
Faculty of Science and
Bio-Engineering Sciences
Department of Computer Science
Artificial Intelligence Laboratory

On the Semi-automated Design of Reusable Heuristics
with applications to hard combinatorial optimization

Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Science: Computer Science

Steven Adriaensen

Promotor: Prof. Dr. Ann Nowé (Vrije Universiteit Brussel)

© 2018 Steven Adriaensen

All rights reserved. No parts of this book may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the author.

Abstract

These days, many scientific and engineering disciplines rely on standardization and auto-
mated tools. Somewhat ironically, the design of the algorithms underlying these tools
is often a highly manual, ad hoc, experience- and intuition-driven process, commonly
regarded as an “art” rather than a “science”.
The research performed in the scope of this dissertation is geared towards improving

the way we design algorithms. Here, we treat algorithm design itself as a computational
problem, which we refer to as the Algorithm Design Problem (ADP). In a sense, we study
“algorithms for designing algorithms”.
The main topic we investigate in this framework is the possibility of solving the ADP

automatically. Letting computers, rather than humans, design algorithms has numerous
potential benefits. The idea of automating algorithm design is definitely not “new”. At-
tempts to do so can be traced back to the origins of computer science, and, ever since, the
ADP, in one form or another, has been considered in many different research communities.
Therefore, we first present an overview of this vast and highly fragmented field, relating
the different approaches, discussing their respective strengths and weaknesses, towards
enabling a more unified approach to automated algorithm design.
One design approach, which we explore in more depth, solves the ADP by reduction to an

Algorithm Configuration Problem (ACP), a practice to which we refer to as Programming
by Configuration (PbC). We demonstrate PbC, using it to design a non-exact algorithm
(a.k.a. a “heuristic”) for solving hard combinatorial optimization problems. While PbC
has previously been applied to the design of heuristics for some specific problem, our
approach differs in that we consider the automated design of domain-independent heuristics

3

4 Abstract

(a.k.a. “metaheuristics”) which are reusable across a wide class of problems. As a result,
we obtain a metaheuristic which we show to be competitive with the state-of-the-art across
nine different problem domains.
Subsequently, we present a critical reflection on PbC, discuss its limitations, and our

own work towards addressing these. In particular, we argue that PbC, in reducing the
ADP to an ACP, abstracts information that can be usefully exploited to solve the ADP
faster. To this end, we propose a novel performance estimation technique exploiting this
information to generalize performance observations across designs. We describe a design
procedure implementing our technique and validate experimentally that it improves the
data efficiency (up to several orders of magnitude) in three selected scenarios.
Finally, we explore an alternative, less disruptive angle. Here, instead of aiming at repla-

cing the (manual) process by which algorithms are currently being designed, we investigate
the possibility of improving the quality of the resulting design post hoc. In particular, we
focus on ’simplicity’, a factor that is often overlooked when designing algorithms, which
consequently tend to be overly complicated. To counteract this effect, we advocate Ac-
cidental Complexity Analysis (ACA), a research practice targeted at identifying excessive
complexity in algorithms. We demonstrate ACA, applying it to an existing state-of-the-art
metaheuristic. As an outcome of this analysis, we are able to reduce its logical complexity
by a factor of eight, without loss of performance.

Samenvatting

Vandaag de dag zijn vele wetenschappelijke en technische disciplines afhankelijk van stan-
daardisatie en geautomatiseerde tools. Het ontwerp van de algoritmen die deze tools
ondersteunen, gebeurt echter nog vaak handmatig, gestuurd door de ervaring en intuitie
van de ontwerper, en wordt vaak als een “kunst” eerder dan een “wetenschap” beschouwd.
Het onderzoek uitgevoerd in het kader van dit doctoraat is gericht op het verbeteren

van dit algoritmeontwerp. Hier behandelen we algoritmeontwerp zelf als een computati-
oneel probleem, dat we het “Algorithm Design Problem” (ADP) noemen. In zekere zin
bestuderen we “algoritmen voor het ontwerpen van algoritmen”.
In dit kader onderzoeken we in het bijzonder de mogelijkheid om computers, in plaats van

mensen, algoritmen te laten ontwerpen. Dit biedt tal van mogelijke voordelen. Het idee
om algoritmeontwerp te automatiseren is zeker niet “nieuw”. Pogingen daartoe zijn terug
te vinden vanaf het onstaan van de computerwetenschap. Sindsdien is dit probleem, in
één of andere vorm, beschouwd in vele verschillende onderzoeksgemeenschappen. Daarom
presenteren we eerst een overzicht van dit zeer uitgebreide en gefragmenteerde onderzoeks-
domein, waarin we de verschillende benaderingen relateren, hun respectievelijke sterke en
zwakke punten bespreken, om zo een meer uniforme benadering van geautomatiseerd al-
goritmeontwerp mogelijk te maken.
Eén specifieke benadering, die we nader onderzocht hebben, ontwerpt algoritmen met

behulp van geautomatiseerde tools die bekend staan als “algoritmeconfiguratoren”. Een
praktijk waarnaar we verwijzen als “Programming by Configuration” (PbC). We illustreren
het gebruik van PbC in het ontwerp van een niet-exact algoritme (ook wel een “heuristiek”
genoemd) voor het oplossen van moeilijke combinatorische optimalisatieproblemen. Terwijl

5

6 Samenvatting

PbC eerder werd toegepast op het ontwerp van heuristieken voor een specifiek probleem,
verschilt onze aanpak in dat we het geautomatiseerde ontwerp van domeinonafhankelijke
heuristieken (ook wel “metaheuristieken” genoemd) beschouwen die herbruikbaar zijn voor
een groot aantal van verschillende problemen. We tonen aan dat de op deze wijze verkregen
metaheuristiek even goed werkt als de best bestaande vergelijkbare technieken voor negen
verschillende probleemdomeinen.
Vervolgens, presenteren we een kritische reflectie op PbC. We bespreken de beperkin-

gen ervan, en ons eigen werk om deze aan te pakken. In het bijzonder stellen we dat
PbC nuttige informatie abstraheert die kan worden gebruikt om het ADP sneller op te
lossen. Hiertoe stellen we een nieuwe techniek voor die deze informatie gebruikt om algo-
ritmeprestaties te schatten aan de hand van minder experimentele data. We beschrijven
een ontwerpprocedure die onze techniek implementeert en tonen aan dat deze weldege-
lijk de gegevensefficiëntie (tot met meerdere grootteorden) verbetert in drie geselecteerde
experimentele scenario’s.
Ten slotte verkennen we een alternatieve, minder disruptieve invalshoek. Hier, in plaats

van het (handmatige) proces waarmee de algoritmen momenteel worden ontworpen te
proberen te vervangen, onderzoeken we de mogelijkheid om achteraf de kwaliteit van het
resulterende ontwerp te verbeteren. In het bijzonder richten we ons op ’eenvoud’, een factor
die vaak over het hoofd wordt gezien bij het ontwerpen van algoritmen, die bijgevolg de
neiging hebben overgecompliceerde te zijn. Om dit effect tegen te gaan, pleiten we voor
Accidental Complexity Analysis (ACA), een onderzoekspraktijk gericht op het identificeren
van onnodige complexiteit in algoritmen. Als demonstratie, passen we ACA toe op een
bestaande metaheuristiek. Deze analyse stelt ons in staat om de complexiteit hiervan met
een factor van acht te verminderen, zonder prestatieverlies.

Contents

Abstract 3

Samenvatting 5

Contents 7

1 Introduction 11
1.1 Our Critical Perspective on Algorithmics 11
1.2 Research Topic . 14

1.2.1 Scope and Focus . 14
1.2.2 Research Questions . 15

1.3 Structure of this Dissertation . 16
1.3.1 Content Outline . 16
1.3.2 Reader’s Guide . 18

Part 1: Background and Personal Perspectives 19

2 Foundations of Problem-solving 21
2.1 Problems . 21
2.2 Optimization Problems . 23

2.2.1 Examples of Combinatorial Optimization Problems 24
2.3 Algorithms . 26

2.3.1 Formalization . 29
2.3.2 Computer Programs . 32
2.3.3 Parametrized Algorithms . 33

2.4 Problem Formulation . 34
2.4.1 Reducibility . 34
2.4.2 Problem-solving vs. Problem Formulation 37

7

8 CONTENTS

2.4.3 Opinion: Importance of Natural Formulations 38
2.5 Computational Complexity . 39

2.5.1 Analysis of Algorithms . 39
2.5.2 Complexity of Problems . 41

2.6 Beyond Effective Procedures . 43
2.6.1 Randomized Algorithms . 44
2.6.2 Asymptotically Correct Algorithms 45
2.6.3 Non-exact Algorithms . 47
2.6.4 Contract and Anytime Algorithms 48

2.7 Search Methods for Combinatorial Optimization 49
2.7.1 Systematic Search . 50
2.7.2 Heuristic Search . 54

2.8 Summary . 67

3 Algorithm Design 69
3.1 The Algorithm Design Problem . 70
3.2 Algorithm Quality . 71

3.2.1 Performance . 71
3.2.2 Beyond Performance . 73
3.2.3 Conflicting Criteria? . 74

3.3 Who is the Designer? . 80
3.3.1 The Manual Approach . 80
3.3.2 Automated Algorithm Design 82
3.3.3 Semi-automated Design . 86

3.4 What Information Does the Designer Use? 93
3.4.1 Analytical . 93
3.4.2 Empirical / Simulation-based 93
3.4.3 Who Uses What Information? 94

3.5 When Does Design Take Place? . 94
3.5.1 Offline . 94
3.5.2 Online . 95
3.5.3 Semi-online . 98

3.6 Summary . 99

4 Design by Algorithm Selection 101
4.1 Design by Per-set Algorithm Selection 102

4.1.1 Formulating the ADP as a set-ASP 102
4.1.2 Solving the set-ASP . 106

4.2 Design by Per-input Algorithm Selection 117

CONTENTS 9

4.2.1 The input- and subset-ASP . 117
4.2.2 Formulating the ADP as a subset-ASP 118
4.2.3 Solving the subset-ASP . 121

4.3 Design by Dynamic Algorithm Selection 129
4.3.1 The Dynamic ASP . 130
4.3.2 Solving the Dynamic ASP . 139

4.4 A Broader Perspective . 147
4.4.1 Relations between the ASPs . 147
4.4.2 Opinion: Relative Strengths and Weaknesses 148

4.5 Summary . 150

Part 2: Algorithmic Contributions and Case Studies 151

5 Programming by Configuration 153
5.1 Programming by Optimization . 154
5.2 Case Study: Designing Reusable Metaheuristics 156

5.2.1 The Metaheuristic Design Problem 156
5.2.2 Reduction to an ACP . 161
5.2.3 Solving the ACP . 166
5.2.4 Results . 167

5.3 Fair Share Iterated Local Search (FS-ILS) 169
5.3.1 Design Decisions . 169
5.3.2 Empirical Analysis . 172

5.4 Critical Reflection . 188
5.5 Summary . 189

6 Towards a White Box Approach to Automated Algorithm Design 191
6.1 Opinion: Limitations of PbC . 192
6.2 A White Box Formulation . 194

6.2.1 How about the Dynamic Algorithm Selection Problem? 194
6.2.2 A White Box Variant of the Algorithm Configuration Problem . . 195
6.2.3 Relation to Other Formulations 197

6.3 Exploiting White Box Information . 200
6.3.1 Algorithm Performance Evaluation 200
6.3.2 An Importance Sampling Approach 201

6.4 A Proof of Concept White Box Optimizer 210
6.4.1 Choice of Incumbent . 210
6.4.2 High-level Search Strategy . 213

10 CONTENTS

6.5 Experimental Validation . 217
6.5.1 The Looping Problem: Break or Continue 218
6.5.2 Static Sorting Portfolio . 220
6.5.3 Dynamic Metaheuristic Scheduler 223

6.6 Limitations and Future Research . 226
6.7 Summary . 227

7 Accidental Complexity Analysis 229
7.1 Simplicity in Algorithm Design . 230
7.2 Identifying Accidental Complexity . 231
7.3 Case Study: Accidental Complexity in Reusable Metaheuristics 231

7.3.1 Context and Motivation . 232
7.3.2 Empirical Study . 233

7.4 Critical Reflection . 240
7.5 Summary . 241

8 Conclusion 243
8.1 Research Questions (revisited) . 243
8.2 Limitations and Future Research . 248

A Appendix 251
A.1 Benchmark Environment Description . 251
A.2 The HyFlex Benchmark Set . 252
A.3 Properties of ô and Their Proofs . 254
A.4 The Dynamic Metaheuristic Scheduling wb-ACP 258
A.5 AdapHH’s Anatomy . 262

List of Publications 269

List of Acronyms 271

Bibliography 277

1 | Introduction
The first chapter of this dissertation is structured as follows: First, in Section 1.1, we
provide some context and motivation for the research we have performed in the scope of
this dissertation. Subsequently, in Section 1.2, we give an overview of the main topics
covered in this work. Finally, in Section 1.3, we explain the structure of this document,
outline its content and guide the reader to the information of interest.

1.1 Our Critical Perspective on Algorithmics
In this section, we first provide a brief introduction to algorithmics. Subsequently, we
express our concerns about common practices in algorithmic research. We wish to stress
that this section reflects our own personal perspective on the matter, and that views differ.
Also, there is no one-to-one correspondence between the issues we raise here and the
specific research we have performed in this dissertation, i.e. we did not actually address all
of these issues. Nonetheless, as these are the concerns which have motivated our research,
we believe that the broader personal perspective we sketch here is important to understand
the decisions we made and what we ultimately aim to achieve, independently of what we
actually achieved within the limits of this dissertation. Also, as it is our belief that these
issues impede scientific progress in algorithmics (and beyond), we feel compelled to bring
these to the awareness of the reader. Please note that algorithmics is subdivided in many
different subfields and that some of the issues we raise here are more strongly pronounced
in some of these subfields than in others. Also, we intend to question the methods, not
the researchers, who arguably do their best with the methods available to them.

11

12 CHAPTER 1. INTRODUCTION

What are algorithms?

Algorithmics is the science devoted to the design and analysis of “algorithms”. Algorithms
describe systematic procedures for solving problems in such way that they can be executed
without requiring any ingenuity from the agent executing them [Audi 2015]. While al-
gorithmics is often regarded as a subfield of computer science, i.e. studying procedures
intended to be executed by computers, the field predates computers and the conceptual
notion of algorithm can be traced back to ancient times [Cooke 2011]. Therefore, for those
not familiar with computer science, let us consider some examples of daily life algorithms,
intended to be executed by humans:

Recipes describe how to prepare a given dish from raw ingredients.

Construction manuals provide instructions to build something from bits and pieces.

Remark that general purpose digital computers manipulate binary numbers, rather than
pots and pans or hammers and nails, somewhat affecting how algorithms are described
and restricting the class of problems they solve in practice.

Why algorithms?

Algorithms formalize problem-solving procedures. This formalization facilitates sharing,
reproduction, and reuse. You do not bother creating recipes for a dish that is only cooked
once. People create recipes to make the same dish again in the future, and to allow
others to do the same. Similarly, often, what makes formalizing a solution approach as
an algorithm worthwhile, is its ability to be shared with and reused by the rest of the
community. In particular, algorithms enable others to solve problems, requiring merely
the ability to rigorously follow simple instructions. Recipes enable lesser chefs to prepare
delicious meals. Construction manuals allow not-so-handy (wo)men to build their own
furniture, saving Ikea™a lot of money. Similarly, algorithms enable computers to solve
problems, i.e. they enable automation. Computers, given proper instructions, can solve
many problems orders of magnitude faster, more accurately and cheaper than humans.

How are algorithms designed?

Algorithmics, ever since its advent, has contributed to major scientific breakthroughs and
feats of engineering. These days, most scientific and engineering disciplines rely heavily on
standardization and automated tools. Somewhat ironically, the design of the algorithms
underlying these tools is often a highly manual, ad hoc, experience- and intuition-driven
process, commonly regarded as an “art” rather than a “science” [Hunt and Thomas 2001].

1.1. OUR CRITICAL PERSPECTIVE ON ALGORITHMICS 13

As a consequence, the design of an algorithm is time-consuming and costly. Further-
more, this process is rarely documented, making it untraceable: It is often unclear what
motivated certain design decisions (e.g. natural constraints, expert knowledge, intuition,
experimentation, etc.) and what alternatives were considered. Not only do we, in this
way, lose potentially interesting information and insights that could otherwise be used to
design algorithms in the future, it also makes the process susceptible to personal bias.

Digression: Personal Biases in Algorithmics

Researchers in algorithmics are subject to numerous “perverse incentives” that possibly
negatively affect the way algorithms are designed, analyzed and how these results are
presented to the rest of the community. Everybody wants to be “famous”. In algorithmics,
most “celebrities” have come up with new and better ways to solve a problem. It is only
natural, that many researchers attempt to do the same, hoping to achieve similar fame. As
not everybody can be famous, algorithm design on a community level is often a competitive
rather than a collaborative effort, focused on the novelty and performance of algorithms:

Novelty in science is important, as one should not plagiarize somebody else’s work. How-
ever, novelty in some communities has become almost synonymous with proposing
new algorithms. We argue that this relentless pursuit of novelty has led to a relative
scarcity of critical, incremental and fundamental research, leading to new insights and
a better understanding of existing techniques. It also discourages reusing or accur-
ately relating to existing techniques, in fear of one’s contribution being regarded as
less novel. Finally, it is notoriously difficult1 to distinguish “actual” novelty (whatever
form that may take...) from novelty in representation, making it in our opinion an
improper measure for scientific contributions.

Performance: Empirical studies in algorithmics often more resemble track meets than they
do scientific endeavors [Hooker 1995]. While such studies, if conducted fairly, tell us
which algorithm performs best, they provide little insight into why this is the case,
or whether these performance observations can be generalized beyond the specific
setting considered in the study. The latter is particularly troublesome, as the problem
instances considered by researchers often differ from those of interest to practitioners.
Researchers test their methods on well-known “benchmark” problems to compare
their results with those obtained in prior research. Practitioners on the other hand
are interested in solving “new” problem instances of the particular problem they
are faced with. Practical applications fail when methods fail to generalize to this

1For instance, it is provably impossible to determine whether two arbitrary algorithms are functionally
different.

14 CHAPTER 1. INTRODUCTION

new setting. Furthermore, to compete in “races” with state-of-the-art, often very
mature (commercial) solvers, the code must be highly optimized and implemented in
low-level programming languages. This takes up a tremendous amount of time and
effort, results in overly complex code artifacts with limited portability and it is often
unclear whether algorithmic innovation or micro-optimized implementations are to
be credited for superior performance. Finally, we risk abandoning actually novel and
promising ideas, just because they are not yet able to “beat” such solvers.

As many scientific fields, also algorithmics suffers from an increasing publication pressure:
“publish or perish” [Sarewitz 2016], requiring the researcher to regularly publish his/her
research, and this preferably in a high impact journal [Colquhoun 2003], which forces
him/her to spend a lot of time on writing convincing research articles and leaving little time
for actual research, let alone to perform elaborate and unbiased surveys of prior art. On
the other hand, it has also lead to a proliferation of publications, which represent prior art
a researcher is supposed to be aware of. While publications increase exponentially [Larsen
and Von Ins 2010], funding, top-tier journals, peer-reviewers, research positions etc. do not,
putting pressure on the scientific system and further increasing competitiveness. This also
impacts how results are represented to the rest of the community. Negative results rarely
get published [Fanelli 2011], inducing a scientific bias. Established scientific vocabulary is
replaced by marketing buzzwords [Vinkers et al. 2015] and metaphors [Sörensen 2015].
Research artifacts such as data and code backing up results are often not shared [Collberg
et al. 2015], algorithmic contributions are represented overly complex [Adriaensen and
Nowé 2016a], unnecessarily complicating reuse. Failure to accurately relate to and reuse
prior art, which results in a fragmentation of the field and reinvention [Weyland 2010].
Beyond perverse incentives, we believe that at the base often lies the lack of incentives to
invest the effort and accept the risks associated with transparency.

1.2 Research Topic

1.2.1 Scope and Focus
As argued in the previous section, the contemporary approach to designing, analyzing and
representing algorithmic contributions spawns a host of evils that we believe impede both
scientific progress and practical applications. All research we performed in the scope of
this dissertation was therefore geared towards improving the way we conduct algorithmic
research, as a community. That being said, this topic is too broad to be reasonably
treated in any depth in this dissertation. We therefore focused on the following more
specific topics:

1.2. RESEARCH TOPIC 15

Semi-automated design: Given our background in artificial intelligence, one of the main
topics we investigated in this framework was the possibility of (partially) automating
algorithm design. Letting computers, rather than humans, design algorithms has
many potential benefits: Computers are faster, cheaper and unbiased. On the other
hand, we believe that fully eliminating the human researcher would be overly rad-
ical. Therefore, we focused our investigation on semi-automated approaches, where
automation begins where expert knowledge ends.

Reusability is one of the main factors making the design of an algorithm worthwhile.
Remark that we view reuse here not as being limited to the direct reuse of im-
plementations in applications or analysis, but to also include re-implementations,
incremental refinements, hybridizations with other algorithms, partial reuse and use
as a source of inspiration. In our opinion, there is little merit in sharing your al-
gorithms if they cannot be reused by the rest of the community. Also, from an
economics perspective, reuse of an algorithm allows us to amortize the cost asso-
ciated with its design. Yet, we argue that current practices in algorithmics have
a tendency to produce artifacts with poor reusability. Therefore, another topic we
investigated was how to improve the reusability of algorithmic contributions.

Heuristics: The main application area we considered was the design of heuristics for
solving hard combinatorial optimization problems. Many interesting combinatorial
optimization problems cannot be solved efficiently. A classical example is the trav-
eling salesman problem [Jünger et al. 1995]. Difficult instances of these problems
are therefore in practice typically solved using heuristics. Heuristics are non-exact
problem-solving procedures which do not provide any relevant theoretical guarantees
w.r.t. the quality of the solutions they return, yet in practice they often quickly find
good solutions to large and otherwise intractable problems. Our interest in heuristic
optimization, as a case study, stems from the fact that many of the aforementioned
issues are notably pronounced in this area.

1.2.2 Research Questions
Given this focus, the central question we aimed to answer in this dissertation was

[Q.A]: How can computers help us in designing reusable heuristics?

That is, we investigated the use of semi-automated design approaches as an alternative
for the manual, ad hoc, experience- and intuition-driven process by which heuristics are
most commonly designed.

16 CHAPTER 1. INTRODUCTION

Here, our design objective was reusability across a wide variety of use cases, as opposed
to classical objectives such as novelty or peak performance on a specific use case. One
question we investigated in this context was

[Q.A.1]: What makes one heuristic more reusable than another?

The idea of automating algorithm design is definitely not “new”. Attempts to do so can
be traced back to the origins of computer science, and, ever since, the problem, in one
form or another, has been considered in many different research communities. Therefore,
rather than inventing new ways of designing algorithms, we first examined

[Q.A.2]: Which of the existing approaches is best suited to design
reusable heuristics?

Subsequently, we looked at the main limitations of these techniques and how they could
be addressed, i.e.

[Q.A.3]: How can we further improve this approach?

While automation is the central theme of this dissertation, we realize that it is somewhat
idealistic to assume that all researchers will suddenly adopt a semi-automated design ap-
proach. Also, all its shortcomings aside, it cannot be denied that the manual approach
has resulted in highly performant algorithms. We therefore also explored a less disruptive
angle where we take the design (approach) as a given, i.e.

[Q.B]: How can we improve the reusability of heuristics post-hoc?

We will revisit and formulate our answers to these research questions in Section 8.1.

1.3 Structure of this Dissertation
In this section, we provide a brief overview of the structure of this work to help the reader
in navigating this lengthy document.

1.3.1 Content Outline
Besides this introduction (Chapter 1), it consists of six main chapters and a conclusion
(Chapter 8). Each chapter is self-contained and provides a brief introduction (preceding
the first subsection), presenting the context and motivation for its existence, as well as
an outline of its contents. Furthermore, the final section of each of the six main chapters
summarizes the content covered in each (sub)section. The main content of this dissertation
is subdivided in two parts.

1.3. STRUCTURE OF THIS DISSERTATION 17

Part I: Background and Personal Perspectives (Chapters 2, 3 and 4)

In the first part, we introduce core concepts and an overview of the field. Here, we go well
beyond the standard textbook material, and present our own perspective on prior art. As
such, Part I not only makes the research in later chapters (i.e. Part II) more accessible to
readers not familiar with the topic, it also provides a broader context and motivation for
the specific research we performed in these chapters. It is structured as follows:

Chapter 2 provides a comprehensive introduction to algorithmics, in general, and to the
subfield of heuristic optimization, in particular.

Chapter 3 introduces the “Algorithm Design Problem” (ADP) and presents a broad over-
view of the approaches which have been taken, thus far, to solve this problem.

Chapter 4 discusses three generic solution approaches which we regard as being proto-
typical for semi-automated algorithm design.

Part II: Algorithmic Contributions and Case Studies (Chapters 5, 6 and 7)

The second part is based on our publications.2 In contrast to Part I, the research described
in these chapters has a more specific scope, contributions are more tangible, and claims
are supported by empirical evidence. It is structured as follows:

Chapter 5 explores a specific, promising, semi-automated design approach in more depth:
Programming by Configuration (PbC). First, it demonstrates how PbC can be used to
design a domain-independent heuristic (a.k.a. a metaheuristic): FS-ILS [Adriaensen
et al. 2014a, Adriaensen et al. 2014b]. Subsequently, it analyzes FS-ILS’s reusability.
In particular, it investigates its generality [Adriaensen et al. 2015], evaluating its
performance across nine different classical combinatorial optimization problems.

Chapter 6 discusses the limitations of PbC and how they could be addressed. In particu-
lar, it argues that PbC abstracts information which can be usefully exploited to solve
the ADP faster [Adriaensen and Nowé 2016b]. Subsequently, it describes a novel
performance evaluation strategy that uses this information, discussing its merits and
validating these experimentally [Adriaensen et al. 2017].

Chapter 7 argues for the importance of presenting algorithmic contributions as simple
as possible and advocates the use of Accidental Complexity Analysis (ACA) to help
doing so [Adriaensen and Nowé 2016a]. It demonstrates ACA, using it to analyze
the presence of accidental complexity in AdapHH, a state-of-the-art metaheuristic.

2A notable exception here is our formalization of the dynamic algorithm selection problem [Adriaensen
and Nowé 2016b], which is covered in Chapter 4 (see Section 4.3.1).

18 CHAPTER 1. INTRODUCTION

1.3.2 Reader’s Guide
In this dissertation, we cover a wide range of different topics. Our treatment thereof is
not exactly minimal, i.e. we frequently elaborate, presenting formal definitions, personal
perspectives, critical discussions, etc. While we are convinced of the added value of doing
so, we realize that not all of the content covered in this document will be of interest to
all of our readers; or that some of our readers may not have the time to read this lengthy
document entirely. In this section, we propose alternative ways of (partially) reading our
work, which allow the more selective reader to adjust his/her reading according to his/her
background knowledge and interests.

Your Background Knowledge?

Readers which have a background in computer science will likely be able to skip most
of Chapter 2 and nonetheless understand the content of interest in later chapters (3-7).
While we personally find “reading a different perspective on familiar topics” an enriching
experience, we advise the more selective reader to read Section 2.8, which briefly summar-
izes the content covered in each subsection of Chapter 2, and to only read the subsections
on those topics he/she is less familiar with.

Your Interests?

A general overview: Readers interested in a full overview of the content covered in this
dissertation, but who do not have the time to read it entirely, we advise to read

1. The Abstract, for a brief summary of our research and our main results/findings.
2. Chapter 1, for additional context and motivation.
3. Sections 2.8, 3.6, 4.5, 5.5, 6.7 and 7.5, for a brief, yet complete, summary of

the content covered in chapters 2, 3, 4, 5, 6 and 7, respectively.
4. Chapter 8, for a discussion of limitations and further research.

A specific part/chapter: Each chapter is self-contained and can be read independently.
Frequent cross-references indicate information that may facilitate further understand-
ing. Here again, we advise the selective reader to first read the summary at the end
of the chapter, allowing him/her to read only the subsections of interest.

A specific research question: In Section 8.1, we formulate answers to our research ques-
tions. This section also summarizes and references the most relevant subsections.

Part 1:

Background and Personal
Perspectives

19

2 | Foundations of
Problem-solving

In this chapter, we provide a general introduction to “problem-solving using computers”.
Here, we introduce various core concepts informally, to make our work in later chapters
accessible to readers less familiar with the domain, and formally, to avoid ambiguity and
to support our argumentations. Specifically, in Section 2.1 we explain what problems are,
and subsequently, in Section 2.3, we introduce algorithms as “effective procedures” to
solve them. In Section 2.4, we discuss the interface between problems and algorithms. In
Section 2.5, we present a primer to complexity theory, the theoretical study of the resources
required to solve problems. In Section 2.6, we argue that the traditional definition of what
constitutes an algorithm is overly restrictive, and describe various generalizations of this
notion. Alongside this general introduction, we pay special attention to the combinatorial
optimization problem (see Section 2.2) and how to solve it (see Section 2.7). Finally, in
Section 2.8 we provide a summary of the content covered in this chapter.

2.1 Problems
In this dissertation, we frequently talk about “problems” and how to (best) solve them.
World problems such as climate change, hunger, poverty, war etc., might come to mind.
In what follows, we conceptually and formally define the notion of problems as considered
in this dissertation.

21

22 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Conceptually, we consider a problem to be any “statement demanding a solution”. Take
for example the following problem: “sort [5,3,1,5,8] in ascending order”; the solution to
this problem is “[1,3,5,5,8]”. Another example is the following: “find a non-trivial prime
factor of 1183”; a solution to this problem is 7. More generally, we will use the term
“problem” to denote any possibly infinite collection of such statements and use the term
“problem instance” to refer to a specific element thereof. For example “sort [5,3,1,5,8]
in ascending order” and “sort [2,8,4] in ascending order” are both instances of the more
general “sort a list of integers l in ascending order” (sorting) problem. Similarly, “find a
non-trivial prime factor for 1183” and “find a non-trivial prime factor for 1013” are both
instances of the more general “find a non-trivial prime factor for the natural number n”
(prime factor finding) problem.
More specifically, in this dissertation and computer-science in general, we study the class

of computational problems. Conceptually, computational problems are problems having
the “appropriate form” to be solved using computation.1 As we will see in Section 2.3,
computation is commonly viewed as “deriving an output for a given input”. As such,
computational problems are formalized in terms of “desired outputs” for “possible inputs”.

Definition 2.1: computational problem [Trevisan 2010]

A computational problem is a pair (X,R), where X is the set of possible inputs and
R ⊆ X × Y the problem relation, specifying admissible input/output pairs. In a
computational problem (X,R), given any input x ∈ X, we are to compute an output
y satisfying (x, y) ∈ R (or indicate that no such y exists).

Conceptually, each (x, y) ∈ R (also denoted xRy) represents a problem instance x and
a solution y thereof. Note that instances of a computational problem may have more
than one admissible solution, or even none at all. We define R(x) = {y |xRy} as the set
of admissible outputs for an input x. Both sorting and factorization problems described
above can be formalized as computational problems:

Prime factor finding corresponds to a pair (N, Rpfactor) where

Rpfactor = {(n, p) ∈ N× P | 1 < p < n ∧ n

p
∈ N}.

Remark that R(1183) = {7, 13} and R(1013) = ? (since 1013 ∈ P).
1As we will see in Section 2.3.1.1, not all computational problems (as in Definition 2.1) can actually

be solved using computation (as in Definition 2.8).

2.2. OPTIMIZATION PROBLEMS 23

Sorting is described by the pair (Z∗, Risorta), where Z∗ is the set of arbitrary length
integer lists. Let the set of permutations of l ∈ Z∗ be defined as

P l = {l′ ∈ Z|l| | ∃ a bijection p : N→ N such that l′i = lp(i), ∀i}.

and Risorta = {(l, l′) ∈ Z∗×Z∗ | l ∈ P l′ ∧ l′j ≤ l′j+1,∀ 1 ≤ j < |l|}, i.e. relating any
list of integers l to its sorted permutation l′.

Based on properties of the problem relation R, we further distinguish between two sub-
classes of computational problems: Function and decision problems.

Definition 2.2: function problem

A function problem (X,R) is a computational problem where each input has exactly
one admissible output, i.e. R is a function X → Y .

For example, sorting is a function problem as Risorta is a function.

Definition 2.3: decision problem

A decision problem (X,R) is a function problem where R is a binary function
X → {yes,no}.

Conceptually, decision problems are problems whose statements take the form of yes-
no questions, e.g. “is n prime?” (primality testing); and “is a given list l sorted in
ascending order?” (order testing). Remark that each computational problem (X,R) has
an associated decision problem (X,R′) with R′(x) = yes ⇐⇒ |R(x)| > 0, i.e. “does
problem instance x have a solution?”.

2.2 Optimization Problems
We will now describe a class of computational problems which will be the focus of
application-oriented aspects of this dissertation: “combinatorial optimization problems”.
First, we define the more general class of global function optimization problems:

Definition 2.4: Global Optimization Problem (GOP, maximization variant)

In a global optimization problem, given a pair 〈f, S′〉, where f is a function S → R
and S′ ⊆ S, we are to find an s∗ ∈ S′ such that f(s) ≤ f(s∗),∀s ∈ S′.

24 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Here, S′ is commonly called the search space and f the objective function. An element
of S′ we will refer to as a candidate solution. Remark that we have defined the global
optimization problem as a maximization problem. Any problem in which we would like
to minimize a cost or loss function g over S′ can be formulated as a maximization prob-
lem using the negated loss function as objective, i.e. 〈−g, S′〉 and vice versa. Beyond
minimization, we distinguish numerous other variants of the GOP:

black box optimization problem where one is given a procedure computing f(s), ∀ s ∈ S′,
but f itself is not known explicitely.

unconstrained optimization problem where S′ = S.

convex minimization problem where f is a convex function and S′ a convex set; e.g.
unconstrained linear and quadratic optimization problems.

stochastic optimization problem where f is a stochastic function, i.e. f(s) is a random
variable and the objective is to maximize E[f(s)].

multi-objective optimization problem where there are multiple, possibly conflicting,
objectives we would like to optimize, i.e. f : S → Rm is multi-dimensional. If ob-
jectives conflict, f imposes a partial rather than a total order over S′, and solutions
take the form of a set S′Pareto ⊆ S′ (a.k.a. the Pareto front) of all non-dominated
(a.k.a. Pareto optimal/efficient) candidate solutions.

search problem where f : S′ → {0, 1}. In this setting f is also known as the goal test.

combinatorial optimization problem where S′ is finite.

Remark that sorting a sequence l can be formulated as a GOP, with S′ = P l (finite) and
f(l′) =

∏
1≤j<|l|[l′j ≤ l′j+1] (binary). In Section 2.4, we will discuss the relations between

these problems and problem (re)formulations in general.

2.2.1 Examples of Combinatorial Optimization Problems
In this section, we provide some examples of well-known combinatorial optimization prob-
lems. In particular, we describe six of the nine problems we considered in our experiments
in Chapters 5, 6 and 7. The remaining three are described in Section 5.3.2.4, p. 180.

MAX-SAT problem: The MAX-SAT problem is the optimization variant of the well-
known Boolean Satisfiability (SAT) search problem: Given a boolean formula from propos-
itional logic, find an interpretation (model) under which this formula is true, i.e. satisfied.

2.2. OPTIMIZATION PROBLEMS 25

Such formula F consists of a set of possibly negated variables (i.e. literals) that are com-
bined using (∧,∨) operators, e.g. ¬A ∧ (B ∨ C). An interpretation assigns a truth value
(true, false) to each variable (A,B,C) and is said to satisfy F if and only if F is true under
these assignments. For instance, (A → false, B → false, C → true) satisfies the formula
above, while (A → true, B → true, C → true) does not. Note that not all formulas are
satisfiable, e.g. A ∧ ¬A, giving rise to the decision problem variant: “is F satisfiable?”.
Each boolean formula can be put in a conjunctive normal form (CNF), where F is written
as a conjunction (∧) of clauses and a clause is a disjunction (∨) of literals. For instance,
consider the following formula ¬(A ∨ B) ∨ C (not in CNF). This formula is equivalent
to (¬A ∨ C) ∧ (¬B ∨ C) (CNF), having two clauses (¬A ∨ C) and (¬B ∨ C). In the
MAX-SAT problem, the search space consists of possible interpretations of a CNF formula
and the objective is to find one minimizing the number of unsatisfied clauses.

Bin packing problem: In the bin packing problem, one is given objects of different
sizes (i.e. pieces) which must be packed into a number of bins with fixed capacity V as to
minimize the number of bins used. The search space consists of all possible assignments of
pieces to bins such that no bin overflows (i.e. content exceeds capacity) and the objective
is to minimize the number of bins in the assignment.

Personnel scheduling problem: In the personnel scheduling problem, one must decide
at what times and on which days (i.e. shifts) each employee should work over a given
planning period. The search space consists of possible assignments of employees to a
subset of all shifts in the planning period (i.e. a roster). The objective function differs
greatly between different scheduling problem instances and encodes the preferences of
employer and employees [Brunner 2010].

Permutation flow shop problem: In the permutation flow shop problem, one is to
find an order in which a set of n jobs {j1, j2, . . . , jn} are to processed by m machines
[M1,M2, . . . ,Mm] such that the time it takes to complete all jobs (i.e. the makespan) is
minimized. Each job is first processed by machine M1, then machine M2 and so on. The
different machines work in parallel and each job has a processing time for each machine.
MachineMj can only start processing the ith job when it finished processing the i−1th job
in the sequence and after Mj−1 finished processing it. It is therefore important to order
the jobs as to minimize intermachine waiting times. The search space are all possible
permutations of n jobs and the objective is minimizing the time it takes to complete all
jobs, i.e. the end-time of the last job in the permutation on Mm.

26 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Traveling salesman problem: In the Traveling Salesman Problem (TSP, [Jünger et al.
1995]), given a set of n cities and the distances (travel time) between each pair of cities,
one is to find the shortest possible route that visits each city exactly once and returns to
the origin city. The search space consists of all possible cycles that visit each city exactly
once and the cost function, to be minimized, is the sum of the distances between every pair
of adjacent cities in this cycle. TSP is equivalent to the problem of finding an Hamiltonian
cycle of minimal length in a complete weighted graph [West et al. 2001]. We discriminate
different subclasses based on the properties of the weights: In the symmetric TSP the
weights are symmetric. In the metric TSP, weights also satisfy the triangle inequality. In
the Euclidean TSP, weights correspond to Euclidean distances between cities located on a
hyperplane. Instances of the TSP, as formulated above, appear in many practical settings
[Lenstra and Kan 1975], such as planning, logistics, and the manufacturing of microchips.

Vehicle routing problem: In the Vehicle Routing Problem (VRP), we are to serve
a number of customers with a fleet of vehicles. We are given a set of n customers
N = (c1, c2, . . . , cn), their locations (l1, l2, . . . , ln), a depot location l0, as well as dis-
tances between all these locations. A route is a sequence of locations starting and ending
with the depot location, e.g. [l0, l8, l2, l0] is a route serving customer c8 followed by cus-
tomer c2. A candidate solution is a set of m routes, where each route ri serves customers
Ri and (R1, R2, . . . , Rm) is a partitioning of N , i.e. a set of routes such that every cus-
tomer is served exactly once. The objective is to find a solution minimizing the number
of vehicles used (m), the total distance driven or a combination thereof. A lot of vari-
ants exist, adding extra features and constraints, an overview can be found in [Laporte
1992]. An example is the Capacitated Vehicle Routing Problem (CVRP), where capacity
constraints are added. Here, each customer is given a certain demand, the vehicles have a
given capacity C, and as a vehicle can only be loaded at the depot, the sum of demands
of customers served within one route must never exceed C.

2.3 Algorithms
Thus far, we have introduced and formalized the notion of problems. Here, the crux is
that while a problem specifies what needs to be done, it does not specify how this can be
achieved. The field of algorithms studies systematic methods for solving problems (effi-
ciently). While most computer scientists will agree with the above statement, defining what
exactly “a systematic problem-solving method” (i.e. an algorithm) entails is non-trivial.
In fact, finding a fully satisfactory, formal definition, capturing the intuitive notion of an
algorithm, is commonly regarded as being an open problem [Blass and Gurevich 2003].

2.3. ALGORITHMS 27

For now,2 we consider an algorithm to be an effective procedure solving some computa-
tional problem exactly.

Definition 2.5: effective procedure [Audi 2015]

An effective procedure specifies how to compute a function. It has a finite description.
For any input, it specifies a finite sequence of instructions that can be followed
rigorously, in the real physical world, without requiring any ingenuity from the agent
(man or machine) executing them, to obtain the correct output.

Definition 2.6: solving computational problems exactly

We say that an effective procedure, computing a function a : X → Y ∪ {⊥}, solves
a computational problem (X,R) if and only if the following holds ∀x ∈ X:

1) a(x) = y =⇒ xRy (it only outputs admissible solutions)
2) a(x) =⊥ =⇒ R(x) = ? (it outputs ⊥ /∈ Y only if no solution exists)

Conceptually, an effective procedure is said to solve a computational problem, if it specifies
how to derive an output, satisfying the problem property, for any possible input. Remark
that we use ⊥ /∈ Y as the symbol returned by the algorithm to indicate that the given
problem instance x has no admissible solutions. Note that, under this definition, if an
effective procedure solves (X,R), it also solves any (X ′, R′) satisfying

∀x ∈ X ′ : (x ∈ X) ∧ (xRy =⇒ xR′y) ∧ (R(x) = ? =⇒ R′(x) = ?).

Let us make this more concrete by describing a simple factor finding and sorting algorithm:

Trial Division Factorization (Algorithm 1) is a simple algorithm for (N, Rpfactor). It
tries to divide n by all integers 1 < p ≤

√
n in ascending order, and returns the first

integer for which division succeeds and ⊥ if it fails for all.

Selection Sort (Algorithm 2) is a simple algorithm for (Z∗, Risorta). It can be viewed as
dividing the given sequence l into a sorted (l1:i) and unsorted (li:|l|) part. Initially
i = 0 (all unsorted). Each iteration, it determines the smallest element in the
unsorted part and swaps it with the leftmost element thereof, i.e. puts it in order,
and increments i. After n iterations the ordered part will be l1:|l| (all sorted).

Procedures for solving combinatorial optimization problems are described in Section 2.7.
2In Section 2.6, we will revisit this definition and discuss possible generalizations thereof.

28 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Algorithm 1 Pseudocode for the trial division algorithm, finding the least (smallest) non-
trivial prime factor of an integer.
1: procedure FindFactor(n)
2: p← 2
3: while p ∗ p ≤ n do
4: if n % p = 0 then
5: return p
6: else
7: p← p+ 1
8: end if
9: end while

10: return ⊥
11: end procedure

Algorithm 2 Pseudocode for the selection sort algorithm
1: procedure Sort(l)
2: for i = 1 : n− 1 do
3: k ← i

4: for j = i+ 1 : n do
5: if lj < lk then
6: k ← j

7: end if
8: end for
9: swap ith and kth element in l
10: end for
11: return l
12: end procedure

2.3. ALGORITHMS 29

2.3.1 Formalization

2.3.1.1 A Historical Note: Decidability

While the conceptual notion dates back to antiquity [Cooke 2011], modern attempts to
formalize algorithms (∼ effective procedures) and computable functions started in 1928
when David Hilbert asked for an algorithm that would take any proposition in first order
logic as input and output whether that proposition is true or false. This decision problem,
known as the Entscheidungsproblem, is well-defined, as any statement in first order logic
is either true or false. In the following decade, numerous models of computation were pro-
posed, most notably µ-recursive functions [Gödel 1931, Kleene 1936], λ-calculus [Church
1932] and Turing machines [Turing 1937]. While the formalisms vastly differ, all three
models are known to be equivalent, i.e. they describe the same class of (Turing) com-
putable functions. In 1936, both Alan Turing and Alonzo Church (independently) proved
that the (binary) function David Hilbert asked to compute is not Turing computable. The
Church-Turing thesis (CT) asserts that the intuitive notion of effectively calculability is
captured by the formal notion of Turing computability, i.e. a function can be computed
(by any mathematician or physical machine) if and only if it can be computed by a Turing
machine. As effective calculability is ill-defined, this thesis cannot be proven formally.
However, as any successive attempts to define more powerful models of computation were
unsuccessful, the CT thesis is generally assumed to hold true and the Entscheidungsprob-
lem, as such, to be unsolvable. Computability theory is a branch of theory of computation
that studies whether or not computational problems are solvable.

Definition 2.7: unsolvability (undecidability)

We say that a computational problem (X,R) is unsolvable (undecidablea), if no
(Turing) computable function a, satisfies (1) and (2) of Definition 2.6, ∀x ∈ X.

aWhile, in its most literal sense, only applicable to decision problems, we use this term more
flexibly in this dissertation to denote unsolvability of any computational problem.

2.3.1.2 Turing Machines

Now, we briefly introduce the Turing Machine (TM) model of computation. Remark that
understanding the specifics of this formalism (and later extensions) is only required to fully
appreciate our formalization of the dynamic algorithm selection problem in Section 4.3.1.
Conceptually, a TM is an abstract machine that computes the value of a function.3 It does
so by iteratively scanning/writing symbols from/to an infinite one-dimensional tape. This

3To be fully correct, as we will discuss at the end of this section, not all TMs compute a function.

30 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

tape is subdivided in cells, each containing a single symbol (or a blank). Initially, the tape
contains only the input. Each time step, it either (1) scans and modifies the content of the
single cell, positioned under the machine’s single scanning/writing head, before moving
this head to one of the adjecent cells; or (2) halts. When it halts, the content of the
tape is interpreted as its output. Its behavior on an input is uniquely determined by its
finite-state controller. In what follows, we formally define TMs and their operation.

Definition 2.8: Turing Machine (TM) [Hopcroft et al. 2006, pp. 327]

We define a TM as a 7-tuplea 〈Q, q0, F,Γ, B,Σ, δ〉:

Q is a finite, non-empty set of control states.

q0 ∈ Q is the start state.

F ⊆ Q is the set of final or accepting states.

Γ is a finite, non-empty set of tape alphabet symbols.

B is the blank symbol.

Σ ⊆ Γ \ {B} is the set of input alphabet symbols.

δ is the transition function: a partial function (Q \ F)× Γ→ (Q× Γ× {R,L}).
The arguments of δ(q, a) are the current control state q and tape symbol being
scanned a. The value of δ(q, a), if defined, is a triple (p, b, d), where

p ∈ Q is the next state.
b ∈ Γ is the symbol written in the cell being scanned, i.e. replacing a.
d is the direction in which the head moves, either L (left) or R (right).

aWe took the liberty to reorder some of the elements as to enable a more concise definition.

The operation of a TM: We further formalize the operation of a TM. To this end, we
first introduce some notation to describe its full state or configuration. We use αqaβ to
denote the Instantaneous Description (ID) of a TM in control state q, with tape content
αaβ, head pointing at symbol a. Here, α and β abstract a prefix and suffix of zero, one
or more tape symbols, proceeded and followed by infinite blank symbols respectively.
A TM simulated on x starts in ID qox, i.e. control in the start state and head pointing

at the cell containing the leftmost symbol of the input string. Let step be an auxiliary

2.3. ALGORITHMS 31

function describing the ID resulting of performing a given transition in a given ID.

step(αaqbcβ, (q′, b′, d)) =
{
αq′ab′cβ (d = L)
αab′q′cβ (d = R)

In ID αqbβ, the TM will move to ID step(αqbβ, δ(q, b)), if δ(s, b) is defined, and will halt
otherwise. Let us denote a sequence of n transitions by triples (q, b, d) ∈ Qn×Γn×{R,L}n,
where (qi, bi, di) is the ith transition. Let steps be an auxiliary function describing the ID
resulting of performing a sequence of transitions starting from a given ID.

steps(id, (q, b, d)) =
{

id (if |q| = 0)
steps(step(id, (q1, b1, d1)), (q2:|q|, b2:|b|, d2:|d|)) (otherwise)

Definition 2.9: execution of a TM on an input

We define the execution of a TM M on an input x, denoted eMx , as a quadruple
(a, q, b, d) ∈ Γ∗ ×Q∗ × Γ∗ × {R,L}∗ satisfying the following conditions:

1. |a| = |q| = |b| = |d|.

2. (qi, bi, di) = δ(qi−1, ai),∀ 1 ≤ i ≤ |a|.

3. αqiai+1β = steps(q0x, (q1:i, b1:i, d1:i)),∀ 0 ≤ i < |a|.

4. If |q| is finite, αq|q|cβ = steps(q0x, (q, b, d)) with q|q| ∈ F .

Conceptually, ai is the ith tape symbol scanned and (qi, bi, di) the ith transition performed
when simulating M on x. Remark that (q, b, d) uniquely determines eMx , i.e. a is redund-
ant. Therefore, when convenient, we will treat executions as “sequences of transitions”;
e.g. we use steps(q0x, e

M
x) to denote the ID in which TM M halts when simulated on x.

The function computed by a TM: A TM M can be viewed as describing an effective
procedure computing a function M : X → Y ∪ {⊥}

M(x) =
{
αβ If αpβ = steps(q0x, e

M
x) and p ∈ F .

⊥ Otherwise (p /∈ F).

Remark that a TM does not halt on every input x by design, i.e. it can model indefinite
calculations. A TM which does halt ∀x ∈ Σ∗ is called total. Note that TMs that do not
halt for x, do not return an output for x and do not solve problems with x ∈ X. As a side
note, the decision problem “Does a given TM M halt on a given input x?”, a.k.a. the
halting problem is undecidable.

32 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Digression: How common are undecidable problems? The existence of unsolvable
problems raises the question of how prevalent such problems are. Using simple combinat-
orics it can be shown that while there are uncountably infinite decision problems, there are
only countably infinite TMs, each solving at most one of these decision problems. Hence,
there must be uncountably many more undecidable than decidable problems, i.e. if we
were to pick an arbitrary problem, the likelihood of it being decidable would be infinites-
imal. This result is counter-intuitive as most well-defined problems we face in practice
(e.g. sorting, factorization, combinatorial optimization etc.) are decidable. The only lo-
gical explanation is that these problems are somehow not arbitrary, i.e. there exists a bias
towards encountering solvable problems.

2.3.2 Computer Programs
As discussed in Section 1.1, automation is one of the key incentives for formalizing problem-
solving methods as algorithms. Arguably, the popularity of the TM formalism, relative to
the alternatives mentioned earlier, can be largely attributed to its “mechanical” nature, i.e.
it is relatively straightforward to imagine (and build) a physical machine that simulates a
given TM. However, unlike TMs, modern computers are not designed to solve any particular
problem, rather they can be programmed to solve any (decidable) problem. Foundational
to general purpose computers is the Universal Turing Machine (UTM), described by Alan
Turing alongside his TM formalism in [Turing 1937]. The UTM is a TM which takes as
input a description of an arbitrary TM M and an arbitrary input string x, i.e. 〈M,x〉,
and returns M(x). Conceptually, the UTM embodies the idea that rather than building a
machine executing a fixed algorithm, we can build a machine (hardware) which can execute
any algorithm, given a logical description thereof (software).

Definition 2.10: computer program

A description of an algorithm, in a way it can be understood by an UTM.

The act of describing algorithms as such is known as programming. The wording used by
a programmer to do so, is called a programming language. The first programming lan-
guages were often machine specific, making it difficult to port programs across devices, e.g.
requiring manual translation. In addition, manually specifying every low-level instruction
to be performed by a computer was tedious and error-prone. To improve portability and
programming convenience, high-level programming languages were developed. High-level
programming languages can be translated automatically to their machine-specific low-level
variants, using programs called compilers or interpreters. To communicate algorithms to
humans, often an ad hoc, informal, programming language-like notation is used, known as

2.3. ALGORITHMS 33

pseudocode (e.g. as we used in Algorithms 1 and 2). While pseudocode does not permit
the same level of formality as e.g. TM notations, descriptions therein are more concise,
require less effort to write and typically suffice to communicate broad algorithmic concepts.

2.3.3 Parametrized Algorithms
Some algorithms, next to a problem instance, also take one or more parameter values
(e.g. command-line arguments) as input. We will use the terms parametrized algorithm or
algorithm framework, to refer to such algorithms which are “programmable” themselves.
Following the terminology and notation of [Hutter et al. 2009], we use p1, . . . , pk to de-

note the k configurable parameters of an algorithm. Each parameter pi can take one of a set
of possible values Θi, called the domain of pi and a configuration θ assigns a value θi ∈ Θi

to each parameter pi. Not all configurations may be allowed, and Θ ⊆ Θ1 × · · · ×Θk,
denotes the set of valid configurations, called the configuration space. Remark that a
parametrized algorithm can be viewed as specifying a family of parameterless algorithms,
each configuration θ ∈ Θ corresponding to a single algorithm instance.
We can distinguish between different types of parameters based on their domain, e.g.

categorical parameters can take on a finite set of nominal values, without natural rela-
tions between their values (i.e. Θi is an unstructured set).

ordinal parameters are similar to categorical parameters, but differ in that their values
are ordered, i.e. one value is smaller/larger than another.

numerical parameters are integer-valued (discrete) or real-valued (continuous).

procedural parameters can take an executable subroutine, i.e. a program, as value.

Why parametrize programs/algorithms? Often the (best) choice of configuration (∼ al-
gorithm instance) is use case dependent (see Section 3.2). As such, “hard-coding” these
values would limit the reusability of the program/algorithm. Parameters may be viewed as
design choices left open at design time, to be made at use time, where more information
about the specific use case is avaliable, to increase the reusability of the algorithmic frame-
work. However, this comes at the cost of ease of use, as the user must now configure the
algorithm. The latter can be ameliorated by providing one (or more) default configura-
tion(s) (for each use case), or by using automated parameter tuning software (e.g. SMAC
[Hutter et al. 2011], see Section 3.3.3, p. 90). In Section 2.7.2, we will see many examples
of algorithmic frameworks in the context of solving the combinatorial optimization prob-
lem. Note that a UTM may be viewed as an extreme case of an algorithmic framework
taking an arbitrary effective procedure as a single procedural parameter.

34 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

2.4 Problem Formulation
In this Section, we will discuss problem formulation, i.e. the act of expressing problems in a
form such that they can be solved automatically, using computers. Problems we encounter
“in the wild” rarely correspond to well-defined computational problems, rather they are
inexact notions. However, many can be usefully formulated as such. The act of doing so,
we will refer to as problem formalization. Thus far, we have formulated computational
problems in terms of mathematical objects (e.g. ‘list’, ‘integer’, etc.) and we will continue
to do so in the remainder of this dissertation. However, in this section, we wish to stress
the fact that computers operate on specific representations of these objects. Therefore,
when faced with some problem we would like a computer to solve, we must decide in
which form to present problem instances as inputs to the computer and the format we
expect the output to have. The form these representations can take clearly depends on
the capabilities of the model of computation. For instance, a TM computes a function
Σ∗ → Γ∗ ∪{⊥}, and therefore to solve a computational problem (X,R), we must encode
inputs and outputs as elements in Σ∗ and Γ∗, respectively.4 i.e. we must reformulate it
as a computational problem (Σ∗, R) with R ⊆ Σ∗ × Γ∗.

2.4.1 Reducibility
Thus far, we have encountered various computational problems. However, not all of these
are unrelated. Computational problems and their properties are one of the main subjects of
study in theory of computation. Here, the branch of computability theory studies whether
or not a problem can be solved using a computer (i.e. whether an algorithm exists),
while the branch of complexity theory investigates the resources required for doing so (i.e.
whether an efficient algorithm exists). In Section 2.3 we already introduced some core
concepts in computability theory, in the Section 2.5 we will do so for complexity theory. A
fundamental relationship between problems exploited in both is the notion of “reducibility”.

Definition 2.11: Turing reducibility

A computational problem R is (Turing) reducible to another R′, denoted R ≤T R′,
if any solver for R′ can be used as a subroutine (a.k.a. an oracle) to solve R.
Formally, R ≤T R′ if and only if there exists an R′ oracle machinea solving R.

aA generalization of, and operating in a similar way as, an ordinary TM defined in 2.8, but
extended with the ability to query an oracle for R′.

4Commonly, a digital model of computation is considered, i.e. Σ = Γ \ {B} = {0, 1}.

2.4. PROBLEM FORMULATION 35

For instance, the prime factor finding and sorting problems are Turing reducible to the
primality and order testing problems, respectively. The corresponding oracle machines
would enumerate all candidate solutions (S′ = {z ∈ Z+ | z ≤

√
n} and S′ = P l), apply

the respective tests until one succeeds and return that solution.5 Note that R ≤T R′

does not require R′ to be solvable. However, if R′ is solvable, we can solve R as well.
Or equivalently, if R cannot be solved then R′ cannot be either. The latter is how
reducibility is most commonly used in computability theory to prove (by contradiction)
that some problem R′ cannot be solved: We take a problem R known to be undecidable
and show R ≤T R′. In fact, this is how Alan Turing proved the undecidability of the
Entscheidungsproblem Rdecide in [Turing 1937]. He first showed the halting problem Rhalt
to be undecidable and subsequently Rhalt ≤T Rdecide.
Another form of reducibility, of particular interest in the context of problem formulation

and complexity theory, is many-one reducibility:

Definition 2.12: many-one reducibility (for decision problems)

A decision problem (X,R) is many-one reducible, short m-reducible, to a decision
problem (X ′, R′), denoted (X,R) ≤m (X ′, R′), if and only if there exists a comput-
able function f : X → X ′, called a reduction, satisfying

∀x ∈ X : R(x) = yes ⇐⇒ R′(f(x)) = yes.

Conceptually, m-reductions map instances of one problem to those of another, capturing
the intuitive notion of problem reformulation. Remark that m-reducibility is only defined
for decision problems. However, this notion can be generalized

Definition 2.13: many-one reducibility (for computational problems)
[Papadimitriou 1994, p. 506]

Let (X,R) and (X ′, R′) be computational problems, with R : X×Y and R′ : X ′×Y ′.
We say that (X,R) ≤m (X ′, R′) if and only if there exist computable functions
f : X → X ′ ∪ {τ} (formulation) and g : X × Y ′ → Y (interpretation) such that
∀x ∈ X:

1. ∀y′ ∈ R′(f(x)) : g(x, y′) ∈ R(x).

2. R(x) = ? ⇐⇒ R′(f(x)) = ? ∨ f(x) =⊥.

Note that a reduction is now defined as a pair of functions (f, g) to account for the fact
that the solution (representation) space of two computational problems might differ.

5This oracle machine is a brute-force algorithm for combinatorial search (see also Section 2.7.1).

36 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

To make this more concrete, we show that m-reducibility may be viewed as a special case
of Turing reducibility (restricting the use of the oracle to a single application):

Theorem 2.1

For any two computational problems (X,R) and (X ′, R′):

(X,R) ≤m (X ′, R′) =⇒ (X,R) ≤T (X ′, R′)

Proof. Let (f, g) be the pair of functions reducing (X,R) to (X ′, R′), we can construct
an oracle machine for (X,R) as follows: Given any x ∈ X.

1. use f to formulate x as x′ = f(x) an instance of R′ (if f(x) =⊥, return ⊥).

2. use oracle a′, a solver for (X ′, R′), to obtain y′ = a(x′), the solution of x′.

3. use g to interpret y′ as y = g(x, y′) the solution of x.

The diagram in Figure 2.1 depicts the operation of this machine.

X YX' Y'
a'f g

formulate solve interpret

Figure 2.1: Solving problems by reformulation (reduction diagram)

For instance, order and primality testing are m-reducible to the sorting and prime factor-
ization problems, respectively. Any NP-complete problem (e.g. SAT) (see Section 2.5.2)
can be m-reduced to any of the six combinatorial optimization problems listed in Sec-
tion 2.2.1. Remark that both types of reducibility relate computational problems in a way
that is reflexive (R ≤ R) and transitive (R ≤ R′ ≤ R′′ =⇒ R ≤ R′′), i.e. they induce a
preorder. A symmetric preorder is an equivalence relation. If R ≤T R′ and R′ ≤T R we
call R and R′ computationally equivalent, denoted R ≡T R′, i.e. R is solvable if and only
if R′ is. Examples are order testing and sorting; primality testing and prime factorization.
Remark that this does NOT imply that both can be solved equally efficiently. Similarly,
if R ≤m R′ and R′ ≤m R′ we call R and R′ m-equivalent, denoted R ≡m R′ and by
Theorem 2.1: R ≡m R′ =⇒ R ≡T R′. Examples of m-equivalent problems are:

• Sorting a sequence in ascending or descending order.
• The minimization and maximization variants of an optimization problem.
• The SAT and MAX-SAT problems.

2.4. PROBLEM FORMULATION 37

Many-one reductions are of particular interest in complexity theory because most well-
studied complexity classes (including P and NP, see Section 2.5) are closed under some
type of m-reducibility.6 A special case of m-reducibility occurs when any algorithm solving
(X ′, R′) also solves (X,R) (see also Section 2.3), i.e. no reformulation is required.

Definition 2.14: problem generalization/specialization

We say that a problem (X ′, R′) is a generalization of a problem (X,R), or equival-
ently, that (X,R) is a specialization of (X ′, Y ′), denoted (X,R) ⊆ (X ′, Y ′), if and
only if (X,R) ≤m (X ′, Y ′) with f(x) = x and g(x, y) = y.

Note that R ⊆ R′∧R′ ⊆ R ⇐⇒ R = R′. In this dissertation, we will use the terms spe-
cialization/generalization somewhat more flexible, allowing trivial (computationally cheap
and straightforward) reductions. Also, if we refer to “the problem an algorithm a solves”
(outside the context of any particular problem) we generally refer to the most general
problem it solves, i.e. (X,R) : a solves (X ′, R′) =⇒ (X ′, R′) ⊆ (X,R). For instance,
selection sort (Algorithm 2) sorts a sequence of ordinals, which is a generalization of the
problem of sorting a sequence of integers. Trial division (Algorithm 1) finds the least
(smallest) prime factor, which is a generalization of the problem of finding a non-trivial
prime factor. The convex, unconstrained, combinatorial optimization and search prob-
lems are specializations of the GOP, and the stochastic and multi-objective variants are
generalizations thereof. Also, Euclidean TSP ⊆ symmetric TSP ⊆ TSP ⊆ VRP ⊆ CVRP.

2.4.2 Problem-solving vs. Problem Formulation
In practice, the form in which we present a problem to a computer will affect how efficiently
it can be solved. This suggests that there is a fine line between formulating a problem and
actually solving it.

“A problem well put is half solved.” - John Dewey

In what follows, we will formalize the close relationship between problem-solving and prob-
lem formulation. To this end, we first define the class of trivial problems:

Definition 2.15: trivial problem

A problem (X,R) is trivial if ∀x ∈ X : xRx, i.e. R is the identity function.

Note that solving a trivial problem requires no computation, i.e. it is effectively solved.
Next, we show that the following holds:

6with appropriate resource restrictions on (f, g).

38 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Theorem 2.2

For a given computational problem (X,R) the following two statements are equival-
ent, i.e. (1) ⇐⇒ (2):

1. (X,R) is solvable (see Definition 2.7)

2. (X,R) is m-reducible to a trivial problem (as in Definition 2.15).

Proof.

(1) =⇒ (2): Let a be a solver for (X,R). (X,R) can be trivialized using a reduction
(f, g), where ∀x ∈ X : f(x) = a(x) = y and g(x, y) = y.

(2) =⇒ (1): Let (f, g) be a reduction from (X,R) to a trivial problem. We can con-
struct an algorithm for (X,R) as follows: Given any instance x ∈ X:

1. compute f(x). If f(x) =⊥, return ⊥. Otherwise, continue.
2. compute and return y = g(x, f(x)).

Intuitively, each well-defined problem implicitly encodes its solution, and computation
merely decodes it [Goldreich 2008].

2.4.3 Opinion: Importance of Natural Formulations
In what follows, we argue that in formulating a problem, one’s primary concern should
always be: accurately capturing/modeling the actual problem. In particular, it should be
trivial to represent any natural occurrences of problem instances and their solutions, i.e.
take as little as possible manual effort or expert knowledge (natural). This activity is ortho-
gonal to how one plans to solve it and should avoid any implicit design decisions inducing
a bias towards any particular solution approach (declarative). When contemplating altern-
ative formulations, one should consider possible m-reductions amongst them, and search
one (efficiently) reducible to all alternatives considered, i.e. maximizing possible solution
approaches (reducible). Clearly, this natural formulation will be very specific to one’s
particular problem setting and therefore it is relatively unlikely that machines/programs
solving the problem, in this form, out-of-the-box, exist. However, this is no reason for
concern, as either one would have been unable to formulate it as such in the first place, or
we know an m-reduction for doing so. In the latter case, we can describe an effective pro-
cedure for computing this m-reduction allowing it to be performed automatically. Remark
that this gives rise to a perspective, where the solution approach as a whole is viewed as
solving the actual problem by reduction to the problem solved by the algorithm used.

2.5. COMPUTATIONAL COMPLEXITY 39

We claim that there are many benefits associated with this “problem-centric” perspect-
ive. First, explicitly formalizing “the problem we are actually trying to solve”, in such
manner, enables us to study the actual problem theoretically (e.g. computability, com-
plexity). It also makes design decisions made in further reformulations of the problem
explicit, e.g. allowing us to distinguish between limitations inherent to the problem and
those of a particular solution approach. As such, it also counteracts the law of the in-
strument [Maslow 1966, p. 15], a cognitive bias, more commonly known as the “hammer
looking for a nail” phenomenon, which we believe to be ubiquitous and a major cause of
fragmentation in algorithmic research. Explicitly acknowledging the fact that we are trying
to solve the same problem, encourages comparative studies, evaluating quality w.r.t. solv-
ing the actual problem, knowledge transfer across communities and contributes towards a
more unified solution approach, maximally exploiting the nature of the problem at hand.
Note that naturality (∼ capturing all features of naturally occurring instances of a prob-
lem) is not the same as generality (∼ capturing as many as possible problem instances).
While generality is a desirable feature for algorithms, we argue that it is a false incent-
ive for problem formulations. Overly general formulations have a tendency of abstracting
information which could otherwise be usefully exploited in solving the problem, i.e. they
may ‘artificially’ restrict how efficiently it can be solved (have a lower reducibility).

2.5 Computational Complexity
Thus far, we have discussed computational problems and the use of algorithms to solve
them (automatically). In particular, we examined computability : Whether a problem is
solvable, and if so, whether a given algorithm solves it. Under the CT, undecidable prob-
lems cannot be solved in practice. However, the inverse is often not the case as resources
in our physical world are limited, while theoretical models of computation (e.g. Turing ma-
chines) assume unbounded resources (e.g. infinite tape). Put differently, while algorithms
solving some problem may exist, actually executing them may require a finite, yet in-
tractable amount of resources. Computational complexity theory is a branch of theory of
computation that studies how difficult computational problems are to solve and classifies
them according to their “complexity”, i.e. the resources required to solve them.

2.5.1 Analysis of Algorithms
Analysis of algorithms is concerned with the study of the resources a given algorithm
requires to solve a given problem. In what follows, we will focus on time complexity.7

7Space complexity is bounded by time complexity. Intuitively, because it takes time to use space.

40 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Definition 2.16: worst-case time complexity

Let tax denote the time it takes an algorithm a to solve a problem instance x of a
computational problem p = (X,R). Let ‖.‖ be a measure of the size of inputs.
Let Xn = {x ∈ X | ‖x‖ = n} be the set of inputs of size n. The worst-case time
complexity of a on problem p is given by tap(n) = maxx∈Xn tax

Remark that computational complexity is expressed as a function of the size of inputs, as
the resources required naturally grow as a function of input size. For example, a measure
of the size for the sorting problem could be the number of elements in the sequence l.
Alternative measures could be used, hence computational complexity depends on our choice
thereof. In Section 2.3 we mentioned that “what can be computed” does not depend on
the model of computation used. However, “the time a computation takes” does. Hence,
computational complexity must be studied in the context of a model of computation.
To avoid that time complexity becomes dependent on details of the choice of model (or
measure of input size), and as it is often difficult to determine tap(n) exactly for all possible
n, asymptotic complexity bounds are often used instead in theoretical analysis, commonly
expressed using Bachmann-Landau notations:

Definition 2.17: Big O(micron), Omega and Theta notations [Knuth 1976]

Let f(n) and g(n) be two functions. One writes

f(n) ∈ O(g(n)) if and only if there exist positive constants C and n0 such that
∀n ≥ n0 : f(n) ≤ C ∗ g(n) holds.

f(n) ∈ Ω(g(n)) if and only if there exist positive constants C and n0 such that
∀n ≥ n0 : C ∗ g(n) ≤ f(n) holds.

f(n) ∈ Θ(g(n)) if and only if f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n)) holds.

For example, assuming comparing and swapping integers takes constant time, i.e. is Θ(1),
selection sort (see Algorithm 2) has a worst case time complexity of O(n2) for sorting
arbitrary sequences of integers. As the number of comparisons performed is independent of
the values of elements, it is also Ω(n2) and therefore Θ(n2). Assuming the modulo operator
is Θ(1), trial division (see Algorithm 1) takes O(2n) time to find a factor for arbitrary
integers,8 with n the number of digits used in the positional (e.g. binary) representation

8Worst case complexity occurs when given a prime number.

2.5. COMPUTATIONAL COMPLEXITY 41

of the integer. However, it is Ω(1) as it finds a factor of an even number (i.e. 2) in a
single iteration, independent of the size of that number.

2.5.2 Complexity of Problems
Complexity theory is concerned with the complexity of problems, rather than that of any
specific algorithm. Conceptually, the complexity of a problem is defined as the complexity
of the most efficient algorithm solving it. For example, under aforementioned assump-
tions, the complexity of sorting arbitrary sequences of ordinal elements is O(n log(n)).
Complexity theory aims to classify computational problems w.r.t. their complexity. Two
fundamental classes for decision problems are P and NP.

2.5.2.1 P

Definition 2.18: P (complexity class)

P is the set of all decision problems decidable in polynomial time by a TM (see Defin-
ition 2.8), i.e. ∃ TM M deciding (X,R) : tM(X,R)(n) ∈ O(nk), for some finite k.

Sorting is in P.9 The primality testing problem, long believed to be outside of P, was
shown to be in P as well [Agrawal et al. 2004]. In complexity theory, polynomial-time
algorithms are commonly regarded as those that can be executed efficiently in practice
(also known as Cobham’s thesis [Goldreich 2008]). It turns out that in the definition of P,
the TM could be replaced by any contemporary practical, universal, deterministic model
of computation and P would remain invariant.

2.5.2.2 NP

Before defining NP, we first introduce a generalization of the TM model of computation:

Definition 2.19: non-deterministic Turing Machine (NTM)

A non-deterministic Turing machine is defined as a 7-tuple 〈Q, q0, F,Γ, B,Σ, δ〉, with
Q, q0, F , Γ, B, Σ as in Definition 2.8 and δ is the transition relation, a binary relation
((Q \F)×Γ)→ 2(Q×Γ×{R,L}), where δ(q, a) specifies the set of possible moves the
NTM can perform in a non-final control state q on scanning tape symbol a.

9Technically incorrect, as P by definition only contains decision problems.

42 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

A NTM operates as follows: When |δ(q, a)| ≤ 1 a NTM behaves as an ordinary TM. There
are two equivalent perspectives on how a NTM resolves |δ(q, a)| > 1:

• A NTM performs these in parallel, as soon as any one of the possible computations
halts, the NTM halts and returns the result of that computation.

• A NTM performs the computation requiring the least time, i.e. the least moves.

From this definition, it should be clear that while it is relatively easy to conceive a TM,
whether or not it is possible to physically construct an arbitrary NTM, remains an open
question [Aaronson 2005]. Now, NP is defined as follows:

Definition 2.20: NP (complexity class)

NP is the set of all decision problems decidable in polynomial time by an NTM.

From a computability perspective, a NTM is not more powerful than a TM, i.e. both
models describe the same set of computable functions. However, whether they describe
the same set of efficiently computable functions, i.e. NP = P, is one of the most important
open problems in mathematics and computer science [Fortnow 2009]. It is easily shown
that P ⊆ NP, since a TM is a special case of a NTM where the relation δ is a partial
function. However, the proposition NP ⊆ P has thus far famously eluded formal (dis)proof.
This question is of interest, because there are numerous important problems in NP, for
which no polynomial-time algorithm (TM) is known (yet). Generally, P ⊂ NP is assumed,
implying that there are problems in NP that cannot be solved efficiently using contemporary
deterministic computation technology.

2.5.2.3 NP-hard

A subclass of problems that are particularly difficult to solve are NP-complete problems.
Informally, NP-complete contains the set of problems which are “at least as difficult as”
any other in NP. To define this subclass, we must first formalize this relation:

Definition 2.21: efficiently reducible (“at least as difficult as”)

A problem p is efficiently reduciblea to another p′, denoted p ≤Pm p′, iff there exists
a pair of polynomial-time computable functions (f, g) that m-reduce p to p′.

aIn the context of decision problems also known as Karp reducible.

Now, we define NP-complete as:

2.6. BEYOND EFFECTIVE PROCEDURES 43

Definition 2.22: NP-complete (complexity class)

A problem p is NP-complete, if p ∈ NP and p′ ≤Pm p,∀ p′ ∈ NP.

The first problem found to be NP-complete was SAT (see Section 2.2.1) [Cook 1971].
Given an NP-complete problem p (e.g. SAT), it is sufficient to show p to be efficiently
reducible to p′, in order to show that p′, too, is NP-complete. This way numerous problems
have been shown to be NP-complete [Karp 1972]. If for any one of these a polynomial-time
algorithm were to be found, this would imply NP = P. As mentioned before, the notion
of NP-completeness is only defined for decision problems in NP. A broader notion which
applies to computational problems in general is NP-hardness:

Definition 2.23: NP-hard (complexity class)

A problem p is NP-hard, if p′ ≤Pm p,∀ p′ ∈ NP.

Thus NP-hardness drops the requirement that a problem should be in NP. Note that
NP-hard, under this definition, includes undecidable problems. As SAT can be m-reduced
to MAX-SAT in Θ(1), the latter is NP-hard. In fact, all six combinatorial optimization
problems discussed in Section 2.2.1 are known to be NP-hard.10 For these problems,
under P 6= NP, we will worst case have to evaluate a super-polynomial (e.g. exponential
O(2n), factorial O(n!), etc.) number of candidates solutions, rendering relatively small
instances already intractible in practice. As we will discuss in Section 2.6.3, a practical
way to deal with NP-hard problems is to not actually solve them in the traditional sense
(Definition 2.6), but rather approximate the solution to the problem.

2.6 Beyond Effective Procedures
In practice, problems are often being solved using methods which do not correspond to
algorithms as we have defined them in Section 2.3 (∼ effective procedures, Definition 2.5).
For example, they may (with some likelihood) output a solution which is not admissible, fail
to return a solution even though one exists, or require the execution of an infinite number
of instructions. Why would we use such methods? As we have seen, for many interesting
problems, no (efficient) algorithms are known, or may exist, e.g. they are undecidable
(Definition 2.7) or NP-hard (Definition 2.23). The general workaround to “solve” such
problems, in practice, is to extend our notion of what exactly constitutes an algorithm,

10Remark that whether prime factorization is NP-hard is an important open question. RSA, a common
cryptographic system, critically relies on the difficulty of this problem.

44 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

beyond effective procedures computing a deterministic function. We will still use the term
“algorithm” to refer to this wider notion of problem-solving procedures/methods, combined
with the adjective “exact” to refer to those satisfying the more narrow definition. In what
follows, we will briefly characterize different kinds of problem-solving procedures which are
not “effective” in the traditional sense.

2.6.1 Randomized Algorithms
Many problem-solving procedures incorporate randomness as part of their logic, i.e. their
execution requires the agent to flip a coin, roll a dice etc. To model such procedures, we
introduce the following generalization of the TM model of computation:

Definition 2.24: Probabilistic Turing Machine (PTM, [Santos 1969])

A probabilistic Turing machine is defined as a 7-tuple 〈Q, q0, F,Γ, B,Σ, δ〉,
with Q, q0, F , Γ, B, Σ as in Definition 2.8 and δ the transition probabilities,
((Q\F)×Γ)× (Q×Γ×{R,L})→ [0, 1], where δ((q, a), (p, b, d)) specifies the like-
lihood of performing a transition (p, b, d) in a non-final control state q, on scanning
tape symbol a.

Recall that deterministic algorithms M uniquely determine the sequence of instructions to
be executed for any given input x (eMx , see Definition 2.9). The same does not hold for a
randomized algorithms.

Definition 2.25: execution of a PTM on an input

A PTM M , for each input x, specifies a distribution over a set of possible execu-
tions EMx where each (a, q, b, d) ∈ EMx satisfies conditions (1), (3) and (4) from
Definition 2.9 and

2. δ(qi−1, ai, (qi, bi, di)) > 0,∀ 1 ≤ i ≤ |q|.

The likelihood that simulatingM on input x results in execution e = (a, q, b, d) ∈ EMx ,
denoted pr(e|M,x), is given by

pr(e|M,x) =
|q|∏
i=1

δ((qi−1, ai), (qi, bi, di)). (2.1)

In general, a halting PTM M computes a stochastic function, i.e. M(x) is a random
variable, with Pr(M(x) = y) =

∑
e∈EMx

pr(e|M,x)[steps(q0x, e) = αpβ ∧ y = αβ].

2.6. BEYOND EFFECTIVE PROCEDURES 45

However, a randomized algorithm may still compute a deterministic function, i.e. solve a
problem according to Definition 2.6. An example is the quicksort algorithm with random
pivot selection. Also, a TM is a special case of a PTM where δ is a degenerate distribution.
In the remainder of this subsection, we will focus on randomized algorithms which are
exact in this sense, and postpone the discussion of various non-exact procedures to later
subsections. Obviously, as the instructions executed by a PTM vary, so will the time it
takes to do so. We define the time complexity of PTMs accordingly:

Definition 2.26: expected (worst-case) time complexity

Let t(e) denote the time it takes to perform an execution. Let Xn ⊂ X be the set of
inputs of size n. The expected (worst-case) time complexity of PTM M on problem
p is given by tMp (n) = maxx∈Xn

∑
e∈EMx

pr(e|M,x) ∗ t(e).

Note that quicksort with deterministic pivot selection has a time complexity ofO(n2), while
its variant with random pivot selection has an expected time complexity of Θ(n log(n)).
A question central to the theoretical study of randomized algorithms, is whether a PTM is
more powerful than a TM. From a computability perspective, the answer is clearly no, in
the sense that any deterministic function computable using a PTM, can also be computed
by a TM. Whether they are equivalent from a computational complexity perspective is an
open question. An orthogonal open problem is whether a PTM can actually be realized in
practice, as doing so would require access to a source of true randomness [Stipčević and Koç
2014], something which may not exist in our physical universe. In practice, “randomized”
algorithms most commonly base their execution on pseudo-random numbers, generated
using deterministic procedures known as pseudo-random number generators. Others inherit
their stochastic behavior from interactions with the execution environment.

2.6.2 Asymptotically Correct Algorithms
A procedure, to be effective, must return the correct answer after a finite number of steps
(see Definition 2.5). Asymptotic correctness relaxes this constraint, allowing procedures
to only return the correct answer after a possibly infinite number of steps:

Definition 2.27: asymptotically correct

Let (X,R) be a function problem. Let h be a bounded function Γ∗ × Γ∗ → R
satisfying h(x, y) = 0 ⇐⇒ xRy and h(x, y) > 0 otherwise. Let yn be the content
of the tape after executing a PTM for n steps.a

46 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

We say that a PTM is asymptotically correct, w.r.t. (X,R) and h, if the following
holds ∀x ∈ X:

∃n0 ∈ N : Pr(h(x, yn) < ε) > δ (∀n > n0,∀ ε ∈ R0,∀ δ : 0 ≤ δ < 1).
aIf it halts after m < n steps, yn = ym.

A particular subclass of asymptotically correct stochastic procedures are Las Vegas Al-
gorithms (LVAs). An LVA is a randomized algorithm which always returns the correct
output and whose expected runtime is finite. Note that the “finite expected runtime”
requirement allows indefinite computation (albeit with an infinitesimal likelihood), i.e. the
runtime of an LVA may not be bounded by a function of its input size. Take for example
the problem of finding the position of an element b in a sequence with n elements, guaran-
teed to contain b exactly once. An LVA could iteratively check whether b is at a position i
selected uniformly at random from [1, n]. If so, it returns i and continues otherwise. The
(independent) probability of finding b each iteration is 1

n and hence the expected number
of iterations is n. The likelihood of not having found b after k iterations is (n−1

n)k which
is > 0 for any finite k.
Remark that also deterministic procedures exist which are asymptotically correct, yet

not effective. Examples are commonly encountered in the context of numerical search,
optimization and approximation problems. Take for instance the problem of finding a
root of a computable, continuous, real-valued function f in a given range [a, b] with
f(a) ∗ f(b) < 0. A well-known algorithm solving this problem is the bisection method
(Algorithm 3), which has the property that after k iterations, the absolute distance of c
to a root (h) is bounded by b−a

2k+1 , i.e. it is asymptotically correct (for this h).

