s
condition, it is necessary to gather data in the field about potential control policies,
rendering it a reinforcement learning problem. As learning policies from scratch could
result in potential revenue loss, PIPoD can improve the learning speed. Moreover, our
batch reinforcement learning setting makes sense, as wind farm operators first need to
thoroughly assess the performance of the acquired policy before implementing it [Boersma
et al., 2017].
We demonstrate our method on a PoD of two-turbine rows in a wind farm that consists

of 8 rows and show how information exchange between transition models can improve the
learning speed and accuracy. We use the state-of-the-art open source FLORIS simulator
to model the wind farm operating conditions and wake effect [National Renewable Energy
Laboratory (NREL), 2019], and use the 5 MW reference turbine description from the
National Renewable Energy Laboratory to model the individual wind turbines [Jonkman
et al., 2009].
In this environment, the state of a member consists of the orientations of both turbines

(values in [−45, 45] degrees with respect to the wind vector) and the associated total power
production (values in [0.5, 1.05] MW). The actions are changes in orientation with values
of either -1, 0 or 1 degrees. The start state is both turbines aligned with the wind vector,
which is current practice in wind turbine control [Boersma et al., 2017]. The goal sgoal
is centered around a power production of 1.07 MW with a scale σR of 0.05 to encourage
high productivity. The number of support points is set to 300.
Each two-turbine row represents a PoD member. Again, we report the results for one

target. This is considered to be a new row of which the generator efficiency is set to 1.
However, we set the generator efficiencies to 0.9 for 3 source members, and to 0.8 for the

61

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

remaining 4 source members, which is a realistic configuration that could be the result of
aging [Staffell and Green, 2014]. The wind speed is set to 6 m/s. We assume independence
between turbine rows, which is a reasonable assumption given the wind vector that we use
in our experiments, since wake generated by one row will not influence the other turbine
rows. The setup is depicted in Figure 3.7.
To each turbine row, we provide a batch of 50 transitions randomly sampled from

its environment. We measure the performance of the methods by reporting the power
production (MW) achieved at the end of the run. We compare the targets to the
performance achieved under the optimal policy and to the performance under the policy
used in current practice, i.e., aligning all turbines with the incoming wind vector. The
results are shown in Figure 3.8.

1.06

Optimum

Po
w

er
 p

ro
du

ct
io

n
(M

W
)

Current
practice

1.00
Joint Single PIPoD

Figure 3.8: Wind Farm – Boxplot of the power productions for each target type over
50 runs. The optimal performance, as well as the performance achieved when using the
control policy used in current practice, are given (dashed lines).

To each member, we provide a batch of 50 transitions sampled uniformly random from
their environment, resulting in 400 PoD samples. We run the experiment 50 times for
each of the target types: single, joint and PoD, and show the results in Figure 3.8.
We observe that the single target has a wide variance on its performance. The uncertainty

about its transition model is high due to the limited amount of data it has access to. The
joint target has lower variance, but has the worst performance, close to the performance
of current practice policies. As all data is aggregated, many transition samples are not
representative for the true operational behavior of the target. The PoD target consistently

62

6. DISCUSSION

achieves results that approach the optimal performance, as it has the ability to differentiate
between relevant and irrelevant samples over the entire PoD data set.

6 Discussion
We introduced a new sample-efficient reinforcement learning method for PoDs, called
policy iteration for pools of devices (PIPoD), based on Gaussian processes and
coregionalization. Our method estimates cross-covariances between a pool of devices
and transfers knowledge between them.
We provided experimental results on two benchmark problems: mountain car and cart-

pole. PIPoD outperforms the two baselines on all of our experiments. The joint target
regularly fails to reach the goal while the single target remains uncertain about its transition
model. This exposes the need to balance between accuracy and confidence, where we have
to decide to either use all data at the risk of misrepresenting the transition model (high
estimation bias) or only use representative data while remaining uncertain about the model
(low confidence). Our method successfully balances both by properly weighing each source
with their correlation with the target. This is reflected in the learned value functions. The
PoD target finds the region of highest reward, which is around the goal state, while the
single and joint targets misrepresent their value function. We further validated the ability
of our method to balance between accuracy and confidence through a sensitivity analysis on
the mountain car setting. Specifically, we varied the power parameter of source A between
5 · 10−3 and 15 · 10−3 to simulate a range of similarities between source A and the target.
The PoD target outperforms both baselines and exhibits similar performance to the single
target when the target is significantly different from source A, and thus no information
transfer is possible. More information on this analysis can be found in Appendix 2.
The successful exchange of data in PoDs has strong implications for real-world

applications. The wind farm experiment shows that close-to-optimal performance can
be achieved when using PIPoD, while the alternatives (i.e., single and joint learning) often
yield performances close to current practice or worse.
The introduced transition model is a sparse variant of the intrinsic coregionalization model

(ICM) [Goovaerts, 1997; Bonilla et al., 2008]. This model captures cross-covariances
between multiple functions, and thus improves the accuracy of those functions jointly.
However, as we consider multiple sources and a single target, the target’s transition
model will be tailored toward improving its own accuracy, rather than the joint accuracy
over all PoD members. Additionally, the computational burden when using our sparse
coregionalization model is significantly reduced. Our method can be executed in a
distributed manner over the PoD which reduces the quadratic complexity of the covariance
matrix inversion in the intrinsic coregionalization model to a linear complexity per target

63

CHAPTER 3. POLICY ITERATION FOR POOLS OF DEVICES

member. Moreover, as the covariances in Equation 3.16 are sparse, the inversion operation
can be made linear in the number of PoD members as well. This renders our method
scalable to larger PoDs. We perform additional experiments to compare our sparse model
against the intrinsic coregionalization model in Appendix 3.
In future work, we will further improve the scalability of our method by using sparse

Gaussian process approximations [Snelson and Ghahramani, 2006; Wilson and Nickisch,
2015] to reduce the computational burden of the matrix inversion. As many of these
methods are independent with respect to the covariance kernel or require a factorable
kernel, our model is extensible to many of these approximations. By using a sparse
Gaussian process approximation, our reinforcement learning method can handle even larger
data sets and PoDs. Additionally, as we focused on settings with highly similar devices,
we considered simple transformations of the data. Specifically, we assumed that the
correlation values are the same over all states. In future work, we will consider more
complex settings, in which the data transformations may be state-dependent. To this
end, we will investigate the use of generalized Wishart processes to allow the correlation
matrix to vary over states [Wilson and Ghahramani, 2011]. Finally, more complex settings
may require non-linear transformations of the data. Therefore, in future work we will
investigate the use of Gaussian Copula processes [Wilson and Ghahramani, 2010]. Gaussian
Copula processes separate the dependency structure between random variables from their
marginal distributions. This means that these variables can be transformed independently
of the correlations that exist between them. In our case, such a mechanism maintains
the transparency of the covariance kernel, which comprises the similarity structure of the
devices, even when complex operations are performed on the transition models.
As demonstrated in this chapter, exploiting similarities between devices can significantly

improve sample-efficiency. Still, in many PoD applications, the actions taken by multiple
devices are inter-dependent. In these situations, devices must coordinate to jointly optimize
a control strategy over the complete PoD [Busoniu et al., 2006]. However, for larger PoDs
it becomes intractable to learn joint strategies, due to the exponential increase of the
joint action space in terms of the number of devices. Therefore, in the next chapter, we
propose a new control algorithm, called multi-agent Thompson sampling, that exploits
sparse neighbourhood structures to effectively coordinate and learn joint strategies in large
multi-agent systems.

64

4 | Thompson Sampling for
Multi-Agent Bandits

Multi-agent coordination is prevalent in many real-world applications, such as traffic
light control [Wiering, 2000], warehouse commissioning [Claes et al., 2017], mitigation
of epidemics [Libin et al., 2020] and wind farm control [Gebraad and van Wingerden,
2015]. Often, such settings can be formulated as coordination problems in which agents
have to cooperate in order to optimize a shared team reward [Boutilier, 1996; Kapetanakis
and Kudenko, 2002].
Handling multi-agent settings is challenging, as the size of the joint action space scales

exponentially with the number of agents in the system. Therefore, an approach that
directly considers all agents’ actions jointly is computationally intractable. This has made
such coordination problems the central focus in the planning literature [Koller and Parr,
2000; Guestrin et al., 2001a,b, 2002]. In this regard, we note that in real-world settings
agents often only directly affect a limited set of neighboring agents. This means that the
global reward received by all agents can be decomposed into local components that only
depend on small subsets of agents. Exploiting such loose couplings is key in order to keep
multi-agent decision problems tractable [Chapman et al., 2013; De Hauwere, 2011].
For example, consider a wind farm control task, which is comprised of a set of wind

turbines, and we aim to maximize the farm’s total productivity. When upstream turbines
directly face the incoming wind stream, energy is extracted from the wind. This reduces
the productivity of downstream turbines, potentially lowering the overall power production.

65

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

However, turbines have the option to rotate in order to deflect the turbulent flow away from
turbines downwind [van Dijk et al., 2016]. Due to the complex nature of the aerodynamic
interactions between the turbines, constructing a model of the environment and deriving
a control policy using planning techniques is challenging [Marden et al., 2013]. Instead,
a joint control policy among the turbines can be learned to effectively maximize the
productivity of the wind farm. The system is loosely coupled, as redirection only directly
affects adjacent turbines.
While the state of the art mainly focusses on empirical evaluation of approximate

reinforcement learning methods in multi-agent systems, it has recently been shown
[Bargiacchi et al., 2018] that it is possible to achieve theoretical bounds on the cumulative
regret (i.e., how much reward is lost due to learning). Such bounds are necessary
to confidently state guarantees toward end users. However, it remains challenging to
incorporate prior domain knowledge about data and statistics of the problem using state-
of-the-art methods. The inclusion of such knowledge can drastically improve learning
speed, as it can effectively guide exploration toward high-potential control policies. We
argue that this has strong relevance in many practical fields, such as on-line advertisement
[Chapelle and Li, 2011; Rhuggenaath et al., 2019], influenza mitigation [Libin et al., 2018,
2019] and wind farm control [Verstraeten et al., 2019].
To this end, we propose a new multi-agent decision making algorithm, called multi-agent

Thompson sampling (MATS), which exploits loosely-coupled interactions in multi-agent
systems. Specifically, we target problem settings that can be formalized as a multi-
agent multi-armed bandit. Our method leverages the exploration-exploitation mechanism
of Thompson sampling, which allows it to quantify uncertainty about domain-speficic
statistics and guide the learning process based on this uncertainty. We perform a finite-
time Bayesian regret analysis and show that the upper regret bound of MATS is low-order
polynomial in the number of actions of a single agent for sparse coordination graphs. This
is a significant improvement over the exponential bound of classic Thompson sampling,
which is obtained when the coordination graph is ignored [Agrawal and Goyal, 2012]. The
full proof for the cumulative regret bound, together with a proof outline, is provided in
Section 4. We show that MATS improves upon the state of the art in various synthetic
settings. Finally, we demonstrate that MATS achieves high performance in a synthetic
wind farm control task, in which multiple wind turbines have to be jointly aligned to
maximize the total power production.
We start by providing background information on multi-agent multi-armed bandits and

variable elimination in Section 1. Then, we position our research with respect to related
work in Section 2. Next, we propose MATS, a new control method to factorize multi-agent
systems using coordination graphs, in Section 2. We provide a problem-independent upper
bound on the cumulative regret of MATS, as well as a proof outline and the full proof,

66

1. BACKGROUND

in Section 4. Afterwards, we evaluate our method on a variety of benchmark settings, as
well as a synthetic wind farm control task, in Section 5.1. Finally, we discuss the results
and insights in Section 6.

The work presented in this chapter was published in Nature’s Scientific Reports and the
AAMAS proceedings.

• Verstraeten, T., Bargiacchi, E., Libin, P. J. K., Helsen, J., Roijers, D. M. and Nowé,
A. (2020), Multi-Agent Thompson Sampling for Bandit Applications with Sparse
Neighbourhood Structures, Scientific Reports, 10

• Verstraeten, T., Bargiacchi, E., Libin, P. J. K., Roijers, D. M. and Nowé, A. (2020),
Thompson Sampling for Factored Multi-Agent Bandits, Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pp. 2029–2031

1 Background

1.1 Multi-Agent Multi-Armed Bandits
To formalize a multi-agent decision making process with loose couplings, we adopt the
multi-agent multi-armed bandit framework [Bargiacchi et al., 2018; Stranders et al., 2012].
This framework is similar to the multi-armed bandit formalism [Thompson, 1933], but
considers multiple agents factored into groups. When a joint action, i.e., a joint arm, has
been executed, each group receives a reward. The goal shared by all agents is to maximize
the total sum of rewards.

67

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

Definition 5

A multi-agent multi-armed bandit is a tuple 〈D,A, R〉 where

• D is the set of agents, factored into ρ, possibly overlapping, groups De, where
e is the group index.

• A = A1 × · · · × A|D| is the set of joint actions, or joint arms, which is the
Cartesian product of the sets of actions Ai for each agent i. We denote Ae as
the set of local joint actions, or local arms, for the group De.

• R(a) is a stochastic function providing a global reward when a joint arm, a ∈ A,
is pulled. The global reward function is decomposed into ρ noisy, observable
and independent local reward functions, i.e., R(a) =

∑ρ
e=1 R

e(ae). A local
reward function Re only depends on the local joint arm ae ∈ Ae of the subset
of agents in De.

We denote the mean reward of a joint arm as

µ(a) =
ρ∑
e=1

µe(ae),

with µe(ae) = E [Re(ae)]. For simplicity, we refer to the ith agent by its index i.

The dependencies between the local reward functions and the agents are described as a
coordination graph [Guestrin et al., 2001b].

Definition 6

A coordination graph is a bipartite graph G = 〈D, {Re}ρe=1, E〉, whose nodes D are
agents and components of a factored reward function R =

∑ρ
e=1 R

e, and an edge
〈i, Re〉 ∈ E exists if and only if agent i influences component Re.

The dependencies in a multi-agent multi-armed bandit can be described by setting E =
{〈i, Re〉 | i ∈ De}. An example of a coordination graph is given in Figure 4.1.
Similar to a single-agent multi-armed bandit, the objective is to minimize the expected

cumulative regret (see Definition 2) by means of exploration and exploitation of the joint
arm that is believed to be optimal. However, in this case, the global means can be written
as a sum of local means per group. Therefore, the expected cumulative regret is the total
cost incurred when jointly pulling a set of local arms instead of the optimal ones over
all groups.

68

1. BACKGROUND

𝑅!(𝑎!, 𝑎") 𝑅"(𝑎", 𝑎#, 𝑎$)

Agent 1 Agent 2 Agent 3

Local reward
function 1

Local reward
function 2

Agent 4

𝑎! 𝑎" 𝑎$𝑎#

. . .

Figure 4.1: Example of a coordination graph – The reward function is factored into two
local reward functions R1 and R2. R1 is dependent on the actions of agents 1 and 2,
while R2 is dependent on the actions of agents 2, 3 and 4. Note that the action taken by
agent 2 affects both functions.

Definition 7

The expected cumulative regret of pulling a sequence of joint arms until time step T
according to policy π is

E [R(T, π)] = E
[
T∑
t=1

∆(at)

∣∣∣∣∣ π
]

(4.1)

with

∆(at) = µ(a∗)− µ(at)

=
ρ∑
e=1

µe(ae∗)− µe(aet),
(4.2)

where a∗ is the optimal joint arm and at is the joint arm pulled at time t. For the
sake of brevity, we will omit π when the context is clear.

69

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

Similar to Definition 2, it is typically assumed that a∗ is a known value. When a∗
is a random variable, and the regret is marginalized over this variable, we use the term
Bayesian regret.
Cumulative regret can be minimized by using a policy that considers the full joint arm

space, thereby ignoring loose couplings between agents. This leads to a combinatorial
problem, as the joint arm space scales exponentially with the number of agents. Therefore,
loose couplings should be considered whenever possible.

1.2 Variable Elimination in Coordination Graphs
To encourage exploitation in the learning process, we need to find the joint arm that
is believed to be optimal. Specifically, we are interested in finding the joint arm that
maximizes the global reward function, i.e.,

arg max
a

R(a) = arg max
a

ρ∑
e=1

Re(ae) (4.3)

However, as the joint arm comprises a combination of the decisions made by multiple
agents, finding this arm is a combinatorial optimization problem, which is NP-hard [Wolsey
and Nemhauser, 1999].
Efficient approaches for joint action optimization exist when a coordination graph is

available, which significantly reduces the computational complexity of the optimization
problem. Still, when using a factored representation of the joint action space, finding the
best joint arm is not trivial, as conflicts may arise when an agent belongs to two groups.
Figure 4.2 shows an example, in which three agents need to coordinate. The global reward
function is decomposed into two factors, i.e., a local function that depends on agents 1
and 2 and a local function that depends on agents 2 and 3. In this case, optimizing the
local reward for each group independently is impossible, as the locally-optimal action for
agent 2 differs over the groups that it belongs to. Therefore, it is important to use an
approach that ensures global optimization of the reward function, while deciding on the
agents’ actions on a local level.
One approach to perform global optimization using a factored representation is variable

elimination [Zhang and Poole, 1994]. This technique originated in the context of Bayesian
networks, which allowed for the fast computation of conditional or marginal distributions
using the joint probability factors derived from a probabilistic graphical model. Later,
variable elimination was used in the context of multi-agent coordination graphs to compute
the joint action that maximizes the global reward without explicitly enumerating over the
full joint action space [Guestrin et al., 2001b]. Instead, variable elimination consecutively

70

1. BACKGROUND

Agent 1 Agent 2 Agent 3

Group 1 Group 2

0 1 / 0 1

Local reward
function 1

Local reward
function 2

agent 1 agent 2 reward

0 0 -4

0 1 5

1 0 -2

1 1 -5

agent 2 agent 3 reward

0 0 -1

0 1 3

1 0 1

1 1 -3

Figure 4.2: Binary optimization problem with three agents. The global reward function is
factored into two local reward functions, i.e., one reward function dependent on agents 1
and 2 and one dependent on agents 2 and 3.

eliminates an agent from the coordination graph, while computing its best response with
respect to its neighbors responses.
First, variable elimination picks an agent i ∈ D, and decomposes the maximization

problem into two terms, i.e., one with only the groups to which i belongs and one with
groups to which it does not.

max
a

ρ∑
e=1

Re(ae)

= max
a−i

max
ai

ρ∑
e=1

Re(ae)

= max
a−i

(
max
ai

∑
i∈De

Re(ae−i, aei)
)

+

∑
i6∈De

Re(ae)

 ,

(4.4)

where a−i is the global joint action without agent i, and ai is the action of agent i.

71

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

1 2 3

agent 1 agent 2 reward

0 0 -4

0 1 5

1 0 -2

1 1 -5

agent 2 agent 3 reward

0 0 -1

0 1 3

1 0 1

1 1 -3

(a) Coordination graph

agent 1 agent 2 agent 3 total reward

0 0 0 -5

0 0 1 -1

0 1 0 6

0 1 1 2

1 0 0 -3

1 0 1 1

1 1 0 -4

1 1 1 -8

(b) Joint reward function

agent 1 agent 3 reward

0 0 6

0 1 2

1 0 -3

1 1 1

1 3

(c) New reward function without agent 2

agent 1 agent 3 agent 2

0 0 1

0 1 1

1 0 0

1 1 0

2

(d) Conditional policy of agent 2

Figure 4.3: Example of a variable elimination step – First, agent 2 is picked from the
coordination graph (a). Next, the total reward is computed for all action combinations
among agent 2 and its neighbors (b). For each joint action taken by the neighbors, the best
response of agent 2 is recorded (green). Finally, these joint actions are used to construct
a new reward function (c) and the conditional policy of agent 2 (d).

Next, it focuses on the smaller maximization problem involving agent i, and creates a
new group containing all neighbors of agent i.

De
′

= ∪ρe=1 {j | i ∈ De ∧ j ∈ De} \ {i} (4.5)

It selects the best response of agent i for each possible combination of its neighbors’
actions. This results in a conditional policy for agent i

π
(
ae
′

−i

)
= arg max

ai

∑
i∈De

Re(ae−i, ai), (4.6)

72

2. RELATED WORK

The second term in Equation 4.4 can then be replaced by a new function that only involves
the neighbors of agent i, effectively eliminating agent i from the maximization problem:

Re
′
(ae

′

−i) =
∑
i∈De

Re(ae−i, π(ae
′

−i)), (4.7)

The elimination process is repeated until every agent is eliminated from the graph. An
example of an elimination step is depicted in Figure 4.3.
Variable elimination is guaranteed to return the optimal joint arm and has a computational

complexity that is combinatorial in terms of the induced width of the graph, i.e., the number
of neighbors of an agent at the time of its elimination. Specifically, variable elimination
has a computational complexity of

O

(∏
i∈Dmax

|Ai|

)
, (4.8)

where Dmax is the largest group of agents constructed during the elimination process (see
Equation 4.5). As the method is typically applied to a loosely-coupled coordination graph,
the induced width is much smaller than the size of the full joint action space, which renders
the maximization problem tractable [Guestrin et al., 2001b, 2002].

