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Abstract

Mobile devices such as tablets, smart phones or e-readers have become omnipresent in
our daily lives for reading the news, analyzing our latest workout data, checking a cooking
recipe, but also to learn the basics of a new language. Language learning applications are
becoming an interesting alternative to classroom education because they allow learners
to practice anywhere and at any time, often even for free. Yet, the quality of tutoring
they offer can usually not be compared with a human tutoring scenario, in which the
tutor analyses the learner’'s language skills and adapts the curriculum accordingly, but
they lie closer to programmed instruction systems where every user proceeds through
the same sequence of learning steps. To build an artificial tutor that can process the
learner’s input and react to it in an individualised way three key ingredients are needed:
(i) a fully operational grammar of the target language that can parse and produce any
learner utterance, even when it is ungrammatical; (ii) a predictive student model that can
simulate the real student and is aligned to match the student’s linguistic skills after every
interaction with the system; (iii) a set of tutoring strategies that is used to guide the
student through the learning programme. This dissertation presents operational solutions
for (i) and partially (ii) for the domain of Spanish verb conjugation and an agent-based
tutoring design accompanied by preliminary experiments for (iii). The solutions include
a competent language agent that has a complete grammar to conjugate any Spanish
verb form and repair learner errors and a runnable student agent that can acquire the
target grammar incrementally through situated learning in discriminative contexts. The
successful evaluation of these components has led to the constructive design of a tutor
agent that incorporates both language and student agents and engages in interactions
with the real student, whom he assists on his learning path with carefully tailored tutoring
strategies.






Samenvatting

Mobiele apparaten zoals tablets, smart phones en e-readers zijn momenteel niet meer weg
te denken uit ons dagelijkse bestaan. We gebruiken ze om de krant te lezen, een nieuw
recept op te zoeken, sportieve prestaties te analyseren maar ook steeds vaker om een
nieuwe taal aan te leren. Leerapplicaties worden steeds meer gezien als een interessant
alternatief voor klassikaal taalonderwijs omdat zij leerders toestaan om nieuwe kennis te
vergaren waar en wanneer zij hier behoefte aan hebben, en dit in vele gevallen gratis of
tegen een lage prijs. De kwaliteit van de lessen die zij aanbieden kan meestal echter nog
niet vergeleken worden met een klassituatie waarin de leraar de taalvaardigheden van zijn
leerlingen inschat en de lessen daarop afstemt, maar leunt dichter aan bij de geprogram-
meerde instructiesystemen waarin elke gebruiker dezelfde leerniveaus en -hindernissen
doorloopt. Om een kunstmatige leraar te maken die talige input van een student kan
verwerken en daarop op een aangepaste manier kan reageren zijn er drie bouwstenen
nodig: (i) een volledig operationele grammatica van de doeltaal waarmee eender welke
taaluiting kan geanalyseerd en geproduceerd worden, inclusief niet-grammaticale uitin-
gen; (ii) een voorspellend studentenmodel dat een echte student simuleert en steeds
afgestemd blijft op de taalvaardigheden van deze student; en (iii) een reeks tutoring
strategieen die gebruikt worden om een student persoonlijk te begeleiden doorheen de
leerstof. Deze thesis presenteert werkende oplossingen voor componenten (i) en (ii) voor
het domein van Spaanse werkwoordsvervoegingen en een agent-gebaseerd tutoring de-
sign voor component (iii). De oplossingen bevatten een competente taalagent die over
een volledige grammatica beschikt om enerzijds eender welke Spaanse werkwoordsvorm
te vervoegen en anderzijds taalfouten op te sporen en te verbeteren, en een actieve
studentenagent die de doelgrammatica kan verwerven door het spelen van gesitueerde
taalspellen. De succesvolle evaluatie van deze componenten heeft geleid tot een eerste
design van een tutor agent die kan communiceren met een student die hij op zijn leerpad
bijstaat met zorgvuldig uitgezochte tutoring strategieén.
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Chapter 1

Introduction

We are all born as natural tutors, engaging in teaching sophisticated skills and acquired
knowledge to our peers already from a very young age. Tutoring can be considered to
be the main driver behind cultural evolution of cognitive capacities such as tool use and
language. Learning these capacities requires more than imitation or reinforcement learn-
ing, but instead relies on higher-order skills that allow the learner to contextualize, make
analogies and generalize over the learner input. Although we all dispose of this capacity,
computerized tutors usually do not have the skill to adapt to their learners but instead
fall back on pre-programmed instruction scripts. Commercial language tutors such as
the popular Rosetta Stone belong to this type of "programmed-instruction” machines.
For example, if a student revisits a particular lesson, he is exposed to the same materials
as he has already encountered on previous interactions with the system.

Yet, already in the 1980s researchers have tried to put Artificial Intelligence (Al) tech-
niques into the construction of Intelligent Tutoring Systems (ITSs). The problem of
how to best represent knowledge within an intelligent system had been a major concern
within the field of Al. The knowledge domain of ITSs ranges from well-defined domains
such as mathematics and computer programming to ill-defined domains such as archi-
tecture and language. The subfield that focuses on ITSs for language learning is called
Computer-Assisted Language Learning (CALL for short). Intelligent CALL concentrates
on using Natural Language Processing (NLP) techniques to analyse learner language.

This dissertation advocates the use of accurate language processing, agent-based mod-
elling and meta-level strategies with the aim of building a new kind of language tutoring
system for adult second language (L2) learners. Because the construction of a com-
pletely new type of language tutor requires the work of more than one dissertation, | will
concentrate here on the basic framework that is needed by this tutor and demonstrate
its use for a case study of Spanish verb morphology. The ultimate idea is that every
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individual student that interacts with this ICALL tutoring system would have his own
personal language tutor agent at its disposal that adresses him at an appropriate level
and selects new linguistic situations that are challenging enough to trigger learning. The
basic framework that embraces such a personal language tutor consists of three main
building blocks:

1. Because domain knowledge is a crucial prerequisite for any personal language tutor,
whether human or artificial, it is necessary to have a fully operational language
agent that can function as a competent language user.

2. A predictive student model in the form of an autonomous student agent with
a structure that is identical to the language agent can be dynamically aligned to
fit the real student’s progress. The student agent learns "along” with the student
that it models.

3. Alanguage agent can take up the role of the tutor when he is endowed with a set
of tutoring strategies, which make use of the information present in the student
model as well as a more general student profile module.

Of course, the realisation of these three components requires the necessary technical
skills and theoretical insights as it cuts across three fields of expertise: Intelligent CALL,
linguistic theory and second language acquisition theory. The work presented in this
dissertation focuses on its contributions in the field of Intelligent CALL (ICALL) and the
perspective that is taken is always Al-based, rather than linguistics or pedagogy-oriented.
To better delineate the current work, the following sections state its main objectives
(Section 1.1) and situate it in the field of ICALL (Section 1.2). The basic components
of the proposed tutoring architecture are described in further details in Section 1.3.

1.1 Objectives

The three main ideas that form the backbone of this dissertation are (1) accurate lan-
guage processing, (2) agent-based modelling and (3) meta-level strategies. Each of
these is explained in the current section. Although they can be applied to any language
system, | have selected the Spanish verb phrase as the target language system. Within
a language, a number of different subsystems are used instinctively by native speakers of
the language. Examples of these kinds of subsystems include the tense system in English,
the case grammar of Latin, the reflexive and reciprocal pronoun system of Spanish, the
classifier system of Swahili, and so on. Spanish verb conjugation is another such sub-
system. Acquiring Spanish verb conjugation does not only require an understanding of
the use of temporal, aspectual and modal expressions but also implies an active knowl-
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edge of the rich morpho-phonology of the Spanish language, with verb stem changes,
assimilation processes and many irregularities.

1.1.1 Accurate language processing

The use of the term "accurate” in accurate language processing refers to the employment
of a symbolic representation of linguistic knowledge and procedures that is error-free. An
artificial language tutor that can produce and analyse linguistic expressions in the target
language system, i.e. a subsystem in the language that is taught (e.g. prepositions,
determiners, verb conjugation, case, etc.), needs to be fully reliable. Producing erroneous
input or analysing learner language with an error margin can potentially lead to disastrous
effects. Accurate language processing can be contrasted with approximate models of
language that use probabilities to predict the next word during language production
or analysis. Examples of approximate language processing models are N-gram language
models and the use of recursive neural networks for parsing (also known as deep learning)
(Socher, Lin, Ng, & Manning, 2011).

Similar to precision grammar, a formal grammar that aims at distinguishing ungrammat-
ical from grammatical sentences, accurate language processing relates semantic repre-
sentations to surface strings in parsing and production. Yet, while precision grammars
such as the English Resource Grammar generally adhere to generative conceptions of
linguistic theory, | adopt a cognitive-functional approach by choosing to employ Fluid
Construction Grammar (FCG) for operationalising the artificial language tutor's target
grammar (Steels, 2011, 2012a). Instead of distinguishing well-formed utterances from
ungrammatical ones, FCG instead models "how speakers express their conceptualizations
of the word through language (= production) and how listeners analyse utterances into
meanings (= parsing)" (van Trijp, 2013). FCG uses non-typed feature structures to rep-
resent linguistic knowledge and relies on a two-step unification process (match/merge).

To be an accurate model of a speaker or listener that belongs to a particular linguistic
community, FCG-based operationalizations are always bidirectional: they work both in
parsing and production with the same grammar rules and the same grammar engine.
Bidirectionality implies that when designing new grammar rules, the grammar engineer
pays attention to both the triggering conditions as well as the effects they will cause in
parsing and in production.
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1.1.2 Agent-based modelling

An agent is an autonomous entity that pursues its own goals and learns according to the
outcome of its own or other agents’ actions. | employ the notion of agent to model a
language user, be it a native speaker that masters a language completely or a language
learner that still has gaps in its grammatical knowledge of the target language system.
Such a linguistic agent engages in communicative interactions in which it calls upon its
linguistic competence and performance models to reach certain communicative goals. In
this dissertation, | refer to an interaction between two agents, be it human or artificial,
as a language game. A language game is a routinised interaction script that contains all
elements that two agents need for reaching a joint goal through linguistic communication
(conceptualisation, production, parsing, interpretation).

Multi-agent systems have sometimes been considered as good candidates for building
basic ITS infrastructures as they fulfil all the necessary requirements (Nkambou, Bour-
deau, & V., 2010, p. 369): (i) they are made of different interconnected, complex
components; (ii) they provide multiple, different and complementary services; (iii) each
of their components is functionally autonomous; and (iv) they are equipped with spe-
cific knowledge structure and reasoning mechanisms. Agents are thus often decomposed
by their function in the teaching and learning process, with for instance one evaluation
agent, one modelling agent, one recording agent, one student agent, etc. (Sun, Joy,
& Griffiths, 2007). Yet, the use of agents in this dissertation differs from such a dis-
tributed system in that every agent needs to be capable of taking the role of speaker
or listener in a language game and is thus a fully operational model of a language user.
Evaluation, recording and other tasks needed in a tutoring system are not considered as
agent-specific tasks but rather seen as routine processes that do not require autonomous
reasoning.

Moreover, the usefulness of agent technology in intelligent education systems is their
contribution to make these systems adaptive, able to learn and dynamic by providing dy-
namic adaptation of domain knowledge and of behaviour of individual learners ((Razek,
Frasson, & Kaltenbach, 2002), cited by (Sun et al., 2007)). Pedagogical agent-based
systems are often used to monitor a particular project and enhance communication be-
tween members of a group (Beer & Whatley, 2002). Some researchers have designed
agents for every course unit (Shang, Shi, & Chen, 2001) or assigned a new agent to
a specific learning topic (Boicu et al., 2004). My approach differs from these existing
uses of agents in tutoring systems as | rely on two agents: one that models a competent
language user and another one that simulates a language learner. The latter can then
function as an active student model that can run and try out solutions in parallel to
predict a student’s behaviour. Section 1.3 contains more details on the architecture of
both agents.
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1.1.3 Meta-level strategies

Finally, the last idea that this dissertation relies on is the use of a meta-level architecture
for language processing. The idea of computational reflection, making computational
algorithms more robust by allowing them to find solutions for unexpected processes,
goes back to meta-level architectures for syntax checking and code debugging purposes
in computer programming languages (Maes, 1988; Maes & Nardi, 1988). The basic idea
is that there is an additional processing level on top of routine processing that monitors
every step and signals problems when something unexpected has occurred. A number of
repair strategies that have been manually encoded to solve a particular problem either by
a very specific repair move or by more general analogical reasoning trigger so that the
original processing can continue after a short repair intervention.

Every repair strategy comes with one or more diagnostics because problems that occur
in different occasions might require the same repair strategy. But also, one problem
that has been diagnosed at a certain point in the processing pipeline can potentially be
repaired by more than one repair strategy. This dissertation presents strategies for three
pUrposes:

1. Flexibility strategies are used to guarantee flexible language processing, both in
parsing and production. This dissertation investigates their use for detecting and
correcting form-related learner errors in parsing.

2. Learning strategies are employed by the student agent to simulate the learning
process of the target language system through online learning in language games.
Again, the implementation of learning strategies in this dissertation focuses on
learning problems related to form rather than meaning.

3. Tutoring strategies do not repair linguistic knowledge directly but instead diag-
nose gaps in a student agent’s knowledge and recurrent learning problems. They
repair such problems by selecting appropriate exercises and providing constructive
feedback. Due to time constraints, tutoring strategies have not been implemented
in this dissertation.

Although the idea of meta-level strategies is not new, my contribution lies in their use
inside the FCG grammar engine. Earlier experiments on language emergence and evolu-
tion by team members relied on their availability after an agent had completed a process
such as conceptualization, production, parsing, etc. or after a complete turn was over
in the turn-taking process between speaker and listener (Beuls, van Trijp, & Wellens,
2012). Through an extension of the diagnostics and repairs framework | made it possi-
ble to diagnose problems after every search node in linguistic parsing or production, which
allows for a faster diagnosis and the possibility to repair errors by relaxing constraints
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or replacing certain features. Chapters 5 and 7 discuss the details of this approach in
further details for flexibility strategies and learning strategies.

1.2 Situating this work

The new type of language tutoring system proposed in this dissertation can best be
situated in the field of Intelligent Computer-Assisted Language Learning (ICALL), that
brings Artificial Intelligence techniques into the field of Computer-Assisted Language
Learning (CALL). As Melissa, Maisano, Alderks, and Martin (1993, p. 28) state: ICALL
"might be more accurately described as parser-based CALL, because its 'intelligence’
lies in the use of parsing - a technique that enables the computer to encode complex
grammatical knowledge such as humans use to assemble sentences, recognize errors, and
make corrections’. This dissertation also has an error correction component embedded
in the use of flexibility strategies as part of the meta-level architecture. Correcting errors
is useful to provide immediate feedback to the learner but can also be used in the longer
run to adapt future exercises to match the learner's level, estimated from the type of
errors that he makes. This section positions the current work in ICALL by looking at
other existing approaches to error correction and adaptivity.

Generally speaking, research into ICALL often emphasises one of three types of results:
(1) the pedagogical effectiveness of the training, (2) the impact on the learner’s motiva-
tion through individualised language instruction or (3) the performance of the technology
that was used (Bodnar, 2012). This dissertation belongs to the third camp and focuses
on the implementation of a new framework for future ICALL applications. It can al-
ready demonstrate a first proposal for error correction but the learner adaptivity of the
framework currently remains theory.

1.2.1 Grammar formalisms

According to Matthews (1993, p. 5), when choosing a grammar formalism for a lan-
guage tutoring application, one should consider a "formalism that potentially meshes
with SLA". With the choice for Fluid Construction Grammar as a potential ICALL for-
malism, | follow Schulze and Penner (2008) who claim that Construction Grammar is a
valid ICALL formalism that meets the three "criteria of adequacy” of Matthews (1993):
linguistic perspicuity (everything is a construction), computational effectiveness (con-
struction unification) and acquisitional perspicuity (applied in second language teaching,
see for instance (Achard, 2008)). Moreover, they claim that the choice for a Construc-
tion Grammar formalism "will yield more adequate analyses of learner language and thus

6
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not only improve, for instance, scaffolding and feedback for the learner but also provide
new insight into characteristics of learner language and into language learning processes”
(Schulze & Penner, 2008, p. 428).

Yet, | have no knowledge of any previous attempts of using a Construction Grammar-
based computational formalism for ICALL. A range of other grammar formalisms have
been used in ICALL from its start in the late 1980s, which have not only been employed
and tested "when applying NLP to CALL, but also in many other projects which relied
on computational linguistics in general” (Heift & Schulze, 2007, p. 61). Many of the
early projects made use of Augmented Transition Networks, a procedural formalism that
could be used to investigate transitions from one word to the next and used semantic and
syntactic information on the arcs between nodes (Weischedel, Voge, & James, 1978).
provides a list of grammar formalisms that have been used in ICALL since the early days
until recently, of which | included the largest projects here below (cited by Heift and
Schulze (2007)):

e Generalised Phrase Structure Grammar (Menzel, 1988, 1990, 1992; Heinecke,
Kunze, Menzel, & Schroder, 1998; Menzel & Schroder, 1998, 1999).

e Head-Driven Phrase Structure Grammar (Brocklebank, 1998; Heift, 1998, 2001,
2002, 2003; Schulze, 1999, 2001; Heift & Nicholson, 2000; Heift & Schulze,
2003a)

e Lexical Functional Grammar (Feuerman, Marshall, Newman, & Rypa, 1987; Levin,
Evans, & Gates, 1991; Levin & Evans, 1995; Rypa & Feuerman, 1995; Delmonte,
2002, 2003; Reuer, 2003)

e Tree Adjoining Grammar (Abeillé, 1992; Kakegawa, Kanda, Fujioka, Itami, & Itoh,
2000)

e Principles and Parameters approach (Weinberg, Garman, Martin, & Merlo, 1995;
Hamel, 1996; Schulze & Hamel, 1998; Vandeventer, 2000, 2001; Vandeventer &
Hamel, 2000; L'Haire & Vandeventer Faltin, 2003; Vandeventer Faltin, 2003)

1.2.2 Error correction

Once a full target grammar is implemented in Fluid Construction Grammar, it becomes
relatively straightforward to carry out error correction thanks to the accuracy of the
grammar’s description. When a particular construction cannot apply that should have
been applied, we can investigate exactly which feature in the construction caused the
mismatch, which is probably the one that contains the error. Flexibility strategies are used
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to interpret such errors and to suggest possible repairs so that the student utterance can
still be parsed. Such flexibility strategies are typically general so that they can be used for
different types of error (number, person, tense, verb class, etc.). There are typically two
types of approaches to "analyzing a string with the goal of diagnosing learner errors”, as
has been nicely put by Meurers (2012): the mal-rule approach and constraint relaxation.

The mal-rule approach uses standard parsing algorithms that use mal-rules in addition
to standard native language grammar rules to license learner errors (cf. Derek Sleeman
(1982), Matthews (1992), as cited by Meurers (2012, p. 4)). Such mal-rules contain
typical errors made by learners, and a new rule for every error needs to be instantiated.
These rules are applied in parsing as soon as the standard rules fail to apply. Mal-rules
have often been criticised because they do not allow for a scalable error analysis as every
rule is manually defined. The alternative approach, known as constraint relaxation (Foth,
Menzel, & Schroder, 2005), tries to "eliminate certain constraints from the grammar,
e.g., specifications ensuring agreement, thereby allowing the grammar to license more
strings than before” (Meurers, 2012, p. 4). A probabilistic use of constraint relaxation,
with weights that control the likelihood of an analysis, can be useful to rank errors for
a particular learner given a particular task (Foth et al., 2005). There are also some
proposals of combining constraint relaxation and mal-rules. As Meurers (2012, p. 4)
states: "Reuer (2003) combines a constraint relaxation technique with a standard parsing
algorithm modi- fied to license strings in which words have been inserted or omitted, an
idea which essentially moves generalizations over rules in the spirit of meta-rules into the
parsing algorithm™.

1.2.3 Adaptivity

Although the advantages for adaptivity could not be demonstrated yet in this disserta-
tion, | believe that the approach that | present here for an agent-based framework for
ICALL applications certainly has future potential to create adaptive learning environments
thanks to the combination of accurate language processing, agent-based modelling and
meta-level strategies. A good overview of existing approaches to adaptive instruction
is provided by Vandewaetere, Desmet, and Clarebout (2011), who distinguish between
the source of adaptation (to what will instruction be adapted), the target of adaptive
instruction (what instruction will be adapted?) and pathways of adaptive instruction.

1.3 Towards an artificial language tutor

The main foundations that this dissertation is built on all depart from the idea that
successful and effective language learning is more likely to occur in natural environments

8
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that lead to self-exploratory learning and with supportive help of an involved tutor who
steers challenges and feedback in an optimal direction. Although the results that have
been achieved in the work presented in this dissertation do not yet mirror this powerful
idea, | hope to lay the basic building blocks of a new framework for designing ICALL
systems. The three main elements of this new framework have been proposed above and
will be developed further in the remainder of this section: a competent language agent,
a language learning agent (student model) and tutoring strategies. This dissertation
describes the design of these basic building blocks and demonstrates a first attempt at
implementing a language agent and a student agent that interact in language games.
Future development cycles will need to consider improvements of both models in terms
of the representation of semantic information and the power of flexibility and learning
strategies to take into account this information.

This dissertation describes the design of the basic building blocks of a new frame-
work for ICALL and demonstrates a first attempt at implementing a language
agent and a student agent that interact in language games.

Box 1.1 — Goal of the current work.

1.3.1 Modeling a competent speaker

Learning is generally more effective when a language teacher really speaks the language
that he or she is teaching, especially when this is his or her first language. When your
French teacher really lived in France and persists in using French as the only language
that is used in class, you are much more likely to pick up the language. By contrast, most
of those that ever studied Latin will probably not remember much more of the language
than some rote-learned declension paradigms such as rosa, rosam, rosas, rosae, etc..
Therefore, when designing an effective language tutoring system it is necessary that the
artificial tutor itself is a competent speaker of the language that is being taught by the
system. As a proficient language user, the tutor must thus be capable of conceptualizing
and produce utterances in context or to parse and interpret them. This dissertation
introduces the notion of a language agent to fulfill this need. A language agent represents
an ideal speaker of a language whose linguistic skills also allow him to correct erroneous
utterances of others.

The language agent that is presented here consists of three main components: a con-
struction inventory, a grammar engine and a set of learning strategies (see Figure 1.1
for a visualization). The first component, the construction inventory, is a catalogue
of all the grammatical constructions that language user typically uses. It can contain
lexical constructions, phrasal constructions, morphological constructions, etc., that are
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language agent

cxn
inventory;

grammar

engine;

flexibility
strategies

Figure 1.1 — A language agent functions as a model of a language speaker through
actively producing and parsing utterances. It has a construction inventory
(grammar), a grammar engine that can process constructions and a set of flexibility
strategies.

each responsible for a small part in the processing of an utterance. The construction
inventory can be organized according to different principles that are either driven by
the implementation and processing perspective or by the psycholinguistic relevance of
grammar organization.

The second main component is the grammar engine. This is the component that is
responsible for the actual linguistic processing of the constructions that are collected in
the construction inventory. Such processing involves a search through the inventory to
retrieve the constructions that are required to build or interpret a particular utterance.
Moreover, the grammar engine should allow for bidirectional processing so that the same
constructions can be used in production and parsing. This bidirectionality is a crucial
feature if we want to enable flexible processing, which implies that the tutor can try to
reproduce the student's utterance to reconstruct the constructions that he accessed and
the possible search path that was taken.

Finally, a language agent also has a set of flexibility strategies that are in responsible for
the open-endedness of the linguistic processing of learner utterances. Ungrammatical
forms need to be captured and treated accordingly without any visible disruption of the
interaction between tutor and student. This specification requires that the language
processor can on the one hand detect ungrammatical input and on the other hand once
a potential error is retrieved, suggest a correction that is most plausible in the current
situation and continue regular processing. This notion of repairing a problem "behind the
scenes” echoes the ideas of computational reflection in the 80ies, which are still being used
to today's operating systems and programming languages (Maes, 1988; Maes & Nardi,
1988; B. C. Smith, 1982). | employ this notion here through the use of diagnostics and
repairs that operate during default constructional processing. Diagnostics merely signal a
(potential) problem, whereas repairs can modify data in the temporary processing pipeline
so that a solution can be found. They do not change anything internal in the agent.

10
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1.3.2 A predictive student model

A good teacher naturally constructs a model of his student that represents the student'’s
skills and knowledge as a function over time. It is a kind of model that could mimic
typical student utterances that are illustrative of the student’s proficiency level. In order
to operationalize such a predictive model it is convenient to reuse the three-component
language agent architecture. This student model is thus implemented as a fully fledged
agent, who can actively participate in the linguistic community that he finds himself in.
This agent is further also referred to as a student agent.

Because the language agent's and the student agent’s architectures are identical (see
Figure 1.2), it becomes very cost-efficient to construct a student model from scratch.
The most important difference is, of course, the difference in competence level between
the tutor and the student. The student does not yet master all the constructions that
are needed to be fully expressive in the language that he is learning. Gradually, his con-
struction inventory will expand and mold itself towards the target language. It might
take different paths to construct an L2 language, so that different learning strategies are
required. As a result, the realization of the language agent and the student agent archi-
tecture’'s components is not identical, only the components themselves are homologous.

Learning strategies encode personal tactics on how to solve a particular problem and
they can thus differ greatly between students. For instance, one learning strategy for
learning Catalan would be to first conjugate all the verbs in their first person singular
form. Another strategy could imply that you construct your sentences in Spanish (in case
you master this language) and replace some of the words by their Catalan counterparts.
However, the current implementation of learning strategies does not yet go this far
in mimicking strategies that learners use but is rather a proof of concept that learning
strategies are a valid method to learn a target grammar from input sentences that achieve

student agent

; cxn
inventoryj

grammar
enginej

/' learning
. strategies

Figure 1.2 — A student agent functions as a student model and can be used by the
tutor the actively predict the real student’s skills. It shares an identical structure
with the language agent, which is convenient to model changes in linguistic
knowledge and learning strategies.
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100% accuracy.

1.3.3 Tutoring strategies

Apart from making a dynamic model of his students, a human teacher typically also
applies a range of tutoring strategies to assist students in their problem-solving tasks. A
tutoring strategy is a dynamic plan of action that stipulates future interactions with the
student. To create or adapt a tutoring strategy, a teacher does not only depend on the
information that is kept in the student model but he also makes use of a more general
record of the student’s strengths and challenges in learning. Although this dissertation
makes first suggestions for using tutoring strategies in the agent-based tutoring architec-
ture that is proposed, it is not supported by a working implementation. A first prototype
implementation is however within reach thanks to the reuse of the meta-level strategies
for tutoring and its heavy reliance on the language and the student agents.

The language tutoring system that is proposed here hosts an artificial tutor that simulates
these typical teacher tactics. As a result, the original language agent architecture needs
to be extended so that this agent can also function as a tutor (see Figure 1.3a). Such a
revision implies two new components to that are part of a tutor agent, apart from having
direct access to the student agent: a tutoring strategies component and a student profile
component. These components are vital elements of a personalized tutoring approach
because they provide meta-information about the tutoring process, for instance to decide
which type of exercise to repeat or where to challenge the student further.

The tutoring strategies component is comparable to the set of learning strategies that is
present in the language agent. However, they now comprise strategies that can be used
in the process of tutoring a language to a less proficient language speaker. Strategies
can differ widely across tutors and they depend on the goals of the student. For instance,
a German-speaking colleague could decide to teach you only German words and sayings
that are really used by German language users, rather than more normative ways of
speaking. Also the constructions that you want to teach to a student might vary to
a great extent depending on his learning motivation. A student that needs to learn
English in order to be able to read scientific articles on genomics has to learn a different
vocabulary than someone who wants to go salmon fishing in Scotland.

The second component that a tutor agent needs is a student profile. A student profile
is a record where a tutor keeps a full log of the student’s activities and summaries on
his progress and recent performance. It can be used by the tutor’'s tutoring strategies
to set the right challenge level for the student. This record is a personal account that
belongs to a particular student and does not allow for any direct comparisons between
students that are being tutored by the same or - certainly not - by different tutors. The

12
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tutor agent

language agent

tutor agent

cxn
inventory; language agent student agent
cxn cxn
inventory; inventoryj
grammar grammar
engine; enginei
student erxibiI!ty Iearnir)g
profile strategies strategies
tutorin_g tutoring student
strategies strategies profile

(a) (b)

Figure 1.3 — (a) A language agent can be extended with a tutoring strategies
component and a student profile component to become a tutor. These
components personalize the tutoring process by keeping essential information about
the student that is constantly being updated so that tutoring can be personalized
to better fit the motivations of the individual student. (b) The tutor agent should
have direct access to the student agents to adapt its tutoring strategies to the level
of the student.

grammar

engine;

flexibility
strategies
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main function of the student profile is to inform the tutoring strategies component on
whether to modify a strategy or add a new one.

Finally, the tutor agent has immediate access to the student model so that he can
scrutinize the actual state of the agent’s construction inventory and learning strategies
(Figure 1.3b). It is only then that he can properly align the student model to the real
student that is being coached. The student model is aligned after every interaction that
the student has with the tutor agent. When the student was successful in the current
task, the tutoring strategies will indicate how to update the student agent’s constructions
that correspond to the task. And also when there was a failure or mismatch between the
goals of the tutor agent and the real student, the student agent proves useful to verify
whether the mismatch could have been predicted based on the student model or not.
Because the construction inventories have the same architecture in the tutor and the
student agent, this symmetry can be used to learn about possible gaps or inconsistencies
in the student’s grammar.

1.4 Structure of the dissertation

This dissertation is structured as follows: Part 1 provides more background information to
situate the current work in the field of Intelligent Computer-Assisted Language Learning
(ICALL), and more generally Artificial Intelligence in Education. Readers that have a
background in Intelligent Tutoring Systems for language can skip this chapter. Part 2
describes the operationalization of the language agent and the student agent, two basic
building blocks of the language tutoring framework that this dissertation presents. Part 3
includes suggestions for future development of the student agent to become an effective
student model and proposes a first design of a tutoring game with a human student in
the language-game loop. The final part concludes this dissertation by recapturing its
main contributions and pointing to questions for future research. Part 2 consists of the
following six chapters:

Fluid Construction Grammar How is grammatical knowledge represented in the lan-
guage agent? This chapter provides answers to this question by showing different types
of constructions in language, how they are created and how they are organised within
a grammar. Also the workings of the grammar engine that processes constructions is
described and the concept of constructional search is introduced. Advanced users of
Fluid Construction Grammar (FCG) can skip this entire chapter.

Spanish verbs in FCG The complexity of Spanish verb conjugation can be fully cap-
tured by different types of constructions in FCG: lexical, phrasal, morphological and
phonological. This chapter provides illustrative examples of each of these constructions

14
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and demonstrates how individual verb forms can be processed (parsing and production)
with the right grammar engine settings. The differences in processing between regular,
semi-regular (part of the paradigm is irregular) and irregular verbs are highlighted.

Flexibility strategies This chapter investigates how a language agent can reach a higher
linguistic competence level once his grammar is in shape. Flexibility strategies are an ad-
ditional tool a language agent might use to diagnose and analyse the slightest deviations
that occur during processing. Using the powerful ideas of meta-level architectures and
reflection, flexibility strategies put the routine processing pipeline on a hold and try out
solutions for the diagnosed problem in a meta-layer. Once a valuable solution is found,
processing can be restarted at the same point where we left off or at an earlier point in
the pipeline. It is this type of strategies that will be used for error analysis and correction
in the artificial language tutor.

A language agent for Spanish verbs This final chapter brings all the processing elements
together into a fully operational language agent that can conjugate any Spanish verb
form and detect and repair verb form errors made by learners. Once the specific flexibility
strategies for Spanish verbs are introduced, the verb form error correction is evaluated by
a corpus-based error analysis on the Spanish Learner Language Oral Corpora (SPLLOC).
The language agent has to parse erroneous verb forms from the corpus and restore them
to an acceptable correction. When the language agent’s corrections are compared with
those made by a human teacher, 77% of all corrections overlap.

Learning strategies Inspired by the same ideas as the flexibility strategies of a language
agent, a student agent is endowed with learning strategies to solve problems that occur
during processing. Yet, because his grammar is not yet mature enough, learning strategies
target learning problems and repair them by adding a new construction to the grammar or
adapting an existing one. Also grammar engine settings can be modified during learning.
Learning strategies work on different levels of the construction inventory and can be
scored using a weighting system.

A student agent for Spanish verbs This chapter describes the learning strategies that
are needed to acquire Spanish verbs through situated interactions with a competent lan-
guage agent. The effects of these strategies on the learning of the full conjugational
paradigms of 25 irregular, semi-regular or regular verbs is demonstrated. As an alterna-
tive - and much faster - way to bootstrap the Spanish construction inventory needed to
conjugate any verb in Spanish, | introduce a decision tree classification algorithm that
automates the verb paradigm construction creation for any Spanish infinitive. This ap-
proach was inspired by the online conjugation tool for Spanish Onoma (www.onoma.es).
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Chapter 2

Artificial Intelligence in Education

As soon as primary and secondary school class sizes began to increase and machines
started to take up an important role in people’s daily lives, the idea of a tutoring ma-
chine that could provide individualized instruction became more popular. The behaviorist
B. F. Skinner presented the first "teaching machine” in the 1950ies, in the form of an
incremental mechanical system that would reward students for correct responses to ques-
tions (Skinner, 1961). The idea was later reinforced by the famous two-sigma problem
that could show that student achievement in classroom interaction differs greatly from
results obtained from individual tutoring (by about two standard deviations) (Bloom,
1984) (Figure 2.1). Because most schools cannot provide this individual attention, in-
formation technology is often a valid alternative for human teachers.

Although the supply of commercial intelligent tutoring systems (ITSs) is very large today,
especially when you take into account the recent rise of web-based tutors, most of
them do not offer the individualised tutoring that they promise but instead stick to
the old idea of programmed instruction, where every student runs through the same
curriculum in the same order. Contrasting to these static learning environments where
the same information, the same structure and the same interface is presented to every
individual student, adaptive learning environments are currently on the rise and pose
new possibilities and challenges to the field. Wauters, Desmet, and Van den Noortgate
(2010) mention three dimensions of adaptivity: the form (adaptation techniques for form
or content representation), the source (features involved in the adaptivity process) and
the medium (adaptive hypermedia or intelligent tutoring systems).

Even if the final goal of the framework presented in this dissertation is to build an adap-
tive tutoring system in the long run, the current results illustrate how the agent-based
architecture can accomodate for both a natural language processing component that al-
lows to analyse learner language accurately (language agent) and a learning component
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One-on-One tutoring
(1:1)

Mastery teaching
(1:30)

Conventional teaching
(1:30)

Students tested

84%

Achivement scores
(performance)

Figure 2.1 — The advantages of one-to-one tutoring become clear when one
compares the average achievement scores of conventional teaching and one-on-one
tutoring. The average achievement scores in a tutorial setting are centered around

the 98% percentile of the conventional teaching scores. The difference between
mastery learning and the conventional setting lies in the kind of testing: periodical
tests for determining students’ mark vs. formative tests for the purposes of
feedback followed by corrective procedures (Figure reproduced from (Park Woolf,
2008)).

that demonstrates how the target system can be learned by an agent that starts with no
previous linguistic knowledge. These two components are invaluable building blocks for
a future adaptive tutoring system. The current chapter provides further background on
the history of Artificial Intelligence in Education.

2.1 A brief history of Intelligent Tutoring Systems

Although today a well-established concept, Intelligent Tutoring Systems (ITSs) have
gone a long way since the first breakthroughs in the early seventies that incorporated Al
techniques into programmed instructions. These early advances allowed for (i) alternative
representations of content, (ii) alternative paths through material and (iii) alternative
means of interaction. Much of the research into expert systems turned out to be useful
for representing expert (tutor) knowledge and building student models. In the eighties,
and still very much so today, the main research questions of the field of ITS could be
formulated as follows (Self, 1988):

e What is the nature of knowledge, and how is it represented?

e How can an individual student be helped to learn?
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frame-based approaches
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Figure 2.2 — The history of Intelligent Tutoring Systems

e Which styles of teaching interaction are effective, and when should they be used?
e What misconceptions do learners have?

The current section describes the history of ITSs and shows how they evolved out of
programmed instruction applications (see Figure 2.2 for an illustrative diagram of this
evolution) in Section 2.1.1. Also the rise of ITSs for language learning, or Computer
Assisted Language Learning (CALL) is discussed further in Section 2.1.2. Finally, Section
2.1.3 describes current trends in the field, with a special focus on CALL and the recent
rise of massive open online courses (MOQOCs).

2.1.1 From frame-based approaches to ITSs

The first attempts to build tutoring systems were all frame-based, where most frames
contained simple questions (fill the gap exercises, selecting the correct answer, etc.).
Such tutoring systems proceeded to present the next frame regardless of the accuracy
of the student’s response. It was therefore nothing more than a programmed text book,
completely lacking any individualization. In the 1960ies, Crowder tried to overcome
this major shortcoming as he introduced the notion of branching programs. Although
still having only a number of fixed frames, these programs no longer ignored student’s
responses but the system could comment on a student’s response and use it to choose
the next frame (Crowder, 1964) (Figure 2.3).

21



CHAPTER 2. ARTIFICIAL INTELLIGENCE IN EDUCATION

Linear Program

02080800

Branching Program
-0~

repeat section

test

Figure 2.3 — Whereas linear programs provide only a single trajectory through a
tutoring session, branching programs provide subtests on particular tutoring steps
and also allow for repetition.

Generative Computer-Assisted Instruction (CAl) was launched in the late 1960ies. The
idea of generative CAIl was that teaching material could be generated automatically
by a computer. One of the main advantages was that memory usage could be consid-
erably reduced by this technique, since the frames did not have to be saved as such.
However, this approach remained restricted to drill-type exercises, in which the learner
model consisted of nothing more but an integer. Uhr and his collaborators (Uhr, 1969)
implemented a series of systems which auto-generated problems in vocabulary recall and
arithmetic, two domains which presumably require drill and practice types of exercises.
The sophistication in their systems was situated in the task-selection mechanism, which
ensured the exercise level to be adapted to the student’s overall performance.

It was Jaime Carbonell's mission to put Al into CAI, meaning that the computer should
have a representation of what is being taught, who and how (Carbonell, 1970b, 1970a).
He developed SCHOLAR, a tutoring system for teaching Latin-American geography.
SCHOLAR helped students enhance their knowledge by (i) solving problems at a certain
level or by (ii) involving them in discussions with the computer in a more interactive way.
The following description captures the essence of the Scholar tutor:

In the transition of CAl to ITS, the basic methodology of Scholar was a
tutorial dialogue using templates and keyword recognition. It was used for
teaching Latin American geography through inquiries and answers on a topic
randomly chosen by Scholar. This man-to-machine tutorial system enables
to individually help students enhance their knowledge by solving problems at
a certain level or by involving in discussions in a more interactive way with
the computer (Bruce, n.d.).
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Although there is no sharp boundary, in the 1980ies intelligent CAl was replaced by In-
telligent Tutoring Systems (ITS), that try to extend the domain of applicability, power
and accuracy of CAl systems (Clancey, 1979; Self, 1974, 1977, 1985). Examples of
early ITS include the Pittsburgh Urban Math Project (PUMP) algebra tutor (Anderson,
Corbett, Koedinger, & Pelletier, 1995) and the SHERLOCK control panel (Lesgold, La-
joie, & Bunzo, n.d.), used to train Air Force techniques to diagnose problems that might
occur. Another early system is GUIDON (Clancey, 1979, 1987), which was the first
intelligent tutor that is based on an expert system. GUIDON was also the first program
to teach medical knowledge. The project became relevant in developing future medical
tutoring systems because of some key insights: "the need to represent implicit knowledge
and the challenges of creating a knowledge representation sufficiently large, complex and
valid to help students learn real medical tasks” (Park Woolf, 2008, p. 18).

2.1.2 Language learning tutors

Although some of the first tutoring systems (PLATO; (Hart, 1981)) already contained
some form of natural language dialogue with their users, real language tutoring systems
(i.e. more than just vocabulary drill) only came in vogue in the early nineties, when some
Al technologies "were mature enough to be included in language learning systems, at
least in experimental settings” (Gamper & Knapp, 2002). Building an artificial tutor that
can teach language is very different from guided exercises in mathematics or physics.
Language education brings along a level of complexity that is different from problem
solving domains. A language tutor’'s domain knowledge is a qualitative representation of
grammatical knowledge, which is an analytic and unverifiable domain.

According to Levy (1997, p. 1), Computer-Assisted Language Learning (CALL) can be
defined as "the search for and study of applications of the computer in language teaching
and learning”. The use of Al in CALL is also referred to as intelligent CALL or 'ICALL".
For others, ICALL is even more specific because "it might be more accurately described
as parser-based CALL, because its 'intelligence’ lies in the use of parsing - a technique
that enables the computer to encode complex grammatical knowledge such as humans
use to assemble sentences, recognize errors, and make corrections” (Melissa et al., 1993,
p. 28). However, to avoid all confusion, | prefer to use only a single name to refer to
language learning that is assisted by an artificial tutor and | will therefore consistently
use the term CALL as the more general term that encompasses all of its "intelligent”
variants.

To understand the history of the field, we have to go back to the field's first seminal
publication the book Intelligent Tutoring Systems for Foreign Language Learning, edited
by M. L. Swartz and M. Yazdani in 1992. In this book, "several intelligent methods such
as grammar checking, error analysis, user modeling, and tutoring are discussed and how
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they can be adapted and combined to be useful for language learning systems” (Gamper
& Knapp, 2002, p. 330). The first years of CALL research had been very much focused
towards the development of technologies and less on the pedagogical side of it. More
concretely, this meant an article that was entitled “Computer-Assisted ESL Research”
would actually investigate “how simple for-next loops can be creatively integrated into
different programs to act as timers” (Brownfield, 1984, p. 20). Yet, in 1994 a special
issue of the renowned International Journal of Artificial Intelligence in Education was
completely dedicated to the topic of language learning. "Besides the technological as-
pects, researchers begun to include results from pedagogy and cognitive science as well
as to consider teaching pragmatics and socio-linguistic competence” (Gamper & Knapp,
2002, p. 330). Yet, at that time, none of the systems presented in the issue was used
in real learning situations.

Another important publication to understand the evolution of the field is the volume
Intelligent Language Tutors — Theory Shaping Technology that was issued in 1995. The
systems that were presented in this volume stressed the usefulness of NLP techniques that
can provide "a more comprehensive language teaching environment including negotiations
and discourse between the learner and the system” (Gamper & Knapp, 2002, p. 330).
In the following years, as research in Automatic Speech Recognition (ASR) and NLP
matured so that these techniques can be fully integrated into a CALL system architecture.
Matthews (Matthews, 1993) argued that it is possible to "conceive of an ICALL system
in terms of the classical ITS architecture” (see Section 2.2), consisting of three parts:
an expert, student and a teacher module. The expert module is then seen as the module
that "houses” the language knowledge and, ideally, it is this part that can process any
piece of text produced by a language learner (Heift & Schulze, 2007, p. 2).

The research field of CALL is still very active today, with three main journals that are ded-
icated to its objectives (Computer Assisted Language Learning, CALICO and ReCALL)
and some major conferences that brings together researchers in the field (WorldCALL,
EUROCALL, CALICO).

2.1.3 A third generation of ITS research

We can now speak of at least two generations of ITS research, and we are currently
at the dawn of a third one, which will probably be much more revolutionary. The first
generation spans roughly from 1970 until 1990, a period of thirty years in which more
than 40 systems were released. This early generation was powered by the booming of
Artificial Intelligence, a field that was seeking applications for its technologies. Moreover,
CAl seemed a mature and promising technology and solutions had to be found for the
increasing group sizes in schools. The second generation, ranging from roughly 1990 until
today has formulated the scientific foundations of the field (Self, 1990) and witnessed
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the launch of the International Artificial Intelligence in Education (IAIED) journal, the
biannual AIED conference and the biannual ITS conference. Also implementations of
real systems in schools realized, thanks to new spread of digital technologies in traditional
education.

The remainder of this section outlines some of the most current trends in language
learning tutoring and describes the recent phenomenon of the MOOCs, allow for large-
scale online tutoring.

Current trends in CALL

Some of the current trends in the field of CALL include, among others: the use of
social media and networking, multimodality, mobile learning, virtual learning environ-
ments, distance and collaborative learning and the question of assessment and feedback.
All of these topics (and many more) were addressed at the 2012 Eurocall conference
in Gothenburg. A recent special issue in the ReCALL journal explored the challenges
and opportunities of digital games for language learning (Cornillie, Thorne, & Desmet,
2012), dealing with issues such as the perception of corrective feedback, the linguistic
complexity used in games, etc. Also Mobile-Assisted Language Learning (MALL) is gain-
ing ground as a platform for self-regulated learning (Sandberg, Maris, & de Geus, 2011).
The simple practice of MALL would already foster an advanced form of self-study and
stimulate self-regulated learning in which students take responsibility for triggering and
sustaining their own motivation.

Affective computing is another important trend that is influencing the development of
new intelligent tutoring systems. D'Mello and colleagues detected three main emotions
that play a role in tutoring: boredom, frustration and confusion (Baker, D'Mello, Ro-
drigo, & Graesser, 2010). He measured those feelings (without interrupting the tutoring
process) based on two methods: (i) facial-expression recognition software and (ii) the
use of a special chair with posture sensors that could "tell whether students are leaning
forward with interest or lolling back in boredom” (Murphy Paul, 2012). As a less ex-
pensive alternative, the emotions of a student can also be judged based on the pattern
that manifests itself in his answers to the tutor's questions. This research topic is in-
vestigated by "educational data mining” techniques that help to determine characteristic
student answers (Pardos, Gowda, Baker, & Heffernan, 2012; Walonoski & Heffernan,
2006).