Algorithm 3 Pseudocode for the bisection method
1: procedure FindRoot(f ,a,b)
2: repeat
3: c← (a+ b)/2
4: if f(a) ∗ f(c) > 0 then
5: a← c

6: else
7: b← c

8: end if
9: until f(c) = 0

10: return c
11: end procedure

2.6. BEYOND EFFECTIVE PROCEDURES 47

2.6.3 Non-exact Algorithms
In contrast to (asymptotically) correct procedures, non-exact algorithms are guaranteed to
halt, but the result they return is not guaranteed to be correct. We discriminate between
different types of non-exact algorithms based on the guarantees they do provide. While
the specific guarantees can take many forms and are often problem-specific in nature, they
typically involve some bound on the likelihood of failure, the size of the error (∼ h), or a
combination of both. In what follows, we give two examples.

Monte Carlo algorithms: A useful guarantee for non-exact stochastic procedures, a.k.a.
Monte Carlo algorithms, in the context of solving computational problems, is

Definition 2.28: probably solving computational problems

We say that a PTM M probably solves a computational problem (X,R), if and only
if, ∀x ∈ X,M is more likely to return the correct answer than a wrong one. Formally,
if and only if it satisfies Pr(M(x) is correct) > 0.5, ∀x ∈ X, where

Pr(M(x) is correct) =
{

Pr(M(x) = τ) If R(x) = ?∑
y∈Σ∗ Pr(M(x) = y) ∗ [xRy] If |R(x)| > 0

For instance, if we would terminate the uniform random search LVA, we described in the
previous section, after n − 1 iterations, returning a random position, the likelihood error
would be (n−1

n)n < 0.5. BPP is the class of decision problems for which there exists a PTM
probably solving it, in polynomial-time. While in practice an algorithm with an error-rate
of 0.499 . . . might not be acceptable, we can solve the problem in polynomial time (w.r.t.
the input size) with an arbitrarily large probability by repeatedly executing the algorithm on
the same input and returning the answer which was returned most frequently. Therefore,
BPP (as opposed to P) is also sometimes regarded as the class of problems which can be
solved efficiently in practice. Whether BPP = P is an open question. For a long time, the
most prominent problem, known to be in BPP, but not yet in P, was primality testing.
For example, the Fermat test is a non-exact randomized procedure for primality testing.
Even though in meantime exact polynomial-time primality tests are known [Agrawal et al.
2004], variations of the Fermat test are to date still used due to their relative efficiency
and simplicity. The following fragment from [Abelson et al. 1996, pp. 54] summarizes why
“probably solving” is a sufficient guarantee: “In testing primality of very large numbers
chosen at random, the chance of stumbling upon a value that fools the Fermat test is less
than the chance that cosmic radiation will cause the computer to make an error in carrying
out a ‘correct’ algorithm. Considering an algorithm to be inadequate for the first reason,
but not for the second, illustrates the difference between mathematics and engineering.”

48 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Approximation algorithms are a special type of non-exact optimization methods:

Definition 2.29: approximately solving optimization problems

An algorithm a α-approximately solves a given optimization problem (X,R)
if α(x) ∗ f(a(x)) ≤ f∗ holds ∀x = (S′, f) ∈ X, where f∗ = f(s∗) with s∗ ∈ R(x).

In optimization, we are often mainly interested in finding a good way to do things. Whether
it is (provably) “the optimal way” is often of lesser importance. Conceptually, approxima-
tion algorithms obtain solutions which are provably “near-optimal”. A well-known example
is the Christofides algorithm for the TSP [Christofides 1976], which guarantees a constant
approximation factor of α(x) = 3

2 .

Definition 2.30: heuristic algorithms

Heuristic algorithms (short heuristics) are non-exact problem-solving procedures that
do not provide any relevant, provable guarantees w.r.t. the quality of the solution
they obtain (if any); and/or the resources they require for doing so.

Heuristics algorithms, despite lacking theoretical guarantees, often require orders of
magnitude less resources to return solutions which are “good enough” in practice. In
optimization, the use of such methods can also be motivated theoretically. Let PTAS be
the class of problems for which a Polynomial Time Approximation Scheme exists, i.e. a
procedure that solves it α-approximately in polynomial time for arbitrary α > 1. Let APX
be the class of problems that can be solved β-approximately in polynomial time, where β
is some constant factor. Whether PTAS = APX is an open problem. However, it is known
that PTAS = APX implies P = NP and some problems (e.g. MAX-SAT, TSP) are known
to be APX-hard, i.e. difficult to approximate, unless P = NP.

2.6.4 Contract and Anytime Algorithms
Note that asymptotic correctness, by itself, is not a particularly useful property, in prac-
tice, as we cannot execute an algorithm indefinitely. However, non-exact variants can be
obtained by preliminarily terminating such procedures. More generally, many procedures
possess a property known as monotonicity : When given more time, the quality of the
results they return will tend to be higher. While the algorithm designer could hard-code
this trade-off between quality and resource usage, a better practice would be to leave such
design choices open, presenting monotonic procedures as algorithmic frameworks paramet-
rized by these preferences, a.k.a. contract algorithms. One type of contract algorithms,
which we will refer to as fixed budget methods, take a given computation budget as in-
put and are guaranteed to terminate and return the best solution found within the given

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 49

budget. For instance, a fixed budget variant of the bisection method in Algorithm 3 would
take a maximum number of iterations k as input, after which c is returned. Another kind
are fixed confidence methods, which take a bound on the probability and/or size of error
as input, and terminate as soon as they can provide this guarantee. A fixed confidence
variant of the bisection method would take a maximum distance to a root ε as input and
return c as soon as b−a

2 < ε. One downside of contract algorithms is that the user has
to specify the contract prior to execution. It may be difficult to predict beforehand the
resources available/required to obtain a solution of a certain quality. A particularly useful
class of methods, in this context, are so-called anytime algorithms [Dean and Boddy
1988]. Such procedures can be queried for a solution at any point of their execution.The
bisection method is naturally anytime, with c being its anytime solution.

2.7 Search Methods for Combinatorial Optimization
In this section, we will describe and discuss procedures for solving combinatorial optim-
ization problems. Here, our focus will be on domain-independent procedures, i.e. which
can be used to solve any combinatorial optimization problem (e.g. all those described in
Section 2.2.1), as opposed to any single one of them.
More specifically, we will consider anytime search algorithms. These methods can be

viewed as iteratively evaluating the objective function value of candidate solutions in S′,
each time retaining the best found thus far (∼ anytime solution). All methods described
below essentially differ in their choice of candidate solution to evaluate next.
In the context of solving combinatorial optimization problems, one typically classifies

search procedures as follows:

Exact methods are effective procedures that solve the problem exactly according to
Definition 2.6, i.e. they are guaranteed to return an optimal solution, after a fi-
nite number of iterations.

Approximation methods are effective procedures that solve the problem approximately
(see Definition 2.29), i.e. they are guaranteed to return a solution, whose objective
function value is provably close to optimal, after a finite number of iterations.

Heuristic methods are procedures which are neither exact nor approximate, i.e. they
provide no guarantees about the quality of the solution they return, if any.

Our focus, in this section and dissertation in general, will be on the latter. However, for
the sake of completeness, we first discuss exact and approximation methods, collectively
also known as systematic search methods.

50 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

2.7.1 Systematic Search
In this subsection, we will discuss how to solve any given combinatorial optimization
problem. Remark that, by nature, these problems are all rather different and devising a
single algorithm which can deal with such heterogeneity is troublesome to say the least.
Therefore, the procedures we will describe here do not solve these problems in their natural
form, rather they solve a problem which most combinatorial optimization problems can
be reduced to, i.e. reformulated as (see also Section 2.4). Equivalently, these procedures
may be viewed as algorithmic frameworks (see Section 2.3.3) which leave domain-specific
design choices open and must be configured appropriately for a particular problem domain.
Note that there may be many possible reductions/configurations and while we focus on
different algorithmic frameworks here, the specific instantiation thereof is often at least as
important in practice.

2.7.1.1 The Graph Search Reduction

Combinatorial optimization problems are commonly solved by reducing them to problems
of the following form:

Definition 2.31: (lazy) graph optimization problem

Let

V be a finite set of vertices

e : V → R be the evaluation function.

V0 ⊆ V be the non-empty set of initial vertices.

E : V → 2V be the successor function.

The (lazy) graph optimization problem is defined as follows:
Given 〈e, V0, E〉, find a vertex v∗ such that e(v) ≤ e(v∗),∀v ∈ V ′, where V ′ is the
subset of vertices reachable from V0 following the edges in E, i.e.

V ′ = {v ∈ V | ∃ p ∈ V ∗ : (p1 ∈ V0) ∧ (p|p| = v) ∧ (pi+1 ∈ E(pi),∀ 1 ≤ i < |p|)}.

Remark that every instance of the combinational optimization problem 〈f, S〉 can be re-
formulated as such by choosing e = f , V0 = S and E(v) = ?,∀ v ∈ V . However, this is
not the only possible reduction and typically better alternatives exist.

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 51

Remark that, in this naive reduction, all candidate solutions (S) are passed in an explicit
form (e.g. as a collection of elements) to the solver. However, for the problems of interest
in this dissertation, i.e. hard combinatorial optimization problems, the search space S is, by
nature, specified in a relatively concise abstract mathematical form (e.g. see Section 2.2.1).
Furthermore, for non-trivial problem instances, S is extremely large and generating such
a collection, a priori, would require a lot of time and an intractable amount of space. For
instance, the search space of the permutation flow shop problem consists of all possible
permutations of n jobs. Assuming we choose V0 = S, the set being passed to the search
algorithm would contain n! elements. For 15 jobs, any explicit representation would already
require several terabytes.To overcome this issue, one uses lazy data-structures (e.g. lazy
graph), which consist of a subset of the data (e.g. V0) as well as a procedure (e.g. E)
which can be used to recover/generate the remaining data (e.g. V ′ \V0). Remark that, in
order to avoid loosing optimality, V0 and E must be chosen such that at least one vertex
corresponding to an optimal candidate solution is reachable. Note that it is not always
trivial to tell whether this is the case or not (e.g. 15-puzzle [Johnson et al. 1879]).
Beyond reachability, the choice of E is often also crucial for the efficiency with which the

resulting problem can be solved. Here, E is commonly chosen such that every successor
v′ ∈ E(v) corresponds to a minor variation of v. This way, E can typically be computed
efficiently and sometimes it even allows us to also compute e(v′) more efficiently as a
function of the e(v), a practice known as delta-evaluation. E also provides an elegant way
of excluding “candidates” that cannot possibly be optimal, or that do not satisfy some hard
constraints. On the other hand, not every vertex has to correspond to a candidate solution
or multiple vertices may correspond to the same. These redundant vertices are used to
further structure the search space and enable more efficient generation/evaluation. In
combinatorial optimization, candidate solutions can often be thought of as being composed
of a set of components. A particularly prominent representation of the search space in this
context is as a construction tree: Here, the root v0 (V0 = {v0}) corresponds to the empty
solution, leaves to the candidate solutions and each path from root to leaf can be viewed as
a procedure constructing a candidate solution by iteratively adding components. As such,
interior vertices correspond to “candidate solutions” having one or more components left
unspecified, and are therefore also commonly referred to as partial candidate solutions.
For example, for the permutation flow shop problem, the root could be [], and each vertex
v could have n− |v| successors, each appending an unscheduled job.
Finally, often e 6= f . For instance, because f is difficult to compute exactly. Also, f may

not provide sufficient information about the quality of suboptimal solutions. For instance,
a naive way to formulate the search problem variant of SAT would be to use e = 1
(when satisfied), e = 0 (otherwise). However, the standard reduction of the problem,
i.e. MAX-SAT, uses a more informative e instead, equal to the number of satisfied clauses.

52 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

2.7.1.2 Systematic Graph Search Procedures

In this section, we will give a brief overview of general-purpose exact (and approximation)
algorithms for the graph optimization problem (see Definition 2.31). This overview is in
no way an extensive survey of exact search algorithms, as we merely aimed to provide an
introduction to search and a context for the heuristic methods which we will discuss in
Section 2.7.2. For the state-of-the-art in exact hard combinatorial optimization, we refer
the interested reader to one of the many surveys on the topic (e.g. [Woeginger 2003]).
We follow a similar approach as in [Russell et al. 1995, part II]. The main difference is that
[Russell et al. 1995] introduces search algorithms in the context of an agent searching for
a sequence of actions to achieve a goal, while we will introduce variants of these search
algorithms used in the context of solving combinatorial optimization problems.
The most elementary search methods for solving the graph optimization problem can be

viewed as instances of the tree optimization framework (TreeOpt) listed in Algorithm 4,
which takes a single procedural parameter select as an argument. Central to the TreeOpt
framework (and its many variants) is a collection, called the frontier, holding the set of
vertices which have been generated, but not yet evaluated or expanded. Initially, the
frontier contains V0. Each iteration, select determines which vertex v is selected to be
removed from the frontier, evaluated, expanded, and have its successors (if any) added to
the frontier. This method continues until the frontier becomes empty.

Algorithm 4 Tree optimization framework (TreeOpt)
1: procedure FindBest(〈V0, E, e〉,select)
2: frontier← V0
3: ebest ← −∞
4: vbest ←⊥ . vbest is the anytime solution
5: while frontier 6= ? do
6: v ← select(frontier)
7: frontier← frontier \{v}
8: ev ← e(v)
9: if ev > ebest then
10: ebest ← ev
11: vbest ← v

12: end if
13: frontier← frontier∪E(v)
14: end while
15: return vbest
16: end procedure

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 53

The following holds, independent of our choice of select:

1. When (V ′, E) is a tree with root v0 and V0 = {v0}, TreeOpt will terminate and
return the optimal solution after exactly |V ′| iterations.

2. When (V ′, E) is a Directed Acyclic Graph (DAG), TreeOpt will solve the problem,
but may need O(|V ′|2) iterations, i.e. it may evaluate vertices multiple times.

3. When (V ′, E) contains cycles, the frontier will never become empty and TreeOpt
never terminates.

While (3) implies that Algorithm 4 does not solve the general graph optimization problem,
it can be extended in various ways to handle cyclic graphs. These extensions are known
as the graph search/optimization framework. Here, the general trick is to “remember”
(a subset of) the vertices we have evaluated thus far in order to avoid evaluating/expanding
them multiple times. Remark that this trick also improves time complexity in (2). However,
it comes at the cost of increasing the space complexity.
In the remainder of this subsection, we will restrict our discussion to (1). Recall that the

search space in combinatorial optimization is commonly represented as a construction tree,
making (1) a common case. In (1), the essential difference between different instantiations
of the TreeOpt framework, i.e. choices of select, lies in the order in which vertices are
evaluated. While time complexity does not depend on this order, space complexity and
anytime performance do. Two canonical selection strategies, used in this framework, are:

Breath First Selection (BFS), selecting the earliest generated vertex from the frontier.
Here, the frontier may be viewed as a standard First In, First Out (FIFO) queue.
BFS evaluates all vertices at depth (distance to root) i, before those at depth i+ 1.

Depth First Selection (DFS), selecting the last generated vertex from the frontier. Here,
the frontier may be viewed as a Last In, First Out (LIFO) queue, a.k.a. a stack.11

In the context of combinatorial optimization, the latter is typically preferred. First, the
space complexity of TreeOpt using BFS is O(bd), where d is the depth of the tree and
b is the branching factor (the maximum # successors of any vertex). While, using DFS,
TreeOpt has a space complexity of only O(d.b). Second, from an anytime perspective,
whether BFS or DFS performs best will depend on whether high-quality candidates are to
be found close or further away from the root. In a construction tree, all candidate solutions
are in the leaves of the tree, i.e. far away from the root.
Another well-known strategy, targeted at improving anytime performance, is
11This strategy is actually known as pseudo-DFS. True DFS (a.k.a. the backtracking algorithm) will

evaluate/expand a node as soon as it is generated (i.e. before generating any other successors). Note
that the space complexity of True DFS is O(d), with d the depth of the tree.

54 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Best first selection(p), selecting a vertex v ∈ arg maxv′∈frontier p(v′) from the frontier.
Here, the frontier may be viewed as a priority queue.

Note that best first selection is itself parametrized by the priority function p. Remark that
if (V ′, E) is a tree, each vertex v can be viewed as the root of a subtree with vertices
V ′v ⊆ V ′, and the set of sets {V ′v | v ∈ frontier} as a partitioning of the vertices still be
evaluated. In this perspective, p(v) can be viewed as predicting the desirability of exploring
the subtree rooted at v.
Finally, remark that all search strategies described above halt after exactly |V ′| iterations.

As |V ′| is often huge, running TreeOpt till termination may be intractable. We will conclude
this section by discussing so-called Branch & Bound (B & B) methods [Lawler and Wood
1966], extending TreeOpt such that it may halt earlier, yet guarantee optimality. The idea
is the following: Given we are able to compute an upper bound h(v) ≥ e(v′),∀v′ ∈ V ′v , if
a certain vertex v has h(v) ≤ ebest, expanding it cannot possibly lead to a new vbest and
we can cut this branch without loss of optimality. Therefore, we could extend TreeOpt
to take such h as an argument, apply it to each evaluated vertex v, and expand v only if
h(v) > ebest.12 Note that this B & B framework can be extended to a fixed confidence
framework (parametrized by α, using h(v) > α∗ebest as criterion) guaranteed to solve the
graph optimization problem α-approximately. A well-known instantiation of this framework
is the A* algorithm [Hart et al. 1968], which combines B & B with a best first strategy
using priority function p = h.13 It is worth noting that in adding h as a parameter, we do
not lose any generality, nor do we make the framework more difficult to use, as we could
pick h(v) = +∞ by default. Clearly, the performance gain, if any, crucially depends on
our choice of h: While tighter bounds may allow us to prune a larger part of the search
space, they typically come at a cost of being more expensive to compute (and design).

2.7.2 Heuristic Search
In this section, we will describe heuristic methods used for solving (combinatorial) optim-
ization problems, a practice which we will refer to as heuristic optimization. Unlike the
systematic methods we have discussed thus far, heuristic search methods do not keep track
of all yet unexplored options to guarantee that the solution returned is (approximately)

12Note that h is also commonly called a “heuristic”. This is consistent with our “definition” of
a heuristic in Section 2.6.3, in that h can be viewed as a heuristically solving the function problem
(V, (v, arg maxv′∈Vv (e(v′))) | v ∈ V), i.e. h(v) guesses the value of the best solution in Vv . When h(v)
is always an overestimate, h is called an “admissible heuristic”, and the B & B method using it exact.
More generally, heuristic subroutines are often used to improve the efficiency of exact methods.

13Technically, A* does not cut any branches during the search, but rather implicitly cuts all branches
at the end of the search by terminating when h(v) ≤ α ∗ ebest, i.e. before the frontier becomes empty.

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 55

optimal. Clearly, in practice, we are interested in procedures that do obtain reasonable
quality solutions in an acceptable time, i.e. perform well, despite their lack of theoretical
guarantees. Complexity theory continuously tries to bridge the gap between procedures
that perform well in practice and those which provably do so. As such, rather than viewing
heuristics as a necessary evil, which is the popular perspective, one may alternatively view
them as artifacts of the limits of modern complexity theory.
This lack of analytical knowledge about the performance of a heuristic procedure makes

it intrinsically difficult to predict, a priori, whether a given heuristic will perform well,
better/worse than another, etc. This, in turn, has a profound impact on how these pro-
cedures are designed: Lacking analytical knowledge, the designer must resort to empirical
knowledge, i.e. try out various alternatives to find one that works well. To decide which
alternatives to try (first), the designer relies heavily on intuition and experience.
In the last few decades, heuristic search procedures, of all sorts and flavors, have been suc-

cessfully applied to countless hard combinatorial optimization problems. While the actual
heuristic optimization methods are necessarily problem-specific, they can be viewed to fol-
low a high-level search procedure which is more widely applicable. To avoid fragmentation,
it has become standard practice to conceptually separate this reusable high-level search
template, commonly referred to as a metaheuristic, from its problem-specific instantiation.
While the meaning of the term “metaheuristic” has changed over time [Sorensen et al.
2017] and is to date ambiguous, of late, the following definition is gaining traction:

Definition 2.32: metaheuristic (framework) [Sörensen and Glover 2013]

A metaheuristic is a high-level problem-independent algorithmic framework that provides
a set of guidelines or strategies to develop heuristic optimization algorithms.

Note that the term “metaheuristic” is also commonly used to refer to problem-specific
instantiations of the framework. In this dissertation, we will use the terms “metaheuristic
framework” and “metaheuristic method” to disambiguate the two uses.
In the remainder of this section, we will provide some examples of metaheuristic frame-

works. This overview is by no means exhaustive and as a single method can be viewed as
an instantiation of many different frameworks, our particular choice of metaheuristics is
necessarily somewhat arbitrary. Furthermore, the sets of guidelines or strategies two meta-
heuristics represent may not be mutually exclusive, i.e. they can be combined, giving rise
to “hybrids”. For an up-to-date, chronological overview we refer the reader to [Sorensen
et al. 2017], for a more in depth treatment see [Hoos and Stützle 2004] and [Luke 2009].

56 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

2.7.2.1 Constructive Heuristics

This class of metaheuristics is naturally viewed as performing a non-systematic search in
a construction tree. More specifically, as anytime performance is crucial and candidates
in the construction tree are to be found in the leaves, these procedures will typically do
so in a depth-first manner. No frontier is kept and as such they do not guarantee that
an (approximately) optimal solution is found after any finite time. In addition, they may
optimistically cut branches and therefore not even be approximately correct.

Simple construction heuristic: The simplest framework follows a single path in the
tree and subsequently returns the candidate solution corresponding to the leaf. At each
step, this heuristic can be viewed as cutting all but a single branch, determined by a
possibly stochastic selection rule (select) passed as an argument to the framework. An
example of an instantiation of this framework is the nearest neighbor heuristic for the
TSP. Here, we select an arbitrary city as a starting point. Subsequently, we iteratively
visit the unvisited city closest to our current location next. While efficient, the quality of
the solutions obtained by such simple construction heuristics are typically not competitive
with the state-of-the-art. However, the solutions generated by these heuristics are often
used as starting points in more complex metaheuristics.

Algorithm 5 Repeated construction framework
1: procedure FindBest(〈v0, E, e〉,select,terminate)
2: ebest ← e(v0)
3: vbest ← v0
4: repeat
5: children← E(v0)
6: while children 6= ? do . Constructs a solution
7: vinc ← select(children)
8: children← E(vinc)
9: end while
10: einc ← e(vinc)
11: if einc > ebest then
12: ebest ← einc
13: vbest ← vinc
14: end if
15: until terminate is satisfied
16: return vbest
17: end procedure

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 57

Repeated construction: Simple construction heuristics have a fixed runtime. When
given less time, they do not return any solution, when given more, the solution will not
be better, i.e. they are not anytime, nor asymptotically correct. A general strategy
to overcome such weakness, assuming the subordinate heuristic is stochastic, is simply
executing it repeatedly until some termination criterion terminate is satisfied. Hybridizing
this strategy with simple construction heuristics gives rise to the repeated construction
metaheuristic listed in Algorithm 5, where lines 5-9 correspond to a simple construction
heuristic. Remark that repeated (construction) procedures can be viewed as iteratively
sampling the search space according to a certain distribution. This distribution may be
stationary, i.e. remain the same for each iteration (e.g. GRASP [Feo and Resende 1995]) or
it may change over time as to increase the likelihood of generating high-quality candidates
(e.g. cross-entropy [De Boer et al. 2005], ant colony optimization [Dorigo et al. 2006]).

2.7.2.2 Local Search Heuristics

The second class of metaheuristics we will discuss can be viewed as instantiations of the
framework listed in Algorithm 6. They start from a given vertex v0. Each iteration, a given,
potentially stochastic, step function (a.k.a a perturbation, mutation or successor function)
is applied to the incumbent vertex vinc. This process is repeated until some termination
criterion terminate is satisfied. Local search heuristics can be seen as iteratively sampling
candidates from a distribution conditioned on the last generated candidate, i.e. performing
a form of correlated sampling.

Algorithm 6 Local search framework
1: procedure FindBest(〈v0, step, e〉,terminate)
2: ebest, einc ← e(v0)
3: vbest, vinc ← v0
4: repeat
5: vinc ← step(vinc)
6: einc ← e(vinc)
7: if einc > ebest then
8: ebest ← einc
9: vbest ← vinc
10: end if
11: until terminate is satisfied
12: return vbest
13: end procedure

58 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

Neighborhood search: Instantiations of Algorithm 6 can be viewed as performing a non-
systematic search in a graph (V ′, E), where V ′ is the set of vertices reachable from v0
through E, with E a set of edges satisfying {(v, v′) | Pr(step(v) = v′) > 0} ⊆ E. Neigh-
borhood search explicitly decomposes step in terms of a successor relation E (a.k.a. neigh-
bor relation) and a pivot rule. The former determines the modifications considered at each
step, while the latter determines the likelihood any of these will actually be applied.
Some examples of neighborhoods are:

• MAX-SAT: The flip-one or one-exchange neighborhood consists of all models differ-
ing only in the truth assignment of a single variable.

• TSP: The 2-opt neighborhood consists of all tours formed by removing any pair of
two non-adjacent edges {(ci, cj), (ck, cl)} and replacing them by {(cl, cj), (ck, ci)}.

Some examples of common simple pivot rules are:

• random: a neighbor is selected uniformly at random, i.e. step(v) ∼ U(E(v)).
• first-improvement: an improving neighbor v′, i.e. e(v′) > e(v), is selected uniformly

at random, or v if no such v′ exists.
• best-improvement: a neighbor v′ satisfying e(v′) ≥ e(v′′),∀v′′ ∈ E(v) is selected

uniformly at random, or v if no such v′ exists.

Hill climbing: We call a step function

• greedy: if ∀v, v′ ∈ V : Pr(step(v) = v′) > 0 =⇒ e(v′) ≥ e(v)
• strict greedy: if ∀v, v′ ∈ V : Pr(step(v) = v′) > 0 =⇒ e(v′) > e(v) ∨ v = v′.

Examples of greedy/strict-greedy step functions are those using a best/first improvement
pivot rules. Instantiations of local search using a greedy step function are known as
Iterative Improvement (II) or hill climbing heuristics.
While the II scheme is intuitive and often quickly finds high-quality solutions, it is not

guaranteed to find the optimal vertex in (V ′, E), i.e. it is not asymptotically correct.
Figure 2.2 illustrates the problem.
First, typically only a small fraction of neighbors are improving, i.e. Egreedy ⊂ E, and

therefore only a limited set of vertices V ′greedy ⊂ V ′ may be reachable from v0 by an
ascending path (through Egreedy). For instance, in Figure 2.2, the optimal vertex v3
cannot be reached from v0 by a hill climbing procedure.
Second, II gets stuck (vinc remains invariant) in a

• local optimum of E: v ∈ V : e(v′) ≤ e(v),∀ v′ ∈ E(v) (using strict greedy step)
• strict local optimum of E: v ∈ V : e(v′) < e(v),∀ v′ ∈ E(v) (using greedy step)

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 59

v0

v1

v2

v3

V’

e

Figure 2.2: The fatal attraction of hill climbers to local optima.

For instance, in Figure 2.2, v1 v2 and v3 are all local optima. However, v3 is the only
global optimum. Note furthermore that the (quality of the) solution obtained depends on
whether we by chance performed the first step to the left (v1) or right (v2).
Many more advanced metaheuristics may be viewed as extending (or hybridizing) II to

overcome these limitations. Here, one typically distinguishes between strategies targeted at
exploring distant regions in the search space and avoid getting stuck (called diversification)
and mechanisms to quickly find high-quality solutions, such as II (called intensification).
A careful balance between both is crucial for achieving satisfactory anytime performance.

Greedy Randomized Adaptive Search Procedures (GRASP): In analogy to repeated
construction, we can repeat a randomized II procedure multiple times to guarantee that
we eventually find the best reachable local optima (v2 in Figure 2.2). However, typically
not all vertices are guaranteed to be reachable from v0 and this trick alone may not be
sufficient to achieve asymptotic correctness (e.g. reach v3 in Figure 2.2). This is typically
addressed by varying v0 each iteration; e.g. using v0’s generated by a randomized simple
construction heuristic. Methods hybridizing II and iterated construction in this fashion are
known as Greedy Randomized Adaptive Search Procedures (GRASP) [Feo and Resende
1995]. GRASP can be viewed as iteratively drawing independent and identically distributed
(i.i.d.) samples according to some distribution over local optima.

Simulated Annealing (SA): An alternative scheme to avoid getting stuck in a local
optimum is to (with some likelihood) perform worsening steps, i.e. go downhill. Here, it
is common practice to decompose the step function into the application of a non-greedy
stochastic perturbation operator, followed by an acceptance criterion which determines

60 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

whether the “proposed” candidate is accepted as new incumbent or not. The former is the
source of diversification, while the latter controls it. A prominent example is the Expo-
nential Monte Carlo (EMC) criterion [Ayob and Kendall 2003], which accepts a worsening
solution with probability e

e(vprop)−e(vinc)
T , where T is a positive real-valued parameter called

the temperature. Using this criterion, the greater the worsening proposed, the smaller the
likelihood the proposal will be accepted. More specifically, the likelihood of accepting n
times a worsening of a is equal to that of accepting a worsening of n ∗ a once. The EMC
criterion was popularized in heuristic optimization in the form of Simulated Annealing
(SA) [Kirkpatrick et al. 1983]. The criterion used in SA is a variant of EMC lowering
the temperature over time. Its name and inspiration come from annealing in metallurgy,
a technique involving heating and controlled cooling of a material to increase the size of
its crystals and reduce their defects. SA starts at high temperatures and slowly lowers the
temperature over the duration of the run. When cooling is sufficiently slow, the search
process provably ends up in a global optimum. However, the practical relevance of this
phenomenon is small. First, the required cooling rate is too slow for efficient search.
Second, ending up in a global optimum is not required as optimization methods retain the
best solution they come across. Nonetheless, the SA criterion remains popular and many
more complex cooling (and reheating) schemes have been devised [Koulamas et al. 1994].

Iterated Local Search (ILS) combines the idea of repeated II used in e.g. GRASP,
with the controlled diversification strategy used in e.g. SA. ILS [Lourencco et al. 2003]
first applies II to locally optimize v0. Subsequently, it iteratively applies a non-greedy
perturbation operator to escape the local optimum, followed by II, and finally uses an
acceptance criterion to decide whether to use the newly generated local optimum as the
starting point of next iteration. Similar to GRASP, ILS can be viewed as iteratively sampling
the space of local optima. It differs in that it does so in a correlated, rather than i.i.d.
fashion. Remark that ILS is an instance of the framework listed in Algorithm 6, where
the step function is a composition of a non-greedy perturbation operator (diversification),
followed by II (intensification) and an acceptance criterion (control diversification), i.e.
ILS performs a local search in a graph of local optima.

Tabu Search (TS): Local optima are often strong attractors: many worsening steps
might be required to avoid ending up in the same local optimum a few improving steps
later. A powerful method to effectively escape local optima is Tabu Search (TS) [Glover
1989]. TS makes local optima or certain solution components of a local optimum “tabu”
for some time (called tabu tenure). By not accepting/proposing candidate solutions with
these attributes it effectively avoids ending up in recently visited states. TS is particularly
successful in search spaces with large plateaus; e.g. MAX-SAT [Mazure et al. 1997].

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 61

Dynamic Local Search (DLS) uses an alternative to accepting worsening solutions,
to escape a local optimum v. DLS changes the evaluation function such that v is no
longer a locally optimal. This is typically realized by penalizing some of the attributes of
the locally optimal solutions (similar to TS), lowering the quality of the local optimum,
making further improvement possible. However, care must be taken as attributes common
in local optima, are likely also part of a globally optimal solution. A well-known DLS
framework is guided local search [Voudouris and Tsang 2003].

Very large-scale neighborhood search (VLSNS) procedures, rather than trying to
escape local optima, solve a formulation of the problem where local optima are rare and/or
of sufficiently high quality. VLSNS is based on the observation that larger neighbor relations
E tend to have fewer and higher quality local optima. In the extreme, one could choose E
such that every local optimum is also globally optimal and apply II to find one. However,
such neighborhoods are typically exponential in size and finding the best or an improving
neighbor itself a challenging optimization problem. VLSNS is a collective name for methods
recursively applying advanced (heuristic) search procedures to do so efficiently nonetheless.
A famous example is the Lin-Kernighan (LK) heuristic [Lin and Kernighan 1973], which is
widely considered to be one of the best local search procedures for TSP.

Variable Neighborhood Search (VNS) [Mladenović and Hansen 1997] combines mul-
tiple smaller, rather than one large neighbor relation, to obtain similar results. Often when
formulating a problem as a neighborhood search problem, multiple choices can be made for
E. As opposed to picking any single one of them, VNS combines multiple, motivated by
the observation that a vertex v may be locally optimal w.r.t. one, but often not w.r.t. (all)
others. An example of a VNS framework is the Variable Neighborhood Descent (VND)
method. VND orders a sequence of greedy step functions by the size of their respective
neighborhoods and iteratively applies the smallest one for which vinc is no local optimum.
This process continues until vinc is locally optimal w.r.t. all neighbor relations.

2.7.2.3 Population-based Heuristics

All heuristic frameworks discussed above are single point methods: they retain a single
solution vinc in memory after each iteration. Retaining multiple candidate solutions, is a
general way to achieve diversification, i.e. not betting on a single horse. For instance,
while a single point II scheme gets stuck when the incumbent solution is a local optimum,
a population-based II would only get stuck when all members of the population are locally
optimal. Also, populations allow one to compare the relative quality of, and similarities

62 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

between, members to perform a more directed form of diversification and focus computa-
tional efforts on the more promising. Note that “retaining a population” is just another
idea, which can be combined/hybridized with the frameworks described earlier.

Local Beam Search (LBS) is a basic population-based framework. LBS starts off with
a population of k candidate solutions. Subsequently, a step function is applied to each
member of the population and from these 2k candidates the k best candidate solutions are
retained. This process continues iteratively until some termination criterion is met. Note
that the local search framework is a special case of LBS with k = 1.

Evolutionary Algorithms (EA) are a prominent class of frameworks loosely based on
the process of biological evolution [Back 1996]. In the context of discrete optimization,
the term Genetic Algorithm (GA) is also commonly used. Each iteration (“generation”),
the population is updated using the following evolutionary operators:

• A mutation operator modifies a single member of the population (∼ step function).
Typically, the effect of a mutation is small, changing only a few solution components
(“genes”) in a stochastic and non-greedy fashion.

• A crossover (a.k.a. recombination) operator takes two members (“parents”) as
input and generates a single individual (“offspring”), combining genes from both.

• A selection operator selects one or more members of the population for survival,
reproduction or mutation. This is done such that fitter (∼ higher evaluation function
value) individuals are more likely to be selected. Common examples are

– roulette wheel selection selecting individuals proportional to their fitness value.
– tournament selection selecting the fittest of k randomly selected individuals.

While these operators can be combined in many different ways, a canonical GA framework is
listed in Algorithm 7. It starts with a population of k individuals. Each generation, offspring
are produced through recombinations of l parents selected for reproduction. Subsequently,
additional candidates are generated as mutations of m individuals selected from both the
original population and the newly generated offspring. Finally, k individuals are selected for
survival (from the k+ l+m candidates) and the process is repeated until some termination
criterion is met. Note that LBS is a special case of the GA with l = 0 and m = k, i.e.
only applying the mutation/selection operators (∼ asexual reproduction). GAs may suffer
from a lack of intensification, and are therefore often combined with II, resulting in a
hybrid known as Memetic Algorithms (MAs) [Moscato and Cotta 2002]. In MAs, the
initial population, as well as the offspring in each generation, are locally optimized. As
such an MA can be viewed as evolving a population of local optima.

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 63

Algorithm 7 Genetic algorithm framework
1: procedure FindBest(V0,mutate,recombine,select,l,m,e,terminate)
2: Vinc ← V0 . Initial population is passed as argument to the framework
3: repeat
4: Vxo ← ?

5: for t = 1 : l do . Generate offspring by recombination
6: (vi, vj)← select two candidates from Vinc
7: Vxo ← Vxo ∪ {recombine(vi, vj)}
8: end for
9: Vmut ← ? . Generate offspring by mutation
10: for t = 1 : m do
11: vi ← select a candidate from Vinc ∪ Vxo
12: Vmut ← Vmut ∪ {mutate(vi)}
13: end for
14: Vprop ← Vinc ∪ Vxo ∪ Vmut
15: vbest ← arg maxv∈Vprop e(v)
16: Vinc ← select k = |V0| candidates from Vprop . Survival of the fittest
17: until terminate is satisfied
18: return vbest
19: end procedure

Ant Colony Optimization (ACO) [Dorigo 1992] is a population-based repeated con-
struction procedure inspired by the foraging behavior observed in ant colonies. Ants looking
for food will explore the environment around their nest and when they find a source of
food, they carry some to the nest and deposit pheromones on the way back. These pher-
omones are used by the ant and other ants to find their way back to the food source. As
the paths taken differ slightly for each ant and shorter paths will get higher frequencies of
pheromones (due to more frequent deposits and fixed evaporation), the ants will learn the
shortest path from the nest to the food source [Goss et al. 1989]. ACO uses the same
principle to construct good candidate solutions to NP-hard problems (e.g. TSP [Stützle
and Dorigo 1999]). It operates as follows: Each edge in the construction tree is given a
certain initial pheromone level (often the same). Subsequently, each of the k ants in the
colony constructs a candidate solution performing a simple construction heuristic, where
the likelihood of selecting any given successor depends on the amount of pheromones de-
posited on the associated edge. After constructing k candidate solutions, the pheromone
levels are updated, reducing the original pheromone levels (evaporation) and depositing
pheromones along the edges followed by the ants. Here, the amount of pheromones de-
posited is proportional to the quality of the constructed solution. This process is repeated
until some termination condition is met. As for EAs, the construction process alone of-

64 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

ten leads to insufficient intensification and therefore II is often applied to the solutions
constructed by the ants.

2.7.2.4 Inspired Frameworks

As discussed before, lacking analytical knowledge, the design of new heuristic frame-
works often strongly relies on inspiration. Here, common sources of inspiration are “how
humans would solve similar problems” and “natural processes with seemingly desirable
characteristics”. Thus far, we have discussed the following prominent examples of the
latter: Simulated Annealing (SA), Evolutionary Algorithms (EAs) and Ant Colony Op-
timization (ACO). While interesting and original, we argue that the aesthetically pleasing
origin of these frameworks has led to the frequent, yet often poorly motivated use thereof.
Similar concerns, for EAs in particular, have been expressed in [Russell et al. 1995, pp. 129].
Furthermore, the popularity (and success) of these frameworks has, in turn, prompted a
proliferation of nature or otherwise “inspired” frameworks [Sörensen 2015]. Frequently
cited14 examples draw inspiration from the behavior of various organisms, ranging from
bacteria [Passino 2002], weeds [Roy et al. 2011], insects (e.g. bees [Karaboga 2005], fruit
flies [Pan 2012], fireflies [Lukasik and Zak 2009]), glow worms [Krishnanand and Ghose
2009], frogs [Eusuff and Lansey 2003], cuckoos [Yang and Deb 2009], bats [Yang 2010],
monkeys [Mucherino and Seref 2007], wolves [Mirjalili et al. 2014] to whales [Mirjalili and
Lewis 2016]. Next to the behavior of organisms of all sorts and sizes, also various other
natural (e.g. flower pollination [Yang 2012], flow of rivers [Shah-Hosseini 2009], hydrolo-
gical cycle [Eskandar et al. 2012], chemical reactions [Lam and Li 2010], electromagnetism
[Birbil and Fang 2003], gravity [Rashedi et al. 2009]) and even man-made (e.g. music
[Geem et al. 2001]) phenomena have inspired metaheuristics.
Recently, some of these “inspired” metaheuristics have received strong criticism for their

lack of scientific rigor [Sörensen 2015].15 In summary, the main criticism is that these
“inspired” frameworks are commonly described and justified solely in terms of the novel
metaphors that inspired them, abstracting how “new” and/or “beneficial” the underlying
procedures actually are. In addition, these frameworks have a tendency to be overly
complex, as they introduce certain mechanisms to support the analogy with the metaphor
that inspired them, rather than based on empirical evidence that these mechanisms actually

14According to Google scholar™, all papers referenced here, have been cited over 100 times, multiple
of which received over 1000 citations. These as such only represent the proverbial tip of the iceberg.

15We refer here to [Sörensen 2015] as it presents the most extensive argument thus far. However,
[Sörensen 2015] is not isolated, e.g. recently the Journal of Heuristics (JoH), one of the major journals in
the field, has updated its policy statement, to echo this critique, explicitly stating that it “fully endorses
the view presented in [Sörensen 2015]”.

2.7. SEARCH METHODS FOR COMBINATORIAL OPTIMIZATION 65

contribute to performance.16 Their high complexity, combined with the use of metaphor-
specific terminology to explain them, makes it unnecessarily difficult to understand and
relate them to other frameworks, resulting in fragmentation and reinvention.17 For these
reasons, we will not describe any of these frameworks in this dissertation. However, a
description/discussion of some prominent examples can be found in [Yang 2014].

2.7.2.5 Hyper-heuristics

Despite the numerous successful applications of metaheuristics to a wide variety of combin-
atorial optimization problems, they are not readily applied to newly encountered problems.
That is, the design of a metaheuristic procedure for some combinatorial optimization prob-
lem of interest remains challenging, is often done largely from scratch, in an ad hoc fashion,
strongly relying on human intuition, experience and labor, making it a costly process.
We distinguish two ways18 in which the community has tried to address aforementioned

challenges, i.e. reduce the cost associated with applying metaheuristics:

1. Off-the-shelf metaheuristics: The community has continued to search for new
metaheuristic frameworks and new ways of combining existing ideas that work well
across a wide range of problems, i.e. achieve acceptable performance, independent
of their problem-specific configuration.

2. Design automation: The community has embraced the possibility of letting com-
puters, rather than humans, design heuristic procedures (see Section 3.3.2).

Hyper-heuristics [Burke et al. 2003] is a term which has become associated with some
of these efforts. This term was first used in [Cowling et al. 2000] to mean “heuristic to
choose heuristics”, which was later generalized as follows:

Definition 2.33: hyper-heuristic (HH) [Burke et al. 2010b]

A hyper-heuristic is a procedure for selecting or generating heuristics to solve hard
computational search problems.

While there exists a rough consensus on the definition of this term, what exactly it entails,
and its relation to metaheuristics, in particular, is a subject of confusion. Hyper-heuristics
typically distinguish themselves from metaheuristics in that they are said to operate on

16A matter which we discuss extensively in Chapter 7.
17A well-known example of this is harmony search [Geem et al. 2001], which was shown to be a special

case of the established evolutionary strategies metaheuristic [Weyland 2010].
18In Chapter 5, we investigate the possibility of combining both approaches: the automated design of

off-the-shelf metaheuristics (see Section 5.2.1).

66 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

a higher level of abstraction by searching in the space of heuristics as opposed to meta-
heuristics which search directly in solution space. However, what exactly it means to
“search in a space of heuristics” remains somewhat underdefined. We argue that the
underlying cause of this confusion is that the term “hyper-heuristic” is used to describe
two rather different concepts, as distinguished in [Burke et al. 2010b, Burke et al. 2013]
and corresponding to instances of the two general responses described above respectively:

1. Selection hyper-heuristics are heuristic procedures that search the solution space
by selecting and applying search operators (called low-level heuristics) from a given
set of alternatives (called the heuristic set). A selection hyper-heuristic is in essence
just another metaheuristic framework.

2. Generation hyper-heuristics are procedures that automate the design of heuristic
search procedures. In essence any of the techniques we will discuss in the next
chapter, applied to this design problem, could be called a generation hyper-heuristic.
However, predominantly genetic programming techniques are used within the hyper-
heuristics community (see Section 3.3.2, p. 83).

In summary, the former returns a solution for an instance, while the latter returns a heuristic
search algorithm. Beyond the common goal of reducing manual effort, these at first sight
have little in common. We will revisit this discussion in Section 3.5.2.1 (p. 97).
In the remainder of this section, we will focus on selection hyper-heuristics. As discussed

before, metaheuristics require users to specify various problem-specific search operators.
For instance, to use an EA, we must specify how to initialize, mutate and recombine
members of the population. Typically, many alternatives exist and the best choice is often
problem instance dependent. In addition, it may be beneficial to combine multiple, i.e.
change the operator used dynamically over the course of the run. The idea underlying
selection hyper-heuristics19 is to allow users to pass these as a set, rather than forcing
them to choose one a priori. Note that this framework is closely related to VNS, differing
only in that it combines multiple operators, rather than multiple neighbor relations.

On the reusability of HHs: Are selection hyper-heuristics indeed more off-the-shelf,
i.e. easier to (re)use, than “ordinary” metaheuristics? At first sight, specifying a set of
operators H may seem to require more effort than specifying a single operator h. However,
as the heuristic set may be a singleton, i.e. H = {h}, this is not the case. Using selection
hyper-heuristics, we do not have to specify multiple operators, rather we are allowed to
specify multiple if we have difficulty choosing. Nonetheless, there are a few pitfalls here.

19And closely related fields such as reactive search [Battiti et al. 2008], adaptive operator selection
[DaCosta et al. 2008], parameter control [Eiben et al. 1999], etc.

2.8. SUMMARY 67

First, the performance of a hyper-heuristic may still be sensitive to the choice of H [Mısır
et al. 2012], leaving the user with the difficult choice of whether to include a possible
operator h in H or not. Second, it shifts the challenge of choosing “which operator to use
when”, from the framework user to the framework (designer). State-of-the-art selection
hyper-heuristic frameworks are often highly complex, making them difficult to understand,
implement and maintain (see also Section 7.3.1).

2.8 Summary
In this chapter, we have introduced various core concepts of algorithmics in general and
metaheuristics in particular. Below, we summarize the content covered in each section.
In Section 2.1, we explained what “problems” are in the context of computer science

and introduced the sorting and prime factorization problems, which were used as running
examples throughout this chapter.
In Section 2.2, we introduced a class of computational problems known as optimization

problems. Here, we first defined the global function optimization problem and subsequently
characterized variants thereof such as the combinatorial optimization problem. Here, the
latter is of particular interest as the design of general solvers for this problem is the main
application area we considered in the scope of this dissertation. In Section 2.2.1, we
described six examples of specific combinatorial optimization problems (e.g. TSP), which
we will be using in our experiments in Chapters 5, 6 and 7.
In Section 2.3, we introduced algorithms as effective procedures for solving problems.

In Section 2.3.1.2, we continued to formalize what exactly constitutes an “effective pro-
cedure”, providing a historical context, introducing the notion of undecidability and the
Turing machine formalism. Subsequently, in Section 2.3.2, we discussed the relevance of
algorithms in the context of automation, introducing the Universal (Turing) Machine and
related concepts such as computer programs, programming languages and pseudo-code.
Finally, in Section 2.3.3, we introduced “configurable” algorithms and motivated their use.
In Section 2.4, we discussed problem formulation, i.e. the interface between problems

and solvers. In Section 2.4.1, we introduced the concept of reducibility and argued that
m-reductions formalize the intuitive notion of problem (re)formulation. In Section 2.4.2,
we discussed the relationship between solving and formulating a problem and presented a
formal argument that they are two sides of the same coin. In Section 2.4.3, we discussed
the practical implications hereof and argued for the merits of formulating a problem in its
most natural, declarative and reducible form, and the pitfalls of implicit reductions.

68 CHAPTER 2. FOUNDATIONS OF PROBLEM-SOLVING

In Section 2.5, we provided an introduction to complexity theory. In Section 2.5.1, we
discussed the efficiency of algorithms and introduced the Bachmann-Landau notation. In
Section 2.5.2, we studied the difficulty of problems, defining canonical complexity classes
such as P, NP, NP-complete and NP-hard. Here, we argued that many interesting problems
are NP-hard, i.e. no effective procedure exists that solves them efficiently (unless P = NP).
In Section 2.6, we argued that procedures used to “solve” problems in practice often do

not adhere to the traditional notion of algorithms as defined in Section 2.3. Here, we
characterized the nature and motivated the use of such methods, from a practical and
theoretical point of view, touching upon some more advanced topics in complexity theory.
In Section 2.6.1, we considered randomized algorithms. In Section 2.6.2, we introduced
the notion of asymptotic correctness. In Section 2.6.3, we discussed non-exact algorithms,
discriminating between approximation and heuristic procedures. In Section 2.6.4, we in-
troduced contract and anytime algorithms.
In Section 2.7, we described anytime search procedures for solving combinatorial optim-

ization problems. In Section 2.7.1, we first examined how such problems are commonly
formulated and subsequently described simple exact and approximation algorithms for solv-
ing a problem in this form. In Section 2.7.2, we consider heuristic procedures, which are of
particular interest as many combinatorial optimization problems (e.g. all those described
in Section 2.2.1) are hard to solve exactly (NP-hard), or even approximately (APX-hard).
Here, we introduced the notion of a metaheuristic and presented numerous classical ex-
amples thereof. In Section 2.7.2.4, we discussed the polarizing topic of nature-inspired
metaheuristics. Finally, in Section 2.7.2.5, we examined some obstacles in the use/design
of metaheuristics and discussed hyper-heuristics as a response.

3 | Algorithm Design

Thus far, we have introduced computational problems and algorithms as systematic pro-
cedures to solve them. In the remainder of this dissertation, we will discuss how to design
algorithms for a given computational problem. In the next two chapters, in particular,
we aim to give our reader an overview of how algorithms are currently being designed, in
order to put our own research in this area, and that of others, into a wider perspective. In
this chapter, we focus on presenting a high-level discussion of a wide variety of different
design approaches, while postponing a more in depth treatment to the next chapter. This
chapter is outlined as follows: In Section 3.1, we introduce the Algorithm Design Problem
(ADP) as the problem of finding the best algorithm to solve a given computational prob-
lem. In Section 3.2, we take a step back, discussing what attributes make one algorithm
“better” than another and examining the tension between them. Subsequently, we turn
towards how the ADP is being solved. In Section 3.3, we discriminate different solution
approaches based on the role the human designer is envisioned to play in the process. Here,
we briefly discuss the manual design process, as a prelude to design automation, where we
further distinguish between fully and semi-automated design approaches. In Section 3.4,
we distinguish between pure analytical and empirical approaches, based on whether the
designer uses only a priori information (∼ what is known beforehand) or also a posteriori
information (∼ experience obtained through experimentation). In Section 3.5, we consider
“when” algorithm design takes place, distinguishing between offline (“design before use”)
and online (“design during use”) approaches, discussing their respective strengths, weak-
nesses and the possibility of combining the best of both worlds in a semi-online approach.
Finally, in Section 3.6 we provide a summary of the content covered in this chapter.

69

70 CHAPTER 3. ALGORITHM DESIGN

3.1 The Algorithm Design Problem
In Chapter 2, we have seen that algorithms formalize problem-solving procedures such that
they can be executed automatically. Therefore, when faced with a problem we would like
to solve automatically, we are inevitably faced with another, associated problem: we need
an algorithm to do so.1 In what follows, we briefly characterize this problem, which we
will be referring to as the Algorithm Design Problem (ADP). We will use the term “target
problem” to refer to the problem we want an algorithm for.
The ADP is the problem underlying algorithm design, i.e. it is the problem algorithm

design (attempts to) solve. It is a concept of our own, which we introduce in function
of presenting our own personal perspective on algorithm design in this chapter. A key
feature of this perspective is that we treat algorithm design within the standard framework
of algorithmics, i.e. we view algorithm design as solving a problem: the ADP.
Let us try to make this notion somewhat more concrete. Consider one would like to

solve some problem (e.g. sorting). There are numerous ways (∼ algorithms) to do so,
some of which are better (e.g. exact vs. non-exact, faster, stable vs. unstable, in-place
vs. out-of-place, etc.) than others. In algorithm design, we are interested in finding the
“best” way of solving a target problem (e.g. the best algorithm for sorting sequences).
Conceptually, the ADP is the problem of how to best solve problems.
In the remainder of this section, we define the ADP as a computational problem.

Definition 3.1: Algorithm Design Problem (ADP)

Let AU be the set of all algorithms.a In the algorithm design problem, given a
preorderb � over AU , we are to find a design a∗ ∈ AU : a∗ � a,∀a ∈ AU .

aNote that AU is not restricted to the set of procedures solving some specific target problem,
but rather is a universal set containing “any procedure that solves some problem”. Further form-
alization of this notion is hindered by the lack of a generally accepted, formal definition of what
“an algorithm” is (see Section 2.3). Limiting oneself to a Turing machine model of computation
(see Section 2.3.1.2), one could formalize AU to be the set of all total TMs.

bA binary relation having the reflexive and transitive property.

Remark that we essentially defined the ADP as a subclass of optimization problems with
search space AU . In the context of the ADP, we will also call AU the design space and
elements thereof candidate designs. Note that instances of the ADP solely differ in �,
i.e. the order they impose on the design space. While the target problem does not appear
explicitly in this definition, it is typically one of the factors inducing �, i.e. we prefer

1[Rodriguez et al. 2007] called this problem the “associated problem” in the context of hyper-
heuristics.

3.2. ALGORITHM QUALITY 71

algorithms that perform well for some problem of interest (see Section 3.2). For instance,
if our target problem is sorting, algorithms that actually sort sequences, e.g. selection
sort (see Algorithm 2) will be preferred over algorithms that do not, e.g. trial division (see
Algorithm 1), the bisection method (see Algorithm 3), etc. Formally, we have ∀a, a′ ∈ AU :
a ∈ Aisorta ∧ a′ /∈ Aisorta =⇒ a′ ≺ a, where Aisorta = {a ∈ AU | a(x) = Risorta(x)}.
Finally, remark that the ADP, as formulated above, attempts to model “the problem

we are actually trying to solve when designing algorithms”, independently of whether we,
in practice, know what that problem is, i.e. the actual � is typically not known to the
designer, at least not in an explicit form. As such, this is not the form in which we will be
solving it using computers (see Section 2.4). Rather, automated design approaches can
be viewed as solving the actual ADP by reducing it to some other computational problem.

3.2 Algorithm Quality
As we see it, algorithm design is essentially about “finding the best algorithm to do
something” (see Section 3.1). This raises the question: What makes one algorithm better
than another? Clearly, this is to some extent inherently use case dependent; e.g. if we
want to sort sequences, we prefer sorting algorithms. In Definition 3.1, we did not restrict
these preferences in any way, allowing �’s to be arbitrary preorders. As a consequence,
when looking at preferences across all instances of the ADP (∼ use cases), one could argue
that “all algorithms are equally good” (∼ No Free Lunch, see also Section 3.2.3.3), since
every algorithm will be the best/worst for as many ADP instances as any other algorithm.
However, we argue that for the instances of the ADP we encounter in practice, � is not

arbitrary at all, i.e. algorithms exist which are preferred in more practical use cases than
others. Remark that this directly relates to our “reusability” objective (see Section 1.2),
as these algorithms can be reused in more different settings than others. Next, we discuss
some attributes that make one algorithm more reusable than another (answer Q.A.1).

3.2.1 Performance
An important reason to prefer one algorithm over another is because it “performs” better.
In this section, we examine what exactly this entails. Here, we first briefly discuss per-
formance on a single input, and subsequently discuss performance across multiple inputs.

Efficiency: For a given input x, each algorithm a (TM) determines a sequence of instruc-
tions eax to be executed to obtain an output (see Definition 2.9). Two different algorithms a
and bmay have eax 6= ebx and the time it takes to execute these instructions may vary as well,

72 CHAPTER 3. ALGORITHM DESIGN

i.e. t(eax) 6= t(ebx). More generally, a randomized algorithm a (PTM, see Section 2.6.1) can
have a set of possible executions Eax on a given input x (see Definition 2.25). Its runtime
RTax is a random variable with Pr(RTax ≤ t) =

∑
e∈Eax

pr(e|a, x)[t(e) ≤ t] indicating the
likelihood that a solves x within a time budget T , a.k.a. its Run-Time Distribution (RTD,
[Hoos and Stützle 1998]). All other things being equal, we prefer algorithms which require
less resources. On x, we prefer an algorithm a over another b, if it probabilistically domin-
ates the other: Pr(RTax ≤ t) ≥ Pr(RTbx ≤ t),∀ t. If neither algorithm dominates the other
on x, preferences may be determined by some property of interest of the respective RTDs.
Here, the minimal expected runtime is commonly used, i.e. E[RTax] ≤ E[RTbx].

Efficacy: While efficiency relates to the amount of resources an algorithm requires to
produce outputs, efficacy relates to the desirability of these outputs. Different executions
may lead to different outputs, not all of which may be equally desirable. For example,
non-exact procedures (see Section 2.6.3) return solutions which may be incorrect. In
addition, not all incorrect answers may be equally bad, e.g. in optimization settings
(see Section 2.2) the quality of suboptimal solutions (e.g. # unsatisfied clauses in MAX-
SAT) may differ. Specifically, for a randomized, non-exact, optimization procedure a,
the quality of the solution obtained SQa

x (on some input x) is a random variable with
Pr(SQa

x ≥ q) =
∑
e∈Eax

pr(e|a, x)[f(y(e)) ≥ q], a.k.a. the Solution Quality Distribution
(SQD), where f is the objective function to be maximized.

Per-input performance: All other things being equal, we prefer algorithms which obtain
higher quality solutions, faster: We prefer an algorithm a over another b on input x if

∀ q : Pr(SQa
x ≥ q) ≥ Pr(SQb

x ≥ q) ∧ ∀ t : Pr(RTax ≤ t) ≥ Pr(RTbx ≤ t).

Clearly, this may not hold for every pair of algorithms. For instance, a heuristic optimization
procedure will quickly return a “good” solution, while exact optimizers typically take longer
but are guaranteed to return an optimal solution (see Section 2.7). In general, we will
use p : X × A → R to denote some quantification of per-input performance such that
p(x, b) ≤ p(x, a) if and only if algorithm a performs better than b on x. Remark that p
captures, amongst others, our relative preferences between efficiency and efficacy.

Generality: The generality of an algorithm is its ability to perform well across a wide
range of problem instances. Thus far, we have discussed performance on a single input.
While, an algorithm which performs well on (only) a single input may definitely be of
interest in certain settings, e.g. to automatically find a prime larger than 274207281 − 1,2

2At the moment of writing, the largest known prime number.

3.2. ALGORITHM QUALITY 73

or to automatically generate a proof for P 6= NP, it loses its value as soon as its execution
has completed, i.e. the output is obtained. We will therefore also call such algorithm
“disposable”.3 Generality allows an algorithm to be reused. As motivated in Section 1.2,
our focus in this dissertation will be on “reusable” algorithms.
How do we compare algorithms across multiple problem instances X, i.e. for a given

computational problem (∼ target problem)? All other things being equal, we prefer an al-
gorithm a over another b if it performs better on all inputs, i.e. p(x, b) ≤ p(x, a),∀x ∈ X.
Here again, an algorithm a may not dominate another b across all inputs and for such pairs,
our preferences may be determined in some other way. One measure, which we already dis-
cussed in Section 2.5.1 is worst-case performance, i.e. minx∈X p(x, b) ≤ minx∈X p(x, a).
A downside of this measure is that while it tells you a (theoretical) limit on how bad
performance may be, it may not be representative of an algorithm’s actual performance in
practice. Also, estimating worst-case performance empirically is troublesome. An altern-
ative for worst-case performance is average-case performance:

Definition 3.2: average-case performance

Let X be a set of possible inputs and D : X → [0, 1] a distribution over X. The
average-case performance of an algorithm a is given by o(a) = Ex∼D p(x, a), where
p(x, a) is some measure of performance of algorithm a on input x.

Note that while X specifies the set of possible problem instances, D specifies the likelihood
of actually receiving any of these as input, in practice. A computational problem augmented
with a distribution over its inputs is also known as a distributional problem [Ben-David et al.
1989]. In this work, we will use average-case performance as our measure of generality.

3.2.2 Beyond Performance
Performance is important. However, in what follows, we would like to argue that it
is not “the only thing that matters”. Imagine you are given a choice between (1) a
black box solver and (2) an algorithm, having the same “problem-solving capabilities”, i.e.
performance. Clearly, one would, in most settings, prefer the algorithm, i.e. one is not
merely interested in solving a problem, but also in the underlying logic used to solve it.
This is particularly true in the context of computer science, where one is concerned with
understanding why something performs well/poorly. For instance, to assess the significance
of an algorithmic contribution, not only performance matters: achieving such performance
in a new way (through an untrodden path) has more potential, may lead to novel insights,
inspire others, while doing so reusing prior art provides further evidence for the merits of an

3Adopting terminology introduced in [Bader-El-Den and Poli 2007] in the context of hyper-heuristics.

74 CHAPTER 3. ALGORITHM DESIGN

existing approach. Also, while our black box solver may perform well for some particular
problem, it does not provide any insights which can be used to further improve it or to
solve other problems, i.e. it does not allow (partial) reuse of ideas. Finally, it does not
permit theoretical analysis (of correctness, worst-case performance, etc.).
In [Adriaensen and Nowé 2016a], we argued for the importance of simplicity. In presenting

algorithmic contributions overly complex, the benefits of having the algorithm (rather than
merely a black box solver) are largely lost, as the only way to deal with this complexity,
is to treat such algorithms as black boxes in practice. In Chapter 7, we will discuss this
matter in more depth and present a simple approach to eliminate unnecessary complexity.

3.2.3 Conflicting Criteria?
To summarize, we prefer simple algorithms which require little time (and memory) to
obtain high-quality solutions for a wide range of problems. However, these objectives are
commonly viewed as being strongly conflicting. Indeed, we find that algorithms are rarely
both efficient, effective, general and simple. However, we wish to stress that this does not
imply that such algorithms do not exist. Instead, using contemporary design techniques,
it may simply be extremely difficult to find them (which would imply that we need better
design techniques, or try harder...) In what follows, we have a closer look at the tension
between our objectives. At the end of his section, we summarize our findings.

3.2.3.1 Time vs. Space Efficiency

Efficiency is related to the resources required to execute an algorithm. Thus far we have
focused on one resource: time. However, executing an algorithm requires more than just
time, e.g. it also requires space to store the data to be used in further calculations. In
practice, memory capacity may be limited, or adding additional memory may come at a
cost. Furthermore, it is often possible to trade space usage for computation time and
vice versa, also known as the space-time trade-off [Hellman 1980]. A typical example
is memoization, i.e. the practice of storing and reusing the output of calculations which
would otherwise have to be performed multiple times during a run. Do note that modern
computers tend to need more time to execute memory intensive computations (e.g. due
to the memory hierarchy, [Alpern et al. 1994]) which somewhat counteracts this trade-off.
Obviously, the fact that frequently the fastest known algorithm does not use the least
memory, does obviously not preclude the existence of such algorithm. Let us consider
this problem theoretically: Let P be the class of decision problems which can be solved

3.2. ALGORITHM QUALITY 75

time efficiently (see Definition 2.18), let polyL4 be the class of decision problems which
can be solved memory efficiently and finally let SC be the class of problems for which
a single algorithm exists which is both time and space-efficient [Cook 1979]. One may
wonder whether there exists a problem for which a time-efficient algorithm and a space-
efficient algorithm exists, but no single algorithm that is both time and space-efficient, i.e.
P ∩ polyL 6= SC? This is an open problem and it being false would not imply P = NP.
Put differently, time and space efficiency may not have to be strongly conflicting.

3.2.3.2 Efficiency vs. Efficacy

As we already discussed in Section 2.6.4, there is often a trade-off between the quality of
the results obtained by non-exact algorithms and their runtime. Unless we put lower bounds
on quality, this trade-off is clearly inherent, as an algorithm which simply returns its input
(TM with q0 ∈ F) requires minimal resources (no time and only n space). The notions of
non-exact problem-solving discussed in Section 2.6.3, give rise to the complexity classes
BPP and APX, corresponding to the sets of problems which can be efficiently probably
solved (see Definition 2.28) and approximated up to a constant factor (see Definition 2.29)
respectively. Here again, P ⊂ BPP and P ⊂ APX are open problems. Note that unlike
the space-time trade-off, a negative answer here would imply P = NP. On the other hand,
given positive answers, optimal anytime solvers (see Section 2.6.4) could still exist that at
any point in time return the best solution that can be obtained in that time.

3.2.3.3 Generality vs. Peak Performance

When it comes to human abilities, one often distinguishes between specialists who have
mastered a limited set of skills, and generalists who have dabbled with a wide range of
skills, without really excelling at any one of them, as is for instance captured in the figure
of speech: “Jack of all trades, master of none?”. However, there seem to be exceptions to
this rule, so-called polymaths, or universal (wo)men, who have mastered an exceptionally
diverse skill set. The quintessential polymath is arguably Leonardo da Vinci.
How about algorithmics? As with humans, there is no lack of examples where algorithms

designed for/applicable to specific problems (made-to-measure), outperform more general
(off-the-shelf) alternatives. For instance, to sort sufficiently long sequences of integers
within a limited range, counting sort algorithms (e.g. radix sort) will typically outperform
the more general comparison-based methods (e.g. merge sort). Similarly, convex optim-
ization problems are typically solved more efficiently using dedicated convex optimization

4polyL is the class of decision problems solvable by a deterministic TM (see Definition 2.8) using at
most polylogarithmic space, i.e. O(log(n)k) cells, where n is the input-size and k some finite constant.

76 CHAPTER 3. ALGORITHM DESIGN

methods (e.g. interior point methods [Nesterov and Nemirovskii 1994]) than using more
general black box optimizers (e.g. CMA-ES, [Hansen and Ostermeier 1996]). More gen-
erally, when comparing a limited sample of different algorithms for a given problem, one
often finds that no single algorithm is non-dominated on all problem instances.
What if we could compare all possible algorithms? Does good performance on some

problem instances necessarily come at the cost of performing worse on other instances?
Or does a universally optimal solver exist? It is easy to see that the latter cannot exist: Any
finite subset of problem instances can be solved in O(n), where n is the (input+output)-
size, by an algorithm encoding a table of correct (input, output) pairs.5 However, as an
implication of the time hierarchy theorems [Žák 1983], not all solvable problems can be
solved in O(n). For instance, the problem of deciding whether any given deterministic
TM M on any given input x, halts after performing at most 2|x| moves can be shown to
require worst-case super-polynomial time (/∈ P).

The No Free Lunch Theorem: What if we were to restrict our target problems to those
with an infinite number of instances? What can be said about average-case performance?
In particular, we will discuss the following (as it is particularly relevant to our scope):

“Does there exists a search procedure which, on average, performs better than any other
for the general combinatorial optimization problem?”

The No Free Lunch (NFL) theorem for optimization [Wolpert and Macready 1997] is widely
considered to answer this question negatively. The name of the theorem is derived from
the popular expression “There ain’t no such thing as a free lunch”, used to indicate that
nothing actually comes for free and that there are always hidden costs. In what follows, we
first state the NFL theorem, followed by a critical discussion of its significance.

Theorem 3.1: The No Free Lunch theorem (for optimization)

In the context of this theorem, let

• “optimization algorithm” denote a deterministic search procedure, which eval-
uates all candidate solutions exactly once (complete and non-repeating).

• “optimization problem” denote any combinatorial black box optimization prob-
lem and without loss of generality, we represent an instance 〈S, f〉 as a sequence
f ∈ R|S| such that every fi corresponds to an f(s) for a unique s ∈ S.

5Remark that this also implies that, from a theoretical perspective, there is no such thing as unsolvable
or intractable problem instances. For example, for any finite set of TSP instances (e.g. TSPLIB, [Reinelt
1991]), there exists an algorithm which will produce the optimal tour in O(n).

3.2. ALGORITHM QUALITY 77

• Y (f,m, a) denote the sequence of objective function values observed (∼ solu-
tion quality trace) during the first m evaluations performed by an optimization
algorithm a on the optimization problem instance f .

The NFL theorema states that, for any pair of optimization algorithms a and b, for
any optimization problem F , for any (per-input) performance measure p, for any
1 ≤ m ≤ |f | and for any k ∈ R, the following holds:

HF,m(k) =
∑
f∈F

[k = p(Y (f,m, a))] =
∑
f∈F

[k = p(Y (f,m, b))] (NFL property)

⇐⇒
F is closed under permutation (c.u.p.), i.e. ∀f ∈ F : P f ⊆ F (c.u.p. property)

aThere are many variants of the NFL theorem. Here, we state the “sharpened” version of the
theorem proven by [Schumacher et al. 2001], in the form used in [Igel and Toussaint 2005].

The NFL theorem states that HF,m, i.e. the histogram of anytime performance meas-
urements made after m evaluations on all instances of an optimization problem F , is
independent of the optimization algorithm used, if and only if F is c.u.p. This theorem
implies that if F is c.u.p. then according to any preference relation which is solely a func-
tion of HF,m, every algorithm is equally desirable. In particular, it implies that (assuming
F is c.u.p.) the average solution quality obtained by two optimization algorithms a and b
after m iterations is equal when averaged uniformly across all instances in F .
Now, we will discuss the relevance of the NFL theorem w.r.t. solving the general com-

binatorial optimization problem. Here, there are two key observations to be made:
First, the NFL theorem only applies to combinatorial black box optimization problems,

i.e. the only information passed to the solver for an instance is the search space S and some
means of evaluating f for any s ∈ S. For naturally occurring combinatorial optimization
problems, we often have additional information, e.g. we may know f to be a member of a
given family of functions, which could be passed to/exploited by the solver. At most, the
NFL theorem implies that all solvers treating f as a black box are equally good/bad.
Second, while the NFL-property holds for the general black box optimization problem

(since F = R∗ is c.u.p.), the latter does not directly imply that the average-case perform-
ance of any black box optimizer is equal. Note that general black box optimization is a
computational problem, while average-case performance is defined for distributional prob-
lems (see Definition 3.2), i.e. beyond HF,m, it also depends on the likelihood of actually
being asked to maximize f in practice (i.e. D). The NFL as formulated in [Wolpert and
Macready 1997] only trivially implies equal average-case performance (∼ no free lunch),

78 CHAPTER 3. ALGORITHM DESIGN

under the assumption that D is uniform (D = U(F)), i.e. each f is equally likely.6 Other-
wise, algorithms can achieve superior performance by trading on performance for f ’s which
are less likely to be encountered in practice. If one assumes uniformity for the general black
box optimization problem, i.e. D = U(R∗), one may equally reasonably assume uniformity
for decision problems. In Section 2.3.1.2, p. 32, we discussed that the latter implies that
the likelihood of encountering a decidable problem would be infinitesimal.
In summary, the relevance of the NFL theorem w.r.t. solving the general combinatorial

optimization problem is arguably limited. Even if we were to (artificially) restrict ourselves
to the black box optimization setting, using the NFL to motivate trade-offs between gen-
erality and peak performance is only reasonable under strong a priori assumptions. If one
were to generalize such assumptions to other problem classes (e.g. decision problems),
one could equally (un)reasonably argue that it is not worth trying to solve these problems
in the first place, as they are unlikely to be solvable anyway.

3.2.3.4 Simplicity vs. Performance

In this section, we distinguish and discuss the relation between two kinds of complexity:

Computational complexity: complexity in the sense of “efficiency” (see Section 2.5).

Logical complexity: complexity in the sense of “understandability”.

When discussing the topic of logical complexity with colleagues, we found that while
most agreed with the premise that simplicity is desirable, many were also skeptical when
it came down to actively pursuing simplicity. In general, there was a concern that in
reducing logical complexity, we would lose something “more important”: performance. In
what follows, instead of discussing the relative importance of performance and simplicity,
we will examine the tension between both objectives.
Admittedly, there is no shortage of examples where simple algorithms perform worse than

more complicated alternatives. Take for instance sorting: While sequential algorithms
(e.g. selection sort, insertion sort, bubble sort, etc.) are simpler than divide & conquer
sorting algorithms (e.g. merge sort, quicksort, etc.), the latter tend to perform better for
all but very small input sequences. More complicated hybrids such as Tim sort,7 tend to
perform even better on average. However, as discussed before, this alone does not preclude
the existence of simple and highly performant algorithms which have yet to be discovered.

6[Igel and Toussaint 2005] examined possible relaxations of this uniformity assumption and concluded
that distributions satisfying the necessary conditions are rare for reasonably large problems.

7Tim sort combines merge sort and insertion sort. It is named after Tim Peters who implemented it
in 2002 for use in the Python programming language. It is currently the default algorithm for sorting lists
in Python (list.sort, as of version 2.3) and Java (Collections.sort as of SE 7).

3.2. ALGORITHM QUALITY 79

What can be said theoretically about “the computational power of simple algorithms”,
i.e. what problems can be solved (efficiently) by simple algorithms? Before we can answer
this question, we must first decide what it means for an algorithm to be “simple”. Here, we
will be using the number of control states of a TM (|Q|) as a measure of logical complexity,
even though the argument below is equally valid for alternative logical complexity measures
such as description length. We call a TM C-simple if it has less than C control states,
where C is some finite constant. A key observation here is that the number of C-simple
TMs is finite, for any C. Combining this with the fact that every TM solves at most one
decision problem, only a finite number of problems are solvable by C-simple TMs, for any
C. As P is infinite, there are decision problems which can be solved in polynomial time
(∼ efficiently), but not by any C-simple TM. In summary, there exist problems for which
algorithms with an arbitrarily high logical complexity are needed to solve them (efficiently).
At first sight, this sketches a rather grim picture. However, before jumping to conclusions,

we wish to stress that the result above only implies that there is such a thing as “essential”
complexity. It does not imply that all complexity is essential. On the contrary, we could
complicate any algorithm without affecting its function.8 Also, we would like to point
out that the above result relies on a counting argument similar to the one we used in
Section 2.3.1.2 (p. 32) to show that uncountably many problems cannot be solved by a
TM. While the latter is well-known, it has not led people to question the practical relevance
of the TMs. Therefore, we see no reason to doubt the practical relevance of C-simple TMs
either. The crux is that it is unclear whether problems requiring high logical complexity
are actually encountered in practice. For many seemingly complicated problems, relatively
simple, highly performant algorithms have been found; and it is our opinion that we should
continue to search for them, while being wary of possible theoretical limitations, i.e.

“Everything should be made as simple as possible, but not simpler” - Albert Einstein

3.2.3.5 Summary

While it is trivial to find examples of trade-offs between our objectives (time/space effi-
ciency, efficacy, generality and simplicity) in known algorithms, whether such observations
can be generalized is largely an open problem. Put differently, we did not find conclus-
ive evidence that precludes the existence of algorithms which are non-dominated for all
aforementioned objectives, for any problem of practical interest.
As such, we would like to stress that while it is commonly accepted that one should

be wary of claims of having found (or being able to find) a truly optimal algorithm, one
8In Chapter 7, we will discuss a specific technique for identifying/eliminating “non-essential” com-

plexity.

80 CHAPTER 3. ALGORITHM DESIGN

should be similarly cautious of motivating trade-offs based on a conjectured theoretical
impossibility (e.g. NFL theorem), i.e.

“Keep your eyes on the stars, and your feet on the ground.” - Theodore Roosevelt

3.3 Who is the Designer?
Thus far, in this chapter, we have introduced the Algorithm Design Problem (ADP) as
the problem of finding the best algorithm to solve a given problem (see Section 3.1).
Subsequently, in Section 3.2, we discussed attributes that make one algorithm better than
another, and whether such thing as “the best” algorithm exists. We now turn towards
describing how algorithms are designed, i.e. how the ADP is currently being solved.
As discussed in Section 3.1, instances of the ADP are faced whenever we encounter

problems we would like to solve automatically, using computers. As such, ADPs are
ubiquitous in computer science, and it should come as no surprise that they are being
solved in many different ways. In the remainder of this chapter, we will attempt to present
an overview of this wide array of different design approaches. Here, we will each time
discuss their relative strengths and weaknesses, and emphasize in subsequent sections
those we deem to be the most promising in the context of the design of reusable heuristics
(answer Q.A.2). In this section, we will start by roughly discriminating different approaches
based on the role of the human designer in the design process.

3.3.1 The Manual Approach
To date, algorithms for many real-world problems are predominantly designed manually. In
what follows, we will make a brief attempt to describe “how” humans design algorithms.
Note that we will not cover best practices here, nor will we present tips and tricks which

can be used to become a better algorithm designer. Various books (e.g. [Knuth 1968,
Skiena 1998]) have been written on algorithm design which address these aspects.9 Clearly,
there is no single “manual approach”, different people will approach ADPs differently and
we merely aim to present a rough characterization of a process which we hope most readers
will at least partially recognize as having gone through. We most certainly have. Remark
that while the literature typically describes algorithms (i.e. the outputs) in great detail,
it rarely documents how these algorithms were obtained (i.e. the process). Therefore,

9In Section 2.7, we did present templates (metaheuristic frameworks, see Definition 2.32) which can
be used to design heuristic search procedures for tackling hard combinatorial optimization problems.

3.3. WHO IS THE DESIGNER? 81

the "actual" ADP algorithmhuman "expert"

ad hoc
decisions

evaluation

let's try it!

trial & error

unsatis�ed :(

Figure 3.1: An illustration of the manual, trial & error modus operandi by which
algorithms are commonly designed.

the characterization we present below is mainly based on our own experiences, discussions
with colleagues, and is to some extent inherently speculative and personal.
When tackling a problem, the human designer typically possesses some a priori, analytical

knowledge that allows him to exclude certain solution approaches, and/or he/she might
have a set of algorithmic concepts in mind which could be used to solve it. However, this
knowledge alone is often insufficient to solve the ADP, i.e. to derive a design which is
as good as any other. This is especially true when considering the design of heuristics
(see Definition 2.30) and/or when tackling real-world problems in their natural form (see
Section 2.4.3), rather than well-understood academic problems (e.g. sorting a sequence of
numbers). As a consequence, when designing an algorithm, the human designer is faced
with decisions he/she does not know how to make, which we will collectively refer to as
“difficult” design choices. To make such decisions, the human designer relies on intuition,
mixed with various degrees of a posteriori, empirical knowledge obtained through trial &
error experimentation: He/she will first decide to implement some particular algorithm
instance, as a best guess. Subsequently, he/she will evaluate the resulting implementation
experimentally, and iteratively refine it until satisfactory performance is observed. This
trial & error modus operandi is depicted in Figure 3.1. Remark that this process resembles
a manual search in design space and we will also refer to it as graduate student search.10
Despite the fact that much of the research we performed in the scope of this dissertation
10The term “graduate student descent” was quoted by Holger Hoos to describe a similar modus operandi

in the context of parameter tuning during a tutorial at IJCAI in 2017 (slide 41: http://www.cs.ubc.ca/
~hoos/PbO/Tutorials/IJCAI-17/ijcai-17-tutorial-slides.pdf). A term we believe to be in turn
derived from “the graduate student algorithm”, originating from the data compression community [Nelson
and Gailly 1995], and which essentially boils down to solving a problem by locking a graduate student up
inside a room, and having him try things out until the problem is solved.

http://www.cs.ubc.ca/~hoos/PbO/Tutorials/IJCAI-17/ijcai-17-tutorial-slides.pdf
http://www.cs.ubc.ca/~hoos/PbO/Tutorials/IJCAI-17/ijcai-17-tutorial-slides.pdf

82 CHAPTER 3. ALGORITHM DESIGN

was devoted to investigating “how we can do better” (see Section 1.2), we wish to stress
the fact that the methodology described above has produced highly performant solvers
for many real-world problems. However, we conjecture that underlying these successes
is often a tremendous amount of manual effort (or luck), making this modus operandi
tedious, time-consuming and costly. In Section 7.1, we will argue that it also has a
tendency to produce methods which are overly complex. Furthermore, the process itself
is rarely documented, making it untraceable: It is often unclear what motivated certain
design decisions (natural constraints, expert knowledge, intuition, experimentation, etc.)
and what alternatives were considered. Not only do we, in this way, lose potentially
interesting information and insights that could otherwise be used to design algorithms in
the future, it also makes the process susceptible to personal bias (see Section 1.1, p. 13).

3.3.2 Automated Algorithm Design
Letting computers, rather than humans, design algorithms has numerous potential benefits:
Computers are faster, cheaper and unbiased. However, as discussed in Section 2.3.2,
computers can only solve problems if they are programmed to do so, i.e. given an algorithm
(∼ Lady Lovelace’s Objection [Turing 1950, Section 3.6.6]). As such, having computers
design their own algorithms might come across as somewhat paradoxical. The crux is
that, rather than providing a computer with an algorithm to solve the target problem,
we treat the ADP itself as a computational problem and we provide the computer with
“an algorithm to design algorithms”. There are many ways to formulate the ADP as a
computational problem. To deal with this polymorphism, we adopt a problem-centric
perspective (see Section 2.4.3), where we will view automated algorithm design as solving
the “actual ADP” by reduction, which we will visualize as in Figure 3.2.

the "actual" ADP computational
problem

formulate algorithm interpret
algorithmsolution

Figure 3.2: Reduction diagram illustrating the automated algorithm design approach.

The idea of automating algorithm design is certainly not new and can be traced back to
the origins of the field of Artificial Intelligence (AI) in the 1950s. Ever since, this problem,
in one form or another, has been considered in many different communities. In what
follows, we will briefly describe the approaches taken in some of these communities.