2 Related work
Multi-agent reinforcement learning and planning with loose couplings has been investigated
in sequential decision problems [Guestrin et al., 2002; Kok and Vlassis, 2006; De Hauwere
et al., 2010; Scharpff et al., 2016; Brys et al., 2011]. In sequential settings, the value
function cannot be factorized exactly. Therefore, it is challenging to provide convergence
and optimality guarantees. While for planning some theoretical guarantees can be provided
[Scharpff et al., 2016], in the learning literature the focus has been on empirical validation
[Kok and Vlassis, 2006]. In this work, we focus on multi-agent multi-armed bandits, which
are single-shot stateless problems. In such settings, the reward function is factored into
components that only depend on a subset of agents.
The combinatorial bandit [Bubeck and Cesa-Bianchi, 2012; Cesa-Bianchi and Lugosi,

2012; Gai et al., 2012; Chen et al., 2013b] is a variant of the multi-armed bandit, in
which, rather than one-dimensional arms, an arm vector has to be pulled. In our work,
the arms’ dimensionality corresponds to the number of agents in our system, and similarly
to combinatorial bandits, the number of arms exponentially increases with this quantity.
We consider a variant of this framework, called the semi-bandit problem [Audibert et al.,
2011], in which local components of the global reward are observable when a joint arm

73

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

is evaluated. An application of this framework is in on-line advertisement, in which the
advertiser can select a subset of web pages to maximize the total number of users that click
on the advertisement. Chen et. al (2013) constructed an algorithm for this setting that
assumes access to an (α, β)-oracle, which combines local arms into a joint arm that outputs
a fraction α of the optimal expected reward with probability β. Instead, we assume the
availability of a coordination graph, which we argue is a reasonable assumption in many
multi-agent settings.
Sparse cooperative Q-learning is an algorithm that also assumes the availability of a

coordination graph [Kok and Vlassis, 2004]. However, although strong experimental
results are given, no theoretical guarantees were provided. Later, the UCB-like algorithm,
HEIST, for exploration and exploitation in multi-agent multi-armed bandits was introduced
[Stranders et al., 2012], which uses a message-passing scheme for resolving coordination
graphs. They provide some theoretical guarantees on the regret for problems with acyclic
coordination graphs. Multi-agent upper-confidence exploration (MAUCE) [Bargiacchi
et al., 2018] is a more general method that uses variable elimination to resolve (potentially
cyclic) coordination graphs. MAUCE demonstrates high performance on a variety of
benchmarks and provides a tight theoretical upper bound on the regret. MATS provides
a Bayesian alternative to MAUCE based on Thompson sampling.
Our problem definition is related to distributed constraint optimization (DCOP) problems

[Yokoo et al., 1998]. In DCOPs, multiple agents control a set of variables in a distributed
manner under a set of constraints. The objective is the same as for a multi-agent multi-
armed bandit, i.e., optimize the sum over group rewards. However, in DCOPs, the
rewards are assumed to be known beforehand. Distributed coordination of exploration and
exploitation [Taylor et al., 2011] extends this setting to unknown rewards and considers the
optimization of the cumulative reward achieved over a time span. Multi-agent multi-armed
bandits, or multi-armed bandit DCOPs [Stranders et al., 2012], consider the optimization
of a single-step expected reward over time.
Multi-agent multi-armed bandits can be used in the context of wind farm control, in

which the farm’s power output must be maximized by controlling the turbines jointly.
In recent research on wind farm control, the impact of optimized rotor alignments on
power production is investigated [van Dijk et al., 2016]. To search for the optimal
alignments within the wind farm, data-driven methods are usually adopted, where the
turbines’ alignments are perturbed iteratively until they locally converge [Marden et al.,
2013]. When optimizing the alignment of a wind turbine, only considering its neighbors can
significantly boost the learning speed [Gebraad and van Wingerden, 2015]. MATS is also
able to leverage neighborhood structures. In addition, rather than random perturbation
of the alignments, MATS leverages an exploration-exploitation mechanism that is inspired
by Thompson sampling and variable elimination, which allows for a global exploration

74

3. MULTI-AGENT THOMPSON SAMPLING

mechanism that targets the optimal alignment configuration, while retaining a small regret
during the learning process itself.

3 Multi-Agent Thompson Sampling
We propose the multi-agent Thompson sampling (MATS) algorithm for decision making in
loosely-coupled multi-agent multi-armed bandit problems. Consider a multi-agent multi-
armed bandit with groups De (Definition 5). The local means µe(ae) are treated as
unknown. According to the Bayesian formalism, we assert our beliefs over the local means
µe(ae) in the form of a prior, Qeae(·). At each time step t, MATS draws a sample µet (ae)
from the posterior for each group and local arm given the history, Ht−1, consisting of local
actions and rewards associated with past pulls:

µet (ae) ∼ Qeae(· | Ht−1)
Ht−1 , ∪t−1

i=1 ∪
ρ
e=1 {〈aei , Rei (aei)〉}.

(4.9)

Note that during this step, MATS samples directly the posterior over the unknown
local means, which implies that the sample µet (ae) and the unknown mean µe(ae) are
independent and identically distributed at time step t, given the history Ht−1.
Thompson sampling chooses the arm with the highest sample, i.e.,

at = arg max
a

µt(a). (4.10)

However, in our case, the expected reward is decomposed into several local means. As
conflicts between overlapping groups will arise, the optimal local arms for an agent in
two groups may differ. Therefore, we must define the argmax-operator to deal with the
factored representation of a multi-agent multi-armed bandit, while still returning the full
joint arm that maximizes the sum of samples, i.e.,

at = arg max
a

ρ∑
e=1

µet (ae). (4.11)

To this end, we use variable elimination, which computes the joint arm that maximizes
the global reward without explicitly enumerating over the full joint arm space [Guestrin
et al., 2001b]. Specifically, variable elimination consecutively eliminates an agent from the
coordination graph, while computing its best response with respect to its neighbors actions.
Variable elimination is guaranteed to return the optimal joint arm and has a computational
complexity that is combinatorial in terms of the induced width of the graph. Since the
method is typically applied to a loosely-coupled coordination graph, the induced width is

75

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

much smaller than the size of the full joint action space. Approximate efficient alternatives
exist, such as max-plus [Vlassis et al., 2004], but using them will invalidate the proof for
the Bayesian regret bound (Theorem 1).
Finally, the joint arm that maximizes Equation 4.11, at, is pulled and a reward Ret (aet)

will be obtained for each group. MATS is formally described in Algorithm 3.1

Algorithm 3: Multi-Agent Thompson Sampling (MATS)
Input: Prior Qeae per group De and local action ae

1 H0 ← {}
2 for t ∈ [1..T] do
3 Sample means from prior for each local arm.
4 ∀e ∈ [1..ρ] ,ae ∈ Ae :
5 µet (ae) ∼ Qeae(· | Ht−1)
6

7 Compute best joint arm using local mean samples.
8 at ← arg maxa

∑ρ
e=1 µ

e
t (ae) using variable elimination

9

10 Pull best joint arm, receive local rewards and update history of observations.
11 〈Ret (aet)〉

ρ
e=1 ← Pull joint arm at

12 Ht ← Ht−1 ∪ {〈aet , Ret (aet)〉}
ρ
e=1

13 end

MATS belongs to the class of probability matching methods (see Definition 3). Intuitively,
this means that MATS samples the local mean rewards according to the beliefs of the
user at each time step, and maximizes over those means to find the optimal joint arm
according to Definition 5. This process is conceptually similar to traditional Thompson
sampling (see Section 2.2 in Chapter 2).

4 Bayesian Regret Analysis
Many multi-agent systems are composed of locally connected agents. When formalized as
a MAMAB (Definition 5), our method is able to exploit these local structures during the
decision process. We provide a Bayesian regret bound for MATS that scales sublinearly
with a factor ÃT , where Ã is the number of local arms.

1Source code for MATS is publicly available in the AI-toolbox by Bargiacchi et al. [2020], which is
implemented in C++ with Python bindings.

76

4. BAYESIAN REGRET ANALYSIS

Consider a MAMAB 〈D,A, R〉 with ρ groups and the following assumption on the
rewards:

Assumption 1

The global rewards have a mean between 0 and 1, i.e.,

µ(a) ∈ [0, 1],∀a ∈ A.

Assumption 2

The local rewards shifted by their mean are σ-subgaussian distributed, i.e., ∀e ∈
[1..ρ],ae ∈ Ae,

E [exp (t(Re(ae)− µe(ae)))] ≤ exp(0.5σ2t2).

A σ-subgaussian distribution is a distribution of which the tails are bounded in the limit
by a Gaussian with standard deviation σ. For example, any distribution with finite support
(e.g., the uniform and Bernoulli distributions) are σ-subgaussian.
We maintain the pull counters net−1(ae) and estimated means µ̂et−1(ae) for local arms
ae. Note that, while µet (·) is a random variable distributed according to the posterior at
time t, reflecting the unknown mean parameter, µ̂et−1(·) is the sample mean at time t,
based on t − 1 observed rewards.
Consider the event ET , which states that, until time step T , the differences between the

local sample means and true means are bounded by a time-dependent threshold, i.e.,

ET ,
(
∀e,ae, t : |µ̂et−1(ae)− µe(ae)| ≤ cet (ae)

)
(4.12)

with

cet (ae) ,

√
2σ2 log(δ−1)
net−1(ae) . (4.13)

where δ is a free parameter that will be chosen later. We denote the complement of
the event by ET .
Proof outline. The event ET states that the sample means for all local arms and all time

steps are sufficiently close to the true unknown means, i.e., they appear within a specified

77

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

parametrized interval. This allows us to decompose the regret bound into two terms, i.e.,
one for which the event is true and one for which it is false. If the event is true, it means
that the errors on the sample means are bounded, and thus the cumulative regret can also
be bounded in terms of these errors. Specifically, we can show that the local regret for
each possible local arm is bounded by twice the specified interval. If the event is false, it
means that the instantaneous regret cannot be reduced over time and will, according to
Assumption 1, be equal to 1 in the worst case. Therefore, we show that the probability of
this event being false reduces significantly over time. Specifically, we can use Hoeffding’s
inequality for subgaussian reward distributions, which states that the probability of a sample
mean and the true mean not appearing in the specified interval is exponentially bounded in
terms of this interval and the number of samples used to determine the estimated mean.
Finally, by combining both cases and choosing the parameters of the aforementioned
interval carefully, we obtain a regret bound that is sub-linear with respect to time and the
size of the local joint action space.
We now provide the necessary lemmas and detailed proofs to establish an upper bound

on the cumulative regret.

Lemma 1

(Bayesian regret bound under ET) Provided that the error bound on the local sample
means is never exceeded until time T , the Bayesian regret bound, when using the
MATS policy π, is of the order

E [R(T, π) | ET] ≤
√

32σ2ÃρT log(δ−1). (4.14)

Proof. Consider this upper bound on the sample means:

ut(a) ,
ρ∑
e=1

µ̂et−1(ae) + cet (ae). (4.15)

Given history Ht−1, the statistics µ̂et−1(ae) and net−1(ae) are known, rendering ut(·)
a deterministic function. Therefore, the probability matching property of MATS
(Equation 2.9) can be applied as follows:

E [ut(at) | Ht−1] = E [ut(a∗) | Ht−1] .
(4.16)

Hence, using the tower-rule, i.e., for two random variables X and Y :
E [X] = E [E [X | Y]] , (4.17)

78

4. BAYESIAN REGRET ANALYSIS

the regret can be bounded as

E

[
T∑
t=1

∆(at) | ET

]
(4.17)= E

[
T∑
t=1
E [µ(a∗)− µ(at) | Ht−1, ET]

∣∣∣∣∣ ET
]

= E
[
T∑
t=1
E [µ(a∗)− ut(at) | Ht−1, ET]

+
T∑
t=1
E [ut(at)− µ(at) | Ht−1, ET]

∣∣∣∣∣ ET
]

(4.16)= E

[
T∑
t=1
E [µ(a∗)− ut(a∗) | Ht−1, ET]

+
T∑
t=1
E [ut(at)− µ(at) | Ht−1, ET]

∣∣∣∣∣ ET
]
.

(4.18)

Note that the expression µ(a∗)− ut(a∗) is always negative under ET , i.e.,

µ(a∗)− ut(a∗)
(4.15)=

ρ∑
e=1

µe(ae∗)− µ̂et−1(ae∗)− cet (ae∗)

(4.12)
≤

ρ∑
e=1

cet (ae∗)− cet (ae∗) = 0,
(4.19)

while ut(at)− µ(at) is bounded by twice the sum of the thresholds cet (ae), i.e.,

ut(at)− µ(at)
(4.15)=

ρ∑
e=1

µ̂et−1(aet) + cet (aet)− µe(aet)

(4.12)
≤

ρ∑
e=1

cet (aet) + cet (aet) = 2
ρ∑
e=1

cet (aet).
(4.20)

79

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

Thus, Equation 4.18 can be bounded as

E

[
T∑
t=1

∆(at) | ET

]
≤ E

[
2

T∑
t=1

ρ∑
e=1

cet (aet)
]

= E
[

2
T∑
t=1

ρ∑
e=1

√
2σ2 log(δ−1)
net−1(aet)

]

= E
[

2
ρ∑
e=1

∑
ae∈Ae

T∑
t=1
I{aet = ae}

√
2σ2 log(δ−1)
net−1(ae)

]
,

(4.21)

where I{·} is the indicator function. The terms in the summation are only non-zero at the
time steps when the local action ae is pulled, i.e., when I{aet = ae} = 1. Additionally,
note that only at these time steps, the counter net (ae) increases by exactly 1. Therefore,
the following equality holds:

T∑
t=1
I{aet = ae}

√
(net−1(ae))−1 =

ne
T (ae)∑
k=1

√
k−1.

(4.22)

The function
√
k−1 is decreasing and integrable. Hence, using the right Riemann sum,

√
k−1 ≤

∫ k

k−1

√
x−1dx. (4.23)

Combining Equations 4.21–4.23 leads to a bound

E

[
T∑
t=1

∆(at)

∣∣∣∣∣ ET
]

(4.21)= E

[
2

ρ∑
e=1

∑
ae∈Ae

T∑
t=1
I{aet = ae}

√
2σ2 log(δ−1)
net−1(ae)

]

(4.22)= E

√8σ2 log(δ−1)
ρ∑
e=1

∑
ae∈Ae

ne
T (ae)∑
k=1

√
k−1

(4.23)
≤ E

[√
8σ2 log(δ−1)

ρ∑
e=1

∑
ae∈Ae

∫ ne
T (ae)

0

√
x−1dx

]

= E
[√

8σ2 log(δ−1)
ρ∑
e=1

∑
ae∈Ae

√
4neT (ae)

]
.

(4.24)

80

4. BAYESIAN REGRET ANALYSIS

We use the relationship ||x||1 ≤
√
n||x||2 between the 1- and 2-norm of a vector x, where

n is the number of elements in the vector, as follows:
ρ∑
e=1

∑
ae∈Ae

∣∣∣∣√neT (ae)
∣∣∣∣ ≤√Ã

√√√√ ρ∑
e=1

∑
ae∈Ae

(√
neT (ae)

)2
. (4.25)

Finally, note that the sum of all counts neT (ae) is equal to the total number of local pulls
done by MATS until time T , i.e.,

ρ∑
e=1

∑
ae∈Ae

neT (ae) = ρT. (4.26)

Using the Equations 4.24–4.26, the complete regret bound under ET is given by

E

[
T∑
t=1

∆(at) | ET

]
(4.24)
≤ E

[√
8σ2 log(δ−1)

ρ∑
e=1

∑
ae∈Ae

√
4neT (ae)

]
(4.25)
≤ E

√32σ2 log(δ−1)
√
Ã

√√√√ ρ∑
e=1

∑
ae∈Ae

(√
neT (ae)

)2

(4.26)=
√

32σ2 log(δ−1)
√
Ã
√
ρT .

(4.27)

Lemma 2

(Concentration inequality) The probability of exceeding the error bound on the local
sample means is linearly bounded by ÃT δ. Specifically,

p
(
ET
)
≤ 2ÃT δ. (4.28)

Proof. Using the union bound, i.e., for any finite or countably infinite set of events Xi:
p (∪iXi) ≤

∑
i

p (Xi) , (4.29)

we can bound the probability of observing event ET as

p
(
ET
) (4.12)= p

(
∃t, e,ae : |µ̂et−1(ae)− µe(ae)| > cet (ae)

)
(4.29)
≤

T∑
t=1

ρ∑
e=1

∑
ae∈Ae

p
(∣∣µ̂et−1(ae)− µe(ae)

∣∣ > cet (ae)
)
.

(4.30)

81

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

The estimated mean µ̂et−1(ae) is a weighted sum of net−1(ae) random variables distributed
according to a σ-subgaussian with mean µe(ae). Hence, Hoeffding’s inequality (H) can
be used [Vershynin, 2018].

p
(∣∣µ̂et−1(ae)− µe(ae)

∣∣ > cet (ae)
) (H)
≤ 2 exp

(
−
net−1(ae)

2σ2 (cet (ae))2
)

(4.13)= 2 exp
(
−
net−1(ae)

2σ2
2σ2 log(δ−1)
net−1(ae)

)
= 2 exp

(
− log(δ−1)

)
.

= 2δ

(4.31)

Therefore, the following concentration inequality on ET holds:

p
(
ET
)
≤

T∑
t=1

ρ∑
e=1

∑
ae∈Ae

2δ = 2ÃT δ. (4.32)

Theorem 1

Let 〈D,A, R〉 be a MAMAB. If Assumptions 1 and 2 hold, then the MATS policy π
satisfies a Bayesian regret bound of

E [R(T, π)] ≤
√

64σ2ÃρT log(ÃT) + 2
Ã

∈ O
(√

σ2ÃρT log(ÃT)
)
.

(4.33)

Proof. Using the law of excluded middle (M) and the fact that ∆(at) and p (ET | Ht−1)
are between 0 and 1 (B), the regret can be decomposed as

E

[
T∑
t=1

∆(at)
]

(M)= E
[
T∑
t=1

∆(at) | ET

]
p (ET) + E

[
T∑
t=1

∆(at) | ET

]
p
(
ET
)

(B)
≤ E

[
T∑
t=1

∆(at) | ET

]
+ Tp

(
ET
)
.

(4.34)

82

4. BAYESIAN REGRET ANALYSIS

Then, according to Lemmas 1 and 2 (L), we have

E

[
T∑
t=1

∆(at)
]

(4.34)
≤ E

[
T∑
t=1

∆(at) | ET

]
+ Tp

(
ET
)

(L)
≤
√

32σ2ÃρT log(δ−1) + 2ÃT 2δ.

(4.35)

Finally, choosing δ = (ÃT)−2, we conclude that

E [R(T, π)]
(4.35)
≤

√
32σ2ÃρT log(δ−1) + 2ÃT 2δ

≤
√

64σ2ÃρT log
(
ÃT
)

+ 2
Ã

∈ O
(√

σ2ÃρT log(ÃT)
)
.

(4.36)

Corollary 1

If |Ai| ≤ k for all agents i, and if |De| ≤ d for all groups De, then

E [R(T, π)] ∈ O
(
ρ
√
σ2kdT log(ρkdT)

)
. (4.37)

Proof. Ã =
∑ρ
e=1 |Ae| =

∑ρ
e=1

∏
i∈De |Ai| ≤ ρkd.

Corollary 1 tells us that the regret is sub-linear in terms of time T and low-order
polynomial in terms of the largest action space of a single agent when the number of
groups and agents per group are small. This reflects the main contribution of this work.
When agents are loosely coupled, MATS provides a mechanism that only considers small
parts of the joint arm space at a time, rather than the full joint arm space directly. This is
a significant improvement over the established classic regret bounds of vanilla Thompson
sampling when the multi-agent multi-armed bandit is flattened and the factored structure
is neglected [Russo and Van Roy, 2014; Lattimore and Szepesvári, 2020]. The classic
bounds scale exponentially with the number of agents, which renders the use of vanilla
Thompson sampling unfeasible in many multi-agent environments.