The year of the MOOC

Tutoring systems have recently scaled up dramatically in size, with the year 2012 an-
nounced as the year of the MOOC (Pappano, 2012), short for Massive Open Online
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Course. The first MOOC that really approached "massive” student numbers was a free
course on Artificial Intelligence, CS211, offered by the University of Stanford in the
Autumn of 2011. The course tutors, Sebastian Thrun and Peter Norvig, attracted
160,000 registered students from 190 different countries. Although students would not
receive any official credits for completing this course, 20,000 students (that is, 1/8 of all
students enrolled) finished the course and were sent a PDF of their "statement of accom-
plishment”. Thrun and Norvig recently launched a start-up company called Udacity that
delivers similar free online courses. Other initiatives that have appeared since the success
of the CS221 MOOC include Coursera (an educational company founded by Stanford
professors Andrew Ng and Daphne Koller) and EdX (a joint partnership between MIT
and Harvard).

The ultimate dream of designing a MOOC include ideas such as "loosening institutional
control of learning outcomes and assessment criteria, shifting from a focus on content
delivery to a foregrounding of process, community and learning networks, and working
with more exploratory assessment methods digital and multimodal assignments, peer
assessment and group assignments” (Knox, Bayne, Macleod, Ross, & Sinclair, 2012,
p. 3). However, the reality often looks very different: multiple choice questions, numerical
answers, short text answers, structured outputs and peer assessment (Ng & Koller, 2012,

p. 4).

The potential of MOOCs is enormous but there are still some issues in designing and
running MOOCGCs. The most unsettling issue for many educators running an open course
is the high dropout rate (Cormier & Siemens, 2010). As the following account by
Siemens (n.d.) testifies: “While active participation in our courses declines as the course
progresses, subscribers to the Daily increase. I'm not sure what to make of that. If |
was getting five emails a week on something | wasn't interested in, | would unsubscribe.
Does that mean we can view Daily subscribers as a) people are still engaged, b) people
can't find the unsubscribe link, or c) that we've subjected over 15,000 people to guilt
about not being active in c-MOOCs?". Some critics have questioned whether MOOCs
are at the forefront of the "McDonaldization” of higher education (Lane & Kinser, n.d.).
By enabling a few elite institutions to broadcast "their star courses to the masses”,
they foster little engagement or cross-cultural understanding. The "massive” element of
MOOCs might have a homogenizing effect to education across the globe.

2.2 The general ITS architecture

As a result of the developments described in Section 2.1, an ITS has a standard ar-
chitecture today with a number of components that are each responsible for a specific
function. The components can best be explained according to the knowledge type they
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Figure 2.4 — The basic architecture of an Intelligent Tutoring System consists of
three main modules:

encode, which results in the following four types:

1. Domain knowledge (how experts perform in the domain):
definitions, processes or skills needed to multiply numbers (e.g. the AnimalWatch
tutor), generate algebra equations (e.g. PAT tutor), etc.;

2. Student knowledge (how to reason about student knowledge):
stereotypic student knowledge of the domain and information about current student
(time spent on problems, hints requested, correct answers, preferred learning style,
etc.);

3. Tutoring knowledge (encoding reasoning about the feedback):
either derived from empirical observations of teachers or enabled by technology
(simulations, animated characters);

4. Communication knowledge:
includes graphical user interfaces, animated agents, dialogue mechanisms.

The domain knowledge module (expert knowledge), the student model module (student
knowledge) and the tutoring module (tutoring knowledge) are interconnected in the main
architecture of an ITS. Communication knowledge is incorporated by a user interface
module, that mediates between the student input and the tutoring module (Figure 2.4).
Because the communication knowledge is often included in the tutoring module, the
remainder of this section discusses the three main interconnected modules in the ITS
architecture: expert knowledge (Section 2.2.1), student knowledge (Section 2.2.2) and
tutoring knowledge (Section 2.2.3).
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2.2.1 Expert knowledge

Domain models interact very closely with the student model: they are the first step in
representing the expert knowledge. They can generally be divided into three categories
of complexity: (i) problem solving (mathematics problems, Newtonian mechanics), (ii)
analytic and unverifiable domains (ethics, law) and (iii) design domains (architecture,
music composition). There are two main axes in the classification of domain models: a
first one ranging from simple to complex and a second one ranging from well-structured
to ill-structured. Category 1 models represent expert knowledge in the field of arith-
metics and other well-defined domains (well-structured, simple). Category 3 represents
the other side of the axes: complex and ill-structured domains such as the knowledge
needed to build an ITS for architecture tutoring. Finally, category 2 contains qualitative
representations of expert knowledge for fields such as language, which are halfway on
both axes (Park Woolf, 2008).

Linguistic knowledge is often classified as a category 1 domain model, for which the
typical teaching strategy is to present a battery of training problems or tests (Lynch,
Ashley, Aleven, & Pinkwart, 2006). Student's work is typically checked for correctness.
Yet, defining all rules of a particular linguistic system such as verb conjugation, including
all student misconceptions, is a difficult and time-consuming task that often needs to be
carried out by hand.

Although linguistic knowledge is classified as a well-structured domain, it in practice
requires big efforts to formulate all rules of a linguistic system and incorporate all
student misconceptions.

Box 2.1 — Linguistic expert knowledge

2.2.2 Student knowledge

A student model can be defined as the set of beliefs that a tutor has about a student.
These beliefs include the knowledge and skills of the student in the target domain, his
learning preferences and other attributes. They can be inferred based on a student’s ob-
servable behavior: through his answers, actions or the results that he obtains. Traditional
I'TSs keep track of a student’s performance based on a series of preset learning objec-
tives, such as a range of grammatical phenomena in the target language or vocabulary
items covering the learning situations that the student has selected.

To improve the student modeling enterprise, some tutoring systems allow their students
to inspect and control the student model (Cook & J. Kay, 1994). Student models with
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this property are called open learner models (OLMs). They can contain simple overviews
of knowledge (such as a skill meter) or a more detailed representation of knowledge,
concepts etc. Park Woolf (2008) lists several motivations for the use of open learner
models, such as (i) the student has the right of access to and control over his personal
information; (ii) the student can potentially correct the learner model; (iii) the frequent
asymmetric relationship between the student and the tutor can be resolved; and (iv)
OLMs stimulate reflective learning in the student.

Researchers in ITS tend to classify their student models according to three main di-
mensions. The first one covers the input that the system receives, while the remaining
two are structural properties of the student profile. VanlLehn (1988) refers to them as
bandwidth, target knowledge type and the differences between student and expert. The
remainder of this section discusses all three with respect to their use in existing ITS
applications and relates their use to the domain of language tutoring.

Bandwidth

Bandwidth refers to the amount and quality of the input that the diagnosis component
receives about what the student is doing or saying. From this input, the tutor must infer
what the student is thinking and believing (VanLehn, 1988). Most variation between
tutoring systems can be captured in terms of three levels of bandwidth information. The
highest amount of information that the tutor can obtain is indirect information "that
approximates the students’ mental states”. Of course, our mental states are not (yet)
directly accessible by machines (or humans), so the full "mental states” bandwidth is not
realistic to achieve. Yet, by "asking enough questions or by eliciting verbal protocols”,
the tutor can obtain enough indirect information to approximate the student’s current
mental state.

The remaining two bandwidth categories are final states and intermediate states. Some-
times the tutor can only see a student’s answer (or final state) to an exercise, but in
other situations such as when solving algebraic equations or when playing chess, also the
intermediate steps that the student went through are observable by the tutor. According
to VanlLehn (1988), the bandwidth dimension is perhaps the most important dimension
of a tutoring system since it "determines the algorithm used for diagnosis”.

Bandwidth in language tutoring is usually restricted to final states of the student’s
answer to an exercise (production/comprehension).

Box 2.2 — Language tutoring bandwidth
In language tutoring we usually only see the student’s final answer in the form of an
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utterance without having access to the intermediate processing steps or the conceptu-
alization that the student has made to reach this final step. If the tutor needs access
to intermediate steps, they will have to be constructed through a simulation of the stu-
dent’'s answer. Using an active student agent is the solution this dissertation proposes
(see Chapter 9).

Knowledge type

Because a good student model can in practice solve the same problems as a real student
would be able to solve, it can be used to actively predict the real student’s answer.
To solve these problems the model needs "some kind of interpretation process that
applies knowledge in the student model to the problem” (Polson & Richardson, 2013,
p. 60). Depending on whether we are dealing with procedural or declarative knowledge, a
different interpretation process is required. The interpretation of procedural knowledge is
less costly because it can rely on local search given the current state of the problem. For
declarative knowledge, the whole knowledge base (or construction inventory) has to be
searched to find a solution. However, the distinction between procedural and declarative
knowledge is known as a rather fuzzy differentiation in Al. Many instances of problems
are in fact a mix of procedural and declarative knowledge. For instance, the medical
tutor GUIDON's knowledge of medicine (Clancey, 1987) is partly declarative (coupling
symtoms to diseases) and partly procedural (determining which questions to ask the
patient according to which circumstances).

Also in language processing language users rely on a mix of declarative and procedural
knowledge. Irregular verb forms have to be accessed directly without any intermedi-
ate processing steps, while other verb forms are constructed through a range of local
steps. However, the distinction between procedural and declarative, or the complexity
of interpretation, defines the complexity of diagnosis. According to VanlLehn (1988),
declarative knowledge is easier to diagnose since there is only one step where things
might have gone wrong. In procedural knowledge, many items could have been ac-
cessed, which complicates the diagnosis. Yet, although this distinction might be valid for
programming tutors or medical tutors, | would disagree with his viewpoint for language
tutoring. Having access to many subprocesses and perhaps failed branches in the local
search of procedural problems might actually be beneficial for the diagnosis of a problem
as a much finer-grained diagnosis becomes possible. By contrast, in the diagnosis of
declarative problems diagnosis is often rather ad hoc and uncertainty values are higher
as to whether the right diagnosis was made.
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Having access to many subprocesses and failed branches in the local search of
procedural problems might actually be beneficial for the diagnosis of a problem as
a much finer-grained diagnosis becomes possible.

Box 2.3 — Procedural knowledge is more informative for diagnosis

Student-expert difference

The knowledge of a student is usually regarded as the background knowledge of a student
modeling system. In traditional intelligent tutoring systems this knowledge is defined as:

e the correct facts, procedures, concepts, principles, schemata and/or strategies of
a domain; and

e the misconceptions held and other errors made by a population of students in the
same domain (sometimes referred to as the bug library).

The background knowledge may also contain historical knowledge about a particular
student (e.g., past qualitative models and quantitative measures of performance, stu-
dent preferences and idiosyncracies, etc.), and stereotypical knowledge about student
populations in the domain (Sison & Shimura, 1998, p. 131).

Student knowledge always needs to be understood in relation to an expert model that can
provide explanations on the correct way(s) to solve a problem. To compare student and
expert or tutor knowledge, most ITSs claim to use the same knowledge representation
language for both (VanLehn, 1988). However, reality is often different. Due to economy
and other implementation issues, the student model is often a copy of the expert model
plus a collection of differences: missing concepts (knowledge that the student does not
yet have) and misconceptions (knowledge that the student has that the tutor does not).
There are three major ways to represent differences between the student and the tutor
model: overlay models, bug libraries or bug part libraries and constraint-based models.
Recently, so-called model-tracing tutors have appeared, which try to "interpret and assess
student behavior with reference to a cognitive model that can solve problems in the way
that competent students can” (Aleven, Mclaren, Sewall, & Koedinger, 2009, p. 107).

e Overlay models assume that student knowledge is always a subset of the tutor's
knowledge (Carr & Goldstein, 1977). The student model consists thus of the tutor
model plus a list of items that are (still) missing. Once the expert’'s knowledge has
been enumerated in a number of rules or plans, overlay models are fairly easy to
construct. Often, domain knowledge is annotated and each expert step is assigned
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a particular weight. Missing steps in the student’s knowledge can thus be scored
accordingly.

e Bug (part) libraries are "a mechanism that adds misconceptions from a predefined
library to a student model” (Park Woolf, 2008, p. 52). Misconceptions are thereby
manually coded in so-called mal-rules. A problem is diagnosed by findings bugs
from the library so that the student model (current student’s knowledge state) can
be constructed when these bugs are added to the tutor model. Yet, it is generally
impossible to ever have a complete bug library. And even if we could construct
such a library, "at the start, a bug library that contained at least the most common
errors of a group of students, the results of Payne and Squibb (1990) suggest that
different groups or populations of students (e.g., students from different schools)
may need different bug libraries” (Sison & Shimura, 1998, p. 131). To make bug
libraries less rigid and allow for more automatic bug extensions or creations, bug
parts libraries were invented. These libraries only contain subparts of bugs and the
real bugs are assembled dynamically during diagnostics. Although the problem of
creating bugs and partial bugsare very similar, because libraries of bug parts are
much smaller, problems become often easier to solve.

e Constraint-based models try to interpret and assess student knowledge with re-
spect to a set of constraints that all student answers should satisfy (Mitrovic &
Ohlsson, 1999). Formally, constraints are pairs consisting of a relevance part and
a satisfaction part (Ohlsson, 1994). "Using the relevance part, constraints can
be tailored towards specific exercise (types) and specific (structurally determined)
configurations within a typical student solution. Additional requirements, which
have to be fulfilled in that specific situation, are coded in the satisfaction part”
(Menzel, 2006, p. 31).

e Model-tracing models maintain a model of problem solving that is "traced’ (com-
pared) against a student’s actions. "Feedback during problem-solving is given based
on current state of the model (also called working memory) and the rules that rep-
resent student cognition and action” ("CTAT Basics,” 2013). As an alternative to
model-tracing tutors, example-tracing tutors "evaluate student behavior by flexibly
comparing it against generalized examples of problem-step guidance on complex
problems while recognizing multiple student strategies and maintaining multiple in-
terpretations of student behavior" (Aleven et al., 2009, p. 105). These tutors are
much less costly compared to model-tracing models because no detailed domain
knowledge is required as the use of generalized behavioural examples suffices to
build the model.
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Although their assembly might be difficult and time-consuming, model-tracing stu-
dent models allow the tutor to actively simulate the actions of the student, which
is useful to predict future student behaviour.

Box 2.4 — Model-tracing student models are most informative for language
tutoring.

2.2.3 Tutoring knowledge

A tutoring model has two main functions, which are mirrored in the basic tasks of instruc-
tion, namely to stimulate and evaluate learning. ITS resarch has mainly addressed these
functions seperately (VanLehn, 2007) and sometimes together as in the ASSISTment
system (Razzaq, Patvarczki, et al., 2009; Razzaq & Heffernan, 2010; Turner, Macasek,
Nuzzo-Jones, Heffernan, & Koedinger, 2005), which combines "assistance” and "assess-
ment”. A tutoring model thus needs to decide on when and how to intervene and it
is responsible for content planning of what to teach next. The question of when and
how to assist the learner is "the fundamental dilemma of tutoring, as discussed in the
papers entitled To Tutor or Not to Tutor: That is the Question (Razzaq & Heffernan,
2009) and Does Help Help? (Beck, Chang, Mostow, & Corbett, 2008)" (Bourdeau &
Grandbastien, 2010, p. 125).

A tutoring model decides on when and how to intervene and is responsible for
content planning of what to teach next.

Box 2.5 — Tasks of a tutoring model

Assisting and tutoring the learner can further be divided into two sub-functions (Bour-
deau & Grandbastien, 2010, p. 125): "cognitive diagnosis, defined as the detection of
the sources of errors, and the selection of tutoring or remediation strategies”. Recent
developments in automatically learning the learner’s affective states (Arroyo et al., 2009;
Walonoski & Heffernan, 2006; Woolf, Arroyo, Cooper, Burleson, & Muldner, 2010) have
increased the complexity of reasoning about optimal tutoring decisions.

A tutor’s decisions are often reflected in the different forms of interaction that the
tutor has with the learner. Typical forms of interaction include socratic dialogs, hints,
feedback from the system, etc. A human teacher typically uses six types of feedback
(Ferreira, Moore, & Mellish, 2007; Lyster & Ranta, 1997; Panova & Lyster, 2002):
explicit correction, recasts, clarification requests, metalinguistic feedback, elicitation,
repetition or any combination of these.
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These interactions usually occur through the user interface module, that connects the
student with the tutoring module (see Figure 2.4). The user interface often includes a
dialogue system for interacting with the student. This type of conversational interaction
is particularly useful when the learner’'s answer is incomplete. Because tutors usually
have an approximate sense of what a student knows, it "appears to be sufficient to
provide productive dialogue moves that lead to significant learning gains in the student”
(Graesser, Chipman, Haynes, & Olney, 2005).

2.2.4 Constructing an ITS

Building a complete ITS from scratch is a huge task as the development of every com-
ponent requires many decisions and large-scale software implementations. Three main
approaches can be distinguished to build an ITS for a specific problem solving domain:

1. Shell-based techniques;
2. Authoring tools;
3. Software pattern languages.

Shell-based approaches are well-established in the field of Artificial Intelligence. They
date back to the beginning of expert systems research. A shell can be defined as "a
software development environment containing the basic components for building expert
systems” (Nkambou, Bourdeau, & V., 2010, p. 362). The first shell-based approach was
done with E-Mycin (Crawford, 1987), "a general purpose Expert System shel derived
from Mycin”, which was built to extend the inference mechanisms of Mycin to other
domain knowledge. Shell-based approaches focus mainly on the system components and
show little attention for the user interface. Some shells focus on curriculum planning,
user modeling or content acquisition (Vivet, 1988; D. Sleeman, 1987). Others target
all components (Goodkovsky et al., 1997), in a simple component implementation with
"procedural models of the tutor's activity, tutoring criteria and constraints” (Park Woolf,
2008). Nkambou, Bourdeau, and V. (2010, p. 363) identify FITS as a good example of
such a shell (lkeda & Mizoguchi, 1994).

Secondly, authoring tools have become popular since their first appearance in the mid-
1990s (including systems such as Dasher, Libra, MacLang, and winCALIS). Their success
is mainly due to the high implementation costs (high time/product ratio) of shell-based
approaches and the fact that they are not accessible to teachers. Therefore, authoring
tools were launched to bridge this gap by taking care of many of the programming details
and allowing "developers to focus more fully on instructional design and pedagogical
procedures” (Fischer, 2013). However, even though authoring tools are easy to use
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by nonprofessional developers (such as foreign language instructors), they "were also
subject to substantial instructional constraints because their tools were designed for a
specific purpose (e.g., to make written drill-and-practice exercises or multimedia listening
comprehension lessons)” (id.).

A third approach to ITS building is to view intelligent tutoring systems themselves as
software. Pattern language for ITS (PLITS) is a platform that provides developers with
interesting patterns that helps them to build their own ITS (Salah & Zeid, 2009; Zeid
& Salah, 2010). PLITS "was built from pattern mining by reverse-engineering many
existing ITSs"” and it was used to build the Arabic Tutor, a web-based ITS that teaches
a subset of the Arabic language (Nkambou, Bourdeau, & V., 2010, p. 369).

Another alternative to build ITSs is to view them as multi-agent systems (MAS), which
can be employed for building basic ITS infrastructures. Intelligent tutoring systems fulfill
all the requirements to be viewed as MAS (Nkambou, Bourdeau, & V., 2010, p. 369),
because: (i) they are made of different interconnected, complex components; (ii) they
provide multiple, different and complementary services; (iii) each of their components is
functionally autonomous; and (iv) they are equipped with specific knowledge structure
and reasoning mechanisms. Examples of ITSs that use MAS techniques include ITSs
to show a set of Agent-Oriented Software Engineering (AOSE) methods derived from
ITS research (Vicari & Gluz, 2007). Similar to the shell-based approaches, agents are
sometimes only used to build specific subcomponents of an ITS: the tutor (Mengelle &
Frasson, 1996) or the learner (Vassileva, Mccalla, & Greer, 2003). Moreover, Nkambou,
Bourdeau, and V. (2010, p. 369) also mention the use of MAS to "target a specific
ITS service (e.g., planning, dialogue management, collaboration) or the whole system
(Capuano, Marsella, & Salerno, 2000; Hospers, Kroezen, Nijholt, op den Akker, &
Heylen, 2003; Nkambou & Kabanza, 2001).

Multi-agent systems can be employed for subcomponents of a tutoring system or
for a complete system that is made of different interconnected, complex compo-
nents.

Box 2.6 — Multi-agent systems are useful for creating an ITS

2.3 Examples of language tutors

Now that the history of ITS has been clarified and the general components of a sys-
tem explained, it is time to turn to some real examples of language learning tutoring
systems. Gamper and Knapp (2002) have made a full analysis of 40 existing ICALL re-
search prototypes until 2002. They set up a classification framework that could analyze
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ICALL systems according to five dimensions: the supported languages, the applied Al
technologies, the language skills which can be trained, the language elements which can
be learned, and the availability of the systems. However, their analysis revealed that
the application of the proposed technologies is not yet mature: "[m]any interesting and
promising systems remained in a prototypical stage” (Gamper & Knapp, 2002, p. 338).
The examined systems were all research initiatives and did not yield commercial end prod-
ucts. Often systems were abandoned after the end of a project and many of them were
never used in real language learning environment — often because of lack of funding.

The current section presents and evaluates example systems of more recent academic
language tutors (Section 2.3.1) as well as three commercial language tutors (Section
2.3.2) that are still in use today. It highlights the main challenges that they are addressing
and the drawbacks that these systems are faced with. The main goal of including these
examples here is to be able to situate and compare their objectives and outcomes with
the research prototype that is presented in this dissertation.

2.3.1 Academic language tutors

Research prototypes developed in universities tend to focus on some specific aspects of
the ICALL enterprise: the diagnosis and analysis of errors, student modeling, the user
interface, etc. In what follows | highlight three language tutoring systems that have
been developed within academia, each concentrating on a different aspect. (a) The
Canada-based E-tutor system for learning German specializes mainly on error diagnosis
and correction. (b) The Portuguese tutoring system TAGARELA pays attention to
automatically generating individualized feedback on spelling, morphological, syntactic and
semantic errors. (c) The /ICICLE system that assists native speakers of American Sign
Language in practicing their English writing skills pays special attention to the student
model (SLALOM, (Michaud & McCoy, 2001)), which tries to capture the status of the
grammatical structures of English that the learner possesses.

German Tutor

The German Tutor was developed by Trude Heift and colleagues at the Simon Fraser
University in Canada to assist students of German (from beginners to advanced learners)
in training their language skills (Heift & Nicholson, 2001). The German Tutor allows
students to build sentences with some indicated words and detects grammatical and
other errors. Several language processing modules analyze the input (spelling, word
usage, grammar, punctuation, etc.). The feedback components of the system correlate
the detailed output of the linguistic analysis with an error-specific feedback message. "If
a module detects an error, further processing is blocked until the student corrects the
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Guten Tag, John!
Bilden Sie einen Satz mit den folgenden "Wortern.
Ubung 4 von 10 (def. Artikel) / Zeit / laufen.
[per zeit fautt. | [ pruren ]
Da ist ein Genusfehler bei dem Subjekt.

Figure 2.5 — An advanced learner makes a determiner-noun error and receives the
following feedback: "the subject contains a gender error”. Beginner learners would
have received feedback that stated: "the determiner DER is not correct here” and
intermediate learners are presented with the message "There is an agreement error
between the determiner and the noun”. This screenshot is taken from Heift and
Schulze (2003b).

mistake" (Gamper & Knapp, 2002). The Student Model is based on student subject
matter performance. It provides feedback and remediation that is suited to the learner
expertise (Heift & Schulze, 2003b).

The German Tutor is a web-based tutor that can be accessed through www.e-tutor.sfu.ca.
Students create a login for the system, which saves their learner model for future ses-
sions. According to the information on its website, the etutor also provides error-specific
and individualized feedback by performing a linguistic analysis of student input and ad-
justing feedback messages suited to learner expertise. This personal approach is possible
thanks to the student model that the system makes use of. This student model can be
used to identify the learner's strenghts and weaknesses, information that is accessible
by students. Moreover, the weaknesses can be used to provide exercises that focus on
previous difficulties.

Three levels of proficiency are distinguished by the German Tutor: beginner, intermediate
and advanced. They are distinguished through the skill-specific score for each grammar
skill, with scores from 0-10 matching the beginner category, 11-20 intermediate and 21-
30 advanced. Instructional feedback can then be modulated according to the error that
was made and the skill level of the error type (see Figure 2.5).

TAGARELA

TAGARELA, which stands for "Teaching Aid for Grammatical Awareness, Recognition
and Enhancement of Linguistic Abilities”, is a web-based language tutoring system for
learning Portuguese. It was created by Amaral and Meurers (2007), who describe their
system as an intelligent electronic workbook: "[i]ts activity types are similar to the ones
found in traditional workbooks, and are divided into six groups: reading, listening, de-
scription, rephrasing, fill in the blanks, and vocabulary”. TAGARELA extends traditional
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workbooks in the use of individualized feedback that is automatically generated.

The TAGARELA system (currently version 3.1) is now further developed by the Theoret-
ical Computational Linguistics group at Tiibingen University. It can be accessed through
http://sifnos.sfs.uni-tuebingen.de/tagarela/index.py/main, once you own a login name
and a password for the system. It was first designed to be fully integrated into the Por-
tuguese individualized instruction program at the Ohio State University (Spring 2007).
It is now also employed in Portuguese courses at UMASS Amherst.

The general TAGARELA architecture shown consists of six modules: Interface, Analysis
Manager, Feedback Manager, Expert Module, Instruction Model, and Student Model.
The analysis manager is the interface between the input sentence created by a student
and the instruction and student models to decide on the best processing strategy. The
system further "calls the appropriate sub-modules int he expert module to analyze the
input” (Amaral & Meurers, 2008, p. 585). At the end of processing an annotated
representation of the learner input is passed on to the feedback manager, which decides
on the best feedback message to generate.

ICICLE

ICICLE (Michaud & Mccoy, 2006) is a system developed to provide writing assistance to
native speakers of American Sign Language (ASL) who are learning English as a second
language(http://ftp.udel.edu/research/icicle). The system performs analysis on pieces
of writing that are uploaded by users thorugh a graphical user interface with several
windows (see Figure 2.6). It then subsequently analyses the text and determines any
grammatical errors with a range of text parsers and a CFG grammar consisting of 321
English language rules together with a number of mal-rules that represent commonly-
committed grammatical errors (by deaf learners of English). Finally the system constructs
a response in the form of tutorial feedback. The student can then resubmit his original
text and the cycle starts over again.

The objective of its student model, called SLALOM (Michaud & McCoy, 2001), is to
diagnose the current proficiency of particular grammatical structures of English in terms
of “acquired”, “being-acquired”, and “unacquired”. Grammatical concepts are grouped
in a hierarchical fashion, based on studies in second language acquisition that looked
at transfer effects in learning. SLALOM uses the hierarchy "to identify the current
state of knowledge of a learner and to predict the next grammatical structures to be
acquired” (Amaral & Meurers, 2007). Different from The German Tutor, it does not
ignore the "usefulness of knowing that an individual may exhibit competence or preference
for specific structures while he or she struggles on others” (Michaud & Mccoy, 2006,
p. 27), but makes use of a model of the interlanguage between ASL and English.

38


http://sifnos.sfs.uni-tuebingen.de/tagarela/index.py/main
http://ftp.udel.edu/research/icicle

2.3. EXAMPLES OF LANGUAGE TUTORS

File Edit Help

Input Text Output Text
This is an apple. | like apple. They is red. | have many apple.

This is an apple. | LIKE APPLE They is red. | have many
apple

Control Panel Status Information
Idle
Start Analysis 7 Clear Input | Clear Output

Output Information

lem with this sentence:
This kind of noun requires that it be plural or have an article in front of it.
There are 3 parse trees

(c)2000 University of Delaware |Ready...

Figure 2.6 — The graphical application of ICICLE with several windows for the
input text, output text and output information (below). This screenshot of the
ICICLE implementation was taken from Michaud and Mccoy (2006).

2.3.2 Commercial language tutors

LLanguage learning software has been around for more than 20 years in the form of digital
exercises (fill the gap) that helped students practicing vocabulary words or specific parts
of the grammar (such as tense, determiners, agreement, etc.). Although most of the
systems are relatively mediocre in their goals and promises, there is one very popular
system that stands out: Rosetta Stone. With bold claims about immersive learning
environments, advanced automatic speech recognition and learning "twenty ways to say
I love you', they convince many learners to pay 400 euros to obtain one of their software
licences. This section describes the main features of Rosetta Stone and two alternative
commercial systems and discusses the main criticisms that scholars have formulated
against it. The alternatives described below are the free web-based language learning
system Duolingo, an initiative of Luis von Ahn in his attempt to translate the world wide
web for free (von Ahn, 2013b), and the 2011 start-up company Games for Language
that offers language tutorial video games online.

| selected these three systems because they each are representative of a particular busi-
ness model. While the prestiguous Rosetta Stone is available on CD-rom or with a 12
month access online, Duolingo is a web-based system that is available for free and access
to the Games for Language web games is based on a one to three-month basis (for a
democratic price). All three systems lack the notion of a student model and present all
learners with exactly the same curriculum, only offering some shortcuts at certain points.
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gire

gira
El autobus sigue a

(a) Comprehension (b) Production

Figure 2.7 — Screen shots of an interaction with Rosetta Stone (Version 3), level
2, unit 1.

Rosetta Stone

Rosetta Stone is a commercial computer-assisted language learning (CALL) software
package that uses images, sound, text and video to teach learners vocabulary and gram-
mar by repetition at predefined intervals, without any translations. The main claim of the
system is that it allows immersive learning of a language. By showing photographs to the
student and asking him to select a photograph that a native speaker just describes (out
of four options), to orally repeat what was said, or to complete a textual description of a
photograph with multiple choice or an on-screen keyboard (see Figure 2.7), the student
receives immediate feedback about his answers. Answers are scored on a scale from 0 to
100. Given that there are always four options to choose from, the student scores four
marks for answering correctly on the first attempt, three for the second try, two for the
third and one for the last option.

The courses come in three to five levels depending on the language and can be pur-
chased separately. In February of 2013, they offered 25 Rosetta Stone language courses
through their online website http://www.therosettastone.com. The software is used by
the United States Army as a special military version of Arabic was offered to help troops
int he Middle East to use phrases that are important in a military situation (Rosetta
Stone, 2007).
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However, despite its successes there are also many critical voices arising amongst lan-
guage acquisition experts. The biggest one is probably the fact that - completely ignorant
of the language you are learning - you will always be shown the same photographs and
learn the same words depending on the level you are at. As Nielson (2011) points out,
“The authors (of Rosetta Stone) claim that ‘by combining genuine immersion teaching
methods with interactive multimedia technology, Rosetta StoneTM replicates the en-
vironment in which learners naturally acquire new language’ (pp. 2-3). This claim is
clearly wrong. "The Rosetta StoneTM interface simply presents learners with matching
activities in which they guess or use a process of elimination to determine which words
or phrases go with particular pictures’(Krashen, 2013, p. 1).

The evaluations that have so far been carried out can be accessed through the Rosetta
Stone website, but neither of them has been conducted by language learning specialists.
The studies were run on adult subjects, mostly older than college students, that were
learning Spanish. It is unclear who funded these evaluations. According to these reports,
the participants in both studies were enthusiastic about Rosetta Stone: In the first study,
Vesselinov (2009) "administered a questionnaire: 94% of the subjects agreed or strongly
agreed that Rosetta Stone was easy to use, 88% agreed or strongly agreed that it was
helpful and enjoyed using it, and 77% said they were satisfied with it" (Krashen, 2013,
p. 2). Although the second study states that “perceptions of the Rosetta Stone solution
were overwhelmingly positive” (), there is no data provided to support this claim.

Duolingo

Although Duolingo is available online for free, it has a clear business model behind it and
can thus be seen as a commercial system. It has a clear goal in mind: translating the
world wide web through the input of language learners. There are a range of investors
that support Duolingo, such as NEA and Union Square Ventures.

A range of languages is supported by Duolingo: Spanish, English, French, German,
Portuguese and Italian. In any of these languages, the learner is presented with translation
exercises, with increasing levels of complexity as you proceed further on the so-called "skill
tree”. As a real translator, your task is to translate sentences from the foreign language
into your first language (only English and Spanish are supported). You have the option to
listen to the foreign sentences and when new words are introduced, you have the option
of looking up their translation (see Figure 2.8a). For instance, a Spanish learner with
English as a first language might be presented with the utterance Yo soy una nifia that
needs to be translated into / am a girl. If the word nifia is still unknown to the learner
he can look up its meanings by clicking on it.

Duolingo gives you the feeling that you are playing a game on your GameBoy while
you are learning a language: you can lose hearts for incorrect answers, you practice
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LA 44

Enter a French word that describes these images

© Tips and notes vV
Translate this text to English

@ Yo soy una nifia. lamagirl] ‘

ccccc

ppppp

(a) Sentence translation (b) Image tagging

Spanish skill tree Stream

( Basics 1 Basics 2
‘ po‘ Mastered (J wi ®
( Phrases Food l Animals
QJ Mastered () a L __ O o8 a=O—3
( Plurals
‘ | " pastorea @

( Possess. Clothing
‘ ﬁ Mastered ' - —3

(c) Skill tree

Figure 2.8 — Screen shots of an interaction with Duolingo, downloaded from the
resources page on the Duolingo website (21 February 2013).

against the clock, you can level up depending on your progress, etc. Learning should
become "addictive”, according to their own slogan. The skill tree is organized in terms of
themes such as food, animals, clothing, sports, etc. Some nodes in the tree focus more
on grammar (e.g plurals, possessives, etc.), whereas other concentrate on vocabulary
training. You earn a new medal at every level and you can track your progress inside
one level in terms of the scores you obtained and the days of the week that you were

interacting with the system (see Figure 2.8b for a screenshot of a user's skill tree).

The four components of language learning are addressed by Duolingo (von Ahn, 2013a,

p. 2):

e Reading. The user is asked to translate from the object language into the native

42



2.3. EXAMPLES OF LANGUAGE TUTORS

language. The output of this exercise, correct or incorrect, will always make sense.

e Writing. The user is asked to translate from the native language into the object
language. The user understands the input, but may produce nonsensical output.
But combining these first two exercises over a number of users cooperatively pro-
duces output as good as professional translation.

e Listening. Rather than translate, to learn listening the user is asked to subtitle
video in the object language. This again produces accurate output, augmented by
automated processes such as spellchecking.

e Speaking. The user is asked to speak the object language in order to train a speech
recognition algorithm.

A research study that tested the effectiveness of Duolingo was conducted in September-
November of 2012 based on a random representative sample of native speakers of English
learning Spanish. According to the report that describes the study, it was estimated "that
a person with no knowledge of Spanish would need between 26 and 49 hours (or 34 hours
on average) to cover the material for the first college semester of Spanish” (Vesselinov
& Grego, 2012, p. 1). This result is based on the language test's cut-off point for the
second college semester and the 95% Confidence Interval of the effectiveness measure.
The effectiveness of the learning process is ascribed to the motivation of the participants,
"with people studying for travel gaining the most and people studying for personal interest
gaining the least” (id.). Also, it was found that the system was more effective for students
with no initial level of knowledge of Spanish, compared to more advanced learners.

Games for Language

The start-up Games for Language is meant to be a tool to "boost your French, German,
Spanish and ltalian” with an online language learning course. You can run a demo
version for free online for any one of these languages. This demo teaches you some
basic expressions that are used on an airplane conversation between a passenger and an
air stewardess. All exercises require you to click on the correct words when you see or
hear their English translation. Some of them target agreement between an article and a
noun (in a balloon game), others focus on particular pronouns (in a fishing game), etc.

Games for Language is a very playful way to practice your vocabulary in a certain lan-
guage, especially when you are a beginner. You can score points by clicking on the
correct balloons, cards, fish, clouds, etc. (see Figure 2.9). Yet, the results are not used
by the program to steer future exercises. They are merely shown to the user so that
he gets an understanding of his level of the target language, of course according to the
pre-set exercises. Grammatical explanations are offered at certain moments in a game
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g for LANGUAGE

lamanzana

la mandarina

apple

la naranja

la granada

Figure 2.9 — Vocabulary exercise that asks the learner to find the correct
translation for the English word apple. All four words refer to fruit.

regardless of the correctness of the user's answer (e.g. the difference between ser (to
be - permanent) and estar (to be - temporary)).

2.4 Conclusion

Although the first Al techniques started being used in the early 1970ies, the commercial
systems that we find today still resemble the old systems of programmed instruction,
where every student is taken through the same curriculum. Yet, the academic initiatives
show more interesting language tutors with a full-blown ITS architecture and a more indi-
vidualized task selection and feedback generation, although most of the running systems
today are still far from the ideal of real personal tutors. The most common explanations
for the general lack of success of full-blown CALL systems include, among others:

1. The pedagogical principles underlying most existing CALL systems stimulate ex-
trinsic student motivation, based on scores and ranks, rather than intrinsic moti-
vation.

2. Given that building a tutor is an enormous investment, there is not enough funding
to support research-based tutoring systems for a long period of time.

3. The programming skills of good teachers that know how to engage their students
are often not good enough to create intelligent tutoring systems themselves. The
authoring tools are often too limiting to really be creative and manage the tutoring
process in your own way.
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The next chapter discusses my vision on effective pedagogical methods for language
learning that can help to engage students in long-term interactions with the tutoring
system. The lessons learned from the issues with certain state-of-the-art systems and
the pedagogical ideas they support are incorporated into the fresh design of tutor agent
in Chapter 9.
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Chapter 3

Fluid Construction Grammar

The first prerequisite for any tutor, whether human or artificial, is full competence of
the knowledge domain that is being learned by the student. Being instructed by a
domain expert can really boost your motivation as a learner to achieve similar results in
a natural way. If your ski teacher looks like a natural talent when coming down black
slopes, you are likely to become motivated to practice more on your skiing technique
to become just as good as him. Now, the same principle applies when constructing an
artificial language tutor: he should first of all be a competent language agent that can
produce and comprehend utterances in the target language and detect non-grammatical
expressions. To build this agent, one would need to rely on a computational language
formalism that can store all the linguistic knowledge that a language agent needs and
process any utterance in the language.

Although there are a handful of computational grammar formalisms available today, such
as Head-driven Phrase Structure Grammar (HPSG) (Pollard & Sag, 1994; Miiller, 1996;
Copestake & Flickinger, 2000), Sign-based Construction Grammar (SBCG) (Michaelis,
2009; Sag, 2012), Embodied Construction Grammar (ECG) (Bergen, 2003; Bergen &
Chang, 2005) and some others, | have chosen to use the Fluid Construction Grammar
(FCG) formalism here to operationalise the grammatical knowledge and procedures of
the language agent. The FCG language processing framework has been under devel-
opment since the late 1990s, when it was introduced to model language evolution and
language change in agent-based simulations. However, thanks to its high degree of flex-
ibility in learning new linguistic constructions and non-grammatical language processing,
it can serve as a valid formalism for language tutoring purposes.

FCG allows its users to create grammars according to ideas that are found in Construc-
tion Grammar. Different from existing linguistic proposals for Construction Grammar

(Goldberg, 1995, 2006; Croft, 2001; P. Kay & Fillmore, 1999; Michaelis & Lambrecht,
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1996), FCG has a particular focus for processing issues that goes beyond the level of
verbal descriptions of a language. Instead of committing itself to a specific implemen-
tation of grammatical features, FCG wants to be an open instrument that can be used
by linguists to test out their theories or to set up language learning experiments that re-
quire flexible language use. The system is integrated with a web interface for visualizing
the application of constructions during language processing and the resulting constructs.
Its latest release (August 2013) can be downloaded as part of the Babel framework on
ai.vub.ac.be/trac/babel2.

The FCG formalism has matured much over the last few years with new inventions,
implementation optimizations and a standardization of the grammars and the use of FCG.
Moreover, two volumes have been published recently that uncover the basic principles
of FCG, provide formal reconstructions and a set of case studies that describe linguistic
phenomena in areas ranging from German case, Hungarian verbal agreement, Polish
negation, Russian aspect, to Spanish modality and Dutch posture verbs. Individual papers
can be downloaded on www.fcg-net.org. The full references to these books are:

e Steels, L. (Ed.) (2011). Design Patterns in Fluid Construction Grammar. John
Amsterdam/Philadelphia: John Benjamins.

e Steels, L. (Ed.) (2012). Computational Issues in Fluid Construction Grammar.
Berlin/Heidelberg: Springer.

Like many other computational linguistics efforts, "the FCG-system is embedded within
a contemporary Common LISP-based programming environment from which it inherits
well-tested mechanisms for representing and processing complex symbolic structures”
(Steels, De Beule, & Wellens, 2012, p. 197). As Fluid Construction Grammar is still
partially under further development in our team, | am not a passive consumer of the
formalism but actively work on finding new solutions for technical or linguistic issues on
a daily basis. Specific extensions that were made to the formalism to realize the Spanish
grammar needed in this dissertation are described in Chapter 4, Section 4.3.2.

This chapter describes the main features of the FCG formalism and explains how the
language agent’s construction inventory is built up and how a grammar engine usually
functions. These are the two first components of a language agent’s architecture. The
third component, flexibility strategies, forms the focus of Chapter 5. To see the con-
struction inventory and the grammar engine at work, you can explore the Spanish case
study in Chapter 4.
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3.1. THE CONSTRUCTION INVENTORY

3.1 The construction inventory

The construction inventory constitutes the grammatical knowledge of an agent. It is a
collection of so-called "constructions” that are organized according to certain principles.
The notion of construction is inspired by its use in Construction Grammar , a linguistic
school of thought with a special focus on usage-based approaches to language (Goldberg,
1995, 2006; Croft, 2001; P. Kay & Fillmore, 1999; Michaelis & Lambrecht, 1996).

This section first introduces the notion of a construction and how constructions are
represented in the FCG formalism (Section 3.1.1). Section 3.1.2 then discusses the
organization of constructions in sets, inventories and networks. Finally, Section 3.1.3
explains how grammars can be constructed quickly, by using a range of design patterns
that are available in FCG.

3.1.1 Constructions

A construction is the most basic data structure in FCG. The notion of a construction
has been at the heart of linguistic theorizing for centuries (Fried & Ostman, 2004). A
construction is "a regular pattern of usage in a language, such as a word, a combination
of words, an idiom or a syntactic pattern, which has a conventionalized meaning and
function” ((Goldberg & Suttle, 2010), cited by Steels, De Beule, and Wellens (2012)).
It is thought to capture both the usage pattern as well as the knowledge that a speaker
has about the pattern.

Constructions relate meaning to form through a range of semantic and syntactic cat-
egorizations. There are specific constructions that relate meanings to their related se-
mantic categories, others that map semantic categories into syntactic counterparts and
constructions that express syntactic categorizations into a form (usually a word or a
morpheme). These four connections are often referred to as the grammar square (see
Figure 3.1). A good example of constructions that operate on all four axes of this square
are argument structure constructions, as in the utterance John kissed Mary. John is cap-
tured by a lexical construction (meaning <-> form) but his kisser role is translated into
a more general semantic agent role by a construction that maps the kisser meaning into
the semantic category for agent. The translation of agent into subject is handled by
the active voice construction. Finally, because John is the subject of the sentence, word
order constructions operate to put him at the beginning of the sentence.

The two ends of one arrow in the grammar square (e.g. meaning vs. form) make up two
polesin an FCG construction. By default, FCG constructions link meaning (left pole) and
form (right pole) or semantic categories and syntactic categories (the horizontal axes in
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meaning «——— form

semantic syntactic
. . <_> . .
categorizations categorizations

Figure 3.1 — Constructions operate on all four axes of the grammar square.

Figure 3.1). However, constructions consisting of two semantic poles or two syntactic
poles can also be represented and processed. | will refer to these constructions as sem-
sem or syn-syn constructions. Three example constructions (sem-syn) are included here
below (taken from Steels (2011, pp. 5-6)):

1. Lemma’s like "walk™ are covered by lexical constructions. They express a direct as-
sociation between a string (syntactic pole) and its meaning (semantic pole). "Lex-
ical constructions also introduce additional syntactic and semantic categorizations
that are important for later grammatical processing, such as the lexical category
(part of speech), number or gender” [id.: p.5].

2. A determiner-nominal constructionis a phrasal construction that creates a determiner-
noun phrase out of a combination of a determiner (such as "the” or "some”) and a
noun (such as "table” or "mouse”).

3. A postposed-genitive construction (e.g. "No son of mine”) combines a nominal
phrase with a preposition ("of”) and a genitive ("mine”). The semantic pole adds
the possessive relation between the referent of the nominal phrase and the referent
of the genetive.

The remainder of this section discusses more technical details of constructions as they
are implemented in FCG, including: their realization as a coupled feature structure, how
hierarchy is dealt with and the special operators that work on their feature specifications.
Readers with a basic knowledge of FCG constructions can skip this entire section.

Coupled feature structure

In technical terms, a construction is a coupled feature structure: it consists of two feature
structures (one on each pole) that are coupled, which means that they are always used
together. An FCG feature structure typically contains a list of units, which are usually
mirrored on both poles. The units can be arranged in a tree structure (or any other
structure) through special features that are responsible for building hierarchy, such as
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semantic pole syntactic pole
meaning form ) )
(arthur ?reader) strlr:g: Arthur
sem-cat syn-ca
type: sentient < > lex-cat: proper-noun
role: agent case: subject
args ?reader 2unit phon-cat /'alBa/ ?unit

Figure 3.2 — A lexical construction tags information from that is present in the top
unit and drags it into a newly created unit hanging under the top. The new unit
also provides the features that characterize the lexical construction. J-units are
special units that can create new units or modify existing ones (see 3.1.1). This

figure is a schematic representation of the usual list structure.

sem-subunits and syn-subunits. A single unit consists of a list of features, which
are attribute-value pairs that define the properties of the unit.

A construction typically contains values that are variables (e.g. ?var). These variables
will be instantiated when the construction is used in a real sentence, where they get
bound to the meaning or form values that are present in the situation. A schematic
example of a construction (without subunits) is included in Figure 3.2, which depicts the
lexical construction for the proper name Arthur. It has three semantic features: meaning,
sem-cat (semantic category) and args (arguments). Its meaning is here represented in
a straightforward first-order logic list notation, but depending on the use and the goals
of the construction inventory, different meaning representations can be processed (e.g.
procedural semantics or frame-based semantics). The meaning feature still contains a
variable, which reoccurs here in the args feature: 7art. The arguments feature is
used as an index by other constructions that build further on this lexical construction:
e.g. the Proper-Noun Construction or the Intransitive Construction. On the syntactic
pole, the features form, syn-cat and phon-cat are found. A form feature typically
contains strings, morphemes or word order information. The syntactic category here
also contains a feature with a variable ?case, which will be filled in by the appropriate
argument structure constructions. Also a phonetic category is present, which can also be
used by other constructions to determine the plural marker, a compound pattern, etc..