Program Synthesis (PS) is the task of automatically constructing a program that sat-
isfies a given high-level specification [Gulwani et al. 2017]. The “inception” of PS is

3.3. WHO IS THE DESIGNER? 83

commonly attributed to Alonzo Church, who in 1957 formulated the problem of generat-
ing a circuit from mathematical specifications [Church 1963]. In PS, we are usually given a
formal specification of the target problem in some logical calculus as a starting point, from
which an exact algorithm (commonly expressed in a functional or logical programming
language) is automatically derived by means of deduction [Manna and Waldinger 1980].
This deductive approach exploits the analogies between program verification (the task
of automatically verifying whether a given program admits to a given specification) and
program synthesis. In logical programming languages [Flach 1994] (e.g. Prolog), it is
well-known that the logic used for proving that t has some property p, i.e. answer a query
of the form ?- p(t), can also be used for generating a t with property p, i.e. answer a
query of the form ?- p(T), where T is a free or unbound variable. As such, the logic
for proving that an algorithm a solves a problem p, i.e. answer a query ?- solves(a,p)
(program verification), can be used for generating an algorithm which solves p, i.e. an-
swer the query ?- solves(A,p) (program synthesis). Intuitively, we start proving the
correctness of any algorithm A. In order to apply rules of the proof theory, we must make
assumptions about A, effectively constraining the set of algorithms the proof thus far is
valid for. This process continues until we find a proof of correctness and any algorithm
satisfying the set of assumptions made in the process is by construction correct. If we
fail to find an admissible proof, no provably correct algorithm exists. Note that an exact
algorithm may nonetheless exist, and failure to find it a limitation of the proof theory. See
[Basin et al. 2004] for a more in-depth discussion of PS and concrete examples.
In a sense, PS can be viewed as reducing the ADP to a program verification problem

(as illustrated in Figure 3.3); which, in turn, is commonly solved by reduction to a graph
search problem (see Section 2.7.1.1); e.g. a construction tree, where each successor
extends a partial proof by a single step, applying one of the applicable rules.

the "actual" ADP program veri�cation
(with A unbound)

proof of correctness
(+ assumptions on A)

formulate
search in

proof space interpret
algorithm

Figure 3.3: Diagram illustrating the Program Synthesis (PS) by deduction approach.

Note that while this deductive approach to PS returns an algorithm which is provably
correct, this algorithm is in no way optimized for efficiency. Also, the synthesized programs
may be highly complex and difficult to interpret.

Genetic Programming (GP) is another major approach to automated algorithm design
in which one “breeds” a population of computer programs for solving a given target prob-
lem, using the principles of Darwinian natural selection and biologically inspired operations.

84 CHAPTER 3. ALGORITHM DESIGN

Computer simulations of evolution, with individuals modeled as computer programs, were
already performed in the artificial life community in the 1940s [Langton 1997]. In 1950,
Alan Turing, in his seminal paper on “Intelligent Machines” [Turing 1950, Section 7],
alluded to the possibility of using an evolution-like process to evolve such machines. How-
ever, GP as a research community only really took off in 1985 when the first international
conference on genetic algorithms (ICGA) was organized in Pittsburgh and Nichael Cramer
presented what is widely regarded as the first instance of “modern” GP [Cramer 1985].
An approach which was later extended and popularized by John Koza [Koza 1992].
Dropping the metaphors, GP in essence solves the ADP by reducing it to a global function

optimization problem 〈S, f〉 (see Definition 2.4), where the search space S consists of all
valid programs in some programming language, and f is the objective function quantifying
the quality of any program. This optimization problem is subsequently solved using a
Genetic Algorithm (GA, see Algorithm 7). Figure 3.4 illustrates this approach.

the "actual" ADP discrete function
optimization problem

formulate
e.g. a genetic

algorithm in GP

interpret
algorithmsolution

optimizer

Figure 3.4: Diagram illustrating the genetic programming approach.

A GA takes numerous parameters. For instance e, i.e. the procedure to be used to evaluate
the quality of an algorithm f . In Section 2.7.1.1, we already briefly discussed the choice of
e in general. In Section 4.1.2 (p. 106), we will discuss the choice of e in the context of the
ADP. Beyond e, a GA takes numerous other parameters which describe the search space S;
e.g. the initial population V0 (or alternatively an initialization operator) and evolutionary
operators such as mutation (mutate), recombination (recombine) and selection (select).
In the context of GP, the operators used are often an integral part of the GA, which
operates on specific program representations. To use such a GA, we must thus represent
our candidate algorithms accordingly. Here, tree-based representations [Cramer 1985] are
most common, which lend themselves naturally to representing programs in functional
programming languages. If this language is Turing complete, S is countably infinite, and
〈S, f〉 a discrete, but no combinatorial, optimization problem. However, despite us having
introduced GAs in the context of combinatorial optimization, GAs do not rely on S being
finite and can be applied nonetheless. Remark that the same holds for virtually any of the
heuristic search techniques discussed in Section 2.7.2 and while the GP community has
historically been biased towards using evolutionary inspired methods, any metaheuristic
could in principle be applied to 〈S, f〉. A concrete example of this is “Ant Programming”
[Boryczka 2002], using Ant Colony Optimization (ACO) instead of GAs.11

11We are skeptical of this metaphoric terminology (see also Section 2.7.2.4), as similar conduct in the

3.3. WHO IS THE DESIGNER? 85

Finally, we briefly contrast GP with PS (by deduction). In GP one performs a direct
search in program space, while PS does so indirectly by searching the proof space instead.
The objective function f in GP can capture a much wider notion of quality (�) than mere
correctness. As a consequence, GP is applicable to a wider range of ADPs than PS. Note
that this includes the design of heuristics, since the latter are non-exact by definition.12
Finally, note that GP can also obtain provably exact algorithms (e ≡ program verification).
That being said, performance is normally measured empirically in GP; e.g. by executing the
candidate program on a given set of inputs and verifying whether its outputs are correct.

Supervised Machine Learning (ML) is the task of inferring a function f : X → Y

from labeled training data D ⊆ X × Y [Mohri et al. 2012]. Here, D is typically a set of
correct input/output pairs, i.e. D ⊆ {(x, y) |x ∈ X ∧ f(x) = y}. This task is also known
as classification/regression if the range of f is finite/real (R) respectively. ML techniques
typically take D as input and return a predictive model M : X → Y minimizing some
notion of error w.r.t. f . Supervised ML is naturally viewed as solving an ADP with target
problem (X, f) (i.e. a function problem, see Definition 2.2), where the predictive model
corresponds to an algorithm (prediction ≡ problem-solving), as illustrated in Figure 3.5.

the "actual" ADP supervised learning
problem

formulate
machine
learning interpret

algorithmpredictive model

Figure 3.5: Diagram illustrating the supervised machine learning approach.

In practice, supervised ML is not commonly considered an algorithm design technique.
This because traditional ML techniques (e.g. support vector machines, random forests,
neural networks, etc.) are arguably not well-suited to “learn” the problem relation of typ-
ical computational problems (e.g. sorting, prime factorization, etc.). To see why, we briefly
characterize how ML techniques work and their limitations. The crux of predictive models
is their ability to generalize, i.e. predict f(x) for (x, f(x)) /∈ D. To do so, these models
necessarily make assumptions about f which may cause an inductive bias if they are wrong
[Mitchell 1980]. For instance, parametric ML approaches (e.g. linear regression) explicitly
assume that f is a member of some parametrized family of functions F (e.g. linear func-
tions). Models making stronger a priori assumptions about f will typically need less data
to obtain similarly accurate estimates and be less sensitive to the particular subset used for
training, i.e. have lower variance. This tension between both sources of prediction errors is

future will doubtlessly lead to terms like Bee, Firefly, . . . Programming, causing unnecessary fragmentation.
12The term (generation) hyper-heuristics [Burke et al. 2013, Section 5] has recently become associated

with applications of GP in this context.

86 CHAPTER 3. ALGORITHM DESIGN

known as the bias-variance trade-off. When looking at classical ML models, we find that
most make relatively strong assumptions, i.e. are highly specialized. For instance, most
ML models will make a smoothness assumption of some sort, i.e. f maps similar inputs to
similar outputs, for some notion of similarity. While this assumption is reasonable for most
classical machine learning tasks (e.g. predicting the value of a house based on features
such as its age, # rooms, # floors, surface area, etc.), the same does not hold for typical
computational problems (e.g. finding the least prime factor), at least not for any straight-
forward measure of similarity. Due to these difficulties, the supervised ML community has,
in the past, rarely targeted typical computational problems. However, recent advancements
in representation learning [Bengio et al. 2013], suggest that this may be about to change.
So-called “deep learning” techniques [LeCun et al. 2015] have recently been shown capable
of automatically inferring complex similarity relations on natural representations in various
real-world application areas. While at first sight diverse, closer inspection reveals that
most successes involve applications of convolutional/recurrent Neural Networks (NNs)
to problems where inputs exhibit spatial/temporal patterns (e.g. images, signals, etc.).
More relevant in the context of the ADP are Neural Turing Machines (Neural TMs)
[Graves et al. 2014]. Conceptually, this model assumes that f is computable by a (simple)
Neural TM: a type of recurrent NN having access to an external memory source (∼ TMs).
A key feature of Neural TMs is that they are differentiable end-to-end (∼ NNs), allowing
them to be trained efficiently (using e.g. gradient descent). Intuitively, we can derive
analytically how to modify any Neural TM to improve its accuracy.
Finally, we briefly relate this approach to GP and PS. While in deductive PS we are given

a formal specification of our target problem as input, ML methods are (only) given a set of
correct input/output pairs and are in that sense more similar to “inductive” PS approaches,
e.g. as proposed in [Hamfelt et al. 2001]. While inductive approaches are easier to apply
to complex problems, allow us to optimize fuzzy notions of efficacy, they cannot guarantee
correctness for target problems with infinite instances. Similar to GP, training a Neural
TM using gradient descent can be viewed as a direct search in program space. Unlike GP,
which uses a GA, gradient descent is a hill climber whose step function exploits analytical
gradient information. While the latter is typically a superior intensification mechanism, it
may get stuck in local optima. See Section 2.7.2.2 for a discussion of this issue and how
it can be addressed.

3.3.3 Semi-automated Design
In the automated approaches we discussed thus far, the ultimate goal was to minimize
the role the human plays in the design process. A computer is to design algorithms from
scratch, i.e. all decisions on “how to solve the problem” are left to the computer, and the

3.3. WHO IS THE DESIGNER? 87

manual automatic semi-automatic

little

plenty

design approachesWho (human/computer)
makes which decisions

in each approach?

how much
expert

knowledge
is available

to make
the design
decision?

Figure 3.6: The role of the human/computer designer in the different design approaches.

design space consists of all possible algorithms. Beyond the obvious benefits of reducing
human effort and its associated costs; another motivation is that this freedom allows
computers to discover truly novel and optimal algorithms, without letting limitations of
human creativity/knowledge bias or restrict the computer’s creativity/abilities [Colton and
Wiggins 2012]. However, these fully automated approaches have thus far failed to scale
up to complex problems. Also, in fully eliminating the human designer, they lose any
knowledge he/she might possess w.r.t. solving the problem, which he/she uses to guide
his/her manual search in program space, e.g. exclude certain solution approaches.
These observations have given rise to what we will call semi-automated approaches to

algorithm design. Semi-automated approaches distinguish themselves in that they attempt
to maximally utilize expert knowledge to prune the design space a priori. Put differently,
only difficult design decisions are left open and made by (with the help of) computers. This
approach was recently independently proposed/advocated in different articles [Ansel et al.
2009, Hoos 2012, Adriaensen et al. 2014a] as an alternative to, and golden mean between
the manual and fully automated approaches. Figure 3.6 contrasts the three approaches.
In semi-automated design “automation begins where expert knowledge ends” and it is this
use of human “expert” knowledge that allows it to solve problems traditionally out of reach
of fully automated approaches.
In the remainder of this section, chapter, and dissertation, we will therefore focus on semi-

automated methods. However, this is a rather superficial restriction, as “when exactly a
design decision is considered difficult” is a fuzzy concept, i.e. there are many levels of
automation (e.g. [Hoos 2012] distinguishes five) ranging from manual to fully automated

88 CHAPTER 3. ALGORITHM DESIGN

design. In addition, while we discussed GP and PS in their original fully automated
philosophy, aforementioned scalability issues have given rise to semi-automated variants
which support the injection of expert knowledge. More generally, we resort to human
intelligence to compensate for the contemporary limitations of artificial intelligence. Note
that this is a trend we also observed in other areas of AI, e.g. the Reinforcement Learning
(RL) community [Brys 2016]. On the other hand, we also observed how advancements
in hardware and/or AI technology can cause shifts in the opposite direction, e.g. deep
learning which led to Neural TMs discussed in the previous section.
From a reduction perspective, semi-automated approaches can be viewed as solving an

ADP by manually reducing it to an easier problem which is solved automatically. This
reduction often involves constraining the design space in one form or another, where the
human designer will attempt to retain high quality algorithms, while eliminating inferior
ones. In what follows, we will describe some communities solving such “constrained”
ADPs, i.e. considering only a subset of all algorithms (⊂ AU) as candidate designs.

Algorithm Selection (AS): When considering a limited sample of algorithms A solving
some target problem, we find that often no single algorithm instance performs best on
all problem instances (see also Section 3.2). This observation gives rise to the following
problem: “Given A, which algorithm instance should we use to solve which problem in-
stances?”. This problem is known as the Algorithm Selection Problem (ASP) and was
first formalized as a computational problem in [Rice 1976, pp. 3]. In a nutshell, in the
ASP we are given (some means of collecting) performance observations for each algorithm
instance a ∈ A on a subset of problem instances x ∈ X and are to find a function of
the form X → A, called a selection mapping, relating each problem instance x with the
algorithm instance performing best on x. Remark that in the context of the ADP, the res-
ulting selection mapping s is subsequently interpreted as a portfolio solver [Leyton-Brown
et al. 2003] which given an input x, first computes a = s(x), subsequently computes
y = a(x) and finally returns y. Despite being formalized over four decades ago, it is only
in the last two decades that the ASP has received widespread attention.13. Why? First,
the algorithm selection problem was at that point “independently” rediscovered by [Fink
1998]. Second, [Leyton-Brown et al. 2003] brought the ASP (as formulated by John Rice
in 1976) to the attention of a wider AI audience, and proposed the use of traditional ML
techniques to tackle it. This approach led to numerous successes, most notably SATzilla
[Xu et al. 2008], a portfolio solver selecting between various state-of-the-art solvers for the
boolean satisfiability problem (SAT, see Section 2.2.1), which won multiple (gold) medals

13At the time of writing, Google Scholar™ lists 740 citations of [Rice 1976], with only 24 thereof by
articles published before 1998.

3.3. WHO IS THE DESIGNER? 89

at the 2007 and 2009 SAT competitions.14 Recently, [Bischl et al. 2016] presented the
Algorithm Selection library (ASlib), which facilitates comparisons between different ASP
solvers (also called portfolio builders) and which we believe will stimulate future research.15
Note that the research in this area generally treats algorithms as black boxes, assumes no
a priori knowledge about the relations between different algorithm instances and considers
scenarios in which we are to choose between a few, seemingly unrelated solvers.16 Also,
as (efficiently) predicting the best algorithm a priori is challenging, one typically settles
for non-exact solutions and compares the performance of the portfolio solvers obtained to
that of the Virtual Best Solver (VBS), i.e. an oracle solver executing the best algorithm
on each instance.

Algorithm Scheduling: When considering a set of fixed budget, or anytime algorithms
(see Section 2.6.4), we are not restricted to selecting any one of these, i.e. we can
allocate resources more flexibly than is considered in the ASP. For instance, assume we
are given 100 seconds to solve our problem and two algorithms a1 and a2. In the ASP,
we would run either a1 or a2 for 100 seconds. However, one could also run both for
50 seconds. In fact, if ai is randomized, it may make sense to run ai twice for 50
seconds. We will call such allocation of resources to algorithms an algorithm schedule,17
and the problem of determining the best schedule for our target problem, the algorithm
scheduling problem. Remark that while the best algorithm schedule never outperforms the
best algorithm instance on any given input, it may, however, have superior average-case
performance across all instances. This problem was first extensively treated in [Gomes
and Selman 2001] and subsequently the community developed largely in parallel with the
ASP community. The main difference is that the former focuses on selecting average-case
optimal schedules (as opposed to that of single solvers) for a target distributional problem
(as opposed to on a per-instance basis). However, research has been performed at the
intersection of both communities [Lindauer et al. 2016], conditioning resource allocations
on features of the specific problem instance that needs to be solved, i.e. solving the
hybrid per-instance algorithm scheduling problem. Remark that since the best algorithm
schedule never outperforms the best algorithm instance on any given input, a portfolio
solver selecting algorithm schedules will never outperform the VBS. However, in many

14http://www.satcompetition.org/
15ASlib supported the ICON Challenge on Algorithm Selection (in 2015) and the Open Algorithm

Selection Challenge (OASC) in 2017, which were the two first general competitions for portfolio builders.
16The number of alternatives ranged from 5 to 31 in the 11 scenarios used during OASC 2017.
17In the community, algorithm schedules are also commonly referred to as algorithm portfolios, due

to the similarities between the concept of investment portfolios in economics [Huberman et al. 1997].
However, to avoid possible confusion with the term portfolio solver [Leyton-Brown et al. 2003] used in
the ASP community, we will refrain to do so.

http://www.satcompetition.org/

90 CHAPTER 3. ALGORITHM DESIGN

scenarios, it is difficult to accurately predict which algorithm instance (or schedule) will
perform best on a given input. For instance, we may know too little about our input, i.e.
sufficiently discriminative features might not be available, or they might be too expensive to
compute. Remark that this uncertainty is also inherent in scenarios where solvers exhibit
stochastic behavior (e.g. randomized algorithms). While the same holds for selecting
algorithm schedules, in executing multiple algorithms, we hedge our bets, reducing the cost
associated with making wrong decisions. These challenges have also motivated dynamic
algorithm scheduling approaches where, instead of committing to a certain schedule prior
to execution (i.e. statically), we start execution and make future allocation decisions based
on the observations made during the execution thus far (i.e. dynamically).18 The crux
is that during execution more information becomes available which can be used to make
more informed decisions. In scenarios with inherent uncertainty, an algorithm executing
the best dynamic schedule may very well outperform the VBS. For instance, [Horvitz et al.
2001] monitored a set of features during the initial phase of the execution of a solver and
showed how this information can be used to train a classifier to accurately classify runs
of that solver as long or short. In [Kautz et al. 2002] a dynamic restart schedule based
on this model was presented. Another example is [Gagliolo and Schmidhuber 2006] which
divides execution in multiple time frames and dynamically decides, for each time frame,
about the relative allocation of resources to the algorithms in the portfolio.

Algorithm Configuration (AC): In algorithm selection (scheduling) we consider the fol-
lowing scenario: We are to solve a (distributional) target problem and are given multiple
solvers for doing so. A closely related scenario is encountered when we are given a single
solver, but that solver has multiple configurable parameters/components, e.g. a metaheur-
istic framework. As discussed in Section 2.3.3 such algorithmic framework can be seen as
a family of algorithms, each configuration corresponding to a single algorithm instance.
To use such framework, we must configure it appropriately, i.e. choose a configuration.
This problem is known as the “Algorithm Configuration Problem” (ACP). Arguably, the
first treatment of the general ACP as a computational problem was [Birattari et al. 2002],
proposing the F-Race procedure as a solver (called a configurator). Subsequently, a vari-
ety of different approaches to the ACP were explored, resulting in a number of prominent
configurators, e.g. ParamILS [Hutter et al. 2007b, Hutter et al. 2009], iRace [Balaprakash
et al. 2007, López-Ibánez et al. 2011], GGA [Ansótegui et al. 2009] and SMAC [Hutter
et al. 2011] (see Section 4.1.2, p. 115, for a more detailed discussion). Remark that the
configuration setting can be viewed as a special case of the algorithm selection setting,
where algorithm instances are represented as configurations. Vice versa, the latter can

18Some authors use the terms offline/online instead of statically/dynamically. However, as these terms
refer to very different concepts in the ML community (see Section 3.5.2), we will refrain to do so.

3.3. WHO IS THE DESIGNER? 91

be viewed as configuring a single categorical (procedural) parameter. One property that
makes the configuration setting particularly challenging is the fact that the configuration
space Θ grows exponentially in terms of the number of parameters. Furthermore, a single
parameter with a continuous domain gives rise to an uncountably infinite algorithm space.
Therefore, the ACP community, unlike the algorithm selection community, has focused on
techniques capable of handling large/infinite algorithm spaces. To do so, these techniques
rely on the assumption that the performance of two similar configurations (e.g. having
similar values for most parameters) are positively correlated. On the other hand, the ACP
community has traditionally been concerned with finding a single configuration maximiz-
ing average-case performance across a set of problem instances, as opposed to selecting
the best configuration on a per-instance basis, as is considered in the ASP community.
However, here again, research has been performed at the intersection of both communities
[Hutter and Hamadi 2005, Kadioglu et al. 2010, Xu et al. 2010], conditioning the choice
of configuration on features of the specific problem instance that needs to be solved, i.e.
solving the hybrid per-instance algorithm configuration problem. In analogy to our discus-
sion in the previous paragraph, it may be difficult to predict which configuration performs
best prior to execution. In addition, it has been shown that varying the value of certain
parameters over the course of an execution may be beneficial (e.g. lowering the temperat-
ure parameter in the Simulated Annealing (SA) framework). This has motivated parameter
control strategies [Eiben et al. 2007, Karafotias et al. 2014] which, instead of fixing the
values of parameters before execution (i.e. statically), vary the value of parameters during
the run of the algorithm (i.e. dynamically).

Optimizing Compilers: As discussed in Section 2.3.2, these days we describe algorithms
in high-level programming languages, e.g. Java, C++ , Python, etc. While easier to write
and portable; an algorithm in this form (source code) cannot be understood by any (phys-
ical) machine, i.e. it must be translated to machine code. This translation is commonly
performed automatically using tools called compilers. Typically, there are many possible
translations to machine code, not all of which are as good. In what follows, we will use
the term optimizing compiler to refer to those compilers that not merely translate source
to machine code, but actively try to optimize the quality of the resulting executable in
the process. Clearly, such optimizing compiler can be viewed as automatically solving a
constrained ADP. This also implies that, unless one programs in machine code, the pre-
dominant “manual” design approach described in Section 3.3.1 actually involves the use of
automated tools. However, these days their use is rarely perceived as design automation.
Perhaps because these tools are integrated into the programmer’s workflow to the extent
he/she is no longer aware of using them. In [Parnas 1985] it has been noted that what
is considered automatic programming (design automation) has changed over time. In the

92 CHAPTER 3. ALGORITHM DESIGN

1940s the term was used to describe automation of the manual process of punching pa-
per tape. Later it was used to refer to high-level programming languages19 and currently
the term is predominantly associated with fully automated approaches such as PS and
GP. These observations led David Parnas to conclude that ”automatic programming” has
always been a euphemism for programming in a higher-level language that was available
to the programmer at the time. Remark that the semi-automatic programming paradigm,
proposed independently in [Ansel et al. 2009, Hoos 2012, Adriaensen et al. 2014a], does
not (only) advocate increased automation, but rather (to prioritize) the automation of
these design decisions which are difficult for the human designer to make. More generally,
they attempt to give the programmer full control over which decisions he wants to make or
not. For instance, a system expert may be able to make “low-level” design decisions which
are made by most modern compilers (e.g. whether to inline a certain function call), while
he/she may be uncertain about “high-level” design decisions (e.g. choice of sorting al-
gorithm) which contemporary compilers cannot make. To better understand the limitations
of traditional programming languages, we will briefly discuss how their optimizing com-
pilers operate. Optimizing compilers are instances of Search-based Software Engineering
(SBSE), a term coined in [Harman and Jones 2001] to denote the collection of techniques
applying search procedures (see Section 2.7) to automate part of the software engineering
process. SBSE also includes other forms of program optimization, e.g. automated refact-
oring. These can be viewed as solving program optimization problems by reducing them
to graph search problems (see Section 2.7.1.1) where vertices correspond to programs
(v0 the original program) and edges to program transformations. Here, traditionally, only
transformations are applied which (1) retain functionality (i.e. same output for any given
input) and (2) improve the efficiency of the program. In standard optimizing compilers,
whether a transformation satisfies (1) and (2) is evaluated analytically, e.g. through a
combination of static code analysis and hard-coded transformation rules, and does not
involve actually executing the program. As discussed before, it is difficult to determine
a priori whether a pair of programs is functionally equivalent and if so, which of the two
is more efficient. This results in a sparsely connected graph, where the set of reachable
programs is small. Also, functionality preserving transformations are overly restrictive; e.g.
do not permit other correct outputs, or optimizing the efficacy of non-exact procedures.
It is our belief that the key to enabling a more flexible, higher-level of programming is
complementing this analytical with empirical information, i.e. compilers that collect and
learn from performance data. An initial example of such a compiler can be found in
Petabricks [Ansel et al. 2009], a programming language extension (for C++ and C) which
provides language constructs that allow programmers to express design choices (and their
alternatives) in code, i.e. making algorithmic choice a first-class citizen. Note that such

19In fact, one of the first high-level programming languages was called “Autocode”.

3.4. WHAT INFORMATION DOES THE DESIGNER USE? 93

specification enables transformations beyond simple functionality preserving ones. Next
to this program, the user provides the compiler with a performance measure and a set
of representative training problem instances. The compiler will subsequently determine
experimentally which decisions perform best for which input sizes.20 A similar language
extension (for C++ and Java) was proposed in [Hoos 2012], where first a source-to-source
compiler (which they call a weaver) transforms the program with open design choices into
an ordinary parametrized program, which is subsequently configured automatically.

3.4 What Information Does the Designer Use?
In this section, we will discriminate design approaches based on the kind of information
the designer uses in solving the ADP. Here, we roughly distinguish between analytical and
empirical approaches, using a priori and a posteriori information, respectively.

3.4.1 Analytical
Pure analytical approaches only use a priori information: What is known or can be derived
by means of logical reasoning. Intuitively, a priori information is “whatever can be said
about candidate designs without actually using them”. For example, we know that selection
sort (see Algorithm 2) sorts any sequence of n numbers correctly, and will need exactly
(n−1)n

2 comparisons to do so. Pure analytical approaches are predominant in the program
synthesis and optimizing compiler communities.
However, the availability of this kind of information is often limited. In particular, it is

difficult to say a priori which of two algorithms will perform better on an input, let alone
across a set/distribution of such instances. To do so nonetheless, the designer will (1)
collect additional a posteriori information (see next section) and/or (2) make assumptions.
For example, optimizing compilers commonly assume that certain code-transformations
will result in more efficient programs. Clearly, faulty assumptions, may have a detrimental
impact on the performance of our design method.

3.4.2 Empirical / Simulation-based
Empirical approaches, use a posteriori information: Experience obtained through experi-
mentation. For instance, following an empirical approach, the designer would use both al-
gorithms and justify his/her beliefs about their relative performance based on his/her obser-

20Petabricks was later extended to support design decisions conditional on arbitrary, programmer-
specified features of the input [Ding et al. 2015] (∼ algorithm selection).

94 CHAPTER 3. ALGORITHM DESIGN

vations (e.g. the time they took, their output(s), etc.). As empirical approaches typically
involve algorithm execution, we will also commonly refer to them as being simulation-based.
Simulation-based approaches are predominant in the genetic programming, algorithm se-
lection/scheduling/configuration communities.
However, this empirical/simulation-based approach has limitations of its own. For ex-

ample, collecting experimental data (involving numerous algorithm executions) may take
a lot of time. Also, we have no guarantees that the observations we make can be gen-
eralized. Remark that while empirical approaches cannot prove general statements, e.g.
“algorithm a is correct”, a single observation can disprove them. In that sense, observa-
tions not falsifying a theory, are often seen as supporting it. Also, in some settings, the
use of statistics may allow us to derive “how likely” a theory is to hold, given the data.

3.4.3 Who Uses What Information?
In summary, the designer should attempt to maximally exploit both sources of information.
Recall that our focus, in this work, will be on semi-automated design (see Section 3.3.3).
Here, there are two designers: one human, the other machine. Collecting and interpreting
experimental data is time-consuming, tedious, requires little ingenuity, and is as such an
obvious candidate for automation. In contrast, the human designer possesses a wealth of
“knowledge” which may be difficult to encode into a computer program, which he should
use in the reduction, e.g. to constrain the design space.

3.5 When Does Design Take Place?
In this section, we will discriminate different (simulation-based) design approaches based
on when the design takes place. Here, we roughly distinguish between two methodologies,
which we will denote the offline and online approach, respectively. While the former is
probably the most common, examples of both can be found in most of the communities
discussed in Section 3.3 and beyond, albeit the terminology used may vary. We discuss the
relative strengths and weaknesses of both approaches and characterize a third semi-online
approach which we argue to be preferable in many practical settings.

3.5.1 Offline
In the offline setting, the algorithm is designed before it is being used, i.e. “solving the
ADP” precedes “using the solution”. In simulation-based approaches, in particular, we have
an initial training phase during which the “best” design is determined based on an initial

3.5. WHEN DOES DESIGN TAKE PLACE? 95

subset of training instances, after which this design is used for all further problem instances.
For example, the following workflow is prototypical for offline algorithm configuration:

1. One is given a parametrized algorithm.

2. One collects a set of problem instances X ′ representative for those one would like
to solve in practice, i.e. X ′ ∼ D.

3. One determines a configuration which performs well on X ′.

4. One uses this configuration to solve further problem instances.

Various factors may make this offline approach infeasible in practice. First, it might be
difficult to obtain a sufficiently large set of representative training inputs. Furthermore, if
performance depends on it, one must also have access to a representative execution en-
vironment (e.g. machine). Second, as simulation-based approaches are typically resource-
intensive, the training cost may outweigh later gains from using a more efficient design.
Also, as these methods are generally at best asymptotically correct (see Section 2.6.2)
there is no natural end to this training phase, making it difficult to decide “when we have
trained enough”. After training, the design does not change anymore, it is not modified
to account for possible changes in the usage context (D, execution environment, etc.) or
to take advantage of further experience gained while using it.

3.5.2 Online
Aforementioned shortcomings of the offline approach have motivated an online (or lifelong)
learning approach which contrasts itself by continuously refining the design “while it is
being used”.21 In its most literal interpretation, we consider a sequence of problem instances
we would like to solve, each of which must be solved exactly once, in order, and we wish
to minimize the total cost associated with doing so. In the online approach, we further
discriminate between

cross-input learning methods which refine the design after solving a problem instance.

within-run learning methods which refine the design while solving a problem instance.

Intrinsic to the online approach is an exploration vs. exploitation trade-off. While explor-
ation is essential to refine the design, it also comes at a cost, i.e. using a design which
is probably worse. In the offline approach, exploration is restricted to the training phase,

21Remark that, by this definition, only simulation-based approaches can be used in this setting.

96 CHAPTER 3. ALGORITHM DESIGN

where errors are permitted.22 Finally, the fact that each problem instance can be solved
only once complicates comparison between designs.23

3.5.2.1 Learning Algorithms

Remark that if we embed an online design process into the design itself, the system as a
whole may be viewed as a learning algorithm which gets better at solving problems with
experience. Such learning algorithm can be applied to a wide variety of usage context,
and will automatically adapt to them over time. This is clearly an aesthetically pleasing
concept, and online design techniques are often presented in such an integrated form. In
recent years, many “learning” variants of well-established algorithms have been proposed;
E.g. TS [Battiti and Tecchiolli 1994], SA [Ingber 1996], GA [Harik and Lobo 1999], ACO
[Randall 2004] and many more. Most commonly, these learning variants replace some
parameters of a framework by embedded parameter control strategies which dynamically
adapt their values. Adjectives commonly associated with such methods are “dynamic”,
“adaptive”, “reactive”, “learning”, “self-tuning”, “parameterless”, “off-the-shelf”, “out-of-
the-box”, etc. A somewhat comprehensive overview of this area of research, which includes
selection hyper-heuristics (see Section 2.7.2.5), can be found in [Battiti et al. 2008]

A critical perspective (opinion): We are personally rather skeptical about this trend.
First, we feel that the focus on integral solutions (self), encourages an unnecessarily
tight coupling between meta-optimization, dynamic decision mechanisms and algorithm
specific aspects. Second, the vast majority of these techniques do not implement cross-
run learning, i.e. they do not transfer experience across runs. Dropping any learning
metaphors, they are entirely ordinary algorithms. Finally, often ‘techniques’ make bold
claims, yet it is often unclear whether performance gains compared to default parameter
values, are due to the fact that they over the course of the execution (1) use multiple
different values (∼ exploration), (2) use values they learned work well (∼ exploitation) and
this (a) for a specific input, or (b) for the specific dynamic execution states encountered.
Two examples:

• [Karafotias et al. 2014] uses RL techniques to control numerous parameters of an
EA. He shows that the RL approach outperforms the default configuration, yet a

22Clearly, the choice of the duration of this training phase presents a similar trade-off.
23For instance, the blocked evaluation strategy which we will discuss in Section 4.1.2, p. 109, cannot

be applied.

3.5. WHEN DOES DESIGN TAKE PLACE? 97

random parameter adaptation scheme was shown to perform nearly as good 24

• Reactive Tabu Search (RTS) [Battiti and Tecchiolli 1994] is a learning variant of
Tabu Search (TS, see Section 2.7.2.2) which dynamically adapts the tabu tenure
parameter. [Mascia et al. 2014b] presents an empirical investigation of “what RTS
actually learns” and found evidence for (2a), but none for (2b). [Mascia et al. 2014b]
also shows that similar performance gains can be obtained by setting the tabu tenure
parameter statically, conditioned only on features of the specific input.

In summary, these approaches risk crossing the fine line between “parameterless” and
“hard-coding ad hoc design decisions” and between “integrating design automation tech-
niques” and “manually designing an algorithm”. This gives rise to the question: Can these
methods even be considered design automation? We will not give a definite answer here,
but independent of the answer, methods lacking cross-input transfer, (at best) design
disposable algorithms and are therefore not the focus of our dissertation.

Generation vs. selection hyper-heuristics (revisited): In Section 2.7.2.5, we have
pointed out that generation and selection hyper-heuristics are, at first sight, two very
different concepts, the former being an automated design technique, the latter an algorithm
for our target problem. However, these concepts may overlap in the context of learning
algorithms (without cross-input transfer) which can both be viewed as (A) “an algorithm
for our target problem” and (B) “designing an algorithm for a target problem instance”. On
the one hand, selection hyper-heuristics are often viewed as learning online how to select
search operators. On the other hand, generation hyper-heuristics are frequently used to
design a heuristic for only a single problem instance. As doing so, using a simulation-based
technique (e.g. GP), requires solving this instance multiple times, it is only logical to also
keep track of the best solution found thus far and return it together with the best design.
However, in this setting, we argue that typically the solution, and not the disposable design,
is of actual interest. This is why we will tend to view such methods as (A) rather than
(B) in this dissertation; e.g. we characterized selection hyper-heuristics as just another
metaheuristic in Section 2.7.2.5. Note that various (other) metaheuristics could also be
viewed as designing disposable algorithms. For instance, ACO could be adapted to return
anytime a simple stochastic construction heuristic based on the current pheromone matrix.

24[Karafotias et al. 2013] argued for the importance of comparing to random adaptation schemes to
help distinguishing between (1) and (2). This can be seen as an instance of accidental complexity analysis
(see Section 7.2), a practice we have advocated in [Adriaensen and Nowé 2016a] and which we will discuss
and illustrate in Chapter 7.

98 CHAPTER 3. ALGORITHM DESIGN

3.5.3 Semi-online
While the offline approach may sometimes be impractical, we believe that true online
learning is again overly restrictive and that often what we will call a semi-online approach
suffices in practice. More specifically, in practical settings where:

1. We can solve problem instances multiple times.

2. Cheap resources are available, e.g. an idle processing unit.

For instance, consider a scenario in which one cares about minimizing response time:
When we ask the system to solve a problem we want a prompt and high-quality result.
On the other hand, there is also time in between requests (e.g. overnight) during which
computational resources are readily available, i.e. cheap.
In the semi-online approach, time/quality critical requests are always served using the

best-known design, while cheap resources are allocated to finding better designs. Like
in the offline setting, we maintain a strict separation between design (exploration) and
use (exploitation). Similar to the online setting we continuously refine the design over its
lifetime, possibly adapting to changes in usage context.
In what remains, we will argue that in practical settings satisfying (1) and (2), “online”

is not the property we are looking for, but rather “anytime” (see Section 2.6.4), i.e. at
any point in time we can query the design process for the best design found thus far.

Offline anytime → semi-online: We will do so by showing that every anytime offline
approach can be transformed into a semi-online approach, as follows:

1. start the anytime offline design process in a separate thread.

2. for each request to solve x (asynchronous):

(a) obtain the best-known design abest (anytime solution) from the design process.
(b) solve x using abest.
(c) return the solution obtained to the client.
(d) add x to the set of training inputs and (optionally) update experimental data

(experience) to include the observations made in 2b.

Following this approach, all requests will be handled using the best design found thus far,
while continuously refining this design and extending the training set (∼ semi-online).

3.6. SUMMARY 99

3.6 Summary
In this chapter, we have introduced the Algorithm Design Problem (ADP) and have presen-
ted a broad overview of how it is currently being solved. Below, we summarize the content
covered in each section.
In Section 3.1, we characterized the ADP as the problem of finding the best algorithm

to solve a given problem. Here, we introduced this notion intuitively, explained its role in
our perspective on algorithm design, and presented a somewhat formal definition thereof.
In Section 3.2, we examined what attributes make one algorithm “better” than another.

In Section 3.2.1, we discussed performance. Here, we first considered the performance of
an algorithm on a single input, i.e. its ability to solve a given problem instance using less
resources (efficiency) and/or better (efficacy) than others. Subsequently, we introduced
the concept of a “disposable” algorithm, designed to perform well on a single input, and
contrasted it with “reusable” algorithms which are designed to perform well across a wide
range of inputs. We continued to discuss how to measure performance across a range of
inputs, introducing the notion of average-case performance and distributional problems, in
the process. In Section 3.2.2, we argued that while performance is important, it is “not
the only thing that matters” and argued for simplicity as another factor strongly affecting
the reusability of an algorithm, an argument which we will continue in Section 7.1. In
Section 3.2.3, we discussed the tension between “time and space-efficiency”, “efficiency
and efficacy”, “peak performance and generality” and “simplicity and performance”. In
our discussion of “peak performance vs. generality”, we considered the no free lunch
theorem for optimization and discussed its relevance in the context of solving the general
combinatorial optimization problem. In summary, we found that while it is trivial to find
examples of these trade-offs for particular algorithms, it is largely an open problem whether,
and to which extent, these are intrinsic for any problems actually encountered in practice.
Subsequently, we turned our discussion towards how the ADP is currently being solved.

In Section 3.3, we discriminated different solution approaches based on the role the human
designer is envisioned to play in the design process. In Section 3.3.1, we briefly charac-
terized the predominant manual approach, discussing its strengths and weaknesses. In
Section 3.3.2, we discussed the possibility of, and potential benefits associated with, auto-
mating algorithm design, i.e. solving the ADP automatically. Subsequently, we presented
a high-level characterization of various research “communities” which have considered this
problem in one form or the other. First, we considered those tackling the ADP in its
unconstrained form, i.e. without a priori restricting the space of possible designs. Here,
we discussed historically significant approaches such as “program synthesis” and “genetic
programming”, but also more recent approaches such as “neural Turing machines”, origin-
ating from the machine learning community. In Section 3.3.3, we discussed those tackling

100 CHAPTER 3. ALGORITHM DESIGN

“constrained” variants of the ADP, such as the “algorithm selection”, “algorithm schedul-
ing”, “algorithm configuration” and “optimizing compilers” communities. However, prior
to this discussion, we explained that we focus on these constrained approaches because
(A) the unconstrained variant is often computationally intractable and (B) we typically
possess knowledge allowing us to exclude certain designs a priori. Here, we also presented
an alternative perspective on our categorization, viewing un/constrained as fully-/semi-
automated solution approaches, respectively, to a naturally unconstrained ADP.
In Section 3.4, we discriminated different solution approaches based on the kind of in-

formation the designer uses to justify his/her decisions. Here, we roughly distinguished
between pure analytical and empirical (∼ simulation-based) approaches, which we briefly
discussed in Section 3.4.1 and Section 3.4.2, respectively. While the former only use a
priori information, what is known, or can be derived by means of logical reasoning, the
latter complement this with a posteriori information, experience obtained through exper-
imentation, i.e. actually testing candidate designs. Here, we discussed the limitations of
both sources of information and the importance of combining them in solving the ADP.
In Section 3.4.3, we briefly discussed doing so in the context of semi-automated design.
In Section 3.5, we distinguished between different solution approaches based on “when”

the design takes place, discriminating between offline (“design before use”) and online
(“design during use”) approaches, which we discussed in Sections 3.5.1 and 3.5.2, respect-
ively. In Section 3.5.2.1, we discussed “learning algorithms”, i.e. algorithms that integrate
online learning mechanisms, and we expressed our concerns about the lack of rigor in some
of the research performed in this area. We examined the strengths and weaknesses of both
off- and online approaches and, in Section 3.5.3, we argued that in many practical settings
it is possible to combine the benefits of both in what we call a semi-online (“design in
spare time”) approach. In this setting, we showed that “anytime” and not “online” is the
key property of interest, describing how every offline anytime approach can be turned into
a semi-online approach.

4 | Design by Algorithm
Selection

In Chapter 3, we have introduced the Algorithm Design Problem (ADP, see Section 3.1)
and have presented an overview of some of the various communities which have contributed
to solving it automatically, i.e. “automate algorithm design”, thus far. Here, our coverage
of the specific algorithmic techniques employed in each of these communities was relatively
high-level. This was intentional, as we would like to argue that there is a significant overlap:
Different communities are tackling closely related computational problems and evidently
face similar challenges in doing so. It is our belief that in discussing these techniques on
a community level we would only further encourage this fragmented perspective.
In this chapter, we will try to present a more unified, problem-centric perspective, where

we will consider generic formulations of the ADP and discuss how to solve problems of this
form. As motivated in Sections 3.3, 3.4 and 3.5, we will focus here on semi-automated,
simulation-based, anytime methods for solving the ADP offline. As we see it, most of
these approaches can be viewed as solving the ADP by reducing it to a variant of one of
the following three computational problems, around which our discussion will revolve:

• Per-set Algorithm Selection Problem (set-ASP, see Section 4.1)
• Per-input Algorithm Selection Problem (input-ASP, see Section 4.2)
• Dynamic Algorithm Selection Problem (dynamic ASP, see Section 4.3)

In Section 4.4, we relate these approaches, discussing their respective strengths and weak-
nesses. Finally, in Section 4.5, we summarize the content covered in this chapter.

101

102 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Why selection and not... e.g. configuration? We use the “algorithm selection”
terminology here to stress that in these problems we are (1) to choose from alternatives,
rather than design algorithms from scratch (∼ constrained ADPs), (2) to select a single
instance (vs. algorithm scheduling, p. 89), and (3) not assuming any specific algorithm
representation. The latter is why we favor it over the AC terminology (p. 90), despite the
fact that many of our concrete examples are taken from the AC community. Note that
only one of these formulations, i.e. the input-ASP, actually corresponds to the ASP, as
formalized in [Rice 1976], and as commonly considered in the AS community (p. 88).

Sorting ADP: We will illustrate some of these techniques experimentally as well. Here,
we will be using ”sorting sequences of integers in ascending order” as a target problem and
are to find a solver sorting a wide range of sequences (time) efficiently on our machine (see
Appendix A.1). Also, we are willing to spend more time sorting longer sequences. In our
illustration, we do so to avoid that poor algorithmic choices for shorter sequences would go
unpunished just because relative time differences are smaller. In real-world settings, one
could imagine offering “sorting as a service”, where customers pay based on input-size.

4.1 Design by Per-set Algorithm Selection
The first approach we consider, solves the ADP by set-ASP reduction (see Figure 4.1).

the "actual" ADP set-ASP
<A,D,p>

formulate
set-ASP

solver interpret
algorithma*

Figure 4.1: Diagram illustrating the design by set-ASP reduction approach.

4.1.1 Formulating the ADP as a set-ASP
In the set-ASP, we are to find an algorithm instance maximizing average-case performance
for a given distributional target problem in some constrained algorithm space (⊆ AU)

Definition 4.1: Per-set Algorithm Selection Problem (set-ASP)

Instances of the set-ASP are defined by triples 〈A,D, p〉 where

A: a set of algorithms (algorithm space).

D: a distribution over a set of inputs X (input distribution).

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 103

p: a function X ×A→ R quantifying the performance of an algorithm on an input
(per-input performance measure).

Candidate solutions are elements of A. In the set-ASP, given 〈A,D, p〉, we are to
find an algorithm instance a∗ maximizing average-case performance, i.e. satisfying
o(a) ≤ o(a∗), ∀ a ∈ A, where o(a) = Ex∼D p(x, a) as per Definition 3.2.

Problems of this form are commonly tackled in the AC and GP (p. 83) communities, while
in the AS community one traditionally considers the per-input ASP (see Section 4.2). Here,
the per-set ASP has also been referred to as the “per-distribution” or “winner-takes-all”
approach to algorithm selection [Leyton-Brown et al. 2003].
Next, we will make some additional assumptions about the form in which instances
〈A,D, p〉 are provided to the solver:

A may be a finite or an infinite set, which may be structured or not. Truly general set-
ASP solvers can therefore not critically rely on (1) A being finite, or (2) A being
structured (e.g. instances being represented in any particular fashion). In general,
as large, unstructured sets cannot be searched, we find that prior art always assumes
either (1) or (2) and we structure our discussion in Section 4.1.2 accordingly.

D: We do not assume D to be given explicitly. Rather, we will assume to be given a
procedure D. sample() which can be used to generate samples according to D. The
procedure itself is treated as a black box. If D is a uniform distribution over a finite
set of inputs X, D may also be provided as a collection of inputs (∼ training inputs).

p: We do not assume p to be given explicitly. Rather, we will assume we are given a
possibly stochastic evaluation procedure p. eval satisfying p(x, a) = E[p. eval(x, a)].
Put differently, rather than being given the actual performance of every algorithm on
every input, we are given some procedure p. eval which can be used to obtain possibly
noisy, unbiased observations thereof. The evaluation procedure itself is treated as
a black box. However, most commonly p. eval(x, a) executes a given algorithm a

on input x and evaluates the “desirability” p(e) of this execution.1 For instance, if
p is average runtime, p(e) will be the time an execution took and the evaluation
procedure effectively samples the RTD (see Section 3.2.1). If p is solution quality,
p(e) is the quality of the solution obtained and the evaluation procedure samples
the SQD. Note that variance in performance observations may either stem from
stochasticity in the execution of the (randomized) algorithm or noise in measuring
p(e) (e.g. measuring runtime), or both. Remark that D. sample and p. eval together
specify o and satisfy o(a) = E[p. eval(D. sample(), a)].

1In Section 6.2 we describe a variant of the set-ASP (ACP) which opens up this black box (wb-ACP).

104 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Example - Sorting set-ASP: Before discussing how to solve the set-ASP, we will briefly
discuss the set-ASP reduction depicted in Figure 4.1, and specifically we will formulate
our sorting ADP as such, i.e. specify our choices for A, D and p.

A: The algorithm space A can be an arbitrary subset of the design space AU , allowing
the designer to exclude any designs he/she assumes to be suboptimal. To retain
optimality, we must not eliminate all optimal designs in the process. In our sorting
example, we will consider eight well-known sorting algorithms: selection sort, bubble
sort, insertion sort, merge sort, quicksort, heapsort, radix sort and Tim sort.

o: Our choice of D and p determines o which induces a total order on A. We retain
optimality iff ∀a∗ ∈ A : (o(a) ≤ o(a∗),∀a ∈ A) =⇒ (a′ � a∗,∀a′ ∈ AU). More
generally, it is desirable that ∀a, a′ ∈ A : o(a) ≤ o(a′) =⇒ a � a′.

D: In most real-world settings D, i.e. the actual likelihood that we are asked to
solve any given instance (e.g. sort any given sequence) of the distributional
target problem, is not known explicitly. Instead, we most commonly collect
a set of training instances X ′ (sequences of integers) which we believe to be
representative for those we wish to solve in practice. Alternatively, we may have
a procedure which can be used to generate representative problem instances. In
our sorting example input sequences to be sorted are generated by the following
process: First, the length of a sequence is drawn from a log-uniform distribution
in [2, 2 ∗ 105]. The elements appearing in the input sequence are all drawn
uniformly at random from one of the following sets (all equally likely):
(A) [−109, 109]
(B) [b− a, b+ a] where a is drawn log-uniformly from [0, 109] and b uniformly

from [−109 + a, 109 − a].
(C) V whose elements are selected uniformly at random from [−109, 109] and
|V | is log-uniformly distributed in [1, |x|].

Finally, the order in which these elements appear in the sequence is determined
using one of the following schemes (again, all equally likely):
(i) Elements appear in the order in which they were generated (∼ randomly).
(ii) First the elements are sorted in ascending order. Subsequently, n pairs of

elements (selected uniformly at random) are swapped, where n is drawn
from a log-uniform distribution over [1, |x| log(|x|)].2.

(iii) First the elements are sorted in ascending order. Subsequently, n pairs of
successive elements (selected uniformly at random) are swapped, where n
is drawn from a log-uniform distribution over [1, |x| log(|x|)].

2After |x| log(|x|) random swaps, the order of the elements in the sequence is roughly random.

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 105

(iv) Same as 2, but sorted in decreasing order.
(v) Same as 3, but sorted in decreasing order.
This results in a rather heterogeneous mix of input sequences and as such
encodes our desire for generality, i.e. “sort a wide range of sequences”. To
ensure reproducibility, the actual D. sample() will resample (with replacement)
a sequence uniformly from a pool of 15000 sequences (1000 in each category)
generated using the procedure described above.

p: Finally, we discuss our choice of per-input performance measure p. In our sorting
example, our evaluation procedure will use a to sort x, measure how long
this took and normalize this measurement, dividing it by minus the length of
x, i.e. we choose p(x, a) = E[t(e)-|x|]. Remark that the normalization by |x|
encodes our “willingness to spend more time sorting longer sequences”, e.g.
taking one second to sort 1000 elements is as desirable as taking one minute
to sort 60000. The negation reduces what is naturally a minimization to a
maximization problem. To ensure reproducibility and reduce the time required
to run our experiments, the actual p. eval(x, a) will resample (with replacement)
a value uniformly from a pool of 50 performance observations which were a
priori obtained by evaluating a on x as described above.

Table 4.1 shows for each sorting algorithm a the mean (i.e. o(a)) and standard
deviation of Ra: the pool of 50 ∗ 15000 = 750000 performance observations which
p. eval(D. sample(), a) resamples from uniformly (with replacement). Unsurprisingly,
we find that Java’s built-in Tim sort performs best on average.

Table 4.1: The mean and standard deviation of the performance observed for the eight
sorting algorithms in our algorithm space.

algorithm (a) µ(Ra) = o(a) σ(Ra)
bubble sort -99885 -404144
selection sort -42995 -277923
insertion sort -58514 -480923
merge sort -291 -342
quicksort -9663 -350559
heapsort -305 -418
radix sort -580 -854
Tim sort -280 -1868

106 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

4.1.2 Solving the set-ASP
The set-ASP is naturally viewed as a Global function Optimization Problem (GOP, see
Definition 2.4) with search space A and objective function o. In what follows, we will
therefore start discussing approaches which solve the set-ASP by reducing it to the GOP,
and gradually introduce more specialized variants. Here, we initially focus on solving
set-ASPs with small (finite) A’s, later widening our scope to tackling larger (infinite) A’s.

How to compute o(a)? We already discussed the GOP reduction in the context of
GP (p. 83) and the set-ASP reduction is essentially analogous. One aspect of the re-
duction we did not yet discuss, and which will be our focus here, is that even the most
generic black box optimizers assume to be given a procedure computing o(a), ∀a ∈ A,
i.e. the average-case performance of any given algorithm. However, we cannot compute
o(a) = Ex∼D p(x, a) exactly in the set-ASP (at least not in general) since D and p are not
provided to us explicitly, but rather we are given procedures D. sample and p. eval respect-
ively, which are treated as black boxes. Fortunately, as o(a) = E[p. eval(D. sample(), a)],
and assuming Var[p. eval(D. sample(), a)] is finite, we can compute o(a) asymptotically
(see Section 2.6.2). In a nutshell, using D. sample we can obtain a sample of inputs
X ′ ∼ D and using p. eval(x, a) we can obtain a sample of performance observations R′x,a
for algorithm a on every input x ∈ X ′, which can in turn be used to compute

ō(a) = 1
|X ′|

∑
x∈X′

p̄(x, a) where p̄(x, a) = 1
|Ra,x|

∑
r∈R′a,x

r (4.1)

In our sorting example this would boil down to generating a set of sequences, sorting
each of them at least once (but possibly repeatedly) using a, averaging the performance
observations for each sequence and finally averaging these per-sequence estimates to obtain
ō(a). This estimator is consistent, i.e. guaranteed to converge in probability to o(a) as
|X ′| → +∞, assuming |R′a,x| > 0, ∀x ∈ X ′.

How to distribute runs over inputs? In the procedure described above, the vast ma-
jority of time is spent executing p. eval(x, a), which typically involves “running a on x”.
The latter can be time-consuming. In our sorting example, some algorithms took multiple
minutes to sort certain sequences. Assume we are given a fixed budget of N calls to
p. eval(x, a), how should we distribute these calls over inputs as to maximize the accuracy
of our estimate? For instance, assume N = 100, should we perform (A) 100 runs on a
single input, (B) 10 runs on 10 inputs or (C) a single run on 100 inputs? If p. eval is
deterministic, the choice is obviously (C). However, when p. eval is noisy, the best decision
seems less straightforward. [Birattari and Kacprzyk 2009, p. 87] investigated this matter

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 107

in general and showed that the accuracy of ō, for any N , is maximized if we perform only a
single run on each input sampled from D. Put differently, (C) is preferable independent of
how noisy p. eval is. Let Ra be the distribution of random variable p. eval(D. sample(), a).
We can rewrite the “one run per input” variant of our estimator in Equation 4.1 as

ō(a) = 1
|R′a|

∑
r∈R′a

r where R′a ∼ Ra (4.2)

The latter is an ordinary sample average estimator for o(a) = E[Ra]. Under the assumption
that p. eval(D. sample(), a) generates i.i.d. samples from Ra, it follows from the central
limit theorem that, given a sufficiently large sample R′a, ō(a) will be approximately normally
distributed with mean o(a) and standard deviation σ(Ra)√

|R′a|
. The expected error on ō(a), i.e.

E[|ō(a)−o(a)|], also known as the Standard Error (SE), is therefore given by σ(Ra)√
|R′a|

. To the
best of our knowledge, the use of sample averages, as described above, is the predominant
way of estimating average-case algorithm performance. A procedure computing ō(a) is
shown in Algorithm 8. Remark that this procedure is stochastic. However, it can be
made deterministic by computing R′a at most once (∼ memoizing o(a)). The latter may
be preferable when using it as an evaluation function e in a black box optimizer, which
typically assumes (although it may not require) e to be deterministic.

Algorithm 8 Procedure computing the sample average estimator of algorithm perform-
ance, ō, given in Equation 4.2
1: procedure EstimateO(a,D,p,N)
2: X ′ ← ?

3: for j = 1 : N do . Collect sample of inputs.
4: x← D. sample()
5: X ′ ← X ′ ∪ {x}
6: end for
7: R′a ← ?

8: for all x ∈ X ′ do . Run algorithm once on each input.
9: r ← p. eval(x, a)
10: R′a ← R′a ∪ {r}
11: end for
12: ōa ← 0
13: for all r ∈ R′a do . Compute average observed performance.
14: ōa ← ōa + r

15: end for
16: return ōa

N

17: end procedure

108 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Brute Force Search: Having discussed how to estimate the performance of an algorithm
instance in the set-ASP, we now turn towards the problem of determining which of a
limited (finite) set of algorithms performs best based on estimates of their performance.
Probably, the conceptually simplest, anytime, global optimizer solving this problem is
given in Algorithm 9. Here, we enumerate the algorithm space systematically, evaluate
the performance of each algorithm instance a using Algorithm 8. After each evaluation,
we update the incumbent abest to be the algorithm with the best estimate thus far.

Algorithm 9 A Brute Force (BF) search approach (black box optimizer variant)
1: procedure CompareBF(〈A,D, p〉,N)
2: abest ←⊥ . abest is the anytime solution
3: ōabest ← -∞
4: for a ∈ A do
5: ōa ← EstimateO(a,D, p,N) . Evaluate performance using Algorithm 8
6: if ōa > ōabest then
7: abest ← a

8: end if
9: end for
10: return abest
11: end procedure

Remark that N = |R′a| is a parameter of this procedure. The choice of N presents an
inherent trade-off between its efficiency and the accuracy of its output:

efficiency: The total number of calls to p. eval is N |A| and as this is a rather costly
operation, the time taken by Algorithm 9 grows roughly proportionally to N .

efficacy: Higher values of N result in more accurate estimates ō(a) on average (smaller
SE) and thereby increase the average accuracy of the result returned by Algorithm 9.

Figure 4.2 illustrates this trade-off empirically for our sorting set-ASP. It shows (blue ◦’s)
the average accuracy of the comparison and the time Algorithm 9 took, for different N
values, based on data from 1000 independent runs. Accuracy is computed as the fraction
of these 1000 runs returning the algorithm performing best on average in our use case
(i.e. Tim sort, see Table 4.1). For higher values of N , Algorithm 9 clearly takes longer
but its answers tend to be more frequently correct. Note that solving the sorting set-ASP
with high accuracy is quite challenging as after N = 1024 runs of each algorithm and over
6 hours of optimization, we obtain an accuracy of only roughly 75%. While this trade-off
between efficacy/efficiency is general and not specific to Algorithm 9, one might wonder
whether it is possible to achieve a higher expected accuracy, using less resources?

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 109

10 60 100 600 1000 3600 10000 43200
time spent (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy

(N = 1)

(N = 2)

(N = 1)

(N = 2) (N = 4) (N = 8) (N = 16) (N = 32) (N = 64)

(N = 128)

(N = 256)

(N = 512)

(N = 1024)

(N = 4)
(N = 8)

(N = 16)
(N = 32)

(N = 64)

(N = 128)

(N = 256)

(N = 512)
(N = 1024)

(M = 1)

(M = 2)
(M = 4)

(M = 8)

(M = 16)
(M = 32) (M = 64)

(M = 128)

(M = 256)

(M = 512)

(M = 1024)

(α = 0.5)

(α = 0.4)

(α = 0.3)

(α = 0.2)

(α = 0.1)
(α = 0.05)

(α = 0.01)
(α = 0.001)

BF unblocked
BF blocked
SR
AR

Figure 4.2: Illustration of the trade-off between accuracy and the resources required by
different solvers with various parameter settings for the per-set Sorting ASP.

Blocking: One way to improve upon Algorithm 9 is through the use of a so-called
blocked evaluation strategy [Addelman 1969]. In blocked evaluation, algorithms are com-
pared based on performance observations obtained on the same set of inputs X ′ ∼ D.
The idea is that “blocked” performance estimates of two different algorithms a1 and a2
are correlated, rather than independent. The variance of ō(a1)− ō(a2) is in this case given
by σ(Ra1)2+σ(Ra2)2−2ρσ(Ra1)σ(Ra2)

N , where ρ is the correlation between both estimates.
Therefore, if both are positively correlated (ρ > 0), the variance on relative performance
will be lower and the expected accuracy of the comparison higher, for the same N . Intuit-
ively, if we compare estimates based on independent sets of inputs, we introduce additional
variability due to the fact that some sets of inputs might be easier/harder to solve than
others. A blocked variant of Algorithm 9 is obtained by computing X ′ at most once in
Algorithm 8. Figure 4.2 illustrates the benefit of using a blocked strategy in our sorting
set-ASP. It shows (orange ♦’s) the average accuracy of the comparison and the time a
blocked variant of Algorithm 9 took, for different N values, based on data from 1000
independent runs. We observe that, while taking the same time, the results returned by
the blocked strategy are more reliable for a fixed N , e.g. for N = 64 Algorithm 9 obtained
an accuracy of nearly 50%, while its blocked variant obtained an accuracy of over 70%.
For N = 1024 it obtains an accuracy of well over 90%. In the AC community, the use of
blocked evaluations is the de facto standard, implemented by virtually all state-of-the-art
configurators. While not uncommon in the GP community either, alternatives have been
studied, purposefully evaluating algorithm instances on different X ′, as to diversify the
search, e.g. dynamic subset selection [Gathercole and Ross 1994].

110 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Incremental Comparison Schemes: While the GOP reduction allows us to solve the
set-ASP using any of the available black box optimizers (e.g. those in Section 2.7), the
black box evaluation procedure abstracts the intrinsically incremental nature of perform-
ance estimation. Remark that this evaluation procedure can be extremely costly, as it
involves N calls to p. eval. As a consequence, large choices of N will negatively affect
anytime performance. In our sorting example, for N = 1024, times ranged from a minute
to over an hour depending on the algorithm evaluated. This means that if we are unlucky
(e.g. bubble sort is evaluated first) we may need to wait over an hour before abest is even
instantiated. An incremental approach to performance evaluation resolves this issue, at
the cost of requiring modifications to standard black box optimizers. Algorithm 10 is a
functionally equivalent, incremental variant of Algorithm 9. Here, each iteration j, we run
each algorithm on an input sampled from D, and update their performance estimates and
abest accordingly. A blocked variant of Algorithm 10 is obtained by swapping lines 4 and
5. The resulting procedure was previously described in [Birattari and Kacprzyk 2009] (and
called Brutus). It was also used in this form to compare configurations in the basic variant
of ParamILS [Hutter et al. 2009] (BasicILS) and in GGA [Ansótegui et al. 2009]. The
anytime performance of Algorithm 10 clearly no longer depends on our choice of N . Also,
note that for N = +∞, it is asymptotically correct, while Algorithm 9 would never get
past evaluating the first candidate algorithm. Beyond superior anytime performance and
asymptotic correctness, this incremental approach also gives us the flexibility to allocate
runs to algorithms dynamically as we will discuss next.

Algorithm 10 A Brute Force (BF) search approach (unblocked, incremental variant)
1: procedure CompareBF(〈A,D, p〉,N)
2: abest ←⊥
3: for j = 1 : N do
4: for all a ∈ A do . Run each algorithm once and update estimates.
5: x← D. sample()
6: r ← p. eval(x, a)
7: ōa ← (j−1)ōa+r

j

8: end for
9: for all a ∈ A do . Update anytime solution.
10: if ōa > ōabest then
11: abest ← a

12: end if
13: end for
14: end for
15: return abest
16: end procedure

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 111

How to distribute runs over algorithms? Remark that Algorithm 10 distributes runs
equally across the algorithm space. Some algorithms may perform poorly relative to others:
While we might be able to tell that one algorithm instance will likely not perform best after
only a few runs, doing the same for others may require significantly more data. It therefore
makes sense to distribute runs non-uniformly over the algorithm space as to allocate more
runs to better algorithms. Remark that doing so is particularly important in efficiency
optimization settings, since runs of worse (= less efficient) algorithms actually take longer.
Clearly, if relative performances were to be known, the set-ASP would effectively be solved
a priori. However, using an incremental evaluation approach we can use past performance
observations to decide upon further allocations dynamically. There are many different ways
to do so, below we will describe two competing approaches used in the AC community.
However, dynamic allocation of trials has also been explored in the GP community, e.g. in
[Teller and Andre 1997]. Finally, this problem has also been studied in the RL community
in the context of the best-arm identification problem in multi-armed bandits [Audibert and
Bubeck 2010], a problem which is closely related to the set-ASP.

Statistical Racing (SR): The first approach is inspired by a model selection procedure
used in machine learning known as racing [Maron and Moore 1994, Maron and Moore
1997]. The idea is that we evaluate every algorithm in the comparison only as long
as is needed to determine that it is outperformed by some other, allowing us to focus
computational effort on the remaining. The statistical racing framework (Algorithm 11)
operates similarly to Algorithm 10. However, after each iteration, algorithm instances that
performed significantly worse (with some given confidence level 1 − α) than the best in
race (abest) are excluded from the race until only a single algorithm remains. In SR this
exclusion is based on statistical hypothesis tests. These tests compare two or more sets of
data (performance observations of the algorithms compared) and determine the likelihood
of generating data this (or more) extreme under a given null-hypothesis H0 (the algorithms
compared perform as well). If this likelihood, known as the p-value, is under a given
threshold α, we say that we can reject H0 (at least one algorithm performs significantly
worse/better than another). One issue is that traditional tests, when comparing more than
two algorithms, do not provide information about which algorithms perform significantly
better/worse than others. An obvious solution would be to perform multiple pairwise
hypothesis tests (e.g. Student t-test). However, the likelihood of incorrectly rejecting
H0 (excluding an algorithm which does not perform worse), known as a type I error,
in the overall comparison would be much larger than α (a phenomenon known as alpha
inflation). This issue is known as the multiple comparison problem [Hsu 1996] in statistics.
Another issue is that the cost of, i.e. overhead introduced by, multiple pairwise tests can
become significant. A common workaround uses a combination of two types of tests.

112 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

First, a single multi-group test (e.g. ANOVA) is used to determine whether any algorithm
performs significantly worse/better than another. Only if this test succeeds (H0 is rejected)
we resort to pairwise testing of each algorithm to the current best in race abest. [Birattari
et al. 2002] was the first to apply SR to the algorithm configuration problem in F-Race,
using the non-parametric Friedman test as the multi-group test, and its associated post
hoc pairwise test. Later variants of F-Race were developed [Birattari et al. 2010] and used
in the iRace [López-Ibánez et al. 2011] framework to iteratively compare configurations
sampled from a larger algorithm space. Figure 4.2 shows (yellow �’s) the average accuracy
of the comparison and the time a simple implementation of F-Race took on the sorting
set-ASP, for different α values, based on data from 1000 independent runs. To reduce
variance in our comparison, the same sets of inputs were used as in the blocked variant
of Algorithm 9. F-Race clearly outperforms the brute force approach on this instance,
in particular for α = 0.001 it returned Tim sort each of the 1000 runs and this took on
average only 20 minutes. Also, for α = 0.1 it took on average only 5 minutes to obtain
an accuracy greater than Algorithm 9 (blocked, with N = 1024) after 6 hours.

Algorithm 11 A Statistical Racing (SR) approach
1: procedure CompareSR(〈A,D, p〉,α)
2: abest ∼ U(A)
3: while |A| > 1 do
4: x← D. sample() . Blocked evaluation.
5: for all a ∈ A do . Run each algorithm once, and update performance data/estimates.
6: r ← p. eval(x, a)
7: Ra ← Ra ∪ {r}
8: ōa ← (j−1)ōa+r

j
9: end for
10: for all a ∈ A do . Update anytime solution.
11: if ōa > ōabest then
12: abest ← a
13: end if
14: end for
15: if reject H0[o(a) = o(a′),∀a, a′ ∈ A] based on {Ra | a ∈ A} with confidence 1− α then
16: for a ∈ A \ {abest} do . Perform pairwise tests
17: if reject H0[o(a) = o(abest)] based on {Ra, Rabest} with confidence 1− α then
18: A← A \ {a} . Eliminates an algorithm performing significantly worse.
19: end if
20: end for
21: end if
22: end while
23: return abest
24: end procedure

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 113

Aggressive Racing (AR) (Algorithm 12) offers an alternative to SR techniques. A
first version of AR was presented in the focused variant of ParamILS [Hutter et al. 2009]
(FocusedILS) to compare two configurations. Later, a variant of this procedure was presen-
ted in [Hutter et al. 2011] and used in configurators ROAR and SMAC to determine the
best of a set of configurations. Unlike SR, which distributes computational effort equally
amongst all contestants until they are excluded, AR will compare contestants through a
series of pairwise races, each time retaining the winner of the previous race in the next
one, and the winner of the final comparison is the overall winner. The version we present
here, targeted at the small per-set ASP, will repeat this scheme M times, i.e. perform
M ∗ (|A| − 1) such races, where M is a parameter of the framework. As the name sug-
gests, AR will use a different, “more aggressive”, criterion to decide which contestant wins
a race, i.e. it will not wait until sufficient evidence is gathered that one contestant is
significantly worse than another. In a single race (abest vs. a, lines 5-19), AR will first
run abest on a new input sampled from D. Subsequently, AR will iteratively run a on an
input x′ randomly selected from the set of inputs Xmissing on which abest was already
evaluated, but a not yet.3 The race continues as long as a is estimated to perform better
than abest, based only on performance observations made on inputs both algorithms have
already been evaluated on (/∈ Xmissing). Only if the race continues until both have been
evaluated on the same set of inputs (Xmissing = ?) and a is still estimated to perform
better than abest, a wins the race and becomes the new incumbent. Put differently, a
will lose the race when (after a run) its estimated performance is worse than that of abest
based on performance observations on the same |Ra| inputs. Note that this is often after
only a single run. Figure 4.2 shows (purple ×’s) the average accuracy of the comparison
and the time a simple implementation of AR took, for different M values, based on data
from 1000 independent runs, using the same sets of inputs as used in earlier experiments.
While AR performs better than brute force (BF), it does so far less impressively than SR,
e.g. 96% accuracy for M = 1024 after an average of about 6 hours. However, in what
follows, we argue that there are still features which might make AR preferable over SR
in practice. Remark that the behavior of AR (beyond termination) is independent of M .
As AR is anytime, there is no reason not to choose M = +∞ and force-terminate it
whenever we want, i.e. we do not need to fix/know our budget in advance. Also, AR
with M = +∞ is asymptotically correct (assuming A is finite). Note that SR with α = 0
has similar properties, but is essentially equivalent to (blocked) BF. These features make
AR also preferable in the semi-online setting we described in Section 3.5.3. Furthermore,
AR will typically have better anytime performance, especially in settings where A is large
and/or α is low, as SR will initially behave like (blocked) BF, i.e. distribute runs uniformly.

3This is similar to the version presented in [Hutter et al. 2011]. In [Hutter et al. 2009] inputs are
considered in a fixed order.

114 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Algorithm 12 An Aggressive Racing (AR) approach
1: procedure CompareAR(〈A,D, p〉,M)
2: abest ∼ U(A)
3: for i = 1 : M do
4: for a ∈ A \ {abest} do
5: x← D. sample()
6: r ← p. eval(x, abest)
7: Rabest ← Rabest ∪ {(x, r)}
8: Xmissing ← {x | ∃ r : (x, r) ∈ Rabest} \ {x | ∃ r : (x, r) ∈ Ra}
9: repeat . Race between a and abest
10: x′ ∼ U(Xmissing)
11: r′ ← p. eval(x′, a)
12: Ra ← Ra ∪ {(x′, r′)}
13: Xmissing ← Xmissing \ {x′}
14: ōa ← 1

|Ra|
∑

(x,r)∈Ra
r

15: ōabest ←
1
|Ra|

∑
(x,r)∈Rabest

[x /∈ Xmissing] ∗ r
16: until ōa ≤ ōabest ∨Xmissing = ?

17: if ōa > ōabest then
18: abest ← a . a won the race
19: end if
20: end for
21: end for
22: return abest
23: end procedure

Scaling up to large algorithm spaces: All the comparison schemes described thus far
enumerate A exhaustively (high-level search is systematic). Furthermore, all (except for
AR) evaluate every algorithm instance once before evaluating any twice. This results in
poor anytime performance if A is large or infinite, and is even impossible if A is uncountably
infinite. The general approach to deal with this problem is to (Turing) reduce the problem
of finding the best instance in A to solving multiple smaller set-ASPs, iteratively comparing
small subsets of A, e.g. using one of the techniques described above. Now, the question
that remains is: Which algorithm instances Ai to compare in each iteration i?
One approach is to draw this sample uniformly at random, i.e. Ai ∼ U(A). This approach

was followed in ROAR, where each 〈Ai ∪ {abest},D, p〉 is solved using AR with M = 1.4
While seemingly naive, ROAR was shown to perform surprisingly well in practice, sometimes
outperforming FocusedILS in configuration tasks [Hutter et al. 2011]. This implies that

4ROAR can be obtained by modifying line 4 of Algorithm 12, replacing A by Ai ∼ U(A), i.e. racing
abest each iteration i against Ai ∼ U(A), rather than A. Remark that the behavior of AR on multiple
comparisons between i.i.d. sampled algorithm instances Ai is identical to that on

⋃
i
Ai, and as such the

sample size (|Ai|) used in ROAR does not matter.

4.1. DESIGN BY PER-SET ALGORITHM SELECTION 115

naturally occurring instances of the ACP are not always hard. Often a large fraction of the
configurations perform well, rather than only a few, and as such one is likely to be sampled
using a uniform sampling strategy. ROAR, despite being presented in [Hutter et al. 2011]
as a configurator, does only require us to be able to draw samples uniformly from A and
is as such more widely applicable.
The main downside of this uniformed sampling strategy is that when good algorithm

instances are rare, ROAR is unlikely to ever find one. In general, the strategy used to
overcome this problem is to inform the sampling. More advanced schemes will attempt to
bias the search dynamically, i.e. adapt the distribution from which is sampled based on the
performance observed for the algorithms evaluated thus far, as to increase the likelihood of
finding better algorithm instances. Doing so requires us to have a priori knowledge (see also
Section 3.4) or make assumptions about the relations between algorithm instances which
can be used to generalize performance observations made thus far to unseen algorithm
instances. A common (implicit) assumption is that o is smooth. Put differently, similar
algorithm instances perform similarly, for some measure of similarity. The crux is to exploit
this relation as to increase the likelihood of sampling algorithm instances similar to those
that performed good, while decreasing the likelihood of sampling those similar to algorithms
known to perform poorly.
Below, we will restrict our discussion to how this is done in four prominent, state-of-the-

art configurators. As the similarity measures exploited are defined in configuration space,
i.e. Θ, these techniques cannot be directly applied to the general per-set ASP. However,
the underlying ideas can be generalized to a wide range of structured algorithm spaces.

ParamILS [Hutter et al. 2007b, Hutter et al. 2009] implements an Iterated Local
Search (ILS, see Section 2.7.2.2) scheme in a one-exchange neighborhood. The one-
exchange neighborhood of a configuration consists of all valid configurations that can be
obtained by changing the value of a single parameter: E(θ) = {θ′ ∈ Θ |

∑|θ|
i=1[θi 6= θ′i] = 1}.

Initially, a few (default 10) configurations are sampled uniformly at random, the best of
which is taken as a starting point of the search. Next, an Iterative Improvement (II)
procedure is applied, each time replacing the current with the first improving neighbor
encountered (first-improvement), until a local optimum is reached. Subsequently, the in-
cumbent is perturbed (multiple parameter values (default 3) are re-assigned randomly)
and the II procedure is repeated. At each point, the best configuration encountered thus
far is retained as θbest. [Hutter et al. 2009] describes two variants of ParamILS: BasicILS,
which uses (blocked) BF with fixed N in pairwise comparisons, and FocusedILS, which
uses a variant of AR with M = 1. Note that ParamILS, unlike the three configurators de-
scribed below, cannot handle parameters with large (infinite) domains as identifying local
optimality requires exhaustive enumeration of the one-exchange neighborhood.

116 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

iRace [Balaprakash et al. 2007, López-Ibánez et al. 2011] follows a population-based
search strategy. It randomly initializes a set of N1 configurations.5 Each iteration i it
races Ni configurations (using SR), until a minimum number of elite configurations Θelite
remain. Subsequently, Ni+1−|Θelite| new configurations Θnew are generated by sampling
them from a mixture of distributions centered around Θelite. Finally, the new and the elite
configurations (Θelite ∪Θnew) are raced in the next iteration.

GGA [Ansótegui et al. 2009] implements a gender-based evolutionary search algorithm,
maintaining a population of configurations (males and females with given age). GGA ini-
tializes this population randomly. Each iteration i (a.k.a. generation) racing (using BF
with N = i) is used to select the best competitive individuals (males) from this popula-
tion. These fittest males are randomly assigned females and a recombination/crossover
(reproduction) is performed during which a new individual is created combining parameter
values (genes) from both parents, possibly followed by a mutation which takes the form of
a random one-exchange move for categorical parameters and Gaussian additive noise for
numerical ones. Finally, old individuals die as to maintain a stable population size.

SMAC [Hutter et al. 2011] is an instance of the wider class of so-called Sequential
Model-based Optimization (SMBO) methods.6 SMBO frameworks maintain an explicit
regression model M : Θ → R (a.k.a. a response surface, surrogate or fitness landscape
model) trained using all previous performance observations; e.g. SMAC uses a Random
Forest (RF) model [Breiman 2001]. M gives us a performance prediction M.o(θ) for any
configuration θ. Some models M (e.g. RF) also provide a prediction M.unc(θ) of the the
error on M.o(θ). SMBO frameworks iteratively select the configurations to be compared
based on this model. SMAC uses the Expected Improvement (EI) criterion [Jones et al.
1998] for selecting configurations. Here, M.o(θ) and M. unc(θ) are used to estimate the
expected improvement on θbest, the best configuration encountered thus far, as follows:

EI(θ) = (M.o(θ)−M.o(θbest)) ∗ Φ
(
M.o(θ)−M.o(θbest)

M. unc(θ)

)
+M. unc(θ) ∗ φ

(
M.o(θ)−M.o(θbest)

M. unc(θ)

)
.

where φ and Φ are the standard normal density and cumulative distribution functions.
EI will be high for configurations estimated to perform well and for those with high estim-
ated uncertainty; and as such this criterion offers an automatic balance between exploration
and exploitation. To determine the configurations to be compared each iteration, SMAC
performs multiple iterated local searches using the EI returned by the model as objective,
i.e. obtaining a diverse set of configurations locally optimizing EI which are then raced
against θbest (using AR with M = 1).

5Here, N1 depends on the number of parameters. Before each iteration, Ni is determined dynamically.
6Which also encompasses GGA++ [Ansótegui et al. 2015], a model-based extension of GGA.

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 117

4.2 Design by Per-input Algorithm Selection

4.2.1 The input- and subset-ASP
The second formulation we will discuss is the per-input ASP (input-ASP), in the spirit
in which the ASP was originally formulated by John Rice in 1976. When considering a
limited sample of algorithms A solving some target problem, we find that often no single
algorithm instance performs best on all problem instances (see also Section 3.2). In such
settings, it is beneficial to condition the choice of algorithm (design decisions) on features
of the problem instance to be solved. In the input-ASP, we are to answer the following
question: “Given a problem instance x, which algorithm a ∈ A should be used to solve it?”.
As discussed in Section 3.3.3, p. 88, this problem was first formulated as a computational
problem in [Rice 1976], but it is only three decades later that it received widespread
attention and that we saw the emergence of the “algorithm selection” community. Over
the last decade, the possibility of explicitly conditioning design choices on features of the
input has also been examined in various other communities; including algorithm scheduling
[Lindauer et al. 2016], algorithm configuration [Xu et al. 2010, Kadioglu et al. 2010], and
optimizing compilers such as Petabricks [Ansel et al. 2009, Ding et al. 2015].
John Rice (1976) originally formalized three variants of the problem. Here, we will first

present the basic formulation and later focus on the “selection based on features” variant.

Definition 4.2: Per-input Algorithm Selection Problem (input-ASP)
[Rice 1976, pp. 3]

Instances of the input-ASP are defined by triples 〈A,X, p〉 where

A: a set of algorithms (algorithm space).

X: a set of possible inputs (input space).

p: a function X ×A→ R quantifying the performance of an algorithm on an input
(per-input performance measure).

Candidate solutions are functions of the form X → A called selection mappings, spe-
cifying the algorithm to be used for any given input. In the input-ASP, given 〈A,X, p〉,
we are to find a selection mapping s∗ satisfying p(x, a) ≤ p(x, s∗(x)),∀a ∈ A,∀x ∈ X.

Here, the most discriminative feature of the input-ASP, w.r.t. the set-ASP, is that its
solution takes the form of a selection mapping X → A, rather than a single algorithm
instance a ∈ A. Remark that, instead of the input distribution D, we are (only) given the
input space X because the optimal selection mapping s∗ does not depend on D.

118 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

In the remainder of this section, we will consider an optimization variant of the “selection
based on features” problem formulated by John Rice:

Definition 4.3: Per-subset Algorithm Selection Problem (subset-ASP)
[Rice 1976, pp. 9]

Instances of the subset-ASP are defined by quadruples 〈A,D, φ, p〉 where

A: a set of algorithms (algorithm space).

D: a distribution over a set of inputs X (input distribution).

φ: a function X → Rm mapping an input to a feature vector. (feature mapping).

p: a function X ×A→ R quantifying the performance of an algorithm on an input
(per-input performance measure).

Candidate solutions S are functions of the form Rm → A mapping feature to al-
gorithm space. In the subset-ASP, given 〈A,D, φ, p〉, we are to find a selection
mapping s∗ satisfying o(s) ≤ o(s∗),∀s ∈ S, where o(s) = Ex∼D p(x, s(φ(x))).