83

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

5 Experiments
We evaluate the performance of MATS on the benchmark problems proposed in the paper
that introduced MAUCE [Bargiacchi et al., 2018], which is a state-of-the-art algorithm for
multi-agent bandit problems, and one novel setting that falls outside the domain of the
theoretical guarantees for both MAUCE and MATS.
Additionally, we execute MATS on a state-of-the-art wind farm simulator to address

the practical benefits of MATS in wind farm control setting. Specifically, we use MATS
to optimize joint rotor alignment of a group of wind turbines, such that the total power
production maximized. This is a non-trivial problem, as upstream operating turbines affect
the power output of downstream turbines, creating non-linear dependencies between the
agents’ actions. As we assume that the variance on the rewards is unknown, the established
regret bounds for MAUCE and MATS do not apply.2

5.1 Synthetic Benchmarks
First, we evaluate the performance of MATS on two benchmarks that were introduced
in the MAUCE paper, i.e., Bernoulli 0101-Chain and Gem Mining. We compare against
a random policy (rnd), Sparse Cooperative Q-Learning (SCQL) [Kok and Vlassis, 2004],
Learning with Linear Rewards (LLR) [Gai et al., 2012] and the state-of-the-art algorithm,
Multi-Agent Upper Confidence Exploration (MAUCE) [Bargiacchi et al., 2018]. For SCQL
and MAUCE, we use the same parameters as described by Bargiacchi et al. [2018]. For
SCQL, we use an ε-greedy policy, which picks the current best action with a probability
of (1 − ε) and a random action with a probability of ε. We let ε decrease linearly over
time, i.e., ε = 0.05−10−5t. For MAUCE, the exploration parameter reflects the maximum
possible reward that can be returned. As both the Bernoulli 0101-Chain and Gem Mining
experiments consider Bernoulli-distributed rewards, we set the exploration parameter to 1.
For MATS, we always use non-informative Jeffreys priors to model the unknown means of
the reward distributions, which are invariant toward reparametrization of the experimental
settings [Robert, 2007]. For Bernoulli-distributed rewards, the Jeffreys prior is the Beta-
distribution Beta (α = 0.5, β = 0.5) [Lunn et al., 2012]. Although including additional
prior domain knowledge could be useful in practice, we use well-known non-informative
priors in our experiments to compare fairly with other state-of-the-art techniques.
Then, we introduce a novel variant of the 0101-Chain with Poisson-distributed local

rewards. We expect this to be a particularly challenging task to solve [Libin et al., 2019],
as a Poisson distribution is supergaussian, meaning that its tails tend slower toward zero

2The source code to reproduce the experiments is publicly available at:
https://github.com/timo-verstraeten/mats-experiments

84

https://github.com/timo-verstraeten/mats-experiments

5. EXPERIMENTS

than the tails of any Gaussian. Therefore, both the assumptions made in Theorem 1 and
in the established regret bound of MAUCE are violated. Additionally, as the rewards are
highly skewed, we expect that the use of symmetric exploration bounds in MAUCE will
often lead to either over- or underexploration of the local arms.
We assess the performance of LLR, SCQL, MAUCE and MATS on this benchmark. For

SCQL, we use the same parametrization for the ε-greedy policy as used in the Bernoulli
experiments. For MAUCE, an exploration parameter must be chosen, which denotes the
range of the observed rewards. As a Poisson distribution has unbounded support, there is
no maximum reward, and it is challenging to choose the exploration parameter. Therefore,
we rely on a statistical approach, in which we consider the percentiles of the Poisson
distribution. Specifically, as about 95% of the rewards when pulling the optimal arm falls
below a value of 1, we choose 1 as the exploration parameter of MAUCE. For MATS we
use non-informative Jeffreys priors on the unknown means, which for the Poisson likelihood
is a Gamma prior, Gamma(α = 0.5, β = 0) [Lunn et al., 2012].

Bernoulli 0101-Chain

The Bernoulli 0101-Chain consists of n agents and n− 1 local reward distributions. Each
agent can choose between two actions: 0 and 1. In the coordination graph, agents i and
i+1 are connected to a local reward Ri(ai, ai+1). Thus, each pair of agents should locally
coordinate in order to find the best joint arm. The local rewards are drawn from a Bernoulli
distribution with a different success probability per group. These success probabilities are
given in Table 4.1. The optimal joint action is an alternating sequence of zeros and ones,
starting with 0. In this work, we set the number of agents n to 10.

Ri ∼ Ber (·) ai+1 = 0 ai+1 = 1
ai = 0 0.75 1
ai = 1 0.25 0.9

Table 4.1: Bernouilli 0101-Chain – The unscaled local reward distributions of agents i and
i + 1, where i is even. Each entry shows the success probability for each local arm of
agents i and i+ 1, where i is even. The table is transposed for the case where i is odd.

To ensure that the assumptions made in the regret analyses of MAUCE and MATS hold,
we divide the local rewards by the number of groups, such that the global rewards are
between 0 and 1.

85

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

The results for the Bernoulli 0101-chains are shown in Figure 4.5a. These results
demonstrate that MATS solves the problem in only a few time steps, while MAUCE still
pulls many sub-optimal actions after 10000 time steps.

Gem Mining

village
mine

Figure 4.4: Example of a coordination graph in the Gem Mining problem. The red nodes
are the mines (rewards), while the blue nodes are the villages (agents) [Roijers, 2016].

In the Gem Mining problem, a mining company wants to excavate a set of mines for
gems (i.e., local rewards). The goal is to maximize the total number of gems found over
all mines. However, the company’s workers live in separate villages (i.e., agents), and only
one van per village is available. Therefore, each village needs to decide to which mine it
should send its workers (i.e., local action). Moreover, workers can only commute to nearby
mines, which is described by the coordination graph. Hence, a group can be constructed
per mine, consisting of all agents that can travel toward the mine. An example of a
coordination graph is given in Figure 4.4.
To generate an instance of the problem, we randomly sample a number of villages nv in

[5..15]. Each village is randomly populated with 1 to 5 workers. The number of mines is
equal to nv + 3. To construct the coordination graph, we connect a village to the mines
with indices i to (i + mi − 1), where mi is a random number in [2..4]. The last village
is always connected to 4 mines. This method ensures that there are no disconnected
subgraphs in the coordination graph.
The reward is drawn from a Bernoulli distribution, where the probability of finding a gem

at a mine is 1.03W−1pB with W the total number of workers assigned to the mine and
pB a randomly chosen base probability in [0, 0.5] for each mine. When more workers are
excavating a mine, the probability of finding a gem increases.

86

5. EXPERIMENTS

The results for the Gem Mining problem are shown in Figure 4.5b. We can observe that
the cumulative regret of MAUCE is three times as high as the cumulative regret of MATS
around 40000 time steps.

Poisson 0101-Chain

We introduce a novel benchmark with Poisson distributed local rewards. As a Poisson
distribution is skewed, we expect this to be a challenging task to solve. Moreover, a
Poisson distribution is supergaussian, which means that the established regret bounds of
both MATS and MAUCE do not hold. Similar to the Bernoulli 0101-Chain, agents need
to coordinate their actions in order to obtain an alternating sequence of zeroes and ones.
However, as the rewards are highly skewed and supergaussian, this setting is much more
challenging. The means of the Poisson distributions are given in Table 4.2. We also divide
the rewards by the number of groups, similar to the Bernoulli 0101-Chain. Again, we set
the number of agents n to 10.

Ri ∼ P (·) ai+1 = 0 ai+1 = 1
ai = 0 0.1 0.3
ai = 1 0.2 0.1

Table 4.2: Poisson 0101-Chain – The unscaled local reward distributions of agents i and
i+ 1. Each entry shows the mean for each local arm of agents i and i+ 1.

Figure 4.5c shows that the cumulative regret of MATS stagnates around 7500 time steps,
while the cumulative regret of MAUCE continues to increase significantly. Moreover, for
our chosen parametrization of the Poisson distributions, the mean falls well above 50% of
all samples. Therefore, it is expected that for the initially observed rewards, the true mean
will be higher than the sample mean. Naturally, this bias averages out in the limit, but
may have a large impact during the early exploration stage. The high standard deviations
in Figure 4.5c support this impact.

5.2 Wind Farm Control Application
We demonstrate the benefits of MATS on a state-of-the-art wind farm simulator and
compare its performance to MAUCE, SCQL and LLR. A wind farm consists of a group of
wind turbines, instantiated to extract energy from wind. From the perspective of a single
turbine, aligning with the incoming wind vector usually ensures the highest productivity.
However, translating this control policy directly toward an entire wind farm may be sub-
optimal. As wind passes through the farm, downstream turbines observe a significantly

87

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

 0

 10

 20

 30

 40

 50

 0 2500 5000 7500 10000

llr
mats
mauce
rnd
scql

(a) Bernoulli 0101-Chain

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000

llr
mats
mauce
rnd
scql

(b) Gem Mining

 0

 50

 100

 150

 200

 250

 0 2500 5000 7500 10000

llr
mats
mauce
rnd
scql

(c) Poisson 0101-Chain

Figure 4.5: Cumulative normalized regret averaged over 100 runs for the (a) Bernoulli
0101-Chain, (b) Gem Mining and (c) Poisson 0101-Chain. Both the mean (line) and
standard deviation (shaded area) are plotted.

lower wind speed. This is known as the wake effect, which is due to the turbulence
generated behind operational turbines.
In recent work, the possibility of deflecting wake away from the farm through rotor

misalignment is investigated [van Dijk et al., 2016]. While a misaligned turbine produces
less energy on its own, the group’s total productivity is increased. Physically, the wake
effect reduces over long distances, and thus, turbines tend to only influence their neighbors.
We can use this domain knowledge to define groups of agents and organize them in a
graph structure. Note that the graph structure depends on the incoming wind vector.
Nevertheless, atmospheric conditions are typically discretized when analyzing operational
regimes [International Electrotechnical Commission, 2012], thus, a graph structure can be
made for each possible incoming discretized wind vector independently. Here, we construct
a graph structure for one possible wind vector.
We demonstrate our method on a virtual wind farm, consisting of 11 turbines, of

which the layout is shown in Figure 4.6. We use the state-of-the-art ‘FLOw Redirection
and Induction in Steady-state’ (FLORIS) wake simulator [National Renewable Energy
Laboratory (NREL), 2019] and the 5 MW reference turbine description from the National
Renewable Energy Laboratory to model the individual wind turbines [Jonkman et al.,
2009]. Each turbine is an agent, and choosing an orientation with respect to the incoming
wind vector corresponds to an action. The groups are constructed according to the graph
depicted in Figure 4.6. The reward is described by the power production per agent, which
we divide uniformly over the groups that the agent is part of. This entails that the reward
received by an agent contributes equally to every group it is part of. The objective is to
find the joint alignment of the wind farm that maximizes the total power production.

88

6. DISCUSSION

WIND

Figure 4.6: Wind farm layout – Dependency graph where the nodes are the turbines and
the edges describe the dependencies between the turbines. The incoming wind is denoted
by an arrow.

For SCQL, we use an ε-greedy policy and let ε decrease linearly over time, i.e., ε =
0.05 − 10−5t. For MAUCE, we use the same exploration parameter used by [Bargiacchi
et al., 2018], which was calibrated to be 0.05. For MATS, we assume the local power
productions are sampled from Gaussians with unknown mean and variance, which leads to
a Student’s t-distribution on the mean when using a Jeffreys prior [Honda and Takemura,
2014]. The results for the wind farm control setting are shown in Figure 4.7. We can
see that MATS allowed for a five-fold increase of the normalized power productions with
respect to MAUCE.

6 Discussion
We proposed multi-agent Thompson sampling (MATS), a novel Bayesian algorithm for
multi-agent multi-armed bandits. The method exploits loose connections between agents
to solve multi-agent coordination tasks efficiently. Theoretically, both MATS and MAUCE
achieve sub-linear regret in terms of time and low-order polynomial regret in terms of
the number of local arms for sparse coordination graphs. Establishing upper bounds on
regret is important, as it provides guarantees about the learning performance for worst-
case scenarios. Empirically, we showed a significant improvement over the state-of-the-art
algorithms, MAUCE and SCQL, on several synthetic benchmarks.
Moreover, MATS is a Bayesian method that can seamlessly include domain knowledge

about the shape of the reward distributions and treat the problem parameters as unknowns.
To highlight the power of this property, we introduced the Poisson 0101-chain and provide

89

CHAPTER 4. THOMPSON SAMPLING FOR MULTI-AGENT BANDITS

 0

 2

 4

 6

 8

 10

 0 250 500 750 1000

llr
mats
mauce
rnd
scql

Figure 4.7: Cumulative normalized regret averaged over 10 runs for Wind Farm task. Both
the mean (line) and standard deviation (shaded area) are plotted.

the Poisson likelihood function to MATS. In this setting, the reward distributions are
highly skewed and supergaussian (i.e., the tails of the distribution are lower-bounded by
a Gaussian in the limit). Although the established regret bounds of MATS and MAUCE
do not apply to supergaussian reward distributions, we demonstrate that MATS exploits
density information of the rewards to achieve more targeted exploration. As MAUCE only
supports symmetric exploration bounds, it is challenging to correctly assess the amount
of exploration needed to solve the task.
Throughout the experiments, exploration constants had to be specified for MAUCE,

which were challenging to interpret and choose. In contrast, MATS uses either statistics
about the data and, potentially non-informative, beliefs asserted by the user. For example,
in the wind farm case, the spread of the measurements is unknown. MATS effectively
maintains a posterior on the variance and uses it to balance exploration and exploitation,
while still outperforming MAUCE with a manually optimized exploration range.
Currently, we established an upper bound on the cumulative regret to show that the

MATS policy converges to a strategy that consistently plays the optimal joint arm (i.e.,
the cumulative regret reduces sub-linearly over time) and that the MATS policy effectively
exploits the sparse structure of the joint action space (i.e., the regret bound is in terms
of the number of local joint actions instead of the global joint actions). In future work,
we aim to construct a lower bound for MATS, which will allow us to assess the tightness
of the established upper bound.
We demonstrated that MATS achieves high performance on a synthetic wind farm control

task, where the optimal rotor alignments of the wind turbines need to be jointly optimized
to maximize the farm’s power production. In many wind farm control settings, there exist

90

6. DISCUSSION

sparse neighborhood structures between turbines. Our results show that MATS is able
to successfully exploit these structures, while leveraging prior knowledge about the data.
Therefore, including MATS in data-driven wind farm control mechanisms will significantly
improve their scalability toward contemporary wind farms.
Due to the increase in capacity of contemporary wind farms, it is important that AI-driven

wind farm control methods are scalable with respect to the number of wind turbines, as
well as flexible with respect to the used objective function. Therefore, in the next chapter,
we further investigate the potential of factorization using the available domain knowledge
in the context of wind farm control. Specifically, we start from the previous insights on
device similarity (Chapter 3) and dependency graphs (Chapter 4), and propose a new
wind farm control algorithm, called set-point Thompson sampling. This method exploits a
factored representation of the wind farm to efficiently learn the optimal power configuration
over wind turbines to match the power demand provided at farm-level, while considering
load information.

91

5 | Scalable Hybrid
Optimization for Wind

Farm Control

The rapid increase in the supply of renewable energy poses challenges with respect to the
stability of the electrical grid. In contrast to conventional power plants (e.g., gas, hydro
and oil), the power output of wind farms ultimately depends on environmental conditions.
Due to the increase in capacity, the integration of wind energy in the electricity grid
needs to comply with strict grid code requirements [Sourkounis and Tourou, 2013; Ahmed
et al., 2020].
To ensure grid stability, wind farm controllers are developed to configure farm-wide power

set-points, i.e., thresholds on the power production, in order to match the power demand
[Aho et al., 2012]. This power demand is imposed by the transmission system operator, i.e.,
the entity responsible for balancing the energy supply and demand. The development of
such controllers poses important challenges, as there exist complex non-linear dependencies
between wind turbines. These dependencies originate from the wake effect [González-
Longatt et al., 2012] in which upstream wind turbines reduce the available wind energy
for downstream wind turbines. Additionally, when wind turbines are performing torque
control, which regulates the power production by adapting the rotor speed, a higher
power production typically results in increased loads on the mechanical components, which
leads to a higher lifetime consumption [International Electrotechnical Commission, 2012;

93

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

Verstraeten et al., 2019]. Therefore, a careful balance between power and lifetime needs
to be guaranteed [Boersma et al., 2017; van Binsbergen et al., 2020].
The design of wind farm controllers is typically grounded in domain knowledge about

patterns in the turbines’ behaviors when the wake effect is present [Boersma et al., 2017;
Siniscalchi-Minna et al., 2019]. For example, one can recognize that upstream turbines,
with respect to the dominant wind direction, typically observe higher fatigue loads than
downstream turbines [Jensen et al., 2016]. Therefore, lower set-points should be chosen
for upstream turbines to reduce damage accumulation through fatigue loads, in case the
available power over the farm is larger than the desired power. While such heuristics
simplify the computation of the optimal set-point allocation, they fail to capture the
full complexity of the dynamically-changing multi-dimensional load spectrum (e.g., loads
induced during storms). In order to develop advanced control strategies, it is necessary
to consider the full load spectrum to reduce the probability of failure, which increases the
reliability and sustainability of wind farms (see Section 1 of Chapter 1).
In contrast to physics-based heuristics, data-driven wind farm controllers can learn control

strategies without requiring in-depth knowledge about the non-linear dependencies that
exist between the turbines that make up the wind farm. An example of such a data-driven
structure is proposed by van Dijk et al. [2016], in which reinforcement learning techniques
are used to search for the optimal rotor orientation to deflect wake away from downstream
turbines. However, state-of-the-art data-driven wind farm controllers scale poorly to larger
wind farms, as the number of possible configurations grows exponentially with respect to
the number of wind turbines.
Therefore, we argue that a hybrid approach, combining both flexible data-driven methods

and physics-based domain knowledge, is key to guarantee both optimality and scalability of
wind farm controllers. We propose a new method that learns farm-wide control strategies
in simulation while leveraging knowledge about wake patterns, performance statistics and
load profiles. Specifically, we formalize the farm-wide dependencies caused by wake as a
dependency graph and cluster wind turbines with similar load profiles together to factorize
the wind farm. This step effectively combines the previous insights gained on machine
similarity (Chapter 3) and sparse topologies (Chapter 4), together with farm-wide load
patterns, in the context of wind farm control. Using this factored representation, we
propose a novel sampling method, called Set-Point Thompson Sampling (SPTS). This
algorithm uses multi-agent Thompson sampling to evaluate promising control strategies
using the factored representation of the wind farm, with the objective to match the power
demand as well as possible, while minimizing stress on wind turbines with a low remaining
useful life. In this work, we assume that a penalty function is defined by the wind farm
operator, which punishes high-risk wind turbines with damage-inducing responses (e.g.,
turbines that historically have observed abnormal trends in vibration signals [Peeters et al.,

94

1. RELATED WORK

2019]). Additionally, we use a Bayesian formalism, which allows the inclusion of available
knowledge about the data in the form of prior belief distributions. Specifically, as the
expected power production of a single turbine is readily available in the turbine’s design
specifications [Lydia et al., 2014], we construct a prior distribution for every set-point,
centered around the expected power production of the turbine that is associated with this
set-point. This guides the learning process toward sensible power productions and allows
for sufficient exploration to find the optimal set-point under wake conditions.
We start by positioning our research within related work and argue that, given the

complexities inherent to dynamic loads, data-driven controller optimization in large-scale
wind farms is necessary in Section 1. Next, we formalize the set-point configuration
problem and the optimization objective in Section 2. Then, we describe a methodology to
factorize the wind farm using physics-based knowledge in Sections 3 and 4. Afterwards,
we construct SPTS, an efficient method to explore possible set-point configurations
using the proposed factorization, in Section 5. We evaluate our method on wind
farm settings in silico using an extensive set of parametrizations in Section 6. Finally,
we discuss the results, highlighting the benefits and limitations of the method, in Section 7.

The methodology for analyzing the loading zones within the wind farm was published in
Renewable & Sustainable Energy Reviews. The wind farm control method was accepted
for publication at AAMAS 2021.

• Verstraeten, T., Nowé, A., Keller, J., Guo, Y., Sheng, S. and Helsen, J. (2019),
Fleetwide data-enabled reliability improvement of wind turbines, Renewable &
Sustainable Energy Reviews, 109, 428–437

• Verstraeten, T., Daems P.-J., Bargiacchi, E., Roijers, D. M., Libin, P. J. K. and
Helsen, J. (2021), Scalable Optimization for Wind Farm Control using Coordination
Graphs, Proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). (In press, accepted on Dec. 17th 2020)

1 Related Work
Wind farm control strategies have mainly focused on power-load optimization (i.e.,
strategies that maximize power production and minimize fatigue load) or active power
control (i.e., strategies that determine power set-points to meet the demand set by the
electricity grid or an operator) [Boersma et al., 2017]. In both cases, the wake effect is an
important factor to consider when selecting power set-points. For power-load optimization,
data-driven optimization approaches typically focus on reducing the wake effect, such as
wake redirection control and axial induction control [van Binsbergen et al., 2020]. Wake

95

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

redirection control is concerned with finding a joint rotor orientation of the wind turbines
to redirect wake from downstream turbines [van Dijk et al., 2016; Wagenaar et al., 2012].
Axial induction control is an approach to reduce the wake effect, by lowering the power
set-points of upstream turbines to reduce the energy extraction from the wind, and thus
maintain a steady wind speed behind the turbines [Soleimanzadeh et al., 2012; Gebraad
and van Wingerden, 2015].
In this work, we focus on active power control to match the wind farm’s total power

output to the power demand [Aho et al., 2012]. Many heuristic approaches based on
physical knowledge about the turbines and environmental conditions exist [Aho et al., 2012;
Spudic et al., 2010; Siniscalchi-Minna et al., 2019; Jensen et al., 2016]. For example, one
can notice that due to the wake effect, a higher power production for upstream turbines
results in lower wind speeds for downstream turbines. Therefore, the power demand can
be reached using a heuristic approach, where the power contributions of downstream
turbines are maximized while the power contributions of upstream turbines are minimized
[Siniscalchi-Minna et al., 2019].
We argue that, similar to the power-load optimization case, data-driven optimization

approaches can complement existing physics-based knowledge to improve the flexibility
of active power control. Such flexibility is important, as health-aware wind farm control
decisions must consider the complex multi-dimensional load profiles to improve reliability
(see Section 1 of Chapter 1). Nevertheless, it remains challenging to scale data-driven
optimization methods to larger wind farms, where the optimal joint configuration exists
in a high-dimensional solution space.