Constructions contribute to the formation of a transient structure or transient linguistic
structure , which is also a coupled feature structure that is representing all the knowledge
that a speaker or a hearer has of the utterance that is being processed. Figure 3.3 provides
a detailed example of a transient structure for the utterance “Arthur read newspapers”.
You see that the semantic and the syntactic poles are almost mirror images except for
unit 4, which is only present on the syntactic pole. This unit contains exclusively form
features that express the plural form of “newspaper”.

When the transient structure is finished (stopping criteria are discussed below) the parsed
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meaning semantic pole syntactic pole form
(arthur ?reader) string: "Arthur"
sem-cat syn-cat .
type: sentient lex-cat: proper-
role: agent . . . '
args ?reader subunits unit-2 unit-3 subunits unit-2 unit-3 noun )
unit-2 meaning form case: subject
(read ?event string: "read" phon-cat /'a:6a/ unit2
. ?reader ?text) | | meets: )
meaning ” sem-cat <—> unit-2 > unit-1 > unit-3
teXt()newspaper ! type: reading synl-cat © verb
time: before t0 ex-cat: ver ; .
(many ?text) args 2event tense: past subunits unit-4
sem-cat unit-1 phon-cat /red/ form
type: ina_nimate nit-1 strlngt;:. nex(vgpaper
role: patient % ‘meets: unit-3 > form
reference: unit-4 . L string: "s"
i syn-ca
gg)r:entc/def/plural y et noun phon-cat /s/
args ?tex : it-4
unit-3 case: direct-object an
number: plural
phon-cat /nju:zpeipaz/
unit-3

Figure 3.3 — A coupled feature structure consists of a semantic (left) and a
syntactic (right) pole, each with several (mostly symmetrical) units. The coupled
feature structure in this figure is the result of parsing/producing "Arthur read
newspapers’.

meaning or produced utterance is extracted from it through its meaning and form
features. For instance, the resulting meaning of the parsing process of “Arthur read
newspapers’ is collected into one list: ((read 7event ?reader 7text) (arthur
?reader) (newspaper 7text) (many 7text)). The variables indicate that the
arguments are open and can be filled according to the current context of the utterance.
The importance is that they are shared across multiple meaning predicates. For instance,
?reader occurs in the read predicate and also in the arthur predicate. This means
that a phrasal construction related these variables through the args feature, so that
the arthur meaning is now the agent of the event.

The following sections provide more details on some of the special features that are
present in the feature lists of a construction, including J-units, tags, footprints and
special operators. All these features are relevant for processing, which is fully discussed
in Section 3.2.

J-units

The multiple levels and relations that occur between units of a feature structure (see
Figure 3.3) are created by a special type of units that are used in a construction specifi-
cation: J-units. J-units are instantiated by the J-operator , which defines operations on
an existing or non-existing unit. To distinguish it clearly from other units a J-unit spec-
ification does not start with the unit-name (e.g. 7top) but instead with a list starting
with the symbol J (e.g. (J ...)). A J-unit enumerates operations for a single unit,
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structure unit-1
before merge
| unit4
top unit-2
; unit-5
((*top ———— unit-3
(syn-subunits (?unit-1 ?unit-2 ?unit-3))
(form ((meets ?unit-1 ?unit-3)
(meets ?unit-3 ?unit-2))))
(?unit-1 J operator
(syn-cat (pos adjective)))
(?unit-2 structure
(syn-cat (pos verb))) after merge unit-1
(?unit-3
(syn-cat (pos noun))) Unit-a
((J ?new-unit ?top (?unit-1 2unit-2 2unit-3)) —
(syn-cat sentence))) top unit-2
[ R
unit-5
unit-3
(a) The use of a J operator in a unit list (b) The coupled feature structure before
notation (bold) (top) and after (bottom) the J operator has

changed its structure

Figure 3.4 — The J operator creates hierarchy in a transient structure.

linked through a reference to its unit name immediately after the J in the list call. Of
course a feature structure can contain multiple J-units, thereby allowing operations on
multiple units. An example (syntactic) feature structure with a single J unit looks as
follows:

((7top

(form ((string ?top "big"))))
((J ?new-unit)

(syn-cat ((pos adjective)))))

The above feature structure consists of a single unit ?top and a J-unit. It will create a
new unit (?new-unit) containing the syntactic category adjective. The body of a J-unit
(i.e. the part after the initial list) resembles that of a regular unit in that it can contain
feature value pairs. However, the newly created unit does not have any specific location
yet in the feature structure tree. To do this, the J-operator has two optional parameter
to specify a unit's parent unit and optionally its daughter units. If you want to hang
the new unit under the existing top unit, you can do this as follows: (J ?new-unit
7top). Daughter units can be specified by adding a list as the last parameter of the
J-operator call (see Figure 3.4).
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sem pole syn pole
?TOP-UNIT 2TOP-UNIT
(tag ?meaning (tag ?form
(meaning <+—»| (form
== (arthur ?art)))) (== (string "Arthur"))))
i J-units i
?meaning  ?NOUN-UNIT 2form 2NOUN-UNIT
sem-cat syn-cat
type: sentient lex-cat: proper-noun
role: ?role case: ?case
args ?art phon-cat /'a:8a/

Figure 3.5 — Tag features move features between units. The complete feature
that follows the red tag name (?meaning and 7form) will be moved to the newly
created ?Pnoun-unit after this construction could apply.

Tags

A tag is a special feature that allows to move certain features inside one pole of a coupled
feature structure (see Figure 3.2). Its most wide-spread use is in lexical constructions,
where meaning or form features are moved from the top unit of the transient structure
into a newly created lexical unit. The syntax of tag features is defined as follows:

(tag 7tag-name feature-that-you-want-to-move)

When the tag name (7tag-name) is repeated inside another unit of the same pole, the
feature(s) that follows it will be deleted from the original location and added to the new
unit. Tag features are frequently used inside the J-units (see Figure 3.5 for an illustration
of the tag feature use in a lexical construction). Apart from moving features from the top,
tags are also used to remove a particular feature permanently from a feature structure
- an operation which is usually not without further implications. This removal operation
can be carried out by repeating the tag name inside a unit that is named nil. Nil units
are ignored by the transient structure, so any feature that is moved here disappears from
the transient structure.

Footprints

A footprint is usually added to an existing feature structure during construction ap-
plication. It overtly signals the application of a construction and thereby prevents a
construction to apply twice on the same structure. Footprints are just like tags optional
features that one can use to build feature structures in FCG.
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Usually the footprints feature contains the construction name of the construction that
added it to the transient structure: e.g. (footprints (arthur-cxn)). But also
other information can be added to its feature value list such as the construction set
(e.g. lexical; see Section 3.1.2) or the type of the construction (e.g. irregular verb).
This additional information can then be used as conditional checks that allow other
constructions to apply. A regular conjugation construction could for instance only apply in
production after there was no irregular construction that could express the conceptualized
meaning. To indicate whether a particular footprint is expected or is prohibited in a
particular unit special operators can be used that formulate set operations.

Special Operators

A coupled feature structure usually contains more than only units and their respective
feature specifications. Special operators were introduced to allow for a richer represen-
tation inside units that facilitates set operations. FCG lists can contain special operators
that indicate how the elements of a list are treated in unification. The operations that
are currently supported by FCG are listed in Table 3.1.

Table 3.1 — Special unification operators in FCG.

operator description

== includes: the elements of the list can occur in any order

==1 includes uniquely: the elements of the list can occur in any order
and there are no duplicates allowed

== excludes: the elements following are disallowed

==p permutation: the elements of the list can occur in any order
and no additional elements are allowed

When used in a construction, special operators are the first element in a list of feature
values (see Figure 3.6). For instance, the == operator is often used in the meaning and
form features to indicate that there can be more meaning predicates or form strings than
the ones named here and that their order is irrelevant to the application of a construction.
The use of the ==1 operator in the syn-cat and sem-cat features implies that the
values of these features cannot contain doubles, e.g. there is only one semantic type or
one lexical category allowed for a single unit here. The excludes operator ==0 is often
used to disallow the presence of certain footprints in a particular unit, especially when
these footprint features are added by the construction in another unit.
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arthur-cxn
?top-unit-46
?top-unit-46 tag ?form-34
tag ?meaning-34 SEM SYN | (form
. — - al Ll ==
(meaning (== (arthur ?reader-2))) (string ?word-arthur-2
footprints (==0 arthur-cxn lex) arthur"”)))
footprints (==0 arthur-cxn lex)
?word-arthur-2 ?word-arthur-2
— ?meaning-34 — ?form-34
args ?reader-2 ey Hop- footprints
footprints l..lni'(?46 L:Iniﬁ46 -+ (== arthur-cxn lex)
(== arthur-cxn lex) syn-cat
sem-cat (=?1
—=1 (type sentient (lex-cat proper-noun)
( (rolt(e S?lsole—l)) ) (case ?case-1))

Figure 3.6 — This screen shot of the FCG web interface shows the use of special
operators (==, ==0 and ==1) inside the Arthur Construction.

3.1.2 Organizing constructions

Rather than being independent entities, constructions typically form an ordered collection
that is organized according to some predefined principles. This ordered collection is
referred to as aconstruction inventory in FCG. A construction inventory is a data structure
that can be configured depending on the language that it is used for, the linguistic
competence that the language agent has or the personal preferences of the grammar
engineer.

An FCG-construction inventory is typically organized in three ways: (i) having no explicit
organization, (ii) in construction sets or (iii) in a network of constructions. By default,
there is no explicit organization imposed on the constructions. However, by means of
heuristics that can be added to the search process and the inherent conditional nature
of construction application in FCG, the inventory organisation is not completely blind.
This section further describes constructional organization in terms of construction sets
and construction networks.

Construction sets

Constructions can be grouped into sets according to the nature of the work that they
carry out (Croft & Cruse, 2004). In this way, lexical constructions can be grouped into
a set as they all express single words in isolation, or phrasal constructions can be joined
In a set, given their shared grouping behavior. A set organization allows for an explicit
order between the construction sets, so that one set can be considered before the next
one. In FCG, this order typically differs in parsing and production. Frequent construction
set orders are, in parsing: lexical — morphological — functional —
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grammatical, and in production: lexical — functional — grammatical
— morphological.

Construction sets have proven to be useful both from a processing point of view, and
from an implementation point of view:

e In terms of processing, the search process can be constrained considerably (see
Section 3.2.2). Because the FCG-interpreter needs to go "through all constructions
in the inventory in order to find one that could usefully apply, and if there is more
than one, a branching of the search path must be organized” (Beuls, 2011, p. 238).
When construction sets are used, only constructions belonging to a particular set
need to be considered when searching for the next construction.

e In terms of an effective implementation, construction sets allow you to get a better
overall structure of the grammar so that the grammar design can focus on different
construction set. This approach helps to cope with the inevitable complexity of
working out real grammars (Steels & Wellens, 2006).

Also inside a construction set, further subdivisions might be needed. A subset approach
is often useful when a language employs unmarked defaults for certain expressions . For
instance, when singular is not expressed overtly, the singular morpheme construction
(which adds a zero morpheme @) should be applied after the plural morpheme construc-
tion was tried out. Unmarked constructions in a set can therefore be put in a separate
subset of the morphological, phrasal or any other construction set.

A network of constructions

In a network organization, one construction can prime or take precedence over others.
Apart from defining networks of constructions based on relations between individual con-
structions, the FCG-engine can also use this information in processing (Wellens, 2011;
Wellens & De Beule, 2010). The key idea is that a chain of construction applications
implies the existence of dependency relations between constructions. Therefore, linking
the constructions through these dependencies gives rise to an intricate network of con-
structions and categories since it turns out that it is grammatical categories that most
often constitute these dependencies . Not only can such a network help in disambigua-
tion but it can also be used to vastly speed up future processing by prioritizing or priming
constructions whose dependencies have been met.

One of the case studies on which this the network priming idea has been tested on
is the Hungarian verb agreement system. This system shows an intricate example of
agreement that alternates between subject-verb and object-verb agreement depending
on deictic information that is present in the utterance (Beuls, 2011; Beuls & Wellens,
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BOOK-CXN

sem: [(FRAME (OBJECT ENTITY))
(COMPLETE -)]
syn: [(POS NOUN)]

sem: [(FRAME REFERENT)]
syn: [(POS NOUN)]

DET-NOUN-OBJECT-CXN
sem: [(COMPLETE +)]
syn: [(POS NOUN)]

sem: [(SEM-ROLE ?7X-7)]
syn: [(POS NOUN)]

sem: []
syn: [(SYN-ROLE DIRECT-OBJECT)]

ACC-NOUN-MORPH ACC-PRONOUN-MORPH

sem: [(SEM-ROLE AGENT)]
syn: [(DEFINITENESS DEFINITE)
(SYN-ROLE DIRECT-OBJECT)
(PERSON 1)]

* —

TRANS-ANIMACY-3-3-0cl3sg-DEFINITE-CXN

sem: [(SEM-ROLE AGENT)
(ANIMACY AN)
(FRAME (PERSON ENTITY))]
syn: [(DEFINITENESS DEFINITE)
(SYN-ROLE DIRECT-OBJECT)
(PERSON 1)]

sem: [(SEM-VAL (AGENT 7X-8 PATIENT 7X-9))]
syn: [(DEFINITENESS DEFINITE)
{(SYN-ROLE DIRECT-OBJECT)
(PERSON 1)]

sem: [(SEM-ROLE PATIENT)]
syn: [(POS PRONOUN)]

TRANS-CXN TRANS-ANIMACY-3-1-ag3sg-DEFINITE-CXN

TRANS-PRODROP-SHE-CXN

Figure 3.7 — The dependency network as learned after processing sentences 1 and
2. Diamond shaped nodes represent constructions that could be applied
independently of any other construction (i.e. on the initial linguistic structure).
Egg-shaped nodes represent constructions as well but those that were observed to
have a dependency with other constructions. Square nodes hold semantic and
syntactic categories that essentially constitute the dependencies.

2010). The alternation makes this a good case study for the dependency networks. The
following examples have been learned by the dependency networks (see Figure 3.7):

(1) Szeret-i a konyv-et
love-3sgDEF the book-ACC3sg
He/she loves the book.

Szeret- engem
love-3sgINDEF me-ACClsg
He/she loves me.

(2)

Through the dependency network some constructions are primed over others. In this way,
the accusative construction that adds the -et ending to the book stem can be primed as
soon as the argument structure construction did its work and set the case category of

60



3.1. THE CONSTRUCTION INVENTORY

the book unit to accusative. Priming occurs thus through specific categories (features)
inside constructions as relations between features are learned over time. The network
in Figure 3.7 is dynamic and will be updated as more and more utterances have been
processed.

3.1.3 Templates

Templates make the necessary abstractions that allow the grammar engineer to quickly
create large-scale grammars. Moreover, every individual template integrates one specific
design pattern in language, such as agreement systems, field topology for syntactic
structuring or a linking pattern for semantic structuring (Steels, 2012b). In sum, a
template specifies certain aspects of a construction and one construction is built by
several templates. The FCG templates that exist hide many processing features such as
the footprints, tags, J-units, etc. In this way you can fully concentrate on the grammar
you are developing and the linguistic features that are needed to do this. The volume
on design patterns in FCG (Steels, 2011) contains many examples of FCG templates. |
have included two illustrative examples below.

The first example concerns the lexical template def-lex-cxn. This template builds
a lexical construction, such as the construction for the proper noun Arthur. A lex-
ical template usually consists of two parts, linked together through the construction
name, in this case arthur-cxn. The construction name can be freely chosen by the
grammar designer. The first part (def-lex-skeleton) contains some of the key fea-
tures of the lexical construction such as its form (string), meaning and arguments.
The second part of the lexical template adds the categories to the lexical construction:
def-1lex-cat. It assigns semantic, syntactic or phonetic categories, some of which can
still be undefined: e.g. a semantic role (?role) can only be filled in after the argument
structure constructions have done their job.

(def-lex-cxn arthur-cxn
(def-lex-skeleton arthur-cxn
:meaning (== (arthur 7reader))
rargs “reader
:string "arthur")
(def-lex-cat arthur-cxn
:sem-cat (==1 (type sentient)
(role 7role))
:syn-cat (==1 (lex-cat proper-noun)
(case ?case))))

Another example of a template that is used abundantly in this dissertation is the
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def-morph-cxn template, which creates morphological constructions (see also (Gerasy-
mova, 2012) for a more detailed explanation on this topic). In the example below, |
included the morpheme for the third person singular present in English (“-s"). Because
morphological constructions do not express semantic meaning but map syntactic function
into form and reversely, they only contain syn-cat and form features:

(def-morph-cxn 3sg-present
:morph "-s"
:word-order meets
:syn-cat (==1 (person/number 3sg)
(tam (==1 (tense present)))))

Apart from the agreement information (person/number), the tense-aspect-mood (TAM)
feature is crucial here for the realization of the verbal '"-s” morpheme. The construction
will apply to verb stems that meet these properties and do not yet have any other mor-
phemes following the stem (see word-order feature). Chapter 4 contains many more
examples of FCG templates that are specific to the goals of this thesis.

3.2 The grammar engine

FCG's grammar engine is responsible for the linguistic processing of constructions, either
in production or parsing. During this process, constructions build up a coupled feature
structure, commonly called the transient linguistic structure (cf. Figure 3.3), which
contains all the semantic and syntactic information that a speaker has about an utterance.
To build a transient structure, two processes are required: (i) a search process to find the
next construction that can expand the transient structure and (ii) a mechanism to unify
the linguistic information in a construction with that present in the transient linguistic
structure. This section treats both processes in Section 3.2.1 '"Match and merge’ and in
Section 3.2.2 the search process is explained in further details.

3.2.1 Match and merge

A transient linguistic structure can be extended through a process of so-called “construc-
tion application”. Construction application consists of two main phases: a match phase
and a merge phase. Due to this separation in two phases, FCG differs hugely from other
grammar formalisms that apply constructions “in one go” and call this process unification.
In FCG terms, when the term unification is used, it exclusively refers to the matching
process. Match and merge work in a similar fashion to if-then rules. The matching
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(a) production (b) parsing
transient structure : : transient structure
semantic syntactic semantic syntactic -,
:_""» pole pole g ; pole pole !
X A A : . A A 1
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] ' ! ! ! !
second . .
first matching seco_nd . matching first
! merging merging h mergin
merging phase hase phase phase ging
phase ; P . . ! phase
TR s o - o e i -
| 1 construction | : ] 1 construction | : |
1 1 . 1 1 | : |
|'_ ______ semantic syntactic : : semantic syntactic _ : |
pole pole : : pole pole

Figure 3.8 — Construction application in production (a) and parsing (b) consists of
two main phases: matching and merging (with a first and a second merge phase).

phase checks whether certain conditions for construction application are fulfilled and the
merge phase merges new information into the transient structure, potentially with more
restrictions as to whether this information can be added.

Construction application is a directional process. Because an FCG construction, and
therefore any coupled feature structure in FCG, consists of two poles, it plays an impor-
tant role which pole is used for matching (the if) and which one for merging (the then).
The direction depends only on the type of linguistic process: production or parsing. In
production, matching happens on the semantic pole, which checks whether the semantic
features needed by the construction are fulfilled (see Figure 3.8, right). Merging is split
up into two parts: a first merging phase and a second merging phase. This split is
inherent to the architecture of FCG with its strict separation of features in a semantic
and a syntactic pole. The first merging phase merges new features into the matching
pole (semantic in production). The first merging phase always relies on the information
that is provided by the J-operator. The second merging phase, adds all the features that
are provided by the opposite pole (syntactic in production), given that this does not lead
to any conflicts in the transient linguistic structure.

If matching or merging (in any of its two phases) fails, the transient linguistic structure
will not be extended with the particular construction that caused this failure. Instead,
we retract the new information and try with the next construction that succeeds the
matching phase. The process of finding new constructions to apply is what is called
construction search in FCG. The next section is dedicated to search.
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top sem syn
meaning ( (arthur reader) < '
(read event reader text))
(a)
top
sem syn

4—> form ((string arthur-1 "arthur")

(meets arthur-1 read-1)
(string read-1 "read"))

(b)

Figure 3.9 — The top-units of the transient structure at the start of production (a)
and parsing (b).

3.2.2 Searching constructions

The initial feature structure from which the search process is started consists of two
top units: one that is empty and another one that contains either a meaning feature (in
production) or a form feature (in parsing) (see Figure 3.9). The top units are created
by processes which run independently from the FCG engine, such as conceptualization
or de-rendering. The latter is the process whereby an utterance is segmented before its
form feature is created (typically consisting of string and meets features).

When more than one construction can extend the transient linguistic structure or one
construction that can be applied in multiple ways, a split occurs in the search tree
(see Figure 3.10). By default, "the search engine employs a depth-first approach that
continues to explore a single hypothesis until no other constructions can apply anymore”
(Bleys, Stadler, & De Beule, 2011, p. 149). By means of goal tests it is checked
whether the resulting transient linguistic structure is preferable and, when this is not
the case, the goal test can instruct "the processor to backtrack to an intermediary
transient structure to which other constructions apply, possibly leading to a desirable
final transient structure” (id.). If all possible hypotheses have been explored and still no
desirable transient structure has been reached, the entire application process fails.

Apart from goal tests that are a stopping criterion for the search engine, the search
process can be steered in the following ways:

e The use of construction scores can be taken into account so that constructions
with higher scores are considered first by the search engine. Construction scores
are typically updated after they have been used in successful communication.

e Construction sets (see Section 3.1.2) constrain the search space because only a
subset of the full construction inventory needs to be searched through to find the
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ﬁ cxn-2 —— structure-2 — cxn-4 — structure-2 —— cxn-5 — .

initial

— cxn-1 — structure-1
structure

; cxn-3 —— structure-3

Figure 3.10 — Language processing is organized as a search process in FCG. A
linguistic structure is being built up by applying a series of constructions to it.
When two (conflicting) constructions could apply to the same linguistic structure,
this leads to a split in the search tree.

next construction. When no further constructions of a particular set can apply, the
search engine proceeds to the next set. The explicit order of construction sets is
provided in the configuration of the construction inventory.

e Because the lexicon usually makes up the majority of all constructions present in
a construction inventory, it can become very expensive to start searching for the
next lexical construction as on average 50% of the full set will have to be tried
out in matching before the desired construction applies. Therefore, working with
a hashed lexical construction set can be more efficient. Instead of matching the
construction on the transient linguistic structure, the meanings to be produced or
the strings to be parsed can first be looked up in a hash table. In this way, the
desired constructions can be prioritized in construction application.

o Node tests perform checks every time a new construction could apply, instead of
only at the end of construction applications as the goal tests do. A default node
test that is provided in FCG is check-duplicates. This node test verifies whether
there are two feature structures in the search tree that have exactly the same
structure, which can happen due to a different order of construction application in
two branches.

All four search optimizations explained here are used in the grammars presented in this
dissertation.

3.3 Conclusion

The main aim of this chapter was to introduce and support my choice for Fluid Construc-
tion Grammar (FCG) as a useful grammar formalism as a basis for a language tutoring
architecture. The main design features of FCG can be summarized in the following four
points:
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1. A construction is a typical usage pattern in language. The knowledge that a
typical speaker has of a certain construction is stored in the FCG constructional
data structure, referred to as coupled feature structure. A construction inventory
is a collection of constructions.

2. Because the same constructions are used in production and parsing, a construction
has two poles, one semantic pole that is consulted in production when meaning
needs to be expressed and one syntactic pole for parsing that contains form infor-
mation and typical syntactic information.

3. To analyse or synthesize utterances the construction inventory is called upon by the
construction application process, in which new constructions are matched with one
pole to an intermediate parsing/production solution and if a match was established,
the other pole’s information is merged into the solution as well. Special operators
are used to influence the matching and the merging operations by modifying the
conditions on the feature structure unification.

4. Construction application can be optimized by a range of techniques such as goal
tests, node tests, construction scores and (hashed) construction sets. But first
and foremost, the design of constructions and the linguistic features that are used
in them is the most important means of cost-efficient construction application.

Depending on your needs as a grammar engineer, the Fluid Construction Grammar for-
malism gives you the freedom to explore your own choices when you manually create a
grammar. The linguistic features that you include in your constructions, the organiza-
tion of a construction inventory and even the application process of constructions can
be tuned to adapt to your particular situation. The high degree of freedom that the
FCG formalism gives to the grammar engineer is perhaps one of the most important
motivations to use it as a NLP component in an intelligent tutoring system for language
learning. Moreover, FCG has already been used for many case studies over the last
years (especially during the European FP7 project ALEAR; www.alear.eu). These case
studies have led to the creation of more complex FCG grammars, including grammars
for: German spatial language (Spranger & Loetzsch, 2011), Spanish pronominal clitics
(van Trijp, 2010), Polish negation (Hofer, 2012), Russian aspect (Gerasymova, 2012),
German determiners (van Trijp, 2011), Spanish modals (Beuls, 2012), Hungarian ver-
bal agreement (Beuls, 2011), German information structure (Micelli, 2012) and English
quantifiers (Pauw & Hilferty, 2012). This expansion of grammars and the knowledge
that it has brought along was one of the triggers that led to the realization of the Spanish
grammar for the tutoring architecture that is presented in this dissertation.

Yet, grammars are dynamic entities, especially when they are being constructed during
language acquisition. Therefore, in a learning situation, constructions are never stable but
can be extended or features can be modified after a particular learning event has occurred.
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3.3. CONCLUSION

FCG, with the adjective "Fluid” in its name, has been developed with especially this open-
ended type of communication in mind. The formalism provides hooks to implement
problem-based learning that does not interrupt the routine construction application layer
in a visible manner but instead calls on a meta-architecture to handle diagnosed problems.
This aspect plays a crucial role in the remainder of this dissertation. Both the language
agent and the student agent rely on this meta-architecture to diagnose and correct
learner errors on the one hand (flexibility strategies) and the acquire new constructions
or new usage variants on the other (learning strategies). Flexibility strategies form the
topic of Chapter 5, learning strategies are treated in Chapter 7 when the student agent
architecture is being dismantled. But before we turn to flexibility issues, the next chapter
shows how to create an operational grammar for verb conjugation in Spanish.
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Chapter 4

Spanish verbs in FCG

Spanish verb morphology is notorious for its complexity with up to 140 different con-
jugated forms for a single lemma (Bosque & Demonte, 1999) and — depending on the
reference grammar you use — 89 different conjugation schemes. On the one hand a
learner thus has to memorize according to which schema a particular verb lemma is con-
jugated and on the other hand the verbal endings that belong to that schema need to
be recalled when producing a particular verb form. Moreover, even the most advanced
learners of Spanish tend to struggle with the correct use of verb tenses, especially in the
selection of the past tense (past perfect/imperfect) and the correct use of the indicative
or subjunctive mood (Vanden Bulke, 2005; Wood Bowden, Gelfand, Sanz, & Uliman,
2010). These formal and semantic challenges make Spanish an interesting test case
for a first implementation of a language agent. This chapter describes the construction
inventory and the grammar engine components of the agent; the flexibility strategies are
treated in the next two chapters.

Spanish verb conjugation poses a range of formal and semantic challenges that
make it an interesting test case for a first FCG-based language tutoring architec-
ture.

Box 4.1 — Motivation of the selected language system.

Before we turn to real examples of FCG constructions that are crucial for operationalizing
Spanish verbs, Section 4.1 describes the main features of Spanish verbs, with a focus
on their rich morpho-phonology and the semantic intricacies they bring along. Spanish-
speaking readers can immediately skip to the FCG-specific implementation in Sections 4.2
(individual construction design) and 4.3 (construction application). This implementation
is rather technical to allow other users of FCG to reimplement this grammar or to
implement a grammar for the same language system in a different language. Finally,
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Section 4.4 puts the current implementation into a larger perspective by comparing it
with related attempts in formalizing inflectional morphology.

4.1 A complex grammar

A verbal suffix (also called verb ending) that follows a Spanish verb stem conveys in-
formation about the following five linguistic features: person, number, tense, mood and
aspect. In Spanish, similar to Modern Greek, Italian or many other languages in the world,
subject pronouns are not expressed overtly, except when the speaker wants to stress the
subject. Therefore, the necessary information to identify the subject is present in the
verbal suffix. For instance, the difference between the English | speak and you speak is in
Spanish only discernible in the verb’s inflection, as you can see in the following examples:

(3) Habl-o con Pablo
speak-IND.PRS.1SG with Pablo
| speak with Pablo

(4) Habl-a-s con Pablo.
speak-IND.PRS.25G with Pablo
You speak with Pablo

Yet, although Spanish verb endings are naturally expressive because they contain agree-
ment information, there are a few attested cases of syncretism in the Spanish verbal
paradigm. In these cases, a single suffix can have more than one function, which means
that either:

e The intended function becomes clear when the complete verb form is taken into
account: the past imperfect ia ending becomes a conditional marker when it is
combined with the verb's infinitive rather than its stem: cantaria "he/she would
sing’ vs. comia 'he/she ate’; or

e The context in which the suffix is embedded reveals its function: hablaba can
mean both 'l spoke’ or 'he/she spoke’ but in a discourse context it will become
clear whether the speaker is talking about himself or a third person.

Due to the high amount of grammatical information that is present in the verb suffixes
and the rich morpho-phonology of the Spanish language, a single verb lexeme can poten-
tially have up to 140 different verb forms when its full conjugational paradigm is taken
into account: 19 tenses/moods, seven inflected forms per tense/mood, two infinitives,
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Table 4.1 — There are 19 tenses/moods for one inflected verb form. This table
shows the 1sg conjugation of the verb ayudar 'to help’ (Rello & Basterrechea,
2011, p. 229).

Tense/mood

Verb form (1st person singular)

present tense/indicative

present tense/subjunctive

preterite imperfect tense/indicative
preterite imperfect tense/subjunctive 1
preterite imperfect tense/subjunctive 2

ayudo

ayude

ayudaba (2nd person singular)
ayudara

ayudase

preterite perfect composed tense/indicative he ayudado
preterite perfect composed tense/subjunctive  haya ayudado
past perfect tense/indicative ayudé

past perfect composed tense/subjunctive hube ayudado
preterite pluscuamperfect tense/indicative habia ayudado
preterite pluscuamperfect tense/subjunctive 1  hubiera ayudado
preterite pluscuamperfect tense/subjunctive 2  hubiese ayudado
future tense/indicative ayudaré

future tense/subjunctive ayudare

future perfect tense/indicative habré ayudado
future perfect tense/subjunctive hubiere ayudado
conditional simple tense/indicative ayudaria
conditional perfect tense/indicative habria ayudado

two gerunds and four participle forms (Bosque & Demonte, 1999) (Table 4.1). Addi-
tionally, a verb stem can have a variety of stem realisations, e.g. the verb tener 'to
have' has four stems along with the default ten- stem: tien- (diphthongization), teng-
(velar insertion), tuv- (irregular) and tend (assimilation with following future tense -r). A
basic Spanish learner grammar identifies not less than 89 different conjugation schemes
to cover the conjugation of all Spanish verbs (Mateo, 1998).

4.1.1 Formal complexity

To model the degree of formal complexity present in Spanish verb conjugation, it is
useful to split the verb form into three parts: a stem (with optionally attached affixes),
a tense/aspect/mood (henceforth: TAM) ending and a person/number (or agreement)
ending (Figure 4.1). Also inside the stem itself a further segmentation is necessary to al-
low morphophonemic changes that lead to different stem realizations. The segmentation
that is used in the presented FCG grammar consists of three parts: an onset, a nucleus
and a coda. The nucleus contains the stem’s main vowel: e.g. the o in enc-o-ntr- (<
encontrar, to find). This information is saved in the lexical construction of the verb,
more specifically as part of the phon-cat feature on the construction’s syntactic pole.
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cantabamos ha cantado
cant aba mos ha cant ado
stem tam p/n stem tam

Figure 4.1 — A verb form such as cantabamos, we sang, is segmented into three
blocks: (1) a stem cant, (2) a tense-aspect-mood (or TAM) ending aba and (3) a
person-number (or p/n) ending mos. Note that word stress is not taken into
account here. Each of these blocks, can be exchanged to create a new verb form:
cant-aba-s 'you sang’, cant-a-mos 'we sing’, etc. Periphrastic forms are segmented
as two separate words. Since irregular forms such as the auxiliary haber 'to have’
are saved as lexical items in the grammar, ha "he/she has’ is not segmented any
further.

Furthermore, verbs are divided into three verb classes: (i) a-themed verbs, (ii) e-themed
verbs and (iii) ~themed verbs. The theme vowel is typically reflected in the TAM segment
of a conjugated verb form. Verbs of classes 2 and 3 share most verb endings and only
differ in certain fields of the conjugational paradigm. Examples of these three classes are
cantar 'to sing’, comer 'to eat’ and vivir 'to live’. Furthermore, endings of first verb class
verbs' indicative conjugations reappear in the subjunctive paradigms of verbs that belong
to the second or third verb class: e.g. cant-a 'he sings.Ind" — com-a "he eats.Subj’.

The stem-internal segmentation can be used to classify verbs into verb types, which
define the morpho-phonemic changes that a verb can undergo. Typical changes that
occur in Spanish verbs include:

1. Stem vocalic nucleus changes such as diphthongization (e — ie; o — ue) and
raising (e — I, 0 — u);

2. Stem post-nucleus changes that guarantee a stable stem pronunciation: coj-o
(< *cog-o from coger, 'to take'), juegu-e (< *jueg-e from jugar, 'to play'), etc.;

3. Velar insertion between stem and suffix: ten-g-o (< *ten-o from tener, 'to have’),
val-g-o (<*val-o from valer, 'to merit’), etc.; and

4. Assimilation between stem and suffix: le-yeron (< le-ieron).

Although these changes can partially be predicted, they also often require additional
knowledge about a verb’s nominal counterparts in the lexicon: e.g. jugar ~ un juego 'a
game’ but un jugador 'a player'. Additional changes that occur include the use of diacritic
marks on the last vowel of the stem to indicate a change in pronunciation: actuar 'to act’
— acttio or variar 'to vary' — vario. Yet, similar verbs ending on -uar/-iar do not receive
this diacritic mark on their conjugated verb forms and are pronounced as diphthongs:
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evacuo 'l evacuate’ or odio 'l hate'. According to the Real Academia Espafiola, there is
no general grammar rule that decides when to use diacritic marks on a stem’s last vowel
or when to keep using a diphthong (www.rae.es).

4.1.2 Semantic complexity

Time and tense are concepts that have fascinated linguists for a long time. | follow
a standard formal account here that represents Spanish tense on two time axes (Bull,
1965, pp. 149-171): the present time sphere and the past time sphere. Bull (1965) has
distinguished between systemic and non-systemic meaning. According to Whitley (2002,
p. 110), Spanish and English concur in their use of systemic meanings that is "the meaning
each category has within the overall system”. Yet, in the case of non-systemic meaning
the languages diverge more in the specialised functions the tense system has acquired by
way of extension. | follow a systemic account here that tries to use a unified description
for each tense category.

In Bull's model all situations are directly or indirectly related to the present point ('now’),
which has also been referred to as a temporal zero-point (ty) by other scholars (Declerck,
1991). The time of utterance always functions as t;. The tense system is then divided
into two time-spheres: the past time-sphere and the present time-sphere. The past
time-sphere is situated completely before t;. The present time-sphere includes ty and is
divided by it into three parts:

1. The pre-present sector: the part of the present time-sphere lying before tg;
2. The present sector: the part of the present time-sphere centered around tg;
3. The post-present sector: the part of the present time-sphere following t;.

Figure 4.2 illustrates this model for the conjugation of the Spanish verb amar 'to love’.
A distinction should be made here between absolute and relative tenses (depicted by
the red crosses lying on or below the time axis). An absolute tense relates its situation
directly to the ty. There are four absolute tenses in Spanish: the past tense (preterite),
the present perfect, the present tense and the future tense. These tenses lie on the time
line (crosses on the arrow in Figure 4.2). Tenses that are used to relate a situation to
another situation are relative tenses. The figure also includes examples of conjugated
verb forms for each of the depicted tenses.

Aspect is not explicitly represented on this time line, nor is mood. Although, both
categories deserve an extended discussion on their own, they do not form the main focus
of this dissertation. Therefore, the only difference between the two aspectual forms
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past time-sphere present time-sphere
]
I‘ present present amenorﬁ;/// future
i simultaneit .
anteriority ‘ Y posteriority Berfect amo - amaré
he

amado future

preterite ///// L perfect

luscuam- anterior SN SRS habreé

P - , N
perfect preterite conditional amaria amado

perfect imperfect

. perfect
habia hube ) .
amado amado ame amaba habrla
amado

Figure 4.2 — Spanish has two main time-spheres: the past time-sphere (a) and the
present time-sphere (b). The past time-sphere contains six tenses, related to a
moment in the past through relations of anteriority, simultaneity or posteriority.
The present time sphere contains four tenses, situated around the moment of

speaking (to)
. The first singular verb forms for amar 'to love’ are included to illustrate the
morphology that accompanies the semantic distinctions.

that overlap the preterite time point in the past time sphere is the perspective that they
include: internal (in the middle of...) for the imperfective and external (ended or began)
for the perfective. Mood is not depicted on the time line in Figure 4.2 and | only consider
the subjunctive present form in this dissertation, which is represented through a binding
statement that binds the event to a different time axis, parallel with the present time
sphere (see Section 4.2). For a more elaborate implementation of Spanish modals in
FCG, previous work can be consulted that treats modal verbs and value judgements with
indicative/subjunctive mood changes (Beuls, 2012).

4.2 A Spanish verb construction inventory

A language agent’s construction inventory is defined as the collection of all constructions
that he knows. Yet, it is also an ideal version of a competent language user’'s grammar,
containing a complete description of the necessary constructions and their role in process-
ing. This section describes the constructions that are needed to operationalize Spanish
verbs in FCG. The construction inventory for Spanish verbs contains the following four
types of constructions:

1. lexical constructions: constructions such as the hablar-cxn, a construction for
the verb "to speak’, or the irregular construction soy-cxn for '| am’;

2. phrasal constructions for tense-aspect-mood and agreement, for example the
present-tense-cxn (a construction that creates a present tense verb phrase)
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or intransitive-cxn (the argument structure construction for the intransitive
clause);

3. morphological constructions e.g. aba-cxn (a morphological construction for the
TAM ending -aba); and

4. phonological constructions: e.g. e—ie-cxn (a construction for the diphthon-
gization of a vocalic stem nucleus e into Je).

These different types of constructions are distributed broadly across the two construc-
tional poles. Some of them are strictly operational between form and meaning poles or
between semantic categories and syntactic categories, whereas others, such as phrasal
constructions, connect meaning directly to syntactic categories (TAM features or case
features). Also morpho-phonological constructions work only on the syntactic pole (con-
necting syntactic categories (and their functions) to formal expressions. The following
sections include examples for every constructional type.

4.2.1 Lexical constructions

Lexical constructions are perhaps the most prototypical construction type because they
establish a mapping between a meaning (the lexical meaning of the verb) and a form (the
verb stem, infinitive, an irregular form, etc.). A lexical construction also receives some
basic semantic and syntactic categorizations (Figure 4.3). Such a categorization consists
of a list of feature specifications, such as a semantic class of event, a lexical category
of verb or its verbal paradigm. The verbal paradigm is expressed through a feature
matrix representation, to avoid too many overlapping constructions because many verbal
endings are identical for the 2nd and 3rd paradigms (for more on the use of feature
matrices in FCG see the introductory paper by van Trijp (2011)). For instance, a feature
matrix for the 7a ending (past imperfect 2nd/3rd verb class) indicates that the verb can
either belong to the 2nd or to the 3rd verb class: (verb-class (==1 (1 -) (2+3
+ ?2nd 73rd))).

In the grammar that is presented here a construction’'s meaning is represented by a
logic-based representation that is based on predicates and arguments: e.g. (hablar
?event-1951 ?context-1320). Hablar 'to speak’ is thus a predicate corresponding

to an event (?event-1951) that is situated within a particular context (?context-1320).
Its arguments are also found in the args feature on the semantic pole. Because they

are variables (identifiable by the question mark), the verb can be used for any particular
speaking event in any specific context.

The form feature of a lexical construction contains the verb's stem in the form of a string
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hablar
?top-unit-7394 ?top-unit-7394
footprints (==0 hablar) sem syn footprints (==0 hablar)
tag ?meaning-3802 (meaning < P tag ?stem-1000 (form
h base-stem
(hablar ?event-5214 (Wom_hablar_2
?context-4398))) "habl”)))
?word-hablar-2
?word-hablar-2 footprints (==1 hablar)
— ?meaning-3802 phon-cat (==1 (onset h)
(nucleus "a")
arss ?top-unit- ?top-unit- (coda "bl"))
(?event-5214 : I N ) -
?context-4398) 7394 7394 ?stem-1000
footprints (==1 hablar) syn-cat
(==1 (lex-cat verb)
sem-cat (==1 (class event)) (is-finite ?£fin-653)
(verb-class
(==1 (1 +) (243 - - -))))

Figure 4.3 — This screenshot illustrates the representation of the lexical hablar-cxn
for the verb to speak (stem "habl-") with a semantic pole (left) and a syntactic pole
(right). The units above the dotted line represent the input that matches with the
existing linguistic structure in parsing (syn-pole) or production (sem-pole). The
lower units contain information that is added to the linguistic structure when this
construction can apply. The lexical construction has a category (main verb) and
contains information on the conjugation paradigm (1st verb class).

soy

?top-unit-7782
sem-subunits (==0 ?any-unit-1058)

tag ?meaning-5074 ?top-unit-7782
(meaning

syn-subunits (==0 ?any-unit-1058)
(ser ?event-4999

footprints (==0 morph irregular
?context-4997) ‘Sem syrl p ( ) g

(lsg-agent ?agent-2325 < » ser)
?event-4999) tag ?string-1386 ( form
(time-sphere ?event-4999 ==

present) (irregular
(sector ?event-4999 present) ?verb-unit-3543

(binding 2event-4999 " "
absolute-present)))

footprints (==0 morph irregular
ser)

?verb-unit-3543

footprints (==1 morph irregular
ser agreement)

? -unit-
?verb-unit-3543 syn-cat
— ?meaning-5074 (==1
(person/number
args (==1 (singular + + - -)
(?event-4999 (plural - - - -)))
?context-4997) : (lex-cat verb)
i | ?top-unit- ?top-unit- ¢ (tam
syn-gut;umts 1058 7782 7782 (==1
(==0 ?any-unit- ) (tense
: (==1 (present +) (past -)
footprints (future -)))
==1 h i 1 t
(ser ggigeméiﬁ?gu * (?izic(perfect ?2pf-2879)
(imperfect ?impf-2879)))
sem-cat (==1 (class event)) (mood

(==1 (indicative +)
(subjunctive -))))))

— ?string-1386

Figure 4.4 — The irregular lexical construction for soy maps the "soy” string
straight onto its complete meaning. Also the syn-cat is already completely filled in.
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such as "habl” for hablar 'to speak’. By adding the verb's stem to the form feature, it
is thus assumed that the verb form is segmented before FCG processing is started, that
is before the top unit is created in parsing. The pre-processing step that is required to
do this segmentation in FCG is explained in Section 4.3.2. The verb stem is also further
analyzed by the lexical construction according to the onset-nucleus-coda pattern, which
is represented by the phon-cat feature on a construction’s syntactic pole (Figure 4.3).

Also irregular constructions are captured by the lexical construction template. Because
they are accessed as a whole by a language user and not segmented according to the
Spanish verb segmentation rules, their form is mapped directly to the full meaning it
expresses. For example, soy 'l am’ maps to:

((ser event context)

(1sg-agent agent event)
(time-sphere event present)
(sector event present)

(binding event absolute-present))

In line with the semantic schema explained above (see Figure 4.2), the meaning of a
single verb form consists of three to four components, on top of the lexical meaning
of the verb itself: a time-sphere, a binding, a domain and (for aspectual meanings) a
viewpoint. The subjunctive mood is captured through the binding meaning predicate.
Some examples of tense-aspect-mood meanings for verb forms of amar are included here
below. You can check the location of these forms on the time axis in Figure 4.2.

e habia amado: time-sphere = past; binding = relative past; domain = anteriority;

e hube amado: time-sphere = past; binding = relative past; domain = immediate
anteriority;

e amé: time-sphere = past, binding = absolute past; domain = simultaneity; view-
point = external;

e amaba: time-sphere = past; binding = absolute past; domain = simultaneity; view-
point = internal;

e habria amado: time-sphere = past; binding= relative conditional; domain = poste-
riority;

e amaria: time-sphere = past; binding= relative past; domain = posteriority;

e he amado: time-sphere = present; binding = absolute present perfect; sector =
pre-present;
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e amo: time-sphere = present; binding = absolute present; sector = present;
e amaré. time-sphere = present; binding = absolute future; sector = post-present;

e habré amado: time-sphere = present; binding = relative future; sector = post-
present;

e ame: time-sphere= present; binding = subjunctive; sector = present.

Clearly, this semantic classification is just an example of one possible ontology for the rep-
resentation of tense in Spanish. Aspect is merely represented by one additional predicate
in the past tense: internal (in the middle of) or external. Also mood is one additional
predicate that locates an event on an additional timeline, parallel to the regular one
(binding). Of course, depending on your needs as a grammar engineer, you can in-
clude more complex meaning structures into the ontology that you feed to the grammar
you design.

4.2.2 Phrasal constructions

Phrasal constructions combine separate units into phrases. The Spanish verb grammar
currently contains two subtypes of phrasal constructions: constructions related to tense,
aspect and mood (or TAM constructions) and agreement constructions that establish
subject-verb agreement. They are language-specific and have thus been optimized for
Spanish here. In their function of gluing units together, they often also map meaning
predicates into a form feature and reversely. The form feature is here often an indication
of the word order, or how to organize the units that are involved when the construction
is processed. Occasionally, it happens that a phrasal construction creates a new phrase
out of a single unit only. This is the case for some of the TAM constructions that cover
non-periphrastic verb forms such as hablé 'he/she talked': they create a full verb phrase
out of a single verb unit (Figure 4.5).