Here, we will assume A, D and p to be passed to the solver in the same form as in the set-
ASP (see Section 4.1.1). We do not assume φ to be given explicitly. Rather, we will assume
we are given a procedure φ. extract(x) which can be used to extract a vector of real-valued
features for any given input x. The procedure itself will be treated as a black box. Let
us define the feature space Ω as the range of φ, i.e. Ω = {f ∈ Rm | ∃x ∈ X : φ(x) = f}.
Remark that φ does not have to injective, i.e. multiple x might map to the same features
f . As such φ can be seen as partitioning X into |Ω| subsets Xf = {x ∈ X |φ(x) = f} and
restricting possible selection mappings to those satisfying φ(x) = φ(x′) =⇒ s(x) = s(x′),
∀x, x′ ∈ X, i.e. selecting an algorithm for each of these subsets. We therefore also refer
to this problem as the per-subset Algorithm Selection Problem (subset-ASP). Remark that
both the input-ASP (see Definition 4.2) and the set-ASP (see Definition 4.1) can be seen
as special cases of the subset-ASP, with φ injective and φ constant, respectively.

4.2.2 Formulating the ADP as a subset-ASP
Before discussing how to solve the subset-ASP, we will briefly discuss the subset-ASP
reduction depicted in Figure 4.3. We already discussed the reduction of the ADP to the
set-ASP (see Section 4.1.1), and, in what follows, we will focus on how the reduction to
the subset-ASP differs. Recall that the many-one reduction of a computational problem
(see Definition 2.12) consist of a pair of functions, a formulation and an interpretation.

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 119

the "actual" ADP subset-ASP
<A,D,φ,p>

formulate
subset-ASP

solver interpret algorithm
(portfolio solver)

selection mapping
s*

Figure 4.3: Diagram illustrating the design by subset-ASP reduction approach.

Interpretation: Unlike in the set-ASP, the solution to the subset-ASP is no algorithm for
our target problem, but rather a selection mapping. This selection mapping s is interpreted
as an algorithm which, given as input a problem instance x:

1. Extracts features from x: computes ~f = φ(x).

2. Selects an algorithm a based on these features: computes a = s(~f).

3. Solves x using a: computes y = a(x).

4. Returns y.

Realizations of the framework described above are also known as portfolio solvers.

Formulation - sorting subset-ASP: Next, we discuss the formulation of the ADP as
a subset-ASP, i.e. the choice of 〈A,D, φ, p〉. We already discussed the choices for A, D
and p in the context of the set-ASP and for our sorting subset-ASP we will make the same
decisions we made in Section 4.1.1. In general, however, there is a noteworthy difference in
the criteria on which one should base ones choice of A. To illustrate this, assume a binary
feature discriminating between two classes of inputs X0 and X1, equally likely under D.
We are to decide which two out of four algorithms {a1, a2, a3, a4} to include in A. The
average-case performance of every algorithm on each of the classes is given below:

a1 a2 a3 a4
X0 0.9 0.8 0.7 0.1
X1 0.1 0.7 0.8 0.9

Observe that a2 and a3 (o = 0.75) perform better on average than a1 and a4 (o = 0.5)
across all inputs, while a1 and a4 perform best on X0 and X1 respectively. In the
set-ASP, one eliminates those algorithm instances which one believes to have inferior
average-case performance than some a ∈ A, i.e. one would choose A = {a2, a3}. If we
make the same choice for A in the subset-ASP, the optimal selection mapping would be
s∗ = {(0, a2), (1, a3)} with o(s∗) = 0.8. On the other hand, if we would have chosen
{a1, a4} instead, the optimal selection mapping would have been s∗ = {(0, a1), (1, a4)}
with o(s∗) = 0.9. The crux is that the poor performance of a1 and a4 on X1 and X0

120 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

respectively, is irrelevant in the subset-ASP as these algorithms will not be selected on
these inputs. Therefore, rather than including algorithms which (individually) perform well
across all instances, we should choose A to be a set of complementary algorithms, each
excelling on a particular class of inputs. Formally, we retain optimality only if

∀~f ∈ Rm,∃ a ∈ A :
∑
x∈X~f

D(x)p(x, a′) ≤
∑
x∈X~f

D(x)p(x, a), ∀a′ ∈ AU .

Conceptually, in the subset-ASP, one can only eliminate algorithms which one believes to
have inferior average-case performance to some a ∈ A on all |Ω| discriminable subsets.
For instance, in our sorting example, while we could reasonably exclude O(n2) algorithms
(e.g. bubble sort, selection sort and insertion sort) from A in any sorting set-ASP, where
one is likely to be asked to sort long sequences, in subset-ASPs, where one can discriminate
short from long input sequences, it makes sense to include them as they may outperform
algorithms with superior asymptotic complexity (e.g. merge sort) on shorter sequences.
Finally, we discuss the choice of φ. There are many different choices one could make for
φ. extract in this reduction. In general, the following should be taken into consideration:

Discriminativeness: It should be possible to discriminate between inputs best solved using
different algorithms based on the features it computes. Formally, let

Xa = {x ∈ X | p(x, a′) ≤ p(x, a),∀a′ ∈ A}

be the set of instances for which algorithm a is non-dominated, then φ should satisfy
φ(x) = φ(x′) =⇒ ∃ a ∈ A : x, x′ ∈ Xa.

Complexity reduction: Clearly, φ being injective is a sufficient condition for being dis-
criminative, but it is not a necessary one. In formulating the ADP as a subset-ASP,
in the context of semi-automated design, we would like to make it as easy as pos-
sible for the computer to solve. Here, we generally prefer φ’s which map X to a low
dimensional (small), structured feature space, simplifying the selection process. In
particular, inputs with similar features should have affinity with the same algorithm,
while inputs with different features should ideally have affinity with different al-
gorithms. Remark that the solvers we will describe in Section 4.2.3 make specific
assumptions about the form these similarities in feature space (can) take, making
the best choice of features subset-ASP solver dependent.

Efficiency: Note that the portfolio solver computes φ and s for every input x. This
computation, while not captured by the subset-ASP, introduces overhead in practice
which affects the efficiency of the resulting design. While often many features can
be computed efficiently from x, computing some features may be expensive, even
to the extent that the portfolio solver obtained becomes useless in practice.

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 121

Remark that we only touched upon the surface of this matter. The problem of extracting
features from natural representations is an active research area [Liu and Motoda 1998].
For our sorting example, we chose the following features of the input sequence l

flength : The number of elements in the sequence.

frange : The difference between the largest and the smallest integer in the sequence.

fsorted : The fraction of consecutive elements li−1 and li satisfying li−1 < li.

fequal : The fraction of consecutive elements li−1 and li satisfying li−1 = li.

The procedure φ. extract used for computing them is shown in Algorithm 13.

Algorithm 13 Procedure used to compute φ in our sorting subset-ASP.
1: procedure ExtractFeatures(l)
2: nsorted, nequal ← 0
3: lmin, lmax ← l1
4: for i ∈ 2 : |l| do
5: if li−1 < li then
6: nsorted ← nsorted + 1
7: if lmax < li then
8: lmax ← li
9: end if
10: else if li−1 = li then
11: nequal ← nequal + 1
12: else if li < lmin then
13: lmin ← li
14: end if
15: end for
16: flength ← |l|
17: frange ← lmax − lmin
18: fsorted ← nsorted

|l|−1
19: fequal ←

nequal
|l|−1

20: return 〈flength, frange, fsorted, fequal〉
21: end procedure

4.2.3 Solving the subset-ASP
Now, we turn towards solving the subset-ASP. Solvers for the subset-ASP are also known as
portfolio builders. Arguably, one of the reasons it took nearly three decades for “algorithm
selection” to gain wide attention is because, while John Rice, in 1976, had formulated
the problem and proposed a theoretical framework (approximation theory) to study it, he
did not present, nor suggest any algorithmic solutions. In what follows, we give a rough
overview of different solution approaches.

122 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Finite feature spaces: Remark that φ partitions X into |Ω| subsets. If the feature-
space Ω is finite, we can (Turing) reduce the subset-ASP 〈A,D, φ, p〉 to the set-ASP.
Here, we solve a finite number of set-ASPs 〈A,D~f , p〉, one for each partition X~f , where

D~f (x) = [φ(x)=~f]∗D(x)∑
x′∈X~f

D(x′)
is the distribution of inputs x ∈ X~f . The resulting selection

mapping would then simply map x to the solution of set-ASP 〈A,Dφ(x), p〉 which can be
obtained using any of the techniques described in Section 4.1.2.

Generalization in feature space using ML: Often, the feature space is too large to
make the approach described above tractable. In these cases, we will need to generalize
performance observations across inputs with different features. Most commonly traditional
ML techniques are used to do so.

Clustering: One approach uses unsupervised learning (clustering). Here, one first gen-
erates a sample of inputs X ′ ∼ D which is subsequently partitioned into k clusters based
on similarities in feature space. Subsequently, the best algorithm for each cluster is de-
termined [Malitsky and Sellmann 2010]. Given a test input, we compute its features and
solve it using the best algorithm for the nearest cluster. The crux here is that a single
algorithm instance is assumed to dominate all others on sufficiently similar inputs. Note
that this can be seen as using clustering to (many-one) reduce the subset-ASP 〈A,D, φ, p〉
with a large feature space Ω to a subset-ASP 〈A,D, φ′, p〉 with a small (finite) number of
partitions, where φ′ maps each input to the prototype for its nearest cluster in Ω.
As an illustration, we applied this technique to our sorting subset-ASP. The framework

used is shown in Algorithm 14 and is an anytime variant of the procedure described above,
iteratively constructing X ′ and updating the incumbent selection mapping sbest every time
X ′ doubles in size.7 For clustering we used the G-means clustering algorithm [Hamerly
et al. 2003] with a maximum of 64 clusters.8 The best algorithm for each cluster k (ak) is
determined based on a single evaluation of each algorithm on each input x ∈ Xk assigned
to the cluster (∼ BF with N = |Xk|). Figure 4.4 shows (light blue +’s) the average
performance of sbest, for different sizes of X ′, based on data from 1000 independent runs
of Algorithm 14. As a reference, we also show the performance of the Virtual Best Solver

7We do not retrain our ML models every iteration in Algorithms 14-16, but use an exponential back-off
mechanism instead, to reduce computational overhead. If the ML model used can be trained online (i.e.
on a stream of data) such back-off mechanism would be unnecessary.

8G-means is an extension of the well-known K-means algorithm. While K-means requires the user to
specify the # clusters K a priori, G-means is parameterless, deriving K from the data using statistical
normality tests, i.e. splitting a cluster if it can reject the H0 that the data within the cluster is generated
by a multivariate Gaussian distribution. We used the implementation of G-means provided in the Java
SMILE machine learning library: http://haifengl.github.io/smile/ (version 1.3.1).

http://haifengl.github.io/smile/

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 123

Algorithm 14 Framework for solving the subset-ASP using clustering.
1: procedure SelectCluster(〈A,D, φ, p〉, N, cluster)
2: b← 1
3: for i ∈ 1 : N do
4: x← D. sample() . Add new input x to training input set.
5: X ′ ← X ′ ∪ {x}
6: for a ∈ A do . Test each algorithm once on x and update performance data.
7: r ← p. eval(x, a)
8: Ra ← Ra ∪ {(x, r)}
9: end for
10: if i = b then . If i is a power of two
11: b← 2 ∗ b
12: 〈M, {X1, . . . , XK}〉 ← cluster(X ′, φ) . Partition training inputs in K clusters.
13: for k ∈ 1 : K do . Determine the best algorithm for each cluster.
14: ak = arg maxa∈A

∑
(x,r)∈Ra

[x ∈ Xk] ∗ r
15: end for
16: sbest ← λ(x) = ak, where k = M.predict(x) . Update anytime solution.
17: end if
18: end for
19: return sbest
20: end procedure

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

-104

-103

-102

o(
s)

Virtual Best Solver (VBS)
Best Single Solver (BSS)
uniform random selection
brutus (blocked)
clustering
clustering (normalized)

X’| |

Figure 4.4: Performance of sbest obtained by Algorithm 14 for different |X ′|.

124 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

(VBS, an oracle selecting the best algorithm for each input), the Best Single Solver (BSS,
i.e. Tim sort), uniform random selection, as well as the average performance of abest
obtained by a (blocked) BF set-ASP solver which we will refer to as Brutus.
We observe that up and till |X ′| = 16 our clustering approach performs similarly to

Brutus. This is unsurprising as for |X ′| ≤ 16 the G-means algorithm assigns all inputs to a
single cluster and the framework reduces to Brutus. For |X ′| ≥ 32 the G-means algorithm
assigns inputs to two or more different clusters. We observe that, on average, this results
in a drop in performance. This could be explained by the fact that training set X ′ is now
divided into multiple smaller training sets X ′k, which may not be representative for Dk,
the distribution of inputs assigned to cluster k, and ak inaccurate as a consequence. As
of |X ′| ≥ 256 performance improves again. At this point, G-means uses all 64 clusters
and the average size of partitions X ′k increases. Overall, the results are disappointing,
not only did Algorithm 14 take over 100× longer than Brutus to obtain a mapping with
performance similar to the BSS, an increase in resources actually led to worse designs.
One factor hindering the clustering is the differences in scales between our features:

while fsorted, fequal ∈ [0, 1], we have flength ∈ [2, 2 ∗ 105] and frange ∈ [0, 2 ∗ 109].
The K/G-means algorithm used is particularly sensitive to such scale differences as it
measures similarity based on Euclidean distance in feature space. As a consequence, in
our sorting subset-ASP, it will cluster sequences mainly based on similarities in frange,
almost completely disregarding differences in fsorted and fequal. To overcome this issue,
we transformed each feature fi as f ′i = log(fi−fmin

i +1)
log(fmax

i
−fmin

i
+1) , where f

min
i and fmax

i are the
smallest and largest values feature fi takes for any input. This has the effect of normalizing
all features in range [0, 1] and applying a log-scale. The latter encodes our belief that
large differences in length/range are less relevant if length/range are large as well. The
dark blue ×’s in Figure 4.4 show the performance of Algorithm 14 using the transformed
features. While we still observe a drop in performance for |X ′| = 32 it is considerably
smaller and we eventually (after a day of CPU time) achieve near VBS performance. More
specifically, sbest closes on average 90% of the gap between the VBS and BSS.9

Regression: Another approach involves building |A| regression models Ma : Rm → R,
one for each a ∈ A, predicting the average-case performance of a on X~f . Each Ma

is trained using observed (φ. extract(x),p. eval(x, a)) pairs, obtained by evaluating a on
numerous inputs x ∼ D. The selection mapping is s(x) = arg maxa∈AMa(φ(x)), i.e.
selects the algorithm with the highest predicted performance. This approach was first
proposed to solve the subset-ASP in [Leyton-Brown et al. 2003], motivated by prior work
on performance prediction in the context of empirical hardness models [Leyton-Brown et al.

9The “gap closed” performance measure is calculated as gap closed(s) = o(BSS)−o(s)
o(BSS)−o(VBS) .

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 125

2002, Nudelman et al. 2004, Leyton-Brown et al. 2009]. Most notably, this technique
was used in SATzilla [Xu et al. 2008] (employing ridge regression).
As an illustration, we applied this technique to our sorting subset-ASP. The framework

used is shown in Algorithm 15 and is an anytime variant of the procedure described above,
iteratively constructing a set of performance observations for each algorithm (Ra), refitting
the regression models and updating sbest every time X ′ doubles in size (|X ′| = |Ra|). As
regression strategy, we used the implementation of Random Forests [Breiman 2001] (RFs)
provided in the Java SMILE machine learning library.10 This choice was motivated by the
relative robustness of RFs (w.r.t. the choice of hyper-parameters, the scale of features
etc.). Figure 4.5 shows (dark green O’s) the average performance of sbest, for different
sizes of X ′, based on data from 1000 independent runs of Algorithm 15. We observe
performance similar to Brutus for |X ′| ≤ 32, after which Brutus converges to the BSS,
while the selection mapping obtained by our regression approach continues to improve
further, eventually closing the gap with roughly 40% for |X ′| ≥ 256.

Algorithm 15 Framework for solving the subset-ASP using regression.
1: procedure SelectRegress(〈A,D, φ, p〉, N, regress)
2: b← 1
3: for i ∈ 1 : N do
4: x← D. sample() . Add new input x to training input set.
5: X ′ ← X ′ ∪ {x}
6: ~f ← φ. extract(x)
7: for a ∈ A do . Test algorithms on x and update performance data.
8: r ← p. eval(x, a)
9: Ra ← Ra ∪ {(~f, r)}
10: end for
11: if i = b then . If i is a power of two
12: b← 2 ∗ b
13: for a ∈ A do . Build |A| performance prediction models.
14: Ma ← regress(Ra)
15: end for
16: sbest ← λ(x) = arg maxa∈AMa.predict(φ. extract(x)) . Update anytime

solution.
17: end if
18: end for
19: return sbest
20: end procedure

10A RF regression model consists of an ensemble of k regression trees. Here, we chose k = 64, which
the empirical study conducted in [Oshiro et al. 2012] suggested to be a reasonable default.

126 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

-104

-103

-102

o(
s)

Virtual Best Solver (VBS)
Best Single Solver (BSS)
uniform random selection
brutus (blocked)
classification
regression
regression (log-scaled)

X’| |

Figure 4.5: Performance of sbest obtained by Algorithms 15 and 16 for different |X ′|.

In scenarios where performance observations vary strongly in magnitude, it is not un-
common to learn a predictive model Ma(x) ≈ sgn(p(x, a)) log(|p(x, a)|) instead.11 For
instance, this log-transformation was applied in SATzilla [Xu et al. 2008] and in SMAC
[Hutter et al. 2011] for runtime predictions. We therefore also ran Algorithm 15 on
a subset-ASP 〈A,D, φ, p′〉, where p′(x, a) = − log(|p(x, a)|). The bright green 4’s in
Figure 4.5 shows the average performance of the sbest’s obtained. We observe that this
trick further improved performance, eventually closing the gap on average with 85%, for
|X ′| ≥ 1024. Compared to the clustering approach, the regression approach performed
better on smaller datasets.

Classification: A final approach reduces the subset-ASP to a multi-class Classification
Problem (k-CP). In the k-CP, we are to find a classifier assigning “objects” (e.g. animals)
to one of k “classes” (e.g. species). In the set-ASP reduction, possible inputsX correspond
to the objects and A to the classes. A classifier assigns objects to classes, and as such can
be interpreted as a selection mapping. In supervised learning, classifiers are trained based
on labeled training data, i.e. pairs (x, a) ∈ X × A indicating that x is best solved using
a. In the ASP, such information is not available a priori, however, (possibly noisy) training
data can be collected by (1) generating a sample of training inputs X ′ using D. sample
and (2) determining for each x ∈ X ′ which algorithm performs best.

11While this log-transformation does not affect the optimal selection mapping for the input-ASP, as
arg maxa∈A p(x, a) = arg maxa∈A sgn(p(x, a)) ∗ log(|p(x, a)|), the same does not hold for the subset-
ASP, in general, as arg maxa∈A Ex∼D~f p(x, a) 6= arg maxa∈A Ex∼D~f sgn(p(x, a)) ∗ log(|p(x, a)|).

4.2. DESIGN BY PER-INPUT ALGORITHM SELECTION 127

As an illustration, we applied this technique to our sorting subset-ASP. The framework
used is shown in Algorithm 16 and is an anytime variant of the procedure described above,
iteratively constructing a set of labeled training dataD′, retraining a classifier and updating
sbest every time X ′ doubles in size (|X ′| = |D′|). Remark that labels are determined based
on a single evaluation of each algorithm (∼ BF (blocked) with N = 1). We again used
a Random Forest prediction model, this time for classification (i.e. an ensemble of 64
decision trees). Figures 4.5 and 4.6 show (red ◦’s) the average performance and average
accuracy, respectively, of sbest’s obtained by Algorithm 16, for different sizes of D′/X ′,
based on data from 1000 independent runs. We observe that while the sbest’s obtained
using the classification approach have an average accuracy of 70%, which is higher than
that obtained by any of the approaches described thus far, their average performance is
much worse than the BSS for |X ′| ≤ 8192. This implies that while sbest selects the optimal
algorithm 70% of the time, the remaining 30% it selects an algorithm which is sometimes
much worse. This is a product of the fact that ordinary classifiers attempt to minimize
classification error, disregarding the possibly varying cost associated with misclassification.
Research on example-dependent cost-sensitive classification tries to alleviate this problem
[Brefeld et al. 2003, Bahnsen et al. 2015]. The clustering and regression techniques
described earlier can be viewed as a form of cost-sensitive classification. Indeed, we observe
that the best clustering and regression approaches obtain near VBS performance with an
accuracy of only 50%, indicating that even when a suboptimal algorithm is selected, the
selected algorithm does not perform much worse.

Algorithm 16 Framework for solving the subset-ASP using classification.
1: procedure SelectClassify(〈A,D, φ, p〉, N, classify)
2: b← 1
3: for i ∈ 1 : N do
4: x← D. sample() . Add new input x to training input set.
5: X ′ ← X ′ ∪ {x}
6: ax ← arg maxa∈A p. eval(x, a) . Determine which algorithm works best on x.
7: D′ ← (x, ax)
8: if i = b then . If i is a power of two
9: b← 2 ∗ b
10: M ← classify(D′, φ) . Train a classifier.
11: sbest ← λ(x) = M.predict(x). . Update anytime solution.
12: end if
13: end for
14: return sbest
15: end procedure

128 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
X’

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

brutus (blocked)
clustering
clustering (normalized)
classification
regression
regression (log-scaled)

| |

Figure 4.6: Accuracy of sbest obtained by Algorithms 14, 15 and 16 for different |X ′|.

Scaling up to large algorithm spaces: As discussed in Secton 3.3.3 (p. 88), the
AS community traditionally focuses on instances of the subset-ASP where A is relatively
small. However, instances of the subset-ASP with large (infinite) A have been studied.
For instance, in the AC community, where some have considered a per-subset variant of
the ACP, i.e. the subset-ACP. In the subset-ACP, we are to select a configuration based
on input features, i.e. learn a “configuration selection portfolio”.

Parameters as algorithm features: One approach [Hutter and Hamadi 2005, Hutter
et al. 2006] extends the regression technique described in the previous section to deal with
large or even infinite A. Rather than maintaining a modelMa for each algorithm instance,
which does not scale, it learns a single modelM : Rm×Θ→ R including parameter values
as features of the algorithm instances and effectively generalizing performance observations
also across algorithm instances. However, there are a few downsides associated with this
approach. First, we would like, for each x, to select the configuration which maximizes
the performance predicted by our model, i.e. s(x) = arg maxθ∈ΘM(φ(x), θ). However
computing s(x) involves solving a non-trivial GOP 〈M(x, ·),Θ〉. Furthermore, as noted
by [Kadioglu et al. 2010], it might in practice select configurations which were never used
during training, making it sensitive to model errors.
In what follows, we discuss two prominent frameworks, which to our knowledge represent

the most successful approaches to the subset-ACP thus far.12

12Remark that the underlying frameworks do not critically rely on algorithms being represented as
configurations and are therefore applicable to any subset-ASP (with structured A).

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 129

Hydra [Xu et al. 2010] is a framework decomposing the subset-ACP into multiple small
subset-ASP and large set-ACP instances. Hydra takes a portfolio builder and configurator
as arguments, which are themselves treated as black boxes. First, Hydra will solve the set-
ACP, obtaining sbest(x) = θ∗. Next, iteratively, a configurator is ran to find a configuration
maximally complementary to sbest. To this end, the objective of configuration is changed
from optimizing o(θ) to optimizing osbest(θ) = Ex∼Dmax(p(x, θ), p(x, sbest(x))). osbest(θ)
is an optimistic estimate of the performance of including θ in the portfolio of sbest. Sub-
sequently, a subset-ASP is solved where A consists of all configurations currently in the
range of sbest and θ. The resulting selection mapping is the new sbest.

ISAC [Kadioglu et al. 2010]. While the classification and regression approaches de-
scribed above do not scale to large algorithm spaces, the clustering approach does, as
it reduces the subset-ASP, with large A, to multiple set-ASP, with large A, which we
know how to solve, assuming A is structured (see Section 4.1.2, p. 114). ISAC applies
a clustering subset-ASP approach, called Stochastic Offline Programming [Malitsky and
Sellmann 2010], to the subset-ACP. First, ISAC clusters inputs according to “similarity” of
normalized features using the G-means algorithm [Hamerly et al. 2003], subsequently it
determines the best configuration for each cluster using the GGA configurator [Ansótegui
et al. 2009]. Remark that an “input sensitive” extension of the Petabricks compiler [Ding
et al. 2015] implements a similar scheme.

4.3 Design by Dynamic Algorithm Selection
In the subset-ASP, we are to determine which of a given set of algorithm instances to
use (∼ combination of design decisions to make), conditioned on features of the problem
instance to be solved. Remark that in the resulting design (portfolio solver), all decisions
w.r.t. how to best solve a given problem instance are made prior to actually solving it, i.e.
statically. Therefore, we will also refer to the subset-ASP as the “static ASP”. Remark
that the latter includes the input/set-ASP as special cases. Please observe that:

• It is often difficult to accurately and efficiently predict which algorithm instance will
perform best on a given input. For instance, sufficiently discriminative features might
not be available, or they might be too expensive to compute.

• Not all decisions must actually be made prior to execution. For instance, take
algorithm configuration: While algorithm frameworks are traditionally viewed as
taking parameter values as input, their execution does not actually depend on them
until they are actually used. Sometimes, some parameters may not be used at all,
in which case there was no need to assign them a value in the first place.

130 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

• Deferring choices until runtime allows us to make more informed decisions, i.e. de-
pendent not only on features of the input, but also on information gathered during
the execution thus far; e.g. stochastic events that occurred.

• It may be possible and beneficial to “vary” our decisions over the course of the run
(e.g. lowering the temperature parameter in the simulated annealing framework).

These observations have motivated “dynamic” approaches to algorithm selection/design,
considering “how to best make multiple choices we face over the course of an execution”.

4.3.1 The Dynamic ASP
While problems of this form, which we will refer to as “dynamic ASPs”, have received
wide-spread attention in the last few decades (e.g. dynamic algorithm portfolios [Kautz
et al. 2002, Carchrae and Beck 2005, Gagliolo and Schmidhuber 2006], recursive algorithm
selection [Lagoudakis and Littman 2000], parameter control [Eiben et al. 2007, Karafotias
et al. 2014], operator selection [DaCosta et al. 2008, Battiti et al. 2008], selection hyper-
heuristics (see Section 2.7.2.5), just-in-time compilation [Krall 1998]), and are viewed as a
natural generalization of the “static ASP” as defined by John Rice (1976), we have failed
to find any general definition or formalization of this notion as a computational problem, a
matter which we attempted to address in [Adriaensen and Nowé 2016b]. In what follows,
we will first discuss prior art, followed by our own formal definition of the dynamic ASP.

Related research: Attempts to formalize the dynamic ASP have been made in the
context of solving specific dynamic selection problems, most notably
[Lagoudakis and Littman 2000] consider the design of divide & conquer algorithms.

These algorithms solve a problem by reducing it to multiple smaller instances of
the same problem. Recursive sorting algorithms such as mergesort and quicksort
are prototypical examples. While traditional recursive algorithms will use the same
(recursive) algorithm to solve all subproblems, in principle any mixture of algorithms
could be used. The problem of deciding which algorithm to use to solve each of these
subproblems can be considered a dynamic algorithm selection problem. [Lagoudakis
and Littman 2000] formulates this problem as a kind of Markov Decision Problem
(MDP, [Puterman 2014]), where states correspond to features of the subproblem
and actions to different algorithms which can be used to solve them.

[Rodriguez et al. 2007] consider the problem of designing simple construction heuristics
(see Section 2.7.2.1), which they formulate as follows: Given a set of rules H which
take a partial candidate solution with n solution components as input and return
a (partial) candidate solution with n + 1 components (i.e. H contains heuristic
rules for adding solution components), which rule should one use at each step of the
construction process as to maximize the quality of the constructed solution?

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 131

[Karafotias et al. 2014] consider the problem of controlling parameters in Evolutionary
Algorithms (EAs), i.e. designing parameterless EAs. Like [Lagoudakis and Littman
2000] they reduce this problem to a kind of (partially observable) MDP, where states
correspond to observable features of the current population and actions correspond to
alternative parameter values. An alternative reduction was also considered, where the
states also include the current values of ordinal parameters and actions correspond
to increasing/decreasing their value.

Our objective in this section is to provide a general framework for studying this problem.
Remark that both [Lagoudakis and Littman 2000] and [Karafotias et al. 2014] consider
reductions to MDP-like problems and the use of RL techniques to solve them. While we
share the perspective that the MDP is arguably the closest related, well-studied, compu-
tational problem, and believe in the potential of using RL methods to solve the dynamic
ASP, we would like to argue that both are different problems, whose relation is non-trivial.
This was also noted in [Karafotias et al. 2014]: “There is an apparent analogy between
the EA parameter control problem and the full RL problem and a Markov Decision Process
(MDP). The EA state observables suggest a state space, the parameters controlled and
their ranges point to an action space while a dynamic control mechanism component could
be implemented by a specific RL algorithm. Although this high level mapping is straight-
forward, the exact formulation of the RL problem is far from trivial.” In Section 2.4.3,
we have argued for the importance of formulating computational problems in their most
natural and reducible form. The dynamic ASP is no exception here. In what follows, we
will therefore first present a formal definition of the dynamic ASP and only afterwards
discuss possible reductions of this problem to the MDP. If nothing else, the latter has the
benefit of allowing us to reason formally about the relation between both problems.

Dynamic algorithm selection as a sequential decision process: Before giving a formal
definition, we provide some of the intuition underlying our formulation. Conceptually,
dynamic algorithm selection, in general, can be viewed as a sequential decision process
(see Figure 4.7). Assume we are given some algorithm space A0 and a problem instance
x to be solved. Unlike in the static ASP, we start solving x without selecting an algorithm
instance a ∈ A0 a priori. The crux here is that we can continue execution, as long as all
algorithms in A0 agree on the first instructions to be executed. When they do not, i.e. the
next instruction depends on our choice of a ∈ A0, a choice point is encountered and in
order to continue execution, we must choose which of the possible instructions to execute
next. This process continues until termination. Remark that our decision at the ith choice
point corresponds to selecting Ai ⊂ Ai−1 consistent with our choice (∼ partially selecting
an algorithm). At each point, Ai can be viewed as the subset of algorithms consistent
with the execution thus far. At some point, we may have |Ai| = 1 after which no
further choice points are encountered as we essentially selected a single instance from A0.

132 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

while not terminated do
 if choice point then
 decide on continuation;
 end if
 execute next instruction;
end while

Figure 4.7: Dynamic algorithm selection as a sequential decision process.

On the other hand, we may have |Ai| > 1 when execution terminates, indicating that
multiple algorithm instances solve x in the exact same way.

The choice machine: In what follows, we formalize this notion. To this end, we ex-
tend the Turing Machine (TM) formalism (see Section 2.3.1.2) to include choice points,
alternative decisions, as well as a notion of the desirability of an execution.

Definition 4.4: Dynamic algorithm selection process (TMasp)

We define a TMasp as a 10-tuple 〈Q, q0, F,Γ, B,Σ,∆, κ, δ′, ρ〉, with Q, q0, F,Γ, B,Σ
as in Definition 2.8 (TM) and ∆, κ, δ′, ρ defined as follows:

∆ is a set of choice points.

κ : ∆→ 2Q×Γ×{R,L} is the domain function, mapping each choice point to a set of
alternative transitions.

δ′ : (Q \ F) × Γ → (Q × Γ × {R,L}) ∪ ∆ is the open transition function. As for
δ, arguments of δ′(q, a) are the current control state q and tape symbol being
scanned a. The value of δ′(q, a), if defined, is either a triple (p, b, d), where

p ∈ Q is the next state.
b ∈ Γ is the symbol written in the cell being scanned, i.e. replacing a.
d is the direction in which the head moves, either L (left) or R (right).

OR a choice point z.a

ρ : Q× Γ× {L,R} → R is the reward function. Representing the added “value” of
a transition to overall performance.

aIntuitively, in case algorithms in Ai do not agree about which transition to perform.

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 133

Here, TMasp may be viewed as a “choice machine” (c-machine) a concept first described
in [Turing 1937] as “Machines whose motion is only partially determined by the configur-
ation.13 When such a machine reaches one of these ambiguous configurations, it cannot
go on until some arbitrary choice has been made by an external operator”. A c-machine
is in essence an interactive model of computation. We did not find any formal definitions
of the c-machine, and as such the one described above is our own, extended with the
concept of a reward function assigning credit to the machine’s motion, borrowed from the
RL community. Further adopting RL terminology, we will refer to the “external operator”
as an agent.
As before, let X ⊆ Σ∗ denote the set of possible inputs. We continue to formalize what

it means to simulate a TMasp on an input x ∈ X. Similar to an ordinary TM, we use αqbβ
as the Instantaneous Description (ID) of a TMasp and simulation of TMasp on x starts in
ID qox. Now, the move performed by TMasp in an ID αqbβ is determined as follows

• If q ∈ F : TMasp halts.
• If δ′(q, b) ∈ (Q×Γ×{R,L}): TMasp behaves like an ordinary TM and moves to ID

step(αqbβ, δ′(q, b)).
• If δ′(q, b) ∈ ∆: the agent selects a transition t ∈ κ(δ′(q, b)) and TMasp will move

to ID step(αqbβ, t).

We use id ` id ′ to denote that TMasp could move from ID id to ID id ′ in a single move.
Finally, id `∗ id ′ indicates that simulating TMasp from id for zero, one or more moves
results in id ′ for some choices of the agent.
Remark that unlike an ordinary deterministic TM M ′ which specifies an execution for

each input x (eM ′x), a TMasp M specifies a set of possible executions EMx , which we will
also denote Ex in contexts whereM is clear. Each e = (a, q, b, d) ∈ Ex satisfies conditions
(1), (3) and (4) from Definition 2.9, as well as

2. (qi, bi, di) = δ′(qi−1, ai) ∨ (qi, bi, di) ∈ κ(δ′(qi−1, ai)),∀ 1 ≤ i ≤ |a|.

Let the desirability of an execution e be the sum of rewards associated with its transitions,
i.e. p(e) =

∑|a|
i=1 ρ(qi, bi, di). The motion of a TMasp is not only determined by the input,

but also by the decisions made by the agent. Conceptually, the objective of an agent
in the dynamic ASP is to make these decisions as to maximize the reward accumulated
before halting. In the remainder of this dissertation, we will assume that any simulation
of a TMasp on any x ∈ X will eventually halt, independent of the agent’s decisions. As a
consequence, quantities p(e) and |Ex| will be finite.

13Here configuration refers to the Instantaneous Description (ID) of the machine, not be confused with
a configuration as we defined in context of algorithm frameworks.

134 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

The deterministic dynamic ASP: Before defining the dynamic ASP as a computa-
tional problem, we must decide what form a solution should take. Given our conceptual
description, an obvious choice would be “an agent that acts optimally”. However, in what
follows, we argue this notion to be too general. In [Turing 1937] Alan Turing presented the
c-machine as an alternative to the “automatic machine” (a-machine) which corresponds to
the contemporary notion of an “ordinary” TM. From this terminology, we suspect that Alan
Turing, at that point in time, envisioned the agent to be a human operating the machine.
Under the assumption of free will, this human is in no way restricted in the way he/she
can make these decisions. However, in the context of algorithm design (i.e. the reduction
depicted in Figure 4.8, p. 137) our solution must be interpretable as an algorithm for our
target problem. Put differently, given (only) an input x ∈ X, the resulting design has to
simulate not only a TMasp, but also the agent. We therefore require the behavior of the
agent to be a (computable) function of the input x. Again adopting terminology from the
RL community, we will call the function describing this behavior a policy. Concretely, let
tx = (tx1 , . . . , txn) be the sequence of decisions made by an agent when simulatingM on x.
We require that there exists a (computable) function π satisfying π(x, i) = txi . Note that
for now, we will limit ourselves to deterministic policies. As a consequence, the execution
of M on x following a policy π, which we will denote eMπ

x , is uniquely determined.
We are now ready to define the dynamic ASP as follows:

Definition 4.5: Dynamic Algorithm Selection Problem (deterministic)
[Adriaensen and Nowé 2016b]

Given a set of possible inputs X and a TMasp M , find a policy π∗ satisfying
p(e) ≤ p(eMπ∗

x),∀e ∈ Ex,∀x ∈ X.

Unlike in the static ASP, we are not given the algorithm space explicitly. However, the dy-
namic ASP 〈M,X〉 can be viewed as implicitly describing the space A0 of all deterministic
algorithms M ′ satisfying eM ′x ∈ EMx ,∀x ∈ X. A policy is the equivalent of a selection
mapping in this space with the subtle difference that it does not discriminate between
algorithm instances which solve x in the same way (i.e. satisfying eM ′′x = eM

′

x).

A Probabilistic extension: Remark that the dynamic ASP as defined above, and in
[Adriaensen and Nowé 2016b], only captures selection amongst deterministic algorithms
as in control states TMasp behaves like an ordinary TM and the decisions at choice points
are made deterministically. In what follows, we extend our definition to also capture the
design of randomized algorithms. To this end, we first define the probabilistic dynamic
algorithm selection process PTMasp as an extension of the Probabilistic TM (PTM, see
Definition 2.24), similar to how we defined TMasp as an extension of the deterministic TM.

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 135

Definition 4.6: Probabilistic Dynamic Algorithm Selection Process (PTMasp)

The PTMasp is defined as a 10-tuple 〈Q,∆, q0, F,Γ, B,Σ, κ, δ′, ρ〉, with Q, ∆, q0,
F , Γ, B, Σ, κ, ρ as in Definition 4.4 and δ′ the open transition probabilities,

((Q \ F)× Γ)× ((Q× Γ× {R,L}) ∪∆)→ [0, 1]
satisfying δ′((q, a), z) > 0 ∧ z ∈ ∆ =⇒ δ′((q, a), z) = 1, i.e. when reading a in a
control state q we are either in a choice point z (when δ′(q, a, z) = 1) XOR we trans-
ition to a control state p, write b and move the head in direction d, with likelihood
δ′((q, a), (p, b, d)).

In a control state, a PTMasp moves like an ordinary PTM. In a choice point z, the transition
is chosen from κ(z) by an agent. The set of possible executions Ex will now be those
(a, q, b, d) satisfying conditions (1), (3) and (4) from Definition 2.9 and for which (exactly)
one of the following holds for ∀ 1 ≤ i ≤ |a|:

• δ′(qi−1, ai, (qi, bi, di)) > 0 (control state)
• ∃ z ∈ ∆ : δ′(qi−1, ai, z) = 1 ∧ (qi, bi, di) ∈ κ(z) (choice point)

We extend the range of admissible behaviors (policies) for the agent in two ways:

• Decisions made at choice points may depend, not only on x, but, also on stochastic
events (i.e. transitions) that occurred during the simulation of PTMasp leading up
to this choice point.

• Decisions may be made in a randomized fashion.

Clearly, a policy no longer uniquely determines the execution of a PTMasp M for any
given input x. Rather, it induces a distribution over the set of possible executions Ex.
Let π(x, e′, t) be the likelihood that an agent following a policy π chooses a transition
t ∈ κ(z) in a choice point z ∈ ∆, where e′ is the (partial) execution leading up to the
choice point. The likelihood that simulating M on x according to policy π results in an
execution e = (a, q, b, d) ∈ Ex is given by

pr(e|π, x) =
|a|∏
i=1

(
[δ′(qi−1, ai, (qi, bi, di)) = 0]π(x, (a1:i−1, q1:i−1, b1:i−1, d1:i−1), (qi, bi, di))

+ δ′(qi−1, ai, (qi, bi, di))
)
. (4.3)

Remark that δ′(qi−1, ai, (qi, bi, di)) = 0 if and only if we are in a choice point after
performing i− 1 moves. In the probabilistic dynamic ASP we are to make decisions as to
maximize the expected desirability of the resulting execution, formally:

136 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Definition 4.7: Dynamic Algorithm Selection Problem (probabilistic)

Given a set of possible inputs X and a PTMasp M , find a policy π∗ satisfying
p(x, π) ≤ p(x, π∗),∀x ∈ X, where p(x, π) =

∑
e∈Ex pr(e|π, x) ∗ p(e).

Selection based on runtime features: In the remainder of this section and disserta-
tion, we will consider a further generalization of the (probabilistic) dynamic ASP. The
formulation below relates to the dynamic ASP defined above, as the subset-ASP relates
to the input-ASP, i.e. we restrict our candidate solutions to policies basing their decisions
on specific features of the input and the execution thus far.

Definition 4.8: Dynamic Algorithm Selection Problem (constrained)

Instances of the dynamic ASP are defined by triples 〈M,D, φ〉 where

M : a dynamic algorithm selection process (see Definition 4.6).

D : a distribution over a set of inputs X (input distribution).

φ : a function mapping an input, and a partial execution leading up to a choice point,
to an execution context ω ∈ Ω. (dynamic feature mapping).

Candidate solutions Π are all policies π specifying the likelihood of making a decision t
in a choice point z encountered in execution context ω, denoted π(z, ω, t). In the dy-
namic ASP, given 〈M,D, φ〉, we are to find a policy π∗ satisfying o(π) ≤ o(π∗),∀π ∈ Π,
where o(π) = Ex∼D p(x, π) =

∑
x∈X D(x)

∑
e∈Ex pr(e|π, x) ∗ p(e).

Here, as in the static ASP, we will assume D to be given implicitly in the form of a
procedure D. sample which can be used for generating samples according to D. M and φ
we assume to be given in the form of a computer program 〈M,φ〉, written in an ordinary
programming language extended with constructs enabling interaction with the agent:

Agent.choice(z,statements,ω): A call to Agent.choice specifies a choice point
z ∈ ∆, alternative decisions at that point κ(z) and the information φ(x, e′) = ω

based on which the decision must be made. The method takes as arguments:

1. A constant serving as a choice point identifier.
2. A list of statements, exactly one of which will be executed depending on the

choice of the agent.
3. A set of expressions on whose values the choice made by the agent may depend.

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 137

Agent.feedback(r): Calls to Agent.feedback specify ρ. The method takes as argu-
ments a single real-valued reward. Remark that this reward may be negative. Assume
that over the course of an execution e, n calls were made to Agent.feedback with
arguments r1, . . . , rn, the desirability of e is given by p(e) =

∑n
i=1 ri.

A candidate solution of the dynamic ASP is a policy π : ∆×Ω×(Q×Γ×{R,L})→ [0, 1],
which we assume to be given explicitly. In the context of algorithm design (see Figure 4.8),
the design corresponding to a policy π is a program which interprets program 〈M,φ〉, ignor-
ing calls to Agent.feedback and substituting calls to Agent.choice(z,statements,ω)
with a statement t ∈ κ(z) with likelihood π(z, ω, t).

the "actual" ADP dynamic ASP
formulate

dynamic ASP
solver interpret (reactive)

algorithmpolicy π*

Figure 4.8: Diagram illustrating the design by dynamic ASP reduction approach.

Example - dynamic sorting ASP: In what follows, we will give an example of the
dynamic ASP reduction (see Figure 4.8) in the context of our sorting ADP. For D. sample
we use the same procedure we have used in the static sorting ASP (see Section 4.1.1).
Pseudo-code for the program 〈M,φ〉 describing the PTMasp M and feature mapping φ is
given in Algorithm 17. Here, we have three choice points ∆ = {zfeatures?, zreverse?, zsort}.
The first choice point we encounter in a call to Sort(l) is zfeatures?. Here, we are to decide
whether (tyes) or not (tno) to compute the relatively expensive features frange,fsorted and
fequal; based on the value of the cheap feature flength. If tyes, we do so using Algorithm 13,
before ending up in choice point zreverse?. Otherwise, we end up in zsort. In zreverse? we
are to decide whether to reverse l prior to sorting it (tyes), or not (tnot), based on all four
input features. Next, in zsort, we have to choose one of the eight sorting algorithms (= A

in the static sorting ASP). This decision can be dependent on flength and, if computed,
also on frange,fsorted and fequal. We distinguish between iterative and recursive sorting
algorithms. If we choose an iterative algorithm (selection sort, bubble sort, insertion sort,
heapsort, radix sort or Tim sort) we will simply use it to sort l and return the sorted
sequence. However, if we choose a recursive algorithm (merge sort or quicksort) we first
decompose l into two subsequences l′ and l′′ which we sort by calling the Sort procedure
recursively, before recombining the sorted subsequences into a single sorted sequence. In
these recursive calls, we do not encounter zfeatures? and zreverse? (as |l′| < size). However,
we do encounter zsort where we again can choose any of eight sorting algorithms to sort
the subsequence, this time solely based on its length.14

14Our dynamic sorting ASP is similar to the one considered in [Lagoudakis and Littman 2000], extended
to also include choices for preprocessing (extracting additional features and reversing) the input sequence.

138 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Algorithm 17 Pseudocode for 〈M,φ〉 the dynamic sorting ASP
1: procedure Sort(l)
2: l← Sort(l,|l|)
3: Agent.feedback(− timelapse()

|l|)
4: return l.
5: end procedureSort

6: procedure Sort(l,size) . In recursive calls, size is the length of the original sequence.
7: (flength, frange, fsorted, fequal)← (|l|, τ, τ, τ) . Features of l (τ = not (yet) computed).
8: if |l| = size then . If non-recursive call
9: Agent.feedback(− timelapse()

size)
10: Agent.choice(zfeatures?,{tyes: goto line 11, tno: goto line 18},flength)
11: (flength, frange, fsorted, fequal)←ExtractFeatures(l) . Compute features.
12: Agent.feedback(− timelapse()

size)
13: Agent.choice(zreverse?,{tyes: goto line 14, tno: goto line 18},

(flength, frange, fsorted, fequal))
14: for i = 1 : b |l|2 c do . Reverse the sequence.
15: swap ith and (|l| − i+ 1)th element in l
16: end for
17: end if
18: Agent.feedback(− timelapse()

size)
19: Agent.choice(zsort, {

tselection: l← selection sort(l,size), tbubble: l← bubble sort(l,size),
tinsertion: l← insertion sort(l,size), tmerge: l← merge sort(l,size),
tquick: l← quicksort(l,size), theap: l← heapsort(l,size),
tradix: l← radix sort(l,size), ttim: l← tim sort(l,size)
},(flength, frange, fsorted, fequal))

20: return l
21: end procedure

22: procedure IterativeSort(l,size) . Bubble, selection, insertion, heap, radix and Tim sort.
23: sort l using non-recursive sorting algorithm
24: Return l
25: end procedure

26: procedure RecursiveSort(l,size) . Quick and merge sort.
27: decompose l into two subsequences l′ and l′′ (pre-processing)
28: l′ ← Sort(l′,size)
29: l′′ ← Sort(l′′,size)
30: combine sorted subsequences l′ and l′′ into a sorted l (post-processing)
31: return l
32: end procedure

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 139

Finally, we discuss our choice of ρ, which is specified by calls to Agent.feedback. As in
the static ASP, our per-input objective (∼ desirability of an execution) is the negated time
(−t) it takes to sort the input sequence l, normalized by |l|. Put differently, we should
choose ρ such that the sum of rewards accumulated during any execution equals −t|l| . For
our time measurements, we use timelapse as an auxiliary procedure. The first call to
timelapse returns the CPU time elapsed since the computation started. Subsequent calls
return the CPU time elapsed since the last call to timelapse. Remark that many different
choices for ρ can be made without affecting optimality. The most natural choice would
be to penalize each instruction proportionally to the time it takes to execute. However,
doing so may be impractical; e.g. accurately measuring this cost. An alternative would
be a single final call to Agent.feedback(− timelapse()

|l|) after l has been sorted. However,
it is desirable to attribute rewards to specific parts of the execution, if possible. Doing so
facilitates credit assignment; e.g. rewards can only be attributed to decisions made prior
to receiving them. In our sorting ASP, we decided to call Agent.feedback(− timelapse()

|l|)
before every choice point and at the end. In the MDP reduction which we will describe in
Section 4.3.2.1, our coarse-grained choice of ρ reduces to the same reward function R as
the impractical fine-grained option.

4.3.2 Solving the Dynamic ASP
In the remainder of this section, we turn towards solving the dynamic ASP. Here, one
might expect us to discuss some of the approaches which have been taken thus far to
solve the general dynamic ASP, as we have done for static ASP. However, when surveying
prior art on the topic, we found that they either

• consider restrictive, specific cases of the dynamic ASP; e.g. dynamic scheduling,
dynamic restart portfolios, recursive algorithm selection, etc.

• do not qualify as “automating the design of reusable algorithms”. Here, one typically
“claims” to solve the dynamic ASP “online” (see Section 3.5.2.1 for a discussion).

• do not exploit the specifics of the dynamic ASP. Here, one typically reduces the
dynamic ASP to a static ASP (see Section 4.4.1).

As such, we are of the opinion that

A “general dynamic ASP solver”, “worthy of the name”, does, to date, not exist.

Therefore, in the remainder of this section, we will instead focus on a line of research which
we believe to show most promise towards developing such solvers in the future. Here, as in
[Adriaensen and Nowé 2016b], we consider solving the dynamic ASP ”by reduction to an
MDP” (as is depicted in Figure 4.9). First, in Section 4.3.2.1, we discuss the reducibility

140 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

the "actual" ADP dynamic ASP
formulate interpret (reactive)

algorithmpolicy π*

MDP
MDP solver

policy π*

formulate interpret

MDP

ASP

Figure 4.9: Diagram illustrating the design by MDP reduction approach.

of the dynamic ASP to the MDP. Subsequently, in Section 4.3.2.2, we discuss techniques
for solving MDPs. Finally, in Section 4.3.2.3, we discuss challenges faced when solving
MDPs, in general, and in the context of the dynamic ASP, in particular.

4.3.2.1 Reducibility to the MDP

In this section, we examine the relationship between the dynamic ASP and the MDP
[Bellman 1957, Puterman 2014]. In particular, as in [Adriaensen and Nowé 2016b], we
will show that the deterministic dynamic ASP (see Definition 4.5) is many-one reducible
to the deterministic MDP. To this end, we first define the MDP as follows:

Definition 4.9: Markov Decision Problem (deterministic)

Instances of the MDP are defined by quintuples 〈S,A, T,R, γ〉:

S : A set of states.

A =
⋃
s∈S As a set of actions, where As is the set of possible actions in state s.

T : S × A → S is the state transition function, where T (s, a) = s′ denotes that
taking an action a in a state s results in a state s′.

R : S×A→ R is the immediate reward function, where R(s, a) denotes the reward
we receive for taking action s in state a.

γ ∈ [0, 1] is a discount factor, representing the difference in importance between
short-term and long-term rewards.

Candidate solutions Π are functions of the form π : S → A, with π(s, a) denoting
that policy π takes action a in state s. In the MDP, given 〈S,A, P,R, γ〉, we are to

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 141

find a policy π∗ satisfying

π∗(s) = arg max
a∈As

(R(s, a) + γ ∗ Vπ∗(T (s, a))).

Vπ(s) = max
a∈As

(R(s, a) + γ ∗ Vπ(T (s, a))).
(4.4)

where Vπ is called the state-value function of policy π, giving the total discounted
sum of rewards that will be received when following π starting from any state s.

dynamic ASP (Definition 4.5) ≤m MDP (Definition 4.9): Next, we describe a
general reduction from the deterministic dynamic ASP to the deterministic MDP. Remark
that other reductions exist which may be preferable in practice.

Formulation: Let eMid denote the finite sequence of transitions performed when sim-
ulating TMasp M starting from ID id until it halts or a choice point is reached. Every
instance 〈M,X〉 of the dynamic ASP (see Definition 4.5) is formulated as an instance
〈S,A, T,R, γ〉 of the MDP (see Definition 4.9) with:

S = {αzaβ | ∃ (x, q) ∈ X × Q : q0x `∗ αqaβ ∧ δ′(q, a, z) = 1} ∪ {τ}, i.e. we have a
set of states for each choice point z ∈ ∆: one for each context in which z can be
encountered. Here, the context corresponds to the tape content and head position
of TMasp M . We also have a terminal state τ , indicating that M has halted.

A =
⋃
s∈S As, where As:

Aαzβ = κ(z), i.e. we have an action for each possible continuation in z.
Aτ = {anoop}.

T (s, a) =
{
αzbβ s 6= τ ∧ id = step(s, a) ∧ αqbβ = steps(id, eMid) ∧ δ′(q, b) ∈ ∆
τ s = τ ∨ (s 6= τ ∧ id = step(s, a) ∧ αqβ = steps(id, eMid) ∧ q ∈ F)

.

i.e, taking an action a in a state s, corresponds to executing a continuation from the
execution state until it halts (second case) or a choice point is reached (first case).

R(s, a) =
{
ρ(a) +

∑|t|
i=1 ρ(ti) s 6= τ ∧ eMstep(s,a) = t

0 s = τ
.

i.e., the reward associated with a single transition of the MDP is equal to the sum
of the rewards associated with the transitions performed when simulating TMasp M .

γ = 1 (undiscounted).15
15Remark that the resulting MDP is episodic (τ is the final/absorbing state). Therefore, while γ = 1,

the state-value function for any policy will nonetheless be bounded.

142 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Interpretation: Let eMπ
x,i denote the finite sequence of transitions performed when sim-

ulating TMasp M on x according to π until the ith choice point is reached. A candidate
solution of the MDP 〈S,A, T,R, γ〉, taking the form of a policy πmdp : S → A, can be
interpreted as a policy πasp of the dynamic ASP 〈M,X〉 with πasp(x, i) = πmdp(αzaβ, t)
where αqaβ = steps(q0x, e

Mπasp
x,i) and z = δ′(q, a).

probabilistic dynamic ASP (Definition 4.7): While [Adriaensen and Nowé 2016b]
restricted itself to the deterministic setting, in the stochastic setting a similar reduction is
possible between the probabilistic dynamic ASP and the stochastic MDP.

constrained dynamic ASP (Definition 4.8): One could consider a similar formulation
as we described above for the unconstrained dynamic ASP. However, the interpretation
would fail in general, as there is no guarantee that every optimal policy of this MDP
satisfies the constraints imposed by φ. Put differently, we can reduce the constrained
dynamic ASP to a variant of the MDP that allows us to impose restrictions of the form “π
is solely a function of Ω”. However, this “MDP with restricted policy space” is not a well-
studied problem [Goetschalckx and Ramon 2007]. Alternatively, one could choose S = Ω,
and A as described above; and all candidate policies of this partially-defined MDP would
be guaranteed to satisfy the constraints. However, in general, for these choices of S and
A, T and R cannot be defined solely as a function of S ×A. Put differently, the Markov
property is not guaranteed to hold for resulting decision process. Nonetheless, it are these
naive (and improper) reductions which are typically applied in contemporary applications
of RL in the context of the dynamic ASP; e.g. [Karafotias et al. 2014]. Remark that
even though T and R cannot be defined, RL techniques are nonetheless applicable, since
they do not require T and P to be given explicitly. However, often overlooked is that
”conventional” RL techniques do nonetheless require T and R to exist (∼ the Markov
property to hold). Therefore, while applicable, if applied naively, they do not offer any
guarantees about the quality of the policy learned (if any) [Singh et al. 1994].

Summary: While the unconstrained dynamic ASP is reducible to the MDP, the same
does not hold for the constrained dynamic ASP.

4.3.2.2 Solving MDPs

In this section, we give an overview of techniques that are commonly used to solve MDPs.

Dynamic Programming: If S is finite, Equation 4.4 (and its stochastic variant) can be
solved using Dynamic Programming (DP). Commonly used methods include Value and
Policy iteration [Bellman 1957, Beranek 1961], and their extensions. These techniques

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 143

iteratively enumerate all states s ∈ S, applying the recursive rules in Equation 4.4 to im-
prove the estimates of Vπ∗(s) and π∗ respectively, and provably obtaining π∗ in polynomial
time w.r.t. S and A. If the state transition graph is acyclic, standard backward induction
can be used to solve the problem in a single iteration, i.e. O(SA). However, in many
control applications, the state-action space S × A is extremely large or infinite (continu-
ous), rendering this approach intractable. The same holds for the MDPs encountered in
the context of the dynamic ASP, and we will revisit solving large MDPs later in Section
4.3.2.3. Another limitation of the DP approach is that it requires T and R to be known
(efficiently computable) for any given state-action pair. In many control applications this
is not naturally the case, rather, the agent obtains (samples of) these by interactions with
the environment. One way to overcome this problem is by constructing an analytical model
of the environment and applying DP to this model, rather than the actual environment.
Clearly, this is challenging and the quality of the learned policy is critically dependendent
on the accuracy of the model.

Reinforcement Learning (RL): Alternatively, so-called reinforcement learning tech-
niques [Sutton and Barto 1998] (also known as approximate dynamic programming) may
be used, which can learn optimal control policies based on trial & error interactions with
the (simulated) environment, without requiring an explicit model of thereof.16 A wide
variety of RL techniques exist. Rather than an exhaustive survey, we give a brief overview,
characterizing their nature, relative strengths and weaknesses.

model-based vs. model-free: We first distinguish between model-based and model-
free RL. In model-based RL, interactions are used to estimate/predict T and R, i.e. learn
an explicit empirical model of the environment. This (approximate) model can then be
used to solve the MDP using e.g. dynamic programming. Note that most of the model-free
approaches described below also have model-based variants, leveraging a learned model of
the environment. In model-free RL, we solve MDPs without learning T and R explicitly.
Model-free RL techniques can roughly be subdivided into two classes, i.e. value-based and
policy search techniques, which we briefly discuss below.

Value-based RL techniques learn the value function directly, which is subsequently
used to improve/derive the optimal policy, similar to how this is done in policy and value
iteration respectively. However, lacking a model, the state-value function Vπ∗ alone is
insufficient to derive π∗ from Equation 4.4. Therefore, model-free approaches will typically
learn the state-action value function instead, i.e. Qπ∗(s, a) = R(s, a) + γ ∗ Vπ∗(T (s, a))
(a.k.a. the Q-function). We discuss two traditional value-based approaches:

16In the context of solving the dynamic ASP, these methods solve the dynamic ASP by simulating
TMasp (∼ executing code), rather than analyzing it analytically (∼ static code analysis). As such, this RL
approach can be viewed as a simulation-based algorithm design approach (see Section 3.4).

144 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Monte Carlo (MC) Learning: Classical MC simulates the MDP until termination using
some fixed behavioral policy to obtain a sequence of interactions (called a trace).
Here, we further distinguish between on-policy and off-policy MC:

On-policy MC is the RL equivalent of policy iteration, in that in each iteration it
will learn the value function (Qπ) for a fixed policy π and subsequently update
π greedily w.r.t. this estimate. One issue is that if π is deterministic, we fail
to explore any other actions, making the policy improvement step impossible.
One common way of addressing this problem is to follow/learn soft policies
instead. Soft policies are stochastic policies which while acting greedily w.r.t.
some estimate of the value function, will also explore other actions with some
low probability. Well-known examples of soft policies are ε-greedy and Softmax.
Note that we call this approach on-policy as the policy which the agent uses
to simulate MDP, called the behavioral policy, is the same policy whose value
is being evaluated, called the target policy.

Off-policy MC discriminates itself from on-policy MC in that the behavioral policy
may, in fact, be unrelated to the target policy. One benefit of this decoupling is
that it solves our exploration problem, i.e. we can use an exploratory behavioral
policy and yet improve the target policy. The key question here is how to
estimate the value of one policy, based on traces generated using another,
i.e. how to do off-policy policy evaluation. In the context of the ADP, this
question translates to ”How do we estimate the performance of one design,
given performance observations obtained using another design?”, and we will
investigate this question extensively in Section 6.3.2.

MC is limited in that it cannot solve non-episodic tasks and tends to be inefficient
in tasks where a single episode takes a lot of time.

Temporal Difference (TD) Learning techniques attempt to overcome these limitations.
To do so, they exploit the fact that the value of taking an action in a state is
decomposed in the immediate reward and the value of the resulting state (∼ long-
term reward), allowing us to update the value function estimate of the previous
state-action pair, based on the reward received and the estimate of the value of
the current state. Here, we can again distinguish between on/off-policy techniques,
classical examples of which are SARSA [Rummery and Niranjan 1994] (on-policy) and
Q-Learning [Watkins and Dayan 1992] (off-policy). One weakness of TD learning,
w.r.t. MC, is that it is sensitive to the distribution of rewards over the simulation.
In particular, to delayed rewards. Take the extreme, yet not uncommon example,
where reward is only received at the end of each episode (e.g. chess, +1 having
won, -1 having lost and 0 for a tie). Two techniques addressing this problem are:

4.3. DESIGN BY DYNAMIC ALGORITHM SELECTION 145

Reward Shaping changes the reward function, adding intermediary rewards encour-
aging desirable behavior (e.g. rewards for capturing pieces, penalties for having
pieces captured). From a problem reformulation perspective, we reduce the ori-
ginal MDP to an MDP with intermediary rewards; [Ng et al. 1999] presents a
general way of doing so without loss of optimality.

Eligibility Traces (ET) can be seen as a hybrid MC and TD, where the reward is
attributed to multiple past actions over the course of a single episode. Remark
that the use of ET in off-policy TD (e.g. Q-learning) is challenging, for the
same reasons that off-policy MC is challenging, and the ideas of off-policy
policy evaluation also find applications in off-policy TD with ET; e.g. [Precup
et al. 2000].

Direct Policy Search: A second class of model-free RL techniques are so-called direct
policy search methods. Remark that value-based (and DP) methods reduce the problem
of finding π∗ to that of finding Vπ∗ or Qπ∗ . Direct policy search methods are motivated
by the fact that the latter is often a much harder problem than the former. The MDP can
be viewed as an optimization problem: Find the policy π ∈ Π maximizing the expected
sum of discounted rewards. Direct policy search methods, as their name suggests, solve
this optimization problem by searching Π directly. Recall that the full space of policies
is typically extremely large |Π| = |A||S|, making it crucial to guide this search. Here, a
wide variety of techniques are used. Many of which are, in analogy to those discussed in
Section 4.1.2, p. 114, based on similarity assumptions in policy representation space. This
gives rise to the question: ”How to represent policies?”

Tabular representations indicating an action for each state, are arguably the most nat-
ural way to represent arbitrary (deterministic) policies. However, such dense repres-
entations do not scale to large or infinite S.

Parametric representations where a fixed set of, typically numerical, parameters specify
a configuration space Θ corresponding to a family of policies, i.e. each configuration
θ corresponds to a policy πθ ∈ Π.

Non-parametric representations: An example of non-parametric representations are so-
called “sparse representation” used in Learning Classifier Systems (LCS), [Urbanow-
icz and Moore 2009]), where a policy is specified as a set of rules, each applicable
to a partition of the state-space. While LCS originate from the GP community and
are largely unknown within the RL community [Lanzi 2002], ”Pittsburgh-Style” LCS
are essentially direct policy search methods using sparse representations and GAs.17

17”Michigan-Style” LCS, while often considered as the LCS counterpart for value-based RL techniques,
do not enjoy the same theoretical guarantees w.r.t. solving MDPs.

146 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

Direct policy search techniques are often considered not to be part of “conventional RL”;
e.g. they were not covered in [Sutton and Barto 1998]. One reason is that many of
these policy search methods are not “RL specific” and solve a class of problems far more
general than MDPs. If we regard these black box optimizers as RL techniques, e.g. the
set-ASP solvers discussed in Section 4.1.2 may be as well (see Section 4.4.1).18 For
instance, algorithm configurators (see p. 115) are naturally viewed as a policy search
approach using parametric policy presentations. One might wonder: “Why are direct policy
search methods being used to solve MDPs in practice?” Surely one would expect more
specialized, value-based techniques to outperform these generic solvers? An important
reason is that, unlike “conventional RL”, many direct policy search methods do not suffer
from the scalability issues we will discuss in the following section.

4.3.2.3 Scaling up to large state-action spaces

Thus far we have described

1. a general reduction from the dynamic ASP to the MDP.
2. current general techniques for solving MDPs.

As such, theoretically, a general dynamic ASP solver is obtained by combining (1) + (2).
In practice, things are not as simple. One issue that makes this approach impractical (at
least to date and in general) is the fact that the MDPs resulting from (1) often have large
state-action spaces, and that solving such MDPs using (2), requires an intractable amount
of resources. In what remains, we discuss some techniques for addressing this scalability
issue, at least in specific cases.

Exploiting sparsity: One feature which may turn large MDPs tractable is that often only
a small fraction of the states is actually encountered in practice. Most RL techniques will
by nature focus computational efforts on the states that are encountered most frequently in
interactions with the environment. While canonical DP methods enumerate the full state
space, adaptations exist, called Asynchronous DP, exploiting this sparsity. The memory
issue, in this case, can be addressed by using sparse (e.g. hash) table representations.

State abstraction: Also, one may be able to compress the state space, i.e. reduce the
MDP to one with a smaller state space S′, a practice also known as state abstraction.
Remark that a single abstract state s′ ∈ S′ of the resulting MDP will correspond to
multiple ground states Ss′ ⊆ S in the original MDP, i.e. we are confounding states.
Be aware that, in doing so, we risk losing the Markov property and with it many of the

18That being said, there are classes of policy search techniques that do exploit some of the specifics
of the MDP; e.g. policy gradient methods like REINFORCE [Williams 1992].

4.4. A BROADER PERSPECTIVE 147

guarantees conventional RL methods provide [Singh et al. 1994].19 While state abstraction
is often done manually and in a heuristic fashion, there also exists a body of theory on
state abstraction and even on automated abstraction discovery [Li et al. 2006].

Function approximation: Finally, arguably the most common approach to handle MDPs
with large state-action spaces is through the use of function approximation [Sutton and
Barto 1998, Chapter 8]. Here, regression models are used to represent the value function
and updates thereof are generalized across similar states and actions. As argued before,
in Section 3.3.2, p. 85, in using regression models, we make assumptions about the form
this similarity may take. These assumptions will force different states to share (or have
strongly correlated) estimates and as such we are implicitly (partially) confounding states.
Again, this does not mean that this approach will necessarily fail in practice, just that
“getting it to learn” may require significant experience and trial & error.

4.4 A Broader Perspective
Thus far, in this chapter, we have discussed three generic approaches which we regard as
being prototypical for semi-automated algorithm design. In this section, we take a step
back, relate them, and briefly discuss their respective strengths and weaknesses.

4.4.1 Relations between the ASPs
Our discussion essentially revolved around three computational problems: The set-ASP
(Definition 4.1), the subset-ASP (Definition 4.3) and the dynamic ASP (Definition 4.8).
Until now, we have treated these problems in isolation; however, in what follows, we will
show them to be closely related; Many-one equivalent (see Section 2.4.1), to be precise.

set-ASP ≤m subset-ASP ≤m dynamic ASP: We first formalize what is arguably the
most common perspective on the relation between these problems:

• set-ASP ≤m subset-ASP: A set-ASP 〈A,D, p〉 can be viewed as an instance
〈A,D, φ, p〉 of the subset-ASP, where φ is a constant function (|Ω| = 1).

• subset-ASP ≤m dynamic ASP: A static ASP 〈A,D, φ, p〉 can be viewed as a dy-
namic ASP 〈M,D, φ′〉, whereM has a single choice point (|∆| = {z}), encountered
exactly once, at the start of the execution (δ′(q0, b, z) = 1,∀ b ∈ Σ). Each decision
in z corresponds to evaluating an algorithm a ∈ A on x, i.e. executing p. eval(x, a).
The outcome of this evaluation is the only reward given to the agent before halting.
Finally, we have φ′(x, e′) = φ(x),∀x, e′.

19Remark that our inability to confound arbitrary states in an MDP is closely related to our inability
to reduce the constrained dynamic ASP to an MDP (see Section 4.3.2.1).

148 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

This implies that any general dynamic ASP solver can be used to solve the static ASP.

dynamic ASP ≤m subset-ASP ≤m set-ASP, i.e. the opposite also holds: Any
general set-ASP solver can be used to solve the subset-/dynamic ASP. While perhaps
counter-intuitive, the crux is that selection mappings and policies are algorithms too; and
therefore can be instances of A in the set-ASP. Given earlier reductions, it suffices to show

• dynamic ASP ≤m set-ASP: A dynamic-ASP 〈M,D, φ〉 can be formulated as a set-
ASP 〈A,D, p〉 where A = Π, i.e. all policies of the dynamic ASP, and p. eval(x, π)
simulates M with π on x and returns the sum of rewards collected by the agent.

While this may seem theoretical, we argue that solving the subset-/dynamic ASP by “set-
ASP reduction” is highly practical and in many ways preferable to “conventional solution
approaches" we described earlier. In Section 6.5.2, we apply this approach to our sorting
subset-ASP. [Ansótegui et al. 2017, Kadioglu et al. 2017] can be viewed as prior art
following this approach. Also note that many direct policy search RL methods (see 4.3.2.2,
p. 145) are readily viewed as solving some variant of the set-ASP.

4.4.2 Opinion: Relative Strengths and Weaknesses
In this section, we discuss the relative strengths and weaknesses of these three approaches.
In particular, we highlight what we regard to be the strengths of the set-ASP approach,
ending with its main weakness, compared to the subset-/dynamic ASP approaches.

Control & transparency: In the set-ASP formulation, there is a one-to-one correspond-
ence between the algorithm space and the design space, allowing the human designer to
include/exclude arbitrary designs. A highly desirable feature in semi-automated design.
Subset-/dynamic ASP reductions do not offer a comparable level of control. For instance,
in the subset-ASP, our choices of A and φ only allow us to restrict selection mappings to
procedures computing a function of the form Ω→ A. Furthermore, when Ω is large, con-
ventional subset-/dynamic ASP solvers critically rely on ML methods. In choosing an ML
model, they often implicitly make assumptions restricting the selection mappings/policies
that can be learned. It is often unclear, at least to non-ML experts, which mappings
(likely) can(not) be learned, or what overhead is associated with computing them.

Optimizes the actual objective: In the set-ASP, our objective is to optimize the
average-case performance of the resulting design, and set-ASP solvers do so directly. In
contrast, in the subset-/dynamic ASP, we are to optimize the expected performance of
the selected algorithm/execution, i.e. the cost of selection (computing φ, s/π) is not min-
imized. Furthermore, the criterion implicitly optimized by conventional solvers (using ML)
again differs. For instance, classifiers will minimize classification errors, while the actual

4.4. A BROADER PERSPECTIVE 149

cost of selection errors depends on how much worse the alternative performs. We clearly
observed the latter in our experiments in Section 4.2.3, where a cost-oblivious classification
approach obtained on average the most accurate, yet worst performing selection mapping.

Anytime: Set-ASP solvers are commonly optimized for anytime performance, e.g. mak-
ing them suitable to be used in a semi-online setting (see Section 3.5.3). In simulation-
based approaches, the vast majority of the time is typically spent collecting experimental
data. The question of how to collect this data (e.g. distribute tests over algorithms and
inputs) is a central topic in the design of set-ASP solvers. However, in e.g. the AS com-
munity, this topic has received relatively little attention. Portfolio builders are often not
anytime, and data is commonly assumed to be given, or is collected in a brute force man-
ner. For example, in the Open Algorithm Selection Challenge (OASC) 2017, performance
data was given and contestants were only compared based on submitted predictions, and
there as such were no resource restrictions for portfolio building/prediction.

Off-the-shelf: Following the set-ASP approach, the human designer describes the designs
of interest (A), and how to measure of their performance (D,p), to the set-ASP solver,
which determines which design works best automatically. While the resources it requires to
do so may strongly depend on the specific formulation, the quality of its (anytime) solution
will generally increase over time (monotonicity) and some are guaranteed to eventually find
the best design (asymptotic correctness), largely independent of the set-ASP. This makes
it relatively easy to (successfully) apply this approach to a wide range of ADPs. Subset-
/dynamic ASP solvers do not achieve a comparable level of generality. In particular, the
choice of φ affects not only how long a solver will take, but also whether it will find a reas-
onable design in the limit. Underlying this limitation, is the lack of truly “off-the-shelf” ML
methods. Furthermore, at least for a non-ML expert, it is difficult to predict which choices
will work well, a priori. As a consequence, finding a formulation/solver combination that
“works”, often involves a relatively high amount of trial & error and human effort.

Data-inefficient: Despite its benefits, the set-ASP approach also has its shortcomings.
Arguably the most blatant of these is its relatively inefficient use of data; e.g., set-ASP
solvers use a performance observation in estimating the performance of only a single
algorithm instance, i.e. the one used to obtain it. However, often a single observation
provides information about the performance of multiple different algorithms; e.g. in solving
the subset-ASP by set-ASP reduction, the performance observed for a selection mapping,
only depends on the algorithm it selected (s(φ(x))), and is as such equally relevant for any
selection mapping which would have selected the same algorithm, i.e. 1

|A|
th of all selection

mappings. In the context of solving the ADP, data efficiency is important as collecting
data is expensive. We will revisit this limitation in Chapter 6, and examine how to address
it, without losing the benefits associated with the set-ASP reduction.

150 CHAPTER 4. DESIGN BY ALGORITHM SELECTION

4.5 Summary
In this chapter, we discussed three generic approaches which we regard as being prototypical
for semi-automated algorithm design. Here, we described concrete algorithmic techniques
and demonstrated some of these experimentally, using sorting as a target problem.
In Section 4.1, we considered the design by per-set algorithm selection approach, solving

the ADP by reduction to the per-set Algorithm Selection Problem (set-ASP). Here, we are
to select the best algorithm (from a given set of alternatives) to solve a given distributional
problem. In Section 4.1.1, we defined the set-ASP and discussed the reduction from the
ADP. In Section 4.1.2, we described algorithms for solving the set-ASP.
In Section 4.2, we considered the design by per-input algorithm selection approach, solv-

ing the ADP by reduction to the per-input Algorithm Selection Problem (input-ASP).20
Here, we are to select the best algorithm (from a given set of alternatives) to solve any
given instance of a distributional problem. In Section 4.2.1, we defined the input-ASP
and the subset-ASP. The latter can be seen as a generalization of both set-/input-ASPs,
where we are to base our selection on specific features of the input, and it is the form in
which the input-ASP is most commonly solved. We discussed the subset-ASP reduction
in Section 4.2.2, and subset-ASP solvers (a.k.a. portfolio builders) in Section 4.2.3.
In Section 4.3, we considered the design by dynamic algorithm selection approach, solving

the ADP by reduction to the dynamic Algorithm Selection Problem (dynamic ASP). Here,
we are to find the best way of making multiple choices we face while solving instances
of a distributional problem. In Section 4.3.1, we were (presumably) the first to present
a formal definition of the dynamic ASP. Here, we presented three variants: our original
deterministic formulation [Adriaensen and Nowé 2016b], a probabilistic extension thereof,
and a “constrained” variant where we are to base our decisions on specific features of the
input and execution thus far. In Section 4.3.2, we turned towards solving the dynamic ASP.
Here, we argued that, to date, “general dynamic ASP solvers” do not exist. Subsequently,
we discussed the relation of our dynamic ASPs to the Markov Decision Problem (MDP);
and the potential of using Reinforcement Learning (RL) techniques to solve them.
In Section 4.4, we presented a broader perspective on these three design approaches. In

Section 4.4.1, we related them, showing the set-, subset- and dynamic ASP to be many-
one equivalent. This, amongst others, implies that set-ASP solvers can solve the subset-
/dynamic ASP. In Section 4.4.2, we discussed what we regard to be their relative strengths
and weaknesses. Here, we argued that set-ASP solvers offer a level of generality, control,
transparency, anytime and asymptotic performance, that cannot be found in contemporary
subset-/dynamic ASP solvers; (data-)inefficiency being their main relative weakness.

20Remark that this is the spirit in which the ASP was originally formulated in [Rice 1976], and the
form in which the ASP is most commonly considered in the “algorithm selection” community (p. 88).

Part 2:

Algorithmic Contributions and
Case Studies

151

5 | Programming by
Configuration

In Chapters 3 and 4, we have presented a broad overview of different attempts to automate
algorithm design and demonstrated some of these experimentally, using sorting as a target
problem. In this chapter, we will explore one of these techniques in more depth, and apply
it to design a reusable metaheuristic framework for the general combinatorial optimization
problem. This chapter is structured as follows: In Section 5.1, we provide some background
and motivation for the semi-automated design approach used, which solves the Algorithm
Design Problem (ADP, see Section 3.1) by reduction to an Algorithm Configuration Prob-
lem (ACP), a practice we will refer to as Programming by Configuration (PbC). In Sec-
tion 5.2, we demonstrate this approach, using it to design a selection hyper-heuristic for the
HyFlex framework/benchmark, as described in [Adriaensen et al. 2014a]. Please note that
we are not the first to apply PbC in the context of hard combinatorial optimization and
a discussion of related research can be found in Section 5.2.1.1. In Section 5.3, we dis-
cuss the resulting design (FS-ILS) and analyze its quality attributes. Here, we discuss
the design decisions made and investigate its parameter sensitivity, peak performance and
simplicity, as in [Adriaensen et al. 2014b], and generality, as in [Adriaensen et al. 2015].
In Section 5.4, we present a critical reflection on this research. Finally, in Section 5.5, we
summarize the content covered in each section.

153

154 CHAPTER 5. PROGRAMMING BY CONFIGURATION

5.1 Programming by Optimization
In [Adriaensen et al. 2014a], we proposed and demonstrated a semi-automated ap-
proach to solving ADPs, as an alternative to the predominant manual “graduate student
search” modus operandi (see Section 3.3.1). At this point in time, we were not aware of
[Hoos 2012] which advocates a very similar practice. Also, an analogous “programming
paradigm” was proposed in [Ansel et al. 2009]. In the spirit of consolidation, we will
adopt the terminology from [Hoos 2012] and refer to this methodology as “Programming
by Optimization” (PbO). However, we wish to stress that the approaches put forward in
[Ansel et al. 2009] and [Adriaensen et al. 2014a], despite some differences in contemporary
realizations, are essentially the same. The crux of PbO can be captured as

1. Deliberately leave “difficult” design decisions open at design time, programming a
design space rather than a single algorithm instance.

2. Use a set of automated search and analysis tools to understand the impact of design
decisions and gain the insight required to eventually make them.

The observation underlying PbO is that “how to best make difficult design decisions” is,
in essence, an optimization problem and that by performing trial & error experimentation
the human designer is, in fact, solving this problem manually. As such, PbO aims to
automate this task, which is expert knowledge poor, by (1) formulating the ADP as an
optimization problem and (2) solving the resulting problem automatically. Figure 5.1 de-
picts this reduction. Remark that a wide range of computational problems can be viewed

the "actual" ADP
optimization

problem
formulate interpret

algorithmsolution
optimizer

Figure 5.1: Diagram illustrating the Programming by Optimization (PbO) approach.

as optimization problems, and therefore, in its broadest interpretation, PbO captures the
full range of semi-automated design approaches (see Section 3.3.3). Put differently, PbO
is no algorithm for the ADP, i.e. it does not fully specify how to solve any given ADP
instance, rather it is an algorithmic framework corresponding to a family of different pos-
sible realizations. However, arguably one of the most prominent realizations thus far, the
one proposed in [Hoos 2012] and the one we followed in our demonstration in [Adriaensen
et al. 2014a], reduces the ADP to an Algorithm Configuration Program (ACP). Figure 5.2
depicts this reduction. We will use the term “Programming by Configuration” (PbC) to
distinguish this specific realization of PbO from the more general framework.

5.1. PROGRAMMING BY OPTIMIZATION 155

the "actual" ADP
con�guration

problem
formulate interpret

algorithmθ∗
con�gurator

Figure 5.2: Diagram illustrating the Programming by Configuration (PbC) approach.

Thus far, we have already characterized the ACP and research efforts trying to solve it
automatically in Section 3.3.3, p. 90. In Section 4.1, we discussed PbC as an instance of
the “design by per-set algorithm selection approach” and briefly described various prom-
inent configurators (p. 115). Here, we define the ACP and briefly discuss its specifics.

Definition 5.1: Algorithm Configuration Problem (ACP)

Instances of the ACP are defined by quadruples 〈a,Θ,D, p〉 where

a: an algorithm framework (see Section 2.3.3) having k configurable parameters
(a.k.a. the target algorithm), where the ith parameter can take values in Θi.

Θ ⊆ Θ1 × · · · ×Θk a set of valid configurations for a.

D: a distribution over a set of inputs X (input distribution).

p: a function X ×Θ→ R, where p(x, θ) quantifies the performance of algorithm a

configured using θ, denoted aθ, on an input x (per-input performance measure).
Candidate solutions are elements of Θ. In the ACP, given 〈a,Θ,D, p〉, we are to
find a configuration θ∗ maximizing the average-case performance of a, i.e. satisfying
o(θ) ≤ o(θ∗), ∀ θ ∈ Θ, where o(θ) = Ex∼D p(x, θ).a

aVarious definitions of the ACP exist, the one presented here is a simplified version of the one
given in [Hutter et al. 2009]. It differs in that we restrict our objective to optimizing average-case
performance, i.e. o(θ) = E(Raθ), while they consider optimizing an arbitrary property of Raθ .