2 Problem Statement
When the transmission system operator imposes a power demand, the wind farm controller
needs to configure each wind turbine to a power set-point such that the total actual power
production matches the demand as closely as possible. These set-points need to be chosen
such that no high-load set-points are assigned to wind turbines with a low remaining
lifetime. The lifetime of a turbine is dependent on many load factors that can lead to
failure. However, the link between specific loading conditions and failure is currently not
sufficiently understood [Keller et al., 2016; Junior et al., 2017]. Therefore, in this work,
we assume that the wind farm operator constructs a cost-function that heavily penalizes
high loads on high-risk turbines based on expert knowledge (see Section 7).
We formalize the setting as a tuple 〈W, G,Z,A, 〈P,L〉,Pdem〉, which can be regarded

as an extension of a multi-agent multi-armed bandit (see Definition 5), where

• W is a set of wind turbines.

96

2. PROBLEM STATEMENT

• G is a directed dependency graph that describes which turbines influence each other.
We refer to the dependencies of a wind turbine w ∈ W as its parents, and denote
the set that contains turbine w and its parents as G(w).

• Z is a set of operational zones, or regimes, within the wind farm, in which turbines
observe similar loads under normal operating conditions. A fraction of the power
demand will be allocated to each of these regimes.

• A = A1 × · · · ×A|W| is the set of joint set-point configurations (or actions), which
is the Cartesian product of the turbine-specific set-points aw ∈ Aw for each turbine
w ∈ W. We denote AG(w) as the set of local joint set-points for the set G(w).

• P(a) is a stochastic function providing the farm-wide power production when a joint
set-point configuration, a ∈ A, is evaluated. The global power production can
be decomposed into |W| observable and independent local functions, i.e., P(a) =∑
w∈W

Pw
(
aG(w)). The local function Pw

(
aG(w)) represents the power production

achieved by wind turbine w and only depends on the local joint set-point aG(w) of
the subset of wind turbines in G(w).

• Lw
(
aG(w)) assigns a penalty for performing high-load actions by wind turbine w.

We assume that the wind farm operator heavily penalizes high-risk turbines (e.g.,
machines that are expected to have a low remaining life) based on available domain
knowledge.

• Pdem is the power demand imposed by the transmission system operator.

Note that we formalize the dependencies among agents as a directed dependency graph,
rather than a group of agents, as described in Chapter 4. As a turbine can only affect
downstream turbines in one direction, a directed dependency graph is more appropriate for
the wind farm control setting. This graph structure allows us to decompose the reward
function into local functions that relate to the power production achieved by one turbine,
rather than a whole group. An example of a dependency graph is given in Figure 5.1.
We aim to find the joint set-point configuration that matches the power demand as well as

possible, while penalizing high-load actions on wind turbines with low remaining useful life:

min
a

(∑
z∈Z

∣∣∣∣∣fzPdem −
∑
w∈z

Pw
(
aG(w)

)∣∣∣∣∣+
∑
w∈W

Lw
(
aG(w)

))
, (5.1)

where fz is a parameter that assigns a fraction of the demand to operational regime z.
The regimes are constructed based on the operational parameters observed under steady-

state conditions, i.e., situations in which the wind and operational conditions at the wind
farm site are stable and no transient events are present (e.g., storms and grid-loss events).
Based on the fatigue loads observed in the past, i.e., stress induced by rotations performed
under normal operating conditions, each regime will be assigned a fraction of the demand.

97

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

WIND 1

2

3

4

5 8

7

6

Figure 5.1: Example of a dependency graph – Upstream turbines affect downstream
turbines in one direction (arrows) with respect to the wind from the west. The set of
turbines on which turbine 4 depends is highlighted in orange, i.e., G(4) = {1, 2, 4}.

Specifically, if a regime has observed high fatigue loads in the past, a smaller fraction of
the demand is assigned to prevent further potential damage. To allow for the inclusion
of additional costs related to other types of loads, we introduce the penalty functions
Lw(aG(w)). This penalty should be formalized by the wind farm operator.

3 Operational Regimes
To ensure scalability of the control optimization process toward large wind farms, we need
a learning algorithm that can leverage the similarities that exist between wind turbines.
To this end, we provide a methodology to cluster wind turbines into operational regimes,
i.e., a group of turbines with similar operational parameters (e.g., rotor speed and power
production) in steady-state conditions. We qualitatively validate the obtained regimes
against their load profiles.
To establish which turbines are similar, we analyze operational 1-second field data,

provided by a supervisory control and data acquisition system (SCADA) [Boyer, 2009]. By
identifying patterns in operational wind farm data and connecting them with fundamental
research on loads, the control expert gains insights about the loading conditions over the
wind farm for various environmental contexts. This knowledge can be incorporated in the
learning process of the controller.

98

3. OPERATIONAL REGIMES

In order to define these similarities, we model operational farm data using Bayesian
Gaussian mixture models (GMMs) [Blei et al., 2006]. These models describe the data using
a finite set of (multivariate) Gaussian distributions. By modeling the data using GMMs,
a soft clustering is constructed, where each data point belongs to a cluster with a certain
probability. As each cluster is described using a multivariate Gaussian, the parameters that
should be learned are the mean vectors and covariance matrices. The Bayesian variant
introduces a Dirichlet prior [Blei et al., 2006] to infer the number of Gaussians used to
model the data. This reduces model complexity to maintain interpretability and to prevent
overfitting, compared to the standard Gaussian mixture models, for which the number of
Gaussians needs to be known beforehand.
Restricting the data to a certain distributional form gives GMMs several desirable

properties: the automatic inference of the number of clusters, the robust differentiation
between noise and outliers, and the ability to perform well on small data sets. This
provides a suitable mechanism to detect the frequently changing patterns in operational
data and to detect similarities among the turbines’ behaviors for specific environmental
loading conditions.
Formally, the Bayesian GMM for the operational regimes is as follows:

φ ∼ Dir
(

1,
∣∣∣Z̃∣∣∣) (5.2a)

p (w ∈ z̃) = φz̃,∀z̃ ∈ Z̃ (5.2b)
〈µz̃,K z̃〉 ∼ NIW (θ) (5.2c)

〈ωw,Pw〉 | w ∈ z̃ ∼ N
(
µz̃,K z̃

)
,∀w ∈ W. (5.2d)

First, we introduce a finite set Z̃ of potential regimes z̃ to which a turbine w can be
assigned (5.2a). The size of this set reflects the maximum number of regimes that can
be present in the final clustering. For the wind farms we consider in our analyses, we
choose |Z̃| = 10 to be a sufficient number of potential regimes. The probability of turbine
w belonging to a regime z̃ before observing any data is equal to φz̃ (5.2b), which is
drawn from a symmetric Dirichlet distribution with |Z̃| components (i.e., the number of
potential regimes) and concentration parameter 1. Intuitively, using this type of Dirichlet
distribution leads to a uniform distribution over possible assignments of turbines to regimes.
Thus, this distribution is often used when no assignment of turbines to regimes is favored
before observing any data. Then, we associate a multivariate normal distribution to each
regime z̃ with parameters µz̃ and K z̃ (5.2c), which describe the means of, and covariance
between, the rotor speed ωw and power production Pw of turbine w, respectively. These
means and covariance parameters are sampled from a normal-inverse-Wishart distribution
NIW (θ) with hyperparameters θ. This prior distribution is commonly used due to its
conjugacy to the multivariate normal likelihood, which means that the posterior can be

99

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

analytically derived [Sun and Berger, 2007]. We choose θ such that we obtain a non-
informative Jeffreys prior [Sun and Berger, 2007]. Finally, given the information that
turbine w belongs to z̃, the operational parameters of w are distributed according to a
multivariate normal distribution N

(
µz̃,K z̃

)
(5.2d).

Using the described GMM, it is possible to derive the probability of a particular turbine
belonging to any cluster z̃. Although it is often beneficial to use probability measures
to track the uncertainty about the assignment of turbines to regimes, we focus on the
established maximum likelihood means and covariances per regime, and assign each turbine
to the regime it most likely belongs to. This procedures allows us to construct the final
set of regimes Z defined in Section 2:

Z = ∪
z̃∈Z̃ {w ∈ W | ∀z̃

′ 6= z̃ : p (w ∈ z̃) > p (w ∈ z̃′)}. (5.3)

Note that Z ⊂ Z̃, and therefore not every regime in Z̃ has to be used in the clustering.
To validate the found operational zones (i.e., regimes) in the data, we perform qualitative

studies of various statistics over the regimes. Specifically, we investigate the load profiles,
which contain statistical properties about the loads of the turbines within a particular
operational zone. For example, the produced power and fatigue loads of each turbine
within the farm can be aggregated and compared per regime. Such an approach generates
insightful results, as our model, combined with load statistics, describes which turbines
should observe similar load spectra for specific environmental conditions.
We demonstrate the proposed method on a real-world wind farm with 55 turbines and a

steady-state time window for which the environmental conditions are stable. Specifically,
we investigate a 2-minute window of 1-second SCADA data and average the wind speed,
wind direction, power production and rotor speed per turbine. The minimum and maximum
of the wind vector is 7.9 m/s at 235.0◦ and 8.7 m/s at 235.7◦, respectively, which verifies
the stability of the time window. The average incoming wind vector at the farm site is 8.2
m/s at 235.4◦. At this wind speed, the turbines are operating solely based on generator
torque, in contrast to blade pitching, which is fully described by rotor speed and power
production [Johnson, 2004]. Formally, the torque of turbine w at time t is defined as

τwt = Pwt
ωw
t

, (5.4)

where Pwt and ωw
t are, respectively, the produced power (in W) and angular rotor speed (in

rad/s) of turbine w at time t. Per turbine, we average the rotor speed, power production
and torque. The Bayesian GMMs are fitted on two operational parameters, i.e., the
rotor speeds and power productions, using variational inference [Blei et al., 2006] until
convergence (error < 10−5).

100

3. OPERATIONAL REGIMES

Figure 5.2 shows that the GMM extracted four regimes.1 As the majority of the
downstream turbines belonged to the same regime, we apply the method a second time on
this subset of turbines to extract the orange and purple clusters. Therefore, it is expected
that these regimes exhibit similar operational behavior compared to the other regimes.
Such a multi-step clustering approach may be necessary to further decompose the farm
into sub-regimes to render the wind farm control problem tractable. Due to the wake
effect [Troldborg et al., 2011], it is expected that the upstream turbines are clustered
together higher on the power curve, while downstream turbines are located significantly
lower, which is verified in Figure 5.2b.

0.22 0.50 0.75 1.00
Power production

0.75

0.85

0.95

1.00

Ro
to

r s
pe

ed

(a) Operational zones

01/5 02/5 03/5 04/5 05/5 06/5 07/5 08/5 09/5 10/5 11/5

01/4 02/4 03/4 04/4 05/4 06/4 07/4 08/4 09/4 10/4 11/4

01/3 02/3 03/3 04/3 05/3 06/3 07/3 08/3 09/3 10/3 11/3

01/2 02/2 03/2 04/2 05/2 06/2 07/2 08/2 09/2 10/2 11/2

01/1 02/1 03/1 04/1 05/1 06/1 07/1 08/1 09/1 10/1 11/1

(b) Wind farm view

Figure 5.2: The operational zones identified through GMM clustering: (a) Each
measurement (point) is assigned to one 2D Gaussian (ellipse). Each axis is normalized
between 0 and 1, respectively, denoting the minimum and maximum value possible. In the
wind farm, a turbine is associated with exactly one data point, and is colored according
to the most likely regime it belongs to (b). The average incoming wind vector is denoted
by an arrow.

We link the established regimes to fatigue load by computing the load duration
distribution (LDD) and load revolution distribution (LRD), which are two metrics that
are often used in design standards and fatigue load analyses [International Electrotechnical
Commission, 2012; Nejad et al., 2014a]. The LDD/LRD are frequency distributions that
describe the number of seconds/revolutions performed at a particular torque level. By
aggregating these distributions over all turbines per regime, we obtain the regime-specific
load profiles.

1The data for turbine 10/4 is not available.

101

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

0 100 200 300
Duration (s)

0.13

0.50

1.00

Lo
ad

 b
in

s

0 20 40 60
Revolutions (per second)

Figure 5.3: Load duration (left) and revolution (right) distribution over all turbines in
the wind farm. The measurements are colored according to the corresponding operational
zones in Figure 5.2. The loads are normalized between 0 and 1, respectively, denoting the
minimum and maximum load possible.

Figure 5.3 shows the load duration distribution and load revolution distribution,
aggregated over all turbines. We can see that each regime can be related to a Gaussian in
the load distributions. As expected, regimes that mainly operate at a higher power output
induce more fatigue loads. As mentioned before, the purple and orange regimes comprise
turbines that are more similar compared to the other regimes, which is reflected in the
large overlap of the two respective load distributions.
These results demonstrate that compiling 1-second SCADA data between similarly

behaving turbines provides accurate context descriptions on a short timescale. More
specifically, the load profiles produce valuable insights into the lifetime consumption of

102

4. FACTORIZATION

the wind farm. Therefore, we use these profiles as guidance in the context of wind farm
control, in which we assign larger fractions of the power demand to the regimes (obtained
under the dominant wind direction) that have observed higher loads in the past.

4 Factorization
To accurately decompose the problem, we rely on two aspects. First, wind turbines depend
on each other due to the wake effect. The decisions made by upstream turbines affect
downstream turbines. Therefore, local coordination between a reference turbine and its
affected neighbors is necessary to guarantee optimality of the solution. Second, due to
the wake effect, upstream wind turbines produce more power than downstream turbines.
As power and torque loading are highly correlated, wind turbines with similar power
productions observe similar fatigue loads (see Section 3). Since turbines with a lower
observed fatigue load should be responsible for the majority of the demand, a group of
similar turbines can be assigned a fraction of the demand inversely proportional to their
observed loads.

RADIUS

+ ANGLE

-AN
GLE

WIND

Figure 5.4: An example with one upstream reference turbine and three downstream
turbines. Only one downstream turbine is considered to be dependent on the reference
turbine (green check mark), as it is both within the specified radius and within the specified
angle with respect to the incoming wind vector from the reference turbine.

To construct the dependency graph G, we analyze the wake field generated at a given
wind direction. Using a geometric approach, we derive, for a particular reference turbine,

103

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

which downstream turbines are in its wake. Specifically, we consider a downstream turbine
w to be dependent on an upstream reference turbine wref if and only if w is geographically
positioned within a specified radius from wref and is within a specified angle from the
incoming wind vector. Naturally, a larger angle and radius would lead to a more dense
dependency graph. For our purpose, we found that downstream turbines located at an
angle of 22.5◦ and a radius of 1 km sufficiently lie outside of the wake effect induced
by the reference turbine, according to the Jensen wake model [Katic et al., 1986]. A
visualisation of the geometric approach is shown in Figure 5.4. Examples of a wake field
and corresponding dependency graph are shown in Figure 5.5.
To construct the operational regimes Z, we group wind turbines based on their observed

fatigue loads. As mentioned before, turbines with similar overall power productions have
similar load profiles. Since the majority of turbine operations are performed in steady states
under the dominant wind direction, we cluster the turbines based on their rotor speeds
and power productions under active wake conditions in silico using the GMM approach
described in Section 3. Once the regimes have been defined, we assign a fraction fz
of the demand to each regime z. This fraction should be proportional to the remaining
useful life of the regime. We construct the load revolution distribution [International
Electrotechnical Commission, 2012], i.e., the number of rotations performed by the turbines
within a regime operating at a particular torque level, for each operational regime, based
on real wind farm data of 24 turbines. We define the remaining lifetime in terms of
the accumulated damage, which is the number of rotations operated under high-load
conditions. We consider an operation to be high-load when the expected (main shaft)
torque exceeds a certain threshold [Alvarez and Ribaric, 2018]. Thus, given the torque
computed using Equation 5.4, we can derive the number of rotations performed at a
torque higher than this threshold from the load revolution distribution of each turbine
and aggregate the results per regime. After normalization of the remaining rotations over
the entire wind farm, the fraction fz is set to the inverse of the sum over all turbines
within regime z. An example of regimes, associated with the normalized number of life-
consuming rotations per turbine, is shown in Figure 5.6.

5 Set-Point Thompson Sampling
Consider the set-point allocation problem (as described in Section 2). The expected
power productions Pw

(
aG(w)) for each possible local set-point configuration aG(w) are

unknown. Similar to multi-agent Thompson sampling (see Section 3 of Chapter 4), SPTS
uses a Bayesian formalism, which means users can exert their beliefs over Pw

(
aG(w)) in

the form of a prior. If wind turbines were not affected by wake, the incoming wind speed
can be used to predict the expected power production of the wind turbine, which is provided

104

5. SET-POINT THOMPSON SAMPLING

with the turbine design specifications [Lydia et al., 2014]. Therefore, for a given set-point,
wind speed and turbine, we model the achieved power using a Gaussian prior, where the
mean is the expected power production given the set-point under no wake conditions, and
the standard deviation σ represents prior uncertainty about the achieved power.

Pw (a) ∼ N (· | µwaw , σ),
µwaw = min(aw,Pwav),

(5.5)

where the mean is the minimum between the power set-point aw and the available power
Pwav. The standard deviation σ balances exploration of alternative power production
outcomes (high σ), and exploitation of the provided domain knowledge (low σ).
At each time step t, SPTS draws a sample Pwt

(
aG(w)) from the posterior for each wind

turbine and possible local set-point configuration, given the history Ht−1, consisting of
previously evaluated set-points and associated power productions:

Pwt
(
aG(w)

)
∼ N (· | µwaw , σ,aG(w),Ht−1), with

Ht−1 =
t−1⋃
i=1

⋃
w∈W

{〈
a
G(w)
i ,Pw

(
a
G(w)
i

)〉}
.

(5.6)

Note that during this step, SPTS samples directly the posterior over the unknown local
means, which implies that the sample Pwt

(
aG(w)) and the unknown mean Pw

(
aG(w))

are independent and identically distributed at time step t, given history Ht−1.
SPTS takes the set-point that minimizes the objective function (see Equation 5.1).

In traditional Thompson sampling [Thompson, 1933], the optimal solution is found by
maximizing over the full joint action space. However, this is intractable for larger
multi-agent settings, as the joint action space scales exponentially with the number of
agents. For example, a wind farm comprised of 20 wind turbines, where each turbine
can choose from 3 possible set-points, would have 320 (approximately 3.5 billion) possible
configurations. In this regard, we note that due to the structure of wind farms, the optimal
set-point configuration exists in the sparse factored representation of the joint action
space. Therefore, the minimization problem defined in Equation 5.1 can be solved exactly
and effectively using variable elimination [Guestrin et al., 2001b] or linear programming
[Lougee-Heimer, 2003].
Finally, the joint set-point configuration that minimizes the objective function, at, is

executed in simulation and the associated power productions Pwt
(
a
G(w)
t

)
will be recorded

for each wind turbine w. SPTS is formally described in Algorithm 4.

105

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

Algorithm 4: Set-Point Thompson Sampling (SPTS)
1 G,Z ← Construct dependency graph and regimes
2 H0 ← {}
3 for t ∈ [1..T] do
4 Sample expected performance for every possible local set-point

configuration.
5 for w ∈ W,a ∈ AG(w) do
6 Pw (s) ∼ N (· | µwaw , σ,Ht−1)
7 end
8

9 Select best joint configuration.
10 at ← arg mina

∑
z∈Z

∣∣fzPdem −
∑
w∈z Pw

(
aG(w))∣∣

11 +
∑
w∈W

Lw
(
aG(w))

12

13

14 Simulate chosen set-point configuration.
15

〈
Pwt
(
a
G(w)
t

)〉
w∈W

← Simulate configuration at
16

17

18 Update belief distributions using observed performance.

19 Ht ← Ht−1 ∪
{〈
a
G(w)
t ,Pwt

(
a
G(w)
t

)〉
w∈W

}
20 end

106

6. EXPERIMENTS

6 Experiments

1000 2000 3000 4000 5000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

sit
io

n
(in

 m
)

(a) Wake field – 0◦

500 1000 1500 2000 2500 3000 3500 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

sit
io

n
(in

 m
)

(b) Dependency graph – 0◦

1000 2000 3000 4000 5000
x-position (in m)

1000

1500

2000

2500

3000

3500

y-
po

sit
io

n
(in

 m
)

(c) Wake field – 30◦

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

sit
io

n
(in

 m
)

(d) Dependency graph – 30◦

Figure 5.5: Wind farm – Based on the wake field generated for a particular wind direction,
wind speed of 11 m/s, and maximal power set-points, we create a dependency graph. We
show the results for wind directions of 0◦ (a & b) and 30◦ (c & d). For a wind direction
of 30◦, the wind farm is rotated by −30◦, such that the global wind vector always starts
at (0, 0).

As the majority of offshore wind farms have a symmetric grid-like topology [Tao et al.,
2020], we conduct our experiments in a wind farm that has the shape of a parallelogram.
Grid-like layouts are often beneficial toward the planning and construction of the farms.
However, such layouts cause wake due to the proximity of the turbines, reducing the overall

107

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

power production of the wind farm [Tao et al., 2020]. We place 24 turbines in a 4-by-6
grid, 500 m apart along the x-axis and 400 m apart along the y-axis, as shown in Figure 5.5.

500 1000 1500 2000 2500 3000 3500 4000 4500
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

sit
io

n
(in

 m
)

0.518

0.517

0.519

0.545

0.493

0.508

0.485

0.485

0.498

0.481

0.480

0.489

0.474

0.474

0.478

0.476

0.479

0.479

0.473

0.479

0.475

0.476

0.475

0.478

Figure 5.6: Operational regimes in the wind farm, obtained under the dominant wind vector
coming from the origin (0, 0). The turbines are annotated with their observed normalized
damage-inducing load.