An example of such a single subunit phrasal construction is the TAM construction for
the past perfect tense (Figure 4.5). As its semantic contribution is concerned, this con-
struction situates a given event (captured by the ?verb-unit variable) in a particular
time sphere and specifies its relation to a reference point in that time sphere. On the
syntactic pole, the newly created unit ?verbal-phrase receives the same syntactic in-
formation (:syn-cat) as the verb unit, completed with a phrase-type feature set to
verbal-phrase. The creation of a verb phrase unit is beneficial in further processing,
because the verbal information can be accessed as a whole by agreement constructions.

Agreement constructions apply immediately after the TAM constructions and create an
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past-perfect

“?verb-unit-88

?top-unit-297 syn-cat
==1
- footprints { (person/number
?verb-unit-88 (==0 past-perfect marked-phrasal) 2top-unit-297 (ig;rson/number—76)
sem-cat ? ing- N ==
°m tag .mganlng 140 sem syn | footprints ( t1
(==1 . X | (meaning < N - (tense
(sem-function predicate)) —= « »| (==0 past-perfect (==1 (past +) (present -)
args (time-sphere ?event-138 ?time-point-62 marked-phrasal) ( (futt\:lre -)))
ast - i == 2 —unit- aspec
(?event-138 ?context-71) (Ee)vem):—overlaps ?time-point-62) syn-subunits ( ?verb-unit-88) (==1 (perfect +)
(viewpoint ?event-138 external))) (iénperfect =)))
: . (moo
sem-subunits (== ?verb-unit-88) (==1 (indicative +)

(subjunctive -)))))
(syn-function verbal))

?verbal-phrase-85

footprints (==1 past-perfect marked-phrasal)
syn-cat
! - -
?verbal-phrase-85 (==1 (person/number ?person/number-76)
footprints (==1 past-perfect marked-phrasal) (?aml
N 1 2top-unit- == verb-
2verb-unit-88 - | — ?meaning-140 2top-unit-297 oL (tense Pverb
| 297 (==1 (past +) (present -) unit-88
sem-cat (==1 (class predicate)) (future -)))
(aspect
args (?event-138 ?context-71) (==1 (perfect +) (imperfect -)))

(mood
(==1 (indicative +)
(subjunctive -)))))
(phrase-type verbal-phrase))

Figure 4.5 — The phrasal construction for the past perfect adds information on
tense, aspect and mood to the verb form that is being created/analyzed. A verb
phrase is created (phrasal construction) that can be accessed in further processing,
such that the same agreement constructions can be used for single and periphrastic
forms.

intransitive clause (subject only) that consists of the subject unit (if applicable) and the
verb phrase unit. Because in Spanish the grammatical subject of a verb is by default
expressed through the verbal endings, the proposed grammar consists of agreement
constructions that express an additional agent meaning, such as (1sg-agent 7agent
?event) that stands for a 1st singular agent in an intransitive event. There are six
agreement constructions present in the grammar: 1sg, 2sg, 3sg, 1pl, 2pl and 3pl.

4.2.3 Morphological constructions

Morphological constructions (or morph-constructions) are responsible for the most di-
verging expressions of verbal endings, which can convey an event's location on the time
line, its agreement pattern or reveal its aspectual or modal meanings. They consist
of two syntactic poles instead of a semantic and a syntactic one. Their main task
Is to map a certain syntactic categorization (or the construction's function) onto the
corresponding surface-form and back. For a detailed discussion of the design and the
function of morphological constructions, the interested reader is referred to the volume
on Computational Issues in FCG, Chapter 5 (Gerasymova, 2012).

An example of a morph-construction is the -s ending that expresses subject-verb agree-
ment for the 2nd person singular (Figure 4.6). It contains processing conditions that
apply in production and others that are used in parsing. The three conditions that guide
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2sg-morph
?stem-unit-1504
?top-unit-4929
syn-cat -
(==1 (is-finite +) syn-subunits
(tam - (== ?stem-unit-1504)
(==1 ?top-unit-4929 syn syn | tag 7f 20 ?
ag ?form-s-
(?iE?Ct ——| syn-subunits < > ()?orm - ste_m-
(perfect -))))) (== _ (== untt-
(person/number ?stem-unit-1504) (precedes 1504
(==1 ?stem-unit-1504
(singular + - + -) ?s-15)
(plural - - - =)))) (E/{}—sufflx ?s-15
S
footprints (==0 morph) 1))

?s-15
— ?form-s-20

?stem-unit-1504

. ?stem-unit-1504 —-—
footprints (==1 morph) : '

Figure 4.6 — The 2sg-morph construction translates the syntactic categorization
of the left pole (2nd person singular) into an agreement suffix that follows the
stem: -s.

the production of the -s are specified on the left pole of the construction: the verb stem
should be a finite verb, it cannot be past perfect and the person/number feature should
be set to 2sg. Finiteness is conveyed by the boolean is-finite feature. The tam
feature indicates that the perfect aspect is excluded because past perfect endings are
never split up into TAM and agreement endings but saved as monolithic endings in the
grammar. The person/number feature matrix is read as follows: the first value after
the feature name (e.g. singular) defines whether this feature is expressed (thus whether
the morpheme expresses singular for instance) and the remaining three features express
the value of the singular feature when it is expressed (1st, 2nd or 3rd person). In parsing,
the 2sg-morph-cxn fires when the FCG parser detects an -s suffix that is preceded by a
stem unit (see the precedes feature in the right pole).

4.2.4 Phonological constructions

The final construction type that is present in the Spanish FCG grammar deals with the
lowest level of linguistic description: phonology. Phonological constructions (or phon-
constructions) make changes inside the form strings of a construction, on the level of
their phonological segmentation. They are also solely operational on the syntactic pole
of the transient linguistic structure, where they map certain functions into forms, similar
to morph-constructions. The changes that they make inside a verb form depend on the
syntactic categorization of the verb and its endings, and is often related to the form's
affiliation to a particular verb type (expressed through a footprints feature in Figure
4.7). Examples of phonological changes are modifications in the vocalic nucleus of a
verb stem (e.g. e — je as in tiene, 'he/she has'), alternations in the post-nucleus (e.g.
g — jas in cojeron (< coger), they took) or changes in the suffix vowels (e.g. i — y as
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ie-e-pensar
?stem-unit-153184
footprints (==1! pensar)
phon-cat
(== ?stem-unit-153184
(nucleus ?top-unit-410378 .
(==t "(?i)e")) : footprints
(stress syn-subunits syn syn| (==0 vowel-change)
(==r "(?1)e"))) L | (== d '
?stem-unit-153184) [ ”| phon-cat
syn-cat X (==1
(==1 footprints (nucleus
(tam (==0 vowel-change) (==r "(?i)e"
(== "(?i)ie")))
(tense
(==1 (present +)
(past -)
(future -)))))
(is-finite +))

?stem-unit-153184

footprints
(==1 vowel-change)

?top-unit-410378

footprints (==1 vowel-change)

Figure 4.7 — This phon-construction expresses the diphthongization process that

occurs in verbs of the pensar-conjugation. When a stem has a stressed "e” as its

nucleus, it is replaced with "ie" in production. The — operator can override a string
with another one.

in cayo, 'he fell' or aba — aba as in hablabamos). Additionally, phon-constructions also
decide on the stress pattern of a conjugated verb form and thus add a stress feature
to the resulting linguistic structure.

Currently, these constructions work exclusively in production, where they translate from
the basic form into a modified form. The left pole of the construction functions here
as the condition and the right pole merges new information in when this condition is
satisfied. The regular expressions (==r) operator takes one element in matching and
two elements in merging (see Section 4.3.2). Because this construction expects that
there is already syntactic information available about the stem unit, in parsing this is not
the case as no other constructions can have applied before the stem change has taken
place (the lexical construction matches on the base stem "pens’). The derendering
algorithm currently takes care of replacing "pienso” with "penso” (see Section 4.3.2).

4 N
After lexical, morphological and phrasal constructions could do their work, phono-
logical constructions modify information present in the phon-cat feature of the
unit they are targeting, given a positive matching result of the syntactic context

iIn which the changes are expected to occur.

- %

Box 4.2 — The first use of phonological constructions in an FCG grammar.
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4.3 A grammar engine for Spanish

The basic workings of the FCG interpreter, or the language agent’s grammar engine,
have been explained in detail in Chapter 3. Section 4.3.1 shows how the grammar engine
can conjugate Spanish verb forms by making use of the language agent’s construction
inventory. The extensions that had to be made to the grammar engine to allow for
robust rendering of produced verb forms and verb form segmentation in parsing, along
with the introduction of a special operator for regular expressions in the form feature,
are described below in Section 4.3.2.

4.3.1 Conjugating verbs with the FCG interpreter

This section considers the actual production and parsing processes of Spanish verb mor-
phology in Fluid Construction Grammar (FCG). Examples for regular, semi-regular as well
as irregular verbs are presented. Special cases such as unmarked morphemes and future
verb forms are discussed separately at the end of this section. The use of construction
sets is demonstrated in this section, with a specific order between them in parsing and
production. Inside one construction set, no further ordering is foreseen and all construc-
tions within one set can potentially apply at the same time. Yet, given that the FCG
search engine follows a best first search algorithm, the first applied construction will be
explored first.

Regular verb conjugation

All verbs whose conjugation is not characterized by the presence of morphophonemic
stem changes or holistic verb forms in some parts of their paradigm count as regular
verbs. A holistic verb form is a form that cannot be further segmented into a verb stem
and a verbal ending such as son 'they are’ or voy 'l go'. Regular verbs follow one of the
three main verbal paradigms in Spanish, depending on whether their infinitive ends on -ar
(1), -er (2) or -ir (3). An example of such a regular verb form is the second person present
form of the verb hablar, to speak: hablas 'you speak’. The production process that leads
to this utterance starts off with the application of the lexical construction of the verb
and runs through phrasal and morphological constructions to end with a phonological
construction that assigns word stress to the stem, the default stress pattern in this case
(Figure 4.8).

Some Spanish verb endings are syncretic, which means that they result in an ambiguous
verb form that leads to two possible parsing solutions. An example is the ending —amos,
which can refer to either:
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T | present- | | a-present- | | agreement- | |2sg- | | stressed-
indicative indicative-1 2sg morph stem-2suf

Figure 4.8 — Seven constructions apply in the production process that results in
the utterance hablas (you speak). In their order of appearance, the following
construction sets occur: lexical (hablar), phrasal (present, agreement-2sg),
morphological (2sg-morph, a-present-indicative-1) and phonological
(stressed-stem-2suf).

top

form ((meets a-4 mos-2)
sem syn gpreceges hail—s mgT—Z)

precedes a-4 mos-

‘ > (base-stem habl-6 "habl")

(p/n-suffix mos-2 "mos")

(meets habl-6 a-4)

(precedes habl-6 a-4)

(tam-suffix a-4 "a")

Figure 4.9 — The initial structure of the parsing process of hablamos, segmented
as habl-a-mos contains three strings (one per segment) and five ordering
constraints, both meets and precedes conditions. Meets constraints specify direct
adjacency relations (e.g. a should be directly placed before mos). Looser form
constraints are achieved by so-called precedes features (cf. second but last feature
in form list), where there can be other items between the two argument strings
(e.g. the stem habl precedes mos but does not meets it).

1. 1st person plural present indicative, where -a refers to the tense and the mood
information and -mos expresses person and number;

2. 1st person plural past perfect indicative, where -amos cannot be separated as such.

Therefore, a verb form such as hablamos can thus be segmented as habl-a-mos 'we speak’
or habl-amos 'we spoke’. The segmentation algorithm (see Section 4.3.2) returns two
initial structures, which will both be parsed by the FCG engine. Figure 4.9 illustrates
an example segmentation for the hablamos verb form where it is segmented into three

substrings: a base-stem, ap/n-suffixand a tam-suffix. The difference between

habl-a-mos and habl-amos in terms of initial feature structures leads to an activation of

different morph-constructions during parsing (Figure 4.10): amos-past-perfect vs. a-

present-indicative-1 and 1pl-morph. It is these morph-constructions that further select
the phrasal TAM-construction that fits the segmentation: present or past perfect. At
the end of the parsing process, two phon-constructions try to put stress on the stem but

they fail in doing so: not the stem but the a in -amos receives the main word stress in

this verb form.
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| stressed-stem-
amos-past- past-perfect- agreement- | (£
| perfect || indicative R |
stressed-stem-
1suf
stressed-stem-2suf
stressed-
| a-present- || — osuf
* 1pl-morph indicative-1 present- ‘ Sz
" a feement-; / B indicativ B
> 2 cafive stressed-
stem-2suf

L{ a-present-subjunctive-2/3 |

Figure 4.10 — Parsing search process when parsing the ambiguous verb form
hablamos, 'we talk/ we talked’. The upper subfigure shows the parsing of the
segmentation habl-amos. The lower one starts from habl-a-mos (Figure 4.9).

Table 4.2 — The present indicative conjugation of pensar, to think, contains four
stem changes: all singular persons and the 3rd person plural are affected by the
stress pattern. The diacritic stress is added here for clarity.

piénso
piénsas
piénsa
pensamos
pensais
piénsan

Semi-regular verb conjugation

Semi-regular verbs are characterized by morphophonemic changes that occur in their stem
or suffixes. The full list of changes is included in Section 4.1 above. The current section
shows examples of both types of changes. In certain verbs, such as pensar 'to think’,
stem vowels are diphthongized when they receive stress in pronunciation (Table 4.2). In
such cases, all singular verb forms and the 3rd person plural form are affected by a stem
change due to a particular stress pattern. Because the alternation is lexically arbitrary,
not all verbs that have a stressed stem vowel are diphthongized. Minimal pairs such
as contar/montar 'to count/to mount’ differ in their diphthongization patterns: cuento
for contar but monto for montar. A rule of thumb that is often used to determine the
diphthongization pattern of a verb is that when the verb has a nominal counterpart that
is diphthongized, the verb follows the same pattern: e.g. un cuento 'a story’ — cuento
'| speak’.

The operationalization of these stem changes is done by a single construction that applies
at the end of the processing pipeline during production (Figure 4.11). Since not all verbs
diphthongize their stems, all lexical stems are marked with a so-called footprint that
indicates the verb group. Some verb groups are characterized by certain stem changes,
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a->0- 1sg- stressed- ie-e-
a-present- | [ - | stem- —
agreement- present- L morph morph pensar
initial pensar |— 1 .. |~ indicative- [— 1suf
1sg indicative 1
stressed-stem-1suf

Figure 4.11 — The stem-change construction applies last in the processing pipeline
(production). The application of the stressed-stem construction adds a stress
feature to the phon-cat of the pensar stem. The default -a- TAM ending is
replaced by -o due to the presence of the first person singular.

— N || agreement- | | past-perfect- || ieron-past- || eieron-eyeron-
3pl indicative perfect morph

Figure 4.12 — The assimilation between the end vowel of the stem /e- and the past
perfect ending ieron lead to the suffix change jeron into yeron (production).

others are not. The ie-e-pensar-construction only applies for verbs of the pensar
group, whose stem is stressed (Figure 4.7). The verb groups are assigned automatically
when a lexical construction is created, following irregularity patterns described by Rello
& Basterrechea (Rello & Basterrechea, 2011, p.232).

Morpho-phonological changes can also occur in the suffixes that are attached to the
stem. Such changes are mostly due to assimilation processes. They occur when two
vowels meet: the stem vowel and the first vowel of the ending: e.g. cays (< ca-i6,
'he/she fell’), leyeron (< le-ieron, 'they read"), etc. Also here, the morpho-phonological
change occurs at the end of regular processing (Figure 4.12).

Irregular verb conjugation

Completely irregular verb forms are added to the lexicon so that they can be accessed
in their full form. Apart from the infinitive predicate meaning, these irregular lexical
constructions also carry semantic and syntactic information about the person, number
and tense of the event. Both in parsing and production, the irregular construction is the
only construction that applies (Figure 4.13). No morphological, phonological or phrasal
constructions are needed since all formal information is contained inside this irregular
construction.

Not surprisingly, when processing is taken into account there is one constraint that needs
to be considered. In verb paradigms that contain irregular and regular forms (e.g. valer
'to be worth': valgo 'l am worth’ vs. valemos 'we are worth'") it is important to specify
the precedence of the irregular construction set over the default lexical construction set
in production so that utterances such as *valo 'l am worth’ are not erroneously produced.
Irregular constructions should thus always be applied first, before lexical constructions
are tested for matching. If no irregular construction can be found to express a particular
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Co

Figure 4.13 — Only a single construction applies during parsing (top) and
production (bottom) of the irregular verb form soy 'l am’.

3sg-morph

?stem-unit-2176

syn-cat ?top-unit-9440 ?top-unit-9440 P
(==1 (is-finite +) ; syn syn i ?stem-
(person/number | syn-subunits < »| syn-subunits —— unit-
(==1 (singular + - - +) (== . (== . 2176

(plural - - - -)))) ?stem-unit-2176) ?stem-unit-2176)

footprints (==0 morph)

?stem-unit-2176

footprints (==1 morph)

Figure 4.14 — The unmarked morph-construction for the 3sg person/number

morpheme can only be used when no other p/n-morph-construction has applied yet

(footprints ==0). In parsing, it matches on a stem-unit without further
specifications; in production a person/number feature is required, together with a
confirmation of the stem’s finiteness.

meaning, the default lexical construction for the lemma will trigger.

Special cases: Unmarked morphs and future tenses

There are two special cases that do not obey the default processing behaviour for Spanish

verb forms: unmarked forms and the future tense.

e Unmarked morphemes occur in the first and third person singular of the con-
jugational paradigm. They can be categorized as agreement (person/number)
morphemes and they are preceded by a TAM-morpheme, which situates the verb
form in terms of tense, aspect and mood. The main function of such an unmarked
morpheme is to assign a person/number feature to a verb form (Figure 4.14).
An example is habla ('he/she speaks'), which lacks an overt morpheme for the
agreement feature but is instead marked with a zero morpheme: habl-a-. For a
detailed explanation on the treatment of unmarked forms in FCG, the reader is
referred to the recent volume Design Patterns in FCG, chapter 8 (Beuls, 2011,

pp. 258-263).

e The future tense is also a special case. Because a future verb stem is different
from the one that is used for present and past verb forms (e.g. habl-a 'he/she
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word-pensar-1

syn-cat ( (lex-cat verb)

(verb-class ((1 +) (243 - - =-)))
(person/number
((singular + - + -) (plural - - - -)))

(is-finite +) s-1

(tam form ( (precedes word-pensar-1 s-1)

mood : wen
((((indicative +) (subjunctive -))) ‘ (p/n-suffix s-1 "s"))
(aspect
| ((perfect -) (imperfect ?impf-45))) Ll a1
(tense
((past -) (future -) \;form ( (meets word-pensar-1 a-1)
(tam-suffix a-1 "a"))

(present +))))))

phon-cat ( (stress "e") (onset "p") (coda "ns") phon-cat ( (vowels ((1 "a"))))
(nucleus "ie"))

footprints (accent2-cxn)

form ( (base-stem
word-pensar-1

))
syn-subunits (s-1 a-1)

footprints (accent2-cxn agreement present-indicative
pensar tam-morph pn-morph vowel-change)

Figure 4.15 — If this structure would be rendered as it is here, the utterance would
be pensas instead of piensas 'you think’.

speaks' vs. hablar-a "'he/she will speak), an additional future stem construction is
used to insert the future extension: -ar (1st verb class), -er (2nd verb class) or -ir
(3rd verb class).

4.3.2 FCG extensions

Three major extensions were made to the standard FCG implementation to allow for
stem modifications and robust parsing: (i) a robust rendering method was created, (ii)
a segmentation step was added before the initial feature structure is generated and (iii)
a new special operator ==r that can handle regular expressions in the form feature was
introduced. This section discusses each of them in turn.

Rendering modified stems

On the one hand, conjugating an irregular or a semi-regular verb often involves modifying
a verb's stem (its main vowel, last or first letter: e.g. yerro from errar 'to fail’). In
technical terms, the phonological constructions that generate these changes only modify
the phon-cat feature in the syntactic pole of the linguistic transient structure, leaving
the form feature intact (Figure 4.15). When a transient structure is rendered (after the
production goal tests have succeeded (Bleys et al., 2011)), however, these changes are
ignored because the standard render algorithm does not consider the phon-cat feature.
To solve this problem, | implemented a special render method render-robust, which
transforms the attributes of the phon-cat feature into a new form feature. The correct
order of these attributes (e.g. onset, nucleus, etc.) is specified in in the grammar’s
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ei6-ey6-morph

?suffix-unit-5

footprints (==0 leer) ?verb-unit-102
phon-cat syn-subunits ?suffix-unit-5
==1 ? —cat- (== syn syn form
(==1 7phon-cat-10) | ?suffix-unit-5) <y y’ (==
tag ?string-95 - i
phon-cat (tam-suffix

(form (++ ?some-string-10
=i ££1 :last-letter y6"))
(tam-suffix "e")

?some-string-10
"16")))

nil

— ?string-95

?suffix-unit-5

footprints (==1 leer)

Figure 4.16 — This construction is responsible for the e-i6 — e-y6 assimilation
process. It is used in the production of verb forms such as leyé 'he/she read’ and
other verbs of the leer family.

configuration. The stress attribute is ignored in the render process. After the form
feature has been replaced, the new linguistic structure is passed to the standard render
function.

On the other hand, when a verbal ending is modified due to assimilation or other morpho-
phonological processes, this does not affect the renderer. The phonological constructions
are created in such a way that the form feature is immediately replaced with a new string.
This is done by means of a so-called "nil unit”. The original suffix string is hereby moved
into this unit in the first merge phase, whereafter a new suffix string is merged into the
empty form feature during second merge (Figure 4.16).

The robust-render method scans the resulting linguistic feature structure and trans-
lates possible changes that have occurred in the phonetic category of a unit into
a string feature that can be rendered as part of a verb form.

Box 4.3 — The robust-render method

Segmentation

The standard FCG parsing module does not contain a stemming or segmentation algo-
rithm. Complex strings needs to be pre-segmented by the user before the FCG engine can

handle them. A verb form such as hablas 'you speak’ is thus passed as a list ("habl” "a

s") to the FCG de-rendering process before parsing can be launched. This list creation
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cannot be done manually if you want to allow large-scale grammars for verb conjugation.
This section describes the segmentation algorithm that was added to FCG to allow for
a direct parsing of verb forms such as hablas.

A segmentation algorithm can generally encounter two types of input: grammatical or
ungrammatical. A verb form is grammatical when it can be segmented according to the
grammar rules that the algorithm has at its disposal. When this segmentation fails, the
verb form is either ungrammatical or the grammar needs to be expanded with a new rule.
Such a failure manifests itself usually in three ways:

1. Grammatical verb endings are detected but the stem that precedes these is un-
known to the system.

2. The segmented verb stem is grammatical but the remainder of the verb form is
untraceable.

3. No grammatical segmentation whatsoever is possible. The algorithm does not
detect a regular stem or endings.

Let us now run through an example. The segmentation process of the grammatical verb
form abandonamos 'we abandon(ed)’ proceeds as follows:

1. The form is first segmented into a list of possible stems (abandon) and a list of
possible endings (per stem) (amos). An ending is defined here as the letters that
succeed a particular stem, without any further interpretation.

2. Based on these two lists combinations of stems and suffixes are created to ver-
ify whether they can form realistic verb stems. In the case of this example
there is only one combination possible and it is equal to the original verb form:
("abandonamos" ("abandon" "amos")).

3. A number of conditions are checked and further segmentations are made:

e The input form is an infinitive — return it as such
e The input form is an irregular form — return it as such
e The preliminary segmentation leads to the original verb form — return seg-

mentation with preliminary stem and segment suffix further: (("abandon"
"amos" NIL) ("abandon" "a" "mos"))

e When there was no valid combination possible the stem and suffix lists are
explored and all meaningful segmentations are returned. There is an additional
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heuristic that decides which segmentation to select when there is more than
one. This heuristic parses and reproduces the segmentations and checks the
results.

Regular expressions

Regular expressions allow you to formulate text search strings. First developed by Kleene
(Kleene, 1956) in 1956, a regular expression "is a formula in a special language that
specifies simple classes of strings” (Jurafsky & Martin, 2009, p. 52). Regular expression
search typically involves a pattern that is searched for and a corpus of text to search
through. Regular expressions are case sensitive, which implies that /1/ is different from
/L/. Matching the string Luc with the pattern /1uc/ will thus fail. Allowing the pattern
to match a string regarding of its initial capitals requires the use the square brackets:

/[1L]uc/.

The FCG engine does not perform a string search but strings are compared during match-

ing and merging of the form feature. This comparison is by default an exact match. The
feature attribute (string 7luc-unit "luc") will match (string 7noun-unit
"luc") but not (string ?noun-unit "Luc") or (string ?noun-unit "Luciano").
However, some constructions that are involved in verb conjugation may be useful for more
strings that the ones exactly specified in the form or phon-cat features. For instance,

both the verbs sacar 'to receive, to learn’ and acercar 'to approach’ have a -qu- stem
ending when the stem precedes an é or e. Because their codas are different (-c- vs. -rc-)

the standard FCG processing requires two separate constructions: one that changes -c-

into -qu- and another one for the change from -rc- to -rqu-.

To avoid a duplication of constructions | introduced a new FCG special operator that
can match and merge regular expressions: the ==r operator. The operator is linked to
a match function and a merge function that rely on two functions of the CL-PPCRE
library (Portable Perl-compatible regular expressions for Common Lisp): all-matches
and regex-replace. The all-matches function returns a list with match positions
that indicate the start and the end locations of a pattern in a particular string. For
instance, the list (0 1 3 4) indicates that the pattern was matched from position 0 to 1
(first letter) and from position 3 to 4 (fourth letter): the result of searching the pattern
/elililé/ in the string iste. The regex-replace function searches for a pattern
in a string and replaces the matched substrings with another string. To return to the
previous example, the pattern /*c/ could be replaced with /*qu/, with the asterisk
representing any sequence of letters (or an empty string) preceding c or qu.

The new ==r operator is used at the beginning of a list that replaces the string in a
form or phon-cat feature. For instance, (coda (==r "(7i)c")) instead of the
usual (coda "rc").
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4.4 Related approaches in computational morphology

There have been many previous attempts at formalizing verb conjugation, be it rule-
based (e.g. by means of finite state transducers (Beesley & Karttunen, 2003; Kosken-
niemi, 1983b)), through a supervised learning task (e.g. memory-based learning (Van
den Bosch & Daelemans, 1999; Keuleers & Daelemans, 2007)) or in a fully unsuper-
vised fashion (through probabilistic methods (Creutz & Lagus, 2002; Snyder & Barzilay,
2008; Spiegler, Golenia, & Flach, 2009)). Although Construction Grammar is an ideal
framework to think about inflectional morphology, most research in Construction Mor-
phology focuses on word formation and derivational morphology (Booij, 2010, p.23).
However, inflectional morphology has the advantage that it covers very large morpho-
logical paradigms that often show a discrepancy between regularity and irregularity (Cor-
bett, 2003), which are interesting for formalization attempts. This section compares my
proposal of Spanish verbs in FCG with finite-state morphology approaches to morpho-
phonological changes and points to previous proposals for inflectional morphology within
the computational Construction Grammar community.

4.4.1 Finite-state morphology

The origins of finite-state morpology can be found in the ordered phonological rewrite
rules of traditional phonological grammars, formalized by Chomsky and Halle (1968).
Such rewrite rules were used to translate abstract phonological representations into sur-
face forms through a series of intermediate representations. They have the general form
a— B /vy _0,wherea, B, yand 0 can be arbitrarily complex strings or feature matrices
(Karttunen & Beesley, 2005). Yet, these sequential rules were not as powerful than was
first thought. Johnson (1972) showed that they can be modeled by finite-state trans-
ducers , which by definition represent regular relations. Moreover, rewrite rules were
exclusively used for generation and it was not evident how they could lead to an efficient
morphological analysis (going from surface to lexical forms). A deterministic generation
would often lead to a nondeterministic analysis with multiple possible lexical forms for a
single surface form. This asymmetry "is an inherent property of the generative approach
to phonological description” (Karttunen & Beesley, 2005, p. 73).

Two-level rules were introduced to avoid the asymmetry problem in one-directional or-
dered rewrite rules. Two-level morphology, as introduced by Koskenniemi (1983a), for-
malize the lexicon itself as a finite-state transducer and compose it using rules. Rules
are statements that contain surface constraints directly. According to Karttunen and
Beesley (2005, p. 74), two-level morphology is based on the following three ideas:

1. Rules are symbol-to-symbol constraints that are applied in parallel, not sequentially
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like rewrite rules.

2. The constraints can refer to the lexical context, to the surface context, or to both
contexts at the same time.

3. Lexical lookup and morphological analysis are performed in tandem.

Of course, applying the rules in parallel does not in itself solve the nondeterministic analy-
sis problem. Yet, the key in two-level morphology lies in the avoidance of an intermediate
level of analysis. In Koskenniemi's first system, "the lexicon was represented as a forest
of tries (= letter trees), tied together by continuation-class links from leaves on one tree
to roots of another tree or trees” (Karttunen & Beesley, 2005, p. 76). This approach was
the first practical general model for the analysis of morphologically complex languages.
Language-specific components, such as the rules and the lexicon, were combined with a
universal runtime engine applicable to all languages.

My FCG implementation of verbal inflectional morphology works solely with symbolic
rules and the lexicon contains only regular surface forms but is not informed about
variants of theses. The constraints for changing stems or suffixes are formulated on the
left-pole of a morpho-phonological construction, while the right pole of this construction
instantiates them. The constraints refer to phonological features (stress, nucleus) and
syntactic features (tense, aspect, mood, person, number). It is thus different from two-
level morphology in that it does have an intermediate level in the application pipeline,
where lexical forms have not yet been "finalized” as surface forms.

4.4.2 Construction Grammar morphology

Other computational Construction Grammar frameworks such as Embodied Construc-
tion Grammar (ECG) and Sign-based Construction Grammar (SBCG) have also pre-
viously looked at inflectional morphology, and suggested theories to handle parsing of
inflected verbs. Nathan Schneider has demonstrated how Hebrew verb morphosemantics
can be captured in ECG by means of verb schemas and a range of constructions (stem
constructions, inflectional constructions, etc.) (Schneider, 2010). The ECG approach
allows morphological complexity to be expressed in several ways such as stored represen-
tations (e.g. goes), morphological constituency (e.g. jumps: Jump and Plural-Suffix),
inheritance from abstract representations (e.g. jumps: Jump schema and third person
Singular-Present-Tense-Verb construction) or morphological maps which take semantic
and formal structures of a given word and map them to morphologically related words
(e.g. give — gave) (Bergen, 2003). In SBCG, by contrast, morphological representations
are established through theoretical principles. These principles are typically integrated in
morphological functions, which define the relation between the form of a lexeme (e.g.

g2



4.5. CONCLUSION

laugh) and the form of a verb form (e.qg. laughed) (Sag, 2012). They are then used by
inflectional constructions (e.g. Preterite Construction) that contain a predefined verb
form feature with a fixed set of possible values.

While ECG and SBCG are restricted to the use of parsing, FCG exploits its bidirectional
architecture to self-diagnose potential problems. Full or partial parsing solutions can
be compared to the utterances that the production of these solutions would yield®. |
also opted for multiple representations of morphological complexity, ranging from irreg-
ular lexical constructions (e.g. was), morpho-phonological constructions that alter the
verb stems up to highly regular morphological constructions that provide verb endings.
My FCG Spanish grammar contains specific constructions for each verb type and more
general inflectional (tense, aspect, mood), argument structure and morphological con-
structions. As Goldberg emphasizes in her 2006 monograph: "it is constructions all the
way down'(Goldberg, 2006, p.20) (original emphasis): from abstract argument-structure
constructions to individual morphemes.

4.5 Conclusion

This chapter has demonstrated how to implement an FCG grammar for Spanish verb
conjugation that can handle the various complex layers it entails. The construction in-
ventory that supports this language system therefore contains bi-directional constructions
to ensure a correct inflection of Spanish regular, irregular and semi-regular verbs in all 19
tense, aspect and mood combinations. Irregular verbs are memorized as holistic chunks
that map a full verb form meaning onto a form string that cannot be analyzed further.
Semi-regular verbs modify their regular stems through a series of morpho-phonological
constructions (one or more).

The implementation of the Spanish verb grammar required the following four ingredients:

1. Four types of constructions: lexical, phrasal, morphological and phonological. The
latter is a new type that was introduced for the first time in this chapter. It includes
the use of a new special operator ==r that allows regular expressions within features
that contain strings.

2. A separation into ordered construction sets with different orders in production and
parsing. This order is essential to correctly produce irregular forms or assign word
stress.

1| prefer the use of the term production instead of generation since the grammar processor does not
generate all possible solutions but only these that fit within constraints imposed by knowledge of the
situation, preferences of the language user, frequent language patterns, etc.
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3. A robust rendering method that translates a final linguistic structure (including
morphophonemic changes in the phon-cat) into an utterance at the end of pro-
duction.

4. A segmentation algorithm that segments a verb form into its functional morphemes:
stem + one or two endings.

Yet, the constructions that were shown in this chapter had all been written by hand
so that constructing a large construction inventory is not a feasible task. Because our
language agent needs to have a realistically sized-grammar, a special algorithm has been
designed that creates all constructions needed to conjugate one specific verb lemma
when you give it an infinitive. This automatic conjugator is explained in Chapter 8 where
it iIs compared with incremental learning strategies that are used by a student agent in
situated learning settings. The following two chapters focus on how ungrammatical verb
forms can be parsed with the flexibility strategies that a language agent is equipped with.
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Chapter 5

Flexibility strategies

Although the grammar engine and the construction inventory of a language agent might
be optimised for fast and efficient processing, language input is often far from perfect.
Small linguistic deviations in a conversation can be due to innovative language use on
behalf of the speaker, marked pronunciations that reveal the speaker’s language commu-
nity or careless language that is manifested in broken syntactic patterns or ambiguous
semantic expressions. Similar to a competent language user, the language agent needs
thus to be equipped with the capacity to parse and produce in a more flexible and robust
way so that unexpected processing failures can be avoided.

| therefore rely on the well-established idea in computer science of computational reflec-
tion, a concept that was first introduced in the PhD thesis of Brian Smith (B. C. Smith,
1982). Analogous to how you can think about your own thinking, a computer program
can also reflect about its actions so that errors can be caught in time or planning and
learning can take place. For computational language processing, a similar architecture
can be reused that employs regular language processing on the data object level and
meta-linguistic operations in a second processing level. The current chapter explains
this meta-level architecture and pays special attention to the representation of flexibility
strategies that are active in this additional processing level. These strategies are vital to
build a reliable model of a competent language agent.

Flexibility strategies do not change the construction inventory or the grammar engine
In a permanent way but can temporarily relax certain grammar constraints or alter pre-
specified stopping criteria in the search tree. They are therefore ideal for identifying
learner errors and performing conversational repairs. This chapter is structured as fol-
lows: First, Section 5.1 explains the concept of computational reflection in further de-
tail, connecting the use of the meta-level architecture in this dissertation to its original
application. Section 5.2 describes the formulation of flexibility strategies in terms of
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diagnostics and repairs that catch problems during linguistic processing. Finally, Section
5.3 demonstrates the use of FCG for performing conversational repairs.

Flexibility strategies do not change the construction inventory or the grammar
engine in a permanent way but can temporarily relax certain grammar constraints
or alter pre-specified stopping criteria in the search tree.

Box 5.1 — The power of flexibility strategies.

5.1 Computational reflection

The concept of computational reflection was first introduced in the PhD thesis of Brian
Cantwell Smith in 1982 in the context of procedural programming languages. He argued
for "a theory of procedural reflection that enables any programming language to be
extended in such a way as to support programs able to access and manipulate structural
descriptions of their own operations and structures” (B. C. Smith, 1982, p. 3). The
term reflection finds its origins in the field of logic where it was used to "denote a
way of extending theories” (Maes & Nardi, 1988, p. vii). It has later been applied not
only to logic-based reasoning systems but also to cognitive architectures such as SOAR
(Laird, Newell, & Rosenbloom, 1987)) and as a general powerful programming language
construct in Object Oriented Programming (OOP). Also operating systems are today
standardly built with a reflective component, so that complete system crashes can be
avoided as much as possible.

In another MIT dissertation, Batali (1983) talks about computational introspection, with
which he means the same as Smith’s reflection, and lists some introspective activities that
are crucial for intelligence and understanding representations. These activities involve
"some sort of access to, or modification of, representations of either the processor itself
or representations of its actions, skills or abilities” (pp.14).

1. Learning: an agent can modify itself as a response to certain activities in such
a way that these changes affect later similar situations. Learning usually require
changes that improve the behaviour of an agent in some dimension.

2. Planning: the elements in a plan represent the sequence of activities that an agent
will perform and are thus introspective in their representation of the agent.

3. Advice taking: an agent must be able to improve its actions if someone tells it
explicitly what should be done.
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4. Assumptions: an agent must be able to deal with an assumption if it turns out to
be incorrected.

5. Serendipity: agents must be able to realize that their goals are met even if it
happens by accident.

6. Defaults: contrary to assumptions, defaults are asserted unless they are specifically
overruled.

7. Debugging: the concept of failure requires an understanding of goals. But also the
fixing of failures is an introspective skill, as you cannot fix something unless you
know how it works.

8. Efficiency: only when a program would have access to representations of the com-
putational capabilities of the machine it is running on, problems can be solved
efficiently.

In a reflective architecture , a computational system "is viewed as incorporating an object
part and a reflective part” (Maes, 1988, p. 23). Object computation is thought to
"solve problems and return information about an external domain”, while "the task of the
reflective level is to solve problems and return information about the object computation”.
Reflective architectures are today mirrored in ideas of of autonomic computing. To be
autonomic, a computing system needs to "know itself” — and comprise components that
also possess a system identity. A technical report by IBM sees autonomic systems as a
Grand Challenge for the entire IT industry:

We'll need to make progress along two tracks: making individual system
components autonomic, and achieving autonomic behavior at the level of
global enterprise IT systems. (IBM, 2001, p. 30)

Meta-level architectures have thus established a crucial concept in computer science ever
since their introduction in the 1980ies. They form the real hallmark of robust computa-
tional systems. Their functionality can directly be extended to programs for speech and
language processing, relying on computational reflection to deal with uncertainty and
problems that might cause crashes of the routine processing pipeline. The next section
discusses their use for robust language processing through the introduction of flexibility
strategies, with a single strategy for every processing problem that can be encountered.
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5.2 Meta-level flexibility strategies

A reflective, or meta-level, architecture for language processing is responsible for the
robustness of the grammar engine and the construction inventory that is plugged into the
engine. But there are many ways in which robustness can be guaranteed during language
processing. One language agent could relax the matching or merging constraints to let a
construction apply to a certain transient structure, while another language agent could
instead deliberately modify the features of a construction that hinder its application.
To capture such varying solutions to one particular linguistic processing problem that
a competent language agent encounters, | introduce the notion of a flexibility strategy
here. A flexibility strategy intends to guarantee flexible language processing and can be
seen as a plan to tackle a problem, which includes diagnostics to detect it and repairs
that try to solve it.

One thing that flexibility strategies have in common is the notion of a problem. This
notion is wide-spread in the fields of artificial intelligence, mathematics, psychology and
medicine. In Al, problem-solving algorithms are methods (generic or ad-hoc) to find
solutions to problems that manifest themselves inside a computerised process. Problems
are typically categorised as ill-defined or well-defined. Ill-defined problems do not have
clear goals or solution paths, whereas well-defined problems have specific goals and well-
defined solution paths. The use of the term problem in this dissertation is restricted to
a particular data structure that is located in the linguistic meta-level and that can be
identified by one or more diagnostics and solved by a single or multiple repairs. Table
5.1 summarizes the fields that a meta-level problem typically has.

A flexibility strategy tackles one processing problem that a language agent might
encounter by making use of a number of diagnostics and repairs that are specialized
for that problem.

Box 5.2 — Problem-solving strategies

A single flexibility strategy incorporates all the diagnostics and repairs that treat a single
problem (see Figure 5.1). The use of the word "strategy” refers here of the deliberate

Table 5.1 — A processing problem that is identified by meta-level operators has
obligatory the following fields.

identifier the problem’s id

priority score used to rank problems in the meta-level

triggered-by diagnostics that triggered the problem

solved-by a list of repairs that have successfully solved the problem
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Figure 5.1 — A flexibility strategy tackles one processing problem that a language
agent might encounter by making use of a number of diagnostics and repairs that
are specialized for that problem. Diagnostics are represented here as red striped
lines (D1-D5). Once a particular problem has been diagnosed, repairs do the real
work by testing possible solutions of the problem (R1-R5). As this figure shows,
one diagnostic can trigger multiple repairs and one repair can be triggered by
multiple diagnostics.

choice that is made between a number of repairs that can solve a diagnosed problem
but also incorporates the order of diagnostics that were triggered to diagnose it in the
first place. As the outcome of a strategy is by default unknown, a strategy does not
always succeed and often needs to be adapted to every new use case. A diagnostic is
a tool that monitors regular language processing and detects irregularities or unforeseen
circumstances that might occur. After a thorough examination it can identify and signal
a potential problem. A repair is triggered by a diagnosed problem and reacts by trying
out a solution that is fit for the current situation that the problem was diagnosed in.
A single problem-solving strategy can thus consist of a range of diagnostics that can
each trigger one or multiple repairs (Figure 5.1). | will refer to DR-pairs to verbalize the
relation between a particular diagnostic and a repair that solve a problem: e.g. D2-R3
solve problem-b in Figure 5.1.

The edges between problems and repairs are typically scored, as can be seen from Figure
5.1. These scores express the probability that a language agent with this learning strategy
will use a certain repair. When there are multiple repairs for one problem, for example as
in problem b in the figure, there is a 50% change that repair 2 will be used, 30% for repair
4 and 20% for repair 3. When the probability scores for repairing a particular problem do
not sum up to 1.0, this means that there is a certain probability that the problem does
not get repaired after all (e.g. problem d has a 60% change of being repaired).

In a competent language agent, flexibility strategies are executed in an additional pro-
cessing layer, which is thought to operate on top of routine language processing. Routine
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Figure 5.2 — Diagnostics and repairs operate on top of the routine constructional
processing layer. Diagnostics can signal problems if unexpected language processing
is detected. A problem can be handled by a range of repair strategies, which can
potentially trigger a restart when they repaired the problem.

language processing is the object level in which constructions are applied onto an existing
linguistic structure with the goal of parsing a given utterance or producing a conceptu-
alized meaning. In this meta-level architecture diagnostics are like daemons, continually
monitoring parsing and production processes so that any minor inconsistency can be diag-
nosed as early as possible (or can be delayed if more information is required). Specialized
repairs are triggered when a diagnostic has identified a problem. They try to solve the
problem so that regular processing can be continued without any (visible) interruptions.
Figure 5.2 visualizes the meta-level architecture . When a problem is identified and mul-
tiple repairs could apply, one is selected and evaluated under the given circumstances.
When it fails to repair the problem, the next repair in line is given a chance.

5.2.1 Diagnostics

Diagnostics are tools to perform diagnosis, an action that usually defined as "the iden-
tification of the nature of an illness or other problem by examination of the symptoms”
(British Dictionary). The origin of the term diagnostic (as well as repair) as | use it here
dates back a few decades to research on meta-level structures (Maes & Nardi, 1988).
These architectures allow a direct realization of the "thinking about X", where "x can be a
deduction in a logic-based reasoning system, a computation in a programming language
or the action of a system upon its environment” (Maes, 1988), but also the processing
of a linguistic utterance or a conceptualized meaning. In the field of Artificial Intelli-
gence, diagnosis is concerned with the development of techniques and algorithms that
can estimate the accurateness of a system'’s behavior. In case of a malfunctioning of the
system, the diagnosis should determine which part of the system is failing and discern
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the type of defect that causes the failure. Diagnosis always relies on experience with the
system, which can be used to build up mappings between observations and corresponding
diagnoses.

The same line of reasoning applies to language diagnosis. Experience with a particular
language system allows you to fine-tune your observational power and the improves the
diagnoses you can make to a point where you start hearing the slightest differences in
accent between native speakers, occasional inconsistencies in article usage, novel con-
ceptualizations, and so on. Although there has been some (very) experimental work
recently by van Trijp (2012), the diagnostics that | will consider here do not evolve over
time, nor can new diagnostics be created autonomously by the language agent. All have
to be provided by the ITS designer. The only adaptive aspect is their confidence score
that determines their preference order.

In this meta-level architecture diagnostics are like daemons, continually monitoring
parsing and production processes so that any minor inconsistency can be diagnosed
as early as possible.

Box 5.3 — Daemon diagnostics

My implementation is based on an earlier meta-level architecture for language games
that could diagnose and repair problems after every process an agent had completed
(e.g. conceptualization, production, parsing, interpretation) but not during language
processing (Loetzsch, Wellens, De Beule, Bleys, & van Trijp, 2008; Steels & Loetzsch,
2010). A diagnostic is implemented as a data object that can be activated during
parsing or production but never in both. You can also specify a learning situation or a
list of learning situations as a condition for diagnostic operation to diminish its possible
moments of execution. Typical learning situations are: after receiving feedback, when
selecting a learning topic, after production, etc. When no learning situation is specified
a diagnostic will be active throughout a complete tutor-learner interaction (also referred
to as a language game further, see Section 5.2.3). As soon as the conditions for a
diagnostic are met, a special method is called that carries out the actual diagnosis. This
method operates on the data structure that it is manipulating at the moment of the
call, which can be a node in an FCG search tree, a process in a language game or a
turn in the turn-taking pattern in a conversation. Notice that these structures increase
in granularity: an FCG node is part of a parsing or a production process and a process is
one of a sequence of many that add up to one turn. Because it has been my contribution
to bring diagnostics into FCG, | will be referring to FCG nodes as the level of operation
for a diagnostic.

The diagnosis method is then written according to the processing problem that it should
diagnose. It can extract information from the FCG node, which contains the transient
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linguistic structure, the constructions that have been processed so far (and their order of
application), the construction inventory, information on problems that might have been
diagnosed already and whether they have been repaired, the configurations of the gram-
mar engine and some book-keeping about the search tree (number of nodes, branching,
failed nodes, etc.). Most processing problems relate to the application or non-application
of certain constructions and their impact on the transient linguistic structure. Specific
diagnostics can inspect particular features in the transient structure but also the hierarchy
between units might be a trigger for diagnosis.