Remark that the ACP, as formulated above, is trivially reduced to the set-ASP 〈AΘ,D, p〉
(see Definition 4.1), with AΘ = {aθ | θ ∈ Θ} and where algorithm instances are represented
as configurations. In what follows, we will assume D, p to be given in the form described
in Section 4.1.1, i.e. as black box procedures D. sample and p. eval. The algorithm
framework a is treated as a configurable black box. Θ we assume to be given as a k-tuple
of domains (Θ1, . . . ,Θk). For categorical and ordinal parameters, we assume Θi to be
specified as an explicit (ordered) collection of values. Domains of numerical parameters,
we assume to be given as a range [θmin, θmax] with Θi = {v ∈ V | θmin ≤ v ≤ θmax},
where V = N for integer-valued and V = R for real-valued parameters. When not all
combinations of parameter values are allowed, i.e. Θ ⊂ Θ1 × · · · × Θk, this is typically
specified by explicitly listing “forbidden” configurations.

156 CHAPTER 5. PROGRAMMING BY CONFIGURATION

5.2 Case Study: Designing Reusable Metaheuristics
In this section, we describe how we used PbC to design a reusable metaheuristic framework
in [Adriaensen et al. 2014a].1 First, in Section 5.2.1, we provide some background for
our case study. Here, we characterize the design problem we considered and discuss prior
design automation attempts in the area. Subsequently, in Section 5.2.2, we discuss the
reduction of this problem to the ACP. Finally, in Section 5.2.3, we discuss how we solved
the resulting ACP and interpret our results.

5.2.1 The Metaheuristic Design Problem
In this section, we will provide some context and motivation for our case study, what
sets it apart from other “design automation” attempts in the area of hard combinational
optimization, and introduce the HyFlex framework. In Chapter 2, we already discussed the
challenges associated with designing methods for solving hard combinatorial optimization
problems. In what follows, we briefly recap this discussion.
Many interesting combinatorial optimization problems cannot be solved exactly in poly-

nomial time, i.e. they are NP-hard (see Section 2.5). A classical example is the traveling
salesman problem (see Section 2.2.1 for more information and examples). Luckily, in prac-
tice, optimal solutions are often not required and non-exact methods can be used instead.
Here, so-called heuristic optimization methods are one approach which has received a lot
of attention (see Section 2.7.2). These methods often quickly find good solutions to large
and otherwise intractable problems, by iteratively trying to improve a (set of) candidate
solution(s). While the actual methods are problem-specific, they can often be viewed to
follow a high-level search procedure which is more widely applicable. As such, it has be-
come standard practice to conceptually separate this reusable high-level search template,
commonly referred to as a metaheuristic framework (see Definition 2.32), from its problem-
specific instantiation. Despite the numerous successful applications of metaheuristics to a
wide variety of hard optimization problems, they are not readily applied to new problems.
Put differently, the design of a heuristic optimization procedure for some target problem
of interest remains challenging, is often done largely from scratch, in an ad hoc fashion,
strongly relying on human intuition, experience and labor, making it a costly process.

1Please note that an earlier version of this case study was previously conducted in [Adriaensen 2013].
In [Adriaensen et al. 2014a], we refined this earlier study, both in terms of the design space and the
experimental setup we considered.

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 157

5.2.1.1 Related Research

In Section 2.7.2.5, we distinguished two ways in which the community has tried to reduce
the cost associated with applying metaheuristics. In what follows, we discuss these in more
detail and position our research in this context.

Design automation: First, the community has investigated the possibility of letting
computers, rather than humans, design heuristic procedures. As such, we are definitely
not the first to apply design automation in the context of hard combinatorial optimization.
Recently, the term (generation) hyper-heuristics was coined to collectively refer to research
in this area (see [Burke et al. 2013, Section 5] for a survey). Furthermore, we are not
the first to apply algorithm configuration methods (i.e. PbC) in this context either. In
fact, F-Race [Birattari et al. 2002], one of the first dedicated “configurators”, was created
for exactly this purpose. To date, the majority of the ACPs in the AClib [Hutter et al.
2014], a library for benchmarking algorithm configurators, consider this setting. While
most applications consider tuning a few parameters of some existing solver, e.g. [Birattari
et al. 2002, Hutter et al. 2010], larger design spaces, combining ideas from many different
solvers, have been considered, e.g. [KhudaBukhsh et al. 2009, Fawcett et al. 2009, López-
Ibáñez and Stützle 2010, Marmion et al. 2013, Mascia et al. 2014a, Bezerra et al. 2016].
All of these can be considered applications of PbC, albeit exhibiting different degrees
of automation (∼ levels of PbO, [Hoos 2012]). Remark that configurators used in this
context are not typically referred to as hyper-heuristics, a term commonly associated with
approaches originating from the Genetic Programming (GP) community (p. 83). Here,
prior art has primarily considered automating the design of heuristics for a specific use case.
For example, heuristic procedures for specific SAT benchmarks were designed in [Hutter
et al. 2007a, KhudaBukhsh et al. 2009] (using PbC) and [Fukunaga 2004, Bader-El-Den
and Poli 2007] (using GP).

Off-the-shelf metaheuristics: Beyond design-automation, the community has contin-
ued to search for off-the-shelf metaheuristics, i.e. high-level search strategies that achieve
acceptable performance, independent of their problem-specific configuration. These re-
search efforts include a wide variety of nature-inspired frameworks (see Section 2.7.2.4),
as well as selection hyper-heuristics (see Section 2.7.2.5 and [Burke et al. 2013, Section 4]).

In summary, the community has approached the problem of applying existing metaheur-
istic frameworks to new problems in two ways:

1. Automating the configuration of metaheuristic frameworks for a specific use case.

2. Searching for metaheuristic frameworks that are easy to configure for any use case.

158 CHAPTER 5. PROGRAMMING BY CONFIGURATION

While (1) has shown clear potential to significantly reduce the human effort associated with
applying metaheuristics and improve the performance of the resulting design, the human
and computational resources required are still significant, making made-to-measure design
not always a cost-efficient option. On the other hand, (2) is arguably still to live up to
its potential, i.e. a true off-the-shelf metaheuristic does not exist and the performance
gap with made-to-measure methods is substantial. Furthermore, thus far, the space of
candidate off-the-shelf metaheuristics has predominantly been explored manually, following
a graduate student search approach (see Section 3.3.1).
These observations have motivated the case study we performed in [Adriaensen et al.

2014a], in which we attempt to overcome these limitations by combining both approaches,
i.e. we consider the semi-automated design of off-the-shelf metaheuristic frameworks.
Rather than using PbC to design a heuristic optimization procedure for some specific hard
combinatorial optimization problem (e.g. SAT), we use it to design a problem-independent
metaheuristic framework (a high-level search strategy) which performs well, can be reused,
across a wide range of combinatorial optimization problems. We are not aware of any prior
applications of PbC in this context.

5.2.1.2 HyFlex

The design space in our case study consists of high-level search strategies. More specifically,
we considered selection hyper-heuristics (see Section 2.7.2.5). In order to assess how
“good” different high-level search strategies are, we must test them on multiple problem
domains. For hyper-heuristics specifically, this implies that we not only need benchmark
problems, but also low-level heuristics for all these domains (i.e. a heuristic set H).
To avoid implementing all these problem-dependent aspects ourselves, we used the HyFlex
framework [Ochoa et al. 2012].2 In what follows, we briefly describe the HyFlex framework,
how it became and still is an important benchmark for selection hyper-heuristics.

Description: HyFlex is a Java class library for developing and testing selection hyper-
heuristics. HyFlex (version 1.0) provides six different problem domains: the MAX-SAT,
bin packing, personnel scheduling, permutation flow shop, traveling salesman and vehicle
routing problem (see Section 2.2.1 for a description). In [Adriaensen et al. 2015], we
extended this benchmark set with three additional domains: the 0-1 knapsack, quadratic
assignment and max-cut problem (see p. 180). For each domain HyFlex provides:

• A set of 10-12 benchmark instances, to be solved (X).
• An evaluation procedure (e), measuring the cost of a solution, to be minimized.
2http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_download.html (version 1.0).

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_download.html

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 159

Table 5.1: # problem instances and low-level heuristics provided for each domain

problem domain abbrev. |X| init ls mut rr xo |H|
MAX-SAT SAT 12 1 2 6 1 2 12
Bin Packing BP 12 1 2 3 2 1 9
Personnel Scheduling PSP 12 1 4 1 3 3 12
Permutation Flow Shop PFS 12 1 4 5 2 3 15
Traveling Salesman TSP 10 1 6 5 1 3 16
Vehicle Routing VRP 10 1 4 4 2 2 13
0-1 Knapsack KP 10 1 6 5 2 3 17
Quadratic Assignment QAP 10 1 2 2 3 2 10
Max-Cut MAC 10 1 3 2 3 2 11

• A set of low-level heuristics (H), subdivided in 5 categories:
1. initialization (init): Constructs a solution from scratch.
2. mutation (mut): Modifies a solution, by changing some solution components.
3. ruin-recreate (rr): Partly destroys a solution to reconstruct it afterwards.
4. local-search (ls): Similar to mutation, but guarantees that the output solution

is at least as good as the input.
5. crossover (xo): Combines two solutions, into a new solution.

Each of these heuristics may furthermore be parametrized by the intensity of muta-
tion (α) and depth of search (β) parameters.

Figure 5.1 gives an overview of the number of instances and low-level heuristics provided
for each domain, per category. Note that each domain has a single construction heuristic.
Detailed descriptions of these components can be found in [Hyde et al. 2011] (SAT), [Hyde
et al. 2009] (BP), [Curtois et al. 2009] (PSP), [Vázquez-Rodrıguez et al. 2009b] (PFS),
[Vázquez-Rodrıguez et al. 2009a] (TSP), [Walker et al. 2012] (VRP) and [Adriaensen
et al. 2015] (KP, QAP, MAC). One of HyFlex’s core design principles is that all access to
these domain-specific components must occur through a problem-independent interface.
Thanks to this explicit separation, any method using HyFlex can be readily applied to any
domain implemented in HyFlex, without alterations.

CHeSC 2011 competition: HyFlex has been used to support the first Cross-domain
Heuristic Search Challenge (CHeSC 2011), during which the performance of all 20 con-
testants was evaluated (based on 31, 10 minute runs) on 30 instances, five from each of
the six problem domains implemented in HyFlex. To test generalization to new instances,
two of the five instances used in the competition were not available before submission,

160 CHAPTER 5. PROGRAMMING BY CONFIGURATION

2009 2010 2011 2012 2013 2014
0

5

10

15

20

25

30

35

year

#
 c

it
a

ti
o

n
s

HyFlex (citation only)

HyFlex (use in exp.)

Figure 5.3: An overview of the use of HyFlex in published research (. . .− 2014)

i.e. were hidden. To test generalization to new domains, the TSP and VRP domains were
hidden as well (also, see Appendix A.2). The winner [Misir et al. 2012b] was the algorithm
obtaining the highest accumulated score across all these instances. Scores per instance
were based on the ranking of median performances over 31 runs on that instance, using the
pre-2010 Formula One scoring system, where the top eight algorithms score respectively
10, 8, 6, 5, 4, 3, 2 and 1 point.

HyFlex as a benchmark: After the competition, HyFlex became a popular benchmark
for selection hyper-heuristics and has been used in the implementation of many hyper-
heuristics ever since. Figure 5.3 shows the number of citations3 and use4 of HyFlex up
to the year 2014. In comparing these numbers to those of other frameworks for testing
cross-domain hyper-heuristics [Ryser-Welch and Miller 2014]: Hyperion [Swan et al. 2011]
and hMod [Urra et al. 2013], which are cited 17 and 5 times respectively, we find HyFlex
(cited 95 times) to be the most widely adopted at the time of our case study.5
Note that this does not mean HyFlex is the best or without flaws. On the contrary,

we would like to argue that due to some unfortunate design choices, HyFlex shows only
a glimpse of what is possible using hyper-heuristics. In particular, it provides too little
information about domains, instances and solutions that the high-level search strategy can
exploit. Furthermore, providing a good implementation for a problem domain requires
a lot of effort and expert knowledge, which might be available for classical benchmark
problems, but less so for real-world problems. Similar concerns were uttered in [Mascia
and Stützle 2012, Di Gaspero and Urli 2012, Van Onsem et al. 2014, Swan et al. 2016].

3# articles referencing [Ochoa et al. 2012], as listed by Google Scholar™.
4# articles that actually use HyFlex.
5Beginning 2018, [Ochoa et al. 2012, Swan et al. 2011, Urra et al. 2013] were cited 126, 29, 6 times.

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 161

5.2.2 Reduction to an ACP
In the previous section, we characterized the ADP considered in our case study. In what
follows, we describe how we reduced this ADP to an ACP (see Definition 5.1), i.e. we
discuss our choices for a, Θ, D and p.

5.2.2.1 Target Algorithm (a)
In natural occurrences of the ACP, a is some pre-existing algorithm framework with k

configurable parameters p1, . . . , pk to be tuned. As discussed in Section 2.3.3, a can be
viewed as implicitly specifying a family of algorithms, each configuration corresponding to
a single algorithm instance. In the context of algorithm design, a is not given. Rather, a
must be chosen such that each candidate design corresponds to some configuration of a.
Furthermore, if we are also interested in the logic underlying the design (see Section 3.2.2),
any configuration of a should, in addition, be interpretable as an understandable algorithm,
e.g. be simple and modular. In particular, only part of the logic of a may be executed for
a given configuration, and we would like it to be easy to eliminate any dead code.
As it turns out, there are many ways to choose a and the performance of the configurator

depends on this decision. For instance, a naive approach would be to choose a to be a
framework taking a single categorical parameter whose value determines which algorithm
will be executed, as depicted in Algorithm 18. A benefit of this formulation is that it makes
it easy to eliminate redundant logic in the interpretation of a configuration. However, it
does not scale up. First, formulating large design spaces as such is tedious and is even
impossible for infinite design spaces. Second, the resulting configuration space does not
exhibit any structure which can be exploited by the configurator.

Algorithm 18 The “naive” delegating algorithm framework
1: function Solve(x, θ) . |θ| = 1 (a single parameter)
2: if θ1 = a1 then
3: return a1(x) . Execute a1
4: else if θ1 = a2 then
5: return a2(x) . Execute a2
6: . . .

7: else if θ1 = an then
8: return an(x) . Execute an
9: end if
10: end function

A “better” alternative is to attempt to identify those aspects in which candidate designs
differ, i.e. design choices, and expose only these as parameters, where values correspond
to alternative decisions. Not only does this allow us to specify a large set of designs more
concisely, in a modular fashion (e.g. as combinations of design decisions), similar configur-

162 CHAPTER 5. PROGRAMMING BY CONFIGURATION

ations will correspond to similar programs (partially share the same logic). In [Adriaensen
et al. 2014a] we suggested a hierarchical description of design spaces, further gener-
alizing this notion by parameterizing each component by its component-specific design
choices. Similar to algorithm frameworks, components with parameters define families of
components. This allows us to more concisely specify components as alternative design
decisions and captures the intrinsic structural conditionalities between design choices in a
composition. The resulting design is by nature modular and eliminating redundant logic
is straightforward. This format closely resembles the one used in [Marmion et al. 2013].

Algorithm 19 The high-level search strategy considered in our case study
1: function Solve(problem, tallowed, sm, os, ac, rc) . problem is the HyFlex domain.
2: vinc, vrun best, vbest ← problem.init.apply() . Construct initial solution.
3: while telapsed < tallowed do . Fixed budget tallowed (see Section 2.6.4)
4: o← sm.select(os) . Use sm to select an option from os.
5: vprop ← o.apply(vinc) . Apply selected option to generate proposal.
6: vrun best ← problem.best of(vprop, vrun best) . Update vrun best: best since last restart.
7: vbest ← problem.best of(vrun best, vbest) . Update vbest: best thus far (anytime solution).
8: if ac.accept(vprop) then . Use ac to decide whether to accept proposal, or not.
9: vinc ← vprop

10: end if
11: if rc.restart() then . Use rc to decide whether to restart search, or not.
12: initialize() . Reinitialize all but a few variables (see text).
13: vinc, vbest ← problem.init.apply() . Construct initial solution for new run.
14: end if
15: end while
16: return vbest
17: end function

In our case study, we consider simple, single point, high-level search strategies, imple-
mented using HyFlex, as candidate designs (see Algorithm 19). First, the domain-specific
construction heuristic is used to generate an initial candidate solution (line 2), then iterat-
ively a selection mechanism is used to select an option (line 4). Here, options correspond
to one or more consecutive applications of the domain-specific heuristics. Next, the selec-
ted option is applied to generate a proposal candidate solution (line 5), and an acceptance
criterion is used to decide whether to accept it or not (lines 8-10). Finally, we either
perform a new iteration or restart the search process (lines 11-14). Here, the top-level
design decisions are the selection mechanism sm, options os, acceptance criterion ac and
restart criterion rc used. For each of these, we consider many alternatives, which may, in
turn, be described as combinations of subordinate components. Table 5.2 lists for each of
the (families of) components considered in our case study, their type, name, component
specific design choices and a brief description. In accordance with the Liskov Substitution
Principle [Liskov and Wing 1994], components of the same type are interchangeable.
Note that these components can be combined and parametrized in numerous ways. In

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 163

Table 5.2: Different families of components considered in our case study

type full name (abbrev.) design choices description
Algorithm Algo (A) sm: Select

os: Options
ac: Accept
rc: Restart

High-level search strategy shown in Algorithm 19.

Select Uniform (U) n.a. Selects an option uniformly at random.
Select QSelect (QS) sel: SelectionRule

eval: EvaluationRule
Uses a selection rule sel to select an option oi based on the quality values
q(oi) assigned to each option. Initially each option is assigned 10300, and
ties in ranks are broken randomly. After each application of oi an evaluation
rule eval is used to re-evaluate oi based on all its ni previous applications.

SelectionRule RouletteWheel (RW) n.a. Selects an option oi with probability q(oi)∑
oj
q(oj)

.

SelectionRule EpsilonGreedy (EG) ε: Real Selects the best option with probability 1 − ε, and an option uniformly at
random otherwise.

SelectionRule PolyRank (PR) k: Integer Selects the rthi worst option with probability rki∑
rj
rk
j

.

EvaluationRule Change (C) n.a. e(vinc)− e(vprop).
EvaluationRule Improvement (I) n.a. max(0, e(vinc)− e(vprop)).
EvaluationRule Duration (D) n.a. The time in ms it took to generate vprop.
EvaluationRule Accepted (AC) n.a. 1 if cproposed was accepted, 0 otherwise.
EvaluationRule Noop (N) n.a. 1 if vprop = vinc, 0 otherwise.
EvaluationRule NewBest (NB) n.a. 1 if e(vprop) < e(vrun best), 0 otherwise.
EvaluationRule Total (T) oe: EvaluationRule The accumulation of evaluation rule oe over all evaluations.
EvaluationRule Average (AV) oe: EvaluationRule The moving average of evaluation rule oe over all evaluations.
EvaluationRule ExpAverage (EA) oe: EvaluationRule

α: Real
The exponential moving average of evaluation rule oe over all evaluations,
using a weighting factor α.

EvaluationRule WindowAverage (WA) oe: EvaluationRule
M : Integer

The average of evaluation rule oe in the last M evaluations.

EvaluationRule Speed (S) n.a. # proposals oi generated per millisecond, i.e. ni+1
Total(Duration)(oi) .

EvaluationRule SpeedAccepted (SA) n.a. # accepted proposals oi generated per millisecond, i.e. Total(Accepted)(oi)+1
Total(Duration)(oi) .

EvaluationRule SpeedNew (SN) n.a. Total(Accepted)(oi)−Total(Noop)(oi)+1
Total(Duration)(oi) .

EvaluationRule ImprovementOverTime (IOT) M : Integer 10000∗WindowAverage(Improvement,M)(oi)+1
Average(Duration)(oi) .

Options LocalSearch (LS) n.a. Each option corresponds to applying one of the greedy domain-specific per-
turbative heuristics (category ls).

Options PerturbativeHeuristic (PH) n.a. Each option corresponds to applying one of the domain-specific perturbative
heuristics (categories ls, mut and rr).

Options IteratedLocalSearch (ILS) n.a. Each option corresponds to applying the construction or one of the non-
greedy domain-specific perturbative heuristics, followed by local search. The
local search process iteratively applies the greedy domain-specific perturb-
ative heuristics of the domain, where each iteration a heuristic is selected
uniformly at random. When the application of a heuristic does not lead to
improvement, it is excluded from the selection, until some other heuristic
finds improvement. If all heuristics are excluded, local search is terminated.

Accept AcceptAll (AA) n.a. Accepts all proposals.
Accept AcceptNoWorse (ANW) n.a. Accepts all non-worsening proposals.
Accept AcceptTopList (ATL) n: Integer Accepts all proposals no worse than the nth best solution observed so far.
Accept AcceptBestList (ABL) n: Integer Accepts all proposals no worse than the nth best, new best solution observed

so far.
Accept AcceptLate (AL) t: Integer Accepts all proposals no worse than the incumbent solution k iterations ago,

where k is number of iterations performed during the t first milliseconds
of the run, during which every solution better than the initial solution is
accepted [Burke and Bykov 2008].

Accept AcceptRandomWorse (ARW) ε: Real Accepts all non-worsening proposals and worsening proposals with a prob-
ability ε.

Accept AcceptProbabilisticWorse (APW) T : Real Accepts proposals with a probability e
e(vinc)−e(vprop)

T∗µimpr , where e is the evalu-
ation function and µimpr the average improvement in improving iterations.

Accept AcceptSA (ASA) T : Real Accepts proposals with a probability e
e(vinc)−e(vprop)

T∗µimpr
∗ tallowed

(tallowed−telapsed) where
tallowed is the time we are allowed to optimize and telapsed the time we have
already been optimizing.

Restart RestartNever (RN) n.a. Never perform a restart.
Restart RestartStuck (RS) n.a. Perform a restart when w > tallowed

telapsed
∗ wmax, where w is the number of

iterations passed since obtaining the best candidate solution so far and
wmax the greatest number of iterations we ever had to wait for a new best
candidate solution. As an exception, the algorithm is not restarted when
the time remaining is less than the shortest time it took to find a candidate
solution as good as the best candidate solution obtained so far. On restart,
most variables are reinitialized. Exceptions are telapsed, vbest and wmax.

164 CHAPTER 5. PROGRAMMING BY CONFIGURATION

<root> Algorithm

Algo($sm,LocalSearch,AcceptAll,$restart)

Algo($sm,$os_not_ls,$ac,$rc)

<sm> Select

Uniform

QSelect(RouletteWheel,$pos_eval)

QSelect($rank_sel,$pos_eval)

QSelect($rank_sel,$eval)

<rank_sel> SelectionRule

EpsilonGreedy(0.25)

PolyRank({1.0,2.0})

<pos_eval> EvaluationRule

Speed

SpeedAccepted

SpeedNew

ImprovementOverTime(5)

<eval> EvaluationRule

Average($oe)

ExpAverage($oe,{0.2,0.5})

WindowAverage($oe,{5,10,20})

<oe> EvaluationRule

NewBest

Improvement

Change

<os_not_ls> Options

PerturbativeHeuristic

IteratedLocalSearch

<ac> Accept

AcceptAll

AcceptNoWorse

AcceptTopList(20)

AcceptBestList(10)

AcceptLate(10000.0)

AcceptRandomWorse(0.1)

AcceptProbalisticWorse(0.5)

AcceptSA(2.0)

<rc> Restart

RestartNever

RestartStuck

Figure 5.4: Description of the design space considered in our case study.

fact, we could compose an infinite number of components of the type Algorithm. In prin-
ciple, all possible compositions could be considered, however, we considered a particular,
finite subset in [Adriaensen et al. 2014a]. Figure 5.4 describes the resulting design space
unambiguously, listing for each design choice the alternatives considered. The grammar-
like notation used here resembles the one used in [Marmion et al. 2013]. Alternatives
for a design choice pi are either specified in a named section 〈pi〉 and referenced using
$pi or anonymously and inline, in which case a comma-separated list, surrounded by curly
brackets, is used for multiple alternatives. When choosing a certain alternative introduces
further (conditional) design decisions, these are specified in round brackets after its name.
Next, we must specify an algorithm framework a such that each candidate design cor-

responds to some configuration of a. Our a takes a categorical parameter for every design
choice whose values correspond to alternative decisions, resulting in a total of 12 (multi-
valued) parameters, 9 corresponding to named and 3 corresponding to anonymous/inline
design choices. Parameters are passed in the order in which they are defined in Figure 5.4
(named or anonymous) and we represent the ith alternative decision using i. For example,
design choice sm is translated to a parameter with 4 alternative values, i.e. {1, 2, 3, 4}.
Our a uses these parameters to initialize all subordinate components bottom-up (resolving
dependencies), eventually constructing and executing an instance of Algorithm 19.

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 165

5.2.2.2 Configuration Space (Θ)

In the ACP, configurators search a space of configurations Θ for one optimizing average-
case performance. Here, Θ may be a subset of all possible configurations Θ1 × · · · ×Θk

of a, a feature which can be exploited to exclude configurations which do not correspond
to candidate designs of interest. In our case study, we specified the target algorithm such
that every configuration corresponds to a candidate design. However, multiple configura-
tions correspond to the same design, as some of the parameters are conditional. Remark
that conditions for a parameter to be active can be derived from its hierarchical specific-
ation, i.e. for a parameter to be “active” its corresponding design choice must either be
root or be faced when choosing some alternative, chosen for an “active” design choice.
For instance, the configuration (2, 1, 2, 1, 3, 1, 1, 3, 1, 2, 8, 1) corresponds to the design:
Algo(Uniform,IteratedLocalSearch,AcceptSA(2.0),RestartNever). However, due to condi-
tionalities, so does any (2, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 2, 8, 1). While we could simply ignore this
fact, without loss of optimality, the resulting configurations space would be considerably
larger (∼ more difficult ACP), e.g. in our case study a has a total of 331776 different
configurations, corresponding to only 2414 different designs. Luckily, most contemporary
configurators allow the user to specify such conditionalities as part of the input.

5.2.2.3 Input Distribution (D)

In Section 4.1.1, we already discussed the choice of D in general, in the context of the
set-ASP reduction. Here, we discuss it specifically for our case study. A possible input
x ∈ X is any instance of a problem domain that could possibly be implemented in HyFlex.
Furthermore, for each target problem there are many possible HyFlex implementations
(e.g. making different choices for H). As a consequence, the possible variety of inputs our
design could be presented with is virtually endless. In contrast, HyFlex “only” provides 6
different problem domains with a mere total of 68 instances. In our case study, we consider
the subset of 30 instances (5 from all 6 domains) which were also used during the CheSC
2011 competition (Xchesc, see Appendix A.2). Our choice for these instances was mainly
motivated by the availability of a baseline, i.e. the results obtained by the 20 contestants
competing in CHeSC 2011, which we used to assess the per-input performance.

5.2.2.4 Performance Evaluation (p)

In Section 4.1.1, we already discussed the choice of p in general. In our case study, we use
the same per-input performance measure as used during the CHeSC 2011 competition,
i.e. we wish to minimize the cost of the solution obtained after 10 minutes (tallowed) of
optimization. However, we cannot use this criterion directly as p. eval, since the magnitude

166 CHAPTER 5. PROGRAMMING BY CONFIGURATION

of the objective function differs strongly across instances, even within the same domain.
For example, a MAX-SAT instance with v variables will have candidate solutions with
objective function values in [0, v]. On bin packing instances, the objective function will
be in the [0, 1] range. As such, this naive choice of p would cause us to largely neglect
performance differences on the bin packing domain. In our case study, we attempt to
overcome this problem by evaluating solution cost relative to the costs obtained by the
CHeSC 2011 contestants in similar settings. Concretely, p. eval(x, θ) will

1. Execute aθ for tallowed minutes on x, obtaining solution cost cθx. Here, tallowed is
chosen such that tallowed time on our machine (see Appendix A.1) corresponds to
10 minutes on the machine used during the competition.6

2. We determine the rank rθx of cθx w.r.t. the median solution costs (lower is better)
obtained by the 20 contestants on x during the competition and assign a score of 10,
8, 6, 5, 4, 3, 2 or 10(8−rθx) accordingly, which is returned as output. For instance,
if the cost cθx obtained is lower than the median cost obtained on x by 17 of the
20 contestants, we have p. eval(x, θ) = 5. When multiple methods tie, they are
assigned the average of the scores associated with the tied ranks.

Note that this guarantees that p(x, θ) ∈ [10−13, 10],∀x ∈ X,∀θ ∈ Θ, i.e. the magnitude
of p will be similar on each input.

5.2.3 Solving the ACP

5.2.3.1 Setup

In the previous section, we have formulated our metaheuristic design problem as the prob-
lem of configuring a target algorithm with 12 categorical parameters. To solve this problem
automatically we need to decide which of the many available configurators to use to do
so, i.e. we are faced with a “configurator selection problem”. In Section 4.1.2, p. 115,
we briefly describe some prominent examples. Instead of advocating any particular frame-
work, we will discuss some of the properties we based our choice of configurator on (see
Section 4.1.2 for a more general, in-depth discussion). Configurators will typically spend
the vast majority of their time evaluating candidate designs (i.e. executing p. eval). In
our case this is not different, as a single evaluation takes 10 minutes. Therefore, the key
discriminating factor between frameworks is how they allocate performance evaluations to
candidate designs:

6Determined using the benchmark program provided on the CHeSC 2011 website:
http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html.

http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html

5.2. CASE STUDY: DESIGNING REUSABLE METAHEURISTICS 167

• More promising designs should receive more runs. This way, we avoid wasting time
on poor designs and are able to reliably discriminate between good designs.

• Asymptotically ∀ θ ∈ Θ : Pr(ō(θ) = o(θ)) = 1. Having this property guarantees
that we, in the limit, will find the best design, i.e. asymptotic correctness (see
Section 2.6.2). Not having this property, we risk overconfidence [Birattari and Dorigo
2004] as maxθ∈Θ ō(θ) is biased towards overestimating maxθ∈Θ o(θ).

In addition, as we can easily derive the conditionalities between the parameters in our ACP,
we want a configurator that can exploit these conditionalities. In our case study, we used
the focused variant of ParamILS [Hutter et al. 2009] (FocusedILS),7 combining all these
properties.8 To reduce the duration of our experiments, and to add diversification, we ran
30 processes of FocusedILS in parallel on our machine (see Appendix A.1). Each of these
processes used the same default parameter settings, but different random seeds.

5.2.4 Results
The results in this section were accumulated over all 30 configuration processes. In total,
52870 performance observations were obtained, distributed over the 2414 candidate designs
and 30 instances. Ideally, we would like evaluations to be distributed equally amongst all
instances. On average 1762.33 tests were performed per instance, with a standard deviation
of 288.72. This standard deviation, while acceptable, is rather large, and is about 7 times
more than what would be expected under a uniform distribution. This is due to the fact
that FocusedILS considers benchmarks in a fixed order, and most designs were tested
less than |P | times. As discussed above, we want more promising candidate designs to
receive more evaluations. Figure 5.5 shows the fraction of runs performed by the fraction
of highest evaluated designs. Here, we observe that the better designs clearly receive more
runs: 45% of the runs were performed using the 10% best configurations, and 20% were
assigned to the very best. In addition, it shows that nearly every candidate design was
tested at least once, suggesting a proper exploration of the design space.
Next, we have a look at the best designs found in our experiment. Here, we only consider

those evaluated at least once on every instance. This was the case for (only) 143 of the
designs. Table 5.3 shows the design decisions made (see Table 5.2 for the abbreviations
used), the number of evaluations performed, and the estimated performance of the 15
top ranked designs. Here, we combine the performance observations of all 30 runs to
estimate o using Equation 4.1. Looking at the design decisions, we find that 12 out of
15 of these designs use a QSelect selection mechanism with a RouletteWheel selection

7http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/ (version 2.3.8)
8In retrospect, other configurators may have been better suited, see Section 5.4 for a discussion.

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

168 CHAPTER 5. PROGRAMMING BY CONFIGURATION

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fraction of best methods

fr
a

c
ti

o
n

 o
f

ru
n

s

actual distribution

uniform distribution

Figure 5.5: Distribution of runs over the fraction best designs

Table 5.3: Top 15 designs found by the configuration processes

r sm os ac rc # evals ō

1 QS(RW,SN) ILS APW(0.5) RS 1573 5.77
2 QS(RW,SA) ILS APW(0.5) RS 4577 5.38
3 QS(RW,SN) ILS APW(0.5) RN 1322 5.23
4 QS(RW,SA) ILS APW(0.5) RN 5929 5.01
5 QS(RW,SA) ILS ATL(20) RN 810 4.99
6 QS(RW,SN) ILS AL(10000) RN 128 4.93
7 QS(PR(2),EA(C,0.2)) ILS APW(0.5) RN 203 4.91
8 QS(RW,IOT(5)) ILS ATL(20) RS 236 4.89
9 QS(RW,IOT(5)) ILS ATL(20) RN 554 4.81
10 QS(EG(0.25),IOT(5)) ILS APW(0.5) RS 102 4.81
11 QS(RW,SN) ILS ATL(20) RN 185 4.8
12 QS(RW,IOT(5)) ILS APW(0.5) RS 2192 4.79
13 QS(RW,IOT(5)) ILS APW(0.5) RN 1815 4.76
14 QS(RW,SA) ILS ASA(2) RS 193 4.73
15 QS(PR(2),IOT(5)) ILS APW(0.5) RN 223 4.71

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 169

rule. All 15 use the IteratedLocalSearch options. In fact, the best designs using the
PerturbativeHeuristic or LocalSearch alternatives are only evaluated at 3.83, 0.65 and
ranked 65th, 133th respectively. 4 out of the 8 acceptance criteria considered appear in
one of the top 15 designs, of which AcceptProbabilisticWorse (9) and AcceptTopList (4)
are the most prevalent. Notably, the best method using AcceptAll is evaluated at 1.87
and ranks 124th, motivating the use of acceptance criteria in general. While it is less
apparent whether the same holds for restart criteria, we do note that the designs ranked
first and second, using RestartStuck, do outperform their variations, using RestartNever,
ranked third and fourth respectively. In the remainder of this chapter, we will focus on the
best design found, which we will from now onwards refer to as “Fair Share Iterated Local
Search” (FS-ILS).

5.3 Fair Share Iterated Local Search (FS-ILS)
In the previous section, we focused on “how” FS-ILS was designed. In what follows, we
have a closer look at the framework itself, i.e. the output of the semi-automated design
process. First, we have a closer look at the design decisions made in this framework in
Section 5.3.1. Subsequently, we analyze FS-ILS experimentally to gain some insight into its
performance in Section 5.3.2: We perform parameter sensitivity analysis in Section 5.3.2.1,
accidental complexity analysis in Section 5.3.2.2 and compare its performance to that of
the 21 CHeSC 2011 contestants in Section 5.3.2.3. This research was performed in the
context of [Adriaensen et al. 2014b] and was targeted at presenting FS-ILS to the research
community. Finally, in Section 5.3.2.4, we describe the setup and results of an empirical
study, conducted in [Adriaensen et al. 2015], where we compared 6 publicly available
hyper-heuristics for HyFlex (including FS-ILS) on three new domains in order to assess
their generality across domains.

5.3.1 Design Decisions
In this section, we describe and discuss the decisions made for each of the four top-level
design choices in somewhat more detail.9 In particular, we provide a motivation as to
why we included them as alternatives in the first place, i.e. we share the train of thought
that led us to include FS-ILS as a candidate design. In what follows, we assume some
background knowledge of heuristic optimization (see Section 2.7.2 for an overview).

9A more detailed description, including pseudocode, can be found in [Adriaensen et al. 2014b].

170 CHAPTER 5. PROGRAMMING BY CONFIGURATION

5.3.1.1 Selection Mechanism (sm)

Options are the only source of diversification in the algorithm. Without sufficiently diverse
proposals (vprop) a framework risks getting stuck locally, i.e. fail to explore the search-
space globally. Therefore, we included many non-greedy option selection mechanisms in
our design space, leaving it up to the acceptance criterion to decide whether a proposal
is “acceptable”, i.e. to control diversification. One of these was plain uniform random
selection. However, we found that Uniform discriminates against fast options. For instance,
consider two options o1 and o2, which take 1 and 10 milliseconds respectively to generate
a new candidate solution. Under uniform selection, the algorithm will spend 10 times more
resources on option o2 than it does on o1. This motivated us to include the alternative
Speed selecting options proportionally to the rate at which they generate solutions. Using
this procedure, in the limit, an equal amount of time will be spent on every option, i.e. it
is fair. Finally, if an option’s proposal does not lead to a new incumbent solution (vinc),
either because vinc = vprop, or because the proposal is not accepted, the time spent
generating it is effectively wasted. To encourage the selection of options that advance the
search process, the selection procedure SpeedNew, eventually included in FS-ILS, selects
options proportional to the rate at which they generate new incumbent solutions.

5.3.1.2 Options (os)

One of the key difficulties in selection hyper-heuristics is the evaluation of exploratory
low-level heuristics, as they might only lead to improvement many steps later. There-
fore, instead of evaluating non-greedy heuristics individually, we evaluate them followed
by an Iterative Improvement (II) scheme. This allows us to more accurately assess the
desirability of an exploratory move on the longer run. In addition, doing so guarantees
sufficient intensification, even if options are selected in a non-greedy fashion and control
of diversification is relatively crude, as is the case in FS-ILS. Only a single II procedure was
included in our design space.This scheme was inspired by Variable Neighborhood Descent
(VND). Each option first applies one of the non-greedy heuristics (from the init, mut and
rr categories, see Table 5.1); e.g. for MAX-SAT there are 8 options to choose from. Sub-
sequently, in the II procedure, we iteratively select a greedy heuristic (from the ls category)
uniformly at random. When an application of a heuristic does not lead to improvement, it
is excluded (tabu) from the selection, until some other heuristic finds improvement. The
II scheme terminates when all heuristics have been excluded. Remark that if we assume
that each application of a greedy heuristic leads to improvement, unless we are in a “local
optimum for that heuristic”, our II procedure ends in a candidate solution that is a locally
optimal for each of the heuristics. While this assumption is violated for many of the greedy
heuristics included in HyFlex, it nonetheless leads to an elegant termination criterion.

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 171

1e−7 1e−6 1e−5 1e−4 1e−3 1e−2 0.1 1 10 1e2 1e3 1e4 1e5 1e6 1e7
0

1

2

3

4

5

6

7

8

9

10

T

f

sat

bp

Figure 5.6: Performance of FS-ILS using basic EMC with different T values.

5.3.1.3 Acceptance Criterion (ac)

FS-ILS uses a variant of the EMC criterion (see Section 2.7.2.2, SA). The basic EMC
criterion accepts a worsening solution with probability e

e(vinc)−e(vprop)
T , where T is a positive

real-valued parameter called the temperature. The main difficulty is choosing T . Whether
a worsening ∆e is large or not is extremely domain (or even instance) dependent. For
example, a worsening of 1 is the smallest possible worsening in MAX-SAT and the largest
possible worsening in bin packing. As a consequence, any fixed temperature parameter
T will either cause (nearly) all worsening proposals to be accepted in bin packing, or
(nearly) none at all in MAX-SAT. Figure 5.6 illustrates the issue, showing the average-case
performance of FS-ILS (p as described in Section 5.2.2.4) using the basic EMC criterion on
the MAX-SAT and bin packing domains for a wide range of temperature values. FS-ILS
uses a rather crude, yet effective, way to make the choice of T less domain dependent by
expressing worsening in terms of average improvement, i.e. it accepts a worsening solution
with probability e

e(vinc)−e(vprop)
T∗µimpr , where µimpr is the average improvement in improving

iterations. Put differently, we normalize the amount of worsening by dividing it by a metric
that is similarly domain-dependent. We do retain T as FS-ILS’s only parameter, especially
since we only considered a single alternative value (i.e. 0.5) in our design process, and we
will investigate the influence of this parameter on its performance in Section 5.3.2.1.

5.3.1.4 Restart Criterion (rc)

FS-ILS is restarted after it failed to find a new best solution (i.e. update vrun best) for
a certain amount of time. This criterion is inspired by the fact that a lot of frameworks
find new best solutions rather regularly. When they stop doing so we possibly have to

172 CHAPTER 5. PROGRAMMING BY CONFIGURATION

wait a very long time for further improvement, if any (the method may be stuck). While
restarting in such situation is not guaranteed to result in finding better solutions, it is
often better than remaining stuck. The hard part is identifying when the algorithm is
stuck. Here, the heuristic we used was inspired by the one used in CHeSC 2011 contestant
VNS-TW [Hsiao et al. 2012] to detect a local optimum in the ILS process. Following this
heuristic, FS-ILS is restarted if it has not found a new best solution (improved vrun best)
for a ∗ wmax iterations where wmax is the greatest number of iterations we had to wait
for a new best solution thus far. The idea is that over time, wmax will approximate the
longest time needed to still improve. The choice of a is crucial. On the one hand, to
allow wmax to grow, it is important that a is sufficiently large (at least > 1). However, to
prevent wasting too much time later on in the search (when wmax is somewhat accurate)
a should be as small as possible. We therefore decided to lower a hyperbolically over time:
a = tallowed

telapsed
. Initially, a will be very large, avoiding preliminary restarts; half way it is only

2, and at the end a = 1. As an exception, the algorithm is not restarted when the time
remaining is less than the shortest time it took to find a candidate solution as good as the
best candidate solution obtained so far. This prevents restarts on instances for which a
lot of time is required to obtain a high-quality solution. Note that this restart criterion is
rather conservative and its core design concern was to prevent restarts as much as possible,
following a “if it ain’t broke, don’t fix it” philosophy, and restart only when a method is
obviously stuck and enough time is available to attain a solution of similar quality.

5.3.2 Empirical Analysis

5.3.2.1 Parameter Sensitivity

Setup: The objective of the experiment described in this section is to analyze the in-
fluence of the choice of FS-ILS’s single (numerical) parameter, i.e. the temperature T
used in its acceptance criterion (see Section 5.3.1.3), on its performance. To this end, we
analyze FS-ILS’s performance using 15 different temperature settings, ranging from 0.001
to 1000. In our case study, T was intuitively chosen to be 0.5. To analyze the stability of
this decision, 10 out of these 15 temperature values were chosen equidistantly in [0.1, 1.0].
As a reference, we included three further variants of FS-ILS in our experiments:

• A variant accepting all proposals (aa)
• A variant accepting no worsening proposals. (anw)
• A variant using the basic EMC criterion with the temperature value T ∈ {10i−7 |

i ∈ N ∧ 0 ≤ i ≤ 14}, maximizing per-input performance (oracle).

In this experiment, we consider p as defined in Section 5.2.2.4 and perform 930 evaluations
for each variant of FS-ILS (31 per input x ∈ Xchesc).

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 173

1e−3 1e−2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 10.0 1e2 1e3
0

1

2

3

4

5

6

7

8

9

10

T

f

fs−ils

fs−ils
sat

fs−ils
bp

aa

anw

oracle

Figure 5.7: Performance of FS-ILS with different T values

Results: Figure 5.7 shows the average-case performance of FS-ILS with different tem-
perature values T on all 6 problem domains (fs-ils), as well as for the MAX-SAT (fs-ilssat)
and Bin Packing (fs-ilsbp) domains separately. In addition, the performances of aa, anw,
and the oracle are shown. Note that the scale of the x-axis is linear in [0.1, 1.0], but
logarithmic beyond.
We first have a look at the behavior of FS-ILS for extreme temperature values. For

high temperature values, FS-ILS accepts nearly all worsening proposals and we observe a
performance similar to that of aa. For low temperature values, FS-ILS accepts nearly no
worsening proposals and we observe a performance similar to that of anw.
The intuitive choice of T = 0.5 we made in [Adriaensen et al. 2014a] seems adequate.

Not only is 0.5 evaluated to be one of the best configurations, this parameter choice is
furthermore stable as FS-ILS performs similarly using similar temperature choices. Note
that Figure 5.7 over-dramatizes the drop in performance for temperature choices beyond
[0.1, 1.0] because of the change in scale of the x-axis.
In comparing Figures 5.6 and 5.7 we find that our normalization of the EMC criterion

effectively solves the problem described in Section 5.3.1.3. Nonetheless, picking the best
value for T is still about finding the best compromise. Some instances prefer more di-
versification and others less. For instance, on MAX-SAT, higher temperatures (10) are
preferred, while on the Bin Packing domain, lower temperatures (0.1) performed better.
Furthermore, the oracle performs extremely well, suggesting that FS-ILS can be improved
by making the choice of T more adaptive.
Note that the performance evaluation for FS-ILS with T = 0.5 is similar to the per-

formance estimated by FocusedILS during its design (see Table 5.3), suggesting that these
results were not “tainted” by overconfidence.

174 CHAPTER 5. PROGRAMMING BY CONFIGURATION

5.3.2.2 Accidental Complexity

Setup: The objective of the experiment described in this section is to analyze the pres-
ence of accidental complexity in FS-ILS, i.e. whether it can be simplified without loss of
performance.10 To this end, we compare FS-ILS to simpler variants. We consider simpler
alternatives for each of the four top-level design choices (see also Table 5.2):

sm: The option selection mechanism used, i.e. QS(RW,SN). Here, we consider simpler
variants selecting alternatives proportional to the rate at which they generate pro-
posals, i.e. QS(RW,S), and variants using plain uniform random selection (U).

os: The use of iterative improvement in options (ILS). Here, we consider variants that do
not perform iterative improvement, but consider single applications of the perturb-
ative heuristics (from the mut, ls and rr categories) as options instead (PH).

ac: The acceptance criterion used (APW). Here, we consider variants accepting only non-
worsening proposals (ANW) and variants accepting all proposals (AA).

rc: The use of restarts (RS). Here, we consider variants that never restart (RN).

Combining these simplifications gives rise to 35 simpler variants of FS-ILS. Remark that
these variants were part of the design space considered in [Adriaensen et al. 2014a], with
the objective of avoiding accidental complexity “by design”. In this experimental setup, we
wish to investigate whether this attempt was successful. For each variant, we performed
300 tests, 10 for each x ∈ Xchesc (see Appendix A.2), to evaluate its performance. We
test the significance of the differences in performance observed when compared to FS-ILS,
using the Wilcoxon signed-rank test.

Results: Table 5.4 shows for each of the 36 variants the design decisions made, their
average-case performance and the p-value for the Wilcoxon signed-rank test in a pair-wise
comparison with FS-ILS. We find that FS-ILS (in bold) is evaluated significantly better
than its simpler variants, i.e. every design decision has a significant contribution (w.r.t. the
simpler alternatives considered). However, we note that some simplifications have a greater
impact on performance than others. This allows us to measure the contribution of a certain
design decision to the performance of FS-ILS.

sm: The choice for speed proportional selection, i.e. QS(RW,S) or QS(RW,SN), adds
great value as the best design using uniform selection is only ranked 11th and in 20 out
of 24 cases configurations using a speed proportional selection scheme outperform their
variant using plain uniform selection. In the 4 remaining cases, the design has no control

10In Chapter 7, we discuss the merits of this practice elaborately.

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 175

Table 5.4: Comparison of FS-ILS to simpler variants

r sm os ac rc ō p-value
1 QS(RW,SN) ILS APW RS 5.77 1.0
2 QS(RW,SN) ILS APW RN 5.54 0.0048
3 QS(RW,S) ILS APW RS 5.2 4.6E-5
4 QS(RW,S) ILS APW RN 4.85 2.0E-8
5 QS(RW,SN) ILS ANW RN 4.58 1.6E-6
6 QS(RW,SN) ILS ANW RS 4.57 8.3E-7
7 QS(RW,S) ILS ANW RN 4.16 1.0E-9
8 QS(RW,S) ILS ANW RS 3.87 4.2E-12
9 QS(RW,SN) PH APW RS 3.23 3.4E-15
10 QS(RW,SN) PH APW RN 3.09 0.0
11 U ILS APW RN 2.99 0.0
12 U ILS APW RS 2.96 0.0
13 U ILS ANW RS 2.64 0.0
14 U ILS ANW RN 2.52 0.0
15 QS(RW,S) PH APW RS 2.46 0.0
16 QS(RW,S) PH APW RN 2.42 0.0
17 U PH APW RN 2.18 0.0
18 U PH APW RS 2.15 0.0
19 QS(RW,S) PH ANW RS 1.84 0.0
20 QS(RW,S) PH ANW RN 1.74 0.0
21 QS(RW,SN) PH ANW RN 1.53 0.0
22 QS(RW,SN) PH ANW RS 1.41 0.0
23 U PH ANW RS 1.36 0.0
24 U PH ANW RN 1.35 0.0
25 QS(RW,SN) ILS AA RN 0.67 0.0
26 QS(RW,S) ILS AA RN 0.6 0.0
27 QS(RW,SN) ILS AA RS 0.48 0.0
28 QS(RW,S) ILS AA RS 0.48 0.0
29 U ILS AA RS 0.41 0.0
30 U ILS AA RN 0.4 0.0
31 U PH AA RS 0.16 0.0
32 U PH AA RN 0.12 0.0
33 QS(RW,SN) PH AA RS 0.02 0.0
34 QS(RW,S) PH AA RS 0.01 0.0
35 QS(RW,SN) PH AA RN 0.0 0.0
36 QS(RW,S) PH AA RN 0.0 0.0

176 CHAPTER 5. PROGRAMMING BY CONFIGURATION

of diversification (AA), and therefore performs poorly with non-greedy selection schemes.
Plain uniform selection tends to be greedier than speed proportional selection as applying
non-greedy heuristics tends to take less time than applying greedy ones. Configurations
using QS(RW,SN) outperform their variant using QS(RW,S) in 10 out of 12 cases. In the
cases in which it does not, no local search is performed (PH) and all worsening proposals
are rejected. QS(RW,SN) selection becomes too greedy and fails to explore.

os: The use of iterative improvement is clearly important as the best design without
is only ranked ninth. Furthermore, all configurations using iterative improvement (ILS)
outperformed variants that do not (PH).

ac: Also, the choice of acceptance criterion is important. The four best designs use
the (normalized) EMC criterion (APW). Furthermore, configurations using this accept-
ance criterion outperform those accepting no worsening proposals (ANW), which in turn
outperform those accepting all worsening proposals (AA).

rc: The choice for the restart criterion is clearly the most controversial. On the one
hand, using the restart criterion does (significantly) improve the performance of the 2 top
configurations. On the other hand, not using the restart criterion is the simplification
with the smallest impact and using the restart criterion is in no way consistently beneficial
in all configurations. Therefore, one might consider omitting the restart criterion, which
would further simplify implementation and analysis, as there is no need for reinitialization
or run-specific variables.

5.3.2.3 Peak Performance

Table 7.1 shows the outcome of the CHeSC (2011) competition with FS-ILS as competitor
(based on 930 runs as in Section 5.3.2.1). It shows the total score and scores on each
domain for all contestants. We see that FS-ILS would have won the competition and
performs best on three of the six domains. Furthermore, the worst score it obtains on any
domain is higher than the worst score of any other contestant.
However, this comparison is limited in many ways. First, results for FS-ILS were obtained

on a different platform and while we did use a benchmark application to somewhat reduce
this effect, it makes our results sensitive to potential bias in this program. Secondly, we
wish to stress the fact that this comparison is not entirely fair. To design FS-ILS, we
used information not available to the other contestants, i.e. the benchmark instances used
during the competition and the performance of the other contestants, giving FS-ILS an
unfair advantage. Nonetheless, FS-ILS could have been a competitor and as such the
comparison above does illustrate its competitiveness on these instances. However, these
are known benchmark instances, solved numerous times in the past. A key limitation

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 177

Table 5.5: The results of the CHeSC 2011 competition with FS-ILS as competitor

r algorithm stotal ssat sbp spsp spfs stsp svrp
1 FS-ILS 182.1 39.6 20 10.5 47 34 31
2 AdapHH 162.18 28.93 45 9 31 35.25 13
3 VNS-TW 115.68 28.93 2 39.5 26 15.25 4
4 ML 110 10.5 8 30 31.5 10.0 20
5 PHUNTER 80.25 7.5 3 11.5 6 22.25 30
6 EPH 74.75 0 8 9.5 16 30.25 11
7 NAHH 65 11.5 19 1 18.5 10.0 5
8 HAHA 64.27 26.93 0 25.5 0.83 0.0 11
9 ISEA 59.5 3.5 28 14.5 1.5 9 3
10 KSATS-HH 53.85 19.85 8 8 0 0 18
11 HAEA 39.33 0 2 1 5.33 9 22
12 ACO-HH 32.33 0 19 0 6.33 6 1
13 GenHive 30.5 0 12 6.5 5 2 5
14 SA-ILS 21.75 0.25 0 17.5 0 0 4
15 DynILS 20 0.0 11 0 0 9 0
16 XCJ 18.5 3.5 10 0 0 0 5
17 AVEG-Nep 16.5 10.5 0 0 0 0 6
18 GISS 16.25 0.25 0 10 0 0 6
19 SelfSearch 4 0 0 1 0 3 0
20 MCHH-S 3.25 3.25 0 0 0 0 0
21 Ant-Q 0 0 0 0 0 0 0

of our comparison here is that it does not provide any information about whether this
performance will generalize to slightly different settings, e.g. the new, unseen instances
which we would like to solve in practice. Put differently, FS-ILS was optimized by design
to perform well in this comparison, it was “trained” on these instances and its performance
was evaluated relative to these contestants, using a closely related performance metric.
The performance we observe in this comparison is therefore likely biased towards being
optimistic. The same does not hold, to the same extent, for the CHeSC 2011 contestants,
as 18 of the 30 instances used were not available (“hidden”) prior to the competition. In
addition, 10 of these were taken from two new domains (see Appendix A.2).
Despite the limitations mentioned above, these kind of comparisons are commonplace

in “post-CHeSC 2011” research. In fact, it is often the only kind of performance evalu-
ation performed [Van Onsem et al. 2014]. As most of these frameworks were designed
manually, using the gradient student search approach (see Section 3.3.1), one may argue
that the second limitation is not (or less) applicable to these frameworks, as they were not
“optimized” for this comparison. However, we would like to speculate that even though
not done so explicitly, as in our semi-automated design approach, they are most likely op-
timized for this setting implicitly. However, due to the lack of transparency of this design
process, we cannot know this for sure. These observations motivated the experimental
study performed in [Adriaensen et al. 2015] and which we will describe in the next section.

178 CHAPTER 5. PROGRAMMING BY CONFIGURATION

Table 5.6: Overview of the methods compared

framework author style loc license
AdapHH Mustafa Misir Select-Accept 2324 GNU GPL
EPH David Meignan Population-based 957 Apache 2.0
FS-ILS Steven Adriaensen Iterated Local Search 216 MIT
NR-FS-ILS Steven Adriaensen Iterated Local Search 166 MIT
ANW-HH Steven Adriaensen Select-Accept 27 MIT
AA-HH Steven Adriaensen Select(-Accept) 21 MIT

5.3.2.4 Generality

In this section, we examined the generality of FS-ILS and that of several other publicly
available hyper-heuristics for HyFlex across domains. To fairly assess a framework’s gen-
erality, it is important to test it on as many new domains as possible, as the potential
variability in domains is vast. Here, the word new is crucial, i.e. the framework/domain
should not have been tested using this domain/framework during any phase of its design,
as otherwise we risk an optimistic bias. To this end, we extend the HyFlex benchmark
set, providing benchmark instances and problem-specific components for three additional
problem domains.11 To the best of our knowledge, this is, to date, the first and only public
extension of the HyFlex benchmark since the competition in 2011.
This section is organized as follows: First, we describe the frameworks considered in our

comparison. Subsequently, we introduce each of the new problem domains. Finally, we
present our experimental results.

Baseline: Here, we describe the frameworks considered in our comparison in more detail.
Table 5.6 gives an overview of these frameworks and their properties. Note that we include
the “lines of code” metric (loc), as a rough indication of their (code) complexity.12

AdapHH: AdapHH [Misir et al. 2012b], made publicly available under the name
GIHH,13 is the framework that won the CHeSC 2011 competition. At the highest level it
follows a rather classical single point iterative selection and acceptance scheme, while at
a lower level it successfully combines various adaptive mechanisms.14 AdapHH maintains
an adaptive heuristic set (ADHS). Here, performance metrics are kept for each of the

11Available here: https://github.com/Steven-Adriaensen/hyflext (domains)
12Measured using the cloc tool http://cloc.sourceforge.net/ (version 1.62).
13Available here: https://code.google.com/archive/p/generic-intelligent-hyper-heuristic/
14See Appendix A.5 for a more detailed description of AdapHH’s sub-mechanisms.

https://code.google.com/archive/p/generic-intelligent-hyper-heuristic/
https://github.com/dmeignan/eph-chesc
https://github.com/Steven-Adriaensen/FS-ILS/
https://github.com/Steven-Adriaensen/FS-ILS/tree/master/no_restart
https://github.com/Steven-Adriaensen/hyflext/tree/master/naive
https://github.com/Steven-Adriaensen/hyflext/tree/master/naive
https://github.com/Steven-Adriaensen/hyflext
http://cloc.sourceforge.net/
https://code.google.com/archive/p/generic-intelligent-hyper-heuristic/

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 179

low-level heuristics and after a number of iterations (called a phase) the performance of
each heuristic is reassessed and a quality index is assigned. Within each phase, heuristics
are applied with a frequency dependent on the assigned quality index. Also, each phase,
heuristics of poor quality are temporarily (or even indefinitely) excluded. An acceptance
criterion, called adaptive iteration limited list-based threshold accepting (AILLA), is used
to decide whether to accept the solutions, generated by these heuristics, as new incumbent
solution or not. Here, a list of evaluation function values of previously found new best
solutions is maintained and only proposals no worse than the kth element of this list are
accepted. The value of k is adapted dynamically during the search. Next to these basic
features, AdapHH also implements a restart criterion, heuristic adaptation mechanism for
α and β and a hybridization scheme (learning effective pairs of heuristics).

EPH: An Evolutionary Programming Hyper-heuristic [Meignan 2011] with co-evolution.15
This population-based approach ended up 5th in the CHeSC 2011 competition. The
method maintains two populations, one of candidate solutions, another of heuristic se-
quences. Both populations co-evolve in the sense that the new solutions introduced in
the population are generated by applying the heuristic sequences, and the fitness of the
heuristic sequences is related to how they perform on the current solutions. The popu-
lation of solutions evolves as follows: First, an initial population is generated using the
construction heuristic. Then, the heuristic sequences are applied to these solutions (in
order to evaluate their performance). The resulting solution replaces the worst solution
in the population if it has a cost different from all others in the population and lower
than the worst. A heuristic sequence consists of a sequence of non-greedy heuristics (from
the mut, rr and xo categories), followed by a sequence of greedy heuristics (from the ls
category). Greedy heuristics are either applied once, or using a Variable Neighborhood
Descent (VND) strategy. Each heuristic has an associated α and β value. The population
of heuristic sequences is initialized randomly and each generation the population is first
doubled (by recombination and mutation) and then N individuals are selected based on
their fitness using tournament selection. Parameters of the framework (e.g. population
size N , use of VND, etc.) are determined during a dedicated initialization phase.

(NR-)FS-ILS: We obviously also include FS-ILS in our comparison. Recall that Acci-
dental Complexity Analysis (ACA) performed in Section 5.3.2.2 suggested that the restart
criterion used may not add sufficient value to motivate its complexity. Therefore, we also
include the variant without restart (named NR-FS-ILS) in our comparison. A lightweight,
standalone implementation of both frameworks has been made publicly available.16

15Available here: https://github.com/dmeignan/eph-chesc
16Available here: https://github.com/Steven-Adriaensen/FS-ILS

https://github.com/dmeignan/eph-chesc
https://github.com/Steven-Adriaensen/FS-ILS

180 CHAPTER 5. PROGRAMMING BY CONFIGURATION

AA-HH and ANW-HH (Anaive): AA-HH and ANW-HH are two simple, single point
hyper-heuristics. Each of them iteratively generates a proposal by applying a heuristic (from
the mut, ls and rr categories) selected uniformly at random. They differ in that AA-HH
accepts all proposals, while ANW-HH accepts no worsening proposals, as new incumbent
solution. We include these (rather naive) frameworks in our comparison because they are
simple. Therefore, it is easier to interpret their results and the state-of-the-art methods
described above (hereinafter collectively referred to as Asota), to motivate their complexity,
should clearly generalize better. For the sake of reproduction, these frameworks were also
made publicly available.17

ASAP Default Hyper-heuristics: To avoid biasing our new domains to any particular
framework, we did not use any of the aforementioned frameworks during the design and
testing of these domains. Instead, we used the eight ASAP Default Hyper-heuristics,
which were developed during the preparation and testing of the CHeSC 2011 competition
software. These methods were inspired by state-of-the-art approaches and the design
principles underlying some of these hyper-heuristics, can be found in [Burke et al. 2010a].
Results for these hyper-heuristics were made available for the four public domains and were
used in a rehearsal competition which was conducted weekly, prior to the competition.

Problem Domains: In [Adriaensen et al. 2015], we extended the HyFlex benchmark set
(Xold), adding three new domains (Xnew). In what follows, we briefly introduce each of
them. More detailed descriptions, including H, can be found in [Adriaensen et al. 2015].

0-1 Knapsack Problem (KP): Given a set of n items I, with associated weight
w : I → R and profit p : I → R functions, and knapsack capacity V , we are to find
the subset K satisfying the capacity constraint, i.e.

∑
i∈K w(i) ≤ V and maximizing

the total profit
∑
i∈K p(i). The search space is the subset of 2I where each candidate

solution satisfies the capacity constraint. The objective function, to be maximized, maps
each subset to its total profit. As HyFlex considers the minimization of e, we use an eval-
uation procedure computing the negated total profit. This domain provides 10 benchmark
instances, generated using the procedure employed in [Martello et al. 1999].18 Table 5.7
gives the optimal solution qualities (fopt) as well as the parameters19 used to generate
each instance.

17Available here: https://github.com/Steven-Adriaensen/hyflext (naive)
18Available here: http://www.diku.dk/~pisinger/codes.html.
19The range of coefficients is always [1, r], with r = 10000, and the number of tests is always 1000.

https://github.com/Steven-Adriaensen/hyflext
http://www.diku.dk/~pisinger/codes.html

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 181

Table 5.7: Instances provided in the KP domain

index n type (t) seed (i) fopt
0 1000 no small weights (15) 12 104046
1 2000 uncorrelated (1) 13 1263861
2 2000 weakly correlated (2) 14 243145
3 2000 almost strongly correlated (5) 17 431363
4 2000 no small weights (15) 23 396167
5 5000 uncorrelated (1) 24 4417737
6 5000 weakly correlated (2) 25 954172
7 5000 uncorrelated, similar weights (9) 32 1577175
8 5000 almost strongly correlated (5) 28 1530536
9 5000 no small weights (15) 34 1467454

Quadratic Assignment Problem (QAP): Given a set of n facilities F , a set of n loc-
ations L, d : L×L→ R a function specifying the distances between each pair of locations
and f : F×F → R a function specifying the flows between each pair of facilities, we are to
find an assignment of facilities to distinct locations that minimizes the sum of the distances
multiplied by the corresponding flows. The search space S consists of all bijections F → L.
The evaluation function, to be minimized, is e(s) =

∑
x,y∈F f(x, y) ∗ d(s(x), s(y)). This

domain provides 10 benchmark instances, taken from the QAPLIB library [Burkard et al.
1997]. The properties and best known solution qualities (fprev) of these instances, are
summarized in Table 5.8.

Table 5.8: Instances provided in the QAP domain

index name n fprev
0 sko100a 100 152002
1 sko100b 100 153890
2 sko100c 100 147862
3 sko100d 100 149576
4 tai100a 100 21052466
5 tai100b 100 1185996137
6 tai150b 150 441786736
7 tai256c 256 43849646
8 tho150 150 7620628
9 wil100 100 273038

182 CHAPTER 5. PROGRAMMING BY CONFIGURATION

Table 5.9: Instances provided in the MAC domain

index name type weights |V | |E| fprev
0 g3-8 torus Z 512 1536 41684814
1 g3-15 torus Z 3375 10125 283206561
2 g14 planar {1} 800 4694 3064
3 g15 planar {1} 800 4661 3050
4 g16 planar {1} 800 4672 3052
5 g22 random {1} 2000 19990 13359
6 g34 torus {1,-1} 2000 4000 1384
7 g55 random {1} 5000 12498 10299
8 pm3-8-50 torus {1,-1} 512 1536 458
9 pm3-15-50 torus {1,-1} 3375 10125 3014

Max-Cut Problem (MAC): Given a weighted graph G, with vertices V , edges E and
weight function w : E → R. Find a cut, i.e. a partition of V into two disjoint subsets,
such that the sum of the weights of the edges crossing both partitions is maximized. The
search space consists of all possible cuts V → {1, 2} of G. The objective function, to
be maximized, is given by f(s) =

∑
e∈Es×

w(e) where Es× = {(vi, vj) ∈ E | s(vi) 6= s(vj)}
is the set of edges crossing cut s. Our evaluation procedure computes −f(s). This
domain provides 10 benchmark instances: Instances 2-7 were generated using Rudy, a
graph generator by Giovanni Rinaldi.20 Instances 0-1, 8-9 are torus graphs taken from
the 7th DIMACS Implementation Challenge.21 The properties and best known solution
qualities (fprev) of these instances are summarized in Table 5.9.

Comparative Study: All experiments were performed on the same machine (see Ap-
pendix A.1) and each run, a framework was given a time limit, corresponding to 10 minutes
on the machine used during the CHeSC 2011 competition, as described in Section 5.2.2.4.
As such it is, to some extent, possible to compare results obtained on other machines, to
those reported here. To avoid bias, none of the frameworks compared were ever tested on
the new instances prior to our experiments. In addition, to cancel out noise due to potential
variations in system performance, the runs of different frameworks were interleaved.
In Section 5.2.2.4, we introduced a performance measure based on average ranks, which

we used in the design and analysis of FS-ILS. However, as this performance measure
is based on the median cost of the solutions obtained by the CHeSC 2011 contestants,

20The full set can be found at http://web.stanford.edu/~yyye/yyye/Gset/
21http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

http://web.stanford.edu/~yyye/yyye/Gset/
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 183

information only available for instances used during the competition (i.e. Xchesc), doing
so in this study was not possible. In addition, as we optimized FS-ILS w.r.t. this measure
during its design, using the same measure in this study could introduce an unfair bias and
would not allow us to assess generality w.r.t. “the choice of measure of performance”.
Therefore, we report for each of the frameworks considered in our comparison (A), for a
given domain (X), multiple different measures of performance:

rank: The rank of each framework a ∈ A on domain X, ranked by increasing µrank.

µrank: The average rank of the median cost c̃ax obtained by each method a ∈ A on an
instance x, ranked by increasing cost. This is similar to the criterion used during the
CHeSC 2011 competition.

µnorm: The average normalized evaluation function value, as used in [Di Gaspero and Urli
2012]. Let Cax be the set of solution costs obtained by a method a ∈ A on an instance
x ∈ X. Let Cx =

⋃
a∈A C

a
x be the set of results obtained on x by any algorithm.

Let fnorm(c) = c−min(Cx)
max(Cx)−min(Cx) and µnorm(x, a) = 1

|Cax |
∑
c∈Cax

fnorm(c). Then
µnorm(a) = 1

|X|
∑
x∈X µnorm(x, a).

σrun
norm: The average standard deviation of fnorm(c) on runs of a performed on the same

input, i.e. 1
|X|
∑
x∈X

1
|Cax |

√∑
c∈Cax

(fnorm(c)− µnorm(x, a))2.

σinput
norm : The standard deviation on the average normalized evaluation function value,

across different inputs, i.e. 1
|X|
√∑

x∈X(µnorm(x, a)− µnorm(a))2.

best: The number of instances for which a obtained the best solution quality,
i.e.

∑
x∈X [min(Cax) = min(Cx)].

worst: The number of instances for which a obtained the worst solution quality,
i.e.

∑
x∈X [max(Cax) = max(Cx)].

Note that σrun
norm gives a measure of variation in the solution quality obtained in different

runs on the same instance, while σinput
norm measures variations in performance on different

instances of the same domain.
The remainder of this section is structured as follows: First, we compare the frameworks

on all domains of the original HyFlex benchmark, next we compare them on each of the
three new domains. Finally, we have a look at their performance over all instances.22

22Cax , ∀a ∈ A, x ∈ Xall can be found here https://github.com/Steven-Adriaensen/hyflext
(data).

https://github.com/Steven-Adriaensen/hyflext

184 CHAPTER 5. PROGRAMMING BY CONFIGURATION

Table 5.10: Comparison of performance on the original HyFlex benchmark

Maximum Satisfiability (SAT)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 FS-ILS 1.33 0.02 0.01 0.02 12 0
2 NR-FS-ILS 2.25 0.03 0.02 0.03 4 0
3 AdapHH 2.42 0.03 0.02 0.02 4 0
4 EPH 4.0 0.1 0.04 0.04 0 0
5 ANW-HH 5.0 0.39 0.06 0.14 0 0
6 AA-HH 6.0 0.86 0.08 0.03 0 12

Bin Packing (BP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 EPH 2.33 0.09 0.04 0.07 6 0
2 AdapHH 2.92 0.17 0.07 0.22 2 1
3 NR-FS-ILS 2.92 0.12 0.04 0.1 1 0
4 ANW-HH 3.17 0.16 0.04 0.17 3 0
5 FS-ILS 3.75 0.13 0.04 0.11 0 0
6 AA-HH 5.92 0.89 0.03 0.18 0 11

Personnel Scheduling (PSP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 EPH 1.92 0.13 0.09 0.08 7 0
2 NR-FS-ILS 2.21 0.15 0.07 0.11 3 0
3 FS-ILS 3.08 0.15 0.06 0.12 2 0
4 AdapHH 3.46 0.18 0.1 0.15 0 0
5 ANW-HH 4.58 0.3 0.15 0.2 1 3
6 AA-HH 5.75 0.48 0.12 0.25 0 9

Permutation Flow Shop (PFS)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 1.54 0.13 0.07 0.05 10 0
2 FS-ILS 2.21 0.16 0.07 0.06 3 0
3 AdapHH 2.75 0.18 0.07 0.07 3 0
4 EPH 3.5 0.21 0.08 0.06 2 0
5 AA-HH 5.25 0.6 0.06 0.09 0 3
6 ANW-HH 5.75 0.7 0.14 0.07 0 9

Traveling Salesman Problem (TSP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 2.4 0.05 0.02 0.02 1 0
2 EPH 2.45 0.06 0.02 0.03 3 0
3 AdapHH 2.55 0.05 0.02 0.03 4 0
4 FS-ILS 2.6 0.06 0.02 0.03 3 0
5 AA-HH 5.5 0.53 0.16 0.12 0 5
6 ANW-HH 5.5 0.5 0.19 0.17 0 5

Vehicle Routing Problem (VRP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 FS-ILS 2.2 0.07 0.04 0.06 2 0
2 NR-FS-ILS 2.3 0.09 0.03 0.08 3 0
3 AdapHH 2.9 0.07 0.02 0.09 2 0
4 EPH 3.3 0.17 0.1 0.13 3 0
5 ANW-HH 4.7 0.31 0.09 0.22 0 2
6 AA-HH 5.6 0.78 0.05 0.31 0 8

Original HyFlex Domains (Xold)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 2.26 0.1 0.04 0.09 22 0
2 FS-ILS 2.54 0.1 0.04 0.09 22 0
3 AdapHH 2.84 0.12 0.05 0.14 15 1
4 EPH 2.92 0.13 0.06 0.09 21 0
5 ANW-HH 4.76 0.39 0.11 0.24 4 19
6 AA-HH 5.68 0.69 0.08 0.25 0 48

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 185

Original HyFlex domains (Xold): Table 5.10 summarizes the performance of each
framework on all 68 instances in the original HyFlex benchmark set (Xold), per domain.
Overall we find that (NR-)FS-ILS outperforms AdapHH, which in turn outperforms EPH.
Furthermore, we find the relative performance of these methods on each domain to be
largely consistent with those reported in Table 7.1 for Xchesc ⊂ Xold. This with some not-
able exceptions: EPH seems to be slightly more competitive, in particular, we observe that
it outperforms AdapHH on the BP domain, while on Xchesc, AdapHH clearly outperforms
EPH. As σinput

norm of AdapHH is large, this is most likely caused by AdapHH performing very
good on some, while poorly on other BP instances and Xchesc just happening to contain
more of the former. Also, we find that NR-FS-ILS performs better than FS-ILS (Overall,
and on 4 out the 6 domains), while we showed FS-ILS to perform significantly better on
Xchesc in Section 5.3.2.2. Note that while FS-ILS was optimized for Xchesc, FS-ILS was
never tested on the 38 instances in Xold \ Xchesc, yet is similarly competitive on Xold
as Xchesc, suggesting its performance generalizes well to new instances of the 6 original
domains. Similar to what was observed during the rehearsal competition, we find that
AdapHH, EPH and (NR-)FS-ILS (Asota) clearly outperform rather naive alternatives such
as AA-HH and ANW-HH (Anaive). Note that it is not true that “more complex” is always
better, i.e. (NR-)FS-ILS while being far simpler, outperforms AdapHH and EPH. A matter
we discuss in detail in Chapter 7.

0-1 Knapsack Problem (KP): Table 5.11 summarizes the performance of each frame-
work on instances of the 0-1 Knapsack Problem. Here, we observe that AdapHH and EPH
perform well, while (NR-)FS-ILS does not. Key to understanding why (NR-)FS-ILS (and
ANW-HH) perform poorly, is the observation that the variability per run (σrun

norm) is high
for these methods. Also, we find that (NR-)FS-ILS performs worse for larger, more difficult
instances. Upon closer inspection, we found that the iterative improvement phase on these
instances (starting from an empty solution) can last up to several minutes and the quality
of the candidate solution generated varies strongly.

Table 5.11: Comparison of performance on KP

0-1 Knapsack Problem (KP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 AdapHH 1.6 0.03 0.02 0.03 8 0
2 EPH 1.85 0.05 0.03 0.08 5 0
3 AA-HH 3.5 0.15 0.01 0.26 2 0
4 NR-FS-ILS 4.65 0.36 0.19 0.19 1 6
5 ANW-HH 4.65 0.33 0.15 0.32 0 4
6 FS-ILS 4.75 0.39 0.22 0.21 1 2

186 CHAPTER 5. PROGRAMMING BY CONFIGURATION

Quadratic Assignment Problem (QAP): Table 5.12 summarizes the performance
of each framework on instances of the Quadratic Assignment Problem. Here, NR-FS-
ILS performs best and all Asota perform better than Anaive. Note that AA-HH clearly
outperforms ANW-HH, which performs worst on all QAP instances.

Table 5.12: Comparison of performance on QAP

Quadratic Assignment Problem (QAP)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 1.95 0.1 0.05 0.08 5 0
2 AdapHH 2.5 0.1 0.05 0.07 2 0
3 FS-ILS 2.85 0.1 0.04 0.08 3 0
4 EPH 3.7 0.13 0.06 0.07 0 0
5 AA-HH 4.0 0.15 0.03 0.11 1 0
6 ANW-HH 6.0 0.63 0.15 0.07 0 10

Max-Cut Problem (MAC): Table 5.13 summarizes the performance of each frame-
work on instances of the Max-Cut problem. Here we observe, somewhat surprisingly, that
AA-HH performs best, followed by AdapHH. Looking at the per-input performance, we
find that AA-HH performs best on all instances with unit weight edges (2-9), but ranks
only fifth on instance 0. This may be because the worsening proposed by exploratory oper-
ators in the weighted case tends to be much greater (more variable) than in the unit case.
EPH and especially ANW-HH perform clearly the worst. The performance of (NR-)FS-ILS
varies strongly from instance to instance (i.e. high σinput

norm). We find performance to be
mediocre to poor on the larger instances (1,5,7,9), while competitive on the smaller.

Table 5.13: Comparison of performance on MAC

Max Cut Problem (MAC)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 AA-HH 1.5 0.16 0.05 0.1 8 0
2 AdapHH 2.25 0.19 0.07 0.07 1 0
3 NR-FS-ILS 3.1 0.31 0.07 0.2 0 0
4 FS-ILS 3.95 0.34 0.08 0.22 1 2
5 EPH 4.6 0.47 0.12 0.14 0 1
6 ANW-HH 5.6 0.7 0.1 0.08 0 7

5.3. FAIR SHARE ITERATED LOCAL SEARCH (FS-ILS) 187

Table 5.14: Comparison of performance across the extended HyFlex benchmark

Original HyFlex Domains (Xold)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 2.26 0.1 0.04 0.09 22 0
2 FS-ILS 2.54 0.1 0.04 0.09 22 0
3 AdapHH 2.84 0.12 0.05 0.14 15 1
4 EPH 2.92 0.13 0.06 0.09 21 0
5 ANW-HH 4.76 0.39 0.11 0.24 4 19
6 AA-HH 5.68 0.69 0.08 0.25 0 48

New Domains (Xnew)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 AdapHH 2.12 0.11 0.04 0.09 11 0
2 AA-HH 3.0 0.15 0.03 0.18 11 0
3 NR-FS-ILS 3.23 0.26 0.1 0.2 6 6
4 EPH 3.38 0.22 0.07 0.2 5 1
5 FS-ILS 3.85 0.28 0.12 0.22 5 4
6 ANW-HH 5.42 0.55 0.13 0.25 0 21

Extended Hyflex Benchmark (Xall)
rank framework µrank µnorm σrun

norm σinput
norm best worst

1 NR-FS-ILS 2.56 0.15 0.06 0.15 28 6
2 AdapHH 2.62 0.11 0.05 0.12 26 1
3 FS-ILS 2.94 0.15 0.06 0.17 27 4
4 EPH 3.06 0.15 0.07 0.14 26 1
5 AA-HH 4.86 0.53 0.06 0.34 11 48
6 ANW-HH 4.96 0.44 0.12 0.26 4 40

Overview: Table 5.14 summarizes the performance of each method on all 98 instances
in the extended HyFlex benchmark set (Xall), partitioned in Xold and Xnew (see Ap-
pendix A.2). At first sight (rank and µrank on Xall) one might conclude that NR-FS-ILS
generalizes best. When looking at µnorm, however, AdapHH performs best across Xall.
Furthermore, the σnorm and min values suggest the performance of AdapHH to be more
reliable. Remark that AdapHH ranks second or third on 7 out of the 9 domains (KP first
and PSP fourth) and only performs worst on a single instance. In addition, cross-domain
generalization should be measured w.r.t. new instances (not used during design), i.e.
Xnew. Here, we find that AdapHH clearly outperforms all others. Curiously, AA-HH ranks
second, i.e. we cannot generalize the clear superiority of Asota over Anaive observed on
Xold. However, we would like to argue that this seemingly dramatic realization should not
be worrying. It is no “problem” that a naive method performs better on some particular
domains, as long as the overall performance is worse, i.e. it generalizes poorly. Overall, we
find Anaive to be performing clearly worse than Asota on Xall and this for all measures of
performance. Also, both frameworks show similar performance, suggesting that the exten-
ded benchmark set is well-balanced. Finally, as FS-ILS performs worse than NR-FS-ILS on
Xall and nearly all domains considered (except for SAT), we can further simplify FS-ILS
by omitting the restart mechanism.

188 CHAPTER 5. PROGRAMMING BY CONFIGURATION

5.4 Critical Reflection
In this section, we present a critical reflection on the research described in this chapter.

Design of FS-ILS: We made some unfortunate decisions in the design of FS-ILS. In
what follows, we summarize what we, in retrospect, would have done differently.
We considered “only” 2414 different candidate designs. We limited the size of the design

space, at the time, to be able to obtain the best of these (∼ solve the “constrained” ADP),
with high confidence. However, in doing so, we quite likely missed better alternatives just
because we excluded them a priori (∼ failed to solve the actually unconstrained ADP). In
particular, for numerical parameters, we only considered 1-3 alternative values.
As configurator, we used FocusedILS. In retrospect, this was not the best choice. Given

our small design space, exhaustive, incremental comparison methods such as F-Race would
likely have performed better than FocusedILS. Also, FocusedILS does not support continu-
ous parameters. In using other configurators that do (e.g. iRace, GGA, ROAR, SMAC),
we could have avoided such crude discretization of numerical parameters.
As a training set, we chose Xchesc (see Section 5.2.2.3) because it allowed us to measure

per-input performance (p) in a scale-independent manner (see Section 5.2.2.4). However,
this choice made any post hoc comparison with the CheSC 2011 contestants unfair (see
Section 5.3.2.3). A better alternative would have been to use Xprior and the relative
performance w.r.t. the ASAP Default Hyper-heuristics as p. This way, we only would
have used information which was also available during the design of the CHeSC 2011
contestants. Also noteworthy here is that when F-/iRace is used with the Friedman tests
(vs. Student t-test+ANOVA), it actually optimizes the scale-independent “average rank”
objective (vs. average-case performance), eliminating the need for manual normalization.