We investigate our method under the same global wind conditions used by [Siniscalchi-
Minna et al., 2019], in which we assume that 0◦ is the dominant wind direction and
orthogonal to the wind farm grid. Specifically, we investigate the incoming wind vectors
at 0◦ and 30◦, with a speed of 11 m/s. Under these conditions, the wake effect is strong.
The wake fields and dependency graphs for both wind vectors are shown in Figure 5.5.
To model the wake effect and steady-state conditions at the farm, we use the state-of-

the-art ‘FLOw Redirection and Induction in Steady-state’ (FLORIS) simulator [National
Renewable Energy Laboratory (NREL), 2019]. This simulator has been used extensively in
the context of wind farm layout optimization [Gebraad et al., 2017; Tingey and Ning, 2017],
as well as power maximization [Boersma et al., 2017]. In addition, we use the LW-8MW
reference turbine [Desmond et al., 2016] to model the turbines’ operational behavior. Both
the wake simulator and the turbine model accurately represent the scale of, and conditions
at, contemporary offshore wind farms. From real wind farm data, we compute damage-
inducing fatigue loads for every turbine, according to [Alvarez and Ribaric, 2018], and
derive the fractions fz as discussed in Section 4. The normalized damage-inducing fatigue
loads are reported in Figure 5.6. We provide 3 possible set-points to a wind turbine w,
i.e., aw ∈ {1490 kW, 6420 kW, 8000 kW} (equivalent to measured wind speeds of 6.5,

108

6. EXPERIMENTS

10.0 or 13.5 m/s at the turbine’s location), which translates into a low, medium and high
power production.
We perform experiments for all combinations of the following sets of parameters:

• Wind direction: d ∈ {0◦, 30◦}
• Demand: Pdem ∈ {60 MW, 70 MW, 80 MW, 90 MW, 100 MW}
• Number of high-risk turbines: nrisk ∈ {1, 2, 3, 4}

• Penalty: Lw
(
aG(w)) =

+∞ if w is high-risk and

Pwt
(
aG(w)) ≥ 5.2 MW

0 otherwise
An infinite penalty is provided to a high-risk turbine when the used set-point leads to
damage accumulation. We assume that damage occurs when the torque exceeds the
one achieved at 65% of the turbine’s maximum power level [Alvarez and Ribaric, 2018].
For 8 MW wind turbines, this is equal to a power production of 5.2 MW. Although
any non-linear penalty function can be used, this infinite penalty allows the wind farm
operator to identify high-risk turbines and ensure that no high-load set-points are assigned
to them (see Section 7). The nrisk high-risk turbines are randomly chosen. We set the
standard deviation σ in the prior distribution (Equation 5.5) to 1 MW, which allows for
a sufficient amount of exploration over the complete power range of [0 MW, 8 MW].
Each experiment is repeated 100 times.2
We compare SPTS with a set-point allocation strategy, based on the heuristic proposed

by Siniscalchi-Minna et al. [2019]. This heuristic approach first assigns higher set-points
to turbines which are further back in the farm, with respect to the incoming wind vector.
This process is repeated toward the front of the farm until the required demand is reached.
The solution with the power production that is closest to the demand is recorded. For both
the heuristic and SPTS, the best performing control strategies of each run are compared.
As the main focus is to prevent high-load actions on high-risk turbines, we define the
performance of a set-point configuration in terms of the total penalty first, and in case of
draws, the configuration that matches the demand the closest is chosen.
Figure 5.7 shows the learning curve of SPTS for the setting with a wind direction of 0◦,

a demand of 80 MW and 3 high-risk turbines. The trend indicates that 200 iterations
are sufficient to ensure convergence. The learning curves for all settings are reported in
Appendix 4.1. Note that the heuristic is a deterministic approach, and thus the variance
on the outcomes over multiple repetitions of the experiment is zero.
Figure 5.8 shows the average absolute difference between the best performances of the

heuristic and of SPTS for all parameter combinations, both in terms of penalty and demand
2The source code to reproduce the experiments is publicly available at:

https://github.com/timo-verstraeten/spts-experiments

109

https://github.com/timo-verstraeten/spts-experiments

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) Demand error

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(b) Penalty

Figure 5.7: Learning curves of the demand error (a) and total penalty (b) obtained at each
iteration, for a wind direction of 0◦, a demand of 80 MW and 3 high-risk turbines. The
average trend (line) and standard deviation (shaded area) are shown. The experiment is
repeated 100 times.

1 2 3 4 1 2 3 4

60
70

80
90

10
0

D
em

an
d

(in
 M

W
)

1.36 1.36 1.36 1.36 -0.02 -0.02 -0.04 -0.04

0.54 0.53 0.54 0.53 -0.11 -0.14 -0.13 -0.18

2.15 2.15 2.15 2.14 2.62 2.61 2.60 2.58

1.08 1.08 1.09 1.09 0.46 0.46 0.45 0.46

0.44 0.42 0.43 0.41 0.46 0.45 0.44 0.44

0° 30°

2

1

0

1

2

A
ve

ra
ge

 d
em

an
d

er
ro

r
(in

 M
W

)

high-risk turbines

(a) Demand error

1 2 3 4 1 2 3 4

60
70

80
90

10
0

0.1 0.24 0.44 0.59 0.18 0.31 0.51 0.66

0.1 0.2 0.33 0.41 0.23 0.42 0.67 0.87

0.14 0.24 0.41 0.57 0.28 0.51 0.85 1.1

0.16 0.3 0.44 0.58 0.34 0.64 1.1 1.4

0.16 0.52 0.72 0.94 0.47 0.82 1.3 1.8

0° 30°

4

3

2

1

0

1

2

3

4

A
ve

ra
ge

 p
en

al
ty

high-risk turbines

D
em

an
d

(in
 M

W
)

(b) Penalty

Figure 5.8: Heatmaps of the average absolute difference between the performance of
the heuristic and of SPTS. The performance in terms of demand error (left) and total
penalty (right) are plotted. A positive value (green) indicates a better average performance
obtained by SPTS, while a negative value (red) indicates a worse performance compared
to the heuristic. The performances are averaged over 100 samples.

110

6. EXPERIMENTS

error. SPTS reaches comparable or better results than the heuristic in terms of demand
error. However, the heuristic approach receives more penalties when the number of high-
risk turbines is increased, or when the required demand is increased. This is expected,
as the heuristic approach will allocate higher set-points to high-risk machines to reach a
higher demand. Moreover, SPTS significantly outperforms the heuristic with respect to
the demand error when the demand is 80 MW. This is due to the fact that many possible
set-point configurations exist to meet this demand, and can thus be easily found by SPTS.
In contrast, when the demand is 60 MW or 100 MW, only a few configurations are viable,
in which most of the set-points are low or high, respectively. It is important to note
that, over all runs, the best configurations achieved by SPTS never contained a damage-
inducing set-point assigned to a high-risk turbine (i.e., the total penalty of the solution is
always 0 for all settings). Box plots of the best performing control strategies obtained by
SPTS and the heuristic for all parameter combinations are reported in Appendix 4.2.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) Heuristic

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

P
ro

du
ct

io
n

(in
 M

W
)

(b) SPTS

Figure 5.9: Farm-wide view of the power productions for the wind direction of 0◦, a
demand of 80 MW and 3 high-risk turbines. The power productions for the best set-point
configurations found by the heuristic approach (a) and SPTS (b) are shown. The power
productions are averaged over 100 runs.

Figure 5.9 provides a farm-wide view of the power productions obtained, given the best
set-point configuration found by the heuristic approach and SPTS. This is shown for
the setting with a wind direction of 0◦, a demand of 80 MW and 3 high-risk turbines.
The farm-wide power productions for all settings are reported in Appendix 4.3. By the
heuristic’s definition, set-points are first maximized for downstream turbines. This process
is repeated toward the front of the farm. Therefore, it is expected to see a pattern in

111

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

which the downstream turbines exhibit a higher actual power production, compared to
the upstream turbines. While the heuristic generates an intuitive pattern, the solution
of SPTS indicates that this is not necessarily an optimal solution. Therefore, the results
shown in Figure 5.8a and 5.9 demonstrate that a data-driven approach is essential in order
to come up with context-aware solutions. Nevertheless, due to the allocation of demand
over the different regimes, SPTS also favors higher set-points for downstream turbines.
The reduced power generation of turbines with higher observed loads, combined with the
ability to include arbitrary penalty functions (see Figure 5.8b), demonstrates that SPTS is
suitable to match the power demand in a manner that reduces overall lifetime consumption.

7 Discussion
We propose a new wind farm control algorithm that allocates set-points taking into account
load information. The results demonstrate that SPTS can successfully match the power
demand without assigning high-load set-points to turbines.
We focus on a wind farm with a symmetric grid-like structure, which comprises the

majority of contemporary wind farm designs. However, our method is not biased toward
symmetric topologies. Instead, SPTS guides the learning process by using information
about the environmental and operational conditions at the farm site, acquired from wake
analyses and knowledge regarding the turbines’ health. Therefore, SPTS is applicable to
irregularly shaped wind farms, which can be constructed due to landscape constraints [Gu
and Wang, 2013].
To model the turbine’s dynamics and wind flow, we use the FLORIS wake simulator, in

which set-point configurations can be evaluated quickly. SPTS has the ability to include
expert knowledge without being dependent on the simulator used. Therefore, it is easy
to switch between different types of simulators, such as computational fluid dynamics
simulators [Castellani et al., 2013].
In our experiments, we focus on optimizing control strategies under steady wind

conditions. Therefore, it is sufficient to analyze the expected performance of control
strategies in a noise-free setting. Nevertheless, in the case of transient wind conditions
(e.g., wind gusts or storms), it may be important to investigate the variance on the
performance measure as well. Since SPTS uses a Bayesian sampling approach, it is
straightforward to introduce a likelihood distribution with a (possibly unknown) noise
parameter and update the posterior distributions according to Bayes’ rule [Russo et al.,
2017].
Our approach uses multi-agent Thompson sampling (see Section 3 of Chapter 4)

for sampling the set-point configuration space. For multi-agent Thompson sampling,
an asymptotic upper bound was established on the cumulative regret, i.e., the total

112

7. DISCUSSION

performance loss obtained by executing sub-optimal actions during the learning phase.
As we investigate a noise-free setting, and every local set-point will likely be sampled once
eventually, the optimal set-point configuration will almost surely be found. Therefore, the
asymptotic upper bound has no practical use here. Nevertheless, the composition of the
bound suggests that the performance loss of SPTS is in terms of the number of local joint
set-points, rather than the number of global joint set-points, as is the case in traditional
Thompson sampling. Therefore, it is expected that SPTS can learn efficiently using noisy
set-point evaluations as well.
SPTS is a sampling technique inspired by Thompson sampling to select promising joint

actions. Recently, theoretical guarantees have been established for Thompson sampling
with respect to cumulative regret, i.e., the total difference between the expected reward
of the optimal (unknown) action and chosen actions obtained during the learning process
[Agrawal and Goyal, 2012]. However, as the set-point optimization is performed in silico,
the performance of the evaluated set-points during the learning phase is only used to guide
the learning process. In our setting, we focus on the performance of the end result, i.e.,
the best set-point configuration obtained after learning. This highlights the distinction
between exploration-exploitation and best arm identification [Audibert and Bubeck, 2010].
Note that this is a difference in terms of convergence speed, rather than optimality, as
the action chosen by Thompson sampling still converges to the optimal one (under certain
conditions) [Lattimore and Szepesvári, 2020]. To our knowledge, there are no Bayesian
best arm identification algorithms available for dealing with factored multi-agent systems.
Although the learning curves converge quickly (see Appendix 4.1), further research into
best arm identification algorithms for loosely-coupled multi-agents is warranted to improve
sample efficiency.
In our experiments, we use objective functions that heavily penalize a set of turbines,

which allows wind farm operators to mark high-risk turbines and reduce their loading
conditions. Still, SPTS finds the optimal joint set-point configuration under arbitrary
penalties (see Section 2). Such flexibility is required for capturing the multi-dimensional
load spectrum that is present in wind turbine technology. However, further research needs
to be conducted to establish the links between turbine responses during dynamic events
and potential failure modes [Keller et al., 2016; Junior et al., 2017; Verstraeten et al.,
2019]. Through fundamental research, maintenance costs can be formalized as a penalty
function within SPTS, which is important toward the further development of advanced
wind farm controllers.
SPTS finds the optimal combination of set-points taken from a discrete space. To further

reduce the demand error, continuous set-points should be considered. Optimizing over a
factored representation in continuous space is challenging, as the choice of a turbine is
possibly dependent on an infinite amount of configurations chosen by its parents. To our

113

CHAPTER 5. SCALABLE HYBRID OPTIMIZATION FOR WIND FARM CONTROL

knowledge, no optimization algorithms currently exist that fully operate within a factored
continuous action space. Therefore, research should focus on continuous optimization
techniques for loosely-coupled multi-agent systems, such that accurate solutions can
be provided in a feasible manner. Nevertheless, one can use the optimal discrete set-
point configuration provided by SPTS as a starting point and further optimize over the
continuous set-point space using an iterative approach [Siniscalchi-Minna et al., 2019].
Naturally, such a solution may not be provably optimal and convergence may be challenging
to guarantee.
Finally, our approach considers each scenario independently and does not generalize

over environmental conditions. In data-driven wind farm control research, control
strategies are often learned without considering the dependencies between environmental
parameters (e.g., wind speed and wind direction) [van Dijk et al., 2016; Verstraeten et al.,
2019]. However, generalizing over environmental conditions, rather than learning for
each condition independently, would improve the sample-efficiency of SPTS over multiple
settings. This could be achieved, for instance, through the use of contextual bandits
[Agrawal and Goyal, 2013b].

114

6 | Discussion

In this chapter, we summarize the contributions that we presented throughout this
dissertation. Next, we discuss the valorisation potential of our research, both in the
context of wind farm control, as well as other applications. Finally, we discuss different
opportunities for future work.

1 Contributions
Our first contribution is a data-driven control method for pools of devices, i.e., systems
that comprise multiple similar devices. Reinforcement learning techniques typically require
a large amount of samples to accurately and effectively learn the optimal control policy.
Therefore, in Chapter 3, we propose a new reinforcement learning technique, called
policy iteration for pools of devices (PIPoD), that leverages the similarities between
devices to inform the learning process of the devices’ transition models. Specifically,
the transition models are jointly defined as a coregionalized Gaussian process, which
establishes correlations between the different devices. We evaluate PIPoD on two well-
known reinforcement learning benchmark settings, i.e., mountain car and cart-pole, as well
as a synthetic wind farm control task. Our results show that PIPoD successfully reduces
uncertainty in the learning process by using relevant data from similar devices, and prevents
negative transfer by using irrelevant data from other devices.
Our second contribution is a control method for multi-agent systems with topology

information. Find the optimal control policy is challenging in large-scale multi-agent
systems, as the joint action space scales exponentially with the number of agents. Still,

115

CHAPTER 6. DISCUSSION

when the dependency structure of the agents is sparse, the system can be factored into
subgroups of agents, significantly reducing the complexity. To this end, in Chapter 4,
we propose a new control method, called multi-agent Thompson sampling
(MATS), that exploits the sparse neighborhood structure of the agents to improve
the scalability of the learning process toward large-scale multi-agent systems.
Specifically, MATS constructs groups of agents based on a coordination graph, and allows
decision making on a local level, while focusing on the action that is globally optimal.
We provide theoretical guarantees showing that, for subgaussian rewards, MATS always
improves upon the current solution and can effectively use the neighborhood structure of
the multi-agent system to reduce the complexity of the joint action space. We demonstrate
that MATS achieves state-of-the-art performance on several benchmark problems, i.e., the
Bernoulli 0101-Chain, the Gem Mining problem and the Poisson 0101-Chain, as well as
a synthetic wind farm control task.
Our third contribution is a scalable data-driven wind farm control method in the context of

active power control, i.e., assigning power set-points to each turbine in order to match the
farm-wide power demand. Control optimization methods are necessary, as physics-based
heuristics fail to capture the complex high-dimensional load spectrum that is inherent to
wind farm technology. However, current data-driven methods scale poorly to the large
size of contemporary wind farms. Therefore, in Chapter 5, we propose a new scalable
wind farm control method, called set-point Thompson sampling (SPTS), that uses
similarity and topology information to factorize the wind farm and learns a control
strategy within this factored space. SPTS employs a hybrid approach that balances
the flexibility of AI-based learning techniques with physics-based expertise to improve the
tractability of the learning process. We evaluate our method on a realistic wind farm
control task in silico, covering an exhaustive set of parametrizations. We compare to a
commonly used physics-based heuristic as a baseline, and show that our method achieves
competitive performance in terms of demand error, while incorporating complex load-
based penalty functions.

2 Valorisation Potential

The research in this dissertation was funded by an FWO1 grant for strategic basic research.
The FWO assigns this grant to challenging and innovative research, which may in the long
term lead to technological advancements with economic and/or societal added value.
As we start from investigating AI-driven control for generic multi-agent systems, our
methods are useful in a wide variety of applications, such as the monitoring and dynamic

1Fonds voor Wetenschappelijk Onderzoek - Vlaanderen, Research Foundation – Flanders

116

2. VALORISATION POTENTIAL

optimization of multiple manufacturing processes [Shen, 2019]. For example, using the
methodology described in this dissertation, one could develop a health-aware controller for
a group of similar manufacturing machines. Nevertheless, in this section, we mainly focus
on the potential of valorisation in the wind farm industry.
In this dissertation, we investigate several properties to render learning in large multi-

agent systems tractable. In the wind farm industry there is a steep trend to increase
capacity to maximize the power output with respect to the used space and the associated
capital costs [Fraile et al., 2018]. To cope with the increase in size of real-world multi-agent
systems, the complexity of control learning methods needs to be reduced significantly. Our
proposed methods approach this challenge leveraging three properties that are present in
many applications. First, when learning tasks are complex, sharing data among similar
agents can significantly improve sample-efficiency. Especially in settings where evaluations
are costly [Brochu et al., 2010], the number of samples can be significantly reduced by
reusing data within the same pool of devices, and therefore lower the costs associated
with the learning process. PIPoD can be used to handle data exchange within the
control learning process of multiple independent agents. Second, we show that leveraging
topological information can significantly increase the learning speed in multi-agent systems.
Learning in large-scale multi-agent systems has been challenging in the real-world. When
the number of agents increase in a system, the learning complexity of control tasks increases
exponentially, which directly affects operation and maintenance costs. Using MATS in the
industry would significantly reduce these costs. Third, we adopt the Bayesian framework
to allow operators to easily introduce domain knowledge, as such information is often
readily available. Additionally, Bayesian methods explicitly quantify uncertainty over the
unknown parameters, given the provided expert knowledge. Such statistics are useful for
assessing the reliability of the found solutions.
In the context of wind farm control, we propose SPTS to allow for AI-driven control

of contemporary wind farms in a scalable manner. The ability to include arbitrary cost
functions is important, as the load conditions in wind farms are multi-dimensional. Wind
farm operators can penalize high-risk turbines to reduce maintenance costs, while still
leveraging maximal power production. Therefore, the use of SPTS can significantly
improve the reliability and sustainability of wind farm technology, which is important to
reduce operations and maintenance costs.
Several aspects need to be investigated to render our control methods suitable for

real-world applications. First, privacy is a concern that exist in many industries. To
fully leverage the data sources at hand, it must be guaranteed that they are handled
in a privacy-preserving manner. We have taken initial steps to render PIPoD privacy-
preserving. Specifically, we have shown that it is possible to extend PIPoD with secure

117

CHAPTER 6. DISCUSSION

multi-party computation and homomorphic encryptions [Loeb et al., 2019].2 Although
such mechanisms introduce communicational overhead between the devices, it guarantees
a privacy-preserving encoding of each device-specific data set, while still yielding high-
performing policies. Second, data-driven control policies must guarantee safe operation.
To this end, we limitedly explored the use of control barrier functions to regulate the
safety measures imposed on the control strategies learned by PIPoD [Hennion, 2020].3 We
demonstrated that safe reinforcement learning in PoD settings is feasible, while achieving
a minimal performance gap with respect to the unconstrained controller.

3 Future Work
In this dissertation, we focus on steady-state control, in which the environmental and
operational conditions are stable. Set-point Thompson sampling (SPTS) is a data-driven
method for steady-state control that has the ability to consider non-linear health indicators
of the turbines, while learning optimal farm-wide controller actions. Nevertheless, as
described in Chapter 1, the loads induced during dynamic events (e.g., storms and grid-
loss events) have a significant impact on failure. Therefore, preventive measures must be
implemented that minimize the impact of loads induced during transient events. We argue
that the topology and similarities between turbines in terms of environmental conditions
are important to successfully develop transient-state wind farm controllers to prevent high-
load situations that may lead to failure.
To model transient wind conditions, such as storms, we will investigate the use of SPTS

in a simulator that uses computational fluid dynamics to model wind flow [Richmond et al.,
2019]. A sample-efficient method, such as SPTS will be necessary to find the best control
strategy, as executing a computational fluid dynamics simulator is time-consuming, and
thus evaluating alternative control strategies in such a simulator is costly.
To construct control strategies that can reduce the probability of failure, it is necessary to

conduct fundamental research to understand the high-dimensional load spectrum inherent
to wind farm technology, and establish the links between turbine responses and failure
modes. To bridge this gap, we will rely on state-of-the-art condition monitoring systems
that report the health status of a turbine through proxies, e.g., temperature and vibration
signals [Peeters et al., 2019]. In future work, we aim to consider these signals as
health indicator, and incorporate penalties in SPTS through the use of failure prognosis

2This research was conducted by Regis Loeb in the context of a Master thesis under the joint supervision
of prof. dr. Ann Dooms and prof. dr. Ann Nowé.