A diagnostic either returns NIL (when it could not diagnose anything) or the problem
that was detected, which is a data object in itself. The problem can contain various fields
that you predefine, such as the word that was identified as unknown, the construction
that was used in a novel way or the part of the conceptualized meaning that could not
be expressed. Occasionally, a diagnostic can also trigger another diagnostic when it
diagnoses a subproblem or the "symptoms” that the diagnostic is investigating require
further investigation. A sequence of diagnostics can be invoked by defining a learning
situation at the point in the diagnostic evaluation where another diagnosis is advisable.

5.2.2 Repairs

We often think of repair as fixing a mechanical or electrical device that is broken or out
of order. Yet, repair often also includes routine actions to keep the device working, such
as when you bring your car to the yearly maintenance service. Also linguistic repairs
have this double function of maintaining the language system in shape as well as fixing
processing problems that occur. In the meta-level architecture, a repair can be regarded
as a specification that tells you how to solve a particular problem that has been diagnosed.
Its success is however not always guaranteed and the fix should be tested to verify this.

Repairs in language often have a double function of maintaining the language
system in shape as well as fixing processing problems that occur.

Box 5.4 — Maintenance and repair.

A repair is a data object — similar to a diagnostic — that has four main slots: triggering
problems (default NIL), learning situations (default NIL), success score (default 1.0) and
processing direction. Triggering problems is a list of all problems that can be solved by
the repair. Learning situations serves the same purpose as in a diagnostic and can be
left unspecified when irrelevant. A repair's success score resembles its performance and
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fluctuates between 0 and 1. The higher, the better. Success scores can be used to rank
repairs absolutely or as probability scores to distinguish learner tactics.

The processing direction specifies whether the repair is specific to parsing or production.
When the conditions specified by these slots are satisfied, a special method is called that
specifies the repair’s protocol, i.e. the order of operations that need to be carried out
to fix the broken processing node or to guarantee flexible language processing. These
operations include actions such as adding a new construction to the inventory, modifying
an existing construction by changing some of its features or modifying its success score,
tuning the grammar engine configurations or even revising the scores of other repairs
or diagnostics. In principle, constructions are never deleted by repairs but their scores
might be decreased so much that they are not considered any longer during processing.

Repairs can evoke restarts after they have successfully solved a particular problem. A
restart is not only useful to guarantee uninterrupted processing but also serves to imme-
diately verify the effect of the recent repair. When we run into the same problem after
repairing, this could be captured by a higher level diagnostic that regulates repairs so
that we do not enter a eternal repairing loop. Figure 5.2 shows examples of restarts in
an FCG search process. Two of the repairs that trigger carry out a restart, which means
that instead of continuing from the point in the process where a problem was diagnosed,
we backtrack to an earlier point, which is specified by the restart. When multiple repairs
are operating on the same diagnostic (either through one or more problems), the one to
Issue a restart suspends all ongoing repairs.

5.2.3 Flexibility strategies interacting with language processing

Now that the basic principles behind diagnostics and repairs have been clarified, it is time
to look at some examples of how they exactly interact with routine language processing.
Imagine the following conversation between a foreign exchange student and the father
of an English-speaking host family (taken from Beuls, van Trijp, and Wellens (2012)):

- Father: Could you pass me the salad, please?
(The student hesitates and then reaches for the salt.)
(The father shakes his head.)

- Father: No, | meant the salad. (Points to the salad bowl.)
(The student puts the salt back and hands over the bowl.)

- Father: Thank you.

Example 1

This short interaction is an example of a language game, a routinized goal-direction
linguistic interaction, in which several problems occur. First, the student experiences
difficulties in parsing the word salad, and interprets it instead as salt, a word that also
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happens to be a good fit in the current situation. Yet, the host father notices that his
utterance did not reach the desired effect and shakes his head to signal communicative
failure. Knowing that the student does not yet fully master the English language, he
therefore repeats the word salad with more emphasis while pointing at the salad bowl.
The student now realizes that he in fact encountered a new word and tries to infer
its meaning from the context. Alternatively, perhaps the student already had a salad
construction but did not yet get accustomed to its English pronunciation as /'salad/ .

| will concentrate here on the learning that happens inside the parsing process of the
father’s first utterance. Given the student’s response to it, we can infer that he mis-
understood the word salad and went for the closest matching word in his inventory, in
phonetic form and situated meaning. Of course, given this short fragment we cannot
judge the English language knowledge of the student. Instead of asking for a clarifica-
tion, he made a guess and reached out for the salt, an object on the table whose name
closely resembles that of the requested item. So how can we model this repaired parsing
process with diagnostics and repairs?

First, a new diagnostic needs to be defined that detects unknown words. | assume here
that the student did not yet have the salad construction in his construction inventory. If
he had, this diagnostic could still trigger but the repair would be a different one. The
diagnostic detect-unknown-word is activated in parsing and no learning situation
is specified. A diagnosis method is then defined that runs as soon as this diagnostic
is triggered. This method verifies if there are unprocessed strings left in the linguistic
structure that is contained in the final node of the search tree. If there is one unknown
string, the method instantiates an unknown-word problem. For illustration purposes,
the diagnostic only handles single unknown words instead of multiple unknown strings.
In pseudo code, the method looks as follows:

if Leaf?(fcgNode) then
unprocessedStrings «— ExtractUnprocessedStrings(fcgNode)
if unprocessedStrings then

return new UnknownWord(unprocessedStrings)

»oen e

Problematic search nodes are colored differently than successful ones in the FCG web
interface. They also receive an additional status: problem-found. This status can in
turn be consulted by node tests or goal tests that define whether a search branch should
be continued or not. Figure 5.3 shows a screen shot of such a node, where the top unit
(the open box to the right) acts as a buffer that contains all unprocessed information.

1In fact, salad really comes from salt when we look at its etymology. The English (and the Dutch)
word comes from French, where it was borrowed from the North-ltalian salada, salata 'the conserved,
the pickled’, originally 'the salted’, a nominal use of the past participle of salare, insalare 'to salt’
< vulgar Latin *salare 'to salt, making salt’, which is in turn a derivation of the Latin sa/ (Philippa,
Debrabandere, Quak, Schoonheim, & van der Sijs, 2009)
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Figure 5.3 — A problem is diagnosed after the string "salad” is left unprocessed at
the end of the search tree.

As can be seen, the unprocessed string as signaled by the diagnostic is "salad”. Also the
word order conditions (cf. meets attributes) are still unprocessed at this stage.

Second, once an unknown word has been detected inside the FCG search tree, a repair will
trigger and try to solve the problem, which is in this case caused by the word "salad”. An
example of an FCG repair strategy that tackles this problem is retry-with-closest-
match. Such a strategy loops through all words in the current grammar and find the
word that mostly resembles the unknown word based on its form and the situation that
is given. The example repair strategy here only considers similarity in terms of spelling,
not in phonetic form. In a more advanced implementation, the latter could of course
also be taken into account.

When these initial values are satisfied, a specialized repair method can execute the clos-
est match repair. The pseudo code explains how the original utterance by the host father
(expert-utterance) is replaced with a slightly modified version (learner-utterance) by sub-
stituting the unknown word with its closest match. The function find-closest-string
is responsible for searching the existing lexical items and returning the most similar word:

1. utterance «— RenderedLinguisticStructure(node)

2: unknownWord «— Word(problem)

3: closestMatch «— ClosestRelatedWord(unknownWord, Lexicon(fcgNode))

4. if closestMatch then return true

5 revisedUtterance «— ReplaceWord(unknownWord, closestMatch, utterance)
6 RestartSearchTree(revisedUtterance)

7: else return false

When the search tree is restarted, the initial node contains the substituted utterance
(see Figure 5.4) and parsing succeeds. Yet, although the processing problem has been
repaired, the game still fails since the student did not manage to retrieve the correct
object form the context. The student also did not really learn something, that is, in
technical terms no new construction was added to the grammar.
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Figure 5.4 — The new initial node after processing has been restarted.

An alternative repair would involve the use of a "generic” construction that takes the
unknown word as its form, but which leaves its meaning underspecified. The semantic
and syntactic categorization of the word can already (partially) be filled in, as we can
infer (through the application of the ditransitive pass construction) that we are dealing
with a graspable, edible object that follows the article "the” and is a noun. The pseudo
code of the repair method looks as follows:

unknownWord «— UnknownWord?(problem)

if unknownWord then

GenericConstruction «— CreateGenericConstruction(unknownWord)
Add(GenericConstruction,Constructionlnventory(node))
RestartSearchTree()

else return false

© A w e

Yet, this repair is a smaller guarantee for communicative success than the previous one.
When the parsing process succeeds after the repair has restarted it, the thereby extracted
meaning can be interpreted in multiple ways. Any object on the table that can function
as something that can be passed on to someone, is edible and that is out of the father's
reach (assuming that this is not a silly language test) is eligible by the student. Of
course, after the feedback received by the father on the real meaning of salad, another
DR-pair might trigger to resolve the meaning feature in the generic construction.

5.3 FCG for self- and other-repair

Advanced language users often resort to the meta-level during linguistic processing. Their
flexibility strategies function to secure that a linguistic interaction does not fail due to
conversational slips or inaccuracies. Or as Postma and Kolk (1993, p. 472) put it: "Self-
repairing of speech errors demonstrates that speakers possess a monitoring device with
which they verify the correctness of the speech flow". This linguistic monitoring is equal
to what | have previously described as diagnostics and there is ample evidence that it
does not only happen after errors have been articulated but also prior to its motoric
execution, speakers can detect errors. Also in comprehension, similar diagnostics are
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active that can repair misunderstandings early and repair them internally or externally
(by correcting the interlocutor's mistake explicitly).

This natural process of self and other repair occurs frequently in natural language con-
versations. To reach their joint goal in a conversation and minimize collaborative effort,
speakers make self-repairs as soon as they detect a problem, as in the following exchange
between two friends:

Is it . how much does Norman get off —
pardon

how much does Norman get off

oh, only Friday and Monday

m

[continues] ()

Example 2

wrxw>wx

Other-repairs are often related to error correction, where an error is defined as a deviation
from the norm that is handled in a speech community. Such deviations can be due to
linguistic innovations or to insufficient grammatical knowledge, as we notice in children
or adult second language learners. Parents correct their children more than is usually
assumed and it is — although not exclusively — through their feedback that children are
learning. An example of such other-repair shows how a mother corrects her son after
she detected an incorrect past tense conjugation:

- Child: | seed him.
Example 3 - Mother: Ah, you saw him.
- Child: Yes, | saw him. (Corder, 1974, p. 25-26)

In language production self-repairs are often triggered by a failure during re-entrance ,
which is the process of parsing the utterance that a speaker has produced before it is
verbalized (Steels, 2003). This is a standard goal test in FCG that competent language
agents all share. A diagnostic that is specialized for re-entrance (which can serve as a
learning situation) can then identify possible problems to lead to a misunderstanding of
or an effortful processing of the intended utterance. Repairs that are triggered by these
problems can then try to solve them so that a corrected utterance can be delivered.
Sometimes, it is also the FCG constructions themselves that are responsible for self-
repair. Inside an FCG search tree, failed construction application automatically leads
to backtracking operations. When alternative search paths are possible, they will be
explored until a potential solution is found. Figure 5.5 shows an example of such self-
repair in parsing, where the misunderstanding happened early in the search tree but could
be restored through backtracking.

Self-repair through re-entrance is only one example of how FCG processing can be made
robust. Another possible way to ensure robustness lies in the manipulation of the regular
construction application mechanisms (match and merge, see Section 3.2.1). In this
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Figure 5.5 — Instead of signalling an error after the phrasal construction could not
be merged with the existing transient structure, the FCG engine backtracks until a
valid new search branch is detected, which here eventually leads to the correct
solution. The difference between parsing "un pauvre homme” and "un homme
pauvre” lies in its figurative versus literal meaning. This figure has been reprinted
with permission from Bleys et al. (2011).

way, one can allow for new features to be merged into the transient structure. Instead
of first having a matching phase, "FCG tests whether a construction can impose its
feature structure through the merge operation” (Steels & van Trijp, 2011, p. 325). This
operation requires only one parameter change in the grammar engine's construction
application options. The merge-always boolean is then by a repair temporarily set to
true instead of its default NIL value.

In sum, the real value of flexibility strategies is that they ensure robust language process-
ing, a property that is highly valuable for Intelligent Tutoring Systems research. It is only
through robust parsing methods that a structural interpretation of the learner’s input can
be rendered even in the presence of unexpected constructions. According to Nerbonne
(2003), recognizing, diagnosing and reacting to student errors is a central technical issue
in NLP. Yet, error classification is often claimed to be too difficult for existing technolo-
gies: when there are multiple parsing solutions and erroneous input might make sense in
some of them. Even when it is clear that the input contains an error, it remains difficult
to classify it. Most existing approaches either add rules to the grammar that explicitly
cover the errors that learners typically make (Weischedel et al., 1978) or use a constraint
relaxation technique (Murphy, Kriiger, & Grieszl, 1998). Flexibility strategies offer an
alternative solution to these.

Flexibility strategies offer an alternative solution to existing error analysis ap-
proaches that add error-rules to the grammar or use constraint relaxation tech-
niques.

Box 5.5 — Flexibility strategies for other-repair
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5.4 Conclusion

Meta-level computation is not only an important concept in programming languages but
also plays a crucial role in language processing. As language users, we correct ourselves
and others all the time by rephrasing our own utterances or repeating someone else’s
words. A meta-level computation component becomes thus indispensable when building
a functional model of language processing. Construction application as it happens in the
grammar engine should not only handle constructions by matching and merging (Section
3.2.1) but it needs a capacity to reason about this application process itself. This capacity
is provided by an additional processing layer presented in this chapter in which processing
problems are handled by diagnostics that identify them and repairs that test the outcome
of certain solutions before regular grammar engine processing is restarted.

A flexibility strategy can be defined as a set of n diagnostics and m repairs that target one
particular processing problem. Diagnostics check whether certain features are present
in the transient linguistic structure or verify the results of the matching or merging
operations (e.g. first/second merge failed). Every diagnostic is able to identify one type
of processing problem. The identification happens as soon as the necessary conditions for
the presence of this problem have been met. A repair is triggered as soon as a diagnostic
signals a problem that the repair can solve. The repair will then proceed according to
a predefined protocol in which each step tests a (sub)solution. Repairing can fail or
succeed depending on the validity of the solution(s). In case of success, a repair can
either decide to restart constructional processing or wait for another repair to come into
action.

The concepts resulting from this chapter form an important contribution to the research
of automated error analysis, a subfield of Computer-Assisted Language Learning that
forms the heart of any intelligent language tutor (Heift & Schulze, 2007). Flexibility
strategies are a useful format to capture typical learner problems and ways to solve
them. The following chapter demonstrates how a language agent for Spanish verbs
employs target-specific flexibility strategies to parse and restore L2 verb errors, made
by English learners of Spanish. Finally, the same meta-level architecture returns in the
design of learning strategies and tutoring strategies further in this dissertation.
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Chapter 6

A language agent for Spanish verbs

With the FCG constructions and grammar engine settings needed to operationalize a
Spanish grammar for verb conjugation and a general meta-level architecture that allows
for flexible and robust parsing of learner errors, the language agent is gradually taking
its form. As the previous chapter has shown, a competent language agent must be
capable of identifying any minor error in the utterances that he is parsing. When the
error can be restored to its originally intended form, linguistic processing can proceed
without any visible interruptions. Yet, the error information can potentially also be used
to explicitly offer a correction, which can in turn be used by a student agent to repair the
original source of the error. This chapter shows the flexibility strategies that are needed
for the case study of Spanish verb conjugation. Moreover, it also shows how a large
construction inventory can be bootstrapped so that the language agent can produce the
full verb conjugation of any Spanish infinitive that you give it.

| designed a set of flexibility strategies to detect and correct Spanish verb form errors
without making use of contextual information (subject, temporal adverbs, etc.). To
evaluate their effectiveness | extracted verb conjugation errors from a subcorpus of the
Spanish Learner Language Oral Corpora (SPLLOC) (Mitchell, Dominguez, Maria, Myles,
& Marsden, 2008) that specializes on the acquisition of tense and aspect. The language
agent is then asked to parse these errors and return the best possible correction for them.
Because the learner corpus is annotated with human tutor corrections for the hand coded
verb form errors, the agent’s correction can immediately be compared with the human'’s.
Although no contextual information was used to assist the error correction process, the
flexibility strategies reach an accuracy of 78%.

Some researchers in the field of Intelligent Computer-Assisted Language Learning (ICALL)
have already considered the value of using Construction Grammar for modelling linguistic
knowledge, both for the expert as for the student model. According to Matthews (1993)
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Construction Grammar meets the three "criteria of adequacy” for intelligent language tu-
toring: (i) computational effectiveness (successful computational implementation), (ii)
linguistic perspicuity (descriptive power) and (iii) acquisitional perspicuity (contribution
to explanation of L2 acquisition). Also Schulze and Penner (2008, p. 427) already dis-
cussed the potential of CG "to overcome some challenges in ICALL and to facilitate a
more thorough analysis of learner language in context and thus improve our knowledge
about language learning processes”. This in-depth analysis of learner errors forms the
topic of the current chapter.

Construction Grammar meets the three "criteria of adequacy” for intelligent lan-
guage tutoring.

Box 6.1 — The potential of Construction Grammar for ICALL

Section 6.1 first shows how the language agent’'s Spanish grammar was bootstrapped by
using a decision tree from a previous research to build an online Spanish verb conjugator.
Second, Section 6.2 presents the diagnostics and repairs that are implemented to support
all flexibility strategies needed to capture typical learner errors for Spanish verbs that
occur in a Spanish learner corpus (SPLLOC). Finally, Section 6.3 tests the flexibility
strategies on verb errors taken from the SPLLOC data set.

6.1 Bootstrapping a Spanish verb grammar

Yet, because developing a full language learning strategy for Spanish verbs is a time-
consuming task unless diagnostics and repairs from a related language can be reused and
adapted, | will first look here at an alternative approach to creating a life-size grammar
that can process all Spanish verb forms. In such an approach a grammar is created by
algorithms that automatically generate all constructions that are required by a particular
verbal paradigm. These algorithms start from a classification of the infinitive that is fed
to the system. According to such a classification (which is done by a decision tree),
every verb in the Spanish grammar (and even neologisms) can be conjugated once its
infinitive is known. The current section contains details on how to implement such an
automatic grammar creator. Section ?? shows how the same target grammar can be
learned incrementally through the use of meta-level learning strategies.

A fast way to supply a basic language agent with a large-scale grammar is to create an
algorithm that adds the constructions needed to conjugate a verb based on its infinitive.
Obviously, the language agent’s construction inventory does not only consist of a large
number of verbs but also contains their appropriate conjugational rules. When a verb
such as pensar 'to think' is added to the construction inventory, it should be marked that
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it follows the e—ie diphthongization process when the stem vowel receives stress. Sec-
tion 6.1.1 describes the automatic classification of verbs according to their conjugation
paradigm. Section 6.1.2 shows how this decision tree is used to construct a grammar
for the 564 most commonly used verbs in Spanish (worldwide).

6.1.1 A decision tree for automatic grammar creation

To add a new verb to his construction inventory an agent typically has to go through
a complex process that not only creates a lexical construction for the verb stem, but
also adds the morpho-phonological constructions that are required to cover the full verb
paradigm. This process can be bootstrapped so that we can automatically create a
grammar that can conjugate a whole range of verb paradigms belonging to a list of
infinitives that is given. To launch this automatically generated process of construction
creation, a classification task needs to be solved, which defines the verb type of the
infinitive and along with that provides details on how to conjugate it.

Rello and Basterrechea (2011) have investigated a similar conjugation task in the devel-
opment of Onoma, a verb conjugator that provides the conjugational paradigm for any
infinitive that you type in (given that you place the diacritic accents correctly), including
neologisms. Their application can be tried out online at www.onoma.es. Onoma also
analyzes a verb form that you give it: e.g. "saqué” is analyzed as a first person singular
past perfect form of the verb sacar 'to gain, to receive'.

The Onoma system is made up of two modules: a classifier and a modeling module. The
former "is designed to recognize the verb form and extract the information needed for its
conjugation or analysis” (Rello & Basterrechea, 2011, p. 230). The FCG classifier also
contains a submodule to identify the stress pattern of the verb. Verbs are then classified
into (a) regular, (b) irregular and (c) semi-regular verbs . When identified, irregular verbs
are further divided into (b1) the so-called primary verbs and their derivations: traer 'to
bring’, valer 'to be worth’, salir 'to go out’, tener 'to have', venir 'to come’, poner 'to
put’, hacer 'to do’, decir 'to say’, poder 'can’, querer 'to want’, saber 'to know’, caber 'to
fit', andar 'to walk’; and (b2) the irreducible verbs, a set of six verbs whose conjugational
paradigm is entirely stored in memory: the auxiliary verb haber 'to have’, the copulative
verbs ser 'to be' (permanently) and estar 'to be’ (temporary), and the monosyllabic verbs
ir 'to go’, dar 'to give' and ver 'to see’. The semi-regulars are further split up into (cl)
verbs that engage in diphthongization or a vowel displacement in their root; (c2) verbs
which are affected by irregular diacritic rules and (c3) verbs whose root ends on a vowel
and that undergo heterogeneous rules of irregularity. As stated by the Onoma engineers
(Rello & Basterrechea, 2011, p. 230), "apart from the irreducible verbs, the rest of the
verbal paradigm system is based entirely on rules and patterns implemented in Module
2",
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The modeling module implementation differs between Onoma and FCG. Since Onoma
does not store constructions in memory that apply in parsing and production but creates
a full conjugational paradigm when a user enters an infinitive, the system first builds
hypothetical verb forms by means of several finite state machines. This verb form is
then modified in a subsequent step. The hypothetical verb form in FCG can be mapped
to a lexical construction for a verb stem. Hypothetical endings are not modeled by this
FCG grammar, as verb endings are selected based on the classification of the verb. The
modification of the stem happens by so-called phonological constructions (see Section
4.2.4). We follow the same irregularity rules and patterns as those defined in the Onoma
manual (Basterrechea & Rello, 2010):

e Pattern To: verbs whose root contains the stressed syllable

e Pattern Te: verbs whose ending contains the stressed syllable

e Pattern Dei: verbs whose endings begin with e or i

e Pattern Dao: verbs whose endings begin with a or o

e Pattern Di: verbs with a stressed ending that begins with an unstressed /

e Pattern Dti: verbs whose endings begin with a stressed i

e Pattern Dt-i: verbs with a stressed ending that begins with any vowel except /
There are also two additional patterns for the primary verb conjugation:

e Pattern Fc: all person forms of future and conditional tenses/indicative moods.

e Pattern i4: all person forms belonging to the preterite perfect simple tense/indica-
tive, the preterite imperfect/subjunctive and the future/subjunctive.

Depending on these patterns and the formal composition of the verb form itself, a specific
irregularity rule is activated that modifies the hypothetical verb form. Overall, Onoma
contains 40 irregularity rules that are divided into five groups. The FCG conjugator uses
only 30 irregularity rules (Table 6.1), also divided into the following five groups (Rello &
Basterrechea, 2011, p. 232):

1. Consonantal orthographic transduction rules: these modify the verb in order to
ensure that the derived form obeys Spanish orthographic conventions. For instance,
sigo 'l follow’ is derived from seguir (stem segu-) 'to follow’, when activated by
the Dao pattern.
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Table 6.1 — The Onoma conjugator uses 10 additional irregularity rules compared
to the number of FCG constructions. Every row shows the number of rules per
system for the five rule groups that have been identified by Rello & Basterrechea
(Rello & Basterrechea, 2011, p. 232). The difference in rule number is especially
visible in groups 4 and 5, that is vowel root ending rules and specific primary verb

rules.

Onoma FCG

1 9 9

2 2 2

3 8 11

4 8 6

5 13 2
sum 40 30

2. Diacritic transduction rules: these are activated by the To pattern, as in vacio 'l
empty’ from vaciar 'to empty’.

3. Root vowel transduction rules: these are activated by patterns To and Dti and
operate on the root vowel, which can either be diphthongized or replaced by another
vowel. E.g. sirvo 'l serve’ from servir 'to serve’.

4. Vowel root ending transduction rules: these rules affect verbs whose infinitive form
root ends in a vowel: e.g. oyes 'you hear’ has been derived from oir 'to hear’ by
additional of the letter y after the root (activated by pattern Te).

5. Specific primary verbs transduction rules: these rules are activated by the patterns
Fc, i4, Dao and To. E.g. tuve 'he/she had’ is changed by activation of pattern i4;
tengo 'l have' is modified by adding the letter g after its root (activated by Dao)
and tendré 'l will have' is altered by addition of a d after the root in the verb forms
recognized by pattern Fc.

In Onoma, these rules are consulted every time a user requests the conjugation of a
particular infinitive (which can be a non existing verb as well). In FCG, once a verb of a
particular "family” is added to the grammar together with the phonological and morpho-
logical constructions that define its final form, any future construction that belongs to
the same family is spared from this grammar-enlarging procedure. Moreover, the gram-
mar remains stable once a particular verb has been recorded. The language processing
engine will cycle through the grammar and apply the appropriate constructions at the
appropriate moments in the processing pipeline.

When a new verb is conjugated in Onoma or added to the grammar in FCG, it is classified
according to a decision tree that determines whether it is irregular and if so, according
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l

is it a primary, auxiliary,
copulative or monosyllabic
verb? or a verb derived
from these?

7 AN
yes no
/4 N
irregular does it end on -quirir?

is it dormir, errar, morir,
oler, erguir, desosar or a
prefixed verb derived
from these?

<

no yes
does its stem end
on a vowel?
(except traer and verbs
on -quir or -guir)

irregular

yes

no
- - does its stem end on
2.nd/3r.d 1st conjugathn ¢, g, gu, Aorlland it
conjugation? and ends on -iar belongs to the 2nd/3rd

. or -uar? conjugation?
irregular —

irregular yes no

proceed to steps is the stem vowel an e or o
5and 6 and does it belong to the 1st

conjugation? is the stem vowel
irregular an e and does it belong to the
3rd conjugation?

<

no yes
4 \
does it contain a could be
diphthong in its stem? irregular
V4 A
no yes
could be
irregular

Figure 6.1 — The decision tree consists of six main splits to define whether an

infinitive is regular or irregular. Most of the nodes perform checks on the verb

stem’s last letters and its main vowel. When an infinitive passes through the
complete tree with only negative answers it is found to be regular.
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to which irregularity rule it can be conjugated (Figure 6.1). In FCG, irregularity rules
correspond to construction families: herir-verbs, errar-verbs, jugar-verbs, etc. Some
steps in the decision tree trigger further decisions, such as question 4 "does its stem end
on ¢, g, gu, A, Il and it belongs to the 2nd/3rd conjugation?” which can be followed by
steps 5 or 6. Examples of infinitives that are characterized by two construction families
are rogar 'to request’ and colgar 'to hang up’ (families delegar and contar); conseguir
'to manage’, conjugated according to verb families distinguir (group 4) and servir (group
5) and comenzar 'to begin’, which belongs to the trazar (group 4) and pensar (group 5)
verb families.

6.1.2 Conjugating Spanish verb forms

With the conjugation decision tree implemented as a cascade of functions in Common
Lisp that can be called by the FCG engine, we can now start creating large-size grammars
that can be provided to language agents in the form of construction inventories that boost
their competence level. Yet, before we start classifying verbs and creating constructions
that can cover their conjugation paradigms, we need a set of basic constructions that
is used by any verb that is conjugated. This set was created by hand. It contains the
following constructions, which are grouped according to their function:

e Agreement constructions (phrasal): add agreement meaning

Tense-aspect-mood constructions (phrasal): add tam meaning

Morphological constructions: person/number endings and tam endings (including
participles, gerunds) and a reflexive construction

(Morpho-)Phonological constructions: accent changes (a—a, e—#é, etc.), assimi-
lations (i+is —1s) and two stem placement constructions (assign stress pattern to
the stem)

The base grammar contains a total of 68 constructions, of which 35 are morphological
constructions, 21 phrasal constructions (agreement and tense-aspect-mood) and only
12 morpho-phonological constructions (see Figure 6.2a). No single lexical construction
Is present in this base grammar. However, as soon as the first verb is added, addi-
tional constructions are created for the auxiliary verb haber, 'to have’'. Because haber
is an irregular verb, the irregular forms in its conjugation are added as separate lexical
constructions, which would bring the total of the base grammar to 105 constructions.
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Jehle grammar

To create a large scale grammar on which the classification algorithm could be tested,
| used a corpus that | received from Fred Jehle (University of New Mexico) with 11467
conjugated verb forms, together with their infinitives. The conjugated forms in the
corpus represent roughly the 600 most common verbs in Spanish. It was used on
http://users.ipfw.edu/jehle/VERBLIST.HTM to present verb paradigms to students of
Spanish, who could use it to look up an infinitive and retrieve its full conjugation.

Once all the infinitives from the Jehle corpus have been added to the FCG base grammar
and the classification has been done, the resulting grammar has a size of 1575 construc-
tions. Lexical constructions are by far the majority in this construction inventory with a
share of 93% (1466 constructions), followed by phrasal constructions (21), morpholog-
ical (35) and morpho-phonological constructions (53). There were thus no new phrasal
or morphological constructions added in the grammar expansion phase. The classifica-
tion tree only creates new lexical and morpho-phonological (phon) constructions. The
high amount of lexical constructions is due to the number of irregular verbs that were
conjugated, which resulted all together in 866 constructions, while only 564 infinitives
were added to the grammar.

The majority of the 564 infinitives (58%) are regular verbs that were not classified ac-
cording to a particular verb type (see Figure 6.2b) and thus passed through the complete
decision tree. The remaining 42% are irregular and semi-regular verbs that do not deviate
from the regular verb conjugation paradigm on a number of verb forms. A total of 25
semi-regular verb types could be detected in the corpus data, with the most frequent verb
type secar occurring 39 times. Seven of the verb types only had a single infinitive that
was conjugated according to the type. The verb type frequency distribution is included
in Figure 6.2c.

Evaluation

One way to verify whether the automatic verb classification is successful, is to parse a
given verb form and reproduce it. When the result is the same as the original verb form,
you know that the conjugation was correct. The evaluation tested 33954 verb forms,
belonging to 566 verbs, and yielded on average 18 errors (5 runs). All these errors were
due to ambiguous parses of verb forms that have a stem that can belong to any of
two infinitives: sentir/sentar, regir/regar, presentir/presentar, sentir/sentar. Figure 6.3
contains an example of such an ambiguous parsing process where the verb stem present-
can lead to presentar 'to present’ or presentir 'to anticipate, to sense’. Because the
testing function only takes one solution into account, one of the two lexical constructions
that cover the stem present- triggers randomly. A solution to this ambiguity problem
would be to implement a node test that checks whether the parsed meaning so far is still
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[ initial || presentir |—|
~[a->0-morph | | agreement-1sg || present-indicative|

Figure 6.3 — Parsing “presento” leads here to the wrong solution, with presentir as
the main verb (stem “present”) instead of presentar. When the parsed meaning is
reproduced a different verb form is uttered: “presiento”.

compatible with the situation that is being observed (the meaning). In a real language
game, this checking is done automatically but in this verb form testing function, only
the decontextualized verb form is available.

Discussion

Conjugating the full verb form corpus with around 34 000 (x2) parsing and production
processes is an expensive operation in FCG. Construction application slows down due
to the large size of the lexical construction set (1466 constructions). Because FCG's
search process to find the next construction is by default completely blind, on average
733 constructions (50%) have to be matched to the transient linguistic structure before
the correct one is found. Apart from general heuristics that optimize the search process, |
converted the largest construction set (lexical) into a hashed construction set . Different
from a regular construction set, it constructs a hash table for the form strings and the
meaning predicates of all lexical constructions, which can be used to quickly retrieve the
constructions that are relevant for meaning that is being produced or the forms that
are parsed. Hashed construction sets have now become standard in FCG since my first
introduction.

Although the automatic generation of a large scale grammar solely based on infinitives is
a fast way to create life-size grammars, the decision tree that is used to classify verbs and
create the constructions that they demand accordingly is not a realistic representation of
a human learning strategy. Instead, with the right learning strategy a language agent can
acquire a construction inventory. Assuming that the learning language agent is aware of
the general linguistic patterns of the Spanish language, the next section shows how a set
of manually coded diagnostics and repairs could encode a one-shot learning tactic that
is able to reach a full competence of the target language system.

6.2 Diagnostics and repairs for verb form processing

How can a verb form error be detected by a language agent? As learners typically make
the same kinds of mistakes, a list of problems can be created that the language agent
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might encounter during the parsing of learners’ utterances. This section presents a set of
flexibility strategies that can catch these errors, correct them and return the type of error
that has been committed. The most commonly encountered errors are the following:

e Verb class: the inflectional ending belongs to a different verb class than the verb
stem, e.g. *asustié (correction: asustod, he/she scared);

e Tense, aspect, and mood: the verb form is conjugated correctly but carries the
wrong tense, aspect or mood, e.g. indicative instead of subjunctive;

e Person, number (agreement): the verb form is conjugated correctly but carries
the wrong person or number feature, e.g. 1st person singular instead of 1st person
plural;

e Phonological: the verb form is conjugated through regular patterns but should
have undergone phonological changes such as assimilation, palatalization, fronting,
etc., e.g. *juga (correction: juega, he/she plays); or

e Verb stem: the verb stem is not part of the lexical inventory of the Spanish
language due to errors in spelling, pronunciation or missing lexical knowledge, e.g.
*descubir (correction: descubrir, to discover).

Of course, any combination of these errors is also likely to occur. For instance, a wrong
verb form that is built on a non-existing verb stem and the wrong verb class such as in
*descub-aba, where the correct stem would have been descubr- and the correct ending
for the past imperfect 3sg form -ia, resulting in "descubria” (he/she discovered). Figure
6.4 collects all diagnostics and repairs that a Spanish language agent needs for detecting
and correcting learner errors. They are presented in more details in the following sections.
All diagnostics and repairs included here operate exclusively in parsing.

6.2.1 Feature mismatch

A feature mismatch occurs during the merging operation of a construction that succeeded
the FCG matching phase onto an existing transient linguistic structure that contains
incompatible feature values. A realistic example would be the erroneous verb form "jugia”
(3sg past imperfect of jugar 'to play'). The diagnostic that detects feature mismatches
comes into action as soon as a second-merge-failed status is returned by a merging
operation. In the case of jugi'a, this status is evoked when the -ia morph construction
for the suffix could not be integrated into the transient linguistic structure that already
contains the verb stem jug. One alternative construction could apply after this merge
failure: the default (unmarked) construction for 1sg/3sg endings in the present indicative.
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Figure 6.4 — A language agent uses four flexibility strategies to diagnose and repair
ungrammatical utterances.

ia-past-imperfect-2/3
|

| initial |—| /ugar —

L{ 1/3sg-morph |

Figure 6.5 — The parse tree of "jugia” (he/she played) is interrupted after parsing
the second/ third verb class ending "ia” that does not match the first verb class
stem. The default 1/3sg morphological construction can apply and yields a present
tense reading, which does not fit the intended meaning (past imperfect).

"o _n

Nevertheless, the "I'a” suffix string is left unprocessed in the top unit of the FCG transient
structure. Figure 6.5 contains the resulting FCG parsing application process.

Given this particular problem of a feature value mismatch, a repair will further pinpoint
the causes of the mismatch and return a possible correction that restores this error. By
accessing the merge results, the dissimilar feature value is revealed (through a comparison
of the functional pole of the -/a construction and the transient structure’s syntactic pole):
the verb class feature. The verb stem’s verb class feature in the transient structure ((1
+) (2/3 - - -)) (jugar belongs to the first verb class) did not match the feature
matrix of the suffix: (==1 (1 -) (2/3 + ?2 ?3)). Jugar needs a suffix of the
first verb class, not one that combines with stems of the 2nd or the 3rd verb class. The
repair returns this information together with the corrected verb form (stem + ending).
The ending could be retrieved from the FCG grammar since the diagnostic could tell use
the correct verb class, tense, aspect and agreement features.
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6.2.2 Deviating form

The deviating form problem is detected by a diagnostic that verifies whether the language
agent that parsed a particular verb form would have said the same when he were the
speaker. This comparison can be done by reproducing the parsed meaning. Similar to re-
entrance, this hidden production process simulates the original student agent’s processes.
Reproduction is only run when a fully compatible meaning was parsed (containing all
expected meaning predicates) to avoid irrelevant reproductions. An example is the parsing
of the verb form "juga" (3sg present indicative of jugar 'to play'), which results in the
following meaning:

((3sg-agent 7agent 7context) (jugar 7event 7context)
(time-sphere 7event 7time-point present) (event-overlaps 7time-point)).

This meaning is then re-produced by the language agent and results in a different verb
form: "juega” 'he plays’. The string difference between juga and juega is enough to trigger
a deviating form problem. The repair that is specified for this problem runs through the
following steps:

1. The dissimilarities between the two transient linguistic structures are compared by
a unification operation on each linguistic feature (e.g. syn-cat, sem-cat, phon-cat,
form, meaning, etc.).

2. The set of mismatched features is returned. In the juga/juega example this is the
nucleus feature of the phon-cat.

3. The repair returns the corrected form juega and the stem nucleus feature that
caused the error.

6.2.3 Unknown stem/suffix

When the previous two diagnostics did not trigger, one last processing problem that is
often found is the presence of unprocessed strings at the end of a parsing process. An
appropriate example is here the utterance "jugaba” (correction: "jugaba”). The stem "juq”
is unknown to the FCG expert system so parsing stops immediately since a suffix alone
cannot lead to a successful parse. Given that the segmentation algorithm segmented
the verb form into a stem "juq” and an ending "aba" (1/3sg past imperfect), a diagnostic
now signals an unknown stem. A related problem is the unknown suffix problem, where
the stem can be parsed but the suffix is left unprocessed in the top unit.
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An unknown stem repair will then try to solve this problem by using the language agent's
constructional knowledge to find a verb stem in his construction inventory that most
closely resembles the string that could not be parsed. This comparison is done by a simple
Levenshtein distance metric that compares all stems of the language agent’'s grammar
with the one present in the current problem. Because the first letter is usually less error
prone than the rest of a word when typical learner errors are examined (Yannakoudakis
& Fawthrop, 1983; Sibley, Pollock, & Zamora, 1984), | extended the measure to put
additional weights on the first letter. After the string comparisons, the parsing process
is restarted with the verb stem that scored highest on the similarity test. The new form
Is now the correction "jugaba” and parsing will succeed. The repair returns the corrected
form and the fact that the verb stem the learner provided was unknown to the system.
In a future implementation, the specific position in the stem that caused the failure (in

this case "q" was used instead of g
precise feedback.

) could be returned as well in order to provide more

6.2.4 Remaining errors

Remaining errors are either agreement errors (different person or number) or the use of
a different tense, aspect or mood than the one that was expected. Such errors can only
be tracked if there is a target meaning available to the expert system (i.e. exercises that
have a well-defined solution). In such cases, a diagnostic to detect a meaning mismatch
is appropriate. This FCG diagnostic compares the feature structure that results from
parsing the learning utterance and the production result of the target meaning as soon
as the parsed meaning differs from the target meaning. The mismatch in feature is then
returned together with the corrected utterance. Combinations of multiple errors will
automatically be captured as multiple diagnostics can trigger in a row and solve each
error independently.

6.3 Corpus-based error analysis

The Spanish Language Learner Oral Corpus (SPLLOC) was used to evaluate the lan-
guage agent's error analysis component. The SPLLOC is a second language learner cor-
pus that contains exclusively oral data that has been collected and transcribed (CHILDES
format) (MacWhinney, 1991) during the ESRC funded project "Linguistic development
in L2 Spanish: creation and analysis of a learner corpus” (University of Southampton,
University of Newcastle) (Mitchell et al., 2008). The material that has been collected in-
cludes learner narratives, interviews and picture description tasks. This material is freely
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Table 6.2 — Levels in the SPLLOC2 corpus.

L2 Spanish  Typical age  Number of hours Educational level  Position
level of Spanish instruction on CEFR
low 14-15 ca. 240 hours lower secondary A2
intermediate school

intermediate  17-18 ca. 750 hours sixth form college B1-B2
advanced 21-22 ca. 895 + year abroad university C1-C2

available for use (www.splloc.soton.ac.uk). The corpus can be consulted in audio format
(Wave, MP 3) and as transcribed text (transcription file, tagged file, XML).

Section 6.3.1 describes the verb forms that were selected from the SPLLOC to carry
out the evaluation. The results of this analysis are presented in Section 6.3.2.

6.3.1 The learner corpus

The SPLLOC 2 project is titled "The Emergence and Development of the Tense-Aspect
System in L2 Spanish”. The corpus contains samples of spoken Spanish produced by 60
instructed learners with English as their L1. The learners are all English L1 speakers who
have learned L2 Spanish in educational contexts within the UK. Speakers from bilingual
English/Spanish backgrounds or with extensive social contacts with Spanish speakers
were excluded from the sample. According to the SPLLOC investigators, a learner
selection based on gender was impossible because the large majority of L2 learners at
college and university levels in the UK are female. Table 6.2 summarizes the levels present
in the SPLLOC 2.

The learners all undertook five tasks. Tasks 1 to 4 were designed to explore the learner’s
knowledge of the past tense in Spanish, and to relate past events in sequences in multiple
contexts, ranging from more controlled to open tasks (narrative tasks, guided interview,
simultaneous events task). All activities were undertaken individually with a member
of the research team. The fifth task was a computer-based interpretation task, and
was specifically designed to explore learners’ developing ability to distinguish different
meanings of the Spanish imperfect and preterit. All task descriptions can be downloaded
from the SPLLOC website.

For the evaluation of the FCG error analysis component | selected the lowest and the
highest L2 learner level that was available in the SPLLOC 2 corpus: low intermediate
(Lower secondary school) and advanced (University Year 4). For these two groups of 40
learners (20 per level), | used the four spoken tasks and extracted all errors automatically
from the XML file, together with the native corrections. This results in 500 verb form
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errors. The majority of errors come from the low intermediate group: 82% or 408 errors
against 92 errors in the advanced learners subcorpus. This results in on average 20,4
errors/learner in the low intermediate group and 4,6 errors per learner in the advanced
group. | include an example of an utterance that was extracted here below. The learner’s
error "venieron” is corrected here as "vinieron” they came (stem change).

<u who="CO1" uID="ul1l">
<w>después</w>
<pause symbolic-length="simple"/>
<g>
<w>
venieron
<replacement>
<w>vinieron</w>
</replacement>
</w>
<error/>
</g>
<w>a</w>
<w>su</w>
<w>casa</w>
<t type=npu/>
</u>

The language agent does not only need flexibility strategies to detect and correct the
corpus errors but also a construction inventory and grammar engine that can parse and
produce all corrected verb forms. This construction inventory is created by feeding all
corresponding infinitives of the corpus errors to an automatic grammar creation algorithm
that instantiates constructions for the verb’s full paradigm. This algorithm is explained
in Chapter 8. The 500 corpus error forms can be traced back to a total of 93 infinitives.
The FCG grammar contains 490 constructions to operationalize all conjugations. The
most frequently used infinitives are: "perseguir’ (36), "leer” (34), "jugar” (24), "haber
(22) "tranquilizar” (21) and "despertar” (21).

6.3.2 Evaluation Results

The FCG engine is given one verb form at a time that needs to be parsed. If it cannot be
parsed with the constructions that are part of the grammar, the meta-layer catches the
form and searches for a solution that can be parsed (either by transforming the input or
by modifications to the transient feature structure). The final parsed meaning is thus a
hypothesis that the language agent makes about what was meant by the student when
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he produced the verb form. This meaning is then reproduced by the language agent and
returned as the corrected verb form. The source of the error can also be made explicit
but is not relevant for the purposes of the current task.

The performance of the language agent’s corrections is measured in terms of accuracy,
which is defined as follows: Accuracy is the percentage of corrected forms that are
the same as the human correction (provided by the corpus). Table 6.3 summarizes the
accuracy scores for the two subcorpora. The average score on the complete subcorpus
(low intermediate and advanced) equals 64%. Group scores differ considerably: 57.6%
of accurate corrections in the low intermediate group against 70.7% in the advanced
group. Apart from the fact that the advanced errors only constituted 12% of the errors
that were investigated, this difference also suggests that the types of errors made by
more advanced learners are easier to detect by the flexibility strategies.

Correction accuracy is the percentage of verb forms corrected by the language
agent that are the same as the human correction provided by the corpus.

Box 6.2 — Correction accuracy

The second row in Table 6.3 includes the results of the so-called "enhanced accuracy”.
Sometimes FCG corrections are accurate when you only consider the isolated error form,
without any notion of the discourse this form is embedded in. The correction of *haben
into han 'they have' (3pl indicative present of haber) is certainly valid although the
human correction appears to be hubo 'he had’ (3sg past anterior). Because the flexibility
strategies do not have access to the context in which the verb error was made, such
corrections can never be "accurate” according to the definition in Box 6.2. More examples
of acceptable but strictly speaking inaccurate corrections are provided by Table 6.4.
Sometimes the input form does not contain an error and can be parsed accordingly (e.g.
"contando”). Yet, because the human teacher knows what was meant by the student
in this context ("cantando”), this form was marked as an error. The enhanced accuracy
was calculated by going through all 500 error forms and the language agent’s corrections

Table 6.3 — Advanced learners errors are easier to restore by the flexibility
strategies, when pure accuracy is taken into account. The enhanced accuracy
(corrections that differ from the original correction but are nevertheless
appropriate) score reaches almost 80%.

accuracy enhanced

accuracy
low intermediate 57.6 7.7
advanced 70.7 79.3
total 64.2 78.5
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Table 6.4 — The language agent’s corrections are often closer to what an expert
would predict without any knowledge about the context in which the verb form is
used. Grammatical learner input forms are not corrected by the flexibility strategies.

learner input language agent human correction

correction
contando contando cantando
habian habian habfa
*haben han hubo
*eban eran era
*paga paga pago
*preperé preparé prepard
*cogué cogi cogio
*eligue elige eligi
*prepero preparo prepard
*cogue coge cogieron

by hand and judging them for their accurateness. In the accuracy picture that results
from these counts 79% of the language agent's corrections are accurate given the error
verb form and no further contextual information. Moreover, the difference in accuracy
has disappeared between the two levels.