Reusability objective: As discussed in Section 5.2.1.1, the objective of our case study
was to demonstrate PbC’s ability to design a reusable, off-the-shelf metaheuristics. How-
ever, this was no unmitigated success.
While our study in Section 5.3.2.4, showed that FS-ILS outperforms the state-of-the-art

on the problem domains for which it was designed (Xold), it also revealed its shortcomings
w.r.t. solving new problem domains (Xnew). In particular, the manually designed AdapHH
performed much better on Xnew. That being said, we wish to stress that mediocre per-
formance is mainly due to FS-ILS’s extremely poor performance on the KP domain. On the
other two domains, it was competitive. In particular, a variant without restart mechanism
(NR-FS-ILS) outperformed AdapHH on QAP. Also, it is worth noting that NR-FS-ILS is
much simpler than AdapHH, whose implementation counts 14× more lines of code.
Lacking relevant analytical information, we are forced to use empirical methods in the

design of heuristics (see Section 3.4). A major challenge in designing “reusable” heuristics,

5.5. SUMMARY 189

in particular, is gathering a sufficiently large, heterogeneous set of training instances.
In Section 3.5.3, we suggested a semi-online approach which addresses this problem by
constructing the training set incrementally, a posteriori. It is our belief that the 68 instances
and six domains offered by HyFlex are simply insufficiently representative of the possible
variety our selection hyper-heuristic could be presented with. Furthermore, we believe
that the three new domains are indeed quite different from the original six. For instance,
while ANW-HH performs better than AA-HH on Xold, it performs decisively worse on all
new domains. One way to increase diversity, using HyFlex, would be to consider artificial
domains restricting the heuristic set (H ′ ⊂ H). Also, as a bonus, this would induce a bias
towards selection hyper-heuristics that are less sensitive to the choice of H.

5.5 Summary
In this chapter, we presented a case study in which we apply a semi-automated design
approach, which we refer to as Programming by Configuration (PbC), to design a reusable
metaheuristic optimization framework. Subsequently, we discussed the resulting design,
which we refer to as Fair Share Iterated Local Search (FS-ILS), and presented an extensive
empirical analysis thereof. This research has been published in the form of three inde-
pendent research articles: [Adriaensen et al. 2014a] (Sections 5.1-5.2), [Adriaensen et al.
2014b] (Sections 5.3.1, 5.3.2.1-5.3.2.3) and [Adriaensen et al. 2015] (Section 5.3.2.4). In
what follows, we briefly summarize the content covered in each section.
In Section 5.1, we introduced the semi-automated design approach we used in our case

study, and discussed its relation to similar paradigms proposed in prior art. In the spirit
of consolidation, we have decided to adopt the terminology from [Hoos 2012] in this dis-
sertation and will refer to this methodology as “Programming by Optimization” (PbO).
Following this modus operandi, difficult decisions are deliberately left open at design time,
programming a rich and potentially large design space, rather than a single algorithm.
Subsequently, optimization methods are applied to automatically generate the best al-
gorithm instance for a specific use case. We discussed that, thus far, optimizers of choice
for PbO have been algorithm configurators, and we introduced the term “Programming
by Configuration” (PbC) to refer to this specific realization of PbO. Finally, we defined
the Algorithm Configuration Problem (ACP) and argued PbC to be a realization of the
generic “design by set-ASP reduction” approach (see Section 4.1).
In Section 5.2, we described how we used PbC to design a reusable metaheuristic frame-

work in [Adriaensen et al. 2014a]. Here, we first provided some context and motivation for
our case study. In Section 5.2.1.1, we distinguished two approaches the metaheuristic com-
munity has taken to reduce the cost associated with applying metaheuristic frameworks to
newly encountered problems: (1) off-the-shelf metaheuristics and (2) design automation;

190 CHAPTER 5. PROGRAMMING BY CONFIGURATION

and introduced the scenario considered in our case study as a logical combination of both
approaches. In Section 5.2.1.2, we described HyFlex, a Java library providing problem-
specific components for 6 different combinatorial optimization problems, which we used in
the implementation and evaluation of the candidate designs considered in our case study.
In PbC, we solve the ADP by reduction to the ACP. In Section 5.2.2, we discussed this
reduction in general and for our case study in particular. Finally, in Section 5.2.3, we
discussed solving the resulting ACP.
In Section 5.3 we had a closer look at the resulting design: FS-ILS. First, in Section 5.3.1,

we discussed the design decisions made. FS-ILS is a simple, state-of-the-art, selection
hyper-heuristic combining an iterated local search selection strategy with a conservative
restart criterion. Each iteration, a non-greedy heuristic is selected proportionally to the
acceptance rate of its previously proposed candidate solutions (after iterative improve-
ment) by a domain-independent variant of the EMC criterion. Subsequently, in Section
5.3.2, we analyze FS-ILS experimentally. In Section 5.3.2.1, we performed a parameter
sensitivity analysis, showing that FS-ILS is largely robust to changes in its sole numerical
parameter. In Section 5.3.2.2, we analyzed the presence of accidental complexity, showing
that FS-ILS performs significantly better than simpler variants, validating every design
decision in the process. In Section 5.3.2.3, we compared its performance to that obtained
by the 20 contestants during the CHeSC 2011 competition and show that FS-ILS would
have won this competition decisively. Subsequently, we discussed the limitations of these
kind of comparisons, which motivated the experiments performed in Section 5.3.2.4. Here,
we conducted a comparative study of several publicly available selection hyper-heuristics,
including FS-ILS and the CHeSC 2011 winner (AdapHH), in order to assess their generality
across domains. To this end, we extended the HyFlex benchmark set with three additional
problem domains: The 0-1 Knapsack, Quadratic Assignment and Max-Cut problem. In
summary, we found that FS-ILS generalizes well to unseen (i.e. not used during its design)
instances of the 6 original HyFlex domains. While FS-ILS is also competitive overall, it
performed poorly on some of the instances of the new domains, the larger 0-1 Knapsack
instances, in particular. Also, we found that on the full and extended HyFlex benchmark,
FS-ILS does not seem to benefit from its restart mechanism (on the contrary), we can
therefore omit it without loss of performance. Finally, while we found a naive uniform ran-
dom selection hyper-heuristic to be surprisingly competitive on the new domains, overall,
the state-of-the-art frameworks compared, clearly performed better than their naive coun-
terparts. In particular, AdapHH clearly generalizes best to the new domains and performs
most consistently overall.
Finally, in Section 5.4, we presented a critical reflection on our own research. Here, we

discussed some unfortunate decisions we made during our case study, better alternatives,
and whether it can be considered a “success”, or not.

6 | Towards a White Box
Approach to Automated

Algorithm Design

In Chapter 5, we have introduced and demonstrated Programming by Configuration (PbC),
an emerging semi-automated design approach solving the Algorithm Design Problem (ADP)
by reduction to the Algorithm Configuration Problem (ACP). In this chapter, we present a
critical reflection on this successful and increasingly popular methodology, and investigate
how we can do better (answer Q.A.3). Note that while our focus here is on PbC, our dis-
cussion is more widely applicable to the “design by per-set algorithm selection” approach
(see Section 4.1). This chapter is outlined as follows: In Section 6.1, we discuss what
we regard to be the main limitations of PbC, and suggest how these could be addressed.
In particular, we argue, as in [Adriaensen and Nowé 2016b], that in reducing the ADP
to an ACP, we abstract information that can be usefully exploited to solve it using less
resources. In Section 6.2, we propose a more informative variant of the ACP, considered
in [Adriaensen et al. 2017], capturing additional information about how parameter choices
relate to algorithm performance. In Section 6.3, we show how this information can be
used in estimating algorithm performance. In Section 6.4, we describe an optimizer imple-
menting this novel performance estimation technique as a Proof of Concept. In Section
6.5, we validate this PoC experimentally, comparing its performance to that of various
configurators, on a variety of ADPs. In Section 6.6, we present a critical reflection on this
research. Finally, in Section 6.7, we summarize the content covered in each section.

191

192 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.1 Opinion: Limitations of PbC
The case study we performed in [Adriaensen et al. 2014a] (see Section 5.2), is just one of
the many successful applications of PbC. The relative ease with which PbC can be applied
to a wide variety of different scenarios arguably makes it one of the most “off-the-shelf”
solutions to automated algorithm design thus far (see also Section 4.4.2). However, it also
has shortcomings. In this section, we present a high-level discussion of what we regard to
be the main limitations of PbC, and suggest how these could be addressed.
It is computationally expensive. Arguably the main limitation of PbC is that it requires
a large amount of computational resources. For instance, in [Adriaensen et al. 2014a], we
allocated roughly one CPU year (!) to the design of FS-ILS (distributed over 30 parallel
design processes, this took less than two weeks). While arguably an extreme example,
budgets of multiple CPU days are not unusual (e.g. 20 days [KhudaBukhsh et al. 2009],
150 days [Fawcett et al. 2009]). Remark that this limitation is not “PbC specific”, and to
some extent inherent to simulation-based approaches (see Section 3.4.2), i.e. gathering
experience through experimentation takes time. However, in the remainder of this section
we will discuss some attributes of PbC that further aggravate this issue.
It is an offline approach. Contemporary realizations of PbC solve the ADP offline,
i.e. “designing the algorithm” precedes “using it”. We already discussed the limitations of
offline design in Section 3.5.1. Here, we briefly summarize them and discuss their relevance
in the context of designing reusable algorithms.
In terms of economics, the offline approach requires us to pay the full computational

cost “up front”. Remark that the reusability of the resulting design allows us to amortize
this cost over its longer lifetime. Another downside is that it may be difficult to predict
a priori what kind of problem instances a design will be used for (D). This is particularly
relevant if we consider the design of reusable algorithms, i.e. for any possible use case
vs. a specific use case, as the possible variety of inputs such design could, in principle, be
presented with is vast. Finally, more information becomes available while the algorithm is
being used (e.g. instances it is being used for and its performance thereon) which offline
approaches fail to exploit. In addition, if D changes over time, the design is not adapted
accordingly. Remark that “adaptation to context changes” is arguably less of an issue for
reusable algorithms, since they are designed to work well in all contexts.
In Section 3.5.2, we discussed online design, i.e. refining the design “while it is being

used”, as an alternative addressing these limitations. Most configurators could be used in
an online (cross-input) setting without any major adaptations. Let xi be the ith problem
instance to be solved. Let θi be the ith configuration evaluated by the configurator. One
could simply apply the configurator to configure a target algorithm a for a single input
x0 and choose p. eval such that the evaluation of aθi solves xi. To further improve

6.1. OPINION: LIMITATIONS OF PBC 193

online performance of anytime configurators one could (gradually) decrease exploration by
evaluating the incumbent (increasingly) more frequently. This brings us to main challenge
associated with the online setting: the inherent exploration vs. exploitation trade-off.
In Section 3.5.3, we have argued that in many practical settings this trade-off can be
avoided entirely by exclusively allocating cheap/spare resources to exploration (∼ semi-
online approach). Furthermore, we have shown that every anytime design procedure (e.g.
configurators) can be transformed into a semi-online approach.
In summary, while contemporary applications of PbC consider the offline setting, con-

figurators can be easily ported to semi-online or even true online settings. Do note that
while these transformations enable “cross-input” learning, they do not enable “within-run”
learning. The ability to evaluate multiple designs over the course of a single run is crucial
for enabling the design of algorithms which require a long time (e.g. multiple days) to
execute. That being said, whether and how this can be done, in a general and scalable
manner, is still largely an open problem.

It is a black box approach. In [Adriaensen and Nowé 2016b] we discussed another
limitation of PbC. Here, we argued that, in reducing the ADP to an ACP, we abstract
information which could otherwise be exploited to solve it faster. In particular, as discussed
in Section 4.1.1, in the set-ASP, the performance of a configuration θ on a given input x,
i.e. p(x, θ), is treated as a black box function mapping an input and a configuration to some
real cost value. The ACP does not capture the fact that this mapping is a consequence of
algorithm execution, i.e. a configuration affects the execution of the target algorithm on
an input in a particular way, which in turn relates to execution cost. We conjecture that
information about the computation of p. eval can be usefully exploited in solving the ADP.
Our belief is founded in the observation that the human designer also uses this kind

of information in his/her trial & error experimentation. That is, if an algorithm does not
perform as expected, he/she will often not restrict him/herself to changing it and observing
the impact of these changes on performance. Instead, he will trace the execution, observe
what values variables take at runtime (through simple logging or using debug tools), to
gain some insights into what behavior caused this observation. This kind of inspection
leads to insights which may be generalizable across multiple designs and enables a more
directed exploration of the design space. Our goal, in a sense, is to also allow a computer
to use this kind of information in the design (and analysis) of algorithms.
Motivating example - Unused parameters: Let us consider a simple example which

has motivated our research. Recall that sometimes not all parameters of an algorithm
framework are used. Clearly, the values of parameters which were not used, cannot be
held responsible for the performance we observe. Put differently, the performance observed
can be generalized across all configurations differing only in the values of these unused
parameters. Also, we can focus on varying the subset of parameters that were actually

194 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

used. Ordinary configurators are clueless about whether a given parameter was used or not,
and therefore cannot exploit this information. Remark that some configurators do allow
the user to specify conditional parameters a priori. However, this is only possible if these
are run-independent, i.e. unused for every run (on any input) using a given configuration.

6.2 A White Box Formulation
As discussed in the previous section, we would like to use additional runtime information
to reduce the resources required to solve a given ADP. We address this challenge in two
steps: First, in this section, we will expose this information to our solver, i.e. present a
formulation of the ADP which (unlike the ACP) captures this information. In subsequent
sections, we will discuss how we can exploit this information to solve the ADP faster.

6.2.1 How about the Dynamic Algorithm Selection Problem?
Remark that in Section 4.3.1, we already introduced a formulation, i.e. the dynamic ASP,
which captures all this information. We also discussed traditional (value-based) Reinforce-
ment Learning (RL) methods as a general solution technique capable of exploiting (some
of) this information (see Section 4.3.2.2). However, we also found these methods to suffer
from scalability issues (see Section 4.3.2.3), which severely limit their applicability to large
and challenging real-world ADPs. While hybridization with traditional Machine Learning
(ML) techniques (e.g. value function approximation) allows us to address these scalability
issues, general, off-the-shelf ML techniques do not exist. After considerable experimenta-
tion with these methods, it is our opinion that while of definite interest for solving specific
instances of the ADP, especially if the designer happens to be a RL/ML expert, current
RL and ML methods do not permit a level of generality and control similar to that offered
by contemporary configurators (see also Section 4.4.2). That being said, the aforemen-
tioned shortcomings have prompted the RL community to investigate alternative solution
techniques, collectively referred to as (direct) policy search methods (see p. 145). How-
ever, despite being classified as “RL methods”, these techniques have far more in common
with traditional black box optimization techniques, and do often not exploit additional
runtime information either. In fact, configurators themselves are naturally viewed as direct
policy search methods. Nonetheless, there are exceptions, and it is our belief that certain
concepts used in the RL community can be used to at least partially exploit white box
information, while retaining the properties that made PbC attractive in the first place. In
[Adriaensen et al. 2017] we investigated the potential of one of these techniques: “off-
policy policy evaluation using importance sampling”, which we will present in subsequent
sections. In the remainder of this section, we will present a variant of the ACP which only
captures the information required by this technique.

6.2. A WHITE BOX FORMULATION 195

6.2.2 A White Box Variant of the Algorithm Configuration Problem
In this section, we will present the formulation of the ADP we considered in [Adriaensen
et al. 2017], which is a more informative variant of the ACP.

Definition 6.1: White Box Algorithm Configuration Problem (wb-ACP)
[Adriaensen et al. 2017]
Instances of the wb-ACP are defined by quintuples 〈a,Θ,D,pr, p〉 where
a: an algorithm framework (see Section 2.3.3) having k configurable parameters

(a.k.a. the target algorithm), where the ith parameter can take values in Θi.

Θ ⊆ Θ1 × · · · ×Θk a set of possible configurations for a.

D: a distribution over a set of inputs X (input distribution).

pr: a function Θ × E → R, where pr(θ, e), also denoted pr(e|θ), specifies the
likelihood that executing aθ, on an input x ∼ D, results in an execution e.

p: a function X × E → R, quantifying the desirability of an execution.
Candidate solutions are elements of Θ. In the wb-ACP, given 〈a,Θ,D,pr, p〉, we
are to find a configuration θ∗ maximizing the average-case performance of a, i.e.
satisfying o(θ) ≤ o(θ∗), ∀ θ ∈ Θ, where o(θ) =

∑
e∈E pr(e|θ)p(e) and E (execution

space) is the set of all possible executions of a for any θ′ ∈ Θ, on any x ∈ X.

Conceptually, every configuration can be viewed as a distribution over executions, whose
performance corresponds to the expectation of p, over this distribution (see Figure 6.1).
In the wb-ACP, we are to find the configuration whose distribution maximizes E[p].

p(
e)

Executions (E)

pr
(e
|θ

)

θ1 θ2

Figure 6.1: Distribution perspective

196 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

Con�guration Space (Θ)

Execution Space (E)

Performance Space (ℝ)

o

pr

p

Figure 6.2: Diagram showing how pr and p relate designs to their performance.

Our formulation above is closely related to the ACP as we defined it in Definition 5.1. In
particular, as we will show in Section 6.2.3, it ism-equivalent to the ACP. The most relevant
difference, in the context of this chapter, lies in our definition of o. In the ACP, we are
given a performance evaluation procedure (p. eval), mapping (an input and) a configuration
to a real-valued performance observation, which is itself treated as a (stochastic) black
box. In the wb-ACP, we open up this black box by explicitly defining this mapping as a
consequence of algorithm execution, i.e. our choice of configuration affects execution in a
particular way (pr), which in turn relates to its observed desirability (p). Here, pr and p
can be viewed as relating configurations with their performance, over execution space, as
depicted in Figure 6.2. Remark that execution space can as such be viewed as decoupling
configuration and performance space. A feature which we will exploit in Section 6.3 to
generalize performance observations beyond the configuration used to obtain them.
Next, we will make some additional assumptions about the form in which instances of

the wb-ACP, i.e. 〈a,Θ,D,pr, p〉, are presented to the solver:

a: The algorithm framework a is treated as a configurable black box as in the ACP.
However, a crucial difference is that executing aθ on an input x, does not only result
in an output y, but also logs additional information about the execution e which
serves as input to pr and p. Note that we do not require e to determine every aspect
of the execution, but only those features required to compute pr and p.

Θ,D are assumed to be given as in the ACP.

o: the average-case performance of a configuration is specified by functions p and pr.

p: A deterministic procedure computing the desirability of an execution e. This
could be the (negated) time it took, or the quality of the solution it obtained.

6.2. A WHITE BOX FORMULATION 197

pr specifies the distribution over executions corresponding to any given configura-
tion. In the wb-ACP, we do not merely assume to be given a function which
generates samples according to this distribution, but we want a procedure that
computes the density of this distribution, i.e. pr(e|θ) =

∑
x∈X D(x) pr(e|θ, x).

Remark that computing pr exactly requires X and D to be known explicitly.
Also, computing pr(e|θ, x), while theoretically possible (see Equation 2.1), re-
quires full knowledge of a, including the likelihood of the possible outcomes of
any stochastic events. All of this is information which is typically not readily
available. Luckily, for the technique we will describe in Section 6.3, we do not
require pr(e|θ) to be known exactly. Rather, we will assume to be given a
deterministic procedure pr′ which satisfies the following criteria:

a) ∀ θ ∈ Θ,∀ e ∈ E : sgn(pr′(e|θ)) = sgn(pr(e|θ)).
b) ∀ θ, θ′ ∈ Θ,∀ e ∈ E :

pr(e|θ) ∗ pr(e|θ′) > 0 =⇒ pr′(e|θ)
pr′(e|θ′) = pr(e|θ)

pr(e|θ′) .
(6.1)

Intuitively, pr′(e|θ) captures the “relative relevance” of p(e) to θ. Clearly,
pr′ = pr is a valid choice, but often functions exist that can be computed far
more easily, yet satisfy (a) and (b): The actual pr(e|θ) can often be rewritten
as the product of a configuration dependent factor F θeasy, which is easily com-
puted, and a complex configuration independent factor Fhard. Since Fhard is
configuration independent, this factor will be the same for every configuration
and cancel out when considering ratios of likelihoods, allowing us to choose
pr′(e|θ) = F θeasy since

pr(e|θ)
pr(e|θ′) =

F θeasy ∗ Fhard

F θ′easy ∗ Fhard
=
F θeasy

F θ′easy
= pr′(e|θ)

pr′(e|θ′)

6.2.3 Relation to Other Formulations
In this section, we discuss the relations between the wb-ACP and previously examined
formulations of the ADP: the ACP, subset-ASP and dynamic ASP. In particular, we describe
possible generic (exact) reductions from these problems to the wb-ACP. We understand
that formulating an ADP as a wb-ACP (e.g. choosing pr′) may initially seem like a
daunting task (if at all possible). Therefore, these reductions serve as readily applicable
examples to convince our reader that this is not the case, but merely an artifact of the
level of generality/abstraction we are operating at. For examples of specific instances of
the wb-ACP reduction, we refer the reader to Section 6.5.

198 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.2.3.1 Algorithm Configuration Problem (ACP, see Definition 5.1)

wb-ACP≤m ACP: An instance of the wb-ACP 〈a,Θ,D,pr′, p〉 can be formulated as an
instance 〈a,Θ,D, p′〉 of the (black box) ACP, where p′. eval(x, θ) is computed as follows:

1. Execute aθ on x, resulting in y and e.

2. Compute and return p(e).

Unsurprisingly, we can reduce the white box ACP to a black box ACP simply by abstract-
ing/ignoring the additional information. Somewhat more surprisingly perhaps is that the
reverse also holds.

ACP ≤m wb-ACP: An instance of the ACP 〈a,Θ,D, p〉 can be formulated as an in-
stance 〈a′,Θ,D,pr′, p′〉 of the wb-ACP, where

a′ simulates a and logs e = (θ, rθx) with rθx = p. eval(x, θ), where θ is the configuration
and x the input. Logging θ uniquely associates execution e with configuration θ.

pr′(e|θ′) = pr′((θ, rθx)|θ′) = [θ = θ′].

p(e) = rθx.

This implies that white box configurators can be used to solve black box configuration
problems. In a sense, while the wb-ACP can encode additional information when available,
it is optional to do so. For example, in what follows, we consider an alternative, more
informative reduction for a variant of the ACP where we can observe that some parameter
values were not used during execution (cond-ACP). The most narrow definition of “using
a parameter” would be “reading its value”. However, the reduction described below also
works for the broader definition “its value affected the desirability of the execution”.

cond-ACP ≤m wb-ACP: An instance of the cond-ACP 〈a,Θ,D, p〉, where a logs
Pused the set of parameters which were (possibly) used, can be formulated as an instance
〈a′,Θ,D,pr′, p′〉 of the wb-ACP, where

a′ simulates a and logs e = (θ̄, rθx) with θ̄i = θi (∀pi ∈ Pused) and θ̄i = ∗ (∀pi /∈ Pused)
and rθx = p. eval(x, θ), where θ is the configuration and x the input. For instance,
if θ = (6, 2, 8, 0) and Pused = {1, 3} then θ̄ = (6, ∗, 8, ∗).

pr′(e|θ′) =
∏k
i=1([θ̄i = ∗] + [θ̄i = θ′i]).

p(e) = rθx.

6.2. A WHITE BOX FORMULATION 199

6.2.3.2 Per-subset Algorithm Selection Problem (subset-ASP, see Definition 4.3)

subset-ASP ≤m wb-ACP: Remark that this follows from subset-ASP ≤m ACP1 and
ACP ≤m wb-ACP. However, in what follows, we will consider a direct reduction which re-
tains additional information about the relations between candidate selection mappings,
which the ACP cannot capture.2 More specifically, each instance of the subset-ASP
〈A,D, φ, p〉 can be formulated as an instance 〈a′,Θ,D,pr′, p′〉 of the wb-ACP, where

Θ contains exactly one configuration for every selection mapping of the form Φ → A.
We use sθ to refer to the selection mapping corresponding to θ.

a′ is chosen such that a′(θ) simulates the portfolio solver corresponding to sθ and logs
e = (φx, a, rax), where φx are the features of input x (i.e. φ. extract(x)), a ∈ A is
the selected algorithm and rax = p. eval(x, a) is its observed performance.

pr′(e|θ) = [sθ(φx) = a].

p(e) = rax.

6.2.3.3 Dynamic Algorithm Selection Problem (dynamic ASP, see Definition 4.8)

dynamic ASP ≤m wb-ACP Again, while this follows from dynamic ASP ≤m ACP1 and
ACP ≤m wb-ACP, we will present a direct reduction capturing relations between candidate
policies, which the ACP cannot capture. More specifically, each instance of the dynamic
ASP 〈M,D, φ〉 can be formulated as an instance 〈a,Θ,D,pr′, p〉 of the wb-ACP, where

Θ contains exactly one configuration for every policy of the form

∆× Ω× (Q× Γ× {R,L})→ [0, 1].

We use πθ to refer to the policy corresponding to θ.

a is chosen such that aθ simulates both 〈M,φ〉 and πθ and logs for all choice points their
identifiers (z), the decisions made by the agent (t) and the contexts in which they
were encountered (ω); as well as rΣ the sum of the rewards accumulated over the
course of the execution, i.e. e = (z, ω, t, rΣ).

pr′(e|θ) =
∏|z|
i=1 πθ(zi, ωi, ti).

p(e) = rΣ.
1In Section 4.4.1, we have shown subset-/dynamic ASP ≤m set-ASP. In Section 5.1, we argued the

ACP to be a special case of the set-ASP using parametric representations for algorithm space A. Therefore,
we have subset-/dynamic ASP ≤m ACP, assuming every A can be represented parametrically.

2See Section 6.5.2.1 for an application of this reduction to the sorting subset-ASP (see Section 4.2.2).

200 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.3 Exploiting White Box Information
In this section, we discuss how the information captured by the wb-ACP can be used in
evaluating the relative performance of candidate designs, and the benefits of doing so.

6.3.1 Algorithm Performance Evaluation
We already discussed the problem of evaluating algorithm performance in the context of
solving the set-ASP (see Section 4.1.2). Here, we briefly recap this discussion and present
a broader perspective.
In the (black box) performance evaluation problem, short PEP, we are given 〈a,Θ,D, p〉

and we would like to know the performance o(θ) = Ex∼D p(x, θ),∀ θ ∈ Θ. Note that in the
PEP we are interested in the performance of multiple different configurations (∼ family of
related algorithms), rather than that of any particular configuration (∼ algorithm instance).
The PEP occurs naturally in

Analysis settings, where we would like to compare the performance of different algorithms.
For instance, parameter sensitivity analysis, where we are interested in the influence
of an algorithm’s parameter setting on its performance.

Design settings, where we are interested in finding the best algorithm for our target prob-
lem. For example, in algorithm configuration where we search a space of alternative
configurations for one optimizing performance.

While our focus, in this dissertation, was on the latter, we wish to stress that all the
techniques we will discuss here are equally relevant in analysis settings. In the design set-
ting, the PEP is typically solved “online”, i.e. while solving the ADP. Here, we distinguish
between two uses of performance evaluations:

1. Determine which of the designs evaluated thus far is best (choice of incumbent),
i.e. is to be returned as the solution at any time.

2. Determine which design to evaluate next (guide the search), e.g. to identify unex-
plored, potentially interesting areas in the design space.

Remark that the PEP cannot be solved exactly, in general, as D and p are not known ex-
plicitly, but rather are assumed to be given in the form of randomized procedures D. sample
and p. eval respectively, satisfying o(θ) = E[p. eval(D. sample(), θ)]. Therefore, in prac-
tice, we often have to rely on estimates of performance õ instead, based on performance
observations obtained by executing p. eval on inputs generated using D. sample. Fur-
thermore, as executing p. eval involves executing the target algorithm a, generating these

6.3. EXPLOITING WHITE BOX INFORMATION 201

observations is often highly costly and dominates the overall time the design process takes.
In the next section, we will present a technique targeted at reducing the number of evalu-
ations required to get reliable performance estimates. In the remainder of this section, we
will discuss how algorithm performance is currently being estimated (in PbC, in particular).
Prior art in performance estimation can be roughly subdivided into two categories:

Independent sample averages: This is the predominant approach, used e.g. in Para-
mILS [Hutter et al. 2009], iRace [López-Ibánez et al. 2011], GGA [Ansótegui et al. 2009],
and the one we discussed elaborately in Section 4.1.2. In a nutshell: We collect a sample of
performance observations Rθ for each configuration θ by repeatedly evaluating it on inputs
drawn from D. The performance of each configuration is then estimated as the average
of the performances observed for that configuration (i.e. õ(c) = ō(c), see Equation 4.2).

Regression model predictions: The second is the “model-based” approach. This ap-
proach is for instance used in Sequential Model-Based Optimization (SMBO) frameworks
(e.g. SMAC [Hutter et al. 2011], GGA++[Ansótegui et al. 2015]). Here, rather than
maintaining an independent estimate for each configuration, we maintain an explicit re-
gression model M : Θ→ R, trained using all previous performance observations, and use
this model’s predictions as an estimate for performance, i.e. õ(θ) = M(θ). Clearly, this
approach is more data efficient than the first, as it generalizes performance observations
across the configuration used to obtain it. Note that (in PbC) these predictions are, to
the best of our knowledge, only used to guide the search (2). The choice of incumbent
(1) is based solely on performance observations obtained using the design itself.

6.3.2 An Importance Sampling Approach
In this section, we present a novel way of estimating algorithm performance in the con-
text of solving the wb-ACP, targeted at reducing the number of evaluations needed, i.e.
solving it faster. First, in Section 6.3.2.1, we introduce the observation underlying our ap-
proach: Different candidate designs might, with some likelihood, generate the exact same
execution. As such, the observed desirability of a single execution provides information
about the performance of multiple different designs. Subsequently, in Section 6.3.2.2, we
introduce the general statistical technique known as Importance Sampling (IS) and show
how IS can be used to combine all performance observations relevant to a design, into a
consistent estimate of its performance, in Section 6.3.2.3. Next, in Section 6.3.2.4, we
present an effective procedure for computing this estimate. Finally, in Section 6.3.2.5, we
discuss the potential benefits of this approach and illustrate some of these experimentally.

202 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

θ1 θ2

p(
e)

Executions (E)

pr
(e
|θ

)

Figure 6.3: Two different designs

θ1 θ2

p(
e)

Executions (E)
pr

(e
|θ

)
Figure 6.4: Two similar designs

6.3.2.1 Motivation: Similarities in Execution Space

In the wb-ACP, we are faced with a white box variant of the PEP, i.e. given 〈a,Θ,pr, p〉,
we are to find o(θ) = Ee∼θ p(e),∀ θ ∈ Θ (wb-PEP). Using the wb-ACP ≤m ACP re-
duction described in Section 6.2.3.1, any of the aforementioned (black box) performance
evaluation techniques can also be applied to the wb-PEP. In this context, the independent
sample average approach can be viewed as drawing a sample of executions E′θ for each
configuration θ ∈ Θ according to its corresponding distribution, and estimating its per-
formance as the average of the associated performance observations, i.e. Equation 4.2 can
be rewritten as

ō(θ) = 1
|E′θ|

∑
e∈E′

θ

p(e) with E′θ ∼ θ. (6.2)

Figures 6.3 and 6.4 illustrate this, where the blue ◦’s and red ×’s represent the sample of
executions (and associated performance observations) for θ1 and θ2, respectively. Note that
sample average estimates are fully independent, i.e. ō(θ1) does not depend on observations
made using θ2 (red ×’s) and vice versa. In what follows, we will argue that while this
independence is reasonable when the distributions in the design space are disjoint, as in
Figure 6.3, we can do better if two or more distributions overlap, as in Figure 6.4, i.e. if
there exists an execution that can be generated by at least two different candidate designs:

∃ e ∈ E,∃ θi, θj ∈ Θ : θi 6= θj ∧ pr(e|θi) ∗ pr(e|θj) > 0. (6.3)

The crux is that even though an execution e might have been obtained using θi, it might
as well, with some likelihood, be generated using a different θj . Put differently, when
distributions overlap, evaluations of one design θi, potentially provide information about
the performance of another θj . As these evaluations can be extremely costly, we would like

6.3. EXPLOITING WHITE BOX INFORMATION 203

to maximally utilize the information they provide; e.g. also use the red ×’s to estimate the
expectation over the blue distribution and vice versa. In the next section, we will introduce
a technique which allows us to do exactly that.

Digression: Does overlap actually occur in practice? Here, it is important to distin-
guish between overlap in the actual ADP and overlap in our wb-ACP formulation thereof.
The assumptions we made about E in Section 6.2 (p. 196) are flexible enough that
Equation 6.3 may be satisfied, even if no two candidate designs generate the exact same
sequence of instructions, and vice versa. Therefore, rather than whether or not overlap
occurs in actual ADPs, we are interested in whether it is possible (and useful?) to for-
mulate any (interesting?) ADP as a wb-ACP where (significant) overlap does occur. In
what follows, we will discuss whether and when overlap occurs (Equation 6.3 is satisfied)
for the reductions described in Section 5.2.1.1:

ACP ≤m wb-ACP: Here, we chose pr′(e|θ′) = [θ = θ′] with e = (θ, rθx), where θ was
the configuration used to generate e and rθx the associated performance observation.
We can easily show that under this reduction Equation 6.3 can never be satisfied.

cond-ACP ≤m wb-ACP: Here, we chose pr′(e|θ′) =
∏k
i=1([θ̄i = ∗] + [θ̄i = θ′i]) with

e = (θ̄, rθx), where θ̄ is the “active” configuration, replacing unused parameter values
in θ with wildcards: ∗. Here, an execution e can be generated (with equal positive
likelihood) by all configurations differing only in the values chosen for the parameters
pi : θ̄i = ∗. Overlap occurs if and only if occasionally not all parameters are used.

subset-ASP ≤m wb-ACP: Here, we chose pr′(e|θ) = [sθ(φx) = a], with e = (φx, a, rax),
where φx are the features of the input, a the algorithm which was selected from the
portfolio, and rax the performance observation associated with its execution. Here,
an execution e can be generated (with equal positive likelihood) by all configurations
whose selection mapping selects the same algorithm a for φx. This implies that every
execution e can be generated by exactly 1

|A|
th of the selection mappings. Overlap

occurs if and only if we have more than |A| candidate selection mappings.

dynamic-ASP ≤m wb-ACP: Here, we chose pr′(e|θ) =
∏|z|
i=1 πθ(zi, ωi, ti) with

e = (z, ω, t, rΣ), where ti is the decision made for the ith choice point zi encountered
in context ωi and rΣ is the total sum of rewards accumulated during execution. An
execution e can be generated (possibly with different likelihoods) by all configur-
ations whose corresponding policies have a non-zero likelihood of making decision
ti for choice point zi in context ωi, for 1 ≤ i ≤ |z|. In particular, configurations
corresponding to non-degenerate policies, i.e. satisfying πθ > 0, can generate all
possible executions, i.e. have pr(e|θ) > 0,∀e ∈ E. Note that there are uncountably
infinite times more non-degenerate than degenerate policies.

204 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.3.2.2 Importance Sampling (IS)

Importance sampling is a general technique for estimating properties of one distribution
P, using samples generated by another Q ([Rubinstein and Kroese 2016, Section 5.7],
[Hesterberg 1988]). By sampling according to Q, we will oversample some outcomes,
while undersampling others. Concretely, we will observe an outcome on average q

p times
more often than one would expect under the nominal distribution P, where p and q are
the probability density functions of P and Q, respectively. As such, we have to adjust our
estimate to account for this, which is done by weighing observations accordingly.
We were unable to determine the exact origin of the technique, but one of the earliest

mentions thereof, in published research, by this name, can be found in [Kahn and Marshall
1953]. What is certain is that IS, in one form or another, is used frequently and in a
wide variety of applications. In what follows, we will consider the use of IS in the classical
setting of estimating the expected value of a random variable with known distribution
P, i.e. Ex∼P f(x). Given procedures for computing f , p, q, and for generating (i.i.d.)
samples according to Q:

1) Collect a sample Ω′ ∼ Q (i.i.d.).

2) Estimate Ex∼P f(x) as 1
|Ω′|

∑
x∈Ω′

p(x)
q(x)f(x). (6.4)

This process produces an unbiased estimate, i.e. Ex∼Q
1
|Ω′|

∑
x∈Ω′

p(x)
q(x)f(x) = Ex∼P f(x),

if p(x) > 0 =⇒ q(x) > 0. Conceptually, it suffices that Q can generate any outcomes
possible under P. Remark that there is no single IS estimate and many variants of Equa-
tion 6.4 exist. See [Hesterberg 1988] for some examples and an analysis of their properties.

6.3.2.3 An IS Estimate of Algorithm Performance

Having introduced the general technique, we can now turn towards how it can be used to
solve the wb-PEP. In particular, we show how IS can be used to combine all performance
observations p(e) relevant for a design into a consistent estimator of its performance.
To this end, let us first consider the simpler case of estimating the performance of

one configuration θ1 using the performance observed when evaluating another θ2; e.g.
in Figure 6.4 use the red ×’s to estimate the expectation over the blue distribution.
Substituting P = θ1, Q = θ2, f = p, Ω′ = E′θ2 , Equation 6.4 becomes

1
|E′θ2 |

∑
e∈E′

θ2

pr(e|θ1)
pr(e|θ2)p(e) with E′θ2 ∼ θ2. (6.5)

6.3. EXPLOITING WHITE BOX INFORMATION 205

This estimate is unbiased if pr(e|θ1) > 0 =⇒ pr(e|θ2) > 0. As a concrete example,
Equation 6.5 could be used to estimate the performance of a simulated annealing frame-
work (see Section 2.7.2.2) using an arbitrary temperature parameter T (θ1), based solely
on observations obtained using some T ′ ∈]0,+∞[(θ2). Remark that T ′ = 0 is excluded
as it cannot generate executions accepting worsening proposals.
Clearly, if available, we would also like to incorporate the observations made using θ1 itself;

e.g. use the blue ◦’s as well. More generally, we would like to use all (relevant) observations,
independent of which configurations were used to obtain them. Put differently, we wish to
estimate a property of P based on samples generated using multiple different Q’s. Doing
so is known as “multiple importance sampling” [Veach 1997, Chapter 9]. As shown in
[Veach 1997], there are many possible ways of combining the observations that result in
consistent (and unbiased) estimates. We will focus on a single one, which [Veach 1997]
refers to as the “balance heuristic”. Let E′ =

⋃
θ′∈Θ′ E

′
θ′ be the sample of all executions,

generated using θ′ ∈ Θ′ on x ∼ D, we can estimate the performance of any θ ∈ Θ as

ô(θ) = 1
|E′|

∑
e∈E′

wθ(e)p(e)

with

wθ(e) = pr(e|θ)
Q′(e) and Q′(e) =

∑
θ′∈Θ′

|E′θ′ |
|E′|

pr(e|θ′)

(6.6)

Conceptually, this is the ordinary IS estimate, where we treat E′ as if it were generated by
a distribution Q′ which is a mixture of θ′ ∈ Θ′, where the weight of θ′ in the mixture is
given by |E

′
θ′ |
|E′| . Figure 6.5 depicts Q′ for our running example where |E′θ1 | = |E

′
θ2
| = 10.

In Appendix A.3, we show that ô(θ), as in Equation 6.6, indeed combines all observations

θ1 θ2

Q’

p(
e)

Executions (E)

pr
(e
|θ

)

Figure 6.5: Q′ as an equal mixture.

w
θ

θ1 θ2

p(
e)

Executions (E)

Figure 6.6: Design-specific weight functions

206 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

relevant to θ (see Theorem A.1) into an unbiased and consistent estimate of its perform-
ance, i.e. o(θ) (see Lemma A.2 and Theorem A.3). We also show that in settings where
distributions do not overlap, ô reduces to an ordinary sample average ō (see Theorem A.4).
Remark that the performance estimate of each design θ is based on the same sample

of (all) executions E′. Obviously, not all of these say as much about the performance of
one design than they do about that of another. In IS, we therefore weigh observations
according to their relative relevance, using a design dependent weight function wθ. For
instance, in our running example, observations on the left side are more relevant for θ1,
the ones on the right are more relevant for θ2, something which is clearly reflected in their
respective weight functions (see Figure 6.6).
Remark that, for any finite E′, the average weight is typically not exactly equal to one.

Therefore, it is common practice, sometimes referred to as “weighted” IS [Mahmood et al.
2014], to normalize the weights in an attempt to further reduce the variance; e.g.

ô(θ) =
∑
e∈E′ wθ(e)p(e)∑
e∈E′ wθ(e)

. (6.7)

In [Hesterberg 1988], the above variant is also referred to as the “ratio” estimate, while
the original one listed in Equation 6.4 is called the “integral” estimate. Remark that
unlike Equation 6.6, Equation 6.7 represents a biased estimate, i.e. Lemma A.2 does no
longer hold. In the remainder of this chapter, we will nonetheless be using the normalized
variant, as we did in [Adriaensen et al. 2017]. All other theoretical results we present
in Appendix A.3 can be generalized to this normalized variant. In particular, ô(θ) is still
consistent under the same assumptions we made in Theorem A.3.

6.3.2.4 Computation of an IS estimate

Computability: Something we did not discuss thus far is whether we can actually com-
pute the IS estimate, in practice, in the context of the wb-ACP? Doing so using Equa-
tion 6.7 requires us to be able to compute wθ(e),∀e ∈ E′,∀θ ∈ Θ. The latter could be
done as in Equation 6.6 which would in turn require us to compute pr. As we discussed in
Section 6.2.2, p. 197, pr is typically not known exactly and rather we assumed to be given
a function pr′ satisfying the criteria in Equation 6.1. As it turns out (see Theorem A.5),
we can compute wθ (and therefore ô(θ)) simply by using pr′ instead of pr. Algorithm 20
lists pseudocode for computing ô as in Equation 6.7.

Computational Complexity: Obviously, the theoretical possibility of computing ô, does
not imply that it is also tractable in practice. In what follows, we will discuss the com-
putational complexity (see Section 2.5) of our approach. Algorithm 20 has an asymptotic
time complexity of O(|E′|2) and space complexity of O(|E′|). In contrast, an ordinary

6.3. EXPLOITING WHITE BOX INFORMATION 207

Algorithm 20 Procedure computing ô(θ) (as in Equation 6.7) given a sample of executions
E′ obtained using configurations Θ′ on x ∼ D.
1: procedure EstimateO(θ,pr′,p,Θ′,E′ =

⋃
θ′∈Θ′ E

′
θ′)

2: wΣ, ôθ ← 0
3: for e ∈ E′ do
4: Q′e ← 0
5: for θ′ ∈ Θ′ do
6: Q′e ← Q′e + |E′

θ′ |
|E′| pr′(e|θ′)

7: end for
8: we ← pr′(e|θ)

Q′e
9: wΣ ← wΣ + we
10: ôθ ← ôθ + we ∗ p(e)
11: end for
12: return ôθ

wΣ
13: end procedure

sample average ō can be computed in space/time O(|E′|). Furthermore, ō can be com-
puted online: Every time we observe a new e we can update ō in O(1) time. Computing ô
online is not as straightforward. As every observation possibly changes Q′(e),∀e ∈ E′, we
would naively need to recompute ô from scratch every time E′ changes. One optimization
we implemented involves memorizing Q′(e) between calls to Algorithm 20. While the
space complexity remains O(|E′|), since we can update Q′(e) after every run in O(|E′|)
time, we can update ô online in O(|E′|) time as opposed to O(|E′|2) time. Nonetheless,
asymptotically, it will take |E′| times longer to compute ô than ō. This dependency on |E′|
is undesirable and stems from the fact that we use the “balance heuristic” [Veach 1997] to
combine observations generated using different configurations. As mentioned above, many
alternatives exist, some of which may have a considerably lower computational complexity.
A hidden constant is the cost of computing pr′, which may be significant in some cases.

Since we repeatedly compute pr′ for the same inputs one possible optimization would be to
memoize pr′. Also, we could further reduce overhead by computing pr′ in batch/parallel.
In summary, using ô will be computationally more expensive than using ō, increasing the

resources required to execute the optimizer’s code. However, recall that contemporary
configurators typically spend the vast majority of their time evaluating configurations (ex-
ecuting the target algorithm’s code) and it is our hope that the use of ô in place of ō will
allow us to significantly reduce the number of evaluations in settings where Equation 6.3
is satisfied. Therefore, in these settings, assuming the cost of computing ô is reasonable
compared to the cost of an evaluation, potential performance gains may nonetheless be
considerable. In other settings, we believe that automatically switching estimates accord-
ingly would be relatively straightforward.

208 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.3.2.5 Envisioned Benefits of IS Approach

In this section, we will discuss the benefits we envision to be associated with using IS, as op-
posed to well-established alternatives such as independent sample averages and regression
models (see Section 6.3.1). Here, we will illustrate some of these benefits experimentally
for the abstract setup shown in Figures 6.1-6.6, where 〈a,Θ,D,pr, p〉:
a: A framework taking as input an integer x and a single real-valued parameter θ. It uses

x to seed a random generator, which is used to generate two samples y ∼ N (θ, 1)
and z ∼ U(−1, 1), before returning e = (y, z).

Θ = {θ1, θ2}: We consider two candidate values for the single parameter.

D = U(Z): A uniform distribution over possible integer-valued seeds.

pr′(e|θ) = φ(y − θ), where φ is the density function of the standard normal distribution.

p(e) = y + z.
Remark that we have o(θ) = Ee∼a(θ) p(e) = θ and the best configuration will simply
be max(θ1, θ2). We will consider the problem of estimating o based on a sample of
executions E′ = E′θ1 ∪ E

′
θ2

with |E′θ1 | = |E′θ2 | (∼ Q′ in Figure 6.5). We will consider
different instances of this problem based on the difference between the two configurations,
i.e. ∆ = θ2−θ1. While Equation 6.3 is satisfied for any ∆, overlap will be larger for smaller
∆ values; e.g. Figure 6.3 and Figure 6.4 illustrate different instances of this problem, with
∆ equal to 8 and 1, respectively. Obviously, this particular instance is not representative
for the wb-ACP’s we will encounter in practice. Nonetheless, we would like to argue that
the observations in this section can be generalized.

Data efficient performance estimation: ō(θ) only uses the observations which were
obtained using θ, i.e. E′θ, to estimate o(θ). In contrast, by Theorem A.1, ô(θ) uses all
observations e ∈ E′ relevant for θ, i.e. {e ∈ E′ | pr(e|θ) > 0}. In using a single perform-
ance observation in the estimation of many designs, we amortize the cost of obtaining it,
and will hopefully need less performance evaluations to obtain similarly accurate estimates.
Figure 6.7 illustrates this, comparing the average3 estimation errors |ō(θ2)−o(θ2)| (dashed
line) and |ô(θ2)− o(θ2)| (full lines), after x evaluations, for multiple setups with different
∆. Clearly, if ∆ is large, the distributions for θ1 and θ2 barely overlap, i.e. samples from
θ1 are not particularly relevant for θ2 and we observe ō ' ô as suggested by Theorem A.4.
However, the lower ∆, the greater the overlap, and as ∆ approaches 0, observations be-
come equally relevant for both designs and we see that only half the evaluations are needed
to obtain similarly accurate estimates.

3Errors are averaged across 1000 independent runs collecting |E′| = 1000 incrementally by alternating
between evaluating each of the two configurations.

6.3. EXPLOITING WHITE BOX INFORMATION 209

0.03

0.04

0.05

0.06

0.07

0.08
0.09

100 500 800200 600400 700300 900 1000
Evaluations (|E'|)

Av
er

ag
e

|õ
(θ

2) −
 ο

(θ
2)

| ô (∆=2-3)
ô (∆=1)
ô (∆=2)
ô (∆=4)
ô (∆=8)

0.10
ô (∀ ∆)o

Figure 6.7: Absolute estimation error

10 100 1000
0.5

0.6

0.7

0.8

0.9

1.0

Evaluations (|E'|)

%
 o

f r
un

s
w

ith
 õ

(θ
2)

>
õ(

θ 1)

ô (∆=2-3)

ô (∆=1)

ô (∆=2)

ô (∆=2-2)
ô (∆=2-1)

ô (∆=2)

ô (∆=2-3)o
o
o
o
o

Figure 6.8: Comparison accuracy

Accurate comparisons: In the context of algorithm design, we are primarily concerned
with accurate performance estimates because they allow us to more reliably tell which
of a set of candidate designs performs better. Independent sample averages give rise to
uncorrelated estimates, i.e. Cov[ō(θ1), ō(θ2)] = 0. In contrast, using IS, similar designs
will share performance observations and their estimates will as such become positively
correlated. In the extreme case where distributions fully overlap (e.g. ∆ = 0), performance
estimates are the same, i.e. Cov[ô(θ1), ô(θ2)] = 1. As already discussed in Section 4.1.2,
p. 109, in the context of “blocking”, positive correlations between estimates further
increase comparison accuracy. Therefore, using IS, we expect to be able to more quickly
assess which of two similar designs performs best; offering a more reliable gradient to
guide the search. Figure 6.8 illustrates this, comparing the fraction of 1000 runs for which
ō(θ1) < ō(θ2) (dashed lines) and ô(θ1) < ô(θ2) (full lines) holds after x evaluations,
for different ∆ > 0. For high ∆ values, we observe that both perform good, since
o(θ1) << o(θ2). However, for ∆ approaching 0, designs become more similar, and we
observe that the independent estimate of o(θ1) is frequently better, even after many
evaluations. However, ô(θ1) < ô(θ2) holds, even for small ∆, after only a few evaluations.

Model and representation-free: Thus far, we have discussed the benefits of IS estim-
ates over independent sample averages. But, how about using regression model predictions
instead? Similar to IS, regression models allow one to generalize observations beyond the
design used to obtain them, as such improving data efficiency. To do so, these models
rely on a priori assumptions about the fitness landscape. Clearly, the exact nature of these
assumptions and the flexibility to relax these to fit the data, are dependent on the type
of model used. As parametric models typically impose very strict constraints, mainly non-
parametric models are used in PbC; e.g. SMAC [Hutter et al. 2011] and GGA++[Ansótegui
et al. 2015] both use Random Forests [Breiman 2001]. While nonparametric models are

210 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

more flexible, they typically require more data and still rely on the assumption that similar
designs perform similarly (i.e. smoothness). While this assumption is, in essence, reason-
able, the key issue lies in that this similarity is measured in configuration (∼ representation)
space. Small changes in configuration (∼ representation) might result in large perform-
ance differences, while large changes may not. Using IS estimates, similar designs will also
have similar estimates, but rather than being based on assumed similarity in representa-
tion space, they are based on natural similarity in execution space, i.e. IS is model-free.
Finally, the proposed IS approach does not preclude the use of regression models. In fact,
we regard both as being complementary. For instance, lacking relevant observations for θ,
one could rely on the predictions (assumptions) made by a regression model.

6.4 A Proof of Concept White Box Optimizer
Thus far, we have discussed how to estimate the performance of a given set of designs
Θ, given a set of executions E′ (and associated performance observations) obtained using
Θ′ ⊆ Θ. However, in natural occurrences of the PEP, we are typically not given E′ and a
matter which we did not address thus far is: how to collect E′? Also, in this dissertation
at large, we are concerned with solving the ADP. In particular, in this chapter, we consider
doing so by reduction to the wb-ACP (see Definition 6.1). As argued in Section 6.3.1, con-
temporary configurators base important decisions (e.g. choice incumbent, search guidance)
on estimates of performance. However, having maximally accurate information about the
performance of candidate designs, i.e. solving the PEP, is only one part of the puzzle
and leaves us with a wide array of choices of how to use this information in solving the
ADP? Therefore, in order to validate the merit of the performance estimation approach
presented in Section 6.3.2, we must consider its use in the context of a concrete wb-ACP
solver (∼ a “white box” configurator). In this section, we describe the framework we use
in Section 6.5. We decompose our description thereof in two logical parts:

Section 6.4.1: Which of the designs explored thus far do we return as anytime solution?

Section 6.4.2: In which order do we explore/evaluate the candidate designs?

6.4.1 Choice of Incumbent
Which of the designs explored thus far do we return as the solution at any time? Obviously,
we would like our incumbent θinc to be the best design encountered thus far. One strategy
would therefore update the incumbent whenever we encounter a design which is estimated
to have superior performance. However, the reliability of performance estimates may vary
strongly, and should therefore also be taken into account in choosing our incumbent.

6.4. A PROOF OF CONCEPT WHITE BOX OPTIMIZER 211

6.4.1.1 Measuring the Reliability of an IS Estimate

Traditional black box configurators (e.g. ParamILS, SMAC iRace, GGA, etc.) use “sample
size” (i.e. |E′θ|) as a measure of reliability of ō(θ), and only update the incumbent if the
candidate incumbent has a superior estimated performance, and if this estimate is based
on at least as many evaluations. The use of sample size in this manner can be motivated
by the fact that the MSE decreases linearly with |E′θ|, i.e. E[(ō(θ)−o(θ))2] = Vare∼θ[p(e)]

|E′
θ
| .

However, what is the sample size of an IS estimate ô(θ)? The concept “effective sample
size” generalizes the notion of sample size to arbitrary estimators.

Definition 6.2: Effective Sample Size [Leister 2014]

The effective sample size of an estimator õ(θ) for Ee∼θ[p(e)] is the unique number
neff ∈ R satisfying Var[õ(θ)] = Vare∼θ[p(e)]

neff
.

Clearly, for õ = ō we have neff = |E′θ|. As it turns out, it is non-trivial to compute
the actual neff for ô in Equation 6.7. Instead, we used a variant of the widely adopted
approximate formula developed by Leslie Kish ([Kish 1965]):

[nKisheff (θ) =
(
∑
e∈E′ wθ(e))2∑
e∈E′ wθ(e)2 .

Conceptually, while all IS estimates ô(θ) are based on the same sample of all executions
E′, many of these may have relatively small weights wθ. [nKisheff (θ) estimates how many
observations effectively contribute to ô(θ). However, as a measure of reliability of an
IS estimate, [nKisheff has an important shortcoming: In settings where we do not have any
relevant observations for θ, [nKisheff (θ) may nonetheless be high because many observations
are similarly irrelevant for θ. In this setting, adding a single observations relevant for θ to
E′ will cause[nKisheff (θ) to suddenly drop to one. [Owen 2014, Section 9.3] suggested the use
of w̄(θ) = 1

|E′|
∑
e∈E′ wθ(e) as a complementary diagnostic. While w̄(θ) should be roughly

equal to one, w̄(θ) will be very low exactly in those settings where [nKisheff overestimates
neff. In our PoC, we adapted Kish’s estimator accordingly:

N̂(θ) = [nKisheff (θ) ∗min(w̄(θ), w̄(θ))−1. (6.8)

It can be shown that N̂(θ) = |E′θ| under the conditions (A) of Theorem A.4.

212 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.4.1.2 A Similarity-Aware Update Criterion

As discussed before, contemporary configurators require a candidate incumbent θ to satisfy
(1) ō(θ) > ō(θinc) and (2) |E′θ| ≥ |E′θinc |. If a design does not satisfy both criteria, but
nonetheless looks promising (e.g. it may satisfy (1) but not (2)) they will collect additional
performance observations in a procedure which is commonly referred to as a “race” (see
also Section 4.1.2, p. 111), until it either no longer looks promising (e.g. violates (1)) or
satisfies both criteria required to become the new incumbent (e.g. also satisfies (2)). In
essence, we could do the same, substituting ô(θ) for ō(θ) and N̂(θ) for |E′θ|.
However, we found that doing so can sporadically result in extremely long races when

considering designs which are highly similar (due to correlations between estimates, see
Section 6.3.2.5). This while the user is unlikely to actually care whether the optimizer
returns contender θ or incumbent θinc as both designs likely perform similarly. To avoid
such tragic waste of resources, we decided to relax (2) in such comparisons. Concretely,
we accept θ as new incumbent whenever the following criteria are satisfied:

ô(θ) ≥ ô(θinc)
and

ŝim(θ, θinc)K ∗ (ô(θ)− ô(θinc)) ≥ (1− ŝim(θ, θinc)K) ∗ (ûnc(θ)− ûnc(θinc))
(6.9)

with

ûnc(θ) =
√

VAR
N̂(θ)

VAR =
(

1
|E′|

∑
e∈E′

p(e)2

)
−

(
1
|E′|

∑
e∈E′

p(e)
)2

(6.10)

ŝim(θ, θ′) =
∑
e∈E′ min(wθ(e), wθ′(e))
|E′|max(w̄(θ), w̄(θ′)) (6.11)

Here, ûnc(θ) is a rough estimate of the standard error on ô(θ). ŝim(θ, θ′) estimates the
similarity between two designs θ and θ′.4 Finally, K is a non-negative constant which is
passed as a parameter to the framework (default value of 3).

4In Equation 6.11, we used an IS estimate for the overlap between their corresponding distribu-
tions over executions: 1

|E|
∑

e∈E min(pr(e|θ), pr(e|θ′)). However, other statistical distance measures
(e.g. Kullback-Leibler divergence) could be used as well. Remark that ŝim satisfies

1. ŝim(θ, θ′) = ŝim(θ′, θ)

2. 0 ≤ ŝim(θ, θ′) ≤ 1.
3. ŝim(θ, θ′) = 0 ⇐⇒ ∀e ∈ E′ : pr(e|θ) ∗ pr(e|θ′) = 0.
4. ŝim(θ, θ′) = 1 ⇐⇒ ∀e ∈ E′ : pr(e|θ) = pr(e|θ′).

Also, under the conditions (A) of Theorem A.4 we have ŝim(θ, θ′) =
{

1 θ = θ′

0 θ 6= θ′
.

6.4. A PROOF OF CONCEPT WHITE BOX OPTIMIZER 213

While seemingly complex, the intuition behind the second criterion is relatively straight-
forward. Ignoring the ŝim factors, the left-hand side of the inequality corresponds to the
estimated improvement in performance (1), while the right-hand side corresponds to the
estimated loss in reliability (2), associated with choosing θ, rather than θinc, as incumbent.
ŝim can be viewed to determine the trade-off between (1) and (2): When ŝim is 0, the
second criterion reduces to N̂(θ) ≥ N̂(θinc), i.e. requires both estimates to be at least
equally reliable, when ŝim is 1, it reduces to ô(θ) ≥ ô(θinc). Finally, the constant K de-
termines for what value of ŝim, (1) and (2) are equally important, i.e. 2− 1

K . For K = 1,
this would be 0.5. We choose K > 1, as we wish to relax criterion (2) only if designs are
highly similar. For our default choice of K = 3, break-even occurs at similarity 0.8.

6.4.2 High-level Search Strategy
In this section, we describe the high-level search strategy followed by our PoC (see Al-
gorithm 21), which determines the order in which candidate designs are explored and
evaluated. Our strategy closely resembles that of a traditional SMBO framework, differing
in that we use IS estimates, rather than regression model predictions to guide our search.
First, we perform some initialization. At line 2, we choose θinc, the incumbent, to be θinit,

the design which is passed as an (optional5) argument to the framework. At lines 3 and 4,
we initialize the IS “model”, denoted by M̂ , and defined as a 4-tuple 〈pr′, p, E′,Θ′〉, where
E′ is the sample of executions generated thus far and Θ′ the bag of designs used to generate
them. Initially E′ = Θ′ = ?. Remark that M̂ encapsulates all information required to
estimate ô (performance, see Equation 6.7), ûnc (standard error, see Equation 6.10) and
ŝim (similarity, see Equation 6.11). At line 5, we initialize counters for the number of
“proposals generated” (#prop) and “iterations performed” (#it) thus far to 0. At line 6,
we initialize “the number of proposals to generate next iteration” (m) to one for the first
iteration. Subsequently, we iteratively

1. explore a sample of candidate designs Θprop ⊂ Θ (line 8)

2. select one of these as a contender θprop (line 9)

3. evaluate both θprop and θinc in the context of a race (line 10).

This process continues until “the number of candidate design executions performed”
reaches N, a preset limit, after which we return θinc. Note that N = +∞ is a valid
configuration, as our PoC is a proper anytime framework. In what follows, we describe the
procedures we used for (1), (2) and (3) in more detail.

5If omitted, a design is selected randomly according to Θ.GP, see Section 6.4.2.1.

214 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

Algorithm 21 High-level search strategy for our PoC.
1: function Solve(〈a,Θ,D, pr′, p〉,K,L,N ,θinit)
2: θinc ← θinit
3: Θ′, E′ ← ?

4: M̂ ← 〈pr′, p, E′,Θ′〉
5: #it,#prop← 0
6: m← 1
7: while |E′| < N do
8: 〈Θprop, θinc,#prop〉 ← Explore(Θ,K,m,#prop,M̂)
9: θprop ← arg maxθ∈Θprop

M̂.o(θ)−M̂.o(θinc)
M̂. unc(θ)+M̂. unc(θinc)

− M̂. sim(θ,θinc)K

1−M̂. sim(θ,θinc)K

10: 〈E′,Θ′, θinc, M̂〉 ← Race(a,D,K,N ,θprop,θinc,M̂)
11: #it← #it + 1
12: m← min(|E

′|
#it ∗

L−#prop
N

1− |E
′|
N

, (|E′|+min(2,N−|E′|))∗L−#prop)

13: end while
14: 〈 , θinc, 〉 ← Explore(Θ,K,L ∗N −#prop,#prop,M̂)
15: return θinc
16: end function

17: function Explore(Θ,K,m,#prop,M̂)
18: Θprop ← ?

19: for i=1:m do
20: Pθinc ← equal mixture of Θ.GP and Θ.LP(θinc)
21: θi ∼ Pθinc
22: Θprop ← Θprop ∪ {θi}
23: θinc ← UpdateIncumbent(K,θi,θinc,M̂)
24: end for
25: return 〈Θprop, θinc,#prop +m〉
26: end function

27: function UpdateIncumbent(K,θ,θinc,M̂)
28: if M̂.o(θ) ≥ M̂.o(θinc) then
29: s← M̂. sim(θ, θinc)
30: if sK ∗ (M̂.o(θ)− M̂.o(θinc)) ≥ (1− sK) ∗ (M̂. unc(θ)− M̂. unc(θinc)) then
31: return θ
32: end if
33: end if
34: return θinc
35: end function

6.4. A PROOF OF CONCEPT WHITE BOX OPTIMIZER 215

36: function Race(a,D,K,N ,θprop,θinc,M̂)
37: 〈E′,Θ′, M̂〉 ← Test(a,D,θinc,M̂)
38: repeat
39: 〈E′,Θ′, M̂〉 ← Test(a,D,θprop,M̂)
40: θinc ← UpdateIncumbent(K,θprop,θinc,M̂)
41: until |E′| = N ∨ θinc = θ ∨ M̂.o(θprop) < M̂.o(θinc)
42: return 〈E′,Θ′, θinc, M̂〉
43: end function

44: function Test(a,D,θ,〈pr′, p, E′,Θ′〉)
45: if |E’| < N then
46: x← D. sample()
47: e← aθ(x)
48: E′ ← E′ ∪ {e}
49: Θ′ ← Θ′ ∪ {θ}
50: M̂ ← 〈pr′, p, E′,Θ′〉
51: end if
52: return 〈E′,Θ′, M̂〉
53: end function

6.4.2.1 Design Space Exploration

In this section, we describe the procedure used to search the design space for designs which
are (potentially) better than our incumbent. Each iteration, we generate a sample of m
designs (Θprop) according to Pθinc , a distribution over Θ, dependent on θinc.

How many proposals do we generate (m)? In the first iteration, we generate only
a single proposal which is also the first contender. In subsequent iterations, m is chosen
such that we on average explore L proposals for every candidate design execution, where
L is passed as an argument to the framework (default value 10). Since we must calculate
ô, ûnc and ŝim for every proposal, generating a large number of proposals will increase
the overhead and therefore the total runtime. For m = 10, we found the total runtime of
our framework, on our platform (see Appendix A.1), to be similar or lower than that of
the other configurators for the scenarios we considered in Section 6.5. One challenge in
choosing m is that the total number of iterations is not known a priori since the candidate
design executions per iteration (∼ duration of the race) varies. We used the formula at
line 12, which allocates the total of L ∗ N proposals roughly uniformly across iterations
while guaranteeing that at least 2L candidates are explored per iteration. Remark that if
the final race takes 2+x executions, this will cause us to explore only L∗ (N −x) designs.
Something which we correct for at line 14, where we explore the remaining L ∗ x designs.

216 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

How do we generate these proposals (lines 17-26)? We draw each proposal θi from
a distribution Pθinc , which is an equal mixture of two distributions which are passed as
arguments to the framework and which we can generate samples according:
Global Prior (Θ.GP): A distribution over Θ, allowing the user to encode prior knowledge

about where good designs are most likely located in Θ.

Local Prior (Θ.LP): A distribution over Θ, conditioned on θinc, allowing the user to
encode prior knowledge of how θinc can be best improved.

Note that our search strategy only interacts with Θ indirectly, through these distributions,
making it design representation independent. In particular, it does not assume them to be
configurations, let alone makes any assumptions about the type of parameters.
Remark that after generating a proposal θi (line 23), we check whether it satisfies the

criteria in Equation 6.9 and update the incumbent accordingly (lines 27-35), as described
in Section 6.4.1. This implies that our incumbent is potentially a design which itself has
never been executed. This is a key difference with contemporary SMBO frameworks, which
do not base the choice of incumbent on the predictions made by the regression model.

6.4.2.2 Selecting a Contender
In this section, we discuss which of the candidate designs Θprop we select to be evaluated
in a race against the incumbent. Here, we wish to select the design which we believe
to be most likely better than our incumbent based on ô and ˆunc. Also, as discussed in
Section 6.4.1, we wish to avoid selecting θ with high ŝim(θ, θinc), as doing so could result
in extremely long races. To this end, we select the design θ maximizing (line 9):

ô(θ)− ô(θinc)
ûnc(θ) + ûnc(θinc)

− ŝim(θ, θinc)K

1− ŝim(θ, θinc)K
.

Here, the first term is an approximate, signed, non-parametric measure of the significance
of the estimated performance difference, roughly imposing the following order

1. θ with ô(θ) > ô(θinc), where lower ûnc are better.

2. θ with ô(θ) ≤ ô(θinc), where higher ûnc are better.
The second term penalizes designs which are too similar to θinc.
Why not the EI criterion? We have considered using the Expected Improvement (EI)
criterion [Jones et al. 1998], also used in SMAC (see Section 4.1.2, p. 116). However, EI
assumes the error on ô to be approximately normally distributed with standard deviation
ûnc. When ûnc is high, we observed this not to be the case, which led to an overestimation
of the actual expected improvement and designs with high uncertainty being selected at
the cost of those which highly likely have superior performance.

6.5. EXPERIMENTAL VALIDATION 217

6.4.2.3 Incremental Evaluation Mechanism

The contender θprop is a design which we believe, based on M̂ , to be potentially better
than the incumbent, but that does not satisfy the criteria required to become the new
incumbent. In this section, we describe the mechanism we used to collect additional
performance observations, update M̂ , and potentially the incumbent. The procedure used
resembles the aggressive racing scheme used in ParamILS, ROAR and SMAC, described in
Section 4.1.2, p. 113. Here, we first execute θinc (line 37) to avoid that an overly optimistic
estimate of o(θinc) would cause us to fail to identify better designs. Subsequently, we
execute the contender θprop once, and continue to do so until either ô(θprop) < ô(θinc)
holds or it satisfies all criteria required to become the new incumbent (lines 38-41).

6.5 Experimental Validation
In this section, we validate the benefits of the novel performance estimation technique
using Importance Sampling (IS), which we introduced in Section 6.3.2, experimentally. To
this end, we consider three6 different scenarios where we formulate an ADP as a wb-ACP
which we subsequently solve using the (white box) configurator described in Section 6.4
implementing this technique (PoC-IS). We compare its anytime performance, i.e. the
expected average-case performance of θinc at any point in time, to that of

• A variant using sample average (instead of IS) estimates for o(θ) (PoC-SA).7
• Various state-of-the-art (black box) configurators: ParamILS,8 iRace9 and SMAC.10

Disclaimer : The scenarios we consider here were not chosen arbitrarily, nor did we choose
them to be maximally representative for the ADPs one may encounter in practice. Rather,
we have intentionally chosen settings where we conjectured the wb-ACP form of the prob-
lem to be considerably easier to solve than the ACP form. That being said, with exception
of the first scenario which is a “toy” problem (see Section 6.5.1), all problems considered
correspond to relevant instances of the ADP which are part of a larger family of problems
which we expect the observations made in this chapter to generalize to.
In what follows, we study each scenario in a separate subsection. Here, we first briefly

introduce the ADP considered. Subsequently, we describe the wb-ACP reduction (i.e. our
choices for a, Θ, D, pr′ and p), our experimental setup (e.g. parameters choices for the
frameworks compared). Finally, we present and discuss the results.

6In [Adriaensen et al. 2017], we only considered the first of these scenarios (see Section 6.5.1).
7The code for PoC-IS/SA is available at http://github.com/Steven-Adriaensen/IS4APE.
8http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/ (version 2.3.8)
9http://iridia.ulb.ac.be/irace/ (version 2.4.1844)

10http://www.cs.ubc.ca/labs/beta/Projects/SMAC/ (version 2.10.03)

http://github.com/Steven-Adriaensen/IS4APE
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://iridia.ulb.ac.be/irace/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

218 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.5.1 The Looping Problem: Break or Continue
The first scenario we consider is a “toy” dynamic ASP where we are to execute a loop for
at most H iterations. Each iteration i, we encounter a choice point and have to decide
whether to continue or break the loop, if we continue, we receive a reward ri ∼ N (1, 4),
otherwise execution terminates. As in any dynamic ASP, the goal is to make decisions at
these choice points as to maximize the total expected reward collected. As the rewards
received are assumed to be a priori unpredictable (truly random), the optimal policy is
to continue the loop till the end, receiving an expected reward of H. The toy problem
described above is the one we considered in [Adriaensen et al. 2017] (with H = 20) and
which was introduced in [Adriaensen and Nowé 2016b] (with H = 10) under the rather
cryptic name “benchmark 1”. Here, we will refer to it as “the looping problem”.
Toy problems are problems whose solutions themselves are not of any practical interest,
but which are nonetheless considered in the analysis of algorithms because they are “con-
venient” (e.g. conceptually simple, facilitate replication, isolate some property, etc.), while
exhibiting features also found in complex real-world problems. The use of toy problems
is common practice in many fields; e.g. the grid worlds in RL, the One Max problem in
combinatorial optimization, the prisoner’s dilemma in game theory, etc.

6.5.1.1 Formulation as a wb-ACP
We now formulate the looping problem with H = 20 as a wb-ACP:
a is the framework listed in Algorithm 22 executing the interruptible loop described above.

It takes 20 numerical parameters as input (|θ| = 20), where the value of the ith
parameter (θi) determines the likelihood of continuing in the ith iteration. It returns
e = (#it, rΣ), where #it is the number of iterations performed and rΣ the sum of
rewards received in each iteration.

Θ: We consider two alternative configuration spaces in this scenario:

Θcont: Each parameter pi can take any real value in [0, 1], i.e. Θi = [0, 1].
Θdiscr: Each parameter pi can take 11 different values: Θi = {0, 0.1, . . . , 0.9, 1}.

D: Note that a does not take any inputs beyond θ. For completeness, we let the empty
string ε be the only possible input (X = {ε}) and choose D(ε) = 1.

pr′(e|θ) =
{

(1− θ#it+1)
∏#it
i=1 θi 0 ≤ #it ≤ 19∏#it

i=1 θi #it = 20
.

p(e) = rΣ.
Remark that o(θ) =

∑20
i=1
∏i
j=1 θj and the solution is θ∗ : θ∗i = 1,∀i with o(θ∗) = 20.

6.5. EXPERIMENTAL VALIDATION 219

Algorithm 22 Target algorithm used in the wb-ACP reduction of the looping problem.
1: procedure Loop(θ)
2: #it, rΣ ← 0
3: for i = 1 : 20 do
4: pivot ∼ U(0, 1)
5: if θi < pivot then
6: goto line 12 (break)
7: end if
8: #it← i

9: ri ∼ N (1, 4)
10: rΣ = rΣ + ri
11: end for
12: return 〈#it, rΣ〉
13: end procedure

6.5.1.2 Experiment

Setup: In the previous section, we formulated two wb-ACPs, i.e. 〈a,Θcont,D,pr′, p〉 and
a discretized variant thereof 〈a,Θdisc,D,pr′, p〉. On the discretized variant, we compare
PoC-IS to PoC-SA, (focused) ParamILS, iRace and SMAC. On the continuous variant, we
only consider PoC-SA, iRace and SMAC as a baseline, since ParamILS does not support
parameters with infinite domains. We performed 1000 independent runs of 10000 eval-
uations for every framework, using their default parameter settings, all starting from the
same initial configuration θinit : θi = 0.5,∀i. For fair comparison, we chose the global and
local prior used in PoC-IS and PoC-SA to be uninformative: Θ.GP chooses θ ∼ U(Θ)
(uniform), Θ.LP chooses θj ∼ U(Θj), for some randomly selected j, and θi = θinc,i oth-
erwise (random one-exchange). Remark that these are the same local and global search
operators as are used in ParamILS. We did not provide any of the frameworks with a priori
information about the conditionalities between parameters.

Results: Figures 6.9 and 6.10 show the (actual) performance of the incumbent design
obtained by each framework, after x evaluations, averaged over 1000 runs. For the dis-
cretized setting, we find that none of the configurators in our baseline (e.g. PoC-SA,
ParamILS, iRace and SMAC) found the optimal solution (θ∗) within 10000 evaluations.
ParamILS performed worst, returning a design with an average performance of 2. PoC-SA
and iRace both returned a design with an average performance of 5. Of our baseline,
SMAC performed best, returning a design with an average performance of roughly 6 after
10000 evaluations. PoC-IS needed only 100 evaluations to obtain a similar performance
as SMAC, and all of the runs found θ∗ within 10000 evaluations. Our observations in the
continuous setting are similar, except that each framework performed slightly worse.

220 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

1 10 100 1000 100000

2

4

6

8

10

12

14

16

18

20

Evaluations (|E'|)

o(
θ in

c)

θ*

PoC - IS
PoC - SA
SMAC

ParamILS
iRace

Figure 6.9: Results for the looping problem
(wb-ACP with discretized Θ)

1 10 100 1000 100000

2

4

6

8

10

12

14

16

18

20

Evaluations (|E'|)

o(
θ in

c)

θ*

PoC - IS
PoC - SA
SMAC
iRace

Figure 6.10: Results for the looping
problem (wb-ACP with continuous Θ)

6.5.2 Static Sorting Portfolio
In the second scenario, we consider the problem of designing an algorithm to sort a sequence
of integers in ascending order. In particular, we look at solving the sorting subset-ASP
which we introduced in Section 4.2.2. Here, we considered the design of a static portfolio-
solver which applies one of eight canonical sorting algorithms depending on features of
the sequence to be sorted. Remark that the experiments performed in this section can
be viewed as an illustration of the “solving subset-ASPs by set-ASP reduction” approach
which we discussed in Section 4.4.1, p. 148.

6.5.2.1 Formulation as a wb-ACP

We reduce the sorting subset-ASP to the following wb-ACP:11

a is a parametrized static portfolio-solver (see Algorithm 23). Next to a sequence of
integers to be sorted (l), a takes 40 real-valued parameters as input which determine
the selection mapping. First, Algorithm 13 is used to extract the four features of the
input sequence l. Subsequently, at lines 3-7, these features are transformed (log-
scaled/normalized) as in the clustering approach described in 4.2.3, p. 122. Next,
the selection mapping sθ is computed for these features, as follows: At line 15,
we compute an affinity for each of the eight sorting algorithms (A) as a linear
combination of the feature vector, such that the affinity of the jth algorithm is given
by θj +

∑4
i=1 θ8i+j ∗ f ′i . Afterwards, the algorithm which has the highest affinity

(asel) is returned and used to sort l. Finally, next to the sorted sequence l, a returns
e = (f ′, asel, −t|l|), where t is the time asel took to sort l.

11This can be viewed as an instance of the general reduction described in Section 6.2.3.2.

6.5. EXPERIMENTAL VALIDATION 221

Algorithm 23 Target algorithm used in the wb-ACP reduction of the sorting subset-ASP.
1: procedure Sort(θ,l)
2: f = 〈flength, frange, fsorted, fequal〉 ← ExtractFeatures(l)
3: fmin ← 〈2,−109, 0, 0〉
4: fmax ← 〈105, 109, 1, 1〉
5: for i = 1 : 4 do . Normalize and log-scale features.
6: fi ←

log(fi−fmin
i +1)

log(fmax
i
−fmin

i
+1)

7: end for
8: asel ← s(θ,f)
9: timelapse() . Reset the timer to only time Line 10.
10: l← asel(l)
11: return 〈l, 〈f, asel, − timelapse()

|l| 〉〉
12: end procedure

13: procedure s(θ,f ′) . Compute sθ for an input with features f ′.
14: A← 〈 bubble sort, selection sort, insertion sort, merge sort, quicksort,

heapsort, radix sort, tim sort 〉
15: q ← {(aj , vj) | 1 ≤ j ≤ 8 ∧ (aj is the jth element of A) ∧ vj = θj +

∑4
i=1 θ8i+j ∗ f ′i}

16: return arg maxaj q(aj)
17: end procedure

Θ: Each parameter pi can take any real value in [−1, 1], i.e. Θi = [−1, 1].

D is the same as in the sorting subset-ASP (see Section 4.2.2).

pr′(e|θ) = [s(θ, f ′) = asel], i.e. 1 iff sθ selects asel, 0 otherwise.

p(e) = −t
|l| , i.e. time it took per element sorted (∼ Section 4.2.2).

6.5.2.2 Experiment

setup: For this scenario, we consider PoC-SA, iRace and SMAC as a baseline. Since
the wb-ACP formulated in the previous section has real-valued parameters, we did not
include ParamILS in our comparison. We performed 1000 independent runs of 100000
evaluations for every framework, using their default parameter settings. Apart from the
default configuration, we also considered a “customized” configuration for iRace, setting
the “elitist limit” parameter to zero (default two. According to [López-Ibáñez et al. 2016],
this parameter determines the “maximum number of statistical tests performed without
successful elimination after all instances from the previous race have been evaluated. If
the limit is reached, the current race is stopped.” In high-variance settings, the default

222 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

-100

-1000

-10000

-100000
1 10 100 1000 10000 100000

Evaluations (|E'|)

o(
θ in

c)

VBS

PoC - IS
PoC - SA
SMAC
iRace

BSS
URS

iRace
(elitist limit = 0)

Figure 6.11: Results for the static sorting portfolio scenario.

“elitist limit” of two, will terminate races early. While this allows iRace to perform more
iterations and explore more different configurations, it will evaluate these on only a few
inputs (± 40), too little to significantly reduce the variance in performance estimates and
reliably determine which of these are actually best. From an ML perspective, sθinc will likely
overfit such a small subset of training inputs. In setting this parameter to 0, we effectively
disable this mechanism, and found that iRace (∼ PoC and SMAC), evaluates θinc on more
than a thousand inputs. For PoC-IS and PoC-SA, we choose Θ.GP : θ ∼ U(Θ) (uniform)
and Θ.LP : θj = max(−1,min(v, 1)) with v ∼ N (θinc,j , 1

40) (truncated multivariate
Gaussian centered at θinc). We did not specify an initial configuration for iRace nor PoC,
causing the configurators to select one uniformly at random from Θ. For SMAC, θinit is
to the best of our knowledge not optional and was set to θinit : θi = 0,∀i.

Results: Figure 6.11 shows the (actual) performance of the incumbent design obtained
by each framework, after x evaluations, averaged over 1000 runs. As a reference, we also
show the performance of the following selection mappings: the Virtual Best Solver (VBS,
an oracle selecting the best algorithm for each input), the Best Single Solver (BSS, i.e.
tim sort) and uniform random selection (URS).
We observe that PoC-IS needs only 500 evaluations to obtain a design which performs

as good as the BSS, which is roughly three times less than SMAC, 10x less than PoC-SA
and nearly 200x less than iRace (elitist limit disabled). We observe that iRace, using its
default parameter setting, performs poorly. It does not obtain BSS performance, even
after 100000 evaluations. In general, compared to other configurators considered, we find
that the anytime performance of iRace is clearly inferior in this scenario.

6.5. EXPERIMENTAL VALIDATION 223

-300

-250

-200

-150

Evaluations (|E'|)

o(
θ in

c)
VBS

PoC - IS
PoC - SA
SMAC

BSS

iRace
(elitist limit = 0)

300 1000 10000 100000

Figure 6.12: Detail of Figure 6.11 (purple frame)

Figure 6.12 zooms in on an area of interest in Figure 6.11 (indicated by the purple frame),
allowing us to compare the configurator’s ability to close the gap with the VBS (see p. 124,
footnote). We observe that after 100000 evaluations, iRace (elitist limit disabled), PoC-SA
and SMAC close the gap with the VBS with 35%, 55% and 80%, respectively. PoC-IS
requires 100x, 50x and 15x less evaluations, respectively, to obtain a design with similar
performance, eventually closing the gap with 87.5% after 100000 evaluations. The best
selection mapping encountered in any run of any configurator closes the gap with 90%.

6.5.3 Dynamic Metaheuristic Scheduler
As a final scenario, we consider the problem of designing a scheduler allocating resources
dynamically across two given metaheuristic methods. While our focus is on selection
hyper-heuristics implemented using HyFlex (see Section 5.2.1.2), the same methodology
could be applied to anytime optimizers in general. Also, in the spirit of reuse, we consider
the design of a generic policy for scheduling any two, rather than two specific, optimizers.