3This research was conducted by Domien Hennion in the context of a Master thesis under the supervision
of prof. dr. Ann Nowé.

118

3. FUTURE WORK

methodologies (e.g., [Nejad et al., 2014b]) that prevent high-load actions on turbines
with low health.
High-frequency data sources are necessary to swiftly initiate preventive control measures

during dynamic events [Verstraeten et al., 2019]. However, several environmental and
operational parameters are extremely noisy when measured at high frequency (e.g., wind
speed) [Gonzalez et al., 2017]. To accurately represent the condition of the wind farm
during a short-term transient events, a mechanism is necessary to reduce measurement
noise, while retaining the fine granularity of the data sources. To this end, we will
investigate the use of the coregionalized Gaussian process, described in Chapter 3, to
perform similarity-based data exchange between the turbines to reduce noise, rather than
averaging over time windows, as is commonly used [Gonzalez et al., 2017]. Such an
approach can be used to process real wind farm data, and provide a reliable parametrization
of a wake simulator to represent the wind and turbine conditions at the wind farm site.
Combined with the SPTS control algorithm, scenario optimization can be performed to
provide set-point configurations in real time, allowing our proposed approaches to be used
in the real world.

119

A | Appendices

1 Success Rates of PIPoD
In Table A.1, we show the percentages of success of policy iteration for pools of devices
(PIPoD) for both the mountain car and cart-pole benchmarks, compared to the joint and
single target types, over 50 runs. For mountain car, a successful run is one where the
car reaches the goal within 200 time steps, while for cart-pole, a successful run is one
where the cart manages to keep the pole above the threshold for 200 time steps. Although
the percentage of success for both the single and PoD targets are high, we show in the
main manuscript that the performance (measured by the sum of the squared distances
from the goal) of a policy learned by the single target type is significantly higher than the
performance of a policy learned by PIPoD. This means that the single target type infers a
sub-optimal policy for reaching the goal, while PIPoD often exhibits optimal behavior.

joint single PIPoD
mountain car 64% 80% 86%
cart-pole 38% 74% 86%

Table A.1: Success rates

121

APPENDIX A. APPENDICES

2 Sensitivity Analysis of PIPoD
We perform a sensitivity analysis on the PoD variant of the continuous mountain car
domain to investigate the robustness of policy iteration for pools of devices (PIPoD),
proposed in Chapter 3. In this problem, an action is a force applied to either side of the
car. The magnitude of this force (i.e., the power) can be configured. We consider a fleet
of three mountain cars: a target, source A and source B. We use the same parameters for
the setting as described in the main paper, except that we vary the power parameter of
source A. Specifically, the target has a power of 15 · 10−4, source B has a power of 10−4

units, and source A has a power that varies according to (5 + i) · 10−4, for i ∈ [0..10].
This ranges captures various grades of similarity between the target and source A.

5 6 7 8 9 10 11 12 13 14 15
50

100

150

200

250

S
um

 o
f
sq

ua
re

d
di

st
an

ce
s

to
 t

he
 g

oa
l

Agent type
PoD
Joint
Single

Power of cart (x 10-4)

Figure A.1: Sensitivity analysis – Boxplot of the sum of squared distances to the goal over
200 time steps for 50 runs.

We run the experiment 50 times for the three target types: single, joint and PoD. We
measure performance in terms of the sum of squared distances to the goal. We repeat
each experiment 50 times. The results are shown in Figure A.1. As expected, the PoD
target performs better when source A has a power closer to the target’s power. When the
power of source A decreases, there is less relevant information for source A to share with
the target. This results in similar outcomes as for the single target type, which does not
perform any transfer. Still, we can see that the PoD target significantly outperforms both
the joint and single targets for the higher power levels, and exhibits a performance similar
to the single target for the lower power levels. The discrepancy between the performance
of the single and fleet targets at a power level of 5 · 10−4 is expected, as the single target
already assumes there is no correlation between the target and the sources, while our fleet
target still needs to learn this fact. As additional accurate domain knowledge is available
to the single target, the problems becomes strictly easier for the single target to solve.

122

2. SENSITIVITY ANALYSIS OF PIPOD

Naturally, such domain knowledge will not be available in the real world, highlighting the
need for a flexible method as PIPoD.

123

APPENDIX A. APPENDICES

3 Comparison of Intrinsic Coregionalization Model with
Sparse Variant

The transition model described in Section 3 of Chapter 3 is a sparse variant of the intrinsic
coregionalization model [Bonilla et al., 2008]. The computational complexity is significantly
decreased when using our sparse model, compared to a fully-connected model such as the
intrinsic coregionalization model. To show that using our sparse transition model does
not incur a significant decrease in performance, we compare our model (sparse) against
the intrinsic coregionalization model (icm) on the same synthetic benchmarks as in the
main manuscript (see Figure A.2).

icm sparse

60

80

100

120

140

160

Su
m

 o
f s

qu
ar

ed
 d

ist
an

ce
s t

o
go

al

(a) Mountain car

icm sparse

0

20

40

60

80

(b) Cart-pole

Figure A.2: Boxplot of the total sum of squared distances to the goal state for the mountain
car (a) and cart-pole (b) benchmarks during 200 time steps for 50 runs.

124

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

4 Exhaustive List of Empirical Results for SPTS
We perform experiments for the all combinations of the following sets of parameters:

• Wind direction: d ∈ {0◦, 30◦}
• Demand: Pdem ∈ {60 MW, 70 MW, 80 MW, 90 MW, 100 MW}
• Number of high-risk turbines: nrisk ∈ {1, 2, 3, 4}

• Penalty: Lw
(
aG(w)) =

+∞ if w is high-risk and

Pwt
(
aG(w)) ≥ 5.2 MW

0 otherwise

Each experiment is repeated 100 times.
Overall, the results discussed in the main manuscript are representative for all

experiments, and sufficiently demonstrate the performance of SPTS compared to the
heuristic approach. Nevertheless, we disclose all obtained results in this document.

125

APPENDIX A. APPENDICES

4.1 Learning Curves

Demand Error

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.3: Demand error for d = 0◦ and Pdem = 60 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.4: Demand error for d = 0◦ and Pdem = 70 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0

2

4

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

2

4

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.5: Demand error for d = 0◦ and Pdem = 80 MW. The average trend and standard
deviation are plotted.

126

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

0 50 100 150 200
Iteration

0

2

4

6

8

10

12

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

2

4

6

8

10

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

2

4

6

8

10

12

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

2

4

6

8

10

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.6: Demand error for d = 0◦ and Pdem = 90 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.7: Demand error for d = 0◦ and Pdem = 100 MW. The average trend and
standard deviation are plotted.

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.8: Demand error for d = 30◦ and Pdem = 60 MW. The average trend and
standard deviation are plotted.

127

APPENDIX A. APPENDICES

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.9: Demand error for d = 30◦ and Pdem = 70 MW. The average trend and
standard deviation are plotted.

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

2

4

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.10: Demand error for d = 30◦ and Pdem = 80 MW. The average trend and
standard deviation are plotted.

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

1

2

3

4

5

6

7

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

1

2

3

4

5

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.11: Demand error for d = 30◦ and Pdem = 90 MW. The average trend and
standard deviation are plotted.

128

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

0 50 100 150 200
Iteration

0

2

4

6

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0

2

4

6

8

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.12: Demand error for d = 30◦ and Pdem = 100 MW. The average trend and
standard deviation are plotted.

129

APPENDIX A. APPENDICES

Penalty

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5
P

en
al

ty
Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.13: Penalty for d = 0◦ and Pdem = 60 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.14: Penalty for d = 0◦ and Pdem = 70 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.15: Penalty for d = 0◦ and Pdem = 80 MW. The average trend and standard
deviation are plotted.

130

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

0 50 100 150 200
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.16: Penalty for d = 0◦ and Pdem = 90 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.17: Penalty for d = 0◦ and Pdem = 100 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.18: Penalty for d = 30◦ and Pdem = 60 MW. The average trend and standard
deviation are plotted.

131

APPENDIX A. APPENDICES

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.19: Penalty for d = 30◦ and Pdem = 70 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.20: Penalty for d = 30◦ and Pdem = 80 MW. The average trend and standard
deviation are plotted.

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.21: Penalty for d = 30◦ and Pdem = 90 MW. The average trend and standard
deviation are plotted.

132

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

P
en

al
ty

Heuristic
SPTS

(a) nrisk = 1

0 50 100 150 200
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
en

al
ty

Heuristic
SPTS

(b) nrisk = 2

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

P
en

al
ty

Heuristic
SPTS

(c) nrisk = 3

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
en

al
ty

Heuristic
SPTS

(d) nrisk = 4

Figure A.22: Penalty for d = 30◦ and Pdem = 100 MW. The average trend and standard
deviation are plotted.

133

APPENDIX A. APPENDICES

4.2 Best Set-Point Configurations
The best solutions found by SPTS have no penalty. Therefore, we only show the total
penalty for the best solutions obtained by the heuristic approach.

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.23: Demand error of best solution for d = 0◦.

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

2.5

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(a) nrisk = 1

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

2.5

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(b) nrisk = 2

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

2.5

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(c) nrisk = 3

60 70 80 90 100
Demand (in MW)

0.0

0.5

1.0

1.5

2.0

2.5

D
em

an
d

er
ro

r (
in

 M
W

)

Heuristic
SPTS

(d) nrisk = 4

Figure A.24: Demand error of best solution for d = 30◦.

134

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

60 70 80 90 100
Demand (in MW)

0.0

0.2

0.4

0.6

0.8

1.0

P
en

al
ty

(a) nrisk = 1

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(b) nrisk = 2

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(c) nrisk = 3

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(d) nrisk = 4

Figure A.25: Penalty of best solution found by the heuristic approach for d = 0◦.

60 70 80 90 100
Demand (in MW)

0.0

0.2

0.4

0.6

0.8

1.0

P
en

al
ty

(a) nrisk = 1

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(b) nrisk = 2

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(c) nrisk = 3

60 70 80 90 100
Demand (in MW)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

(d) nrisk = 4

Figure A.26: Penalty of best solution found by the heuristic approach for d = 30◦.

135

APPENDIX A. APPENDICES

4.3 Farm-Wide Power Productions
As the heuristic approach does not consider penalties, the farm-wide power productions
are identical over a different number of penalized turbines for the same wind direction
and power demand.

Set-Point Thompson Sampling

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

1.6

1.7

1.8

1.9

2.0

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

1.6

1.7

1.8

1.9

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.27: Average farm-wide power production of the best solution achieved by SPTS
for d = 0◦ and demand Pdem = 60 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.28: Average farm-wide power production of the best solution achieved by SPTS
for d = 0◦ and demand Pdem = 70 MW.

136

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.29: Average farm-wide power production of the best solution achieved by SPTS
for d = 0◦ and demand Pdem = 80 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.30: Average farm-wide power production of the best solution achieved by SPTS
for d = 0◦ and demand Pdem = 90 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.31: Average farm-wide power production of the best solution achieved by SPTS
for d = 0◦ and demand Pdem = 100 MW.

137

APPENDIX A. APPENDICES

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4915

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.32: Average farm-wide power production of the best solution achieved by SPTS
for d = 30◦ and demand Pdem = 60 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.33: Average farm-wide power production of the best solution achieved by SPTS
for d = 30◦ and demand Pdem = 70 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.34: Average farm-wide power production of the best solution achieved by SPTS
for d = 30◦ and demand Pdem = 80 MW.

138

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

1.4950

1.4955

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.35: Average farm-wide power production of the best solution achieved by SPTS
for d = 30◦ and demand Pdem = 90 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.5

2.0

2.5

3.0

3.5

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

1.4920

1.4925

1.4930

1.4935

1.4940

1.4945

1.4950

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.36: Average farm-wide power production of the best solution achieved by SPTS
for d = 30◦ and demand Pdem = 100 MW.

139

APPENDIX A. APPENDICES

Heuristic Approach

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500
y-

po
si

tio
n

(in
 m

)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.37: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 0◦ and demand Pdem = 60 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.38: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 0◦ and demand Pdem = 70 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.39: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 0◦ and demand Pdem = 80 MW.

140

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.40: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 0◦ and demand Pdem = 90 MW.

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 2000 3000 4000
x-position (in m)

500

1000

1500

2000

2500

3000

3500

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.41: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 0◦ and demand Pdem = 100 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.42: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 30◦ and demand Pdem = 60 MW.

141

APPENDIX A. APPENDICES

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6
P

ro
du

ct
io

n
(in

 M
W

)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.43: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 30◦ and demand Pdem = 70 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.44: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 30◦ and demand Pdem = 80 MW.

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.45: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 30◦ and demand Pdem = 90 MW.

142

4. EXHAUSTIVE LIST OF EMPIRICAL RESULTS FOR SPTS

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(a) nrisk = 1

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(b) nrisk = 2

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(c) nrisk = 3

1000 1500 2000 2500 3000 3500
x-position (in m)

1000

1500

2000

2500

3000

y-
po

si
tio

n
(in

 m
)

2

3

4

5

6

P
ro

du
ct

io
n

(in
 M

W
)

(d) nrisk = 4

Figure A.46: Average farm-wide power production of the best solution achieved by the
heuristic approach for d = 30◦ and demand Pdem = 100 MW.

143

Curriculum Vitae

Personal information
Timothy VERSTRAETEN, male, born in Lier, Belgium (07/01/1992)

Education
Master in Computer Science

Department of computer science, Vrije Universiteit Brussel
Graduated summa cum laude in 2015
Master thesis: “Modeling Exoskeleton-Assisted Human Motion with Gaussian
Processes”

Academic Bachelor in Informatics

Department of computer science, University of Antwerp
Graduated magna cum laude in 2013
Bachelor thesis: Developing a graphical interface and cell division algorithm for a
plant-cell growth simulator (VirtualLeaf)

Professional history
2017–2021:

145

Curriculum Vitae

PhD student at the Artificial Intelligence Lab
Doctoral strategic basic research grant awarded by the national science foundation
(FWO)
Vrije Universiteit Brussel, Department of computer science

2016–2017:

PhD student at the Artificial Intelligence Lab
Doctoral research grant awarded by the VUB research council
Vrije Universiteit Brussel, Department of computer science

2015–2016:

Teaching assistant at the Artificial Intelligence Lab
Vrije Universiteit Brussel, Department of computer science

Summers of 2013 and 2014:

Job student at the Computational Modeling and Programming research group
University of Antwerp, Department of computer science

Awards & honors
• Visionary paper award, for the paper titled “Efficient evaluation of influenza

mitigation strategies using preventive bandits”, by the Adaptive Learning Agents
workshop, 29/03/2017

• Best student paper award, for the paper titled “IPC-Net: 3D Point-
Cloud Segmentation Using Deep Inter-Point Convolutional Layers”, International
Conference on Tools with Artificial Intelligence, 07/11/2018

• Top reviewer certificate of appreciation at ICML 2020 (top 33%), 15/09/2020

Grants
• Doctoral strategic basic research grant, by the national science foundation (FWO),

01/01/2017–31/12/2020
• Doctoral research grant, by the VUB research council, 01/01/2016–31/12/2017
• Grant for participation in a conference abroad (AAMAS conference, May, 2020), by

the National science foundation (FWO) [conditionally accepted, but canceled due
to the COVID-19 pandemic]

146

Curriculum Vitae

Teaching experience
• Teaching assistant for the course “Artificial Intelligence” (Prof. Dr. Bernard

Manderick), during two academic years (2015–2017)
• Teaching assistant for the course “Theory of Computation” (Prof. Dr. Bernard

Manderick), during one academic year (2015–2016)
• Teaching assistant for the course “Wetenschappelijk Rekenen” (Prof. Dr. Ann

Nowé, Prof. Dr. Bernard Manderick), during five academic years (2015–2020)

Master students
• Faras Jamil, Vrije Universiteit Brussel, 2019–2020, with a project titled “Fault

detection from sensor data using machine learning techniques” (promotors: Ann
Nowé & Jan Helsen)

• Domien Hennion, Vrije Universiteit Brussel, 2019–2020, with a project titled “Safe
fleet-wide policy iteration for fleet applications.” (promotor: Ann Nowé)

• Regis Loeb, Vrije Universiteit Brussel, 2018–2019, with a project titled “Privacy
Preserving Reinforcement Learning over Distributed Datasets” (promotors: Ann
Dooms & Ann Nowé)

• Thomas Cloostermans, Vrije Universiteit Brussel, 2018–2020, with a project titled
“Bayesian optimization for conflict resolution in air traffic control" (joint advisorship
with Pieter Libin, promotors: Ann Nowé)

Bachelor students
• Senne Deproost, Vrije Universiteit Brussel, 2017–2018, with a project titled “Yaw

optimization using reinforcement learning” (promotor: Ann Nowé)
• Tom Lauwers, Vrije Universiteit Brussel, 2017–2019, with a project titled

“Explainable random forests” (joint advisorship with Isel Grau, promotor: Ann Nowé)

Academic service
Invited speaker at the Gaussian process seminar, with a presentation titled “Fleet-
Wide Policy Iteration using Gaussian Processes”, 26/02/2020, University of Antwerp,
Belgium
Lecturer at the ACAI summer school on reinforcement learning, with a presentation
titled “The Basics of Reinforcement Learning”, 06/10/2017, Nieuwpoort, Belgium

147

Curriculum Vitae

Assistant at the ACAI summer school on reinforcement learning, 06/10/2017–
13/10/2017, Nieuwpoort, Belgium
Program committee member: ICML 2020, ALA workshop at AAMAS 2017–2021
Reviewer: ICML 2019–2020, NeurIPS 2019, The Knowledge Engineering Review,
ALA workshop at AAMAS 2017–2021

Journal publications (peer-reviewed)
1. Pieter J.K. Libin, Lander Willem, Timothy Verstraeten, Andrea Torneri, Joris

Vanderlocht, Niel Hens. “Assessing the feasibility and effectiveness of household-
pooled universal testing to control COVID-19 epidemics”. PLOS Computational
Biology, 2021. (In press) [Peer reviewed, 2-yearly JCR impact factor 2019: 4.38]

2. Pieter-Jan Daems, Timothy Verstraeten, Cédric Peeters, Jan Helsen. “Effects
of wake on gearbox design load cases identified from fleet-wide operational data”,
Forschung im Ingenieurwesen, Springer Nature, 2021. (In press) [Peer reviewed,
2-yearly JCR impact factor 2019: 0.766]

3. Timothy Verstraeten, Eugenio Bargiacchi, Pieter J.K. Libin, Jan Helsen, Diederik
M. Roijers, Ann Nowé. “Multi-agent Thompson sampling for bandit applications
with sparse neighbourhood structures”. Nature Scientific Reports, 10(1):1–13, 2020.
[Peer reviewed, 2-yearly JCR impact factor 2019: 3.998]

4. Timothy Verstraeten, Ann Nowé, Jonathan Keller, Yi Guo, Shuangwen Sheng,
Jan Helsen. “Fleetwide data-enabled reliability improvement of wind turbines”.
Renewable and Sustainable Energy Reviews, 109:428–437, 2019. [Peer reviewed,
2-yearly JCR impact factor 2019: 12.110]

Conference proceedings (peer-reviewed)
1. Timothy Verstraeten, Pieter-Jan Daems, Eugenio Bargiacchi, Diederik M. Roijers,

Pieter J.K. Libin, Jan Helsen. “Scalable Optimization for Wind Farm Control
using Coordination Graphs”. Proceedings of the 20th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2021. (In press)

2. Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers. “Model-
based Multi-Agent Reinforcement Learning with Cooperative Prioritized Sweeping”.
Proceedings of the 20th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2021. (In press)

148

Curriculum Vitae

3. Timothy Verstraeten, Pieter J.K. Libin, Ann Nowé. “Fleet control using
coregionalized Gaussian process policy iteration”. Proc. of the 24th European
Conference on Artificial Intelligence, 2020.

4. Timothy Verstraeten, Eugenio Bargiacchi, Pieter J.K. Libin, Diederik M. Roijers,
Ann Nowé, “Thompson sampling for factored multi-agent bandits”. Proc. of the
International Conference on Autonomous Agents and Multiagent Systems, pp. 2029–
2031. 2020.

5. Pieter-Jan Daems, Len Feremans, Timothy Verstraeten, Boris Cule, Bart Goethals,
Jan Helsen. “Fleet-oriented pattern mining combined with time series signature
extraction for understanding of wind farm response to storm conditions”. Proc. of
World Conference for Condition Monitoring, pp. 275–287. 2020.

6. Nicoletta Gioia, Pieter-Jan Daems, Timothy Verstraeten, Patrick Guillaume, Jan
Helsen. “Combining Machine Learning and Operational Modal Analysis Approaches
to Gain Insights in Wind Turbine Drivetrain Dynamics”. Proc. of the Society for
Experimental Mechanics Series. 2020.