Enhanced correction accuracy is the sum of the standard correction accuracy and
the number of additional corrections that are acceptable given the lack of contex-
tual information.

Box 6.3 — Enhanced correction accuracy

Figure 6.6a depicts the relative frequencies of the problems that were diagnosed by the
language agent’s diagnostics: unknown stems are the most frequent problems (43% of
all problems diagnosed), followed by verb class problems (feature mismatch) (26%) and
stem changes (deviating form) (18%). Unknown suffixes (12%) and suffix changes due
to assimilation (1%) complete the pie chart. Yet, as is illustrated by Figure 6.6, although
unknown stem and unknown suffix problems are responsible for more than 50% of all
errors, the language agent’s enhanced correction accuracy is lowest for these two error
types. Errors related to changes in the stem can almost always be restored in a correct
way by the language agent by the reproduction repair.
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(a) Proportional counts of verb type (b) Enhanced accuracy per verb type
errors in SPLLOC2

Figure 6.6 — The enhanced accuracy for the five error types is on average 77%
(b). Stem change errors are easiest to correct, unknown stem and suffix errors the
hardest. Yet, these errors form more than 50 of all errors present in the SPLLOC

data set (a).

6.4 Conclusion

The first demonstration and evaluation of flexibility strategies on real-world data taken
from a learner corpus has been carried out in this chapter. The processing problems that
form the object of the flexibility strategies were formalized after a thorough analysis of
the 500 error-coded verb forms that were extracted from the oral transcriptions of the
SPPLOC 2 data. The following errors occurred most frequently in the corpus: incorrect
stem recall, incorrect suffix recall, mismatch in verb class between stem and suffix and
inappropriate (or missing) morphophonemic stem changes. For each of the attested
problems a flexibility strategy was designed, consisting of a set of generic operations
that can be applied to any verb form in Spanish. The language agent is now complete,
with:

e a construction inventory that contained constructions to conjugate all infinitives
corresponding to the 500 corpus errors,

e a grammar engine that is optimized for verb form processing (segmentation, goal
tests, etc.) and

e generic flexibility strategies that guarantee a flexible processing of ungrammatical
utterances through the diagnostic/repair architecture that takes regular linguistic
processing onto a meta-level where irregularities can be analysed and repaired.
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The evaluation of this language agent when processing and correcting the 500 verb form
errors made by learners of Spanish has yielded a basic correction accuracy of 64% and
an enhanced accuracy score of 79%. Because error correction is carried out by a model
of a proficient language user of the target language, the system can provide error type
information "for free". Fluid Construction Grammar is now confirmed to be an adequate
formalism for at least one component of the intelligent tutoring systems enterprise: error
analysis and correction. The detailed information that can be gained from constructional
processing will be made available for tutoring purposes in Part 3 of this dissertation.
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Chapter 7

Learning strategies

If you have ever tried to learn a foreign language, you will have been confronted with var-
lous difficulties in acquiring certain domains of the language and potential "false friends”
between your first language and the language you are learning (L2). How does this pro-
cess work and why are some learners better or faster than others? According to Second
Language Acquisition (SLA) specialists, "learners possess cognitive mechanisms which
enable them to extract information about the L2 from the input” (Ellis, 1997, p. 5). Of
course, adult learners bring an enormous amount of knowledge to the task of learning a
new language:

1. They can draw on their first language to understand the meaning or use of certain
words or grammatical constructions;

2. They have knowledge about the world;

3. They use communication strategies that help to make effective use of their L2
knowledge;

4. They know how language works in general (depends on the learner’s language
aptitude).

During learning, some linguistic features might have been fully mastered by the learner,
while others have not yet been acquired. For instance, Ellis reports on a learner who
accurately used the [progressive + to be] construction (e.g. | am writing) but had a very
inaccurate knowledge of the past regular conjugation in English (*/ writed). Yet, studies
suggest that learners acquire different aspects of a new language systematically, and that
they follow particular developmental routes, with some features being learned faster than
others (Ellis, 1997, p. 12).
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Similar to L2 learners, a student agent has an incomplete construction inventory and
grammar engine settings that have not yet been optimised for the target language sys-
tem. Yet, with the same basic agent architecture as a language agent, which includes
a construction inventory, a grammar engine and a meta-level architecture to capture
problems, a student agent is capable of acquiring the language system of the competent
language agent he is interacting with. The meta-level architecture is used to detect
processing problems that arise due to insufficient linguistic knowledge (diagnostics) and
solve them by following pre-specified steps that are part of the learning strategy (repairs).

The current chapter describes how meta-level computation is used to formalize such
learning strategies that restore a student agent's failed production or parsing processes.
Different from flexibility strategies, learning strategies actually modify the construction
inventory every time a problem was repaired successfully either by expanding it with
new constructions or by modifying existing ones. This type of meta-level learning is
by definition problem-driven, rather than data-driven. Problem-driven learning, or also
one-shot learning, typically happens very fast once a problem has been identified, and
the learned construction(s) can be updated at a later stage when a new problem arises.
Data-driven learning, on the other hand, proceeds much slower as a new construction
can only be added when enough examples have been encountered.

Different from flexibility strategies, learning strategies actually modify the con-
struction inventory every time a problem was repaired successfully either by ex-
panding it with new constructions or by modifying existing ones.

Box 7.1 — Learning strategies versus flexibility strategies

The outline of the chapter is structured as follows: Section 7.1 explains the problem-
driven learning approach by making the connection with Piaget's constructivism. Once
the underlying theory has been covered, the rationale behind the use and the implemen-
tation of learning strategies will become clear in Section 7.2. Finally, a series of attested
learning strategies in Second Language Acquisition are described in Section 7.3.

7.1 Problem-driven learning

The basic tenet of the constructivism learning theory is that humans are better able to
understand and acquire a piece of information or a skill when they have construed it by
themselves. In all constructivist theories, learning is seen as a social engagement that
involves language, real world situations, interaction and collaboration among learners.
During the learning process, the learner gathers information, converts it, formulates
hypotheses and tests these hypotheses through interactions or experiences. Rather than
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internalizing presented information as it is through rote-learning, the essence of learning
lies in building constructs and internalizing the information that is given. Classrooms that
follow a constructivist approach, must thus be transformed into a knowledge-construction
site, where the teacher is seen as a facilitator and a guide. Students often "work in groups
to approach problems and challenges in real world situations” (Ozer, 2004).

Jean Piaget and Lev Vygotsky (see Section 9.1.1) are two pioneers in the field of con-
structivist learning and have later also inspired computer-based learning environments
such as the programming language Logo (Papert, 1980), ToonTalk (Kahn, 2004) and
many others. Differences between Piaget and Vygotsky can be found in their ideas of
how constructivism should be carried out in classrooms. For Piaget, the constructivist
classroom must provide a variety of activities to challenge students "to accept individual
differences, increase their readiness to learn, discover new ideas, and construct their
own knowledge”. Vygotsky, on the other hand, stresses the social aspect of learning
more and promotes the active participation and collaboration of distinctive learners and
the teacher: "the distance between the actual development of a child as determined
by the independent problem solving, and the level of potential development as deter-
mined through problem solving under adult guidance or in collaboration with more peers”
(Vygotsky, 1978).

Meta-level learning also follows a constructivist learning perspective because it is problem-
based and the role of the language agent (or even more the tutor agent, see Part Ill) is
to guide and challenge the learning process. The student agent learns about the target
language system through the experience of problem solving. Problem-driven learning is
fast as a single instance can suffice to learn something new. This type of learning relies
greatly on the situation in which the learning instance occurs. It is also found in child
language learning, and can be explained as follows: "typically, an infant who observes the
consequence of a given action in a given context will readily be able to predict very well
what happens if exactly the same action happens in the same context again” (Kaplan &
Oudeyer, 2001, p. 35).

Although problem-driven learning is undoubtedly an important driver in the acquisition
of a new language system, it is not the complete story of how learners perfect their
linguistic skills and knowledge. We also use another type of learning to fully master a
new language: data-driven learning. Different from problem-driven learning approaches,
data-driven learning does not exclusively use local information that is situated in the
current interaction but instead generalizes over a whole range of constructions and usage
data. In fact, many of today's learning models follow a data-driven approach. Machine-
learning techniques typically work on large amounts of data and learning happens through
generalisation processes over this data. Learning in a data-driven approach occurs thus
rather slowly, as many data instances must be processed before any type of generalization
can occur. Patterns that are detected will be internalized so that future instances can
be recognised faster.
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The focus in this dissertation lies on problem-driven learning because it the most
"traceable” type of learning, which is useful when using the student agent as a
model of a real human student.

Box 7.2 — Problem-driven vs. data-driven learning

On the contrary, problem-driven learning is fast as a single instance can suffice to learn
something new. This type of learning relies greatly on the situation in which the learning
instance occurs. It is also found in child language learning, and can be explained as
follows: "typically, an infant who observes the consequence of a given action in a given
context will readily be able to predict very well what happens if exactly the same action
happens in the same context again” (Kaplan & Oudeyer, 2001, p. 35). The same type
of online learning - which must happen under the right circumstances, namely when the
child is attending to the name object (Yu, L. Smith, & Pereira, 2008) - is also found
in memory-based algorithms (Daelemans & Van den Bosch, 2005). We apply one-shot
learning in our daily lives. When a new colleague is introduced to you in the office you
will probably (unless you have problems remembering people’'s names) learn her name
there on the spot, from a single example. The next time you want to address her, you
can use her name straight away. Also, greetings in a foreign language are usually picked
up in a single shot: hearing a Catalan speaker saying "adéu” when you leave the lift will
often be enough to start using it yourself on future occasions (especially if you know
French or Spanish, which use a similar strategy of saying goodbye by referring to God).

7.2 Meta-level learning strategies

Different from typical constructivist theories that focus on children’s developmental pro-
cesses, this dissertation focuses exclusively on adult second language acquisition. Learn-
ers construct utterances and come up with conceptualisations according to their personal
learning strategies, which depend on their proficiency level and the learning objectives
that they have set. If it is your goal to be communicative above all, you may start by
using infinitives or only partially conjugating your verbs and compensate it through the
use of adverbs (e.g. yesterday, until now, tomorrow) and deictic pronouns or gestures
(e.g. "you" accompanied by pointing at the interlocutor). Or if you are lacking much of
the vocabulary needed to talk about a certain topic, you might choose to rely on the
general statistical patterns of the language you are learning together with words from
your first language or a related language that you know. On the other hand, if it is your
goal to reach a near-native language proficiency level, you might pay more attention to
correct pronunciation or typical idioms used by native language users.
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Learning strategies are here also implemented as meta-level operators, having exactly
the same components as flexibility strategies (see Chapter 5). Diagnostics and repairs
relate processing problems that appear not because of slips or innovative language use
but because the construction inventory and grammar engine are not yet in a state to
process utterances of the target language system without signalling a problem. As learn-
ing strategies are problem-driven, they typically make use of the information that can
be extracted from the situation in which the problem is diagnosed as well as the con-
structions that were used to process the utterance or meaning so far. Because | am only
considering second language acquisition here, | assume that the learner already has a
basic knowledge of the linguistic patterns of the target language (e.g. word boundaries,
morpheme composition, etc.).

Of course, learning strategies will depend on the type of language system you are focusing
on (e.g. determiners, modal verbs, prepositions) and the specificity of the problems that
are encountered. The following three prototypical examples of high-level diagnostics that
are often used as part of a generic learning strategy:

e New word in parsing: The student agent detects a string in parsing for which he
does (yet) not have a construction. Depending on the string’s position and the
agent’s knowledge about other strings surrounding it, he can also diagnose the type
of string that is unknown: e.g. lexical, morphological, functional, etc. A potential
similarity measure could inform the language agent about overlap between the
unknown word and the constructions already present in his construction inventory.

e Unfamiliar word use: This diagnostic can trigger in parsing when a word that can
be covered by one of the student agent’s constructions is for instance used with a
different category than the one present in the grammar or follows a different word
order pattern than the one expected.

e Inexpressible meaning: When the student agent’s construction inventory is not
yet mature enough, it can occur that he simply cannot express some meaning
features that he would like to talk about. Moreover, the feeling of not being
able to express oneself occurs frequently in language learners and even proficient
language users encounter it sometimes. It is one of the main drivers for language
innovation, especially when new concepts appear in society or multilingual speakers
transfer expressions from one language into another one.

To really accomodate for fast learning that is problem-based repairs typically make use of
construction templates that can be filled in, based on the features that are present in the
problem. Example repairs for the unknown-word problem are described below. Other
repairs include adding a new grammatical construction, modifying a word’'s phonetic
properties, extending a word order pattern construction, etc.
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e Ready-made construction templates: Construction templates contain most in-
formation for a particular construction such as a preliminary syntactic and seman-
tic category (e.g. noun, object), word order information or phonetic constraints.
When a new word of a certain type is detected, a new construction can easily be
generated. When "ball” is detected as an unknown word but the learner is aware of
its noun category given that he knows about the general linguistic patterns of the
English language, he can add a construction by using the lexical skeleton template
(which automatically adds the lexical category noun and the semantic type object):

(def-lex-cxn ball-cxn
(def-lex-skeleton ball-cxn
:meaning (== (ball ?7x))
rargs 7x
:string "ball"))

e Elaborating constructions: Later when the ball construction is encountered in new
situations, it can be elaborated such as to provide information on plural formation,
grammatical gender or typical collocations.

(def-lex-cat ball-cxn
:sem-cat (==1 (graspable +))
:syn-cat (==1 (plural regular)
(gender common)))

When a repair is active in a particular branch of the search tree, a copy is made of
the construction inventory and the grammar engine configurations. This copy is then
modified by the repair and when the repair proves to be successful, the copy replaces
the original construction inventory and configurations. A repair can be successful in two
scenarios: (i) either the repair method could be executed until the end and thereby make
its modifications as foreseen so that processing can continue, or (ii) a repair forces a
restart of the processing in an earlier node of the search tree (it indicates also where) and
success is defined upon the presence or absence of the previously diagnosed problem that
the learning strategy tries to handle. When multiple problems are diagnosed in different
branches, every branch hosts its own copy of the construction inventory. Only the final
construction inventory most successful branch will be adopted as the student agent's
new construction inventory.

Meta-level learning strategies are not used exclusively in problem-based learning ap-
proaches. Also more developmental learning styles can be modeled, given some predefined
thresholds. The meta-level architecture has already been used to model first language
acquisition that runs through three stages defined by Tomasello (2003): holophrases,
item-based constructions and abstract constructions. Agents run through these phases,
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first acquiring holophrases "gimme ball”, then item-based constructions "gimme X", and fi-
nally abstract constructions imperative + indirect object + direct object.
The transition from one stage to the next occurs when a learner has encountered enough
instances of a certain type, which can be reflected in an absolute threshold or a success
score of the constructions that are involved. Computational simulations of the acqui-
sition of Russian aspect demonstrated this approach for a small set of Russian verbs
(Gerasymova & Spranger, 2010; Gerasymova, Spranger, & Beuls, 2012). Hungarian
subject-verb-object agreement was also subjected to the three-step developmental learn-
ing scheme (Beuls, Gerasymova, & van Trijp, 2010).

7.3 Attested learning strategies in SLA

Because we are interested here in second language acquisition (SLA), it is useful to inves-
tigate real learning strategies that have been observed in learners of a foreign language
to incorporate some of the aspects of such strategies into the meta-level architecture
our student agent. The current section therefore discusses learning strategies that have
been described in SLA research. It is meant to provide some background on how this
term is usually understood and lists different types of learning strategies that have been
verified. Readers who solely want to understand the architecture of the student agent
can therefore easily skip this section.

Learning strategies, according to Weinstein and Mayer (1986), "have learning facilitation
as a goal and are intentional on the part of the learner” (O'malley & Chamot, 1990,
p. 43). For them, the goal of using a learning strategy is to "affect the learner's motiva-
tional or affective state, or the way in which the learner selectes, acquires, organizes or
integrates new knowledge” (Weinstein & Mayer, 1986, p. 315). This broad description
gives rise to three classes of learning strategies, which have emerged from interviews with
effective language learners: cognitive strategies, meta-cognitive strategies and social or
affective strategies. They are discussed in the following sections.

7.3.1 Cognitive strategies

Cognitive strategies operate directly on information that is received by the learner during
language processing. Weinstein and Mayer (1986) propose three broad groupings to
distinguish these strategies: rehearsal, organization and elaboration processes. O'malley
and Chamot (1990, p. 45) list the following typical cognitive strategies for listening and
reading comprehension:

1. Rehearsal or repeating the names of items or objects that have been heard;
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2. Organization or grouping and classifying words, terminology, or concepts according
to their semantic or syntactic attributes;

3. Inferencing or using information in oral text to guess meanings of new linguistic
items, predict outcomes or complete missing parts;

4. Summarizing or intermittently synthesizing what one has hear to ensure the infor-
mation has been retained;

5. Deduction or applying rules to understand language;

6. Imagery or using visual images (either generated or actual) to understand and
remember new verbal information;

7. Transfer or using known linguistic information to facilitate a new learning task; and

8. Elaboration - linking ideas contained in new information or integrating new ideas
with known information.

The term learning strategies as | have used it in this chapter is most related to this first
class of learning strategies. My interpretation of a learning strategy is much more tied
to a particular linguistic phenomenon, which might constitute a hurdle for a learner. Yet,
the general mechanisms described here as cognitive strategies are certainly also found in
such language-specific learning strategies.

7.3.2 Meta-cognitive strategies

Meta-cognitive strategies are used by higher order executive skills such as planning,
monitoring or evaluating the success of your learning task. O'malley and Chamot (1990,
p. 44) provide the following examples for these strategies:

1. Selective attention for special aspects of a learning task, as in planning to listen
for key words or phrases; Planning the organization of either written or spoken
discourse;

2. Monitoring or reviewing attention to a task, monitoring comprehension for infor-
mation that should be remembered or monitoring production while it is occurring;
and

3. Evaluating or checking comprehension after completion of a receptive language
activity, or evaluating language production after it has taken place.
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These strategies are closer to the usage of flexibility strategies defined in Chapter 5
as they include re-entrance checks and evaluate comprehension at the end of a parsing
process. If a certain irregularity is perceived, lower order cognitive strategies can be called
to actually define the problem and solve it with the information that is at hand in the
given learning situation.

7.3.3 Social/affective strategies

So-called social or affective strategies are those strategies that are involved either with
interaction with another person (social) or that help to control the learner's feelings
related to the learning task (affective). O'malley and Chamot (1990, p. 45) list the
following strategies that are used by learners in listening comprehension:

1. Cooperation or working with peers to solve a problem, pool information, check
notes or get feedback on a learning activity;

2. Questioning for clarification or eliciting from a teacher or peer additional explana-
tion, rephrasing or examples; and

3. Self-talk or using mental control to assure oneself that a learning activity will be
successful or to reduce anxiety about a task.

SLA learning strategies often rely on conversational repair strategies used by learners
to gain a full understanding of a particular conversation. There are a few studies that
report on the repair strategies that are practiced by students (Egbert, 1998; Liebscher,
2003). Egbert (Egbert, 1998) investigated the types of repair initiations that first year
college German students employed in language proficiency interviews. The most common
repairs are those that learners can transfer from their native language: partial repeats and
understanding checks. An example of an understanding check is included below. This
type of repair strategy is similar a repair strategy that is often used in native discourse,
which is referred to as the (Huh?) strategy. In the following example, in response to the
learner’s request for repetition, the entire trouble source is repeated by the interviewer:

- Tutor: Was hat lhnen dieses Semester im Deutschkurs ni:cht gefallen
What did you no:t like this semester in your German course
(1.5)

- Student: No:ch einmal?

Example 4 O:nce more?

- Tutor: Mhm tch! Was hat Inhen dieses Semester im Deutschkurs
ni:cht gefallen.
Uh huh tz! What did you not like this semester in your
German course.
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Advanced learners of German are found to use one additional type of repair strategy:
request for definition, translation or explanation (Liebscher, 2003). In their study they
also found that students and teachers use very different repair types due to their role
perception within the classroom. When interacting with a teacher, students show a
preference for more specific repair initiation strategies. The following example illustrates
this:

- Tutor: f-fatima hat banken (.) gesagt
f-Fatima said (.) banks
- Student: | DON'T UNDERSTAND WHAT gegen
obj
Example 5 WHAT WE'RE TALK- gegenstand
object
- Tutor: gegenstand ist ein objekt
'Gegenstand’ is an object

The study by Cho and Larke (2010) analyzed conversation data of an ESL classroom
in a suburban elementary school in Texas with five students (for which 24 classes were
recorded). Similar to the adults of the previous study, the children's most frequently
used repair strategies were understanding checks (117 occurrences) and partial repeats
(144). Another interesting repair strategy found in this study is a request for repetition,
which yields a repetition of the trouble source turn as response:

- Tutor: ok. today | sneeze wobbly, yesterday |, what verb form
- Student 1: uhm? one more time
Tutor: today | sneeze wobbly
- Student 2: <sneezed>
- Tutor: yeah sneezed.
- Student 1: aha

Example 6

In line 2 of the example, student 1 started his turn with two types of repair initiation:
Unspecified repair (uhm?) was followed by a request for repetition (one more time). The
tutor responded with the repetition of the trouble source in her turn in line 3.

A similar research study has been carried out to investigate the use of strategies to
repair communication breakdowns by young French-English bilingual children of 2 and
3 years old (Comeau, Genesee, & Mendelson, 2007). The children interacted with an
experimenter who only spoke a single language during the entire conversation. When they
would start using the other language the experimenter would make up to five requests for
clarification. All children in this study were capable of switching languages after language
breakdowns and some even initiated self-repairs as soon as they noticed they were using
the wrong language (see Examples 7 and 7 with a 2 and a 3 year old):

140



7.4. CONCLUSION

Example 7 TAL (2:9):
P TAL : La la soeur. The the sister. [pause] The sister.
Example 8 JIA (3:2):

JIA: Un a. [pause]| A bird.

7.4 Conclusion

Learning strategies are perhaps the most important component of the student agent's
architecture. By making use of the meta-level architecture of language processing, they
construct an agent’s construction inventory and tweak the configurations of the grammar
engine. Similar to flexibility strategies, a learning strategy is always built around a prob-
lem that occurs during routine language processing, thereby activating the meta-level.
Because learning is inherent to the presence of the meta-level architecture, an agent can
exclusively learn when a problem is encountered and learning proceeds very fast, even
through a single problem repair. This problem-based approach brings meta-level learning
strategies closer to the ideas that were explored in the constructivist learning theories
of Piaget and Vygotsky. The next chapter demonstrates the learning strategies for the
language system of Spanish verb conjugation, as the student and the language agent are
Interacting with each other in language games.
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Chapter 8

A student agent for Spanish verbs

The only difference between a student agent and a language agent is the use of the meta-
level architecture. While a language agent makes use of flexibility strategies to correctly
diagnose and repair processing problems, a student agent employs a set of predefined
learning strategies to expand and adapt its construction inventory and grammar engine
configurations while engaging in interactions with the language agent. This chapter
demonstrates how these learning strategies become operational for the domain of Spanish
verb conjugation, as a student agent and a Spanish language agent interact in language
games. Figure 8.1 illustrates this language game with a diagram of the processes a
student agent runs through on the top and the language agent’s processes at the bottom.
All processes that are flagged carry potential for learning. While in parsing and production
the student agent can modify its construction inventory, learning strategies that are
active in the consolidation process at the end of every language game can potentially
make changes to all three components of the student agent’s architecture.

o BN Rl R

1
render parse produce render consolidate| produce render consolidate |
I

de- parse give
render feedback

de- parse give
render feedback

T T
game n game n+1 game n+2 t

Figure 8.1 — The student agent can model the acquisition of the target language
system by running through a number of processes in the tutoring game and learning
when processing problems are encountered.
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Unlike the Spanish grammar bootstrapping technique, which was introduced above as a
shortcut to quickly create a large-size target grammar, learning strategies for Spanish
verbs do not depart from an infinitive but instead encounter conjugated verb forms. They
are used by a student agent to acquire the target language systems through situated
interactions (also called language games). A learning strategy, as Chapter 7 has already
explained, is a plan to tackle - in this case - a language acquisition problem that occurs
during online processing. This problem-driven plan always consists of a set of diagnostics
and repairs to identify and solve the problem in question. A strategy contains probability
scores on the edges that lead from a problem to its possible repairs that indicate which
repairs are most probable to occur after the problem has been diagnosed.

Although a student agent's construction inventory starts off as an empty list ready to be
filled up with constructions, learning strategies are assumed to be aware of the general
linguistic patterns of the Spanish language. Such patterns are readily observable by
every adult learner with a background in another Indo-European language and a minor
exposure to the Spanish language. They include knowledge about the composition of a
verb form (i. e. a stem preceding a suffix) and the features that are expressed by a suffix
(person, number, tense, aspect and mood). Also the rules of stem and affix formation
are assumed shared knowledge by language learners and are therefore "hard-coded” in the
learning strategies.

Learning strategies take the general linguistic patterns of a language into account.

Box 8.1 — Learning strategies assumptions

The student agent learns through interacting with a language agent that has full com-
petence of the target language. Learning strategies are active at the moment of parsing
verb forms produced by the language agent or when producing verb forms that express
a certain conceptualized meaning. This section first explains the language game that
lays out the scene for verb conjugation learning in Section 8.1. Section 8.2 contains a
detailed description of the learning strategies that the student agent employs to acquire
different aspects of Spanish verb conjugation. Special attention is given to the learn-
ing of verb classes. Finally, the results of the use of learning strategies to construct a
grammar for Spanish verbs are included and discussed in Section 8.2.4.

8.1 The language game

In this language game, the language agent and the student agent interact and play so-
called reference games, in which the speaker selects a topic from the situation that he
then describes. The hearer’s task consists in finding back the topic after interpreting
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toque

No creen que ella  toca  bien la guitarra. \©)

Figure 8.2 — An example of a learning situation in Rosetta Stone shows how the
learner can select one of two contrasting answers (indicative/subjunctive mood) for
this sentence. The correct answer here is to use the subjunctive form of tocar 'to

play’ "toque” ('l don't think she plays the guitar well’).

the speaker's utterance. Either the student or the language agent acts as the speaker.
The situation that they share contains two events, which only differ in their temporal,
aspectual or modal specifications (see Figure 8.2). The speaker then selects one of the
two events as the topic and produces an utterance (a verb form) that describes this topic
as appropriate as possible. The hearer’s task is then to parse the utterance and retrieve
the topic from the situation, without guessing.

A set of six contrasting tense/aspect/mood specifications is used to automatically gen-
erate situations:

1. present vs. present perfect (e.g. canto vs. he cantado);

2. present indicative vs. present subjunctive (e.g. canto vs. cante);

3. present perfect vs. past perfect (e.g. he cantado vs. canté);

4. past perfect vs. past imperfect (e.g. canté vs. cantaba);

5. present vs. future (e.g. canto vs. cantaré); and

6. past imperfect vs. conditional (e.g. cantaba vs. cantaria).
A language game succeeds if the hearer could retrieve the topic that was selected by
the speaker. It fails otherwise. Because the student agent is randomly assigned the role
of speaker or hearer he can encounter problems in production and in parsing. When the

student agent acts as the speaker of the game, it frequently occurs that he produces
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an utterance that is not completely grammatical. The language agent then detects the
irregularity through his flexibility strategies and reproduces the utterance in a corrected
form. Now, the student agent is informed that his original utterance was incomplete and
he can use the corrected utterance to infer what went wrong. No explicit feedback is
provided. This inference mechanism is part of the learning strategies that form the topic
of the next section.

The first game in Figure 8.1 illustrates this with the tutor as the speaker. The student
agent’s first process here is parsing the tutor’s description. In the beginning, parsing will
always fail because the student agent does not yet have the appropriate constructions.
When this happens, learning strategies are consulted that aid in expanding the construc-
tion inventory (1) or modifying certain constructions so that they can apply to parse the
utterance at stake. The conceptualization that is readily available to the student agent
can be used here to (re)construct the necessary form-meaning mappings. Learning im-
plies that you test what you just learned, not only in re-parsing the tutor's utterance but
also in trying to reproduce what the tutor agent has just said. Therefore, in the second
process on the time line, the student agent runs a production process that yields in his
own utterance to describe the situation. Again, this process might need the assistance
of learning strategies that control the assembly of the construction inventory.

The tutor agent determines the success of the current game by checking whether the
student agent’s utterance is the same as his own. Success or failure is the only form of
feedback that the student agent receives in this game. The student agent now proceeds
to the last process of the game where he consolidates the recently acquired knowledge so
that possible misconceptions can be restored. Consolidation relies on learning strategies
that can modify all three components of the student agent’s architecture: (1) construc-
tion scores can be reinforced or inhibited or unknown feature values might be filled in;
(2) configurations in the grammar engine might be changed when some inefficiencies
were detected or (3) the scores of learning strategies themselves can be adapted here.
In consolidation, the student agent has access to all constructions that were learned and
used in the game. After this updating has taken place, the student agent is ready to
start the next game.

Game 2 in Figure 8.1 shows an example of when the tutor acts as the speaker in the game.
Because it is assumed here that the target grammar expresses the full conceptualization
of the situation that is shared, the student agent will start a production process that tries
to cover all elements (expressed as predicates) in the conceptualization. Obviously, in
real language users — apart from not sharing the same conceptualization — do mostly only
express parts of what they conceptualize in a given situation. On the way to producing
an utterance, the student agent might encounter a range of problems that are diagnosed
by the learning strategies he has been supplied with. Frequent problems that occur at
the initial stages of a tutoring session concern the inexpressibility of certain predicates in
the conceptualization.
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The produced utterance is subsequently parsed by the tutor agent (not shown in the
figure). The tutor's parsing can be seen as an evaluation of the student’s utterance.
Successful parsing does not always lead to a positive evaluation. Even if the student
utterance is grammatical and can therefore be parsed it might not be an adequate de-
scription of the situation. This adequacy is verified through a re-production of the
conceptualized meaning by the tutor agent and a successive comparison between the
two utterances. When they are the same, the game succeeds, otherwise it fails. The
reproduced tutor utterance is always sent to the student agent, who parses it to match
the intended meaning. Here, again, learning strategies can operate that modify the con-
struction inventory when problems are diagnosed during parsing. Finally, consolidation
solidifies learned constructions and can modify the grammar engine or learning strategy
scores.

8.2 Learning problems under the looking glass

The problems that a student agent encounters when learning how to conjugate Spanish
verbs vary in terms of complexity levels. Although the semantic complexity of Spanish
verb conjugation in the use of tense, aspect and mood is far from trivial, the learning
strategies that are implemented in this first cycle focus on the learning of formal con-
straints. We Learning basic endings of a regular verb is an easier job than figuring out
when to change a verb stem such as “volv-" (< volver, 'to return”) into “vuelv-" or when
to assimilate a verb stem with its ending and when not (e.g. actdo 'l act’ vs. evacuo
'| evacuate’). An additional complexity is added for figuring out which suffix belongs to
which verb class: e.g. “-aba” (1st) vs. “-ia” (2nd or 3rd). Moreover, the number of verb
classes is not disclosed to the learner. This section goes through these three levels of
complexity in the acquisition of Spanish verb conjugation step by step and homes in on
some specific problems that learning strategies are working on.

The student agent's learning strategies are specialized on the acquisition of the
formal features of the Spanish verb system.

Box 8.2 — Learning formal constraints.

8.2.1 Learning the basic mappings

To construct basic knowledge of the Spanish verb grammar, a student agent relies on
a couple of learning strategies that help him to handle new verb stems or suffixes that
he has not encountered before. The main idea is that he uses the situation in which he
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hears the unknown forms to figure out their meaning and usage pattern. Because every
situation deals with one event that is pictured in two different constellations (e.g. present
perfect versus present tense), the meaning of an unknown stem is easily retrieved. Two
slightly more complex learning strategies, the learning of irregular verbs and the use of
syntactic suffixes are discussed in this section.

Once again, the psychological reality of these learning strategies is not at stake here, |
am only after a system that can learn Spanish verb conjugation in a way so that it can
communicate error-free. By building such a system, | want to gain a better understanding
of the difficulties that are involved in learning this particular language system and the
learning strategies that could tackle these.

Irregular verb problem

Irregular verb forms are memorized as single chunks, that cannot be subdivided into
a stem and one or more suffixes (see Section 4.2 on the Spanish construction inven-
tory). As a part of his learning strategy knowledge, the student agent can discern verb
stems from endings. Therefore, when no such segmentation can be made, the irregular
verb form diagnostic triggers automatically and returns an irregular-verb prob-
lem. This problem is then tackled by a repair that specializes on it, in this case the
learn-irregular-verb repair.

The first repair that tries to solve the problem of an irregular verb form takes the verb
form that is unknown, for instance soy 'l am’ and relates it to the events present in the
learning situation: e.g. the to-be event in the 1 sg present indicative vs. 1sg future
indicative. When the repair can figure out which of the two event meanings belongs
to soy, meaning predicates are created and a new irregular lexical construction is added
that links those to the unknown verb form soy. This inference can occur when the agent
already has a construction for to be in the 1sg future indicative (seré). Or else, when
a similar irregular construction is present in the construction inventory: e.g. voy 'l go’
(also 1sg present indicative).

Else, when the student agent does not have any indications as to how to link the unknown
string to one of the events in the situation, the repair adds a generic irregular construction
that links soy to the event predicate only, without any further specifications (Figure
8.3b). As a consequence, the student agent cannot disambiguate the topic event from
the situation (guessing is not permitted) and the game fails. The missing-meaning
diagnostic triggers now. Yet, as a result of this failure, the speaker points to the event
that he described with soy and another repair add-meaning-after-pointing takes
the meaning related to the topic event and inserts it into the recently created irregular
construction (see Figure 8.3c) so that it is complete.
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initial
problem-found, succeeded, initial

sem syn | top

[y

form ((string soy-75 "soy"))

(a) Problem found

soy-irreg
?top-unit-18952 ?top-unit-18952
sem-subunits (==0 ?any-unit-1131) syn-subunits (==0 ?any-unit-1131)
tag ?7m-1260 (meaning sem syn | footprints (==0 morph irregular
== < > ser)

(ser ?event-12236 .
2context-10663))) tag ?string-2281

X . (form
footprints (==0 morph irregular ==
ser gram-cxn)

(string ?verb-unit-8201 "soy")))

?verb-unit-8201

— ?m-1260

args ?verb-unit-8201
(?event-12236 footprints
?context-10663) f . : B - (==1 morph irregular

- i ?top-unit- ?top-unit- ser agreement)

syn-subunits 18952 18952

(==0 ?any-unit-1131) - - syn-cat L .

. (==1 (lex-cat verb))

footprints

(==1 morph irregular — ?string-2281

ser agreement)
sem-cat (==1 (class event))

(b) Soy construction with general meaning

soy-irreg

?top-unit-18952
sem-subunits (==0 ?any-unit-1131)

footprints (==0 morph irregular
ser gram-cxn)

?top-unit-18952

tag ?m-1260 syn-subunits (==0 ?any-unit-1131)
(meaning sem syn | footprints (==0 morph irregular

== < > ser)

ser ?event-12236 .

¢ 2context-10663) tag ?string-2281

(1lsg-agent ?agent-5328 (form

?event-12236 ==

(time-sphere ?event-12236 (string ?verb-unit-8201 "soy")))

present

(sector %’event—12236 present)
(binding ?event-12236
absolute-present)))

?verb-unit-8201

— ?m-1260
?verb-unit-8201
args -
(?event-12236 footprints
?context-10663) F . g 3 - (==1 morph irregular
. . ?top-unit- ?top-unit- ser agreement)
syn-subunits 18952 18952
(==0 ?any-unit-1131) : b syn-cat
footprints (==1 (lex-cat verb))
(==1 morph irregular — ?string-2281

ser agreement)

sem-cat (==1 (class event))

(c) Soy construction with complete irregular meaning

Figure 8.3 — The learning strategy for irregular verbs proceeds in two steps: once
an unsegmentable string problem is detected (a), a general lexical construction
linking the string with the infinitive meaning is added to the construction inventory
(b) but after the speaker has pointed to the correct event, this construction is
replace with a complete irregular lexical construction (c).
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One could argue that this approach is similar to the dual route to learning verb conjuga-
tions, similar to the original proposal by Rumelhart and McClelland (1986) who argued
that irreqgulars are memorised as complete chunks without internal rules and regulars
can productively be created following certain grammar rules. Yet, Spanish inflectional
morphology (similar to the past tense in English) exhibits so-called quasi-regularity (or
semi-regularity), which is captured by the verb type footprints and the phonological con-
structions for stem changes. Quasi-regularity can be caught by the decision tree that was
presented in Chapter 6. Only suppletive items such as the primary verbs in the Onoma
decision tree fail to use any of the constructions that produce regular tense conjugations
(McClelland & Patterson, 2002).

Unknown verb ending problem

When a verb form could be segmented by the student agent, it consists of a stem and
an ending (the ending is not further segmented, unlike the language agent’s verb form
segmentation): e.g. habl -an 'they talk’. A number of scenarios are possible when the
student agent parses this segmentations:

e A lexical construction for the stem is lacking in the student agent’'s construction
inventory: e.g. habl cannot be parsed.

e A morphological construction for the ending is lacking: e.g. -an cannot be parsed.
e Both the stem and the ending are unknown to the student agent.

e Constructions exist for both stem and ending but their feature structures are in-
compatible: e.g. -an is only known for verbs of the 1st verb class, while hab/ carries
a 2nd verb class feature.

| will focus here on the second scenario: the unknown verb ending problem. In this case,
the student agent has a lexical construction for hablar 'to speak’ but lacks a morphological
construction for the -an ending. Three main learning strategies are involved in the
acquisition of verbal endings, focused around three different learning problems:

1. Unknown ending: The ending string cannot be parsed by the grammar engine due
to the lack of a morphological construction for it (diagnostic). The repair adds a
new construction that links the unknown string -an to a generic meaning variable
?meaning, an intermediate solution until the ending’s meaning can be filled in.

2. Missing meaning: The new morphological construction is used but does not yield
a definite meaning that disambiguates the topic event in the situation (diagnos-
tic). The repair operates after the speaker’s pointing action, when the missing
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meaning can be inserted into the morphological construction. Notice here that,
different from the typical morphological constructions, the ending construction is
a sem-syn construction: linking grammatical meaning to a string (Figure 8.5a).

3. Variable inequality: The new an-suffix construction can now be used to parse
the hablan verb form completely but the parsed meaning contains a variable in-
equality in the event variables:

((3pl-agent 7agent-4331 7event-10196)
(time-sphere 7event-10196 present)
(sector 7event-10196 present)

(binding 7event-10196 absolute-present)
(hablar 7event-10192 7context-8961))

To link the hablar event variable to the remaining event variables, a phrasal con-
struction needs to be introduced that represents this link explicitly. This phrasal
construction adds the grammatical meaning that was before added by the morpho-
logical construction directly to the verb unit and links it through the args feature
(Figure 8.4). The meaning feature can then also be removed from the morpho-
logical construction, which thereby turns into a syn-syn construction that links
grammatical features about tense-aspect-mood (represented by the tam-matrix)
and person-number (person/number-matrix) to the ending -an (Figure 8.5b).

8.2.2 Stem changes

Stem changes are very frequent in Spanish and they occur in a variety of forms, which
have been explained in detail in Chapter 4. Also the decision tree that was used to
classify Spanish infinitives in the previous section heavily relied on indications for stem
changes that the infinitive could induce. But how does a real learner construct these

subtle differences in use between “cuento” 'l tell' and “contamos” 'we tell' ?

Because the student agent hears both stem variants, he will have saved two different
lexical constructions for the meaning of 'to tell’: the cuent-cxn and the cont-cxn.
At first, there is no explicit relation established in the grammar between these two verb
constructions. It is only when the student selects the wrong stem for a specific ending
that a problem is first revealed. The learning strategy that is activated when the original
stem is corrected by the language agent adds a new irregular construction for the cor-
rected verb form. Because irregular constructions have higher construction scores, they
are always tried first in production so when they can match on the complete conceptual-
ized meaning that the student agent wants to express, they will immediately trigger and
express the full verb form in one go.

151



CHAPTER 8. A STUDENT AGENT FOR SPANISH VERBS

present-indicative-3pl

?verb-unit-8241
footprints
(==0 gram-cxn)
?top-unit-19090 syn-cat
footprints (==1 (lex-cat verb)
(==0 gram-cxn) (tiI:
tag ?meaning-9416 (tense
2verb-unit-8241 (meaning (present +)
- (past =)
sem-cat (3pl-agent
? t-5359 2top-unit- (future -)))
(==1 ?Zgggt—12326) sem syn | 71op-unit-19090 (aspect
(class event)) |~ (time-sphere < P syn-subunits - T= oot
2 il . erfec
args ;3?222&}2326 (?verb-unit-8241) gpf—7853)
(?event-12326 (sector (imperfect
?context-10744) ?event-12326 ?2impf-7853)))
gresent) (mood
(binding (==1 .
?event-12326 (indicative
absolute-present))) +) . .
(subjunctive
sem-subunits _)) )))
(?verb-unit-8241) (person/number
(plural + - -
1)
(singular - - -
-))))

?verb-unit-8241
— ?meaning-9416

?verb-unit-8241
footprints (==1 gram-cxn)

footprints (==1 gram-cxn)

Figure 8.4 — A grammatical construction is added to link the meaning expressed by
the verb ending to the actual verb unit.

Generalizations over the memorized stem-suffix combinations are possible once enough
information is gathered and the semantic and syntactic information present in these
constructions can be analyzed and compared. This has not yet been done in the current
implementation of the Spanish verb learning strategies but it is an extension of the current
stem-change learning strategy that does not only make use of local situated information
but extends over a whole range of games and constructions that have been learned at
different occasions.

In a future cycle of development, semi-regular verb conjugations will be learned by making
use of the decision tree employed by the language agent to bootstrap a verb conjugation
paradigm. With small adaptations to enable the tree to classify conjugated verb forms
with a certain degree of certainty ("mislearnings” can be adapted later), the student
agent would be able to learn the conjugation patterns of semi-regular verbs as well as
the distinction between regulars and semi-regulars. Finally, the decision tree could also
be used to diagnose missing knowledge in the student agent when it is used as a student
model. The chapter on future outlook (Chapter 9) discusses this possibility in further
details.
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an-suffix

?top-unit-18977

. 2top-unit-
sem-subunits (== ?stem-unit-8132) Ptop-unit-18977
footprints (==0 suffix) Ty_n_'sgzlil'lt: anit-8132)
, . ?
tag .mganlng 9338 sem syn | tag ?form-602
(meaning < >
== < P (form
3pl- t ? t-5332 ==
( ?gveigfgzzsg?en (string ?suffix-an-1 "an")
(time-sphere ?event-12255 (mee;g ?stequnlt—8132
resent ?suffix-an-1)))
(gector %event-12255 present) . __
(binding ?event-12255 footprints (==0 suffix)
absolute-present)))
?suffix-an-1 ?suffix-an-1
— ?meaning-9338 | i ?stem-unit- ?stem-unit- | — ?form-602
footprints o Sl footprints
(==1 suffix) (==1 suffix)

(a) -an construction with a meaning predicate

an-suffix
?stem-unit-8150
syn-cat
(==
(tam
(==1 ?top-unit-19006
(tense
(==1 (present +) syn-subunits
(past -) (== ?stem-unit-8150)
(future -))) - X
(aspect ?top-unit-19006 footprints (==0 suffix) Py
(== - syn syn ?stem-
(perfect ?pf-7826) —— syn-subunits < p| tag ?form-an-1 | unit-
(imperfect (== (form 8150
?impf-7826))) ?stem-unit-8150) (==
(mood (meets
(==1 (indicative +) ?stem-unit-8150
(subjunctive -))))) ?an-1)
(person/number (ﬁtr?'.ng ?an-1
(==1 (plural + - - +) an")))
(singular - - - -)))
(lex-cat verb)
(verb-class ?vc-378))
footprints (==0 suffix)
?top-unit-19006
footprints (==1 suffix)
?stem-unit-8150 2an-1
footprints (==1 suffix) v?stem— syn-cat
n 1 ==1
| unit-8150 (lex-cat suffix))
— ?form-an-1

(b) -an construction as a syn-syn construction with a tam matrix

Figure 8.5 — A morphological construction for a verb form ending goes through
two main stages: (a) one stage where the grammatical meaning is directly linked to
the suffix string, (b) and another one where this meaning is replaced with syntactic

information that the meaning expresses.
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for w = stem
for s = suffix
if no class for wand s

do if s in history Wj € ij
dos — ij

else do invent class: s — Csn+1

w — Cw
n+1
elseifwe CWi and no class for s
do coerce:s — Cwi
elseif se Csi and no class for w
do coerce:w — Csi

else if overgeneralisation error: Cwi <=> Csi
dos— Csi'

else if Cw; and Csi'

do invent class: s — Cs
n+1

w —>CWn+1

Figure 8.6 — Pseudocode for the learning strategy that tackles the verb class
learning problem.

8.2.3 Verb classes

Similar to its ancestor Latin and its sister languages French and Italian, the Spanish
language divides its verbs into three main classes depending on the endings of their
infinitives: -ar, -er and -ir. Depending on the class a verb belongs to, it will combine with
different suffixes to form a conjugated verb form. For instance, cortar 'to cut’ is joined
with -aba to form the past imperfect, whereas beber 'to drink’ goes together with -ia
to express the same tense/aspect information. Yet, verbs belong to the -er (2nd) or -ir
(3rd) verb class share most of their endings and only differ in two forms in the present
tense (bebemos vs. vivimos, bebeis vs. vivis) and the forms they use for the future
and conditional tenses. This problem of ending sharing is alsoo known as the overlap
problem in machine learning, where a large number features are shared between two or
more classes so that training data points are no longer linearly separable (Bishop, 2006,
p. 331).

However, the student agent will never hear an infinitive in a language game and does
not know which ending to use with which stem. He has to learn the possible endings for
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a verb stem by extracting information from verb forms that are parsed, either in games
when the language agent is the speaker or when the utterance he produced has been
corrected by the language agent. When verb constructions and suffix constructions are
first learned, no information is added on the verb class they adhere to. Similar to learning
stem changes, the first moment when the student agent realizes he needs a constraint
on the way of combining verb stems and endings is when he misproduced an utterance
he thought to be accurate. A typical example of this scenario is when the student agent
would produce *beban 'they drink’ instead of beben. He thus reuses the -an ending that
he learned earlier in parsing and uses it in combination with the beb stem to express a
3rd singular present indicative tense of the verb beber, 'to drink’. Yet, when he already
had the -en ending in his construction inventory but had a choice of selecting -en or -an
the verb class learning strategy creates a first verb class and associates the verb stem
beb as well as the correct ending -en with it.