Motivation: In Section 5.3.2.4, we have compared the performance of different selec-
tion hyper-heuristics across 98 instances taken from nine different domains. While some
performed, on average, better than others, we found that none performed consistently
best across all instances. Therefore, it makes sense to apply a “portfolio approach” where
we attempt to automatically apply the most appropriate method for each instance. We
consider dynamic scheduling, rather than (static) algorithm selection, since the informa-
tion that is available (or that can be derived efficiently) a priori about the input (i.e. the
problem instance to be solved and the two candidate solvers) is insufficient to permit a
reliable prediction of which method will perform best.

224 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

The candidate schedulers considered subdivide the computational budget tallowed in N
“slots” of tallowed

N seconds and iteratively allocate these slots to the two methods based on
their anytime performance in previously assigned slots. Below, we consider a computational
budget of 10 minutes, subdivided into 100 slots of six seconds each.

6.5.3.1 Formulation as a wb-ACP

Remark that the problem characterized above can be viewed as a dynamic ASP, where
we encounter 100 binary choice points in which we are to choose to which of the two
methods we assign the next slot. As such, we could essentially apply the general dynamic-
ASP reduction described in Section 6.2.3.3. However, we considered a reduction specific
to the dynamic scheduling problem instead. In what follows, we will restrict ourselves
to a high-level description thereof, as its specifics are non-trivial and not essential for
interpreting our experimental results. Details can be found in Appendix A.4.

a: Our target algorithm (see Algorithm 24, Appendix A.4) takes x, the minimization
problem instance to be solved, hh1 and hh2, two preemptable anytime optimizers
that can be used for doing so, and a configuration θ consisting of 22 real-valued
parameter values determining how resources are dynamically allocated to hh1 and
hh2 (∼ scheduling policy πθ). For each slot, a determines pr1, the likelihood of
assigning it to hh1 (instead of hh2), as follows: First, a derives two sets of five
features ω1 and ω2, characteristic of “the anytime performance” of hh1 and hh2,
respectively, during “previously allocated slots”. Subsequently, a passes ω1 and
ω2 one-by-one as input to a neural network, whose weights are given by θ. This
network’s outputs v1 and v2 are used to compute pr1 as v1

v1+v2
. When all 100 slots

are allocated, a assesses pe the desirability of the allocation it made. To do so,
it compares the quality of the best solution obtained, to those obtained by all 100
other hypothetical allocations, such that pe ∈ [−1, 0] with -1 for the unique worst,
and 0 for the unique best possible allocation. Finally, it returns e = 〈T1, T2, n1, pe〉,
where Tj is the solution quality trace, i.e. quality of the anytime solution at any
time, of hhj , and n1 the number of slots allocated to hh1. See Appendix A.4 for
more details.

Θ: Each of the 22 parameters can take any real value in [−100, 100], i.e. Θi = [−100, 100].

D: a takes a minimization problem x and two (anytime) optimizers hh1 and hh2 as input.
As possible x, we consider the 98 instances in the (extended) HyFlex benchmark
(Xall, see Appendix A.2). As possible hh1, hh2, we consider any pair of the eight
ASAP hyper-heuristics (see Section 5.3.2.4). This results in a total of 2744 inputs,
where D. sample samples uniformly at random from.

6.5. EXPERIMENTAL VALIDATION 225

pr′(e|θ) is the likelihood that the scheduling policy πθ allocates (n1,100 − n1) slots to
(hh1,hh2), given their traces (T1,T2). This can be computed efficiently/elegantly
using dynamic programming (see Algorithm 25, Appendix A.4).

p(e) = pe.

6.5.3.2 Experiments

Setup: For this scenario, we consider PoC-SA, iRace and SMAC as a baseline. We per-
formed 1000 independent runs of 1000 evaluations for every framework, using their default
parameter settings. For PoC-IS and PoC-SA, we choose Θ.GP: θ ∼ U(Θ) (uniform)
and Θ.LP: θj = max(−100,min(v, 100)) with v ∼ N (θinc,j , 5) (truncated multivariate
Gaussian centered at θinc). We did not specify an initial configuration for iRace nor PoC,
causing the configurators to select one uniformly at random from Θ. For SMAC, θinit was
set to θinit : θi = 0,∀i.

Results: Figure 6.13 shows the (actual) performance of the incumbent design obtained
by each framework, after x evaluations, averaged over 1000 runs. As a reference, schedulers
allocating all slots to an arbitrary method have o = −0.524. An oracle scheduler, allocating
all slots to the method which obtains the best solution, has o = −0.190.
We observe that after 1000 evaluations, iRace, PoC-SA and SMAC obtain a design which

has an average-case performance o of −0.407, −0.374 and −0.364, respectively. PoC-IS
requires roughly 40x, 10x and 5x less evaluations, respectively, to obtain a design with
similar performance, eventually obtaining one with o = −0.346 on average.

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

Evaluations (|E'|)

o(
θ in

c)

PoC - IS
PoC - SA
SMAC
iRace

1 10 100 1000

Figure 6.13: Results for the dynamic metaheuristic scheduling scenario.

226 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

6.6 Limitations and Future Research
In Section 6.1, we argued for the importance of using all available information to solve
the ADP (see also Section 3.4). In particular, we entertained the possibility of improving
the data-efficiency of PbC, without sacrificing its “off-the-shelfness”. Subsequently, in
Sections 6.2-6.5, we explored one possible way of doing so, i.e. our IS approach. In this
section, we will discuss the limitations of the latter and how they can be addressed.

Increased/ing overhead: In Section 6.5, we showed experimentally that our IS approach
improves data efficiency. As ordinary configurators spend the vast majority of the time col-
lecting experimental data, their data efficiency directly translates to time efficiency (unless
computing a is extremely cheap). However, in Section 6.3.2.4, we also discussed that cal-
culating IS estimates (ô) is computationally more expensive than ordinary sample averages
(ō). To avoid that both notions of efficiency diverge, we guaranteed (by tuning parameter
L and N) that the total runtime of PoC-IS, on our platform (see Appendix A.1), is sim-
ilar/lower than that of the other configurators for the scenarios we considered. However,
in other settings, overhead may grow so large that it eventually dominates runtime. In par-
ticular, as overhead increases over time (O(|E′|)), this will eventually happen in all lifelong
learning settings (e.g. semi-online setting discussed in Section 3.5.3). Noteworthy is that
when taking into account advances in computing infrastructure this is not necessarily true.
Also, we believe that there is considerable potential to reduce this overhead.

Reliance on overlap: Using IS, we only generalize observations across designs which
are “actually” similar (vs. regression models, see Section 6.3.2.5). As a consequence, if
candidate designs are not similar (∼ overlap, see Equation 6.3), using ô will be not improve
data efficiency w.r.t. ō (see also Theorem A.4), but only increase overhead (see above).
As such, for our IS approach to be beneficial, data-efficiency gains (i.e. overlap) must
be sufficient to compensate for the increase in overhead. The three scenarios considered
in Section 6.5 fall into this category. However, in other settings, PoC-IS may require
considerably more resources than PoC-SA. This forces the user of our PoC to manually
distinguish between both settings. Also, as overhead increases over time, PoC-IS may be
only beneficial initially. Therefore, a variant switching dynamically between ô and ō is
interesting future research. As is hybridizing IS with regression models.

Does PoC-IS outperform SMAC? In our experiments, we did not aim to show the
superiority of PoC-IS over state-of-the-art black box configurators. Our goal here was
merely test whether using IS, instead of SA, indeed results in improved data efficiency.
As such, we could have restricted our comparison to PoC-IS vs. PoC-SA. State-of-the-art
black box optimizers (FocusedILS, iRace and SMAC) were merely included as a reference,

6.7. SUMMARY 227

e.g. to show that PoC-SA is sufficiently competitive that “improving its data efficiency”
has practical relevance. While PoC-IS performs clearly better in the selected scenarios, as
by our discussion above, it will perform much worse in certain other settings. Also, PoC-IS
does not support many of the other features (e.g. parallel execution support) provided
by the state-of-the-art. That being said, we believe that none of these limitations are
inherent, and that state-of-the-art white box configurators are a realistic goal.

Not very white box... wb-ACP only captures (our IS approach only uses) a small frac-
tion of the information that we believe could, in principle, be usefully exploited. However,
we hope that the research described in this chapter, limited as it is, convinces the reader
that this is a research track worth exploring.

6.7 Summary
In this chapter, we presented a critical reflection on Programming by Configuration (PbC).
In particular, we argued that contemporary configurators limit themselves by abstracting
information that can otherwise be exploited to speed up the design process, and described
our own work towards addressing this shortcoming.
In Section 6.1, we presented a high-level discussion of the limitations of PbC and how

these could be addressed. Here, we argued the main limitation of PbC to be the large
computational cost associated with collecting algorithm performance data. We continue
to discuss two more specific attributes of PbC that further aggravate this issue: (1) “it
requires us to pay this cost up front” since PbC solves the ADP offline. Here, we briefly
recapped our general discussion of this issue in Section 3.5 and its relevance in the context
of “using PbC to design reusable algorithms” in particular. (2) “it uses the collected
data inefficiently”. Here, we argue that in reducing the ADP to an ACP, PbC abstracts
information that can be usefully exploited to solve the ADP faster.
In Section 6.2 and onwards, we presented our own work towards addressing (2). Here, we

considered solving the ADP by reducing it to a more informative variant of the ACP: the
“white box” ACP (wb-ACP). In Section 6.2.1, we put this attempt into a wider perspective:
While “white box” approaches to the ADP exist, none offer similar generality, ease of use,
control, transparency, etc., i.e. are equally “off-the-shelf”, as “black box” approaches
(e.g. PbC). Our interest lies in approaches which are both “white box” and “off-the-
shelf”. To this end, we aimed to improve the data-efficiency of existing configurators, while
retaining the properties that make them attractive in the first place. In Section 6.2.2, we
defined the wb-ACP and discussed the reduction. Finally, in Section 6.2.3, we discussed
the relations between the wb-ACP and previously examined formulations of the ADP: the

228 CHAPTER 6. TOWARDS A WHITE BOX APPROACH TO THE ADP

ACP, subset-ASP and dynamic ASP. In particular, we described generic reductions from
these problems to the wb-ACP.
In Section 6.3, we discussed how the information captured by the wb-ACP can be ex-

ploited in evaluating the relative performance of candidate designs. First, in Section 6.3.1,
we characterized the performance evaluation problem (PEP) and recapped how it is cur-
rently being solved in the context of the PbC. Subsequently, in Section 6.3.2, we presented
a novel performance estimation technique, loosely inspired by the practice of “off-policy
policy evaluation” in the RL community. In Section 6.3.2.1, we introduced the observation
underlying our approach: Different candidate designs might, with some likelihood, gener-
ate the exact same execution e. The crux is that even though an execution e might have
been generated using θ, it might as well (with some likelihood) have been generated using
a different θ′. As such, the observed desirability of e does not only provide information
about the performance of θ, but also about that of θ′. Subsequently, in Section 6.3.2.2,
we introduced the general statistical technique known as Importance Sampling (IS) and
showed, in Section 6.3.2.3, how IS can be used to combine all performance observations
relevant to a design θ, into a consistent estimator of its performance. In Section 6.3.2.4,
we presented an effective procedure for computing this estimate and discussed its com-
putational complexity. Finally, in Section 6.3.2.5, we discussed the merits of using this
technique to solve the PEP (vs. alternatives) and illustrated some of these experimentally.
In Section 6.4, we described a white box configurator implementing our novel perform-

ance estimation approach. Here, we distilled two top-level design choices around which
we structured our description. In Section 6.4.1, we discussed the choice of incumbent:
Which of the designs explored thus far do we return as the solution at any time? Here,
we found that performance estimates alone are insufficient to make this decision. The
reliabilities of these estimates, since they may vary strongly, must also be taken into ac-
count. In section 6.4.1.1, we discussed measuring the reliability of an IS estimate. In
Section 6.4.2, we described the search strategy implemented, determining the order in
which we explore/evaluate candidate designs.
In Section 6.5, we validated our approach experimentally. To this end, we compared the

performance of our white box configurator with that of a baseline of black box configur-
ators, in three different scenarios. In each scenario, we considered a different instance of
the ADP and described its reduction to the wb-ACP. In summary, we found that, for the
scenarios considered, our configurator required (up to several orders of magnitude) less
evaluations than its black box counterparts to obtain similar quality designs.
Finally, in Section 6.6, we discussed the limitations of our IS approach, and how these

could be addressed in future research. Here, we, for instance, explained that using our IS
approach, in its current realization, is only beneficial in specific settings and that identifying
these automatically is crucial to achieve the desired level of off-the-shelfness.

7 | Accidental Complexity
Analysis

In Section 1.1, we have argued that, in our opinion, the contemporary practice of designing,
analyzing and presenting algorithmic contributions is lacking. In this dissertation, we set
out to investigate how we can do better. Thus far, we have looked at alternative ways
of designing algorithms, in particular, the possibility of (partially) automating this process
(answering Q.A), which we have argued to have the potential to not only reduce the
manual effort involved in the process, but also to offer more control and transparency
about the quality attributes of the resulting design.
In this chapter, we will take a different perspective, exploring a less disruptive angle, where

rather than trying to replace the design process, we will attempt to improve the quality
(∼ reusability) of the resulting design post hoc (answer Q.B). Here, we focus on “sim-
plicity”, which we argue to be an important factor often overlooked in algorithm design,
which has a tendency to produce overly complex methods. This chapter is structured as
follows: In Section 7.1, we provide some context and motivate our focus on simplicity.
In Section 7.2, we introduce Accidental Complexity Analysis (ACA), a research practice
targeted at identifying needless complexity. In Section 7.3, we demonstrate this practice,
applying it to analyze the presence of accidental complexity in AdapHH, a state-of-the-art
selection hyper-heuristic for HyFlex. In Section 7.4, we present a critical reflection on this
research. Finally, in Section 7.5, we summarize the content covered in each section.

229

230 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

7.1 Simplicity in Algorithm Design
Often, what makes designing an algorithm worthwhile, is its ability of being reused. Im-
portant factors affecting algorithm reusability (see also Section 3.2) are its ability to solve
many different problem instances (generality) and to do so better, using less resources than
other algorithms (performance). Therefore, traditionally, algorithm design has (rightfully)
focused on the performance and generality of algorithms.
In what follows, we argue for simplicity as another important factor often overlooked

when designing algorithms. In daily life, simpler “algorithms” (recipes, manuals, etc.) are
preferred for many reasons, e.g. they are less error-prone and take less time to understand
and execute. One might argue that complexity is not an issue in computer science, as the
computer executes the algorithm, not a human. For software in general, this argument can
be rephrased as “It does not matter what my code looks like, as the user does not see it
anyway”. This is a known fallacy in Software Engineering, as software must be maintained
and therefore be maintainable [Lientz and Swanson 1981]. In analogy, algorithms will
unavoidably need revision at some point (e.g. to solve other problems, more efficiently, in
a slightly different setting, etc.), especially in a research setting. Complex algorithms are
difficult to understand, implement, analyze, extend and improve. . . , i.e. reuse.
Yet, when looking at state-of-the-art algorithmic solutions to various problems, we often

find them to be rather complex. The question we ask ourselves in this chapter is: “Do
they need to be?”. That is, we wish to distinguish between essential complexity, which
contributes to an algorithm’s ability to solve multiple problems efficiently, and accidental
complexity which can be eliminated without loss of performance.
In the remainder of this section, we will argue that the complexity found in state-of-the-art

algorithmic (especially heuristic) solutions is often not all essential, i.e. simpler alternatives
exist, but these are simply not considered in the manual trial & error modus operandi by
which these methods are typically designed (graduate student search, see Section 3.3.1).
Here, we often start from a vague and inexact solution approach. Implementations on the
other hand must be exact. Therefore, when trying to implement this algorithmic concept,
we are forced to make further design decisions. We often lack the expert knowledge to
do so, prompting us to make these ad hoc, adding accidental complexity. When testing a
method, we typically observe various issues in performance, which we subsequently patch.
These patches often solve problems only partially, or cause new problems, incrementally
adding further complexity. This spiral of added complexity, results in methods which might
perform well, but have a tendency of being overly complicated.
Remark that some automated approaches (see Section 3.3.2) also have a tendency to

produce overly complex designs. A general issue is that complex algorithms tend to greatly
outnumber simpler ones; e.g. there are twice as many n-bit programs as n−1-bit programs.

7.2. IDENTIFYING ACCIDENTAL COMPLEXITY 231

7.2 Identifying Accidental Complexity
In the previous section, we have presupposed that performant algorithmic solutions, espe-
cially those of a heuristic nature, have a tendency to be overly complex. In this section,
we will argue that it is therefore important to counteract this effect by making a dedicated
effort to reduce algorithmic complexity (i.e. simplify the solution approach) post hoc,
similar to the process of refactoring in software engineering [Fowler and Beck 1999], which
reduces code complexity (i.e. simplifies/improves the program structurally).

Accidental Complexity Analysis (ACA) is the term which we will use to collectively
refer to research practices targeted at identifying and eliminating accidental complexity
in algorithms. We wish to stress that while this term is novel, ACA itself surely is not.
Rather, it is something we argue, we should all be doing, yet rarely gets done thoroughly.
In ACA, we are to discriminate accidental from essential complexity, i.e. we are faced with
a structural “credit assignment problem” [Minsky 1961]: How is the success of a system
due to the contributions of the system’s various components?

Ablation analysis: The specific ACA technique we demonstrate in the next section can
be seen as an extensive comparison with a naive baseline. This practice has, in the past,
by some authors, been referred to as “ablation analysis”. This due to its similarity to the
ablation experiments performed in neurobiology [Flourens 1842], where one removes or
deactivates specific brain regions and subsequently observes differences in animals subjec-
ted to behavioral tests, allowing one to infer the functions of the removed areas. Similarly,
in this ACA technique, the contribution of algorithmic complexity is measured based on
the impact of its absence, i.e. we strip an algorithm from its complexity and determine
whether and how this impacts performance. We avoid using this “ablation analysis” ter-
minology as to elude confusion with the recent use of the term in the context of parameter
sensitivity analysis, targeted at deducing the importance of parameters [Fawcett and Hoos
2016, Biedenkapp et al. 2017]. Instead, lacking a better term, we will just generically refer
to it as “ACA”. However, we wish to stress again that ACA is a more general concept,
encompassing the gamut of techniques to identify/eliminate accidental complexity.

7.3 Case Study:
Accidental Complexity in Reusable Metaheuristics

In this section, we describe how we used ACA, in [Adriaensen and Nowé 2016a], to ana-
lyze the presence of accidental complexity in AdapHH, a state-of-the-art selection hyper-
heuristic for the HyFlex framework.

232 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

Table 7.1: The top eight contestants of the CheSC 2011 competition

rank method author score loc
1 AdapHH Mustafa Misir 181 2324
2 VNS-TW Ping-Che Hsiao 134 791
3 ML Mathieu Larose 131.5 323
4 PHUNTER Fan Xue 93.25 2849
5 EPH David Meignan 89.75 957
6 HAHA Andreas Lehrbaum 75.75 399
7 NAHH Franco Mascia 75 1089
8 ISEA Jiri Kubalik 71 1511

7.3.1 Context and Motivation
First, we provide some background and motivation for our case study. The objective of
this study was twofold: (1) illustrate ACA experimentally,1 and (2) provide evidence of
accidental complexity in prior art.
Reusable Metaheuristics: In our study, we investigate the presence of accidental com-
plexity in state-of-the-art “off-the-shelf” metaheuristics.2 Despite the numerous successful
applications of metaheuristics to a wide variety of problems, applying metaheuristics to
newly encountered problems remains notoriously challenging. This has prompted research
into more readily reusable off-the-shelf metaheuristics. As discussed earlier, simplicity is
an important factor contributing to the reusability of an algorithm. Yet, we find that many
of these off-the-shelf metaheuristics tend to be highly complex [Mladenović et al. 2016].
A complexity we conjecture to be often accidental, rather than essential because:

• They are designed predominantly manually and therefore susceptible to the spiral of
added complexity we characterized in Section 7.1.

• To achieve a higher level of generality these methods often resort to metaphor-
ical inspiration (see Section 2.7.2.4) and learning mechanisms (see Section 3.5.2.1),
both of which “encourage” the introduction of complexity whose contribution to
performance is rarely validated thoroughly.

AdapHH: We further motivate our choice for AdapHH, the selection hyper-heuristic for
HyFlex that won the CHeSC 2011 competition (see Section 5.2.1.2). Table 7.1 shows the
score obtained by, and the complexity3 of each of the top eight contestants. Looking at
these results we observe a lack of correlation between complexity and performance. Simpler

1In Section 5.3.2.2, we already applied ACA to FS-ILS.
2For more information about metaheuristics we refer the reader to Section 2.7.2. Off-the-shelf meta-

heuristics, selection hyperheuristics in particular, are discussed in Section 2.7.2.5.
3The lines of code (loc) metric was used as a rough estimate and was measured using the cloc tool

http://cloc.sourceforge.net/ (version 1.62).

http://cloc.sourceforge.net/

7.3. CASE STUDY: ACCIDENTAL COMPLEXITY IN ADAPHH 233

methods outperform more complex ones, in 15 out of 28 pairwise comparisons, suggesting
that high complexity is not essential to perform well on this benchmark. This is further
supported by our observations in Section 5.2, where, following a semi-automated design
approach, we obtained a simple4 selection hyper-heuristic (FS-ILS), which would have won
the CheSC 2011 competition. On the other hand, in Section 5.3.2.4, we compared amongst
others AdapHH and FS-ILS on the extended HyFlex benchmark set. While overall AdapHH
and FS-ILS (without restart) performed similar, AdapHH was shown to generalize better
to the three new domains. The main downside of AdapHH is that it is rather complex,
which is why we have selected it as the subject of our study.
AdapHH, was previously described in various articles:

• [Misir et al. 2011]: Extended abstract for CHeSC 2011, describing the contestant.
• [Misir et al. 2012b]: Full paper, describing and analyzing AdapHH in more detail.
• [Misir et al. 2012a]: Mustafa Misir’s doctoral dissertation.

During our literature survey, we have noted inconsistencies in these descriptions, suggesting
they consider slightly different versions. The version used in our study is the one which is
publicly available.5 We also used this version in Section 5.3.2.4, where a brief description
of this method can be found. More detailed descriptions of AdapHH’s sub-mechanisms
can be found in Appendix A.5.
Disclaimer: We are not the first to analyze AdapHH. In prior art, besides comparis-

ons with the state-of-the-art, various mechanisms were shown to influence its behavior
(e.g. heuristics are excluded/reincluded, parameter values are updated dynamically, etc.).
However, insufficient proof was presented that this behavior is actually beneficial. Note-
worthy is that [Misir et al. 2012a] did validate the two main mechanisms ADHS and AILLA,
replacing them with uniform random selection and various commonly used acceptance cri-
teria, respectively. To some extent, the study presented in the next section reproduces
these results, but goes well beyond this rather coarse-grained comparison, looking at the
contributions of its various sub-mechanisms.

7.3.2 Empirical Study
In what follows, we apply accidental complexity analysis to AdapHH. Table 7.2 describes the
39 simplifications considered in our experiments. In Section 7.3.2.1, we consider these in
isolation, and use experimental results to assess and discuss the contribution of the various
sub-mechanisms to AdapHH’s overall performance. Subsequently, in Section 7.3.2.2, we
discuss the possibility of combining these and present Lean-AdapHH, an implementation
combining a subset of these simplifications and show it to be competitive with AdapHH.

4216/166 lines of code with/without restart mechanism.
5Called GIHH: https://code.google.com/archive/p/generic-intelligent-hyper-heuristic/

https://code.google.com/archive/p/generic-intelligent-hyper-heuristic/

234 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

Table 7.2: The 39 simplifications considered in our experiments

Phase-based Heuristic Set Selection (ADHS)
noxo: Crossover heuristics are never selected.
runbestxo: Perform crossover with best since last reinit.
ph1: One phase per run (no phase-based updates).
fixpl: The phase length is constant pl = 500b

√
2Ne.

ph1types: One phase per run (ph1) + utdtypes.
utdtypes: Update heuristic types after each application.
notypes: Do not update heuristic types.
notabu: Heuristics are never excluded.
noqitabu: No exclusions by the QI tabu criterion.
noextreme: No extreme exclusion.
notabur: Relay hybridization is never tabu.
fixd: Tabu durations di are fixed to D = b

√
2Ne.

noubd: No upper bound for di (also noinfex).
noinfex: Heuristics are never excluded indefinitely.

Heuristic Selection
ursall: Heuristics are selected uniformly from the full heuristic set.
urs: Heuristics are selected uniformly from the elitist set.
norelay: Relay Hybridization (RH) is never used.
ronly: Always use relay hybridization.
urssingle: Single heuristics are selected as in urs.
urs1relay: Select the first heuristic in relay hybridization uniformly.
fixa: Fixed learning rates: αr(i) = 0.2, ∀i
r2impr: Pl2 = 0, i.e. do not select second heuristic in RH from list.
r2list: Pl2 = Ll2

Ll2+1 , where ll2 is the number of entries in the list.
Otherwise a heuristic is selected as in ursall.

Dynamic Parameter Adaptation
fixloc: Fix vi values to 0.2 (also noosc).
randloc: Select vi uniformly from [0.2, 1.0] (also noosc).
osconly: Modify vi only using parameter oscillation.
noosc: No parameter oscillation.
eloc: u is no random variable, instead u = ũ (mean).

Acceptance and Reinitialization Mechanism
acceptall: Accept any proposal (also nostuck).
anw: Reject all worsening proposals (also nostuck).
fixl: Fix l to 6.
fixk: Fix k to 20 (K = 100).
nok: Fix k to 0 (K = 0).
nostuck: The acceptance mechanism never signals stuck.
norestart: Reinitialization is disabled.
srestart: Use simplified reinitialization rules described in Appendix A.5.
torestart: Reinitialize iff stuck during the 1st half of the run.
contrestart: Reinitialize whenever stuck is signaled.
nobinit: Do not perform best-initialization.

7.3. CASE STUDY: ACCIDENTAL COMPLEXITY IN ADAPHH 235

7.3.2.1 Single Simplifications

In this section, we assess the contribution of individual mechanisms to AdapHH’s per-
formance and identify accidental complexity in the process. To this end, we evaluate the
performance of 39 simpler variants of AdapHH. Each variant applying one of the simpli-
fications described in Table 7.2 (∼ eliminating a particular sub-mechanism).
In this study, we are interested in estimating how likely a simplified method is to produce a

result worse/better than AdapHH after 10 minutes on the machine used during the CHeSC
competition (which is the de facto standard on HyFlex). In addition, we would also like
to take into account how much better/worse these results are. Therefore, we used the
average rank (amongst all 40 methods) of the solution quality obtained, per test on the
same instance (µrank). In our experiments, we run each of these 40 methods, 31 times,
for 10 minutes, on all 98 instances of the 9 domains in the extended HyFlex benchmark
set (Xall, see Appendix A.2). All experiments were performed on the same machine (see
Appendix A.1). To avoid bias due to temporal variations in system performance, we ran
each batch of 40 tests consecutively in the same process, in a variable random order (to
avoid dependencies between runs). Table 7.3 shows the outcome of these experiments. It
ranks each method by µrank. It also provides the p-value obtained by a paired Wilcoxon
signed rank test in a pairwise comparison with (unsimplified) AdapHH as a measure of
significance and the associated rank correlation W

S as a measure of effect size.6 In what
follows, we discuss these results in detail, considering a significance level of 1%. Note that
many differences are not significant, suggesting our sample size was too small. However,
insignificant differences are extremely small (WS < 0.05) and therefore unlikely to be
reproducible in slightly different settings (e.g. different platform) anyway.

Phase-based Heuristic Set Selection (ADHS): AdapHH, unlike many other single
point hyper-heuristics, uses crossover heuristics. In comparing with noxo, we find this
to be beneficial. Also, the mechanism managing five candidate solutions to be used as
second input in crossover outperforms the straightforward alternative runbestxo. AdapHH
subdivides a run into multiple phases, each lasting a varying # iterations (pl). At the end
of each phase, the elitist set is revised, heuristic types and pl are updated. Surprisingly, ph1
performed slightly better on average in our experiments, even though this difference was not
found to be significant, it leads us to question the contribution of pl adaptation, heuristic
types and the tabu mechanism used. fixpl performed very similar to AdapHH, which further
suggests that the phase length adaptation mechanism does not contribute to performance.
ph1types and utdtypes did perform (significantly) better, while notypes performed worse.
This suggests the use of dynamic types in AdapHH is actually beneficial, however, by
updating types only at the end it fails to exploit these benefits fully. Finally, none of the

6W : the test statistic; S : the total sum of ranks

236 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

Table 7.3: Comparison of AdapHH to 39 simpler variants

rank simplification µrank
W
S p

1 r2list 17.2964 0.0786 0.0003
2 utdtypes 17.4821 0.065 0.0027
3 torestart 17.5871 0.0617 0.0044
4 ph1types 17.6371 0.0501 0.0206
5 noqitabu 17.7956 0.0385 0.0756
6 fixd 17.8863 0.0324 0.1349
7 eloc 17.9249 0.0355 0.1017
8 noinfex 17.9279 0.0308 0.1555
9 noubd 17.9284 0.0368 0.0894
10 fixa 17.956 0.0316 0.144
11 srestart 17.9865 0.0303 0.1616
12 noosc 18.0276 0.0285 0.1887
13 notabu 18.1423 0.0117 0.589
14 fixl 18.2217 0.0109 0.6148
15 ph1 18.2625 0.0064 0.7676
16 fixk 18.2702 0.0022 0.9182
17 fixpl 18.3151 0.0036 0.8668
18 unsimplified AdapHH 18.3987 1 1
19 notabur 18.4451 0.0104 0.6301
20 nok 18.757 0.0302 0.1626
21 notypes 18.8165 0.0376 0.0829
22 noextreme 18.8367 0.0356 0.1003
23 osconly 19.4689 0.0833 0.0001
24 r2impr 19.564 0.101 0
25 fixloc 19.592 0.0932 0
26 noxo 19.6545 0.0881 0
27 randloc 20.5053 0.1646 0
28 runbestxo 20.8638 0.1923 0
29 nobinit 20.977 0.211 0
30 urs1relay 21.5767 0.246 0
31 contrestart 21.8003 0.2694 0
32 ronly 21.8183 0.2442 0
33 nostuck 23.1508 0.3283 0
34 norestart 23.4382 0.3551 0
35 urssingle 23.8746 0.3949 0
36 anw 25.6425 0.4733 0
37 norelay 26.2887 0.5122 0
38 urs 29.7704 0.7033 0
39 ursall 31.6582 0.7763 0
40 acceptall 32.4543 0.7956 0

7.3. CASE STUDY: ACCIDENTAL COMPLEXITY IN ADAPHH 237

simplifications to the tabu mechanism (notabu, noqitabu, noextreme, notabur, fixd,
noubd, noinfex) were found to have a significant impact on performance, which strongly
suggests that the (highly complex) tabu mechanism does not add any value.

Heuristic Selection: Both ursall and urs perform categorically worse than AdapHH,
implying AdapHH’s heuristic selection mechanism has a significant contribution to its per-
formance. AdapHH combines two mechanisms for selection heuristics: Single Selection
(SS) and Relay Hybridization (RH). Which is to be credited for this performance? The
fact that norelay and ronly perform significantly worse, suggests both. Do note ronly
clearly outperforms norelay, suggesting RH deserves credit in particular. Next, we take
a look at both mechanisms individually. SS is already rather straightforward and the
even simpler alternative urssingle performed significantly worse. RH, on the other hand,
is rather complex, and different mechanisms are used to select the first and (possibly)
second heuristic. The learning automaton used to update the selection probabilities of the
first heuristic contributes to performance, as urs1relay performs clearly worse. However,
using heuristic specific, adaptive learning rates αr(i) in this scheme does not (fixa). For
selecting the second heuristic, AdapHH combines list-based selection, used 25% (Pl2) of
the time, and a greedy selection scheme, used otherwise. Which of these two contribute to
performance? Our results suggest the former definitely does as r2impr performs signific-
antly worse. However, r2list performed significantly better, suggesting that the somewhat
cumbersome greedy selection scheme is not desirable.

Dynamic Parameter Adaptation: AdapHH is one of the few hyper-heuristics for Hy-
Flex modifying the α and β values for low-level heuristics. Most retain the default (0.2)
values. fixloc performs significantly worse, implying modifying these parameters is benefi-
cial. Furthermore, simple randomization of these values (randloc) performs worse as well.
In AdapHH two mechanisms update these parameters: One mechanism updates α and
β after each application, the other oscillates these parameters when the search is stuck.
Which of these contribute to performance? Our results suggest the former does as osconly
performs significantly worse. On the other hand, noosc seems competitive with AdapHH,
suggesting the contribution of parameter oscillation is minor (if any). Parameter updates
after each application are stochastic. eloc is competitive with AdapHH suggesting that
the stochasticity of these updates does not contribute to performance.

Acceptance and Reinitialization: AdapHH uses a relatively complex acceptance mech-
anism (AILLA) to decide whether or not to accept a proposal. The necessity of an ac-
ceptance mechanism to control diversification in AdapHH clearly shows in our experiments
(acceptall). An extensive comparison using alternative acceptance criteria was already
performed in [Misir et al. 2012a] suggesting AILLA is an important factor in the perform-

238 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

ance of AdapHH. We only include the most straightforward one anw in our study, which
was outperformed as expected. AILLA maintains a list of l threshold levels and uses two
patience thresholds, one to decide when to accept worsening solutions (k), another to de-
cide when to increase the threshold level (K). Both l, k and K are adapted dynamically.
In our experiments fixl and fixk (and nok) did not perform significantly worse, suggesting
the dynamic adaptation of these does not add much value and reasonable defaults can be
chosen in a general setting.
A unique feature of AdapHH is that the acceptance mechanism informs the reinitialization

mechanism. If the threshold exceeds its maximum value, the acceptance mechanism signals
the search is stuck, activating the reinitialization or parameter oscillation mechanism. The
fact that nostuck performs significantly worse suggests the importance of this mechanism.
Combining this with our earlier observation that parameter oscillation adds little value,
our results suggest the reinitialization mechanism contributes significantly to AdapHH’s
overall performance. The similarly poor performance of norestart confirms this. The exact
restart criterion was difficult to deduce as various (superfluous?) conditions were checked
throughout the code. srestart replaces all of these with a combination of rules we believe
to be functionally equivalent. The similar performance of srestart seems to confirm this
belief. Furthermore, our results for torestart suggest potential further simplification. All
these mechanisms disable restart in the second half of the run (perhaps earlier). When
restart is disabled, best-initialization is performed. The significantly worse performance of
contrestart and nobinit suggests it is important to do so.

7.3.2.2 Combining Simplifications

In the previous section, we have seen that AdapHH can be simplified in various ways
without loss of performance. In this section, we consider the potential of combining these
simplifications. Not all simplifications can be combined in a meaningful way. In our study,
we consider two types of (binary) relationships between simplifications prohibiting this:

mutual exclusiveness (a↔ b): If simplifications a and b are mutually exclusive, a com-
bination cannot have both a and b. This relation is irreflexive and symmetric.

subsumption (a← b): If a simplification a subsumes b, the presence of a renders b
redundant, e.g. b eliminates the mechanism a simplifies. This relation is reflexive,
antisymmetric and transitive.

Figure 7.1 shows the relationships between the simplifications in our study. The sim-
plifications that in isolation were not found to have a significant (negative) impact on
performance in the previous section are underlined. Two simplifications cannot be com-
bined if and only if there exists a path of 1-headed arrows or a 2-headed arrow directly

7.3. CASE STUDY: ACCIDENTAL COMPLEXITY IN ADAPHH 239

utdtypes

notypes

ph1types

ph1

fixpl

notabu

noqitabu

ronly

fixd noubd noinfex

noextreme notabur

norelay

fixa

urs1relay

r2list

r2impr

nok

anw

fixk

fixl

torestart

contrestart

srestart

noosc

nostuck osconly

eloc

ursall acceptall fixlocnoxo

runbestxours

urssingle

norestart

nobinit

randloc

Figure 7.1: Relationships between the 39 simplifications considered

connecting their corresponding nodes. The ability to combine simplifications gives rise to
a combinatorial space of simpler variants Asimpler. Here, we are interested in finding a set
of simplifications L, reducing the complexity of AdapHH maximally, without significantly
affecting performance.
Which raises the question “when is one set of simplifications A simpler than another B?”

We use the following criterion: One set of simplifications A is at least as simple as another
B if and only if ∀s ∈ B, ∃ s′ ∈ A : s′ ← s, i.e. for each simplification in B, A contains
one that subsumes it. Note that, in general, this criterion imposes a partial rather than a
total order over Asimpler. Finally, remark that simplifications when combined, can perform
significantly worse, even though they individually do not and vice versa. In this part of
our study, we make the simplifying assumption that this is never the case. Under this
assumption, we have a unique set of simplifications L, for which the resulting method is at
least as simple as that of any other competitive with AdapHH (subsuming all underlined
nodes), i.e. L = {ph1, fixa, r2list, nok, fixl, torestart, eloc, noosc}.
We have reimplemented this simplified variant, which we will refer to as Lean-AdapHH,

from scratch. We did so for various reasons. First, the publicly available version of AdapHH
is not its most elegant possible implementation, includes overly complex or even dead code,
and was in need of refactoring. Second, while our simplifications eliminate the effect of
mechanisms on algorithm behavior, their code would still present and statistics which are
no longer required would still be computed, introducing unnecessary overhead. Finally, in
reimplementing Lean-AdapHH, we validate our understanding of AdapHH, the correctness
of our simplifications, and the reproducibility of our results.

240 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

Table 7.4: Comparison of AdapHH to Lean-AdapHH

method % > W
S

p > >>

Lean-AdapHH 53.765 0.2134 0 60 30
AdapHH 39.3737 0 1 30 8

To verify whether this effort was successful, we have compared both AdapHH and Lean-
AdapHH (same process, random order) 31 times on each instance of the extended HyFlex
benchmark set. Table 7.4 shows the outcome of this experiment. As before, it shows the
rank correlation and the p-value of the Wilcoxon signed rank test. Instead of µrank, it
shows the percentage of tests each method performed better (% >), which is more intuitive
and informative in this case. In addition, we show the number of instances (out of 98) each
of the methods obtains the better median performance (>) on and how many of these were
found to be significant (>>). In summary, we find that Lean-AdapHH performs clearly
better than AdapHH. However, this was not our main objective. Rather, we set out to
simplify AdapHH (without loss of performance). This can be considered a success, as the
resulting implementation counts a mere 288 lines of code (vs. 2324 originally). Our code
was in no way compressed to cheat this metric, nor does it rely on third-party libraries
(besides HyFlex), and readability was always prioritized over brevity/efficiency. We do not
describe our implementation in detail here. However, it is isomorphic to AdapHH, after
applying the eight simplifications in L. Also, its code is made publicly available7 and is
well-documented.

7.4 Critical Reflection
In this Section, we discuss some of the limitations of our case study and ACA in general.

Potential bias: Remark that we “designed Lean-AdapHH” based on the observations
we made regarding the relative performance of 40 variants of AdapHH on the extended
HyFlex benchmark set (Xall). While we did not optimize Lean-AdapHH’s performance on
Xall directly,8 e.g. as we did with FS-ILS on Xchesc in Section 5.2, we nonetheless cannot
exclude the possibility that this biased our view on the relative performance of Lean-GIHH
and GIHH. Furthermore, since we used all available instances, we were unable to perform
an unbiased comparison post hoc. In retrospect, we should have split Xall into two, used
one for ACA, and the other for validation.

7Called Lean-GIHH: https://github.com/Steven-Adriaensen/Lean-GIHH
8Lean-AdapHH was not one of these variants, and our objective was reducing accidental complexity.

https://github.com/Steven-Adriaensen/Lean-GIHH

7.5. SUMMARY 241

Empirical: As discussed in Section 3.4.2, we cannot, based on empirical information
alone, show that one algorithm performs worse/better than another. As the ACA tech-
nique considered is highly empirical, it inherits this limitation. In our study, we eliminated
various “adaptive mechanisms”, originally introduced by the author for the purpose of
achieving a higher level of generality, based on the observation that they did not signific-
antly improve performance on 98 specific problem instances. We have no guarantees that
these mechanisms are not beneficial on other problems, not considered in our study. That
being said, we also have no evidence that they are. In arguing that, given this uncertainty,
one should exclude them, we essentially apply the parsimony principle (a.k.a. Occam’s
Razor) to algorithmics. Clearly, if ACA is performed by the author, as it should be, he/she
may elect to gather additional evidence for their merits, as opposed to excluding them.

Scalability: In our study, we considered 39 candidate simplifications of AdapHH. In
Section 7.3.2.1 we compared AdapHH, to 39 simpler variants, each implementing one of
these. In Section 7.3.2.2, we argued that some simplifications can be combined, giving rise
to a large space of simpler variants. Due to combinatorial explosion, a full comparison, was
no longer tractable, leading us to select a combination using a rather crude heuristic. While
we will need to resort to heuristics in some cases, we can reduce the resource requirements
of ACA in various ways. First, one may allocate resources non-uniformly. For instance,
use a statistical racing scheme (∼ those discussed in Section 4.1.2, p. 111) and test
only simpler variants which are not yet known to perform significantly worse/better. Also,
in some cases, data-efficiency could be improved by using the performance estimation
technique we introduced in Chapter 6. Finally, if we merely wish to find the simplest
variant, we could at any time eliminate variants more complicated than the simplest one
found thus far. More generally, tool support for ACA would be interesting future research.

7.5 Summary
Why bother sharing (and publishing) your algorithms, if they will not be reused by the rest
of the community? By describing overly complex solutions (or solutions overly complex)
we make reuse unnecessarily difficult, waste space in research journals and valuable time
of our peer researchers. In this chapter, we argued for the importance of representing
algorithmic contributions as simple as possible and proposed an analysis technique to help
doing so. The research described in this chapter was published in [Adriaensen and Nowé
2016a]. In what follows, we briefly summarize the content covered in each section.
In Section 7.1, we argued for simplicity as an important factor contributing to the re-

usability of an algorithm. Yet, when looking at state-of-the-art algorithmic solutions to
various problems, we often find them to be rather complex. Furthermore, we conjectured

242 CHAPTER 7. ACCIDENTAL COMPLEXITY ANALYSIS

this complexity often not to be essential, but rather an artifact of the “graduate student
search” approach by which these methods are designed, which has a tendency to produce
methods which (given a lot of manual effort) may perform well, but are overly complex.
In this dissertation, we have examined two different ways of addressing this problem.

In previous chapters, we looked into alternative, semi-automated design approaches, in
particular programming by configuration, which not only reduce the manual effort involved
in the process, but also offer more control and transparency about the quality attributes
(e.g. simplicity) of the resulting design. This can be viewed as the “proactive” approach
were we avoid introducing accidental complexity in the first place. However, (1) we
cannot expect the entire community to suddenly change the way they have been designing
algorithms for decades. (2) despite its many shortcomings, we cannot ignore the numerous
successes of the manual design approach. (3) design automation does not address the
existing accidental complexity in prior art. (4) contemporary automated techniques may
still produce overly complex designs. Therefore, in Section 7.2, we explored a “reactive"
strategy. Here, rather than trying to eliminate the source, we took the design (approach)
as a given and identify/eliminate accidental complexity through a post hoc analysis. A
practice we call Accidental Complexity Analysis (ACA). Here, we also characterized the
specific ACA technique, a.k.a. “ablation analysis”, we used in the remainder of this chapter.
In Section 7.3, we conducted a case study, applying ACA to AdapHH, a state-of-the-art

selection hyper-heuristic for the HyFlex framework. The objective of our study was twofold:
(1) illustrate ACA experimentally, and (2) provide evidence of accidental complexity in prior
art. In Section 7.3.1, we first provide some background and motivate our choice of AdapHH
as the subject of our study. In Section 7.3.2, we describe the empirical study itself, where we
considered 39 possible simplifications of AdapHH, each surgically eliminating a specific sub-
mechanism. In Section 7.3.2.1, we considered these in isolation, and identified various sub-
mechanisms that do not contribute significantly to AdapHH’s overall performance. On the
other hand, we have validated the contribution of various other mechanisms. Subsequently,
in Section 7.3.2.2, we discussed the possibility of combining these simplifications and
presented Lean-AdapHH, a simplified reimplementation of AdapHH, reducing its code
complexity with a factor of eight, without loss of performance.
Finally, in Section 7.4, we presented a critical reflection on our own research. Here, we

discussed the possible influence of bias and variance on our assessment of Lean-AdapHH’s
performance, as well as the limited scalability of the ACA technique used in our case study.

8 | Conclusion
In this chapter, we conclude this dissertation. Here, we highlight certain aspects of this
work and offer some broader perspectives. It is structured as follows: First, in Section 8.1,
we give an overview of the research performed in this dissertation and summarize our main
findings. Subsequently, in Section 8.2, we discuss what we regard to be some of the main
limitations of this work and characterize possibly interesting lines of future research.

8.1 Research Questions (revisited)
In this section, we revisit the research questions we have formulated in Section 1.2.2. For
each of these questions, we summarize the research we have performed in the context of
answering it and formulate a concrete answer. A more complete survey of the content
covered in this dissertation, can be found in the summaries at the end of each chapter.

Disclaimer: Two parts, two kinds of research. Remark that we answered some of the
questions below, partially (and R.A.1 even entirely) in the first part of this dissertation
(i.e. Part I). As discussed in Section 1.3.1, the “research” performed in part I is of a more
“descriptive” nature. Our claims here are frequently only supported by informal arguments,
as supposed to, e.g., experimental studies, as in Part II. Therefore, albeit carefully justified,
we wish to stress that our answers below are to some extent inherently subjective, reflect
our personal opinion, and we do not claim that they hold the absolute truth. That being
said, we also do not wish to make such claims about our research in part II either.
Bottom line: These are our answers which are based on what we have learned through

the different kinds of research we have performed in the scope of this dissertation.

243

244 CHAPTER 8. CONCLUSION

Q.A. How can computers help us in designing reusable heuristics?
This was the central question we investigated in this dissertation (see Chapters 3-6).
We will postpone our answer to this question until the end. First, we discuss how we
approached this question, and answered the three more specific questions we examined in
this context. Noteworthy is that we studied this question within the standard framework
of algorithmics, i.e. we viewed algorithm design itself as “a problem”, which we refer to
as the Algorithm Design Problem (ADP). In the ADP, we are to find the best algorithm
to do something (see Section 3.1). Here, we viewed “the problem of designing reusable
heuristics” as a special case thereof, where we are to find “the most reusable heuristic”.

Q.A.1. What makes one heuristic more reusable than another?
Various factors affect the reusability of a heuristic (see Section 3.2). An important factor
is its performance, i.e. people tend to use heuristics that perform well, or better than
others (see Section 3.2.1). The performance of a heuristic can be further subdivided in:

• efficiency: Its ability to solve a problem using little resources.
• efficacy: Its ability to obtain good solutions to a problem.
• generality: Its ability to solve a wide range of different problems.

However, performance is not all that matters (see Section 3.2.2). In particular, we argued
for simplicity as another important factor affecting the reusability of a heuristic (see
Section 7.1). Simpler heuristics are easier to understand, implement, analyze and improve.
In summary, our objective was to design simple heuristics which require little resources

to obtain high-quality solutions for a wide range of problems. However, these objectives
(simplicity, efficiency, efficacy and generality) are commonly believed to be strongly con-
flicting. This has prompted us to more closely examine the tension between our objectives
(see Section 3.2.3), i.e. does such thing as “the most reusable heuristic” exist?
Here, we found that theoretically ADPs where the tension between some of these object-

ives is indeed inherent and strong can be shown to exist. On the other hand, we did not
find any evidence that this is, in fact, the case for ADPs actually encountered in practice.
In particular, for the ADPs we considered in our case studies in Part II.

Q.A.2. Which of the existing approaches is best suited to design reusable heuristics?
To answer this question, we looked at a wide variety of techniques which are currently
being used to design algorithms and discussed what makes them in our opinion more/less
suitable in the context of the design of “reusable heuristics”:

Manual vs. Automated: To date, heuristics are commonly designed following a manual,
ad hoc, trial & error process (see Section 3.3.1). Despite many successful applic-
ations, we argued that this modus operandi is tedious, time-consuming, costly and

8.1. RESEARCH QUESTIONS (REVISITED) 245

frequently results in heuristics with poor reusability. This led us to explore alternat-
ives. In particular, we looked at automated design techniques which we believe to
show great potential to address the aforementioned limitations→ automated.

Fully vs. Semi-automated: In automated design, we further distinguished between fully
and semi-automated approaches, giving rise to a rough classification of design ap-
proaches based on the role the human designer is envisioned to play in the process
(see Section 3.3). In fully-automated approaches, all decisions w.r.t. “how to solve
the problem” are left to the computer (see Section 3.3.2: program synthesis, genetic
programming, neural Turing machines, etc.). Semi-automated approaches differ in
that they try to maximally exploit any knowledge the human designer might posses
w.r.t. solving the problem, to constrain the design space a priori (see Section 3.3.3:
e.g. algorithm selection, algorithm scheduling, algorithm configuration, optimizing
compilers, etc.). We focus on the latter because (A) fully-automated approaches are
often computationally intractable, and (B) even in expert-knowledge poor areas like
heuristic optimization, we can exclude certain designs a priori→ semi-automated.

Analytical vs. Empirical: In Section 3.4, we further distinguished between pure analyt-
ical and empirical approaches, based on whether the designer uses only a priori
information (∼ what is known beforehand) or also a posteriori information (∼ ex-
perience obtained through experimentation). By nature, what can be said, a priori,
about the relative performance of two heuristics is limited, prompting the designer
to collect additional information, a posteriori, i.e. actually test candidate heuristics.
→ empirical (a.k.a. simulation-based).

Offline vs. Online: In Section 3.5, we further categorized empirical approaches based on
whether they solve the ADP offline (“design before use”, see Section 3.5.1) or online
(“design during use”, see Section 3.5.2). In Section 3.5.3, we argued that while
the offline setting is often impractical, the true online setting is overly restrictive,
and in many practical settings what we call a “semi-online” (“design during spare
time”) approach suffices. Furthermore, we argued that in this setting, “anytime”
(see Section 2.6.4) and not “online” is the property of interest→ anytime (offline).

Per-set vs. Per-input vs. Dynamic Algorithm Selection: In Chapter 4, we discussed
three generic approaches in more detail, which we regard as being prototypical for
semi-automated design. These can be viewed as solving the ADP by reduction to
one of three variants of the algorithm selection problem:

• Per-set Algorithm Selection Problem (set-ASP, see Section 4.1)
• Per-input Algorithm Selection Problem (input-ASP, see Section 4.2)
• Dynamic Algorithm Selection Problem (dynamic ASP, see Section 4.3)

246 CHAPTER 8. CONCLUSION

For each of these problems, we presented a formal definition,1 discussed the reduction
and described concrete algorithmic techniques for solving them. We also illustrated
some of these experimentally, by using them to design a sorting algorithm. We
found that the set-ASP solvers offer a level of generality, ease-of-use, control, trans-
parency, anytime and asymptotic performance, etc. that cannot be found in the
techniques which are currently used for solving the input-ASP and the dynamic ASP
(see Section 4.4.2). → Design by Per-set Algorithm Selection.

In summary, in Part I, we argued the “design by per-set algorithm selection” (set-ASP)
approach to be, to date, one of the most suitable, general approaches for designing reusable
heuristics. Following this approach, the human designer first specifies a set of candidate
algorithms and a set of representative training instances. The computer subsequently tests
the algorithms on these instances and determines which one, on average, performs best.
In Chapter 5 (Part II), we conducted a case study investigating the suitability of this ap-

proach experimentally. Here, we considered one specific instance of the set-ASP approach
which we refer to as Programming by Configuration (PbC, see Section 5.1). In PbC, one
solves the ADP by reducing it to an Algorithm Configuration Problem (ACP) which is
subsequently solved using tools known as algorithm configurators. In Section 5.2, we used
PbC to design a metaheuristic [Adriaensen et al. 2014a]. Subsequently, we analyzed the
reusability of the resulting design: FS-ILS [Adriaensen et al. 2014b] (see Section 5.3.2).
In particular, we investigated its generality [Adriaensen et al. 2015] (see Section 5.3.2.4),
showing it to be competitive with the state-of-the-art across 98 instances, 68 of these
were “new”, i.e. not used during FS-ILS’s design. These instances were taken from nine
different combinatorial optimization problems, 30 were taken from three “new” domains.

Q.A.3. How can we further improve this approach?
The ease with which PbC can be applied to a wide variety of different ADPs arguably
makes it one of the most “off-the-shelf” solutions to automated algorithm design thus far.
However, it also has shortcomings. In Chapter 6, we presented a critical reflection on PbC
(and the set-ASP approach in general), discussing its limitations and presenting our own
work towards addressing these. Arguably, the main limitation of PbC is that it requires
a large amount of computational resources. For instance, we allocated roughly one CPU
year to the design of FS-ILS (which took the 30 CPUs used less than two weeks).The vast
majority of these resources are spent evaluating the average performance of the candidate
designs which typically involves executing each of them numerous times (e.g. on different
training instances). Reducing the number of executions needed (∼ data-efficiency) is as

1One contribution, we wish to highlight here, is that we presented the first formal definition of the
general dynamic ASP [Adriaensen and Nowé 2016b] as a natural extension of the static ASP [Rice 1976].

8.1. RESEARCH QUESTIONS (REVISITED) 247

such critical. In contemporary configurators, this is mainly achieved by cleverly allocating
executions as to avoid wasting resources in evaluating suboptimal designs. In the remainder
of Chapter 6, we explored a different (complementary) approach. It is based on the
observation that configurators treat the performance of a design, on a given problem
instance, as a “black box” function mapping problem instance and design to some real cost
value. In doing so, they abstract the fact that this mapping is a consequence of algorithm
execution, i.e. design decisions affect the execution on a problem instance in a particular
way, which in turn relates to the observed performance. Information which we conjectured
could otherwise be used to further improve the data efficiency [Adriaensen and Nowé
2016b]. To this end, we proposed a novel performance estimation technique exploiting
this information to generalize performance observations beyond the designs used to obtain
them [Adriaensen et al. 2017]. To validate this approach experimentally, we described a
“white box” configurator implementing our technique and showed that it indeed improves
the data efficiency (up to several orders of magnitude) in three selected scenarios.

Answer Q.A: So, how can computers help us in designing reusable heuristics? Today
and in the future? Recall that heuristics are non-exact problem-solving procedures that,
despite the lack of relevant theoretical guarantees they provide, often perform very well in
practice (see Definition 2.30). This lack of knowledge about the performance of a heuristic
makes it intrinsically difficult to predict, a priori, whether a given heuristic will perform
well, better/worse than another, etc. This, in turn, has a profound impact on how these
heuristics are designed: Lacking analytical knowledge, the designer must resort to empirical
knowledge, i.e. try out various alternatives to find one that works well. To decide which
alternatives to try (first), the designer relies heavily on intuition and experience.
All things considered, it is our belief that, to date, the main role computers can/should

play in the design of heuristics is automating the evaluation of alternative heuristics. Put
differently, we advocate a semi-automated approach where the human designer proposes
candidate heuristics and the computer tries them out to determine which one of these
performs best (∼ set-ASP approach). While this automated evaluation is to date still
time-consuming, it is time the human researcher can spend on other activities.
In the future, we predict that the design of reusable heuristics will

become increasingly automated: We believe that future advances in computing archi-
tecture and AI techniques will continue to reduce the reliance on the human designer
to a priori constrain the design space. Furthermore, we envision the emergence of
increasingly sophisticated computer-aided programming tools which seamlessly in-
tegrate these high levels of automation in the design process.

happen “in the large”: Currently, individual (or small groups of) researchers, each define
their own design spaces and use their own limited computational resources to identify

248 CHAPTER 8. CONCLUSION

designs suited for a particular use case. In the future, we believe that we will evolve
to a system (∼ the one envisioned in [Swan et al. 2015] for metaheuristics) where

1. Researchers add algorithmic contributions to a shared executable repository.
2. A shared computation infrastructure continuously evaluates candidate designs

and identifies the state-of-the-art.
That is, we envision that both the design space definitions and computational re-
sources will be shared on a community level towards achieving the common goal of
finding ever more reusable algorithms.

Q.B. How can we improve the reusability of heuristics post hoc?
While it is our belief that this collaborative, increasingly automated approach is the future,
it is somewhat naive to expect that this change will happen overnight. Therefore, we also
explored an alternative approach. Here, rather than trying to replace/improve the design
process, we investigated the possibility of improving the reusability of the resulting design
post hoc. This approach has the benefits of (1) being less disruptive, (2) being applicable
to improve the reusability of existing designs independently of how they were obtained.
In particular, we focused on ’simplicity’, a factor we argued to be often overlooked when

designing algorithms, which consequently tend to be overly complicated (see Section 7.1).
To counteract this effect, we advocated Accidental Complexity Analysis (ACA), a research
practice targeted at identifying excessive complexity in algorithms [Adriaensen and Nowé
2016a]. Here, we described a simple post hoc analysis technique targeted at identifying
ways in which a method can be simplified, without loss of performance (see Section 7.2);
and demonstrated its use(fullness) by applying it to a state-of-the-art metaheuristic: Ad-
apHH (see Section 7.3). This analysis gave us a deeper insight into the relative contri-
butions of AdapHH’s various sub-mechanisms to its overall performance, enabling us to
reduce its code-complexity by a factor of eight, without loss of performance.

8.2 Limitations and Future Research
In the remainder of this chapter, we briefly discuss a few important limitations of our own
research and suggest how these could be addressed in future research.

Our focus on performance: In this work, we have argued that while performance is
important, “it is not the only thing that matters” (see Section 3.2.2). In particular, we
argued for the importance of simplicity. In contrast, in our discussion of design techniques
and in their applications in our case studies, we always considered optimizing average-case
performance as our sole objective. For example, the only action taken to “encourage”

8.2. LIMITATIONS AND FUTURE RESEARCH 249

simplicity in the design of FS-ILS, was including simpler variants of candidate designs in
our design space. While necessary, this alone is insufficient to avoid introducing accidental
complexity. Future research could look at how to integrate Occam’s razor in set-ASP
approaches (e.g. PbC). One option would be to solve the ADP as a Multi-Objective (MO)
problem (i.e. performance and simplicity). For instance, PbC using MO configurators
(e.g. S-Race [Zhang et al. 2016], MO-ParamILS [Blot et al. 2016]).

Our focus on sequential computation: Historically, computing systems have tended
to get faster at an exponential rate (∼ Moore’s law). Software performance automatically
scaled along, without requiring any additional efforts from the developer. Currently, the
situation is no longer as simple [Sutter 2005]: Contemporary systems, rather than getting
faster and faster, are able to do more and more work in parallel. To take advantage of these
(increasing) parallel processing capabilities, computations must be decomposed/able into
a set of interdependent tasks that can be executed efficiently in parallel across multiple
cores and/or across multiple networked machines. In this context, the “parallelism” of an
algorithm, i.e. its ability to be executed more efficiently in parallel, is an important quality
attribute. While this parallel trend is not exactly new, to date, research in algorithmics
still often overlooks parallelism. This is a topic which also did not receive the attention it
arguably deserves in the scope this dissertation. Nonetheless, most of the techniques we
described are readily applicable to the design of parallel algorithms; e.g. in the ASP, one
could consider a set of parallel algorithms as algorithm space. That being said, prior art
exists specifically targeted at the design of parallel algorithms, e.g. parallel algorithm
portfolios [Gomes and Selman 2001, Yun and Epstein 2012, Lindauer et al. 2015], which
we did not cover extensively in this work. Finally, parallelism is also important at the
meta-level, i.e. we wish to exploit parallel processing capabilities in solving the ADP.
Most contemporary configurators (e.g. GGA, iRace, ParamILS and SMAC) natively support
fine-grained parallelization strategies. One could apply similar strategies in our white box
configurator (see Section 6.4). Note that the computation of IS estimates can be efficiently
parallelized as well (see Section 6.3.2.4).

Our manual approach to the meta-ADP: In this dissertation, we looked at how to
design algorithms for solving a given computational problem (target problem), automatic-
ally. To this end, we treated “the problem of designing algorithms” itself as a computational
problem (i.e. the ADP) and continued to describe various “algorithms for designing al-
gorithms” (i.e. ADP solvers). The attentive reader may wonder: If the ADP is just another
computational problem, why then, did we not apply some existing design automation
technique (e.g. PbC) to design ADP solvers? Why not consider the ADP itself as target
problem? For instance, in Section 6.4, we described a white box configurator which we
designed following a manual “graduate student search” approach (see Section 3.3.1). In-

250 CHAPTER 8. CONCLUSION

deed, “how to best solve the ADP” (meta-ADP) is an ADP itself, and in a sense “we failed
to practice what we preach”. Our excuse? Short answer: The limitations of contemporary
automated design approaches. A particular issue with current simulation-based approaches
(e.g. PbC) is that they require us to actually solve numerous instances of the target prob-
lem. This becomes intractable when candidate solvers take a long time to do so. For
example, let us consider a target problem whose instances can be solved in 3.6 seconds,
and an ADP solver which requires 1000 evaluations to provide a good design. Solving this
ADP instance as such requires 3600 seconds (one hour). Applying the same ADP solver
to the associated meta-ADP would take 3600000 seconds (41-42 days). Addressing this
shortcoming is crucial to solving the meta-ADP (and many other ADPs) automatically.
One promising approach uses surrogate ADPs: Instead of solving instances of the actual
ADPs of interest to test a candidate ADP solver, we could solve target problems which
have similar properties, but are easier. Recently, [Dang et al. 2017] proposed this strategy
in the context of the ACP, and demonstrated its use in the automatic configuration of
iRace. While constructing surrogates is expensive, it is a one-time expense since they can
be reused for any future benchmarking purposes. Recently, [Eggensperger et al. 2018]
derived surrogates for all instances in the AClib.

We did not provide tool support: In this dissertation, we have investigated automated
algorithm design from an algorithmic perspective, i.e. we examined (1) how one can
formulate the ADP as a computational problem and how to solve the resulting problem
automatically. However, to make this (semi-)automated design approach practical, we also
need (2) tools (libraries, programming languages, etc.) that facilitate this reduction and
seamlessly integrate it into the human designer’s workflow. Examples of prior art in (2)
are the programming language extensions which were proposed in [Ansel et al. 2009] and
[Hoos 2012] allowing the user to specify open design choices and alternative decisions in
code, i.e. to effectively program a design space, rather than a single algorithm instance.
While we performed some research in this area ourselves, it was not our focus and we have
not detailed these efforts in this work.

In the grand scheme of things...
As discussed in Section 1.1, our research was geared towards addressing a wide variety of
issues that, in our opinion, negatively impact algorithmic research. However, in the scope
of this dissertation, we have merely touched the proverbial tip of the iceberg on numerous
topics. In particular, our work towards addressing specific issues was often restricted to
high-level discussions, proofs of concept and validation thereof in the context of small-scale
case studies. Despite these limitations, it is our belief that this work has helped raising
awareness for these issues and that the presented perspectives and suggested approaches
will facilitate addressing these shortcomings in the future.

A | Appendix
A.1 Benchmark Environment Description
All experimental results we have reported in this dissertation were obtained using the same
machine. While we have actively tried to avoid, were possible, that the specifics of the
environment (machine, operating system, etc.) in which our experiments were executed,
influenced the outcome thereof, some of the metrics reported in this dissertation were
nonetheless platform-dependent. Below we characterize the environment in which we have
executed our experiments:

name: ‘‘Pluisje’’
location: AI-lab
administrator: Frederik Himpe
architecture: cluster
processor: Intel Xeon E5320 (clock speed: 1.86GHz)
memory: 8GB RAM
operating system: Scientific Linux 5.5 (64-bit)

We have coded all our experiments in the Java (openjdk version 1.8.0 151) program-
ming language. Also, the code used in our experiments is publicly available1

1https://github.com/Steven-Adriaensen. More specific references and references to third-party
software can be found in the main text.

251

https://github.com/Steven-Adriaensen

252 APPENDIX A.

A.2 The HyFlex Benchmark Set
In various experiments, we considered evaluating the performance of selection hyper-
heuristics across multiple domains. To facilitate this evaluation, we used the HyFlex
framework [Ochoa et al. 2012], which provides problem instances and problem-specific
components for six different problem domains (see Section 5.2.1.2). HyFlex was used to
support the CHeSC 2011 competition, and results obtained by its contestants were used
as a baseline in some of our experiments. Also, in [Adriaensen et al. 2015], we extended
this framework with three additional problem domains (see Section 5.3.2.4). As such, in
different experiments, we considered different subsets of problem instances. They are:

Xprior: The 40 instances which were made available prior to the CHeSC 2011 competition.

Xchesc: The 30 instances which were used in evaluating the performance of contestants
during the CHeSC 2011 competition.

Xold: The 68 instances which are currently provided by HyFlex (version 1.0, which was
released after the CHeSC 2011 competition).

Xnew: The 30 instances of the three domains which we have added ourselves.

Xall: All 98 instances in the extended HyFlex benchmark set.

Below we list all the instances in Xall, per problem domain, and indicate in which of
the aforementioned subsets they are included. In HyFlex, within a domain, instances are
identified by an integer (index), which is specified in the first column of each table.

Maximum Satisfiability (SAT)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 1 0 1 0 1
1 1 0 1 0 1
2 1 0 1 0 1
3 1 1 1 0 1
4 1 1 1 0 1
5 1 1 1 0 1
6 1 0 1 0 1
7 1 0 1 0 1
8 1 0 1 0 1
9 1 0 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1

Bin Packing (BP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 1 0 1 0 1
1 1 1 1 0 1
2 1 0 1 0 1
3 1 0 1 0 1
4 1 0 1 0 1
5 1 0 1 0 1
6 1 0 1 0 1
7 1 1 1 0 1
8 1 0 1 0 1
9 1 1 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1

A.2. THE HYFLEX BENCHMARK SET 253

Personnel Scheduling (PSP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 1 0 1 0 1
1 1 0 1 0 1
2 1 0 1 0 1
3 1 0 1 0 1
4 1 0 1 0 1
5 1 1 1 0 1
6 1 0 1 0 1
7 1 0 1 0 1
8 1 1 1 0 1
9 1 1 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1

Permutation Flow Shop (PFS)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 1 0 1 0 1
1 1 1 1 0 1
2 1 0 1 0 1
3 1 1 1 0 1
4 1 0 1 0 1
5 1 0 1 0 1
6 1 0 1 0 1
7 1 0 1 0 1
8 1 1 1 0 1
9 1 0 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1

Traveling Salesman Problem (TSP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 0 1 1 0 1
1 0 0 1 0 1
2 0 1 1 0 1
3 0 0 1 0 1
4 0 0 1 0 1
5 0 0 1 0 1
6 0 1 1 0 1
7 0 1 1 0 1
8 0 1 1 0 1
9 0 0 1 0 1

Vehicle Routing Problem (VRP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 0 0 1 0 1
1 0 1 1 0 1
2 0 1 1 0 1
3 0 0 1 0 1
4 0 0 1 0 1
5 0 1 1 0 1
6 0 1 1 0 1
7 0 0 1 0 1
8 0 0 1 0 1
9 0 1 1 0 1

0-1 Knapsack Problem (KP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 0 0 0 1 1
1 0 0 0 1 1
2 0 0 0 1 1
3 0 0 0 1 1
4 0 0 0 1 1
5 0 0 0 1 1
6 0 0 0 1 1
7 0 0 0 1 1
8 0 0 0 1 1
9 0 0 0 1 1

Quadratic Assignment Problem (QAP)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 0 0 0 1 1
1 0 0 0 1 1
2 0 0 0 1 1
3 0 0 0 1 1
4 0 0 0 1 1
5 0 0 0 1 1
6 0 0 0 1 1
7 0 0 0 1 1
8 0 0 0 1 1
9 0 0 0 1 1

Max Cut Problem (MAC)
index ∈ Xprior ∈ Xchesc ∈ Xold ∈ Xnew ∈ Xall
0 0 0 0 1 1
1 0 0 0 1 1
2 0 0 0 1 1
3 0 0 0 1 1
4 0 0 0 1 1
5 0 0 0 1 1
6 0 0 0 1 1
7 0 0 0 1 1
8 0 0 0 1 1
9 0 0 0 1 1

254 APPENDIX A.

A.3 Properties of ô and Their Proofs
Here, we will list and proof some properties of the Importance Sampling (IS) estimate
of algorithm performance described in Section 6.3.2.3. More specifically, for the variant
defined in Equation 6.6:

ô(θ) = 1
|E′|

∑
e∈E′

wθ(e)p(e)

with

wθ(e) = pr(e|θ)
Q′(e) and Q′(e) =

∑
θ′∈Θ′

|E′θ′ |
|E′|

pr(e|θ′)

where, E′ =
⋃
θ′∈Θ′ E

′
θ′ is a sample of executions, generated using θ′ ∈ Θ′ on x ∼ D.

Theorem A.1: ô combines all/only relevant observations

The weight function wθ in Equation 6.6 satisfies

pr(e|θ) > 0 ⇐⇒ wθ(e) > 0,∀e ∈ E′,∀ θ ∈ Θ.

Proof. We show that Q′(e) ∈ R+
0 ,∀e ∈ E′ which implies the statement in the theorem.

Q′(e) is non-negative and finite since it is a finite sum of non-negative, finite terms.
Q′(e) is also strictly positive, since at least one of these terms is strictly positive as
e ∈ E′ =⇒ ∃ θ′ ∈ Θ′ : pr(e|θ′) > 0 ∧ |E′θ′ | > 0.

Lemma A.2: ô is an unbiased estimator for o

Assuming E′ generated as described above and pr(e|θ) > 0 =⇒ Q′(e) > 0,
ô(θ) as in Equation 6.6 is a random variable with

E[ô(θ)] = o(θ)

i.e. ô is an unbiased estimator for o.
Proof.

E[ô(θ)] = E
[

1
|E′|

∑
e∈E′

wθ(e)p(e)
]

= E

 1
|E′|

∑
θ′∈Θ′

∑
e∈E′

θ′

wθ(e)p(e)



A.3. PROPERTIES OF Ô AND THEIR PROOFS 255

= 1
|E′|

∑
θ′∈Θ′

EE′
θ′
∼θ′

 ∑
e∈E′

θ′

wθ(e)p(e)


=
∑
θ′∈Θ′

1
|E′|

EE′
θ′
∼θ′

 ∑
e∈E′

θ′

wθ(e)p(e)


=
∑
θ′∈Θ′

|E′θ′ |
|E′|

Ee∼θ′ [wθ(e)p(e)]

=
∑
θ′∈Θ′

|E′θ′ |
|E′|

∑
e∈E

wθ(e)p(e) pr(e|θ′)

=
∑
e∈E

wθ(e)p(e)
∑
θ′∈Θ′

|E′θ′ |
|E′|

pr(e|θ′)

=
∑
e∈E

pr(e|θ)
Q′(e) p(e)Q

′(e)

=
∑
e∈E

pr(e|θ)p(e)

= o(θ)

Theorem A.3: ô is a consistent estimator for o

ô(θ) as shown in Equation 6.6 is a consistent estimator for o(θ), i.e.

lim
|E′|→∞

Pr(|ô(θ)− o(θ)| < ε) = 0,∀ε > 0. (convergence in probability)

Assuming there exist finite constants b ≥ 0 and qmin > 0 such that ∀e ∈ E

1. |pr(e|θ)p(e)| ≤ b.

2. pr(e|θ) > 0 =⇒ ∃ θ′ ∈ Θ′ : lim|E′|→+∞
|E′
θ′ |
|E′| pr(e|θ′) ≥ qmin.

Proof. Using Markov’s inequality we have

lim
|E′|→+∞

Pr(|ô(θ)− o(θ)| < ε) ≤ lim
|E′|→+∞

E[(ô(θ)− o(θ))2]
ε2

As probabilities are by definition non-negative, it suffices to show that

lim
|E′|→+∞

E[(ô(θ)− o(θ))2] = 0 (convergence in MSE).

256 APPENDIX A.

Furthermore, since the MSE can be decomposed in a variance and (squared) bias term
[Wackerly et al. 2007], we have

lim
|E′|→+∞

E[(ô(θ)− o(θ))2] = lim
|E′|→+∞

Var[ô(θ)] + (E[(ô(θ)− o(θ)])2

= lim
|E′|→+∞

Var[ô(θ)] (using Lemma A.2)

= lim
|E′|→+∞

Var
[

1
|E′|

∑
e∈E′

wθ(e)p(e)
]

= lim
|E′|→+∞

Var

 1
|E′|

∑
θ′∈Θ′

∑
e∈E′

θ′

wθ(e)p(e)


= lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

VarE′
θ′
∼θ′

 ∑
e∈E′

θ′

wθ(e)p(e)


= lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |Vare∼θ′ [wθ(e)p(e)]

= lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |Ee∼θ′ [wθ(e)2p(e)2]

− lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |Ee∼θ′ [wθ(e)p(e)]2

≤ lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |Ee∼θ′ [wθ(e)2p(e)2]

≤ lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |
∑
e∈E

pr(e|θ′)wθ(e)2p(e)2

≤ lim
|E′|→+∞

1
|E′|2

∑
θ′∈Θ′

|E′θ′ |
∑
e∈E

pr(e|θ′)pr(e|θ)2

Q′(e)2 p(e)2

≤ lim
|E′|→+∞

b2

q2
min|E′|2

∑
θ′∈Θ′

|E′θ′ |
∑
e∈E

pr(e|θ′)

≤ lim
|E′|→+∞

b2

q2
min|E′|2

∑
θ′∈Θ′

|E′θ′ |

≤ lim
|E′|→+∞

b2

q2
min|E′|

≤ 0

A.3. PROPERTIES OF Ô AND THEIR PROOFS 257

Theorem A.4: ô degenerates to ō for non-overlapping samples

When all observations, thus far, are relevant only for the configuration that was used
to generate them, the IS estimate reduces to an ordinary sample average, i.e.

pr(e|θ) ∗ pr(e|θ′) = 0,∀ e ∈ E′,∀ θ ∈ Θ,∀ θ′ ∈ Θ′ \ {θ} (A)
=⇒

ô(θ) = ō(θ),∀ θ ∈ Θ

Proof. We first show that the left hand side of the implication (A) implies

wθ(e) =
{ |E′|
|E′
θ
| e ∈ E′θ

0 e ∈ E′ \ E′θ

Assuming e ∈ E′
θ: This implies pr(e|θ) > 0.

From (A) it follows that pr(e|θ′) = 0,∀ θ′ ∈ Θ′ \ {θ} and therefore

wθ(e) = pr(e|θ)∑
θ′∈Θ′

|E′
θ
|

|E′| pr(e|θ′)
= pr(e|θ)
|E′
θ
|

|E′| pr(e|θ)
= |E

′|
|Eθ|

Assuming e ∈ E′ \ E′
θ: This implies ∃ θ′ ∈ Θ′ \ {θ} : pr(e|θ′) > 0.

From (A) it follows that pr(e|θ) = 0 and therefore wθ(e) = 0.

We can now rewrite Equation 6.6 as follows:

ô(θ) = 1
|E′|

∑
e∈E′

wθ(e)p(e) = 1
|E′|

∑
e∈E′

θ

|E′|
|E′θ|

p(e) = 1
|E′θ|

∑
e∈E′

θ

p(e) = ō(θ)

Theorem A.5: pr′ and pr are interchangeable in the computation of ô

Assuming pr′ is any function satisfying criteria (a) and (b) in Equation 6.1, we have

wθ(e) = pr′(e|θ)∑
θ′∈Θ′

|E′
θ′
|

|E′| pr′(e|θ′)
,∀e ∈ E′,∀θ ∈ Θ

258 APPENDIX A.

Proof. We will prove the cases wθ(e) = 0 and wθ(e) > 0 separately.

wθ(e) = 0: Note that this implies pr(e|θ) = 0 (Theorem A.1).
By criterion 6.1.a we therefore have pr′(e|θ) = 0.
Also, as e ∈ E′ we have

∑
θ′∈Θ′

|E′
θ′ |
|E′| pr(e|θ′) > 0,∀e ∈ E′.

Combining this with the fact that terms in Q′(e) are non-negative, criterion 6.1.a
implies that also

∑
θ′∈Θ′

|E′
θ′ |
|E′| pr′(e|θ′) > 0 and pr′(e|θ)∑

θ′∈Θ′

|E′
θ′
|

|E′| pr′(e|θ′)
= 0 follows.

wθ(e) > 0: Note that this implies pr(e|θ) > 0 (Theorem A.1).

wθ(e) = pr(e|θ)∑
θ′∈Θ′

|E′
θ′
|

|E′| pr(e|θ′)

= 1∑
θ′∈Θ′

|E′
θ′
|

|E′|
pr(e|θ′)
pr(e|θ)

since pr(e|θ) > 0

= 1∑
θ′∈Θ′

|E′
θ′
|

|E′|
pr′(e|θ′)
pr′(e|θ)

criterion 6.1.b

= pr′(e|θ)∑
θ′∈Θ′

|E′
θ′
|

|E′| pr′(e|θ′)
since pr′(e|θ) > 0

A.4 The Dynamic Metaheuristic Scheduling wb-ACP
In Section 6.5.3, we considered the problem of designing a dynamic scheduler for two
anytime (meta-heuristic) optimization methods, which we solved by reducing it to a “white
box configuration problem” (wb-ACP, see Definition 6.1). Here, we describe the specifics
of the target algorithm a, and the procedure for computing pr′, used in this reduction.

Target Algorithm (a)
The pseudo-code for a is shown in Algorithm 24. As input it takes x, the minimization
problem instance to be solved, hh1 and hh2, two preemptable anytime optimizers that can
be used for doing so, and a configuration θ consisting of 22 real-valued parameter values
determining how resources are allocated to hh1 and hh2. Remark that this allocation
depends on “the anytime performance” of hh1 and hh2 during “previously allocated slots”.
The “the anytime performance” of a method hhj during a run is fully determined by its
“solution quality trace” Tj , which is the set of pairs (ti,ei), indicating that after running
hhj for ti seconds, it returns a solution with evaluation function value ei.

A.4. THE DYNAMIC METAHEURISTIC SCHEDULING WB-ACP 259

Algorithm 24 Target algorithm used in the wb-ACP reduction of the dynamic metaheur-
istic scheduling problem.
1: procedure Schedule(θ,〈x, hh1, hh2〉)
2: T1, T2 ← {(0,+∞)}
3: n1, n2 ← 0
4: id1 ← (hh1 .q0, x)
5: id2 ← (hh2 .q0, x)
6: for i = 1 : 100 do
7: pr1 ← PrNext1(θ,T1,T2,n1,n2)
8: pivot ∼ U(0, 1)
9: if pivot ≤ pr1 then
10: j ← 1
11: else
12: j ← 2
13: end if
14: 〈idj , T ′〉 ← continue(hhj ,idj ,6)
15: Tj ← Tj ∪ T ′
16: nj ← nj + 1
17: end for
18: pe ← Evaluate(hh1,hh2,id1,id2,T1,T2,n1,n2)
19: return 〈T1, T2, n1, pe〉
20: end procedure

21: procedure PrNext1(θ,T1,T2,n1,n2)
22: emin

1 ← min{e|(t, e) ∈ T1}
23: emin

2 ← min{e|(t, e) ∈ T2}
24: ωbest1 ← 0.5[emin

1 ≤ emin
2] + 0.5[emin

1 < emin
2]

25: fmin
1 ← min{e|(t, e) ∈ T1 ∧ t ≤ min(6n1, 6n2)}

26: fmin
2 ← min{e|(t, e) ∈ T2 ∧ t ≤ min(6n1, 6n2)}

27: ωfair1 ← 0.5[fmin
1 ≤ fmin

2] + 0.5[fmin
1 < fmin

2]
28: ωdiff1 ← n1−n2

100
29: ωelapsed ← n1+n2

100
30: if emin

1 < emin
2 then

31: ωahead ←
6n2−min{t|(t,e)∈T1∧e<emin

2 }
600

32: else if emin
1 > emin

2 then
33: ωahead ←

6n1−min{t|(t,e)∈T2∧e<emin
1 }

600
34: else
35: ωahead ← 0
36: end if
37: v1 ← MLP.predict(θ,〈ωbest1, ωfair1, ωdiff1, ωelapsed, ωahead〉)
38: v2 ← MLP.predict(θ,〈1− ωbest1, 1− ωfair1,−ωdiff1, ωelapsed, ωahead〉)
39: return v1

v1+v240: end procedure

260 APPENDIX A.

41: procedure Evaluate(hh1,hh2,id1,id2,T1,T2,n1,n2)
42: 〈 , T ′〉 ← continue(hh1,id1,600− 6n1)
43: T1 ← T1 ∪ T ′
44: 〈 , T ′〉 ← continue(hh2,id2,600− 6n2)
45: T2 ← T2 ∪ T ′
46: C = {ci|ci = min(min{e|(t, e) ∈ T1 ∧ t ≤ 6i},min{e|(t, e) ∈ T2 ∧ t ≤ 600−6i})∧0 ≤ i ≤ 100}
47: return − |{ci|ci<cn1}|+0.5(|{ci|ci=cn1∧i 6=n1}|)

|C|
48: end procedure

First, a performs some initialization for each method hhj (lines 2-5). It initializes its trace
(Tj) to {(0,+∞)}, its “previously allocated slots” (nj) to 0, and its execution state (idj).
An execution state fully describes the current state of a running program, it consists of its
current control (initially hhj .q0) and memory state (initially x). Subsequently, a allocates
100 (6s) slots iteratively to hh1 and hh2. Each iteration, at line 7, a call to the stochastic
scheduling policy πθ returns pr1 the likelihood of assigning the next slot to hh1 instead of
hh2 (lines 21-40). First, at lines 22-36, πθ derives the following five runtime features:

ωbest1 is equal to 1 if and only if the best solution (thus far) obtained by hh1 is better than
that obtained by hh2. Equal to 0, if and only if hh2 obtained the better solution
and equal to 0.5 otherwise (initially, or in case of ties).