7. Pieter J.K. Libin, Arno Moonens, Timothy Verstraeten, Fabian Perez-Sanjines,
Niel Hens, Philippe Lemey, Ann Nowé. “Deep reinforcement learning for large-scale
epidemic control”. Proc. of the Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 2020

8. Pieter Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof
Theys, Ann Nowé. “Bayesian anytime m-top exploration”. Proc. of the 31st IEEE
International Conference on Tools with Artificial Intelligence, pp. 1414–1420, 2019.

9. Cédric Peeters, Timothy Verstraeten, Ann Nowé, Jan Helsen. “Wind Turbine
Planetary Gear Fault Identification Using Statistical Condition Indicators and
Machine Learning”. Proc. of the ASME 2019 38th International Conference on
Offshore Mechanics and Arctic Engineering. 2019.

10. Cédric Peeters, Nicoletta Gioia, Pieter-Jan Daems, Jonas Verbeke, Timothy
Verstraeten, Ann Nowé and Jan Helsen. “Drivetrain reliability improvements from
long-term field data processed in the cloud”. Journal of Physics: Conference Series,
1222, WindEurope Conference and Exhibition, 2019.

11. Cédric Peeters, Timothy Verstraeten, Ann Nowé, Pieter-Jan Daems, Jan Helsen.
“Advanced Vibration Signal Processing Using Edge Computing to Monitor Wind
Turbine Drivetrains”. Proc. of the ASME 2019 2nd International Offshore Wind
Technical Conference. 2019.

149

Curriculum Vitae

12. Cédric Peeters, Pieter-Jan Daems, Timothy Verstraeten, Ann Nowé, Jan Helsen.
“Combining Edge and Cloud Computing for Monitoring a Fleet of Wind Turbine
Drivetrains Using Combined Machine Learning Signal Processing Approaches”.
Proc. of the 12th International Workshop on Structural Health Monitoring. 2019.
[workshop paper]

13. Felipe Gomez Marulanda, Pieter J.K. Libin, Timothy Verstraeten, Ann Nowé.
“Deep hybrid approach for 3D plane segmentation”. Proc. of the 27th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, vol. 27, pp. 529–534, 2019.

14. Eugenio Bargiacchi, Timothy Verstraeten, Diederik M. Roijers, Ann Nowé, Hado
van Hasselt. “Learning to coordinate with coordination graphs in repeated single-
stage multi-agent decision problems”. Proc. of the 35th International Conference
on Machine Learning, pp. 482–490, 2018

15. Pieter J.K. Libin, Timothy Verstraeten, Diederik M. Roijers, Jelena Grujic, Kristof
Theys, Philippe Lemey, Ann Nowé. “Bayesian best-arm identification for selecting
influenza mitigation strategies”. Proc. of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 456–471, 2018.

16. Felipe Gomez Marulanda, Pieter Libin∗, Timothy Verstraeten∗, Ann Nowé. “IPC-
Net: 3D point-cloud segmentation using deep inter-point convolutional layer”. Proc.
of the 30th IEEE International Conference on Tools with Artificial Intelligence, pp.
293–301, 2018. (* denotes equal contribution)

17. Pieter J.K. Libin, Timothy Verstraeten, Kristof Theys, Diederik M. Roijers, Peter
Vrancx, Ann Nowé, “Efficient evaluation of influenza mitigation strategies using
preventive bandits”. Autonomous Agents and Multiagent Systems, pp. 67–85. 2017.

Conference presentations
1. Timothy Verstraeten, Eugenio Bargiacchi, Pieter J.K. Libin, Jan Helsen, Diederik

M. Roijers, Ann Nowé. “Multi-agent Thompson sampling for bandits with sparse
neighborhood structures”. Benelux Conference on Artificial Intelligence and the
Belgian Dutch Conference on Machine Learning, 19/11/2020–20/11/2020, virtual
event. Oral presentation.

2. Pieter J.K. Libin, Arno Moonens, Timothy Verstraeten, Fabian Perez-Sanjines,
Niel Hens, Philippe Lemey, Ann Nowé. “Deep reinforcement learning for large-scale

150

Curriculum Vitae

epidemic control”. Benelux Conference on Artificial Intelligence and the Belgian
Dutch Conference on Machine Learning, 19/11/2020–20/11/2020, virtual event.
Oral presentation.

3. Timothy Verstraeten, Eugenio Bargiacchi, Pieter J.K. Libin, Jan Helsen, Diederik
M. Roijers, Ann Nowé. “Thompson sampling for loosely-coupled multi-agent
systems: An application to wind farm control”. Adaptive Learning Agents (ALA)
workshop @ AAMAS, 09/05/2020–10/05/2020, Auckland, New-Zealand. Oral
presentation. [workshop paper, peer reviewed]

4. Pieter J.K. Libin, Arno Moonens, Timothy Verstraeten, Fabian Perez-Sanjines,
Niel Hens, Philippe Lemey, Ann Nowé. “Deep reinforcement learning for large-
scale epidemic control”. Adaptive Learning Agents (ALA) workshop @ AAMAS,
09/05/2020–10/05/2020, Auckland, New-Zealand. Oral presentation. [workshop
paper, peer reviewed]

5. Timothy Verstraeten, Ann Nowé, Jan Helsen. “Failure avoidance for wind turbines
through fleetwide control”. Benelux Conference on Artificial Intelligence and the
Belgian Dutch Conference on Machine Learning, 06/11/2019–08/11/2019, Brussels,
Belgium. Poster presentation.

6. Timothy Verstraeten, Eugenio Bargiacchi, Pieter J.K. Libin, Diederik M. Roijers
and Ann Nowé. “Multi-Agent Thompson Sampling”. Multi Armed Bandit Workshop
@ Imperial College London, 25/09/2019–26/09/2019, London, United Kingdom.
Poster presentation.

7. Regis Loeb, Timothy Verstraeten, Ann Nowé, Ann Dooms. “Privacy Preserving
Reinforcement Learning over Distributed Datasets”. Benelux Artificial Intelligence
Conference, 06/11/2019–08/11/2019, Brussels, Belgium. Oral presentation.
[conference abstract]

8. Pieter J.K. Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang,
Kristof Theys, Ann Nowé. “Thompson sampling for m-top exploration”. Benelux
Conference on Artificial Intelligence, 06/11/2019–08/11/2019, Brussels, Belgium.
Oral presentation.

9. Timothy Verstraeten, Felipe Gomez Marulanda, Cédric Peeters, Pieter-Jan Daems,
Ann Nowé, Jan Helsen. “Edge computing for advanced vibration signal processing”.
Surveillance, Vishno and AVE conferences, 08/07/2019–10/07/2019, Lyon, France.
Oral presentation.

151

Curriculum Vitae

10. Pieter J.K. Libin, Timothy Verstraeten, Diederik M. Roijers, Wenjia Wang, Kristof
Theys, Ann Nowé. “Boundary Focused Thompson Sampling”. Adaptive Learning
Agents (ALA) workshop @ AAMAS, 13/05/2019–14/05/2019, Montreal, Canada.
Oral presentation.

11. Timothy Verstraeten, Ann Nowé. “Reinforcement learning for fleet applications
using coregionalized Gaussian processes”. Adaptive Learning Agents (ALA) workshop
@ AAMAS, 14/07/2018–15/07/2018, Stockholm, Sweden. Oral presentation.

12. Pieter J.K. Libin, Timothy Verstraeten, Kristof Theys, Diederik M. Roijers,
Peter Vrancx, Ann Nowé. “Efficient evaluation of influenza mitigation strategies
using preventive bandits”. Adaptive Learning Agents (ALA) workshop @ AAMAS,
08/05/2017–09/05/2017, São Paolo, Brazil. Oral presentation.

13. Jan Helsen, Cédric Peeters, Timothy Verstraeten, Nicoletta Gioia, Ann Nowé.
“Fleet-wide condition monitoring combining vibration signal processing and machine
learning rolled out in a cloud-computing environment”. International Conference
on Noise and Vibration Engineering, 17/09/2018–19/09/2018, 6 pages, Leuven,
Belgium. Oral presentation.

14. Timothy Verstraeten, Peter Vrancx, Ann Nowé. “Fleet reinforcement learning
using dependent Gaussian processes”. Belgium-Netherlands Reinforcement Learning
(BENERL) workshop, 26/01/2017, Nijmegen, the Netherlands. Oral presentation.
[workshop paper, peer reviewed]

15. Timothy Verstraeten, Peter Vrancx, Ann Nowé. “Fleet reinforcement learning
using dependent Gaussian processes”. Learning, Inference and Control of Multi-
Agent Systems (MALIC) workshop @ NIPS, 08/12/2016, Barcelona, Spain. Poster
presentation. [workshop paper, peer reviewed]

16. Timothy Verstraeten, Roxana Rădulescu, Yannick Jadoul, Tom Jaspers, Robrecht
Conjaerts, Tim Brys, Anna Harutyunyan, Peter Vrancx, Ann Nowé. “Human guided
ensemble learning in StarCraft”. Adaptive Learning Agents (ALA) workshop @
AAMAS, 09/05/2016–10/05/2016, Singapore. Oral presentation. [workshop paper,
peer reviewed]

17. Timothy Verstraeten. “Modeling Exoskeleton-Assisted Human Motion with
Gaussian Processes”. Benelux Conference on Artificial Intelligence, 05/11/2015–
06/11/2015, Hasselt, Belgium. Poster presentation.

152

Bibliography

Agrawal, S. and N. Goyal
2012. Analysis of Thompson sampling for the multi-armed bandit problem. In
Proceedings of the 25th Annual Conference on Learning Theory (COLT), volume 23,
Pp. 39.1–39.26.

Agrawal, S. and N. Goyal
2013a. Further optimal regret bounds for Thompson sampling. In Proceedings of
the 16th International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 31, Pp. 99–107.

Agrawal, S. and N. Goyal
2013b. Thompson sampling for contextual bandits with linear payoffs. In International
Conference on Machine Learning (ICML), Pp. 127–135.

Ahmed, S. D., F. S. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman, and I. M. El-Amin
2020. Grid integration challenges of wind energy: A review. IEEE Access, 8:10857–
10878.

Aho, J., A. Buckspan, J. Laks, P. Fleming, Y. Jeong, F. Dunne, M. Churchfield, L. Pao,
and K. Johnson
2012. A tutorial of wind turbine control for supporting grid frequency through active
power control. In American Control Conference (ACC), Pp. 3120–3131.

Alvarez, E. J. and A. P. Ribaric
2018. An improved-accuracy method for fatigue load analysis of wind turbine gearbox
based on scada. Renewable Energy, 115:391–399.

153

BIBLIOGRAPHY

Ansell, J. I. and M. J. Phillips
1994. Practical methods for reliability data analysis, 1 edition. Oxford, United Kingdom:
Clarendon Press.

Audibert, J.-Y. and S. Bubeck
2010. Best arm identification in multi-armed bandits. In Proc. of the 23rd Annual
Conference on Learning Theory (COLT).

Audibert, J.-Y., S. B. Bubeck, and G. Lugosi
2011. Minimax policies for combinatorial prediction games. In Proceedings of the 24th
Annual Conference on Learning Theory (COLT), volume 19, Pp. 107–132.

Auer, P., N. Cesa-Bianchi, and P. Fischer
2002. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47:235–
256.

Bargiacchi, E., D. M. Roijers, and A. Nowé
2020. AI-Toolbox: A C++ library for Reinforcement Learning and Planning (with
Python Bindings). Journal of Machine Learning Research, 21(102):1–12.

Bargiacchi, E., T. Verstraeten, D. Roijers, A. Nowé, and H. van Hasselt
2018. Learning to coordinate with coordination graphs in repeated single-stage multi-
agent decision problems. In International Conference on Machine Learning (ICML),
Pp. 491–499.

Barto, A. G., R. S. Sutton, and C. W. Anderson
1983. Neuronlike adaptive elements that can solve difficult learning control problems.
IEEE transactions on systems, man, and cybernetics, 5:834–846.

Blei, D. M., M. I. Jordan, et al.
2006. Variational inference for Dirichlet process mixtures. Bayesian analysis, 1(1):121–
143.

Boersma, S., B. Doekemeijer, P. M. Gebraad, P. A. Fleming, J. Annoni, A. K. Scholbrock,
J. Frederik, and J.-W. van Wingerden
2017. A tutorial on control-oriented modeling and control of wind farms. In 2017
American Control Conference (ACC), Pp. 1–18. IEEE.

Bonilla, E. V., K. M. A. Chai, and C. K. I. Williams
2008. Multi-Task Gaussian Process Prediction. Advances in Neural Information
Processing Systems, 20:153–160.

154

BIBLIOGRAPHY

Boutilier, C.
1996. Planning, learning and coordination in multiagent decision processes. In TARK
1996: Proceedings of the 6th conference on Theoretical aspects of rationality and
knowledge, Pp. 195–210.

Boyer, S. A.
2009. SCADA: Supervisory control and data acquisition. International Society of
Automation.

Brochu, E., V. M. Cora, and N. De Freitas
2010. A tutorial on bayesian optimization of expensive cost functions, with application
to active user modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba
2016. Openai gym. arXiv preprint arXiv:1606.01540.

Bruce, T., H. Long, and R. S. Dwyer-Joyce
2015. Dynamic modelling of wind turbine gearbox bearing loading during transient
events. IET Renewable Power Generation, 9(7):821–830.

Brys, T., Y.-M. De Hauwere, A. Nowé, and P. Vrancx
2011. Local coordination in online distributed constraint optimization problems. In
European Workshop on Multi-Agent Systems, Pp. 31–47. Springer.

Bubeck, S. and N. Cesa-Bianchi
2012. Regret analysis of stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends in Machine Learning, 5(1):1–122.

Busoniu, L., R. Babuska, and B. De Schutter
2006. Multi-agent reinforcement learning: A survey. In The 9th International Conference
on Control, Automation, Robotics and Vision, Pp. 1–6.

Castellani, F., A. Gravdahl, G. Crasto, E. Piccioni, and A. Vignaroli
2013. A practical approach in the cfd simulation of off-shore wind farms through the
actuator disc technique. Energy Procedia, 35:274–284.

Cesa-Bianchi, N. and G. Lugosi
2012. Combinatorial bandits. Journal of Computer and System Sciences, 78(5):1404–
1422.

155

BIBLIOGRAPHY

Chapelle, O. and L. Li
2011. An empirical evaluation of Thompson sampling. In Advances in Neural Information
Processing Systems (NIPS), volume 24, Pp. 2249–2257.

Chapman, A. C., D. S. Leslie, A. Rogers, and N. R. Jennings
2013. Convergent learning algorithms for unknown reward games. SIAM Journal on
Control and Optimization, 51(4):3154–3180.

Chen, N., Z. Qian, I. T. Nabney, and X. Meng
2013a. Wind power forecasts using Gaussian processes and numerical weather prediction.
IEEE Transactions on Power Systems, 29(2):656–665.

Chen, W., Y. Wang, and Y. Yuan
2013b. Combinatorial multi-armed bandit: General framework, results and applications.
In Proceedings of the 30th International Conference on Machine Learning (ICML),
volume 28, Pp. 151–159.

Christian Steiness/Vattenfall/Flickr
2010. Horns rev offshore wind farm. [Online; accessed November 15, 2020; license CC
BY-ND 2.0].

Claes, D., F. Oliehoek, H. Baier, and K. Tuyls
2017. Decentralised online planning for multi-robot warehouse commissioning.
In Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Pp. 492–500. International Foundation for Autonomous
Agents and Multiagent Systems.

Clark, C. E. and B. DuPont
2018. Reliability-based design optimization in offshore renewable energy systems.
Renewable and Sustainable Energy Reviews, 97:390–400.

De Hauwere, Y.-M.
2011. Sparse interactions in multi-agent reinforcement learning. PhD thesis, Vrije
Universiteit Brussel.

De Hauwere, Y.-M., P. Vrancx, and A. Nowé
2010. Learning multi-agent state space representations. In Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Pp. 715–722. International Foundation for Autonomous Agents and Multiagent
Systems.

156

BIBLIOGRAPHY

Deisenroth, M. P., P. Englert, J. Peters, and D. Fox
2014. Multi-task policy search for robotics. In IEEE International Conference on Robotics
and Automation (ICRA), Pp. 3876–3881. IEEE.

Deisenroth, M. P. and C. E. Rasmussen
2011. PILCO: A model-based and data-efficient approach to policy search. In Proc. of
the 28th International Conference on Machine Learning (ICML), Pp. 465–472.

Desmond, C., J. Murphy, L. Blonk, and W. Haans
2016. Description of an 8 MW reference wind turbine. Journal of Physics: Conference
Series, 753(9).

Do, T. H., E. Tsiligianni, X. Qin, J. Hofman, V. P. La Manna, W. Philips, and
N. Deligiannis
2020. Graph-deep-learning-based inference of fine-grained air quality from mobile IoT
sensors. IEEE Internet of Things Journal, 7(9):8943–8955.

Doshi-Velez, F. and G. Konidaris
2016. Hidden parameter markov decision processes: A semiparametric regression
approach for discovering latent task parametrizations. In Proc. of the 25th International
Joint Conference on Artificial Intelligence (IJCAI), Pp. 1432–1440.

Engel, Y., S. Mannor, and R. Meir
2005. Reinforcement Learning with Gaussian Processes. In Proc. of the 22nd
International Conference on Machine Learning, Pp. 201–208. ACM Press.

Feng, J. and W. Z. Shen
2017. Design optimization of offshore wind farms with multiple types of wind turbines.
Applied Energy, 205:1283–1297.

Fraile, D., A. Mbistrova, I. Pineda, P. Tardieu, and L. Miró
2018. Wind in power 2017: Annual combined onshore and offshore wind energy
statistics. Technical report, Wind Europe. accessed 6 March 2019.

Gai, Y., B. Krishnamachari, and R. Jain
2012. Combinatorial network optimization with unknown variables: Multi-armed bandits
with linear rewards and individual observations. IEEE/ACM Transactions on Networking
(TON), 20(5):1466–1478.

Gebraad, P., J. J. Thomas, A. Ning, P. Fleming, and K. Dykes
2017. Maximization of the annual energy production of wind power plants by
optimization of layout and yaw-based wake control. Wind Energy, 20(1):97–107.

157

BIBLIOGRAPHY

Gebraad, P. M. and J.-W. van Wingerden
2015. Maximum power-point tracking control for wind farms. Wind Energy, 18(3):429–
447.

Gerla, M., E.-K. Lee, G. Pau, and U. Lee
2014. Internet of vehicles: From intelligent grid to autonomous cars and vehicular
clouds. In 2014 IEEE world forum on internet of things (WF-IoT), Pp. 241–246. IEEE.

Glacer, A.
2012. From Brokdorf to Fukushima: The long journey to nuclear phase-out. Bulletin
of the Atomic Scientists, 68(6):10–21.

Global Wind Energy Council
2018. Global wind statistics 2017. accessed 6 March 2019.

Gonzalez, E., B. Stephen, D. Infield, and J. J. Melero
2017. On the use of high-frequency SCADA data for improved wind turbine performance
monitoring. Journal of Physics: Conference Series, 926.

González-Longatt, F., P. Wall, and V. Terzija
2012. Wake effect in wind farm performance: Steady-state and dynamic behavior.
Renewable Energy, 39(1):329–338.

Goovaerts, P.
1997. Geostatistics for Natural Resource Evaluation. New York, USA: Oxford University
Press.

Gould, B. and G. Aaron
2015. The influence of sliding and contact severity on the generation of white etching
cracks. Tribology Letters, 60(2):1–13.

Greco, A., S. Sheng, J. Keller, and A. Erdemir
2013. Material wear and fatigue in wind turbine systems. Wear, 302(1-2):1583–1591.

Gu, H. and J. Wang
2013. Irregular-shape wind farm micro-siting optimization. Energy, 57:535–544.

Guestrin, C., D. Koller, and R. Parr
2001a. Max-norm projections for factored MDPs. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI), Pp. 673–682.

Guestrin, C., D. Koller, and R. Parr
2001b. Multiagent planning with factored MDPs. In Advances in Neural Information
Processing Systems (NIPS), volume 14, Pp. 1523–1530.

158

BIBLIOGRAPHY

Guestrin, C., S. Venkataraman, and D. Koller
2002. Context-specific multiagent coordination and planning with factored mdps. In
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), Pp. 253–
259.

Guo, Y., J. Keller, and W. LaCava
2015. Planetary gear load sharing of wind turbine drivetrains subjected to non-torque
loads. Wind Energy, 18(4):757–768.

Helsen, J., C. Devriendt, W. Weijtjens, and P. Guillaume
2016a. Experimental dynamic identification of modeshape driving wind turbine grid loss
event on nacelle testrig. Renewable Energy, 85:259–272.

Helsen, J., Y. Guo, and J. Keller
2018a. Gearbox high-speed-stage bearing slip induced by electric excitation in a test
facility. Wind Energy, 21(11):1191–1201.

Helsen, J., Y. Guo, J. Keller, and P. Guillaume
2016b. Experimental investigation of bearing slip in a wind turbine gearbox during a
transient grid loss event. Wind Energy, 19(12):2255–2269.

Helsen, J., C. Peeters, T. Verstraeten, J. Verbeke, N. Gioia, and A. Nowé
2018b. Fleet-wide condition monitoring combining vibration signal processing and
machine learning rolled out in a cloud-computing environment. In International
Conference on Noise and Vibration Engineering (ISMA).

Helsen, J., P. Peeters, K. Vanslambrouck, F. Vanhollebeke, and W. Desmet
2014. The dynamic behavior induced by different wind turbine gearbox suspension
methods assessed by means of the flexible multibody technique. Renewable Energy,
69:336–346.