The pseudocode in Figure 8.6 contains the five cases that the student agent can en-
counter when the verb class problem triggers. Because the student agent does not know
how many verb classes there are in the target language, he can learn arbitrarily many
classes: {Cy, ..., Cn}. Every word, or verb stem w can belong to exactly one class:
w € C. A suffix s can belong to one or more classes but can at the same time also
explicitly be a negative member of other classes: s € C,...,C, and s € C, ..., G .
There are three main processes at work when the student agent is learning verb classes:

1. Category application/invention: A new verb class is invented when both the
word w and its suffix s do not yet have a verb class feature yet and the verb form
that the student agent originally produced was corrected by the language agent.
Before inventing a new class, the learning strategy verifies whether other suffixes
that have been used correctly with the same word in the past already carry a verb
class feature. If this is the case, w and s also adopt this verb class. Otherwise,
a new class is invented and w and s receive a new verb category feature on its
syntactic construction pole: e.g. (verb-cat (==1 (1 +))). As soon as there
is more than one verb class in the running, verb constructions receive also negative
verb category for the verb classes they do not belong to: (verb-cat (==1 (1
+) (2 -))). This expansion ensures that suffix constructions with a (2 +)
feature are not used together with a stem of the first verb class.

2. Coercion: A verb class feature can be coerced into the feature structure of a word
w or a suffix s when one of these carries a positive verb class feature. New verbs
are thus added to a particular class as soon as they are combined with one of the
class’ endings.

3. Overgeneralization: Because the second and the third verb classes share a lot of
their endings, the student agent is likely to have a single class for verbs that actually
belong to different classes. | refer to this effect as an overgeneralization error. The
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un- and - un- and -iria
{asin C. com-in C2 -irfa in C2 -irfa in C2 in C3

/ / / / COEen’a /

un-ias com-ias un-iria come-iria un-iria
CATEGORY COERCION COERCION OVER- CATEGORY
APPLICATION GENERALIZATION  CREATION

Figure 8.7 — An overgeneralization error occurs when the student agent wrongly
believes that a verb stem and a suffix belong to one particular verb class (e.g. &)
and is corrected by the language agent: e.g. *comiria — comeria. When this
happens the original suffix construction receives a negative verb class feature value.
Such a negative value is in a future application the trigger for creating a new
category (final step).

real challenge lies thus in splitting one existing verb class into two classes. Figure
8.7 explains this process in further details, why it occurs and how it is handled.

Sometimes four verb categories are needed to get rid of misclassifications at an early
stage in the learning process. The example below shows how a two class-system splits
into a four class system within the course of 12 interactions. Because class 2 contains a
mix of stems of all three Spanish verb classes: tratar, violar (1); unir, vivir (3) and comer
(2). The four class system is then refined until there are no longer "mixed” classes but
we end up with a divide of the -ar verbs into two verb classes: 2 and 4. Yet however,
the local learning strategy does not pay attention to merging two verb classes into one
when all their suffixes are shared.

500: (1 . vend)

531: (1 . vend) (2 . viol)

544: (1 . vend) (2 trat viol)

560: (1 . vend) (2 trat viol un viv com)

561: (1 . vend) (2 trat viol viv com) (3 . un)

572: (1 . vend) (2 viol viv com) (3 . un) (4 . trat)
823: (1 com vend) (2 viol viv) (3 . un) (4 . trat)
1141: (1 com vend) (2 . viol) (3 viv un) (4 . trat)
4999: (1 com vend) (2 . viol) (3 viv un) (4 . trat)

These unnecessary verb class divisions can be attributed to the way in which a new verb
class is instantiated. When there is a feature value mismatch that reveals a positive sign
for the verb stem and a negative sign for the verb ending (e.g. (2 +) vs. (2 -)), a
new verb class is created unless the ending has been used with another verb stem that
has a different verb class (e.g. 3) or the verb stem has an alternative form which has
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Table 8.1 — Verb class distribution in the Jehle corpus grammar

-ar (1) -er (2) -ir(3)
0.65 0.17 0.17

already been classified. In this case, the verb and the suffix constructions both receive a
verb category feature for the third verb class.

8.2.4 Results

The main measure in these student-agent/language-agent language games is commu-
nicative success, irrespective of who is the speaker in the language game. It is only when
the student agent can parse a verb form to its complete meaning that he can also retrieve
from the situation that a game succeeds. Or, in production, when the verb form pro-
duced by the student agent can be parsed by the language agent without resorting to his
flexibility strategies and signaling a processing error. When the stage is reached where all
games succeed, the student agent has obtained the highest level possible for the given
game set-up and we speak of convergence . Therefore, inverting the communicative
success curve would show us the error rate that the student agent is obtaining.

Yet, success in verb class learning is directly related to the input distribution: uniform,
with all three classes equally frequent or nonuniform with one class more than double
as frequent than the two others. When we use the complete Spanish test grammar
(with the 600 most common infinitives) 65% of all verbs belong to the -ar class and the
remaining -er and -ir classes are equally frequent and account each for 17% of the verb
inventory (Table 8.1).

The discrimination process that underlies the acquisition of a particular verb class
categorization directly depends on the verb input distribution (class, type).

Box 8.3 — Learning verb classes

How effective are the learning strategies?

To first test the effectivity of the student agent's learning strategies | started with
learning the full conjugational paradigms of six regular verbs, with an equal distribution
over the three verb classes: (1) tratar, violar; (2) vender, comer and (3) vivir, unir.
Figure 8.8 shows the results for an average of 4 x 5000 language games. Convergence
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Figure 8.8 — To learn six regular verb conjugations (equally divided over the three

Spanish verb classes) in discriminative contexts a student agent needs roughly 160

constructions in its inventory. Communicative success rises to 100% as soon as the

construction inventory size and the number of verb categories have stabilized (Input
= 6 regular verbs. Error bars= Average of 4 game series, standard deviation.).
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Figure 8.9 — The construction inventory for six regular verbs contains 6 lexical
constructions, no irregular constructions, six auxiliary constructions, 30
grammatical constructions and a varying number of suffix constructions that is
averaged around 102.

reaches 100% as soon as the maximum number of constructions is reached (a), which
coincides with the moment in which the verb class number is settled at three (b). As this
figure shows, the number of verb classes can mount to four for a brief period of time,
which is sometimes required to split one verb class into two new classes: e.g. (vender
vivir comer unir) => (vender vivir comer) (unir) => (vender vivir) (comer) (unir) =>
(comer vender) (vivir unir).

The final grammar size when learning the conjugations of six regular verbs fluctuates
between 150 and 170 constructions. Figure 8.9 shows that this difference lies in the
number of suffix constructions that are invented. Because verb class 2 and verb class
3 share most of their endings, some suffix constructions do not have a positive verb
category feature but only specify that they can not be used after a 1st verb class stem:
(verb-cat (==1 (1 -))). Instead of having two different suffix constructions, the
student agent can thus successfully use only one construction.

Now, when more than six verbs are used and also irregular and semi-regular infinitives are
allowed, the resulting picture becomes less easy to analyse clearly. To avoid a complete
explosion of the verb classes, | randomly select 25 infinitives from the Jehle grammar and
investigate how the student agent is able to acquire their conjugation. The 25 infinitives
are selected every time a new interaction series is started and differ thus between multiple
runs. Figure 8.10a shows an example of how verb categories can emerge and develop
within the first 1000 games of a new interaction series. The stems associated with each
class are included. Eight classes are instantiated: verb cat 1 and 3 represent the first
verb class in Spanish (-ar), verb cat 4 contains verbs ending on -ir and the remaining
verb classes all contain single verb instances. These single classes were created when
the verb stem was used with an ending that was not yet categorized (or had a negative
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feature value). Currently, no means to merge two or more verb categories into a single
one exist. Figure 8.10b displays the number of suffix constructions per invented verb
category: the largest categories for the -ar verbs have the biggest inventory but the
remaining categories are following rapidly.

Communicative success still increases rapidly when learning the conjugations of 25 verbs
but full convergence is reached relatively late. Figure 8.11 shows a long phase of con-
tinuously reshaping the construction inventory with new suffix constructions to cover all
verb classes and new irregular constructions that express stem changes. Still, although
new constructions are occasionally still being learned, most games are successful already
as the communicative success curve demonstrates (small error bars). As expected, the
construction types for which the number of constructions varies are suffix constructions
and irregular constructions (Figure 8.12a). Their number depends on the discrimination
process that categorizes the input verb forms as well as on the distribution of 25 verbs
that was randomly selected for the game series (regular, irregulars, verb classes). The
total number of verb classes fluctuates around 9 (Figure 8.12b) and they are introduced
within the first 500 games of a new series. In the remaining games of the series, new
verbs can be added to existing verb classes and suffix constructions are categorized into
one or multiple classes.

4 N

Reshaping of the construction inventory continues even after a student agent's
communicative success scores have been maximised. Variants of suffix construc-
tions (different verb class, same form and function) or irregular verb forms are still
being acquired throughout the series of 20 000 games (25 input verbs).

- J

Box 8.4 — Verb class reshaping continues after 100% communicative success.

The three main learning stages that a student agent runs through can be summarized
as follows:

1. Item-based learning: Verb forms are segmented but suffixes are attributed a full
semantic specification as they express part of the conceptualization made by the
speaker. Lexical constructions for lemmas can be learned after the language agent
(expert) has pointed to the topic event that was expressed in the utterance.

2. Abstract learning: Grammatical constructions are learned in this stage, because
they link lexical meaning of a lemma with the grammatical meaning expressed by
a suffix. Verb classes are being learned now, as soon as the student agent makes
mistakes in production by combining a particular stem with a suffix that belongs
to a different verb class.

3. Verb class reshaping: All basic constructions are into place now and the student
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Figure 8.10 — The development of verb classes happens quickly once the student
agent starts to produce utterances with verb class inconsistencies. Productive
classes such as the -ar class (verb-cat-1 and verb-cat-3) are first to reach a stable
suffix inventory. (Input = 25 verbs. Single game series run.)
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Figure 8.12 — The distribution of construction types in the resulting construction
inventories reveals that 50% of the grammar consists of suffix constructions (a).
Irregular verb constructions capture verb forms that cannot be expressed by
combining a regular stem and a suffix. The final number of verb classes mounts to
9 classes with a standard deviation of 1.2.
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agent can communicate almost flawlessly. Lexical constructions that have not yet
been categorized into one of the existing verb classes receive a verb-cat feature
and suffix constructions are shuffled around different verb classes to accomodate
for new verb-cat feature combinations.

What is the effect of the early student production?

Apart from the input set of verbs that is used to create new learning situations, another
experimental parameter that can be tweaked in this experimental set-up is the moment
when a student agent is allowed to start taking up the role of the speaker, rather than
only listening. Because there is a considerable amount of learning that happens when
the agent is allowed to produce utterances (with learning strategies that especially target
production), my hypothesis is that it is beneficial for the student agent to start to speak
as soon as he can. To investigate the effect of the initial moment of speaking, | have
tested three measures: communicative success, the construction inventory size and the
number of verb classes used by the student agent. Apart from the default set-up where
the student agent starts to speak at game 0, two additional starting moments have been
tested: after 500 games and after 2000 games.

Because errors that a student agent makes during speaking help him to learn more
efficiently, the moment of the first production should come as early in the learning
process as possible.

Box 8.5 — Hypothesis: Early speaking improves learning.

Although one would expect that the delay of this moment would influence the rate of
communicative success, Figure 8.13a shows that this hypothesis can only partially be
validated. The final communicative success scores (game 5000) for the three scenarios
is always 100%. Yet, after the introduction of speaking, the score drops sharply (speaking
500/2000) but it starts to rise again at a slower rate after the agent has recovered the
largest share of the "mislearned” constructions. When the student agent is purely listening
and absorbing information, the communicative success score reaches 100% considerably
faster because competence in listening requires less learning effort than complementary
speaking and listening proficiency.

Yet, interestingly enough, the number of constructions that the student agent knows
differs between the different speaking onsets and does not seem to have an effect on the
communicative success (Figure 8.13b). The average total number of constructions in
the student agent’'s construction inventory is only slightly larger when the agent starts
to speak at game 500 (= 15 constructions) but its number is grows more when speaking
is delayed until game 2000 (4 30 constructions).
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Also the number of verb classes that is present in the construction inventory is slightly
higher when speaking is delayed considerably in the learning process (Figure 8.13c). Al-
though the final number of verb classes in use fluctuates around 4 for all three conditions
(3.8, 4 and 4.2), the late speakers create a small overshoot of verb classes that need
to be unlearned during the game series. This additional verb class that was introduced
during learning but then never used again also explains the difference in grammar sizes
depicted in Figure 8.13b.

The hypothesis that speaking early is beneficial for learning cannot be corroborated clearly
in these experiments. To really get a good estimate of what is happening when the
moment of speaking is delayed, more parameters should be tested and a more detailed
analysis of the constructional learning is needed. Nevertheless, because no significant
difference could be shown between the moments of speaking, the default parameter
setting remains the scenario where the student agent and the language agent have an
equal chance to take up the role of the speaker from game 0.

Construction competition

Language games with a population of agents that is larger than 2, as the current game
has, automatically face the scenario where different solutions are invented in two in-
dependent games. The competition that results from multiple inventions for the same
grammatical feature or concept is usually dampened using a lateral inhibition strategy.
Wellens (2012) gives a good overview of strategies that have been used in the Naming
Game since its first appearance. Yet, with only two agents in a Naming Game, this type
of ambiguity (multiple forms for one meaning) does not occur. Also, the student agent
does not invent new forms when he cannot express a particular meaning but gives up and
waits for corrective input from the language agent. Previous experiments have looked at
analogical learning methods that can be used to invent a new form when related forms
already exist in the construction inventory of an agent.

Instead, learning only happens after correct input has been received, which implies that
there is no ungrammatical invention possible on the part of the student agent. Also
the acquisition of Spanish verb classes does never lead to real competition between
constructions. When a new class is created, a stem construction’s verb class feature is
simply overwritten. Although a suffix construction is copied with a change in the verb
class feature but the copy is no real competitor of the original construction. The original
suffix construction is also still correctly used in combination with particular stems.

In sum, scores are not used here because the learning experiment is a Naming Game
with two agents, of which one is an expert speaker. Only constructions such as irregulars
receive a score that is higher than lexical constructions for stems so that they are tried
first in processing, a property that is inherent to the learning strategy that invents them.
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8.3 Conclusion

Compared to the bootstrapped grammar of the language agent that could quickly be
created and covers a large number of verb paradigms almost without processing errors,
the student agent’s grammar is much more costly to construct and amplifying the number
of verbal conjugations that can be learned increases the learning time considerably. Yet,
as this chapter presented a first study of how we can get an insight into the difficulty
of learning Spanish verb conjugation, the learning strategies that were used to achieve
100% communicative success can be improved in future cycles as to decrease the learning
time. Also the final number of constructions in the student agent’s construction inventory
does not scale linearly with the number of input verbs. Due to the locality of the learning
strategies, the more input verbs, the more verb classes will need to be learned. This
issue should also be addressed in future work.

However, the student agent cannot yet be treated as a student model. To really use
the student agent as a model of a student in a tutoring game there are two operations
needed:

1. Potential gaps in a student agent’'s grammar should be made tractable so that
they can be used by tutoring strategies. To do, this a student agent should also
me able to invent new suffixes in production based on analogical reasoning over
suffixes that express related meanings.

2. The student agent’'s grammar needs to be aligned to the real student’'s knowledge
of the target grammar.

The next chapter discusses the future outlook of how the student agent can be used to
incorporate these tasks.
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Chapter 9

Future outlook

With a lot of time and effort put into the development of a robust language agent that
can parse and produce any verb form of any verbal paradigm of the Spanish language,
including ungrammatical forms, and a student agent that learns new constructions in-
crementally by interacting with a competent language agent, it is now time to explore
how these two key ingredients can be combined in the design of a first prototype of a
language tutoring system for Spanish verbs. Yet, before considering such a design, let us
first review the achievements made with the implementation of a language and a student
agent for Spanish verb conjugation:

1. A decision tree can be used to capture the underlying rules of Spanish verb con-
jugation patterns. It classifies infinitives into a particular pattern depending on
formal features they exhibit in their verb stem or theme vowel.

2. Together with a small set of basic constructions to capture verb endings and gram-
matical constructions for tense, aspect, mood and agreement, a full Spanish gram-
mar can be bootstrapped from this decision tree. The end nodes of the tree call
particular construction templates that create constructions based on the categori-
sation that is made.

3. A student agent can induce constructions based on data and also bootstrap a
grammar for the Spanish verb conjugation language system. It does not learn from
infinitives that it classifies, but it receives instead fully conjugated verb forms in a
discriminative context.

However, our student agent is not yet a student model in this first implementation. The
results in Chapter 8 demonstrate the difficulties in learning Spanish verbs. They do
not make claims about how human learning happens but show a first attempt to learn
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Figure 9.1 — A tutor agent has a language agent and a student agent at its
disposal as well as two additional components: a student profile and a set of
tutoring strategies.
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the target language system based on data with the main goal to gain insight into how
an agent learns. Now that we have such a learning agent, the creation of a student
model comes within reach. A student model would be able to say which constructions or
concepts are still lacking in the student agent’s grammar, which could be used by tutoring
strategies as diagnostics to select future language games that specifically address such

a gap.

The tutor agent’s three types of strategies for flexibility, learning and tutoring, all
rely on the same meta-level architecture with diagnostics and repairs that solve
problems.

Box 9.1 — The tutor agent’s meta-level architecture

This chapter describes the design of a future tutoring system that evolves around the
concept of a tutor agent (see Figure 9.1). Two essential elements of this design are the
student model that the tutor agent employs and the tutoring strategies that he has at his
disposal. Tutoring strategies are included in the design of a prototype for an agent-based
tutoring system to steer the learning curve of the student and select new situations that
are challenging enough (but not too demanding at the same time). To fully be informed
about the current knowledge and the skills of the student that is being tutored, the
design of a tutor agent includes one last component: a student profile. This student
profile contains static information about the student such as a user profile and measures
about his level and learning goals.
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The outline of this chapter is fourfold. First, Section ?? provides some background on
the larger pedagogical vision in which the tutor agent will be developed in future work.
Second, the student model is explained as an extension of the existing student agent in
Section 9.2. Third, Section 9.3 describes how tutoring strategies can be operationalized.
Finally, Section 9.4 includes a first illustration of an interaction with the tutor agent for
Spanish verbs.

9.1 Pedagogical vision

Apart from Intelligent Tutoring Systems, researchers in the field of Artificial Intelligence
have also experimented with building the right learning environments for computer-based
education. Therefore, when launching the tutor agent as a kind of personal language
tutor that helps you tackle the acquisition of a particular language system, we should
consider the ideal learning environment it will act in and how it will maintain the learner’s
motivation to play more language games. This section discusses types of learning envi-
ronments in Section 9.1.1, arguing for a trend towards situated learning in open-ended
learning environments. Section 9.1.2 focuses on learner motivation in pedagogy and in-
troduces the autotelic principle in the theory of flow. Yet, what follows is not intended
to be a complete account of the pedagogical principles that are involved in these topics
but rather provides a sketch of what the tutor agent should one day become.

9.1.1 Learning environments

When we think of learning environments, most of us will be reminded of typical environ-
ments that are made for classical instruction such as a classroom in a school building
or the piano chair in the conservatory where you spend many of the evenings during
your youth. But for others a learning environment can be their grandmother’s vegetable
garden, a friend’'s chemistry laboratory or the supermarket in a foreign country. The
best learning environments are probably those of which the learner is not aware, that
stem from natural situations in which learning happens very quickly (Krashen & Terrell,
1983).

This section gives an overview of a range of learning environments that we encounter
today and their consequences for the effectiveness of learning. It starts with the clas-
sical approach to education in Section 9.1.1, which has been dominant for hundreds of
years in our Western culture. Section 9.1.1 explores the theory of Situated Learning,
which was coined by Lave and Wenger in the early nineties to stress the importance of
using the student’s actual environment for learning. Finally, Section 9.1.1 reviews open-
ended learning environments that help students externalizing their ideas (Papert, 1980)
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and point to the role of tutors to speed up self-directed learning in such environments
(Vygotsky, 1978).

The classical approach

For hundreds of years, teachers have been presenting knowledge in carefully organized
packages to students that passively receive this information and work independently to
learn from fixed tasks from century-old curricula. As Park Woolf put it, "[t]hese passive
methods suggest that a student’s task is to absorb explicit concepts and exhibit this
understanding in largely factual and definition-based multiple-choice examinations” (Park
Woolf, 2008, p. 14). Teachers typically ask 95% of all questions in the classroom, which
require short answers or problem-solving activities (Graesser & Person, 1994; Hmelo-
Silver, 2004).

Yet, these traditional teaching methods are not very effective (Waterman, Matlin, & P.A.,
1993), as they usually only succeed with the top fourth of each class, which often includes
the most motivated and talented students. As Bloom’s two-sigma problem has shown
(see Figure 2.1), student achievement can be improved by two standard deviations when
students are tutored individually rather than instructed through classroom interactions
(Bloom, 1984). But the the student/teacher ratio is not the only factor that determines
the learning success. Learning environments also play a considerably large role.

It was widely assumed that to implement effective teaching methods that actively en-
gage their students technology would be needed. However, as the history of intelligent
tutoring systems has shown, the early "teaching machines” were all based on so-called
"programmed instruction”, a teaching method where the student interacts with the com-
puter according to a pre-programmed script which may allow for some limited, and
predefined, variations. These programmed-instruction systems almost always result in
similar ineffective learning outcomes as the traditional classroom teaching methods. Due
to the inflexibility of these programs, for instance, if the student re-runs a particular les-
son, he is liable to be presented with the same materials/dialogue as he encountered on
previous occasions.

Situated learning

The theory of Situated Learning was developed by Lave and Wenger (1991) who argued
that "learning is more than a transmission of abstract knowledge from one person to
another but it is situated in certain forms of social coparticipation”. Situated learning is
the most natural form of learning that occurs spontaneously when children are learning
concepts and linguistic expressions. Instead of teaching about vegetables in the classroom
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with pictures and descriptions, children can be taken to the local market in town to see,
touch and taste vegetables that are typical for their region or for the season. Or, as a
new PhD student, it is often more effective to really prepare a scientific presentation and
present it in front of a real audience than when you prepare one for the purpose of an
internal PhD course. You will automatically receive feedback on how you did and learn
how to improve things for the next time.

Linda Smith and colleagues have extensively demonstrated that children acquire their first
words in a situated context, by holding the objects in their hands and inspecting hem very
closely (Yu & L. B. Smith, 2012; Yu, L. Smith, & Pereira, 2008). But also when learning
a second language in a natural setting, learners also employ situated learning. We learn
words when we hear them in a particular context, we associate typical expressions with
whom has used them and in which situations they were used, and we'll take on the
pronunciations used by members of the community in which we are learning. Learning a
second language will proceed in a similar way to learning a first language, immersed in
the target language, and a communicative level can be bootstrapped quickly, especially
when corrective or explanatory feedback is offered by other speakers.

Mobile technology is a very powerful tool to create situated learning situations. A photo
blogging project initiated by Wong, Chin, Tan, and Liu (2010) involved students using
smart phones to take photos that could illustrate Chinese idioms that they were learning
and to share their photos and comments with the class through a wiki (Godwin-Jones,
2011). The effect on learning of using the student’s actual environment has been shown
to outperform projects that were based in a lab (Stockwell, 2008) or a classroom (Liu,
Peng, Wu, Lin, et al., 2009). Another study that tested mobile technology for learning
English as a second language in Dutch primary schools revealed that "formal school learn-
ing can be augmented by learning in an informal context, away from school” (Sandberg
et al., 2011, p. 1334). In this study, students were given a mobile application for learning
about animals in a public zoo (see Figure 9.2). A group of students that could take the
mobile phone home for a fortnight showed a superior performance on the posttests that
measured individual change in mastery of a set of targeted English words. Hence, the
motivation to use the mobile application in their spare time really had a positive outcome
on their learning progress.

Open-ended learning environments

The idea of an open-ended learning environments (OLEs) contrasts sharply with pro-
grammed instruction as they favor the teacher in helping to expand the views of learners,
as an indirect process that relies on interaction and influences from the context and the
environment of the learner. Open-ended learning goes back to Piaget’'s constructivism
(Ackermann, 2004), who claimed that knowledge grows according to complex laws of
self-organization, as we are learning through our actions in the world, and it can be
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Figure 9.2 — Snapshots taken from (Sandberg et al., 2011, p. 1339): "On the left
a multiple choice game about the Snowy Owl. On the right a jigsaw puzzle about
the Elephant.”

retrieved today in some of the computer-assisted personal learning environments that
allow users to ask questions, "experiment, interpret and learn from errors to revise their
knowledge” (Park Woolf, 2008, p. 17).

OLEs can potentially play an important role in sustaining someone’s motivation. When
you experience more freedom you can be more creative and adapt the learning material
to your specific goals. When learning Spanish, perhaps you only want to know how to
communicate with your new Spanish neighbors, or else you want to be able to read the
sports section of a Spanish newspaper. OLEs help students to learn at their own pace,
motivated by their own personal goals .

The most famous open-ended learning environment is probably LEGO, with its blocks
that allow children to construct their own microworld (the term microworld was first
coined by Feurzeig, of Computing Activities, Bolt, and Newman (1969)). A tool such as
Lego supports self-directed learning through an iterative process by which "learners invent
for themselves the tools and mediations that best support the exploration of intriguing
ideas” (Ackermann, 2004, p. 20).

Inspired by the pedagogy of Lego, Seymourt Papert developed the Logo turtle microworld
(Papert, 1987), that employed the Logo programming language (Papert, 1980), which
was developed to encourage students to think rigorously about mathematics not by
teaching facts but by building meaningful products. You could talk to a turtle (sometimes
shaped as a triangle) that inhabited a screen by typing commands on the keyboard.
Some examples of commands and actual moves are included in Figure 9.3. A so-called
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Figure 9.3 — By means of programmed instructions in the Logo programming
language, students could move their turtle in its microworld and create drawings.

"microworld” represents a small slice of reality. "It is strictly limited, completely defined
by the turtle and the ways it can be made to move and draw” (Papert, 1987, p. 80).

In open-ended learning environments, the learning process is generally more effective and
faster when it is guided by a tutor with greater expertise. Similar to Piaget and Papert,
Vygotsky also saw the child’s intellectual development as a constructive process, but he
put a greater emphasis on the role of culture as a teaching machine. Vygotsky coined the
notion of zone of proximal development (ZPD) (Vygotsky, 1978). The ZPD establishes
"a potential area of expansion that each individual has at their disposal to overcome their
limits, provided the social environment in which the learning takes place "pitches in""
(Ackermann, 2004, p. 22). It tells us thus how far we can push the limits of what we
know or can do, when helped by others.

0.1.2 Motivation

The motivation of many young people to participate in schooling activities, particularly in
European urban and multi-cultural environments has become highly problematic, leading
to stressful situations in classrooms and a high rate of drop-outs. School interactions that
require high intellectual engagement but they are experienced by students as allowing a
very low level of influence and therefore a low degree of intrinsic motivation (Della Fave &
Bassi, 2003). This lack of student motivation in turn has led to a crisis in the motivation
of teachers, who are forced to give standardised curricula that are too challenging for
part of the student population, leading to student anxiety, and too easy for another part
of the population leading to student boredom (Burke, 1996).

Maintaining and stimulating the learner’'s motivation is one of the most essential features
of a tutor. Various types of motivation play a role when we want to reach a personal
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learning goal such as playing a particular piece of music on the piano or running a half
marathon: self motivation, peer motivation and social motivation (d'Inverno, 2012).

1. Self motivation can be driven by your desire to achieve something, by your curiosity
to explore something new or by any other personal incentives.

2. Peer motivation relies on respect and trust you receive from others while you
are learning. We are very often actively seeking for confirmation of our learning
progress.

3. Social motivation originates from a personal wish to interact with others through
our newly acquired skKill.

Personal learning goals are typically driven by the learner’s intrinsic motivations, when he
creates his own learning incentive. Yet, instead of fostering intrinsic motivation, tradi-
tional motivational theories are based on the behaviorist idea of reward and punishment,
and are thus promoting an extrinsic motivation in the learner. This theory is reflected
in the reinforcement learning, where the learning process is accelerated by immediate
feedback, acting as a reinforcer. Typically, the mildest reinforcer possible needs to be
used, because, according to Lieberman (2000, p. 275) "if reinforcement is seen as a
means of control for the benefit of the controller, then it is less likely to be effective”.
Reinforcement, also in its negative variant (punishment), is used in a number of CALL
applications that give feedback by using praise words such as excellent or brilliant, or
even Wrong!, Incorrect!, False! or simply No!.

On the other hand, cognitive approaches to learning have suggested that the most
effective learning occurs when the learner is in a state of flow, a concept that was
first introduced in the self-motivating theory first developed by Csikszentmihalyi (1978).
Learners can reach optimal experiences when they find themselves in this stage and they
are afterwards confronted with an intense feeling of happiness and self-realization. The
search for the state of flow is an intrinsic motivation that can be induced, but that is
fragile and can at the same time be destroyed. Flow is certainly something that can be
learned, although it is also more than often suppressed.

This section further discusses instances of extrinsic and intrinsic motivation (including
flow) and relates them to their use in CALL applications.

Extrinsic motivation

Extrinsic motivation comes from outside of the individual. Common extrinsic motivations
are rewards such as grades or prizes that are obtained for showing the desired behavior.
Punishment is usually threatened to follow any bad behavior. Reward and punishment

176



9.1. PEDAGOGICAL VISION

leads to the conditioning of a learner’'s behaviour, which will be solely relying on the
presence of an external stimulus. In a competition, participants are encouraged to win
and beat others, rather than to simply enjoy the intrinsic rewards of the activity itself.
Not wanting to win can sometimes even be considered as disloyal behavior in sports.
Our sports "heros” are nowadays rewarded with tremendous sums of money for their
performances, which - not without surprise - does not always happen without any deceitful
practices. Extrinsic incentives have sometimes lost all proportions and have surpassed
the mere desire to hear a cheering crowd or to win a nice trophy.

There are a number of serious issues that can result from putting too much stress on
extrinsic learning incentives, that do not originate from the personal interest of the
learner, such as (p.c. Johan Loeckx):

e A reduction in the interest that a learner shows for the task in question;

e Learning happens much slower due to stress and because the learning goal is to
obtain a high grade, rather than acquiring the content of the task or subject,
making the learning process a meaningless activity (Dornbusch, Elworth, & Ritter,
1988; Gottfried, Fleming, & Gottfried, 1994);

e |earners often become uncertain and develop a lack of self-confidence, because
they are expecting a third person (to whom they look up to) to confirm their
learning progress;

e Creativity and the development of a critical viewpoint are ignored and considered
as irrelevant for achieving the learning goal.

Yet, extrinsic motivation is highly fostered in current CALL applications. They generally
inform you almost constantly about your scores (Rosetta Stone, Games for Language)
or they let you lose hearts as soon as you make a mistake (Duolingo). Reward and
punishment are omnipresent in these systems. They do not even try to find out what
the user’s real learning incentive is. Perhaps he skipped some parts and paid less attention
to his answers because he was for instance not interested in learning how to communicate
at the post office.

Intrinsic motivation

As Ryan and Deci (2000) state: "Students who are overly controlled not only lose initia-
tive but also learn less well, especially when learning is complex or requires conceptual,
creative processing”. Intrinsic motivation, as opposed to extrinsic motivation, is defined
as the doing of an activity because it is inherently interesting or enjoyable rather than
for some separable consequence. Learners that are moved by an intrinsic motivation act
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Figure 9.4 — The flow region is defined by a balance between challenges and skill.
When the challenge is too low for your current skill level, you experience a feeling
of boredom. By contrast, when your skill level is too low with respect to the
challenge level, you experience a feeling of anxiety. This graph is a replication of
the original flow chart.

for the fun or challenge that is entailed in the learning process rather than because of
"external prods, pressures, or rewards” (id.). Such intrinsic motivation can be promoted
by granting learners more freedom and abandoning systematic grading. In this way, the
learner will be encouraged to explore domains of knowledge by himself, "instead of be-
ing supplied with pre-established answers” (Steels, 2004, p. 139). Examples where this
approach has proven success - at least for pre-school or the first year of primary school
- include specialized schools such as the Freinet schools (Sivell, 2004) and the Reggio
Emilia experiment in Italy (Rinaldi, 2003).

Nevertheless, the question that imposes itself here is how we can prevent that learners find
themselves in a completely unstructured and free learning environment, which can result
in boredom and a general lack of motivation. The theory of self-motivated learning can
help to formulate a tentative answer to this question. This theory was originally developed
by Csikszentmihalyi (1978) who studied the activities of painters, rock climbers, surgeons
and other people who are deeply involved in some highly complex activities without
receiving a direct reward for it. In his theory, these activities are called "autotelic”,
meaning that the motivational driving force ("telos”) lies inside the individual himself
("auto”).

The strong form of enjoyment that is created by autotelic activities is been characterized
as "flow” by Csikszentmihalyi. He intended a restricted use of this term, being a state
that often occurs as a side effect of autotelic activities (Steels, 2004, p. 139):

People concentrate their attention on a limited stimulus field, forget personal
problems, lose their sense of time and of themselves, feel competent and in
control, and have a sense of harmony and union with their surroundings. (...)
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a person enjoys what he or se is doing and ceases to worry about whether the
activity will be productive and whether it will be rewarded.(Csikszentmihalyi,
1978, p. 182)

Yet, autotelic activities should be distinguished from directly pleasurable activities like
going down a roller coaster. Csikszentmihalyi has argued that in order to make an activity
autotelic there should be "a good balance between high challenge, generated through the
activity and perceived as meaningful to the individual, and high skill required to cope with
this challenge” (Steels, 2004, p. 140):

Common to all these forms of autotelic involvement is a matching of personal
skills against a range of physical or symbolic opportunities for action that
represent meaningful challenges to the individual. (Csikszentmihalyi, 1978,
p. 181)

When engaged in autotelic activities, one get sometimes leave the zone of flow and
drift off into two directions: boredom or anxiety (see Figure 9.4). You get bored of an
activity when your skill level is too advanced for the current challenges that are posed
upon you. By contrast, a feeling of anxiety can occur when the challenge level is too
elevated for your skillfulness. It is the role of a good teacher to keep a student in its
region of flow to trigger a very powerful natural learning process that enables students
to become self-motivated.

0.2 Student model

Any teacher who is involved with the learning process of his or her students relies on
a conceptual student model of the skills and the knowledge that an individual student
currently disposes of. Constructing such a model is a natural process, which occurs on a
daily basis when parents interact with their kids, in a game situation when your opponent
does not yet have the same skills as you or in a conversation with a non-native language
user. In these situations you will try to gauge their level and progress so that you can
automatically adapt your way of addressing them.

A student model also forms an indispensable component of any intelligent tutoring sys-
tem that wants to be adaptive to its users. ITSs that lack student models are typically
experienced as monotonic and impersonal by students. And yet, although many of the
current commercial or academic tutoring applications are using a student model, they are
still far removed from a complete simulation of the real student for the target learning
domain. They can instead be compared to a school report that a real teacher would keep
of a student, containing grades on different subjects but also information related to moti-
vation, interests, cooperation in class, etc. To more closely approach a functional model

179



CHAPTER 9. FUTURE OUTLOOK

of the student’s language learning process and constructional knowledge, the student
model that the tutor agent uses makes the crucial distinction between a student profile
and a student agent. The student profile is indeed like the "school report” used by many
tutoring systems, a static record that keeps scores, preferences and other attributes.
The student agent, instead, can be seen as an "incompetent” version of the language
agent with its own construction inventory, grammar engine and learning strategies.

The student model is split up into two components: a static student profile for
bookkeeping and an active student agent that simulates the real student.

Box 9.2 — Student model components

This section shows the benefits of this compositional student model architecture. It
allows to split the main function of the student model, namely imitating the student, from
less central bookkeeping concerns about the student’s practice sessions and (needless)
scores. | show that using the competent language agent as a mould for the student agent
has many advantages, not only in terms of finding the optimal simulation of the student
but it is also utterly cost efficient in terms of development. Being a usage-based student
model, it expands its grammatical knowledge over time as more learning situations have
been tackled. So although the language agent and the student agent share the same
architecture, the student agent’s construction inventory is not a simply subset of that
of the language agent. Instead, it can be made up of different types of constructions or
contain different values for certain key features, but also the mapping between hearing
an utterance and interpreting it might not be completely optimized yet in the grammar
engine.

The dimensions of a student model have been discussed in Chapter 2, Section 2.2.2:
bandwidth, knowledge type and student-expert difference. Yet, linguistic knowledge is
very different from knowledge about programming or arithmetics, domains which are
typically handled by a student model. Although many ITSs treat linguistic competence
as a number of rules to master, represented as a subset of the expert language (overlay
models) or as a set of constraints (constraint-based models), | believe that language
acquisition is a much more complex process and should be treated accordingly. There
are a number of reasons to assume that a language learner’'s construction inventory is
not a mere subset of the tutor's constructions:

1. The language learner will perhaps (or most likely) never reach the level of a fully
competent language user with near-native capabilities because that is not his main
learning objective. Many people learn languages to travel, to read books in their
original version, to better understand a neighboring culture, etc.

2. When you learn a language you aren'’t a blank slate but you unavoidably bring the
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constructions of other languages that you already speak into the learning process
of a new language. Cognates are often very useful to be aware of because they can
speed up the learning process considerably. Yet, false friends — pairs of words or
phrases in two languages that look or sound similar but differ in meaning — might
confuse the language learner and put him on the wrong track.

3. Even between speakers of the same language, construction inventories are far from
perfectly aligned. Because we all have different experiences and talk to different
people, our linguistic knowledge and skills diverge around a certain average perfor-
mance, which can be compared to a prototypical language user of the language
that is spoken in a community.

Although the language agent and the student agent share the same agent archi-
tecture, the student agent’'s construction inventory is not a simply subset of that
of the language agent.

Box 9.3 — Shared agent architecture

Instead of highlighting the differences between student and expert (or tutor), the student
model presented here ascribes to the model-tracing approach where the student model
traces the real actions of the student to match his knowledge as close as possible but
at the same time the model can be used to simulate the student’s solutions and predict
his future performances. The following sections outlines the student model’s two-fold
structure in Sections 9.2.1 (student agent) and 9.2.2 (student profile). Measures that
are used by the tutor agent to estimate the level and the progress of the real student
are introduced in Section 9.2.3.

9.2.1 The student agent

The student agent is the core part of the tutor agent’s student model. Being a fully
operational agent, the student agent is endowed with exactly the same components
as a language agent: a construction inventory, a grammar engine and set of learning
strategies. The case study in Chapter 8 has already shown the potential of using a
student agent that can learn a target language from situated interactions. Yet, to become
used as a student model, the student agent should simulate a real student’s behaviour.
It is private to every single student interacting with the system and no information is
shared between students. Also, the student agent's internal structure and contents
can only be inspected by the tutor agent but it is never shown to the real student.
Because the student model does not assume psychological plausibility but intends to be
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a functional model of the student, inspecting the student agent’s constructions or the
learning strategies would not be very informative to the student.

As Chapter 8 has shown, a student agent can interact with a competent language agent
and acquire a particular language system without a single intervention of a student. All
three components of a student agent can evolve over time, be it to different degrees.
Before the first tutoring session has started, the student agent is initialized as follows:

1. Construction inventory: The list of constructions that is used to parse and pro-
duce utterances is initialized empty. This component is thus fully adaptive over
time as more constructions can be added, deleted or modified. Modification can
happen in the feature structures of a construction (adding/deleting a feature or
changing a feature value) or in the score of the construction.

2. Grammar engine: The construction inventory’s "motor” is initialized according to
default configurations that are standard in FCG grammar implementations. Search-
ing the list of constructions happens according to a simple list (no scores) and goal
tests that check whether there no more constructions can apply are enabled. There
IS no construction-set or dependency-network organization available at the moment
of initialization. Configurations can be modified or expanded (e.g. a construction
sorting criterium can be added) through learning strategies. Yet, these modifica-
tions happen much less frequently than changes in the construction inventory.

3. Learning strategies: The student agent is initialized with a set of learning strate-
gies that has been developed for the target language. In the current implementa-
tion, they do not evolve over time but there have been recent proposals to create
evolving learning strategies (van Trijp, 2012).

Of course, a student model only makes sense when it closely matches the knowledge
of the human student that is being tutored. Therefore, the student agent needs to be
initialized at the student’s level and aligned to it after every single interaction. In the
first design plan of the student model, the initial state of the student agent is very basic
and uninformed about the initial level of the student when he starts interacting with the
tutoring system. Because there is currently no means to get an estimate of the student’s
level, the construction inventory is empty at the start of the games (see above). When
the student is already an advanced learner of the target language system, his grammar
should be bootstrapped quickly through his interactions with the tutor agent. Techniques
to do this fall currently outside the scope of this dissertation.

Remember that the student agent should not just be a good model of the process of
acquiring the target language system but it should more be a model of the real student's
language acquisition. Therefore some constructions that it may have learned might have
to be revised when the utterance of the real student is received by the tutor. The only
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source of information (i.e. bandwidth) that the tutor has about the real student is his
utterance, given a particular situation. There are two general actions that the tutor can
undertake to use this information to align the student agent closer to the real student:

1. The real student’s utterance can be parsed by the tutor agent and any errors that
are found signal constructions that are not yet mastered.

2. The real student’s utterance can be compared to the one produced by the student
agent so that differences can be repaired and similarities reinforced.

The first action, error detection, is handled by the tutor’'s language agent, whose flexibility
strategies contain tools to automatically spot errors, inconsistencies or novelties in a
language user's utterances. We do this almost unconsciously — some people more than
others — when we speak with children or non-native language users. Our ears are masters
at detecting the most subtle distinctions in pronunciation, agreement patterns that do
not fit the general rules of the language (e.g. a misplaced article use in Dutch such as
de meisje instead of het meisje), etc. The tutor agent can thus similarly use his level of
competence to judge the utterance produced by the real student and detect the type of
error that was made.

The second action, alignment, is an issue that lies within the realm of the tutoring
strategies that the tutor agent possesses. They will decide what to do with the error
type that was detected in the erroneous input of the real student and how to handle
differences between the student’s and the student agent’s utterances. Section 9.3 is
dedicated to tutoring strategies. Such an update of the student model is traditionally
seen in terms of advancing the student through the curriculum, step by step. Every
time the student model was updated, the student’s level was reevaluated to determine
whether he could move on to the next learning stage (VanlLehn, 1988). More recent
proposals suggest that student knowledge can be updated through the use of stereotypical
sequences of language acquisition. For instance, the sequences could mirror grammatical
partitions that are typically found in textbooks in foreign language teaching (e.g. the
CASTLE tutoring system; (Murphy & McTear, 1997)).

9.2.2 The student profile

Although usually referred to as the student model, a student profile merely keeps track
of an individual student’s performance. You can directly compare it to the student
report that a primary school teacher keeps for every student in the class, containing a
student’s grades on different subjects over time, a score that denotes his motivation and
cooperation in class, and perhaps also his rank amongst the other students. A student
report is thus also inspectable by the student himself and by his parents. Yet, the student
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profile that | propose here is not meant to be visible to the learner, but it could be if
this is needed. Although ITS designers have argued for the use of open student models
because learners like to compare their knowledge with their peers in the form of grades
(Park Woolf, 2008, p. 54), | do not share this vision because it externalizes the learning
motivation. Keeping the learner self-motivated is a much more important task for a
tutoring system, and suggestions on how to sustain intrinsic learner motivation in the
tutoring architecture proposed here are discussed in Section 9.3 on tutoring strategies.

Although the student profile — similar to the student agent — is hidden from the real
student, the tutor agent is granted access over the student profile, which he partially
helps to construct. The student profile can thus be defined as a database that records
personal information about the student as well as the details of his interactions with the
tutoring system. It contains four main elements (visualized by Figure 9.2.2):

1. personal user data,
2. a learning priority list,
3. logs with tutoring game data and

4. a range of measures that reflect the student’s progression.

The student profile contains descriptive information about the student and his be-
haviour. Because there are no explicit scores, an explicit ranking between students
IS impossible.

Box 9.4 — Student profile

The student profile contains descriptive information about the student and his behaviour.
There are thus no explicit scores for particular grammatical phenomena kept in the
database. In this aspect, this student profile diverges much of the common student
models in intelligent tutoring systems or computer assisted language learning research.
Therefore, scores cannot be compared across multiple students and there is no explicit
ranking possible. In a truly interactive system with multiple students, one could imagine
to have students playing language games with more advanced students, selected based
on their ranking. The following sections provide more details on the preliminary design
plan of the four components of a student profile.

User data

A user profile is made for every new student that starts interacting with the tutor agent.
It needs to be filled in by the student. This profile contains the student’'s user name
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Figure 9.5 — The student profile consists of four main components that all record
student-related information that is collected during a tutoring game. Tutoring
strategies will use this information to make decisions when planning future tutoring
games or providing feedback to the student.

(which serves as an id to identify users across multiple sessions), his gender, age, the
languages that he already speaks (with an indication of the level of proficiency) and the
competence he has in the target language. Although this information is not immediately
used by the tutor agent, it can be interesting for analyzing and comparing the data of the
learning process of different students. The first language parameter would be interesting
to model transfer learning strategies, although this is not yet available in the current
version of the tutor agent.

Learning problem queue

Every language system has a number of learning problems associated with it, which can be
diagnosed by the learning strategies that a language agent or a student agent is endowed
with. As we have seen before, the flexibility strategies of the competent language agent
include advanced diagnostics that decide upon a particular error or slip that is encountered
during parsing. These diagnostics signal learning problems that explicate the causes of
irregularities that a student or student agent has produced. But also learning problems
diagnosed by the student agent provide information about learning difficulties.