ωfair1: Clearly, only looking at “which method obtained the best solution thus far” is
unfair as we may have allocated resources non-uniformly. ωfair1 is similar to ωbest1,
but compares the solution quality obtained at the time of the shortest run.

ωdiff1: measures how much longer we have ran hh1 than hh2.

ωelapsed: measures the fraction of the total budget we have allocated thus far.

ωahead: measures how much less time “the method which has obtained the best solution
thus far” needed to obtain a solution quality better than the best obtained thus far
by the other method. Remark that ωahead may be negative if ωbest1 6= ωfair1.

To determine the likelihood of allocating the next slot to hh1 given ω (lines 37-40), πθ
uses the Multi-layer Perceptron (MLP) depicted in Figure A.1. This MLP has five inputs
(+ bias), one hidden layer of three nodes (+ bias) and a single output node. Layers are
fully connected, giving rise to a total of 22 edges whose weights are given by θ. All nodes
use a sigmoid activation function, i.e. the output of a node in function of its inputs x and
weights w is given by

(
1− e−(w0+

∑
i
wixi)

)−1
. Concretely, pr1 is given by v1

v1+v2
, where

v1 and v2 are the predictions of this MLP for inputs 〈ωbest1, ωfair1, ωdiff1, ωelapsed, ωahead〉
and 〈1− ωbest1, 1− ωfair1,−ωdiff1, ωelapsed, ωahead〉, respectively. Remark that all candidate
schedulers allocate the first slot to hh1/hh2 with equal likelihood (since v1 = v2).

A.4. THE DYNAMIC METAHEURISTIC SCHEDULING WB-ACP 261

+1

x1

x2

x3

x4

x5

+1

h1

h2

h3

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ14

θ15

θ16

θ17

θ18

x2

θ19

θ20

θ21

θ22
h2

h1

y

in
pu

t l
ay

er

bias

bias

hidden
layer

output

Figure A.1: Architecture of the MLP used in Algorithm 24.

Next, at lines 8-13, a selects hh1 with likelihood pr1 and continues the selected method
(hhj) for six seconds from its current execution state (idj) at line 14. At line 15, it updates
its trace (Tj), adding any new best solutions found (T ′) and increments its “previously
allocated slots” counter (nj) at line 16.
Finally, at line 19, a returns e = (T1, T2, n1, pe), where pe is the desirability of the

allocating (n1,100 − n1) slots to (hh1,hh2), which is computed at line 18. Remark that
this code would obviously not be part of the interpreted scheduler, which at this point
would simply return the best solution obtained by either hh1 or hh2. a computes pe, at
lines 41-48, by comparing the quality of the solution obtained by this allocation to that
of those that would have been obtained by the 100 other possible allocations. To this
end, we first continue to run each method for the full budget (10 min) and update their
traces accordingly. Next, from the now complete traces T1 and T2, we derive the solution
quality obtained by any of the 101 possible schedules at line 46. At line 47, we quantify
the desirability of our schedule as “minus the fraction of schedules which obtained a better
solution”. To account for ties, we also subtract half of the fraction of tying schedules.
Remark that the resulting evaluation value falls in the range [−1, 0] and is 0/-1 if and only
if the allocation made by our scheduler is the unique best/worst.

262 APPENDIX A.

Computing pr′

pr′(〈T1, T2, n1, pe〉|θ) is the likelihood that the scheduling policy πθ allocates (n1,100−n1)
slots to (hh1,hh2), given their traces (T1,T2). This can be computed efficiently/elegantly
using dynamic programming (see Algorithm 25). Here, each iteration k, we compute the
likelihood of all allocations of k+ 1 slots (allocating at most n1 slots to hh1 and 100−n1
slots to hh2), based on the likelihood of the allocations of k slots.

Algorithm 25 pr′ used in the dynamic metaheuristic scheduling wb-ACP reduction.
1: procedure pr′(θ,〈T1, T2, n1, pe〉)
2: pr0,0 = 1
3: pri,j = 0,∀ 0 < i ≤ n1, ∀ 0 < j ≤ 100− n1
4: for k = 0 : 99 do
5: for l = 0 : k do
6: if prl,k−l > 0 then
7: pr1 ← PrNext1(θ,{(t, e) ∈ T1|t < 6l},{(t, e) ∈ T2|t < 6(k − l)},l,k − l)
8: if l < n1 then
9: prl+1,k−l ← prl+1,k−l + pr1 ∗ prl,k−l
10: end if
11: if k − l < 100− n1 then
12: prl,k−l+1 ← prl,k−l+1 +(1− pr1) ∗ prl,k−l
13: end if
14: end if
15: end for
16: end for
17: return prn1,100−n1
18: end procedure

A.5 AdapHH’s Anatomy
AdapHH is the selection hyper-heuristic that won the CHeSC 2011 competition. After the
competition its code was made publicly available (under the name GIHH). We used this
implementation as a baseline in our experiments in Section 5.3.2.4. Also, we considered it
as the subject of our case study in Section 7.3, targeted at identifying needless complexity.
To fully understand the simplifications that were considered in context of the latter, one
must have a thorough understanding of the method and its many sub-mechanisms. Thus
far, in Section 5.3.2.4, p. 178, we have presented a description of its high-level search
strategy (see Algorithm 26). Here, we complement this description, providing more detailed
descriptions of all sub-mechanisms in AdapHH. These descriptions are our own, based on
a thorough analysis of the source code, and are, for ease of reference, ordered according
to their discussion in Section 7.3.2.1.

A.5. ADAPHH’S ANATOMY 263

Algorithm 26 High-level search strategy for AdapHH
1: function Solve(problem, tallowed)
2: vinc ← init()
3: cphase ← 0
4: while telapsed < tallowed do
5: cphase ← cphase + 1
6: if ¬ restart disabled ∧ restart condition met then
7: reinit()
8: else if restart disabled then
9: best-init()
10: end if
11: update prelay
12: if prelay < pivot ∼ U(0, 1) then
13: hsingle ← select single heuristic
14: vprop ← hsingle(vinc)
15: else
16: hrh1 ← select first heuristic in relay hybridization
17: vprop ← hrh1.apply(vinc)
18: if vprop not best since last reinit then
19: hrh2 ← select second heuristic in relay hybridization
20: vprop ← hrh2.apply(vprop)
21: update rh-selection for hrh1,hrh2
22: end if
23: end if
24: update parameters/statistics for hsingle,hrh1,hrh2
25: if accept(vprop) then
26: vinc ← vprop
27: end if
28: if cphase = pl then
29: update elitist set, heuristic types and pl.
30: cphase ← 0
31: end if
32: end while
33: end function

264 APPENDIX A.

Phase-based Heuristic Set Selection (ADHS)
Crossover Heuristics: AdapHH, unlike many other single point hyper-heuristics, uses
crossover heuristics (xo). These differ from ordinary (mut, rr, ls) low-level heuristics in
that they take two, rather one candidate solution as input. The second solution used in
the application of crossover heuristics, in AdapHH, is selected uniformly at random from
a list of five candidate solutions. Initially, this list contains copies of the initial solution.
Whenever a new best solution is obtained, a random of these is replaced (line 24).

Adaptive Phase Length: AdapHH subdivides a run into multiple phases, each lasting
a varying # iterations (pl). Initially, pl = b

√
2Ne ∗ PHfactor, where N is the # heur-

istics in the domain and PHfactor a parameter (default 500). After each phase (line 29)
pl = b tallowed

PHrequested∗tsubset
e, where tallowed is the time we are allowed to optimize, tsubset the

average duration per application of a heuristic within the elitist set and PHrequested a
parameter (default 100). Furthermore, the range of pl is bounded:

pl = max(N ∗ PHfactor,min(pl, b
√

2Ne ∗ PHmin
factor))

where PHmin
factor is a parameter (default 50).

Heuristic Types: In HyFlex, low-level heuristics are statically assigned to one of four
categories (xo, mut, rr, ls).2 AdapHH further classifies each low-level heuristic i dynam-
ically as being of one of the following types:

t(i) =



ImprovingOrEqual fimp(i) > 0 ∧ fwrs(i) = 0
ImprovingMore fimp(i) ≥ fwrs(i) > 0
EqualOnly fwrs(i) = fimp(i) = 0
WorseningMore fwrs(i) > fimp(i) > 0
WorseningOrEqual fimp(i) = 0 ∧ fwrs(i) > 0

where fimp(i) and fwrs(i) are the total amount of improvement and worsening induced by
applications of i over the entire run. Initially, each heuristic is classified as ImprovingMore
and types are updated after each phase (line 29).

2Technically five, including the single initialization heuristic. However, as also noted in [Adriaensen
2013, Van Onsem et al. 2014], this classification is not particularly informative.

A.5. ADAPHH’S ANATOMY 265

Phase-based Tabu:

QI Tabu Criterion: After each phase (line 29) the performance of a low-level heuristic
i is measured as

pi = 108(cp,best(i) + 1)2
(

tremain

tp,spent(i)

)
+ 105

(
fp,imp(i)
tp,spent(i)

)
−10−4

(
fp,wrs(i)
tp,spent(i)

)
+ 10−6

(
fimp(i)
tspent(i)

)
− 10−9

(
fwrs(i)
tspent(i)

)
where cp,best(i) is the number of new best solutions found by i during the last phase,
tremain is the time left to optimize and tspent(i) is the total time spent by applications of
heuristic i over the entire run. Notations with subscript p (e.g. fp,imp) represent the value
of a metric (e.g. fimp) during the last phase only. Quality indices qii, ranging from 1 to
N are determined from pi by means of rank. The highest pi gets N , and so on. Each
heuristic j which was not used last phase has qij = 1. A heuristic i in the elitist subset is

excluded, if qii <
∑

j
qij

N .

Extreme Exclusion: Heuristic i is also excluded (line 29) if all the following hold:

• i found no new best solutions during last phase.
• i was not tabu during one of the last two phases.
• exc(i) > 2 ∗ avg(exc)
• std(exc) =

√∑
i(exc(i)− avg(exc))2) > 2

• After exclusion at least one heuristic in the elitist set found a new best solution over
the entire run.

where exc(j) is the number of times heuristic j is slower than the fastest heuristic in the
full heuristic set.

Tabu Duration: Each heuristic has a tabu duration di determining the # phases it
remains tabu after being excluded and which is initially set to D = b

√
2Ne. If a heuristic

i which was re-included last phase, is again excluded its tabu duration di is increased by
one (i.e. it will now remain tabu one phase longer). Otherwise, di is reset to D. This
incrementation stops when it reaches an upper-bound of 2D, if this occurs i is excluded
permanently if exc(i) > 5.

266 APPENDIX A.

Heuristic Selection
AdapHH combines two mechanisms to select heuristics during a phase: Single heuristic
selection and Relay Hybridization (RH). Each iteration (line 11), RH is applied with prob-
ability prelay = (cphase

pl)γ , where cphase is the number of iterations performed in current
phase and γ the ratio of new best solutions found by a single heuristic (+1) over those
found by the combination of two heuristics (+1). Furthermore, RH is made tabu (line 29)
for dr phases if it did not find any new best solutions during last phase. Initially, dr = Dlb

r
(default 1), and dr is incremented for each consecutive exclusion with upper bound Dub

r
(default 10). Otherwise dr is reset.

Single Heuristic Selection (SS): Heuristic i is selected proportionally to(
cbest(i) + 1

max(tspent(i), 1ms)

)1+3tf3

from the elitist set (line 13). With tf the fraction of time remaining.

Relay Hybridization (RH): Using Relay Hybridization, two (possibly tabu) heuristics
are applied consecutively (within one iteration), where the selection probability of the
second heuristic depends on the first heuristic selected (lines 16-22).

Selection first heuristic in RH (line 16): A low-level heuristic i from the full heuristic
set is selected proportionally to pri. Initially, we have pri = 1

N and pri’s are updated
dynamically. Specifically, updates prk = prk + αr(j) ∗ (xk − prk) are performed (line 21)
for each heuristic k when a new best solution is found, where xk = 1 for the selected
heuristic i and xk = 0 otherwise. Here, j is the second heuristic in the RH. The learning
rate αr is determined for each individual heuristic as αr(i) = Ar

exc(i) , where Ar is a parameter
(default 0.5) and αr(i) ≥ Ar

25 is guaranteed. If the first heuristic in RH finds a new best
solution, we do not apply the second heuristic (cancel RH).

Selection second heuristic in RH (line 19): For each heuristic i, a list of length
Ll2 (default 10) is kept, containing the indices of low-level heuristics that found a new
best solution when being applied after i. When a new best solution is found and the
list is full, the oldest entry will be replaced. Given it is non-empty, the second heuristic
is selected uniformly from this list (which can contain duplicates) with a probability of
Pl2 (default 0.25). Otherwise, the second heuristic is selected based on dynamic type.
Specifically, with a probability Pioe (default 0.5), a heuristic with heuristic class type

A.5. ADAPHH’S ANATOMY 267

ImprovingOrEqual selected uniformly at random. Otherwise (or if none exist), a heuristic
of type ImprovingMore is selected uniformly at random. Finally, if no such heuristic exists,
the ordinary single selection scheme is used to select the second heuristic.

Dynamic Parameter Adaptation
The value of α = β = vi used when applying a low-level heuristic i is initially set to
Vinit (default 0.2) and is updated using vi = vi + θx ∗ u within bounds [Vlb, Vub] (default
[0.2, 1.0]) after each application (line 24). Here u is a random variable, whose distribution
depends on the heuristic type and x (see Table A.1) indicating whether vprop is a new best
(x = 0, θ0 = 10−2), better (x = 1, θ1 = 10−3), worse (x = 2, θ2 = 5 ∗ 10−4) or as good
(x = 3, θ3 = 10−4) as vinc.

Parameter Oscillation: A mechanism oscillating vi is used (line 22) when the AdapHH
is stuck (acceptance threshold reached maximum) and reinitialization is disabled. Once
stuck, vi is periodically linearly varied between Vlo and Vhi (following a triangle wave). For
ImprovingOrEqual heuristics Vlo = 0.5 and Vhi = 1.0, for others Vlo = 0.2 and Vhi = 0.5.
The # applications from Vlo to Vhi is Vp (default 5000).

Table A.1: Distribution of u for heuristic types t and feedback x

Heuristic Type x Pr(u = −1) Pr(u = 0) Pr(u = 1) ũ

ImprovingOrEqual
0/1 0 0.5 0.5 0.5
2 n.a n.a n.a n.a
3 0.5 0.25 0.25 -0.25

ImprovingMore
0/1 0.25 0.25 0.5 0.25
2 0.5 0.5 0 -0.5
3 0.5 0.5 0 -0.5

EqualOnly
0/1 n.a n.a n.a n.a
2 n.a n.a n.a n.a
3 0 0 1 1

WorseningMore
0/1 0.5 0 0.5 0
2 1 0 0 -1
3 0 0 1 1

WorseningOrEqual
0/1 n.a n.a n.a n.a
2 1 0 0 -1
3 0 0 1 1

268 APPENDIX A.

Acceptance Heuristic and Reinitialization
Acceptance Criterion (line 25): Always accept improvement. Do not accept any
worsening for an initial # worsening iterations k after improving the incumbent solution
or accepting a worsening solution. Afterwards, accept solutions no worse than a threshold
value taken from the best list at index. Here, best list is the list of fitness values of
the l most recent new best solutions found since last restart. Initially, it holds l times the
fitness of the initial solution.

Index Increasing: Initially, the index points to the second smallest element in the list
and it is increased every time we have K = Kmult ∗k > itwrs, where Kmult is a parameter
(default 5) and itwrs is the number of worsening iterations since last new best or increment.
This index is reset when a new best solution is found.

List Length Adaptation: Initially l is set to Linitial (default 10). Each iteration l is
updated as follows l = Linitial

2 + tf3(Linitial
2 + 1), i.e. it decreases in length up and till half

its initial size.

Patience Adaptation: Initially k = klb (default 5). k is updated whenever a new best
solution is found as k = bLinitial−1

Linitial
k + 1

Linitial
yc. Let cw = b itwrs

k c. If cw = 0, y = itwrs,
i.e. we lower k. Otherwise, cw > 0 and y = k + k ∗ tf ∗ (1− 0.5cw−1)), i.e. we increase
k. K is updated as well (i.e. Kmult ∗ k invariant).

Reinitialization (lines 6-10): Whenever the threshold index exceeds l the acceptance
mechanism signals that the search is stuck. This potentially activates the reinitialization
mechanism. We found deducing the exact restart condition from the code difficult, in this
section we present a set of simplified rules (srestart, see also Section 7.3.2.1):

0.8 ≤ tf: Reinitialize on stuck.

0.5 ≤ tf < 0.8: Given we are stuck and restart was not yet disabled, reinitialize if we have
performed a reinitialization before and the runs following the last five reinitializations
have not failed to find a new best solution. Otherwise, disable restart.

tf < 0.5: Disable restart.

Reinitialization (line 7) entails reinitializing the vinc, the five solutions used for crossover
and the best list, index and other acceptance related counters. When restart is disabled
and the current run’s best is not the overall best, we perform best-init (line 9), where vinc
is replaced with the overall best solution, best list by that of the best run and index and
other acceptance related counters are reset.

List of Publications

Full Papers in Proceedings of International Conferences
2017 Steven Adriaensen, Filip Moons, Ann Nowé. “An Importance Sampling Approach

to the Estimation of Algorithm Performance in Automated Algorithm Design”, Learn-
ing and Intelligent Optimization (LION) 11, 2017.

2016 Steven Adriaensen, Ann Nowé. “Case study: An analysis of accidental complexity
in a state-of-the-art hyper-heuristic for HyFlex”, 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, pp. 1485-1492, 2016.

2016 Steven Adriaensen, Ann Nowé. “Towards a white box approach to automated
algorithm design”, International Joint Conferences on Artificial Intelligence (IJCAI),
pp. 554-560, 2016.

2015 Steven Adriaensen, Gabriela Ochoa, Ann Nowé, “A Benchmark Set Extension and
Comparative Study for the HyFlex Framework”, 2015 IEEE Congress on Evolutionary
Computation (CEC), IEEE, pp. 784-791, 2015.

2014 Steven Adriaensen, Tim Brys, Ann Nowé, “Fair-share ILS: a simple state-of-the-art
iterated local search hyperheuristic”, Proceedings of the 2014 conference on Genetic
and evolutionary computation (GECCO), pp. 1303-1310, 2014.

2014 Steven Adriaensen, Tim Brys, Ann Nowé, “Designing reusable metaheuristic meth-
ods: A semi-automated approach”, 2014 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 2969-2976, 2014.

269

270 List of Publications

Extended abstracts
2015 Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K Burke, John A Clark,

Patrick De Causmaecker, Juanjo Durillo, Kevin Hammond, Emma Hart, Colin G
Johnson, 18 others, “A Research Agenda for Metaheuristic Standardization”, Pro-
ceedings of the XI Metaheuristics International Conference (MIC), 2015.

2015 Steven Adriaensen, Yasmin fathy, Ann Nowé, “On task scheduling policies for
work-stealing schedulers”, Proceedings of the 7th Multidisciplinary International
Conference on Scheduling: Theory and Applications (MISTA), 2015.

2014 Steven Adriaensen, Tim Brys, Ann Nowé, “Fair-share ILS: a simple state-of-the-
art iterated local search hyperheuristic”, Benelux Conference on Artificial Intelligence
(BNAIC), 2014.

List of Acronyms

∼ similar to (if used in text) or distributed according to (if used in math)

a.k.a. also known as

ACA Accidental Complexity Analysis (see Section 7.2)

ACO Ant Colony Optimization (see Section 2.7.2.3)

ACP Algorithm Configuration Problem (see Definition 5.1)

AC Algorithm Configuration

ADHS adaptive heuristic set

ADP Algorithm Design Problem (see Section 3.1)

AILLA adaptive iteration limited list-based threshold accepting

AI Artificial Intelligence

ANOVA Analysis of Variance

AR Aggressive Racing (see Section 4.1.2, p. 113)

ASP Algorithm Selection Problem

AS Algorithm Selection

271

272 List of Acronyms

B & B Branch & Bound (see Section 2.7.1.2)

BFS Breath First Search (see Section 2.7.1.2)

BF Brute-Force

BP Bin Packing problem (see Section 2.2.1)

BSS Best Single Solver

CHeSC Cross-domain Heuristic Search Challenge (see Section 5.2.1.2)

CNF Conjunctive Normal Form

CPU Central Processing Unit

CT Church-Turing thesis

CVRP Capacitated Vehicle Routing Problem (see Section 2.2.1)

DAG Directed Acyclic Graph

DFS Depth First Search (see Section 2.7.1.2)

DLS Dynamic Local Search (see Section 2.7.2.2)

DP Dynamic Programming

Dr. Doctor

e.g. exempli gratia (latin) - for example

EA Evolutionary Algorithm (see Section 2.7.2.3)

EI Expected Improvement (criterion)

EMC Exponential Monte Carlo (acceptance criterion)

ES Evolution Strategies

et al. et alia (latin) - and others

etc. et cetera (latin) - and other similar things

ET Eligibility Traces

FIFO First In, First Out

List of Acronyms 273

FS-ILS Fair Share Iterated Local Search (see Section 5.3)

GA Genetic Algorithm (see Algorithm 7)

GGA Gender-based Genetic Algorithm (see Section 4.1.2, p. 115)

GOP Global function Optimization Problem (see Definition 2.4)

GP Genetic Programming (see Section 3.3.2, p. 83)

GRASP Greedy Randomized Adaptive Search Procedure (see Section 2.7.2.2)

HH Hyper-Heuristic (see Section 2.7.2.5)

i.e. id est (latin) - that is

i.i.d. independent and identically distributed

ID Instantaneous Description (see Section 2.3.1.2)

iff if and only if (⇐⇒)

II Iterative Improvement (see Section 2.7.2.2)

ILS Iterated Local Search (see Section 2.7.2.2)

input-ASP Per-input Algorithm Selection Problem (see Definition 4.2)

ISAC Instance-Specific Algorithm Configuration (see Section 4.2.3, p. 128)

IS Importance Sampling, see Section 6.3.2.2

JoH Journal of Heuristics

KP Knapsack Problem (see Section 2.2.1)

LBS Local Beam Search (see Section 2.7.2.3)

LCS Learning Classifier Systems

LIFO Last In, First Out

LVA Las Vegas Algorithm

m-reducible Many-one Reducible (see Definition 2.12)

MAC Max-Cut problem (see Section 2.2.1)

274 List of Acronyms

MA Memetic Algorithm (see Section 2.7.2.3)

MCMC Markov Chain Monte Carlo

MC Monte Carlo (RL technique)

MDP Markov Decision Problem (see Definition 4.9)

MitL Metaheuristics in the Large

ML Machine Learning

MLP Multi-layer Perceptron

MO Multi-Objective

MSE Mean Squared Error

NFL No Free Lunch theorem (see Theorem 3.1)

NN Neural Network (ML model)

NTM Non-deterministic Turing Machine (see Definition 2.19)

OASC Open Algorithm Selection Challenge

PbC Programming by Configuration (see Section 5.1)

PbO Programming by Optimization (see Section 5.1)

PEP Performance Evaluation Problem (see Section 6.3.1)

PFS Permutation Flow Shop problem (see Section 2.2.1)

PoC Proof of Concept

Prof. Professor

PSP Personnel Scheduling Problem (see Section 2.2.1)

PS Program Synthesis (see Section 3.3.2)

PTM Probabilistic Turing Machine (see Definition 2.24)

QAP Quadratic Assignment Problem (see Section 2.2.1)

RF Random Forest (ML model)

List of Acronyms 275

RH Relay Hybridization

RL Reinforcement Learning (see Section 4.3.2.2)

ROAR Random Order Aggressive Racing (see Section 4.1.2, p. 115)

RSA Rivest-Shamir-Adleman (cryptographic system)

RTD Run-Time Distribution (see Section 3.2.1)

SAT boolean satisfiability problem (see Section 2.2.1)

SA Simulated Annealing (see Section 2.7.2.2)

SBSE Search-based Software Engineering

set-ASP Per-set Algorithm Selection Problem (see Definition 4.1)

SE Standard Error

SMAC Sequential Model-based Algorithm Configuration (Section 4.1.2, p. 115)

SMBO Sequential Model-Based Optimization

SR Statistical Racing (see Section 4.1.2, p. 111)

SS Single Selection

subset-ASP Per-subset Algorithm Selection Problem (see Definition 4.3)

™ Trademark symbol

TM (deterministic) Turing Machine (see Definition 2.8)

TreeOpt tree optimization framework (see Algorithm 4)

TSP Traveling Salesman Problem (see Section 2.2.1)

TS Tabu Search (see Section 2.7.2.2)

URS Uniform Random Selection

UTM Universal Turing Machine

VBS Virtual Best Solver

VLSNS Very Large-Scale Neighborhood Search (see Section 2.7.2.2)

276 List of Acronyms

VND Variable Neighborhood Descent (see Section 2.7.2.2)

VNS Variable Neighborhood Search (see Section 2.7.2.2)

VRP Vehicle Routing Problem (see Section 2.2.1)

vs. versus

VUB Vrije Universiteit Brussel

w.r.t. with respect to

wb white box

XOR Either one or the other, not both (exclusive or).

Bibliography

[Aaronson 2005] Scott Aaronson (2005). Guest column: NP-complete problems and phys-
ical reality . ACM Sigact News, 36(1), 30–52.

[Abelson et al. 1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman (1996).
Structure and interpretation of computer programs: Justin Kelly.

[Addelman 1969] Sidney Addelman (1969). The generalized randomized block design.
The American Statistician, 23(4), 35–36.

[Adriaensen 2013] Steven Adriaensen (2013). Robust Domain-Independent Heuristic Op-
timization. Master’s thesis, Vrije Universiteit Brussel, Belgium.

[Adriaensen et al. 2014a] Steven Adriaensen, Tim Brys, and Ann Nowé (2014a). Design-
ing reusable metaheuristic methods: A semi-automated approach. In Evolutionary Com-
putation (CEC), 2014 IEEE Congress on, pp. 2969–2976. IEEE.

[Adriaensen et al. 2014b] Steven Adriaensen, Tim Brys, and Ann Nowé (2014b). Fair-
share ILS: a simple state-of-the-art iterated local search hyperheuristic. In Proceedings
of the 2014 conference on Genetic and evolutionary computation, pp. 1303–1310. ACM.

[Adriaensen et al. 2017] Steven Adriaensen, Filip Moons, and Ann Nowe (2017). An Im-
portance Sampling Approach to the Estimation of Algorithm Performance in Automated
Algorithm Design. In Proc. of LION-11 .

277

278 BIBLIOGRAPHY

[Adriaensen and Nowé 2016a] Steven Adriaensen and Ann Nowé (2016a). Case study:
An analysis of accidental complexity in a state-of-the-art hyper-heuristic for HyFlex . In
Evolutionary Computation (CEC), 2016 IEEE Congress on, pp. 1485–1492. IEEE.

[Adriaensen and Nowé 2016b] Steven Adriaensen and Ann Nowé (2016b). Towards a
white box approach to automated algorithm design. In International Joint Conferences
on Artificial Intelligence (IJCAI), pp. 554–560.

[Adriaensen et al. 2015] Steven Adriaensen, Gabriela Ochoa, and Ann Nowe (2015). A
Benchmark Set Extension and Comparative Study for the HyFlex Framework.. In Evol-
utionary Computation (CEC), 2015 IEEE Congress on, pp. 784–791: IEEE.

[Agrawal et al. 2004] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (2004). PRIMES
is in P. Annals of mathematics, pp. 781–793.

[Alpern et al. 1994] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker (1994).
The uniform memory hierarchy model of computation. Algorithmica, 12(2), 72–109.

[Ansel et al. 2009] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe (2009). PetaBricks: a language and compiler
for algorithmic choice, vol. 44: ACM.

[Ansótegui et al. 2015] Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sell-
mann, and Kevin Tierney (2015). Model-Based Genetic Algorithms for Algorithm Con-
figuration.. In IJCAI, pp. 733–739.

[Ansótegui et al. 2017] Carlos Ansótegui, Josep Pon, Meinolf Sellmann, and Kevin Tierney
(2017). Reactive Dialectic Search Portfolios for MaxSAT.. In AAAI, pp. 765–772.

[Ansótegui et al. 2009] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney (2009).
A gender-based genetic algorithm for the automatic configuration of algorithms. In
International Conference on Principles and Practice of Constraint Programming , pp.
142–157. Springer.

[Audi 2015] Robert Audi (2015). The Cambridge dictionary of philosophy .

[Audibert and Bubeck 2010] Jean-Yves Audibert and Sébastien Bubeck (2010). Best arm
identification in multi-armed bandits. In COLT-23th Conference on Learning Theory-
2010 , pp. 13–p.

[Ayob and Kendall 2003] Masri Ayob and Graham Kendall (2003). A monte carlo hyper-
heuristic to optimise component placement sequencing for multi head placement ma-
chine. In Proceedings of the international conference on intelligent technologies, InTech,
vol. 3, pp. 132–141. Citeseer.

BIBLIOGRAPHY 279

[Back 1996] Thomas Back (1996). Evolutionary algorithms in theory and practice: evolu-
tion strategies, evolutionary programming, genetic algorithms: Oxford university press.

[Bader-El-Den and Poli 2007] Mohamed Bader-El-Den and Riccardo Poli (2007). Gener-
ating SAT local-search heuristics using a GP hyper-heuristic framework. In International
Conference on Artificial Evolution (Evolution Artificielle), pp. 37–49. Springer.

[Bahnsen et al. 2015] Alejandro Correa Bahnsen, Djamila Aouada, and Björn Ottersten
(2015). Example-dependent cost-sensitive decision trees. Expert Systems with Applic-
ations, 42(19), 6609–6619.

[Balaprakash et al. 2007] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle
(2007). Improvement strategies for the F-Race algorithm: Sampling design and iterative
refinement. In International workshop on hybrid metaheuristics, pp. 108–122. Springer.

[Basin et al. 2004] David Basin, Yves Deville, Pierre Flener, Andreas Hamfelt, and Jør-
gen Fischer Nilsson (2004). Synthesis of programs in computational logic . Program
Development in Computational Logic, 3049, 30–65.

[Battiti et al. 2008] Roberto Battiti, Mauro Brunato, and Franco Mascia (2008). Reactive
search and intelligent optimization, vol. 45: Springer Science & Business Media.

[Battiti and Tecchiolli 1994] Roberto Battiti and Giampietro Tecchiolli (1994). The re-
active tabu search. ORSA journal on computing, 6(2), 126–140.

[Bellman 1957] Richard Bellman (1957). A Markovian decision process. Journal of Math-
ematics and Mechanics, pp. 679–684.

[Ben-David et al. 1989] Shai Ben-David, Benny Chor, and Oded Goldreich (1989). On
the theory of average case complexity . In Proceedings of the twenty-first annual ACM
symposium on Theory of computing , pp. 204–216. ACM.

[Bengio et al. 2013] Yoshua Bengio, Aaron Courville, and Pascal Vincent (2013). Repres-
entation learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8), 1798–1828.

[Beranek 1961] William Beranek (1961). RONALD A. HOWARD “Dynamic Programming
and Markov Processes”.

[Bezerra et al. 2016] Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle
(2016). Automatic component-wise design of multiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 20(3), 403–417.

280 BIBLIOGRAPHY

[Biedenkapp et al. 2017] André Biedenkapp, Marius Thomas Lindauer, Katharina Eggen-
sperger, Frank Hutter, Chris Fawcett, and Holger H Hoos (2017). Efficient Parameter
Importance Analysis via Ablation with Surrogates.. In AAAI, pp. 773–779.

[Birattari and Dorigo 2004] Mauro Birattari and Marco Dorigo (2004). The problem of
tuning metaheuristics as seen from a machine learning perspective. PhD thesis, Uni-
versité libre de Bruxelles.

[Birattari and Kacprzyk 2009] Mauro Birattari and Janusz Kacprzyk (2009). Tuning me-
taheuristics: a machine learning perspective, vol. 197: Springer.

[Birattari et al. 2002] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varren-
trapp (2002). A racing algorithm for configuring metaheuristics. In Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, pp. 11–18. Morgan
Kaufmann Publishers Inc.

[Birattari et al. 2010] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas
Stützle (2010). F-Race and iterated F-Race: An overview . In Experimental methods
for the analysis of optimization algorithms, pp. 311–336: Springer.

[Birbil and Fang 2003] Ş İlker Birbil and Shu-Chering Fang (2003). An electromagnetism-
like mechanism for global optimization. Journal of global optimization, 25(3), 263–282.

[Bischl et al. 2016] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri
Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin
Tierney, et al. (2016). Aslib: A benchmark library for algorithm selection. Artificial
Intelligence, 237, 41–58.

[Blass and Gurevich 2003] Andreas Blass and Yuri Gurevich (2003). Algorithms: A quest
for absolute definitions. Bulletin of the EATCS, 81, 195–225.

[Blot et al. 2016] Aymeric Blot, Holger H Hoos, Laetitia Jourdan, Marie-Éléonore Kessaci-
Marmion, and Heike Trautmann (2016). MO-ParamILS: a multi-objective automatic
algorithm configuration framework. In International Conference on Learning and Intel-
ligent Optimization, pp. 32–47. Springer.

[Boryczka 2002] Mariusz Boryczka (2002). Ant colony programming for approximation
problems. In Intelligent Information Systems 2002 , pp. 147–156: Springer.

[Brefeld et al. 2003] Ulf Brefeld, Peter Geibel, and Fritz Wysotzki (2003). Support vector
machines with example dependent costs. In European Conference on Machine Learning ,
pp. 23–34. Springer.

BIBLIOGRAPHY 281

[Breiman 2001] Leo Breiman (2001). Random forests. Machine learning, 45(1), 5–32.

[Brunner 2010] Jens O Brunner (2010). Literature Review on Personnel Scheduling . Flex-
ible Shift Planning in the Service Industry, pp. 5–12.

[Brys 2016] Tim Brys (2016). Reinforcement Learning with Heuristic Information. PhD
thesis, Vrije Universiteit Brussel.

[Burkard et al. 1997] Rainer E Burkard, Stefan E Karisch, and Franz Rendl (1997).
QAPLIB–a quadratic assignment problem library . Journal of Global optimization, 10(4),
391–403.

[Burke et al. 2010a] Edmund Burke, Timothy Curtois, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Sanja Petrovic, José A VaÌĄzquez-RodriÌĄguez, and Michel Gendreau
(2010a). Iterated local search vs. hyper-heuristics: Towards general-purpose search
algorithms. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pp. 1–8.
IEEE.

[Burke et al. 2003] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross,
and Sonia Schulenburg (2003). Hyper-heuristics: An emerging direction in modern
search technology . Handbook of metaheuristics, pp. 457–474.

[Burke and Bykov 2008] Edmund K Burke and Yuri Bykov (2008). A late acceptance
strategy in hill-climbing for exam timetabling problems. In PATAT 2008 Conference,
Montreal, Canada.

[Burke et al. 2013] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu (2013). Hyper-heuristics: A survey of the
state of the art. Journal of the Operational Research Society, 64(12), 1695–1724.

[Burke et al. 2010b] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and John R Woodward (2010b). A classification of hyper-heuristic ap-
proaches. In Handbook of metaheuristics, pp. 449–468: Springer.

[Carchrae and Beck 2005] Tom Carchrae and J Christopher Beck (2005). Applying Ma-
chine Learning to Low-knowledge Control Of Optimization Algorithms. Computational
Intelligence, 21(4), 372–387.

[Christofides 1976] Nicos Christofides (1976). Worst-case analysis of a new heuristic for
the travelling salesman problem. Technical Report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group.

282 BIBLIOGRAPHY

[Church 1932] Alonzo Church (1932). A set of postulates for the foundation of logic.
Annals of mathematics, 33(2), 346–366.

[Church 1963] Alonzo Church (1963). Application of recursive arithmetic to the problem
of circuit synthesis.

[Collberg et al. 2015] Christian Collberg, Todd Proebsting, and Alex M Warren (2015).
Repeatability and benefaction in computer systems research. University of Arizona TR
14, 4.

[Colquhoun 2003] David Colquhoun (2003). Challenging the tyranny of impact factors.
Nature, 423(6939), 479.

[Colton and Wiggins 2012] Simon Colton and Geraint A Wiggins (2012). Computational
creativity: The final frontier? . In Proceedings of the 20th European conference on
artificial intelligence, pp. 21–26. IOS Press.

[Cook 1971] Stephen A Cook (1971). The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing , pp. 151–158.
ACM.

[Cook 1979] Stephen A Cook (1979). Deterministic CFL’s are accepted simultaneously in
polynomial time and log squared space. In Proceedings of the eleventh annual ACM
symposium on Theory of computing , pp. 338–345. ACM.

[Cooke 2011] Roger L Cooke (2011). The history of mathematics: A brief course: John
Wiley & Sons.

[Cowling et al. 2000] Peter Cowling, Graham Kendall, and Eric Soubeiga (2000). A hy-
perheuristic approach to scheduling a sales summit. In International Conference on the
Practice and Theory of Automated Timetabling , pp. 176–190. Springer.

[Cramer 1985] Nichael Lynn Cramer (1985). A representation for the adaptive generation
of simple sequential programs. In Proceedings of the First International Conference on
Genetic Algorithms, pp. 183–187.

[Curtois et al. 2009] Tim Curtois, Gabriela Ochoa, Matthew Hyde, and José Antonio
Vázquez-Rodríguez (2009). A hyflex module for the personnel scheduling problem.
School of Computer Science, University of Nottingham, Tech. Rep.

[DaCosta et al. 2008] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag
(2008). Adaptive operator selection with dynamic multi-armed bandits. In Proceedings
of the 10th annual conference on Genetic and evolutionary computation, pp. 913–920.
ACM.

BIBLIOGRAPHY 283

[Dang et al. 2017] Nguyen Dang, Leslie Pérez Cáceres, Patrick De Causmaecker, and
Thomas Stützle (2017). Configuring irace using surrogate configuration benchmarks.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 243–250.
ACM.

[De Boer et al. 2005] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y
Rubinstein (2005). A tutorial on the cross-entropy method . Annals of operations
research, 134(1), 19–67.

[Dean and Boddy 1988] Thomas L Dean and Mark S Boddy (1988). An Analysis of Time-
Dependent Planning.. In AAAI, vol. 88, pp. 49–54.

[Di Gaspero and Urli 2012] Luca Di Gaspero and Tommaso Urli (2012). Evaluation of a
family of reinforcement learning cross-domain optimization heuristics. In Learning and
Intelligent Optimization, pp. 384–389: Springer.

[Ding et al. 2015] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-
May O’Reilly, and Saman Amarasinghe (2015). Autotuning algorithmic choice for input
sensitivity . In ACM SIGPLAN Notices, vol. 50, pp. 379–390. ACM.

[Dorigo 1992] Marco Dorigo (1992). Optimization, learning and natural algorithms. Ph.
D. Thesis, Politecnico di Milano, Italy.

[Dorigo et al. 2006] Marco Dorigo, Mauro Birattari, and Thomas Stutzle (2006). Ant
colony optimization. IEEE computational intelligence magazine, 1(4), 28–39.

[Eggensperger et al. 2018] Katharina Eggensperger, Marius Lindauer, Holger H Hoos,
Frank Hutter, and Kevin Leyton-Brown (2018). Efficient benchmarking of algorithm
configurators via model-based surrogates. Machine Learning, pp. 1–27.

[Eiben et al. 1999] Ágoston E Eiben, Robert Hinterding, and Zbigniew Michalewicz
(1999). Parameter control in evolutionary algorithms. IEEE Transactions on evolu-
tionary computation, 3(2), 124–141.

[Eiben et al. 2007] Agoston E Eiben, Zbigniew Michalewicz, Marc Schoenauer, and
James E Smith (2007). Parameter control in evolutionary algorithms. In Parameter
setting in evolutionary algorithms, pp. 19–46: Springer.

[Eskandar et al. 2012] Hadi Eskandar, Ali Sadollah, Ardeshir Bahreininejad, and Mohd
Hamdi (2012). Water cycle algorithm–A novel metaheuristic optimization method for
solving constrained engineering optimization problems. Computers & Structures, 110,
151–166.

284 BIBLIOGRAPHY

[Eusuff and Lansey 2003] Muzaffar M Eusuff and Kevin E Lansey (2003). Optimization
of water distribution network design using the shuffled frog leaping algorithm. Journal
of Water Resources planning and management, 129(3), 210–225.

[Fanelli 2011] Daniele Fanelli (2011). Negative results are disappearing from most discip-
lines and countries. Scientometrics, 90(3), 891–904.

[Fawcett and Hoos 2016] Chris Fawcett and Holger H Hoos (2016). Analysing differences
between algorithm configurations through ablation. Journal of Heuristics, 22(4), 431–
458.

[Fawcett et al. 2009] Chris Fawcett, Holger H Hoos, and Marco Chiarandini (2009). An
automatically configured modular algorithm for post enrollment course timetabling .
University of British Columbia, Department of Computer Science, Tech. Rep.

[Feo and Resende 1995] Thomas A Feo and Mauricio GC Resende (1995). Greedy ran-
domized adaptive search procedures. Journal of global optimization, 6(2), 109–133.

[Fink 1998] Eugene Fink (1998). How to Solve It Automatically: Selection Among Prob-
lem Solving Methods.. In AIPS, pp. 128–136.

[Flach 1994] Peter A Flach (1994). Simply Logical intelligent reasoning by example.

[Flourens 1842] Pierre Flourens (1842). Recherches expérimentales sur les propriétés et
les fonctions du système nerveux dans les animaux vertébrés: Ballière.

[Fortnow 2009] Lance Fortnow (2009). The status of the P versus NP problem. Commu-
nications of the ACM, 52(9), 78–86.

[Fowler and Beck 1999] Martin Fowler and Kent Beck (1999). Refactoring: improving the
design of existing code: Addison-Wesley Professional.

[Fukunaga 2004] Alex S Fukunaga (2004). Evolving local search heuristics for SAT using
genetic programming . In Genetic and Evolutionary Computation Conference, pp. 483–
494. Springer.

[Gagliolo and Schmidhuber 2006] Matteo Gagliolo and Jürgen Schmidhuber (2006).
Learning dynamic algorithm portfolios. Annals of Mathematics and Artificial Intelli-
gence, 47(3-4), 295–328.

[Gathercole and Ross 1994] Chris Gathercole and Peter Ross (1994). Dynamic training
subset selection for supervised learning in genetic programming . Parallel Problem Solv-
ing from Nature-PPSN III, pp. 312–321.

BIBLIOGRAPHY 285

[Geem et al. 2001] Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Vasudevan
Loganathan (2001). A new heuristic optimization algorithm: harmony search. simula-
tion, 76(2), 60–68.

[Glover 1989] Fred Glover (1989). Tabu search - part I. ORSA Journal on computing,
1(3), 190–206.

[Gödel 1931] Kurt Gödel (1931). Über formal unentscheidbare Sätze der Principia Math-
ematica und verwandter Systeme I. Monatshefte für mathematik und physik, 38(1),
173–198.

[Goetschalckx and Ramon 2007] Robby Goetschalckx and Jan Ramon (2007). On policy
learning in restricted policy spaces. In Proceedings of the 22nd national conference on
Artificial intelligence-Volume 2 , pp. 1858–1859. AAAI Press.

[Goldreich 2008] Oded Goldreich (2008). Computational Complexity: A Conceptual Per-
spective. US: Cambridge University Press.

[Gomes and Selman 2001] Carla P Gomes and Bart Selman (2001). Algorithm portfolios.
Artificial Intelligence, 126(1-2), 43–62.

[Goss et al. 1989] Simon Goss, Serge Aron, Jean-Louis Deneubourg, and Jacques Marie
Pasteels (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften,
76(12), 579–581.

[Graves et al. 2014] Alex Graves, Greg Wayne, and Ivo Danihelka (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

[Gulwani et al. 2017] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. (2017).
Program synthesis. Foundations and Trends® in Programming Languages, 4(1-2), 1–
119.

[Hamerly et al. 2003] Greg Hamerly, Charles Elkan, et al. (2003). Learning the k in k-
means. In NIPS, vol. 3, pp. 281–288.

[Hamfelt et al. 2001] Andreas Hamfelt, Jørgen Fischer Nilsson, and Nikolaj Oldager
(2001). Logic program synthesis as problem reduction using combining forms. Auto-
mated Software Engineering, 8(2), 167–193.

[Hansen and Ostermeier 1996] Nikolaus Hansen and Andreas Ostermeier (1996). Adapt-
ing arbitrary normal mutation distributions in evolution strategies: The covariance mat-
rix adaptation. In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, pp. 312–317. IEEE.

286 BIBLIOGRAPHY

[Harik and Lobo 1999] Georges R Harik and Fernando G Lobo (1999). A parameter-
less genetic algorithm. In Proceedings of the 1st Annual Conference on Genetic and
Evolutionary Computation-Volume 1 , pp. 258–265. Morgan Kaufmann Publishers Inc.

[Harman and Jones 2001] Mark Harman and Bryan F Jones (2001). Search-based software
engineering . Information and software Technology, 43(14), 833–839.

[Hart et al. 1968] Peter E Hart, Nils J Nilsson, and Bertram Raphael (1968). A formal
basis for the heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2), 100–107.

[Hellman 1980] Martin Hellman (1980). A cryptanalytic time-memory trade-off . IEEE
transactions on Information Theory, 26(4), 401–406.

[Hesterberg 1988] Timothy Classen Hesterberg (1988). Advances in importance sampling .
PhD thesis, Stanford University.

[Hooker 1995] John N Hooker (1995). Testing heuristics: We have it all wrong . Journal
of heuristics, 1(1), 33–42.

[Hoos 2012] Holger H Hoos (2012). Programming by optimization. Communications of
the ACM, 55(2), 70–80.

[Hoos and Stützle 1998] Holger H Hoos and Thomas Stützle (1998). Evaluating las vegas
algorithms: pitfalls and remedies. In Proceedings of the Fourteenth conference on
Uncertainty in artificial intelligence, pp. 238–245. Morgan Kaufmann Publishers Inc.

[Hoos and Stützle 2004] Holger H Hoos and Thomas Stützle (2004). Stochastic local
search: Foundations and applications: Elsevier.

[Hopcroft et al. 2006] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman (2006).
Automata theory, languages, and computation. International Edition, 24.

[Horvitz et al. 2001] Eric Horvitz, Yongshao Ruan, Carla Gomes, Henry Kautz, Bart Sel-
man, and Max Chickering (2001). A Bayesian approach to tackling hard computational
problems. In Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence, pp. 235–244. Morgan Kaufmann Publishers Inc.

[Hsiao et al. 2012] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu (2012). A vns-
based hyper-heuristic with adaptive computational budget of local search. In Evolution-
ary Computation (CEC), 2012 IEEE Congress on, pp. 1–8. IEEE.

[Hsu 1996] Jason Hsu (1996). Multiple comparisons: theory and methods: CRC Press.

BIBLIOGRAPHY 287

[Huberman et al. 1997] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg (1997).
An economics approach to hard computational problems. Science, 275(5296), 51–54.

[Hunt and Thomas 2001] Andrew Hunt and David Thomas (2001). The Art in Computer
Programming . The Pragmatic Programmers, LLC.

[Hutter et al. 2007a] Frank Hutter, Domagoj Babic, Holger H Hoos, and Alan J Hu
(2007a). Boosting verification by automatic tuning of decision procedures. In Formal
Methods in Computer Aided Design, 2007. FMCAD’07 , pp. 27–34. IEEE.

[Hutter and Hamadi 2005] Frank Hutter and Youssef Hamadi (2005). Parameter adjust-
ment based on performance prediction: Towards an instance-aware problem solver .
Microsoft Research, Tech. Rep. MSR-TR-2005-125.

[Hutter et al. 2006] Frank Hutter, Youssef Hamadi, Holger H Hoos, and Kevin Leyton-
Brown (2006). Performance prediction and automated tuning of randomized and para-
metric algorithms. In International Conference on Principles and Practice of Constraint
Programming , pp. 213–228. Springer.

[Hutter et al. 2010] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2010). Auto-
mated configuration of mixed integer programming solvers. Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.
186–202.

[Hutter et al. 2011] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown (2011). Se-
quential model-based optimization for general algorithm configuration. In International
Conference on Learning and Intelligent Optimization, pp. 507–523. Springer.

[Hutter et al. 2009] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas
Stützle (2009). ParamILS: an automatic algorithm configuration framework. Journal
of Artificial Intelligence Research, 36(1), 267–306.

[Hutter et al. 2007b] Frank Hutter, Holger H Hoos, and Thomas Stützle (2007b). Auto-
matic algorithm configuration based on local search. In AAAI, vol. 7, pp. 1152–1157.

[Hutter et al. 2014] Frank Hutter, Manuel López-Ibánez, Chris Fawcett, Marius Lindauer,
Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle (2014). Aclib: a bench-
mark library for algorithm configuration. In International Conference on Learning and
Intelligent Optimization, pp. 36–40. Springer.

[Hyde et al. 2009] Matthew Hyde, Gabriela Ochoa, T Curtois, and JA Vázquez-Rodríguez
(2009). A hyflex module for the one dimensional bin-packing problem. School of
Computer Science, University of Nottingham, Tech. Rep.

288 BIBLIOGRAPHY

[Hyde et al. 2011] Matthew Hyde, Gabriela Ochoa, José Antonio Vázquez-Rodríguez, and
Tim Curtois (2011). A HyFlex Module for the MAX-SAT Problem. University of
Nottingham, Tech. Rep.

[Igel and Toussaint 2005] Christian Igel and Marc Toussaint (2005). A no-free-lunch the-
orem for non-uniform distributions of target functions. Journal of Mathematical Mod-
elling and Algorithms, 3(4), 313–322.

[Ingber 1996] Lester Ingber (1996). Adaptive simulated annealing (ASA): lessons learned .
Control and Cybernetics, 25(1).

[Johnson et al. 1879] Wm Woolsey Johnson, William E Story, et al. (1879). Notes on the
15 puzzle. American Journal of Mathematics, 2(4), 397–404.

[Jones et al. 1998] Donald R Jones, Matthias Schonlau, and William J Welch (1998).
Efficient global optimization of expensive black-box functions. Journal of Global optim-
ization, 13(4), 455–492.

[Jünger et al. 1995] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi (1995). The
traveling salesman problem. Handbooks in operations research and management science,
7, 225–330.

[Kadioglu et al. 2010] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tier-
ney (2010). ISAC-Instance-Specific Algorithm Configuration.. In ECAI, vol. 215, pp.
751–756.

[Kadioglu et al. 2017] Serdar Kadioglu, Meinolf Sellmann, and Markus Wagner (2017).
Learning a Reactive Restart Strategy to Improve Stochastic Search. In International
Conference on Learning and Intelligent Optimization, pp. 109–123. Springer.

[Kahn and Marshall 1953] Herman Kahn and Andy W Marshall (1953). Methods of re-
ducing sample size in Monte Carlo computations. Journal of the Operations Research
Society of America, 1(5), 263–278.

[Karaboga 2005] Dervis Karaboga (2005). An idea based on honey bee swarm for numer-
ical optimization. Technical Report, Technical report-tr06, Erciyes university, engineer-
ing faculty, computer engineering department.

[Karafotias et al. 2014] Giorgos Karafotias, Agoston Endre Eiben, and Mark Hoogendoorn
(2014). Generic parameter control with reinforcement learning . In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1319–1326.
ACM.

BIBLIOGRAPHY 289

[Karafotias et al. 2013] Giorgos Karafotias, Mark Hoogendoorn, and AE Eiben (2013).
Why parameter control mechanisms should be benchmarked against random variation.
In Evolutionary Computation (CEC), 2013 IEEE Congress on, pp. 349–355. IEEE.

[Karp 1972] Richard M Karp (1972). Reducibility among combinatorial problems. In
Complexity of computer computations, pp. 85–103: Springer.

[Kautz et al. 2002] Henry Kautz, Eric Horvitz, Yongshao Ruan, Carla Gomes, and Bart
Selman (2002). Dynamic restart policies. Aaai/iaai, 97, 674–681.

[KhudaBukhsh et al. 2009] Ashiqur R KhudaBukhsh, Lin Xu, Holger H Hoos, and Kevin
Leyton-Brown (2009). SATenstein: Automatically Building Local Search SAT Solvers
from Components.. In IJCAI, vol. 9, pp. 517–524.

[Kirkpatrick et al. 1983] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. (1983).
Optimization by simulated annealing . science, 220(4598), 671–680.

[Kish 1965] Leslie Kish (1965). Survey Sampling Wiley . New York.

[Kleene 1936] Stephen Cole Kleene (1936). General recursive functions of natural num-
bers. Mathematische Annalen, 112(1), 727–742.

[Knuth 1968] Donald E Knuth (1968). The art of computer programming (ungoing series).

[Knuth 1976] Donald E Knuth (1976). Big omicron and big omega and big theta. ACM
Sigact News, 8(2), 18–24.

[Koulamas et al. 1994] C Koulamas, SR Antony, and R Jaen (1994). A survey of simulated
annealing applications to operations research problems. Omega, 22(1), 41–56.

[Koza 1992] John R Koza (1992). Genetic programming: on the programming of com-
puters by means of natural selection, vol. 1: MIT press.

[Krall 1998] Andreas Krall (1998). Efficient JavaVM just-in-time compilation. In Paral-
lel Architectures and Compilation Techniques, 1998. Proceedings. 1998 International
Conference on, pp. 205–212. IEEE.

[Krishnanand and Ghose 2009] KN Krishnanand and Debasish Ghose (2009). Glowworm
swarm optimization for simultaneous capture of multiple local optima of multimodal
functions. Swarm intelligence, 3(2), 87–124.

[Lagoudakis and Littman 2000] Michail G Lagoudakis and Michael L Littman (2000). Al-
gorithm Selection using Reinforcement Learning.. In ICML, pp. 511–518.

290 BIBLIOGRAPHY

[Lam and Li 2010] Albert YS Lam and Victor OK Li (2010). Chemical-reaction-inspired
metaheuristic for optimization. IEEE Transactions on Evolutionary Computation, 14(3),
381–399.

[Langton 1997] Christopher G Langton (1997). Artificial life: An overview : Mit Press.

[Lanzi 2002] Pier Luca Lanzi (2002). Learning classifier systems from a reinforcement
learning perspective. Soft Computing, 6(3-4), 162–170.

[Laporte 1992] Gilbert Laporte (1992). The vehicle routing problem: An overview of
exact and approximate algorithms. European Journal of Operational Research, 59(3),
345–358.

[Larsen and Von Ins 2010] Peder Olesen Larsen and Markus Von Ins (2010). The rate of
growth in scientific publication and the decline in coverage provided by Science Citation
Index . Scientometrics, 84(3), 575–603.

[Lawler and Wood 1966] Eugene L Lawler and David E Wood (1966). Branch-and-bound
methods: A survey . Operations research, 14(4), 699–719.

[LeCun et al. 2015] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton (2015). Deep learn-
ing . Nature, 521(7553), 436–444.

[Leister 2014] Tom Leister (2014). Effective Sample Size. https://golem.ph.utexas.
edu/category/2014/12/effective_sample_size.html. Accessed: 2018-04-11.

[Lenstra and Kan 1975] Jan K Lenstra and AHG Rinnooy Kan (1975). Some simple ap-
plications of the travelling salesman problem. Journal of the Operational Research
Society, 26(4), 717–733.

[Leyton-Brown et al. 2003] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim
McFadden, and Yoav Shoham (2003). A portfolio approach to algorithm selection. In
IJCAI, vol. 1543, p. 2003.

[Leyton-Brown et al. 2002] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham
(2002). Learning the empirical hardness of optimization problems: The case of combin-
atorial auctions. In International Conference on Principles and Practice of Constraint
Programming , pp. 556–572. Springer.

[Leyton-Brown et al. 2009] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham
(2009). Empirical hardness models: Methodology and a case study on combinatorial
auctions. Journal of the ACM (JACM), 56(4), 22.

https://golem.ph.utexas.edu/category/2014/12/effective_sample_size.html
https://golem.ph.utexas.edu/category/2014/12/effective_sample_size.html

BIBLIOGRAPHY 291

[Li et al. 2006] Lihong Li, Thomas J Walsh, and Michael L Littman (2006). Towards a
Unified Theory of State Abstraction for MDPs.. In ISAIM.

[Lientz and Swanson 1981] Bennet P Lientz and E Burton Swanson (1981). Problems in
application software maintenance. Communications of the ACM, 24(11), 763–769.

[Lin and Kernighan 1973] Shen Lin and Brian W Kernighan (1973). An effective heuristic
algorithm for the traveling-salesman problem. Operations research, 21(2), 498–516.

[Lindauer et al. 2016] Marius Lindauer, Rolf-David Bergdoll, and Frank Hutter (2016).
An empirical study of per-instance algorithm scheduling . In International Conference
on Learning and Intelligent Optimization, pp. 253–259. Springer.

[Lindauer et al. 2015] Marius Lindauer, Holger Hoos, and Frank Hutter (2015). From
sequential algorithm selection to parallel portfolio selection. In International Conference
on Learning and Intelligent Optimization, pp. 1–16. Springer.

[Liskov and Wing 1994] Barbara H Liskov and Jeannette M Wing (1994). A behavioral
notion of subtyping . ACM Transactions on Programming Languages and Systems (TO-
PLAS), 16(6), 1811–1841.

[Liu and Motoda 1998] Huan Liu and Hiroshi Motoda (1998). Feature extraction, con-
struction and selection: A data mining perspective, vol. 453: Springer Science & Busi-
ness Media.

[López-Ibáñez et al. 2016] Manuel López-Ibáñez, L Pérez Cáceres, Jérémie Dubois-
Lacoste, Thomas Stützle, and Mauro Birattari (2016). The irace package: User guide.
IRIDIA, Université Libre de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2016-004.

[López-Ibánez et al. 2011] Manuel López-Ibánez, Jérémie Dubois-Lacoste, Thomas
Stützle, and Mauro Birattari (2011). The irace package, iterated race for automatic
algorithm configuration. Technical Report, Citeseer.

[López-Ibáñez and Stützle 2010] Manuel López-Ibáñez and Thomas Stützle (2010). Auto-
matic Configuration of Multi-Objective ACO Algorithms.. In ANTS Conference, pp.
95–106. Springer.

[Lourencco et al. 2003] Helena R Lourencco, Olivier C Martin, and Thomas Stutzle
(2003). Iterated local search. International series in operations research and man-
agement science, pp. 321–354.

[Lukasik and Zak 2009] Szymon Lukasik and Slawomir Zak (2009). Firefly Algorithm for
Continuous Constrained Optimization Tasks.. In ICCCI, pp. 97–106. Springer.

292 BIBLIOGRAPHY

[Luke 2009] Sean Luke (2009). Essentials of metaheuristics, vol. 113: Lulu Raleigh.

[Mahmood et al. 2014] A Rupam Mahmood, van Hado P Hasselt, and Richard S Sut-
ton (2014). Weighted importance sampling for off-policy learning with linear function
approximation. In Advances in Neural Information Processing Systems, pp. 3014–3022.

[Malitsky and Sellmann 2010] Yuri Malitsky and Meinolf Sellmann (2010). Stochastic
offline programming . International Journal on Artificial Intelligence Tools, 19(04), 351–
371.

[Manna and Waldinger 1980] Zohar Manna and Richard Waldinger (1980). A deductive
approach to program synthesis. ACM Transactions on Programming Languages and
Systems (TOPLAS), 2(1), 90–121.

[Marmion et al. 2013] Marie-Eléonore Marmion, Franco Mascia, Manuel López-Ibánez,
and Thomas Stützle (2013). Automatic design of hybrid stochastic local search al-
gorithms. In International Workshop on Hybrid Metaheuristics, pp. 144–158. Springer.

[Maron and Moore 1994] Oded Maron and Andrew W Moore (1994). Hoeffding races:
Accelerating model selection search for classification and function approximation. Ad-
vances in neural information processing systems, pp. 59–59.

[Maron and Moore 1997] Oded Maron and Andrew W Moore (1997). The racing al-
gorithm: Model selection for lazy learners. In Lazy learning , pp. 193–225: Springer.

[Martello et al. 1999] Silvano Martello, David Pisinger, and Paolo Toth (1999). Dynamic
programming and strong bounds for the 0-1 knapsack problem. Management Science,
45(3), 414–424.

[Mascia et al. 2014a] Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and
Thomas Stützle (2014a). Grammar-based generation of stochastic local search heuristics
through automatic algorithm configuration tools. Computers & operations research, 51,
190–199.

[Mascia et al. 2014b] Franco Mascia, Paola Pellegrini, Mauro Birattari, and Thomas
Stützle (2014b). An analysis of parameter adaptation in reactive tabu search. In-
ternational Transactions in Operational Research, 21(1), 127–152.

[Mascia and Stützle 2012] Franco Mascia and Thomas Stützle (2012). A non-adaptive
stochastic local search algorithm for the chesc 2011 competition. In Learning and
Intelligent Optimization, pp. 101–114: Springer.

BIBLIOGRAPHY 293

[Maslow 1966] Abraham H. Maslow (1966). The Psychology of Science: New York:
Harper & Row.

[Mazure et al. 1997] Bertrand Mazure, Lakhdar Sais, and Éric Grégoire (1997). Tabu
search for SAT . In AAAI/IAAI, pp. 281–285.

[Meignan 2011] David Meignan (2011). An Evolutionary Programming Hyper-heuristic
with Co-evolution for CHeSCâĂŹ11 . In OR53 Annual Conference.

[Minsky 1961] M. Minsky (1961). Steps toward Artificial Intelligence. Proceedings of the
IRE, 49(1), 8–30.

[Mirjalili and Lewis 2016] Seyedali Mirjalili and Andrew Lewis (2016). The whale optim-
ization algorithm. Advances in Engineering Software, 95, 51–67.

[Mirjalili et al. 2014] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis
(2014). Grey wolf optimizer . Advances in Engineering Software, 69, 46–61.

[Mısır et al. 2012] M Mısır, Katja Verbeeck, Patrick De Causmaecker, and G Vanden
Berghe (2012). The effect of the set of low-level heuristics on the performance of
selection hyper-heuristics. In International Conference on Parallel Problem Solving from
Nature, pp. 408–417. Springer.

[Misir et al. 2011] Mustafa Misir, Patrick De Causmaecker, Greet Vanden Berghe, and
Katja Verbeeck (2011). An adaptive hyper-heuristic for CHeSC 2011 .

[Misir et al. 2012a] Mustafa Misir, Patrick De Causmaecker, Katja Verbeeck, and Greet
Vanden Berghe (2012a). Intelligent Hyper-heuristics: A Tool for Solving Generic Op-
timisation Problems. PhD thesis

[Misir et al. 2012b] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet
Vanden Berghe (2012b). An intelligent hyper-heuristic framework for chesc 2011 . In
Learning and Intelligent Optimization, pp. 461–466: Springer.

[Mitchell 1980] Tom M Mitchell (1980). The need for biases in learning generalizations:
Department of Computer Science, Laboratory for Computer Science Research, Rutgers
Univ. New Jersey.

[Mladenović and Hansen 1997] Nenad Mladenović and Pierre Hansen (1997). Variable
neighborhood search. Computers & operations research, 24(11), 1097–1100.

[Mladenović et al. 2016] Nenad Mladenović, Raca Todosijević, and Dragan Urošević
(2016). Less is more: basic variable neighborhood search for minimum differential
dispersion problem. Information Sciences, 326, 160–171.

294 BIBLIOGRAPHY

[Mohri et al. 2012] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2012).
Foundations of machine learning : MIT press.

[Moscato and Cotta 2002] Pablo Moscato and C Cotta (2002). Memetic algorithms.
Handbook of Applied Optimization, pp. 157–167.

[Mucherino and Seref 2007] Antonio Mucherino and Onur Seref (2007). Monkey search:
a novel metaheuristic search for global optimization. In AIP conference proceedings,
vol. 953, pp. 162–173. AIP.

[Nelson and Gailly 1995] Mark Nelson and Jean-Loup Gailly (1995). The data compression
book 2nd edition. M & T Books, New York, NY.

[Nesterov and Nemirovskii 1994] Yurii Nesterov and Arkadii Nemirovskii (1994). Interior-
point polynomial algorithms in convex programming : SIAM.

[Ng et al. 1999] Andrew Y Ng, Daishi Harada, and Stuart Russell (1999). Policy invariance
under reward transformations: Theory and application to reward shaping . In ICML,
vol. 99, pp. 278–287.

[Nudelman et al. 2004] Eugene Nudelman, Kevin Leyton-Brown, Holger H Hoos, Alex
Devkar, and Yoav Shoham (2004). Understanding random SAT: Beyond the clauses-
to-variables ratio. In International Conference on Principles and Practice of Constraint
Programming , pp. 438–452. Springer.

[Ochoa et al. 2012] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose Vazquez-
Rodriguez, James Walker, Michel Gendreau, Graham Kendall, Barry McCollum, Andrew
Parkes, Sanja Petrovic, et al. (2012). HyFlex: a benchmark framework for cross-domain
heuristic search. Evolutionary Computation in Combinatorial Optimization, pp. 136–
147.

[Oshiro et al. 2012] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto
Baranauskas (2012). How many trees in a random forest? . In MLDM, pp. 154–168.
Springer.

[Owen 2014] AB Owen (2014). Monte Carlo theory, methods and examples (book draft).

[Pan 2012] Wen-Tsao Pan (2012). A new fruit fly optimization algorithm: taking the
financial distress model as an example. Knowledge-Based Systems, 26, 69–74.

[Papadimitriou 1994] Christos H Papadimitriou (1994). On the complexity of the parity
argument and other inefficient proofs of existence. Journal of Computer and system
Sciences, 48(3), 498–532.

BIBLIOGRAPHY 295

[Parnas 1985] David Lorge Parnas (1985). Software aspects of strategic defense systems.
Communications of the ACM, 28(12), 1326–1335.

[Passino 2002] Kevin M Passino (2002). Biomimicry of bacterial foraging for distributed
optimization and control . IEEE control systems, 22(3), 52–67.

[Precup et al. 2000] Doina Precup, Richard S Sutton, and Satinder P Singh (2000). Eli-
gibility Traces for Off-Policy Policy Evaluation.. In ICML, pp. 759–766. Citeseer.

[Puterman 2014] Martin L Puterman (2014). Markov decision processes: discrete
stochastic dynamic programming : John Wiley & Sons.

[Randall 2004] Marcus Randall (2004). Near parameter free ant colony optimisation. In
International Workshop on Ant Colony Optimization and Swarm Intelligence, pp. 374–
381. Springer.

[Rashedi et al. 2009] Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi
(2009). GSA: a gravitational search algorithm. Information sciences, 179(13), 2232–
2248.

[Reinelt 1991] Gerhard Reinelt (1991). TSPLIBâĂŤA traveling salesman problem library .
ORSA journal on computing, 3(4), 376–384.

[Rice 1976] John R Rice (1976). The algorithm selection problem. Advances in computers,
15, 65–118.

[Rodriguez et al. 2007] Jose Antonio Vazquez Rodriguez, Sanja Petrovic, and Abdellah
Salhi (2007). An investigation of hyper-heuristic search spaces. In Evolutionary Com-
putation, 2007. CEC 2007. IEEE Congress on, pp. 3776–3783. IEEE.

[Roy et al. 2011] Gourab Ghosh Roy, Swagatam Das, Prithwish Chakraborty, and Pon-
nuthurai N Suganthan (2011). Design of non-uniform circular antenna arrays using a
modified invasive weed optimization algorithm. IEEE Transactions on antennas and
propagation, 59(1), 110–118.

[Rubinstein and Kroese 2016] Reuven Y Rubinstein and Dirk P Kroese (2016). Simulation
and the Monte Carlo method , vol. 10: John Wiley & Sons.

[Rummery and Niranjan 1994] Gavin A Rummery and Mahesan Niranjan (1994). On-line
Q-learning using connectionist systems, vol. 37: University of Cambridge, Department
of Engineering.

296 BIBLIOGRAPHY

[Russell et al. 1995] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M
Malik, and Douglas D Edwards (1995). Artificial intelligence: a modern approach,
vol. 2: Prentice hall Englewood Cliffs, NJ.

[Ryser-Welch and Miller 2014] Patricia Ryser-Welch and Julian F Miller (2014). A Review
of Hyper-Heuristic Frameworks. In Proceedings of the 50th Anniversary Convention of
the AISB.

[Santos 1969] Eugene S Santos (1969). Probabilistic Turing machines and computability .
Proceedings of the American Mathematical Society, 22(3), 704–710.

[Sarewitz 2016] Daniel Sarewitz (2016). The pressure to publish pushes down quality .
Nature, 533(7602), 147–147.

[Schumacher et al. 2001] C Schumacher, Michael D Vose, and L Darrell Whitley (2001).
The no free lunch and problem description length. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, pp. 565–570. Morgan Kaufmann
Publishers Inc.

[Shah-Hosseini 2009] Hamed Shah-Hosseini (2009). The intelligent water drops algorithm:
a nature-inspired swarm-based optimization algorithm. International Journal of Bio-
Inspired Computation, 1(1-2), 71–79.

[Singh et al. 1994] Satinder P Singh, Tommi S Jaakkola, Michael I Jordan, et al. (1994).
Learning Without State-Estimation in Partially Observable Markovian Decision Pro-
cesses.. In ICML, pp. 284–292.

[Skiena 1998] Steven S Skiena (1998). The algorithm design manual: Text, vol. 1:
Springer Science & Business Media.

[Sörensen 2015] Kenneth Sörensen (2015). Metaheuristics, the metaphor exposed . Inter-
national Transactions in Operational Research, 22(1), 3–18.

[Sörensen and Glover 2013] Kenneth Sörensen and Fred W Glover (2013). Metaheuristics.
In Encyclopedia of operations research and management science, pp. 960–970: Springer.

[Sorensen et al. 2017] Kenneth Sorensen, Marc Sevaux, and Fred Glover (2017). A history
of metaheuristics. arXiv preprint arXiv:1704.00853.

[Stipčević and Koç 2014] Mario Stipčević and Çetin Kaya Koç (2014). True random num-
ber generators. In Open Problems in Mathematics and Computational Science, pp.
275–315: Springer.

BIBLIOGRAPHY 297

[Stützle and Dorigo 1999] Thomas Stützle and Marco Dorigo (1999). ACO algorithms for
the traveling salesman problem. Evolutionary Algorithms in Engineering and Computer
Science, pp. 163–183.

[Sutter 2005] Herb Sutter (2005). The free lunch is over: A fundamental turn toward
concurrency in software. Dr. DobbâĂŹs journal, 30(3), 202–210.

[Sutton and Barto 1998] Richard S Sutton and Andrew G Barto (1998). Reinforcement
learning: An introduction, vol. 1: MIT press Cambridge.

[Swan et al. 2015] Jerry Swan, Steven Adriaensen, Mohamed Bishr, Edmund K Burke,
John A Clark, Patrick De Causmaecker, Juanjo Durillo, Kevin Hammond, Emma Hart,
Colin G Johnson, et al. (2015). A Research Agenda for Metaheuristic Standardization.
In Proceedings of the XI Metaheuristics International Conference.

[Swan et al. 2016] Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Özcan
(2016). A re-characterization of hyper-heuristics.

[Swan et al. 2011] Jerry Swan, Ender Özcan, and Graham Kendall (2011). Hyperion–a
recursive hyper-heuristic framework. In Learning and intelligent optimization, pp. 616–
630: Springer.

[Teller and Andre 1997] Astro Teller and David Andre (1997). Automatically choosing the
number of fitness cases: The rational allocation of trials. Genetic Programming, 97,
321–328.

[Trevisan 2010] Luca Trevisan (2010). CS254: Computational Complexity - handout 2 .
https://www.cs.stanford.edu/~trevisan/cs254-10/lecture02.pdf. Accessed:
2018-04-11.

[Turing 1950] Alan M Turing (1950). Computing machinery and intelligence. Mind,
59(236), 433–460.

[Turing 1937] Alan Mathison Turing (1937). On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London mathematical society, 2(1),
230–265.

[Urbanowicz and Moore 2009] Ryan J Urbanowicz and Jason H Moore (2009). Learning
classifier systems: a complete introduction, review, and roadmap. Journal of Artificial
Evolution and Applications, 2009, 1.

[Urra et al. 2013] Enrique Urra, Daniel Cabrera-Paniagua, and Claudio Cubillos (2013).
Towards an object-oriented pattern proposal for heuristic structures of diverse abstrac-
tion levels. XXI Jornadas Chilenas de Computación 2013, PROCEEDINGS.

https://www.cs.stanford.edu/~trevisan/cs254-10/lecture02.pdf

298 BIBLIOGRAPHY

[Van Onsem et al. 2014] Willem Van Onsem, Bart Demoen, and Patrick De Causmaecker
(2014). Hyper-criticism: A critical reflection on todays hyper-heuristics. In Proceedings
of the 28th Anual Conference of the Operational Research Society , vol. 28, pp. 159–161.

[Vázquez-Rodrıguez et al. 2009a] Vázquez-Rodrıguez, Gabriela Ochoa, Tim Curtois, and
Matthew Hyde (2009a). A Travelling Salesman Person Problem Domain for the HyFlex
Framework. School of Computer Science, University of Nottingham, Tech. Rep.

[Vázquez-Rodrıguez et al. 2009b] José Antonio Vázquez-Rodrıguez, Gabriela Ochoa, Tim
Curtois, and Matthew Hyde (2009b). A hyflex module for the permutation flow shop
problem. School of Computer Science, University of Nottingham, Tech. Rep.

[Veach 1997] Eric Veach (1997). Robust monte carlo methods for light transport simula-
tion. No. 1610: Stanford University PhD thesis.

[Vinkers et al. 2015] Christiaan H Vinkers, Joeri K Tijdink, and Willem M Otte (2015).
Use of positive and negative words in scientific PubMed abstracts between 1974 and
2014: retrospective analysis. Bmj, 351, h6467.

[Voudouris and Tsang 2003] Christos Voudouris and Edward Tsang (2003). Guided local
search. Handbook of metaheuristics, pp. 185–218.

[Wackerly et al. 2007] Dennis Wackerly, William Mendenhall, and Richard Scheaffer
(2007). Mathematical statistics with applications: Nelson Education.

[Walker et al. 2012] James D Walker, Gabriela Ochoa, Michel Gendreau, and Edmund K
Burke (2012). Vehicle routing and adaptive iterated local search within the hyflex hyper-
heuristic framework. In Learning and Intelligent Optimization, pp. 265–276: Springer.

[Watkins and Dayan 1992] Christopher JCHWatkins and Peter Dayan (1992). Q-learning .
Machine learning, 8(3-4), 279–292.

[West et al. 2001] Douglas Brent West et al. (2001). Introduction to graph theory , vol. 2:
Prentice hall Upper Saddle River.

[Weyland 2010] Dennis Weyland (2010). A Rigorous Analysis of the Harmony Search
Algorithm: How the Research Community can be Misled by a Novel Methodology .
International Journal of Applied Metaheuristic Computing, 1(2), 50–60.

[Williams 1992] Ronald J Williams (1992). Simple statistical gradient-following algorithms
for connectionist reinforcement learning . In Reinforcement Learning , pp. 5–32: Springer.

[Woeginger 2003] Gerhard Woeginger (2003). Exact algorithms for NP-hard problems: A
survey . Combinatorial Optimization - Eureka, You Shrink!, pp. 185–207.

BIBLIOGRAPHY 299

[Wolpert and Macready 1997] David H Wolpert and William G Macready (1997). No free
lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1),
67–82.

[Xu et al. 2010] Lin Xu, Holger Hoos, and Kevin Leyton-Brown (2010). Hydra: Auto-
matically Configuring Algorithms for Portfolio-Based Selection.. In AAAI, vol. 10, pp.
210–216.

[Xu et al. 2008] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown (2008).
SATzilla: portfolio-based algorithm selection for SAT . Journal of artificial intelligence
research, 32, 565–606.

[Yang 2010] Xin-She Yang (2010). A new metaheuristic bat-inspired algorithm. Nature
inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74.

[Yang 2012] Xin-She Yang (2012). Flower pollination algorithm for global optimization..
In UCNC , pp. 240–249. Springer.

[Yang 2014] Xin-She Yang (2014). Nature-inspired optimization algorithms: Elsevier.

[Yang and Deb 2009] Xin-She Yang and Suash Deb (2009). Cuckoo search via Lévy
flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Con-
gress on, pp. 210–214. IEEE.

[Yun and Epstein 2012] Xi Yun and Susan L Epstein (2012). Learning algorithm portfolios
for parallel execution. In Learning and intelligent optimization, pp. 323–338: Springer.

[Žák 1983] Stanislav Žák (1983). A Turing machine time hierarchy . Theoretical Computer
Science, 26(3), 327–333.

[Zhang et al. 2016] Tiantian Zhang, Michael Georgiopoulos, and Georgios C Anagnosto-
poulos (2016). Multi-objective model selection via racing . IEEE transactions on cyber-
netics, 46(8), 1863–1876.

	Abstract
	Samenvatting
	Contents
	Introduction
	Our Critical Perspective on Algorithmics
	Research Topic
	Scope and Focus
	Research Questions

	Structure of this Dissertation
	Content Outline
	Reader's Guide

	1: Background and Personal Perspectives
	Foundations of Problem-solving
	Problems
	Optimization Problems
	Examples of Combinatorial Optimization Problems

	Algorithms
	Formalization
	Computer Programs
	Parametrized Algorithms

	Problem Formulation
	Reducibility
	Problem-solving vs. Problem Formulation
	Opinion: Importance of Natural Formulations

	Computational Complexity
	Analysis of Algorithms
	Complexity of Problems

	Beyond Effective Procedures
	Randomized Algorithms
	Asymptotically Correct Algorithms
	Non-exact Algorithms
	Contract and Anytime Algorithms

	Search Methods for Combinatorial Optimization
	Systematic Search
	Heuristic Search

	Summary

	Algorithm Design
	The Algorithm Design Problem
	Algorithm Quality
	Performance
	Beyond Performance
	Conflicting Criteria?

	Who is the Designer?
	The Manual Approach
	Automated Algorithm Design
	Semi-automated Design

	What Information Does the Designer Use?
	Analytical
	Empirical / Simulation-based
	Who Uses What Information?

	When Does Design Take Place?
	Offline
	Online
	Semi-online

	Summary

	Design by Algorithm Selection
	Design by Per-set Algorithm Selection
	Formulating the ADP as a set-ASP
	Solving the set-ASP

	Design by Per-input Algorithm Selection
	The input- and subset-ASP
	Formulating the ADP as a subset-ASP
	Solving the subset-ASP

	Design by Dynamic Algorithm Selection
	The Dynamic ASP
	Solving the Dynamic ASP

	A Broader Perspective
	Relations between the ASPs
	Opinion: Relative Strengths and Weaknesses

	Summary

	2: Algorithmic Contributions and Case Studies
	Programming by Configuration
	Programming by Optimization
	Case Study: Designing Reusable Metaheuristics
	The Metaheuristic Design Problem
	Reduction to an ACP
	Solving the ACP
	Results

	Fair Share Iterated Local Search (FS-ILS)
	Design Decisions
	Empirical Analysis

	Critical Reflection
	Summary

	Towards a White Box Approach to Automated Algorithm Design
	Opinion: Limitations of PbC
	A White Box Formulation
	How about the Dynamic Algorithm Selection Problem?
	A White Box Variant of the Algorithm Configuration Problem
	Relation to Other Formulations

	Exploiting White Box Information
	Algorithm Performance Evaluation
	An Importance Sampling Approach

	A Proof of Concept White Box Optimizer
	Choice of Incumbent
	High-level Search Strategy

	Experimental Validation
	The Looping Problem: Break or Continue
	Static Sorting Portfolio
	Dynamic Metaheuristic Scheduler

	Limitations and Future Research
	Summary

	Accidental Complexity Analysis
	Simplicity in Algorithm Design
	Identifying Accidental Complexity
	Case Study: Accidental Complexity in Reusable Metaheuristics
	Context and Motivation
	Empirical Study

	Critical Reflection
	Summary

	Conclusion
	Research Questions (revisited)
	Limitations and Future Research

	Appendix
	Benchmark Environment Description
	The HyFlex Benchmark Set
	Properties of bold0mu mumu 2005/06/28 ver: 1.3 subfig package and Their Proofs
	The Dynamic Metaheuristic Scheduling wb-ACP
	AdapHH's Anatomy

	List of Publications
	List of Acronyms
	Bibliography