Hennion, D.
2020. Safe fleet-wide policy iteration for fleet applications. Master’s thesis, Vrije
Universiteit Brussel.

Honda, J. and A. Takemura
2014. Optimality of Thompson sampling for Gaussian bandits depends on priors. In
Artificial Intelligence and Statistics, Pp. 375–383.

Huang, Y.-F., X.-J. Gan, and P.-T. Chiueh
2017. Life cycle assessment and net energy analysis of offshore wind power systems.
Renewable Energy, 102:98–106.

159

BIBLIOGRAPHY

Ijspeert, A. J., J. Nakanishi, and S. Schaal
2003. Learning attractor landscapes for learning motor primitives. In Advances in neural
information processing systems, Pp. 1547–1554.

International Electrotechnical Commission
2012. Wind turbines – Part 4: Design requirements for wind turbine gearboxes (No.
IEC 61400-4). accessed 6 March 2019.

Irawan, C. A., D. Ouelhadj, D. Jones, M. Stålhane, and I. B. Sperstad
2017. Optimisation of maintenance routing and scheduling for offshore wind farms.
European Journal of Operational Research, 256(1):76–89.

Jensen, T., T. Knudsen, and T. Bak
2016. Fatigue minimising power reference control of a de-rated wind farm. Journal of
Physics: Conference Series, 753.

Johnson, K. E.
2004. Adaptive torque control of variable speed wind turbines. Technical Report
NREL/TP-500-36265, National Renewable Energy Laboratory (NREL), Golden, CO,
United States. accessed 6 March 2019.

Jonkman, J., S. Butterfield, W. Musial, and G. Scott
2009. Definition of a 5-MW reference wind turbine for offshore system development.
Technical report, Golden, CO, USA.

Junior, V. J., J. Zhou, S. Roshanmanesh, F. Hayati, S. Hajiabady, X. Y. Li, H. Dong, and
M. Papaelias
2017. Evaluation of damage mechanics of industrial wind turbine gearboxes. Insight –
Non-Destructive Testing and Condition Monitoring, 59(8):410–414.

Kapetanakis, S. and D. Kudenko
2002. Reinforcement learning of coordination in cooperative multi-agent systems. In
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), volume
2002, Pp. 326–331.

Katic, I., J. Højstrup, and N. O. Jensen
1986. A simple model for cluster efficiency. In European wind energy association
conference and exhibition, volume 1, Pp. 407–410.

Keller, J., Y. Guo, W. LaCava, H. Link, and B. McNiff
2012. NREL gearbox reliability collaborative phase 1 and 2: Testing and modeling
results. In Proc. of the International Conference on Noise and Vibration Engineering,
Pp. 4371–4379, Leuven, Belgium.

160

BIBLIOGRAPHY

Keller, J., S. Sheng, J. Cotrell, and A. Greco
2016. Wind turbine drivetrain reliability collaborative workshop: A recap. Technical
report, National Renewable Energy Laboratory (NREL), Golden, CO, United States.
accessed 6 March 2019.

Killian, T. W., S. Daulton, G. Konidaris, and F. Doshi-Velez
2017. Robust and efficient transfer learning with hidden parameter Markov decision
processes. In Advances in Neural Information Processing Systems (NIPS), I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
eds., volume 30, Pp. 6250–6261. Curran Associates, Inc.

Knudsen, T., T. Bak, and M. Svenstrup
2015. Survey of wind farm control – power and fatigue optimization. Wind Energy,
18(8):1333–1351.

Kober, J., J. A. Bagnell, and J. Peters
2013. Reinforcement learning in robotics: A survey. The International Journal of
Robotics Research, 32(11):1238–1274.

Kok, J. R. and N. Vlassis
2004. Sparse cooperative Q-learning. In Proceedings of the 21st International Conference
on Machine Learning (ICML), New York, NY, USA.

Kok, J. R. and N. Vlassis
2006. Using the max-plus algorithm for multiagent decision making in coordination
graphs. In RoboCup 2005: Robot Soccer World Cup IX, A. Bredenfeld, A. Jacoff,
I. Noda, and Y. Takahashi, eds., volume 4020 of Lecture Notes in Computer Science,
Pp. 1–12. Springer.

Koller, D. and R. Parr
2000. Policy iteration for factored MDPs. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence (UAI), Pp. 326–334, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Konidaris, G., I. Scheidwasser, and A. Barto
2012. Transfer in reinforcement learning via shared features. Journal of Machine Learning
Research (JMLR), 13:1333–1371.

LaCava, W., J. van Dam, and R. Wallen
2011. NREL Gearbox Reliability Collaborative: Comparing in-field gearbox response
to different dynamometer test conditions. Technical Report NREL/CP-5000-51690,

161

BIBLIOGRAPHY

National Renewable Energy Laboratory (NREL), Golden, CO, United States. accessed
6 March 2019.

LaCava, W., Y. Xing, C. Marks, Y. Guo, and T. Moan
2013. Three-dimensional bearing load share behaviour in the planetary stage of a wind
turbine gearbox. IET Renewable Power Generation, 7(4):359–369.

Lattimore, T. and C. Szepesvári
2020. Bandit algorithms. Cambridge University Press.

Lazaric, A. and M. Ghavamzadeh
2010. Bayesian multi-task reinforcement learning. In Proc. of the 27th International
Conference on Machine Learning (ICML), Pp. 599–606. Omnipress.

Libin, P., A. Moonens, T. Verstraeten, F. Perez-Sanjines, N. Hens, P. Lemey, and A. Nowé
2020. Deep reinforcement learning for large-scale epidemic control. In Proceedings of the
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD). Springer.

Libin, P. J. K., T. Verstraeten, D. M. Roijers, J. Grujic, K. Theys, P. Lemey, and A. Nowé
2018. Bayesian best-arm identification for selecting influenza mitigation strategies.
In Proceedings of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD), Pp. 456–471. Springer.

Libin, P. J. K., T. Verstraeten, D. M. Roijers, W. Wang, K. Theys, and A. Nowé
2019. Thompson sampling for m-top exploration. In Proceedings of the IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), Pp. 1414–1420.

Link, H., J. Keller, Y. Guo, and M. B.
2013. Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan. Technical Report
NREL/TP-5000-58190, National Renewable Energy Laboratory (NREL), Golden, CO,
United States. accessed 6 March 2019.

Link, H., W. LaCava, J. van Dam, B. McNiff, S. Sheng, R. Wallen, M. McDade,
S. Lambert, S. Butterfield, and F. Oyague
2011. Gearbox Reliability Collaborative project report: findings from phase 1 and
phase 2 testing. Technical Report NREL/TP-5000-51885, National Renewable Energy
Laboratory (NREL), Golden, CO, United States. accessed 6 March 2019.

Loeb, R., T. Verstraeten, A. Nowé, and A. Dooms
2019. Privacy preserving reinforcement learning over distributed datasets. In Proceedings
of the 31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch
Conference on Machine Learning (BNAIC/BENELEARN).

162

BIBLIOGRAPHY

Lougee-Heimer, R.
2003. The common optimization interface for operations research. IBM Journal of
Research and Development, 47(1):57–66.

Lunn, D., C. Jackson, N. Best, D. Spiegelhalter, and A. Thomas
2012. The BUGS book: A practical introduction to Bayesian analysis. Chapman and
Hall/CRC.

Lydia, M., S. S. Kumar, A. I. Selvakumar, and G. E. P. Kumar
2014. A comprehensive review on wind turbine power curve modeling techniques.
Renewable and Sustainable Energy Reviews, 30:452–460.

Marden, J. R., S. D. Ruben, and L. Y. Pao
2013. A model-free approach to wind farm control using game theoretic methods. IEEE
Transactions on Control Systems Technology, 21(4):1207–1214.

Martin, R., I. Lazakis, S. Barbouchi, and L. Johanning
2016. Sensitivity analysis of offshore wind farm operation and maintenance cost and
availability. Renewable Energy, 85:1226–1236.

McKay, M. D., R. J. Beckman, and W. J. Conover
1979. Comparison of three methods for selecting values of input variables in the analysis
of output from a computer code. Technometrics, 21(2):239–245.

Moore, A. W.
1990. Efficient Memory-Based Learning for Robot Control. PhD thesis, University of
Cambridge.

Moore, A. W.
1993. The parti-game algorithm for variable resolution reinforcement learning in
multidimensional state-spaces. In Proc. of the 6th International Conference on Neural
Information Processing Systems (NIPS), Pp. 711–718.

Mukherjee, S., A. Mishra, and K. E. Trenberth
2018. Climate change and drought: a perspective on drought indices. Current Climate
Change Reports, 4(2):145–163.

Muljadi, E., C. P. Butterfield, and B. Parsons
2007. Effect of variable speed wind turbine generator on stability of a weak grid. IEEE
Transactions on Energy Conversion, 22(1):29–36.

National Renewable Energy Laboratory
2016. Gearbox Reliability Database. accessed 6 March 2019.

163

BIBLIOGRAPHY

National Renewable Energy Laboratory (NREL)
2019. FLORIS. Version 1.0.0.

Nejad, A. R., Z. Gao, and T. Moan
2014a. On long-term fatigue damage and reliability analysis of gears under wind loads
in offshore wind turbine drivetrains. International Journal of Fatigue, 61:116–128.

Nejad, A. R., P. F. Odgaard, Z. Gao, and T. Moan
2014b. A prognostic method for fault detection in wind turbine drivetrains. Engineering
Failure Analysis, 42:324–336.

Pan, S. J. and Q. Yang
2009. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359.

Pape, F., J. T. Terwey, S. Wiesker, S. Averbeck, C. Muhmann, D. Lipinsky, H. F.
Arlinghaus, E. Kerscher, B. Sauer, and G. Poll
2018. Tribological research on the development of white etching cracks (WECs).
Forschung im Ingenieurwesen, 82(4):341–352.

Peeters, C., T. Verstraeten, A. Nowé, and J. Helsen
2019. Wind turbine planetary gear fault identification using statistical condition
indicators and machine learning. In International Conference on Offshore Mechanics
and Arctic Engineering. American Society of Mechanical Engineers.

Polydoros, A. S. and L. Nalpantidis
2017. Survey of model-based reinforcement learning: Applications on robotics. Journal
of Intelligent & Robotic Systems, 86(2):153–173.

Puterman, M. L.
1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st
edition. John Wiley & Sons, Inc.

Rasmussen, C. E. and M. Kuss
2003. Gaussian processes in reinforcement learning. Advances in Neural Information
Processing Systems, 16:751–758.

Rasmussen, C. E. and C. K. I. Williams
2006. Gaussian Processes for Machine Learning. Cambridge, MA, USA: The MIT Press.

Rastogi, D., I. Koryakovskiy, and J. Kober
2018. Sample-efficient reinforcement learning via difference models. InMachine Learning
in Planning and Control of Robot Motion Workshop at ICRA.

164

BIBLIOGRAPHY

REN21 Secretariat
2020. Renewables 2020: Global status report. Technical report, REN12 Secretariat:
Paris, France.

Rhuggenaath, J., A. Akcay, Y. Zhang, and U. Kaymak
2019. Optimizing reserve prices for publishers in online ad auctions. In 2019 IEEE
Conference on Computational Intelligence for Financial Engineering Economics (CIFEr),
Pp. 1–8.

Richmond, M., A. Antoniadis, L. Wang, A. Kolios, S. Al-Sanad, and J. Parol
2019. Evaluation of an offshore wind farm computational fluid dynamics model against
operational site data. Ocean Engineering, 193.

Robert, C.
2007. The Bayesian choice: from decision-theoretic foundations to computational
implementation. Springer Science & Business Media.

Roijers, D. M.
2016. Multi-Objective Decision-Theoretic Planning. PhD thesis, University of
Amsterdam.

Russo, D. and B. Van Roy
2014. Learning to optimize via posterior sampling. Mathematics of Operations Research,
39(4):1221–1243.

Russo, D., B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen
2017. A tutorial on thompson sampling. arXiv preprint arXiv:1707.02038.

Sæmundsson, S., K. Hofmann, and M. P. Deisenroth
2018. Meta reinforcement learning with latent variable gaussian processes. In Proc. of
the 34th Conference on Uncertainty in Artificial Intelligence (UAI), Pp. 642–652.

Sarker, B. R. and T. I. Faiz
2017. Minimizing transportation and installation costs for turbines in offshore wind
farms. Renewable Energy, 101:667–679.

Scharpff, J., D. M. Roijers, F. A. Oliehoek, M. T. J. Spaan, and M. M. de Weerdt
2016. Solving transition-independent multi-agent MDPs with sparse interactions. In
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI).

Schiermeier, Q.
2016. And now for the energy forecast: Germany works to predict wind and solar power
generation. Nature, 535(7611):212–213.

165

BIBLIOGRAPHY

Shen, W.
2019. Multi-agent systems for concurrent intelligent design and manufacturing. CRC
press.

Short, W., D. J. Packey, and T. Holt
2005. A manual for the economic evaluation of energy efficiency and renewable energy
technologies. University Press of the Pacific.

Siniscalchi-Minna, S., F. D. Bianchi, M. De-Prada-Gil, and C. Ocampo-Martinez
2019. A wind farm control strategy for power reserve maximization. Renewable energy,
131:37–44.

Snelson, E. and Z. Ghahramani
2006. Sparse Gaussian processes using pseudo-inputs. In Advances in neural information
processing systems, Pp. 1257–1264.

Sohoni, V., S. Gupta, and R. Nema
2016. A critical review on wind turbine power curve modelling techniques and their
applications in wind based energy systems. Journal of Energy, 2016.

Soleimanzadeh, M., R. Wisniewski, and S. Kanev
2012. An optimization framework for load and power distribution in wind farms. Journal
of Wind Engineering and Industrial Aerodynamics, 107:256–262.

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and
H. L. Miller, eds.
2007. Climate Change 2007: The Physical Science Basis - Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. New York, NY, United States: Cambridge University Press.

Sourkounis, C. and P. Tourou
2013. Grid code requirements for wind power integration in Europe. In Conference
Papers in Energy, volume 2013. Hindawi.

Spudic, V., M. Jelavic, M. Baotic, and N. Peric
2010. Hierarchical wind farm control for power/load optimization. The science of
making torque from wind (TORQUE 2010).

Staffell, I. and R. Green
2014. How does wind farm performance decline with age? Renewable energy, 66:775–
786.

166

BIBLIOGRAPHY

Stranders, R., L. Tran-Thanh, F. M. D. Fave, A. Rogers, and N. R. Jennings
2012. DCOPs and bandits: Exploration and exploitation in decentralised coordination.
In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Pp. 289–296. International Foundation for Autonomous
Agents and Multiagent Systems.

Struggl, S., V. Berbyuk, and H. Johansson
2015. Review on wind turbines with focus on drive train system dynamics. Wind Energy,
18(4):567–590.

Sun, D. and J. O. Berger
2007. Objective Bayesian analysis for the multivariate normal model. Bayesian Statistics,
8:525–562.

Sutton, R. S.
1990. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. InMachine Learning Proceedings 1990, Pp. 216–
224. Elsevier.

Sutton, R. S. and A. G. Barto
2018. Reinforcement Learning: An Introduction, 2 edition. Cambridge, MA, United
States: MIT Press.

Tao, S., A. Feijóo, J. Zhou, and G. Zheng
2020. Topology design of an offshore wind farm with multiple types of wind turbines in
a circular layout. Energies, 13(3):556.

Taylor, M. E., M. Jain, P. Tandon, M. Yokoo, and M. Tambe
2011. Distributed on-line multi-agent optimization under uncertainty: Balancing
exploration and exploitation. Advances in Complex Systems, 14(03):471–528.

Taylor, M. E. and P. Stone
2007. Cross-domain transfer for reinforcement learning. In Proc. of the 24th
International Conference on Machine Learning (ICML), Pp. 879–886. ACM.

Thompson, W. R.
1933. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294.

Tingey, E. B. and A. Ning
2017. Trading off sound pressure level and average power production for wind farm
layout optimization. Renewable Energy, 114:547–555.

167

BIBLIOGRAPHY

Treviño Cantú, H.
2011. Life-cycle cost analysis for offshore wind farms: Reliability and maintenance.
Master’s thesis, Gotland University.

Troldborg, N., G. C. Larsen, H. A. Madsen, K. S. Hansen, J. N. Sørensen, and R. Mikkelsen
2011. Numerical simulations of wake interaction between two wind turbines at various
inflow conditions. Wind Energy, 14(7):859–876.

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy
2013. The inside of a wind turbine.

van Binsbergen, D. W., S. Wang, and A. R. Nejad
2020. Effects of induction and wake steering control on power and drivetrain responses
for 10 mw floating wind turbines in a wind farm. Journal of Physics: Conference Series,
1618(2).

van Dijk, M. T., J.-W. Wingerden, T. Ashuri, Y. Li, and M. A. Rotea
2016. Yaw-misalignment and its impact on wind turbine loads and wind farm power
output. Journal of Physics: Conference Series, 753(6).

Vanhatalo, J., V. Pietiläinen, and A. Vehtari
2010. Approximate inference for disease mapping with sparse Gaussian processes.
Statistics in medicine, 29(15):1580–1607.

Vershynin, R.
2018. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press.

Verstraeten, T., A. Nowé, J. Keller, Y. Guo, S. Sheng, and J. Helsen
2019. Fleetwide data-enabled reliability improvement of wind turbines. Renewable and
Sustainable Energy Reviews, 109:428–437.

Vlassis, N., R. Elhorst, and J. R. Kok
2004. Anytime algorithms for multiagent decision making using coordination graphs. In
IEEE International Conference on Systems, Man and Cybernetics, volume 1, Pp. 953–
957.

Wagenaar, J., L. Machielse, and J. Schepers
2012. Controlling wind in ECN’s scaled wind farm. Proc. of the Europe Premier Wind
Energy Event, Pp. 685–694.

168

BIBLIOGRAPHY

Wiering, M.
2000. Multi-agent reinforcement learning for traffic light control. In Proceedings of the
17th International Conference on Machine Learning (ICML), Pp. 1151–1158.

Wilson, A., A. Fern, S. Ray, and P. Tadepalli
2007. Multi-task reinforcement learning: A hierarchical Bayesian approach. In Proc. of
the 24th International Conference on Machine Learning (ICML), Pp. 1015–1022.

Wilson, A. and Z. Ghahramani
2011. Generalised Wishart processes. In Proc. of the Conference on Uncertainty in
Artificial Intelligence (UAI), Pp. 736–744.

Wilson, A. and H. Nickisch
2015. Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In
International Conference on Machine Learning (ICML), Pp. 1775–1784.

Wilson, A. G. and Z. Ghahramani
2010. Copula processes. In Proc. of the 24th Annual Conference on Neural Information
Processing Systems 2010 (NIPS).

Wiser, R. and M. Bolinger
2015. Wind technologies market report. Technical report, National Renewable Energy
Laboratory (NREL), Golden, CO, United States. accessed 6 March 2019.

Wolsey, L. A. and G. L. Nemhauser
1999. Integer and combinatorial optimization, volume 55. John Wiley & Sons.

Yokoo, M., E. H. Durfee, T. Ishida, and K. Kuwabara
1998. The distributed constraint satisfaction problem: Formalization and algorithms.
IEEE Transactions on knowledge and data engineering, 10(5):673–685.

Yu, Y.
2018. Towards sample efficient reinforcement learning. In Proc. of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), Pp. 5739–5743. International Joint
Conferences on Artificial Intelligence Organization.

Zhang, N. L. and D. Poole
1994. A simple approach to Bayesian network computations. In Proc. of the 10th
Canadian Conference on Artificial Intelligence.

169

	List of Jury Members
	Summary
	Samenvatting
	Acknowledgments
	Contents
	Nomenclature
	Glossary
	Introduction
	Loads and Lifetime of Wind Turbines
	Wind Farm Control and Reinforcement Learning
	Research Contributions

	Multi-Armed Bandits and Reinforcement Learning
	Bayesian Inference
	Multi-Armed Bandits
	Upper Confidence Bound
	Thompson Sampling

	Reinforcement Learning

	Policy Iteration for Pools of Devices
	Background
	Gaussian Process
	Model-Based Reinforcement Learning using Gaussian Processes

	Related Work
	Coregionalization over Multiple Transition Models
	Analysis of the Sparse Coregionalization Matrix
	Experiments
	Mountain Car
	Cart-Pole
	Wind Turbines

	Discussion

	Thompson Sampling for Multi-Agent Bandits
	Background
	Multi-Agent Multi-Armed Bandits
	Variable Elimination in Coordination Graphs

	Related work
	Multi-Agent Thompson Sampling
	Bayesian Regret Analysis
	Experiments
	Synthetic Benchmarks
	Wind Farm Control Application

	Discussion

	Scalable Hybrid Optimization for Wind Farm Control
	Related Work
	Problem Statement
	Operational Regimes
	Factorization
	Set-Point Thompson Sampling
	Experiments
	Discussion

	Discussion
	Contributions
	Valorisation Potential
	Future Work

	Appendices
	Success Rates of PIPoD
	Sensitivity Analysis of PIPoD
	Comparison of Intrinsic Coregionalization Model with Sparse Variant
	Exhaustive List of Empirical Results for SPTS
	Learning Curves
	Best Set-Point Configurations
	Farm-Wide Power Productions

	Curriculum Vitae
	Bibliography