In this way, learning problems provide useful information about which parts of the lan-
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guage system should be explored further in future tutoring games. They are therefore
arranged in a learning problem queue (or LP-queue) that the tutor agent can consult
when selecting a problem for a new learning situation. Problems that receive a high
priority are are inserted at the front-end of the queue. The LP-queue is updated by the
tutor agent at the end of every game.

The learning problem queue contains problems diagnosed by the language agent
or the student agent that should be revisited in future tutoring games. The queue
is consulted by the tutor agent when a new learning problem is selected.

Box 9.5 — Learning problem queue

During one tutoring game, there are two types of learning problems that should be
distinguished: the target learning problem(s) and the diagnosed learning problem(s). The
target learning problem(s) are those that were popped from the LP-queue to create a new
learning situation. The diagnosed learning problem(s) are problems that are diagnosed
during the tutoring game, either by the student agent or by the language agent.

Game data logs

The tutor agent records everything that happens within one tutoring game in a variety
of data logs. Logging happens automatically after every process that the tutor agent
has successfully completed. Logs are consulted by the tutor agent's tutoring strategies
where they assist the selection of a new learning situation (see Section 9.3.2). There
are three main game data logs, which are connected through the game numbers:

1. Situation log (S-log): The conceptualized situation that the student agent and
the language agent share is catelogued in the S-log. In case of a topic game, the
topic is also recorded here. The S-log is consulted to avoid creating too similar
situations within a particular window of tutoring games.

2. Utterance log (U-log): The U-log records the utterances of the student, student
agent and language agent. Also the assignment of the discourse roles (speaker/-
hearer) is kept here, where the student and the student agent are referred to as
student and the language agent as tutor.

3. Learning problem log (LP-log): The LP-log registers the target learning problem
as well as learning problems that were diagnosed during the tutoring game. It can
be used to count the frequency of learning problems as well as their repetition in
particular time spans (e.g. in the last 10 games, from game 100 - 150, etc.).
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0.2.3 Measures

Measures keep track of the student’'s performance and progression over time. The
measures that are kept in the student profile are recalculated at the end of every tutoring
game. Instead of overwriting the previous value, the student profile keeps a list with all
values of a particular measure, with the most recent one located first in the list. In this
way, the tutor agent gets an estimate of how fast the student is making progress and
when his performance has stabilized. These are the default measures that have been
included in the design of the tutor agent:

1. Communicative success: This binary measure indicates whether the interaction
between the student and the tutor agent was successful. Success occurs when
the tutor agent can effectively parse the student’s utterance or when the topic of
the learning situation could be retrieved by the hearer (student or tutor agent).
Communicative success is defined as follows:

(9.1)

cs — if game su;ceeds 1
otherwise 0

2. Feedback impact: The impact of feedback that the tutor agent provides at the end
of a game is calculated as the average of the confidence scores of the constructions
that are affected by the feedback. Its values are situated in the interval ranging
from 0 to 1. Feedback-affected constructions are those constructions that share
the same features as the learning problem that is currently handled:

CXNSaffected = over/ap(cxnsused, [—Pfeatures) (92)

The function confidence fetches a construction’s confidence score and returns it
as a number between 0 and 1. Feedback impact (FI) can then defined as follows:

F_ Z/ecxnsaffeaed confidence(i)

9.3
| CXNSyffected | ( )

3. Student level: The student's mastery of the target language system is useful
to get an estimate of how far he is from reaching the language agent’'s compe-
tence level. The measure therefore relies on the overlap function to calculate the
similarities between the language agent’s and the student agent’s constructions.
This similarity is then multiplied with the average confidence scores of the student
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agent’s constructions:

SL— overlap(cxnsia, CXnSsa) ) _ic oxnse, CONTIdence(i)

(9.4)
|exns; al |cxnssal

Yet, there resides one danger in this measure. Because the student agent’'s con-
struction inventory is empty at the start, the student’s initial level will be set to
0. To match the level of students that start with some prior knowledge of the
target language system, this measure should thus take a jumpstart, which can only
happen when the student agent’s construction inventory is constructed really in a
fast pace.

Of course, the list of possible measures is long and depending on the objective of the
tutoring system, other measures can be created and kept in the student profile.

9.3 Tutoring Strategies

Mirroring the flexibility strategies and the learning strategies discussed in Chapters 5 and
7, tutoring strategies use the same meta-level architecture of diagnostics and repairs to
represent knowledge about the student. They perform two main functions:

1. guiding the interaction with the student through carefully selecting the game set-
tings (game type, conceptualized meaning, topic and discourse roles) and

2. providing feedback that speeds up the learning process.

This section describes how the meta-level infrastructure could be turned into use for
specifying tutoring strategies that support student model alignment and general game
flow regulation. It shows when they are active during a tutoring game and how they
interact with the student’s actions. Using the same architecture brings a transparency
into the construction of tutoring system, making it easier to manually compose and
manage tutoring strategies. Accommodating the tutor agent with tutoring strategies
has the potential of making the tutoring process personal and adapted to the individual
student.

9.3.1 Reusing the meta-level architecture

As before, the diagnostics and repairs of the meta-level architecture operate on problems
that are encountered during routine processing. In the case of tutoring strategies, these
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problems are not related to misunderstandings or a lack of expressivity but instead they
represent learning problems that the student is experiencing during a tutoring game or
has faced in earlier games. As Section 9.2.2 has shown, learning problems are saved in
a queue in the student profile, where they are ordered according to their priority scores.
Yet, the diagnostics that signal a particular learner problem operate on information that
is present in the student agent. They try to get an estimate of which constructions the
student knows and how often he has successfully used them. Also errors that have been
detected by the language agent's flexibility strategies module can be handled directly by
tutoring strategies. Repairs intend to indirectly solve the learner problem by adjusting
the tutoring approach that is taken or formulating constructive feedback.

Tutoring strategies tackle learning problems that a student has experienced by
selecting appropriate learning situations and providing constructive feedback.

Box 9.6 — The function of tutoring strategies

Because they are strategies, tutoring strategies are used in the tutor agent's processes
that involve decisions that have a direct effect on the real student. \Within one language
game, two processes have a direct link with the student:

e selecting the game's learning situation (at the beginning of a game) and
e providing constructive feedback (at the end of a game).

In between these two, a range of automatized processes take place, proceeding according
to the same algorithms every time they are run. Figure 9.6 revisits the language game
that was explored in Chapter 8 and visualizes all processes that make use of the meta-level
with a filled triangle: learning strategies (student agent produce), flexibility strategies
(language agent parse) and tutoring strategies (tutor agent select situation and give
feedback). The language game that is illustrated in this figure is a description game
where the student (uppermost dotted line) takes up the role of the speaker. He runs
through three processes: produce answer (formulate an utterance that matches the topic
he selected from the situation), receive feedback and adapt level (optional at the end of
every game).

The tutor agent’s processes are divided into three operational modules: a student agent
(produce and consolidate), the language agent (parse the utterances of the student
agent (utt-1) and the student (utt-2)) and the tutor agent. The tutor agent runs five
additional processes, that are directly related to the interference of the real student in
the tutoring game:

1. Select situation: the tutor agent selects the situation (and the topic in a reference
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Figure 9.6 — The tutor agent runs the student agent, language agent and tutoring

strategies during one tutoring game. Also the student profile is updated through

the tutoring strategies module. Two utterances are received and depending on their

similarities, either both are parsed by the language agent module (when different)
or only the student agent's utterance is parsed (when they were the same).

Alignment only occurs when the student agent’s prediction was different from what

the real student said.

game) for the present game based on the skill level of the student agent and
problems that have been encountered earlier.

. Compare utterances: the real student’s utterance is compared to the one pro-
duced by the student agent by a simple string matching process. When the strings
are equal, the student agent managed to predict the real student’s behaviour and
only one utterance is parsed. The tutor then skips two processes (parse utt-2 and
align student agent), which is visualized by the dashed line. When the strings are
different, both utterances are parsed by the language agent and the student agent
Is subsequently aligned to the real student by the tutoring strategies.

. Align student agent: the tutor aligns the student agent to more closely match
the real student’s linguistic knowledge. This process involves adapting the student
agent’s construction inventory, grammar engine or learning strategies according to
a predefined updating scheme.

. Give feedback: the current state of the student profile and the student agent
defines which type of feedback is given to the student. The student agent also
receives the same feedback, so it can consolidate what it has learned in the current
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game through the use of its learning strategies.

5. Evaluate progress: after the student’s utterance has been processed completely
by the language agent, the tutor writes the current interaction data to the student
profile, including possible errors that were encountered during parsing, and updates
learning problem priority scores. The student has the option to adapt the challenge
level at the end of every game, which is then also incorporated by the progress
evaluation process.

Only processes 1 and 4 involve the operation of real tutoring strategies. The following
section discusses the diagnostics and repairs that are activated by them. The remaining
three processes are discussed in Section 9.3.3.

9.3.2 Tutoring strategies to create flow

Tutoring strategies generally serve to provide individualized instruction to students so
that their learning process can be optimized. First of all, they should therefore be able to
interpret an individual student’s actions. According to Mislevy and Yin (2009, p. 254),
there are three kinds of data that provide the necessary information to create such an
interpretation: "(i) aspects of the situation in which the person is acting, (ii) aspects of
the person's action in the situation, and (iii) additional information about the person's
history or relationship to the observational situation”. The tutor agent also makes use of
the same three data kinds; and they translate into the following structures in a tutoring
game:

1. the conceptualized situation
2. the student agent after alignment and

3. the updated learning problem queue, together with additional information from the
student profile logs.

Once a thorough interpretation has been made, the ultimate goal of the use of tutoring
strategies is to guarantee that a student spends most of the time of a tutoring session
in his zone of flow, where the learning challenge is set in such a way that it does not lead
the student either into boredom or anxiety. Yet, the tutor agent alone is not capable of
providing a situation of real flow for the student purely based on the student’s answers.
It needs input from the student to get a good estimate of the appropriate challenge level.
This input is provided by the final student process "adapt level”, in which the student can
either increase or decrease the challenge level or leave it unchanged. The two tutor agent
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processes that use this information by means of tutoring strategies are "select situation”
and "give feedback”. They are discussed in turn in the remainder of this section.

Situation selection strategies

The selection of the situation is the process that has the biggest impact on a student's
flow during a tutoring session. Picking the right learning tasks at the right time is an art
that every real tutor tries to practice so that students receive individualized training. It
is also the process that is the hardest to "simulate” in an intelligent tutoring system, as it
involves making intricate decisions, which are captured by tutoring strategies. To make
an accurate decision, the tutoring strategies that are active during the select situation
process use all remaining components of the tutor agent: the student profile, the student
agent and the language agent.

The primary resource that is used by the situation selection tutoring strategies is the
learning problem (LP) queue that is kept in the student profile. This queue is ordered
according to the priority scores of the learning problems that are in it. Because a tutoring
game situation always targets a particular learning problem, it seems thus straightforward
to select the learning problem with the highest priority score from the LP queue. Yet, if
we take into account the game history and the student’s skill level, the highest ranked
problem in the queue might not always be the most appropriate one to create a new
situation. Selecting the correct learning problem is the first step in situation selection
and involves a decision process that makes use of the following diagnostics:

1. Diagnose-LP-repetition: Repeating the same target learning problem too many
times in a short time span is not beneficial to keep a student in his zone of flow,
even if the situations are not exact copies of each other. This diagnostic therefore
detects whether the first LP in the queue was repeated too often (according to
a threshold) during the last n games (with n = 10). The repetition threshold
depends on the student level (SL, see Equation 9.4) and is defined as follows:

T, = (1—SL)*10 (9.5)

The number of target LP occurences in the last 10 games can be retrieved from the
student profile’s logs. This number can either be above (or equal) to the threshold
T, or below it. The diagnostic can signal one of these two cases (repetition, no
repetition), which are repaired as follows:

e enqueue-LP: the target LP is enlisted back at the end of the LP queue
and the diagnose-LP-repetition is called again, this time to diagnose the new
target LP (in the front of the queue).
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e pop-LP: when the LP is not repetitive, the highest ranked LP is selected.

This diagnostic can only be called as many times as the number of learning problems
in the LP list.

2. Diagnose-empty-LP-queue— select-LP-from-inventory: If no LP could be popped
from the queue, either because they would lead to repetition or simply because the
list is empty, a problem is signaled by this diagnostic. The repair that solves it then
selects a random LP from the inventory of predefined LPs (see Figure 9.9), which
can be extracted from the problems that the language agent’s advanced learning
strategies diagnose and repair !.

Of course, the above two diagnostics are the first suggestions on how to select an
interesting learning problem for a new game. There are certainly more ways to do this
that involve taking into account the level that the student has selected (if he is allowed
to increase or decrease the challenge level) or inspecting constructions in the student
agent’s construction inventory that are not yet completely mature.

The selection of a new situation relies on the choice of an appropriate learning
problem and the generation of a situation that contains this problem.

Box 9.7 — Situation selection strategies

Yet, a learning problem alone is not enough to instantiate a new language game. We
need a situation that can be shown to the student and a question that can be asked,
indicating the discourse roles (who is the speaker and who the hearer). The following
two steps are used by the tutor agent to instantiate a new situation that fits the selected
learning problem, one that applies uniquely to the student agent and one for the student:

1. Create-new-learning-situation-predicates: In this step a new situation is created
for the current tutoring game based on the learning problem that was selected from
the list. The situation consists of a list with conceptualized predicates that is visible
by the student agent as well as the language agent. An example of such a situation
is present in Figure 9.7a. A situation is generated based on a number of templates
that the tutor has in his "tutor toolkit”. Templates always start from features that
are present in the selected learning problem and add features accordingly.

2. Transform-predicates: The second step involves a translation from the above
predicate list situation into a real situation that can be shown to the student and
will evoke the same conceptualization. A student situation can consist of pictures,

1 Random selection is not the best for an advanced learner, because this diagnostic will be called often
and the tutoring process becomes random. A better solution needs to be brought up in future work.
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(green x)
(apple x)
(mary y)
(eat z)
(eater z y)
(eaten z x)
(ongoing z)
(a) (b)
Figure 9.7 — A new situation for the language and student agents in the form of

predicates (a) and in the form of a visual picture (b), which is shown to the real
student.

a video clip, a text fragment, etc. An example of a predicate list situation and its
translation into a photo is presented in Figure 9.7.

Feedback generation strategies

Feedback tutoring strategies are always based on the communicative success of the
tutoring game. A game is successful when the tutor agent could retrieve the topic of the
situation without having to consult his learning strategies (i.e. without parsing errors);
it fails otherwise. As Section ?? has illustrated, to keep learners in their optimal flow a
tutor should foster their intrinsic motivation to learn more. The tutor agent’s feedback
strategy is therefore to use descriptive feedback, in the form of praise or criticism, rather
than evaluative feedback. Descriptive feedback helps the learner answer the questions:
where am | going, where am | now, and how can | close the gap?

Feedback strategies make use of descriptive feedback that use information about
the game's success and the student’s level and progression measures (student
profile).

Box 9.8 — Feedback strategies

Diagnostics that are used in this tutoring strategy, only function to identify the success
of a game, which is also recorded in the student profile:

1. Diagnose-success: the language agent did not resort to the meta-level architec-
ture but was able to parse the student’s utterance flawlessly. Success is signaled
and logged to the student profile.
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2. Diagnose-failure: the language agent had to call on his learning strategies to
interpret the student’s utterance and could detect errors that were made and their
potential causes. Failure is signaled and logged to the student profile.

Another premise of our tutor agent, apart from the fact that he dislikes evaluative
feedback, is his subscription of the situated learning enterprise. Learners that acquire
skills and knowledge in a situated learning context are not all the time explicitly told
what they did wrong but they learn through experience that consists of trial and error.
Also, there are phases in learning when feedback is needed more and quickly absorbed in
a situated learning setting. In line with this approach, the repairs that the tutor agent
uses do not only rely on the outcome of the game but also check the level of the student
to determine whether corrective feedback should be provided:

1. Create-descriptive-feedback: both when the game succeeded or failed the tutor
can create descriptive feedback that is selected from a list of templates, depending
on the game outcome and the game history. Every learning problem that can
be diagnosed by the language agent's learning strategies can fill a slot of the
prefabricated feedback sentences. Descriptive feedback is only send to the real
student, not to the student agent. The student agent is only informed of the
communicative success of the game.

2. Create-corrective-feedback: after consulting the student agent’'s constructions
(that were not learned in this game) and level measure, the repair decides to provide
the correct utterance or not. When the level of the student is low (according to
a particular criterium) and the student agent has already acquired the appropriate
constructions, the correct utterance is shown to the student. This repair can
operate in combination with repair 1.

3. Provide-explanation: a linguistic explanation is provided to the student at critical
checkpoints in the learning. If the diagnose-recurring-learner-problem diagnostic
returns an error occurrence count that is greater than a certain tutor threshold,
this repair provides a textbook explanation for the problem in question. Only the
real student receives this explanation, whereas the student agent is sent corrective
feedback here. This repair can also operate in combination with repair 1.

9.3.3 Remaining tutor agent processes

The remaining tutoring processes of Figure 9.6 do not involve tutoring strategies. They
merely carry out basic bookkeeping activities that update the student model, by modifying
the student agent’'s components and extending the student profile as more information
about the student is processed. The two processes that this section covers are alignment
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and progress evaluation. The compare utterances process is not covered here because
it only involves a straightforward string comparison (student’s utterance vs. student
agent's utterance).

Alignment

The student agent runs, just as it was the case when there was no real student involved,
through its own processes as it communicates with the language agent. It produces the
conceptualized situation and parses the feedback of the language agent in consolidation.
The same learning strategies that were activated by the student agent to acquire a
particular language system on its own are reused here as part of the student model.
What is different now, of course, is that the student agent should not only be a good
learner and acquire the target language through its learning strategies, but it should also
— and more so — mirror the linguistic skills and knowledge of the real student.

To be a good model of the student, the student agent should thus be aligned to the
student’s utterances so that it can eventually predict them better. As the only source
for this alignment is the actual utterance of the student, the most straightforward way
is to simply compare the two utterances and base the alignment on their similarities or
differences. However, we should also take into account that the language agent could
also produce an utterance to express the conceptualized meaning. This utterance is used
to check the correctness of the other two. There are thus four scenarios that can occur:
(i) the student agent is right, the student is wrong; (ii) the student agent is wrong, the
student is right; (iii) both are wrong and (iv) both are right. Yet, if the similarity of the
student and the student agent’s answers are considered, there is one additional case in
which both the answer of the student and the student agent are wrong and also different
from each other.

Figure 9.8 shows a toy example of how the student and student agent’s utterances
can differ with respect to the target tutor utterance, which is in this case the Spanish
utterance cantaba, 'he/she sang’ (imperfective). The main error that was made here
(visualized by the dotted-line boxes) concerns a mismatch between the verb class of the
verb stem and its suffix: cantar belongs to the first verb class and ‘ia is a suffix for the
2nd or 3rd verb class, past imperfective.

The second error is a so-called "bug” because the student clearly knows the correct
answer but perhaps made a typographical error or is not yet fully aware of the spelling
rules of Spanish. The student agent will never commit bug errors, simply because he
always follows the constructions in his inventory and does not make accidental mistakes.
When a bug error is found, it is not used for alignment because it might mislead the
student agent. Alignment is also skipped when the two utterances are identical, which
assumes that the student agent is already aligned to the student, at least in this learning
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student says: align? student agent says:
.1 .- .c.;e;.n;.ia;. : :' - — — -align to student - - - - cantaba
cantaba - - — -align to student- - - - -: : E:a;-n;.ia: : :-
cantaba | ---- no alignment - - - - - cantaba
.1 : E:a:n;.ia: : :- ————— no alignment - - - - - -1 : .E:a:n;.ia: : :-
i o (i
.: : (.:.a.’;ll'f[a:b.;. : :- ----no alignment- - - - - cantaba

Figure 9.8 — The two inputs that the tutor receives — that of the real student and

that of the student agent — are compared and alignment happens accordingly. The

unfilled boxes (dotted lines) signal inconsistencies with the tutor answer, the green
filled boxes are correct answers.

situation. This leaves us with only two cases that require alignment: when the student
committed a real error while the student agent was right and reversely. The alignment
works differently in these two cases:

1. The student’'s utterance can be diagnosed by the language agent as erroneous
while the student agent's utterance is correct when the student agent has learned
too quickly in the current interaction (using its learning strategies) or the correct
form was learned earlier in the tutoring session but has not yet been consolidated
by the real student. Because the student agent should mirror the real student,
the constructions that were used to produce the correct answer should be revised
according to the following scheme:

e If they were learned in the current game, the student agent’s construction
inventory is simply reverted to its previous state.

e |f they there was no learning in the current game, the real student’s utterance
Is parsed and the student agent’s learning strategies create constructions that
learn the form-meaning mapping given the current situation. Of course, if
the utterance could be parsed and its parsed meaning corresponded to the
conceptualized meaning of the situation, no new constructions have to be
learned but the success scores of the constructions that produced the correct
answer (the aba-construction) needs to be decreased.
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2. The opposite case occurs when the real student learns faster than the student
agent. The student agent should thus also acquire the constructions that the
student knows. This learning boost can happen in two alternative ways, of which
| prefer the first one:

e The student agent parses the correct solution and uses its learning strategies
to acquire the needed constructions.

e The constructions that the language agent used to produce the utterance are
combined with the student agent’s constructions and potential differences are
restored.

Progress evaluation

To define the impact of a game and the provided feedback, whether positive or negative,
as well as the learning progress of the student, we need to get an understanding of the
how well the student agent "knows" the constructions that were affected by the feedback.
This effect becomes visible after the student agent has gone through the consolidation
process, which updates the confidence scores of all constructions that were used to
construct the utterance. Remember, alignment takes place when the student’s utterance
did not contain a bug and it differed from the student agent’s utterance. Alignment can
reset confidence scores of existing constructions back to a default score (0.5) or a
minimum (0.0) when the student did not have the knowledge that the student agent
predicted. In the opposite scenario, when the student agent’s construction inventory was
boosted with the target language agent’'s constructions, it sets the confidence scores of
these constructions to a maximum (1.0).

Progress evaluation estimates how well the student agent masters the construc-
tions that were affected by the feedback provided in the current game.

Box 9.9 — Progress evaluation

The student profile contains a feedback impact measure, which estimates the effect
of the feedback that was given to the student (agent). The measure is calculated
as the average of the confidence scores of the constructions that are affected by the
feedback. Feedback-affected constructions are those constructions that share the same
FCG features as the learning problem that is currently handled. To evaluate a student'’s
progress, the feedback impact should be evaluated according to a certain threshold, which
| will refer to as the learning-effectiveness threshold. | define this learning-effectiveness
threshold here as a parameter that is relative to the initial confidence score that newly
added constructions receive (csj,; = 0.5):

198



9.3. TUTORING STRATEGIES

Front Back

< <

Fl=0.7
LET =04
1>Fl > LET ! g

Front

<

LP2 LP4

Figure 9.9 — The evaluation of a student’s progression results in an updated LP
list. The target LP (LP1) is enlistd again at the end of the list, because the
calculated feedback impact score (0.7) was found above the learning effectiveness
threshold but below the maximum score of 1.0. Two diagnosed LPs were pushed to
the front of the list: LP8, a newly added problem, and LP3, which was already part
of the LP list.

T/e = CSjpjt — 0.1 (96)

There are three scenarios that can occur when the learning effectiveness is measured
(see Figure 9.9):

1. Low learning effectiveness (F/ <= T): If the Fl score is smaller or equal to
the LE threshold, the student has not learned enough to be confident to use
the constructions needed in the current learning situation. The target learning
problem’s priority score is increased.

2. Medium learning effectiveness (1 > F/ > T,): The Fl score is above the ef-
fectiveness threshold, which indicates that the affected constructions still have
some open feature values or need more positive reinforcement. The target learning
problem is appended at the back of the LP queue.

3. High learning effectiveness (F/ = 1): the student manages all affected construc-
tions perfectly (all have a confidence score of 1). The target learning problem is
removed from the LP list.

It can also happen that new learning problems appear during one tutoring game, which
are caught during the language agent's parsing process. They are also pushed to the
front of the list, similarly as the problems that are already waiting in the LP list. Yet,
because this is only a design plan, the real implementation might require some additional
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changes to work in practice.

9.4 The Spanish verb tutor

Unfortunately, the design of the student model and the tutoring strategies as described
above has not yet been implemented in an interactive language game format. Although
the plan is relatively clear now, its implementation will tell whether it is successful or not.
To give you an idea of how you could interact with the Spanish verb tutor, | illustrate
here a few example games in a mockup screen that resembles the planned interface.

In the first example (Figure 9.10a), the student is the hearer and receives a sentence
("Ayer, recogieron muchas peras del arbol") that he has to link to one of the pictures
that is given. Such a comprehension task is thus always a discrimination game, with two
or more possible situations that can be linked to the tutor’'s utterance. In Figure 9.10a,
the student is asked to click on one of the two pictures that he believes expresses the
meaning of recogieron 'they picked’. The only difference between these two pictures is
the number of participants in the picking action, which is reflected in the person feature
of the verb form: 35G vs 3PL. The student has the option to skip this game when he
does not like it (it can be too difficult or too easy). An alternative comprehension task
arranges situations on a time line and asks the student to match a particular verb form
with one of the situations on the time line (Figure 9.10b).

Production will in the first stage be constrained so that the student can merely select a
possible verb form from a dropdown menu rather than insert free text so that the input
can be controlled for more. Figure 9.11 shows how the student is asked to complete a
sentence that describes the picture on the left. Now, because the student needs to choose
from a list of conjugated verb forms, it is sometimes easier to start from the infinitive to
make a choice. An additional button in the interface provides the option of revealing the
infinitive. The three options that are provided includes one ungrammatical form: recoge
(< recoger 'to pick'). The remaining forms are the indicative and subjunctive present,
both in 3rd person singular.

Feedback is provided every time the student pointed to an event in comprehension or
produced an event description in production. Negative feedback corrects the student
and optionally gives an explanation on the source of the error, as has been illustrated
in Figure 9.12a. When the student has answered positively, the tutor agent praises him
and asks him to do one more exercise on the same problem with one feature different
(see Figure 9.12b). At this moment in a game, the student also gets the opportunity to
inspect his progress or to adjust the skill level of the games.
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Which picture describes the following sentence?

Ayer, recogieron muchas peras del arbol.

Click on the picture to answer this question

Skip this game

Can you link the conjugated verb form to the situation?

ha recogido

now

Check the corresponding box on the time line

Skip this game

(b) Discriminating tense

Figure 9.10 — A comprehension task can either consist of two events (pictures),
from which the student needs to choose the one most closely matching the
utterance that he has parsed (a), or it contains a timeline with events laid out on it

(b).
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. . recoje
iMira! El chico recoge | Unapera

recoja

Skip this game

Reveal the infinitive

Figure 9.11 — The student has selected an event from a situation with multiple
events and formulates a verb form that describes this event. Instead of entering
free text, he is restricted to use the three options that the system provides.

You answered:  El chico recoge una pera

Unfortunately, that's not correct...

To maintain the same pronunciation,
the stem's last letter -g- changes into -j-:

El chico recoje una pera

Continue

Inspect my progress

Adjust the level

You answered:  El chico recoje una pera

You almost sound like a native speaker now!
Can you also do the following one?

recogimos
La semana pasada, > peras del huerto.
recojimos

©

Skip this game

Adjust the level

(b) Positive feedback

Figure 9.12 — The student receives feedback of the tutor agent, which can be
negative (a) or positive (b).
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0.5 Conclusion

A tutor agent is formed by combining the expertise of the language agent and the stepwise
learning strategies of the student agent into an interactive language tutoring system
that can receive input from a student and proactively create new learning situations and
generate feedback by calling upon a pre-specified set of tutoring strategies. The same
meta-level architecture reappears here, with learning problems that manifest itself during
the interactions (diagnosed by the language agent or student agent) and are tackled
by repairs that carry out actions that influence the learning path of the student. It is
through the plugging in of tutoring strategies that the learning process becomes personal
and adapted to the student.

Still, because a lot of time and effort was put into the development of the necessary
basics of the tutor agent (the processing and the learning components), a working imple-
mentation is currently missing. The first steps in completing the full tutor agent would
thus be to implement a user interface through which the tutor agent can interact with
the student and to formalize the processes of Figure 9.6 that a tutor agent runs through.
Further, diagnostics and repairs for the tutoring strategies and a data structure for the
student profile follow in the next steps of the planned operationalization. Although the
mock-up interface has shown how the student can only select verb forms and not really
create them by himself, a second prototype phase will experiment with free form input
by the student. Of course, once the prototype can be tested in a pilot study it needs to
be incorporated in a web service that students can access on their smartphones, tablets
or laptops from anywhere, at any time. A login would be required to track an individual
student over multiple learning sessions.
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Chapter 10

Conclusions

Nevertheless, there are still a lot of open problems. Many systems focus on
single aspects of language learning. What is needed is a more integrated and
comprehensive approach which supports also semantics, pragmatics, cultural
knowledge and social abilities, using different technologies which are tailored
for the training of specific skills. (Gamper & Knapp, 2002, p. 339)

Although this quote is now more than ten years old, the "open problems” that Gamper and
Knapp mention have still not been solved. Yet, since the year 2000 language learning
software has shifted from stand-alone software packages to web services that require
a login, thereby opening the doors for real interactive mobile learning. A thorough
integration of the semantics, pragmatics and cultural knowledge a student needs has
not yet been achieved and | believe that situated learning in open-ended environments
is the kind of learning that future language learning application developers should strive
for. This dissertation was born out of ideas on "The future of learning”, a series of
workshops and books led by Luc Steels (2003, 2004, 2012) in which the idea of self-
motivated learning and the theory of flow were central themes. Of course, building a
piece of language learning software requires technical skills that unite techniques from
the domain of expert systems (knowledge about typical mistakes, questions, answers),
intelligent tutoring systems (student and tutor modules), user modelling and adaptive
systems (adapt content according to a user’s steps) and natural language processing
(analyse open student linguistic production). This final chapter recaptures how these
techniques were employed to lay the foundations of a new sort of language tutoring
system in which a proficient language agent (expert) and a student agent (learner)
interact.
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10.1 Achievements

This dissertation achieved two main objectives (defined in Chapter 1):

1. The first achievement is a comprehensive model of the computational mechanisms
behind Spanish verb conjugation. This model can formalize any verb conjugation
in the Spanish language (including neologisms) thanks to an innovation in the
segmentation algorithm of Fluid Construction Grammar and the introduction of
phonological constructions that work on the phonetic profile of a verb stem or
ending. Moreover, flexible processing is guaranteed thanks to a set of flexibility
strategies that are used to catch and correct verb form errors made by learners.

2. The second achievement is to not only have a ready-made model of Spanish verb
conjugation but also to be able to acquire the language system on a gradual basis
through interactions with a proficient speaker. This learning process is established
through the use of learning strategies that have been created specifically for the
L2 acquisition of Spanish morphology, tense, aspect and mood.

These two achievements have paved the way for a Spanish verb tutor, which relies on
flexibility strategies to understand a student's utterances and learning strategies that
reconstruct the learning process and the acquired (partial) constructions to build a func-
tional model of the student’s knowledge. The example of the Colour tutoring game,
which was based on elaborate research on the emergence and the evolution of a lexicon
for colour words (PhD dissertations of Tony Belpaeme (2002) and Joris Bleys (2011)),
has shown the first potential of using language games for tutoring purposes. The re-
mainder of this section discusses individual achievements of the two objectives. Future
elaborations of a tutoring language game for Spanish are explored in Section 10.2.

10.1.1 Reconstructing Spanish verb conjugation

The first objective of this thesis is to gather all information needed to design and build a
construction inventory and a grammar engine for Spanish verbs to be used by a proficient
language agent. Spanish verb conjugation is not a straightforward task due to a its rich
morphology and the high number of semi-regular verb conjugations (irregular in some
parts of the paradigm). Moreover, learning when to use the past perfect and the past
imperfect correctly is perhaps the most difficult part of learning Spanish as an adult.
The difference between cantia "he sang.IMPF' and cantaba "he sang.PF’ simply does not
come very natural. The following paragraphs summarise the main achievements of this
dissertation with respect to the creation of a formal grammar for the conjugation of any
verb in Spanish.
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Constructions for phonological changes Fluid Construction Grammar (FCG) is nor-
mally used to formalize an inventory of lexical, functional, phrasal and morphological con-
structions of a particular language system. Constructions that focus on sound changes
under certain conditions had never been formalized in FCG. This new type of construc-
tions works on a special constructional feature phon-cat, which contains a stem'’s seg-
mentation pattern (onset-nucleus-coda), stress information and suffix vowels. Phono-
logical constructions can thus still change a certain form during processing (stem or
ending) when certain syntactic conditions are met (e.g. 1sg past perfect). A new special
operator was introduced to allow for a more general application of certain constructions:
the ==r operator. This operator introduces regular expressions for string matching: e.g.
"*c" matches the stem's coda "rc” or "c".

Flexibly parsing students’ errors Apart from a construction inventory and a grammar
engine that are specialized for Spanish verb conjugation, | developed a set of flexibility
strategies that contribute to the language proficiency of the language agent. Similar to
a native speaker, the language agent can spot the smallest deviation in his interlocutor'’s
utterances and restore the error to successfully process the full utterance. Flexibility
strategies always trigger on a problem that occurs, whether in parsing or production
(the utterance is too difficult for the student too understand). Because the manifested
problem can be caught by a diagnostic and solved by a repair, regular processing can
continue without any visible interruptions.

The language agent can also correct a student’s errors by means a repair that returns the
corrected form, optionally including the source of the error. The corrections are evaluated
on a corpus of learner errors of English students learning Spanish at an undergraduate
level (SPLLOC). For the evaluation, | selected all verb form errors and extracted the
original error along with the human annotated correction. The language agent was
asked to parse every individual error and suggest one correction. A correction is assumed
to be accurate when it is equal to the human’s correction. Results have shown that the
total correction accuracy is equal to 60% but when context is taken into account (not
only a verb form is parsed but a situation is linked to it) it mounts to 79%.

Bootstrapping a large grammar To provide the language agent with a realistically
sized construction inventory an algorithm was developed to bootstrap a grammar based
on a list of infinitives. A decision tree classifier is used to sort infinitives according to a
particular verb type they belong to. Once a verb type could be assigned, the corresponding
constructions are automatically added to the grammar. When a verb type already existed
in the grammar, the only construction that needs to be added is a lexical one for the
lemma. The language agent’'s default grammar was fed with the 600 most common
verbs in Spanish and resulted in a construction inventory of around 3000 constructions.
The effectiveness of this grammar is evaluated on a large set of conjugations of the
600 input infinitives (> 11 000 forms). Every conjugated verb form of this corpus was
parsed and reproduced to estimate the grammar’s accuracy. Overall, the accuracy was
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100% except for the parsing of ambiguous verb forms that could belong to any of two
conjugational paradigms: e.qg. presentir vs. presentar.

10.1.2 Learning strategies for Spanish verbs

The grammar bootstrapping algorithm was a shortcut to quickly create a large-scale
grammar that yields very accurate processing results. Yet, to track a student’s con-
structional knowledge over time, a more gradual approach is needed. A student agent,
contrary to a language agent thus starts with an empty construction inventory that is
gradually built up when more utterances are processed. Learning strategies diagnose
problems that occur during processing due to a lack of proficiency. A set of predefined
repairs solve learning problems by adding a particular construction that was missing or
adapting an existing construction to be more usable in the given context. Apart from
formalizing basic learning strategies to deal with unknown verb stems or endings, the
most significant achievements are the learning of grammatical constructions for tense
and aspect and the learning of verb classes. They are both treated in the following two
subsections.

Learning grammatical constructions Grammatical constructions are more general con-
structions that can be used in a multitude of processes: e.g. all past perfect verb form
conjugations, all 3rd person singular forms, etc. They are not learned in one step but
multiple learning instances can trigger the learning of a grammatical construction. The
main innovation of a grammatical construction is that it links the arguments of the stem
construction with those found in the suffix. The grammatical meaning expressed by one
specific suffix is thus externalized by a grammatical construction that can be used by
multiple suffixes that express the same meaning with a different form.

Learning verb classes The three verb classes in Spanish are not given to the student
agent as part of the learning strategies but have to be learned based on the verb forms
that are processed in parsing or production. Verb classes become visible in the verb
endings, which differ for the same grammatical meaning based on the class of the verb
stem they are combined with. Yet, some endings are shared between two classes, which
makes it less transparent for the student agent to detect the class of a certain verb.
A classification strategy was presented as part of the learning strategy for verb classes
that leads to complete communicative success with a minimal number of three verb
categories. Yet, a student agent’s grammar can contain more than three categories
when an ungrammatical verb form is produced by the student agent and the suffix that
was used did not yet belong to one of the three existing verb classes. In such cases, a
fourth verb class is created. An additional learning operator could later merge two verb
classes when all its suffixes are shared but this option is currently not implemented.
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10.2 Future work

Once the two basic components of the tutor agent are robust enough to function as
the expert model and student model, its operationalization lies within reach. The de-
velopment of tutoring strategies is the first step to complete a tutor agent that can
adapt its learning materials to the level of the student that is being tutored. A tutoring
strategy is defined as a plan to teach a student certain learning materials so that the
student’s learning objectives are maximized. First suggestions on the data structures
these tutoring strategies work on (learning problem list, student profile) are made in this
dissertation. The basic script of the discriminative language game was introduced for
the language agent - student agent interactions. This script will be reused for the tutor
agent - student interactions, with situations in which a particular event conceptualiza-
tion needs to be expressed in contrast with other events. Tutoring strategies assist in
selecting contrastive events for a new learning situation so that the student is optimally
challenged. When particular grammatical features still form an obstacle (e.g. aspect) or
stem changes of a particular verb type have not yet been mastered they will have a high
priority in the learning problem list. One tutoring strategy might go through the list and
select a learning problem for the next interaction. Based on this learning problem, a new
contrastive situation is created.

The tutoring strategies module follows the same basic principles of diagnostics and repairs
as the flexibility strategies and the learning strategies. Yet, they do not only need the
problem list to work on (similar to the problem-based learning approach in the student
and the language agents) but a library with possible situations or event constellations
needs to be provided. This library is vital to generate new learning situations that simulate
situated learning and keep a student’s learning challenge up to an adequate level. For
this library audiovisual material needs to be selected and annotated with features that
match with constructional features that can be learned by a student agent’s learning
strategies. Moreover, a second function of the tutoring strategies module is to create
constructive feedback (descriptive) that helps the student in further understanding the
source of his mistake and give him an idea of his strengths and weaknesses. Explanations
that elicit the grammatical contrast present between two events in a given situation are
sometimes needed to really offer comprehensive error analysis to certain students.

Yet, tutoring strategies are not the only contributor to the overall learning success of
future students that interact with the Spanish tutor agent. To really influence the
experience of flow students should be allowed to actively change the challenge level of
the current game situation. This empowering action is also advantageous for the tutor
agent because it offers an insight into the real level of the student, which might have been
misjudged due to a lack of information. Apart from changing the language proficiency
level, another possibility that should be investigated is whether the student can be allowed
to also select a new learning situation by himself. First of a predefined set of situations
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and eventually by making a picture of a certain real-life situation and using that for a next
interaction with the tutor agent. This last scenario points to the real goal of tutoring
strategies: the creation of relevant learning situations for every individual student.

Perhaps the biggest challenge and a research topic on its own is the alignment of the
constructions mastered by the student agent and the linguistic knowledge of the real
student. This alignment process is not dependent on a tutoring strategy but remains the
same for any student that interacts with the system. It should happen after every single
interaction and uses the following information (in a production task): the situation, the
topic event, the student’s utterance, the student agent's utterance, the (potential) cor-
rection by the language agent and the student agent’s construction inventory (including
information on what was learned in the current interaction). The error analysis carried
out by the flexibility strategies can be useful to pinpoint the exact constructional fea-
tures that are still insufficiently covered by the grammar. How exactly a student agent’s
construction inventory should be populated with constructions in the initial state of the
tutoring session and how large the effect of the alignment operation is at the end of
a certain game are interesting research questions that deserve to be explored in future
research.

Linguists and language educators are now beginning to understand that students learn a
language more efficiently when constructions are presented to them rather than individ-
ual words in a vocabulary list that are separated from abstract grammar rules. A subfield
specifically focused on language pedagogy is emerging within the Construction Grammar
community (see for instance the Constructional Approaches to Language Pedagogy con-
ference, 8 - 9 November 2013, Brussels). This emerging strand of research needs to be
taken into account when developing a set of tutoring strategies for verb teaching as well
as in the creation of new learning situations. Also, if we understand better how humans
learn and unlearn constructions, the alignment process will be easier to implement.

The first prototype of the Spanish verb tutor will be build on the same platform as
the Colour Tutoring Game that has been presented in this dissertation. Yet, the real
potential lies of course in a web service application that can be accessed from anywhere
at any time by the student. Through a simple user account every individual student
can be traced and log information and progress measures across tutoring sessions are
kept in the student profile module of the tutor agent. Starting with controllable multiple
choice exercises, fill the gap tasks allow slightly more input from the student but should
be controlled for the correct use of diacritics in Spanish. Future extensions to use
recorded speech segments to describe events or a speaking task that lets a student
record his answer should be envisioned in long-term future plans. The real future lies
of course in a language tutor that goes beyond the conjugation of verbs and stretches
over different language subsystems of the target language (vocabulary use, adjective
declension, noun phrase patterns, prepositions, politeness forms, etc.). Yet, | believe
that effectively incorporating more language systems and multiple target languages can
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only be achieved when the tutoring game can be reversed to train the language agent
to become a competent language user (similar to the Colour Tutoring Game human
teaching scenario).

10.3 Final remarks

As could be shown in this dissertation, the development of the basic building blocks of
a language tutoring system requires a lot of time and effort, which did not yet result
in a working prototype. Yet, both the competent language agent as the student agent
are fundamental aspects that need to be stable before any tutor-student interaction can
be envisioned. Whereas the language agent is responsable for the interaction with the
student (exclusively using the target language), error diagnosis and analysis and modelling
a competent language user, the student agent is the heart of the active student model
that can trace a student’s utterances and adapts its grammar by means of the learning
strategies that it contains. It is only when these two components are into place that a
new type of artificial language tutor can arise.
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Glossary

Alignment In a language game alignment happens after the interaction when
speaker and hearer try to align their construction inventories. In a tutoring game,
alignment takes place on a different level, namely between the student agent and
the student, after the tutor feedback has been produced. Alignment is a vital
process because it brings the student model closer to the real student so that the
student’s actions can be predicted better.

Construction inventory The construction inventory is a flat list of constructions,
which are conventionalized form-meaning mappings in a language. Constructions
all share the same basic data structure but their functions might differ.

Game See tutoring game.

Grammar engine The grammar engine is the motor to configure the construc-
tion inventory and process utterances. Competent language agents optimize their
grammar engine so that production and parsing processes run as smooth as they
can.

Language agent The language agent is a model of a competent language user of
the language system. This agent can produce and parse utterances that correspond
to his grammar and he will notify ungrammatical parsing solutions when he is
interacting with a student agent. The language agent is capable of teaching the
grammar of the target language system to this learner.

Learning problem A learning problem is the core of a learning strategy, detectable
by a diagnostic and resolvable by a repair. It contains the following fields: a
problem type, problem instances, typical features and a learning problem priority
score. Learning problems are also used by the student profile and the tutoring
strategies to keep track of the real student’s knowledge of the target language
system.
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Language game A language game can be considered as a microworld that opera-
tionalizes everything needed for modeling a routinized, communicative interaction:
a situated context, two (or more) interlocutors, a communicative purpose, and so
on. In a single game, the interlocutors go through multiple steps: conceptualiza-
tion/interpretation, linguistic processing and learning and alignment.

Language system A language system is a particular grammatical subsystem in a
language, such as its system for agreement marking, argument structure, tense-
aspect-mood system, etc. Language systems try to maximise expressive power and
communicative success but they must also minimise cognitive effort, balancing the
cost of maintaining an additional grammatical system like determiners versus the
cost of additional processing and lengthier utterances.

Learning strategy A learning strategy is a pair of a diagnostic and a repair that is
used to tackle a particular learning problem. By default there is only one repair for
every diagnostic but sometimes we find sets of repairs for a single diagnostic. They
can then either be in parallel competition, with their scores defining the order of
application, or they can be carried out in a subsequent fashion. Learning strategies
are always specific to one language or language system.

Session See tutoring session.

Student Sometimes called real student or learner, this term is used to refer to the
actual user that interacts with the tutoring system. The utterances of the student
can at any moment be compared with what the student agent would have said or
understood.

Student agent The student agent has the same architecture as the language agent
and possesses a construction inventory, a grammar engine to process utterances
and meta-level operators. Unlike a language agent, the latter are not used as
flexibility strategies but serve as language learning strategies instead, that can also
modify the construction inventory and the grammar engine. The student agent is
thought to be a model of the real student in that it can be used to predict his
utterances.

Student model A student model should be as close as possible to the real stu-
dent. The student model presented in this dissertation consists of an operational
student agent that can be run to simulate the real student’s behaviour and a more
static student profile that contains user information, measures and log data of the
student.

Student profile The student profile is a subpart of the student model and contains
four elements: general user information, log data of the games that have been



played, a priority list with learning problems to be tackled and measures that reflect
the student’s skill level. The student profile is heavily consulted by the tutoring
strategies when selecting a new situation and providing feedback.

Tutor agent The tutor agent is the general term to refer to the combination of
language agent, student model and tutoring strategies. The tutor agent contains
thus two "subagents”’, namely the language agent and the student agent, that can
also play tutoring games even without the presence of a real student. Tutoring
strategies and the student profile are uniquely used with a human learner in the
loop.

Tutoring game A tutoring game is a type of language game in which one of the
two interacting agents is a competent language agent and the other one is an
incompetent language user, either a student agent of a human student. Similar
to a language game, game participants share a situation (not yet conceptualized)
and a joint goal, such as expressing a certain conceptualization of the situation or
pointing to the situation’s topic.

Tutoring session A tutoring session is a series of tutoring games played by the
same student without any interruptions. When a student logs out, the session
ends and a new session can be started the next time he enters the system. He is
recognized through his user name, which is kept in his student profile.

Tutoring strategy A tutoring strategy is a means to tackle a particular learning
problem in a student’s acquisition of the target language that is diagnosed by the
tutor agent. It influences the learning path of the student by selecting new learning
situations and providing feedback at the end of every language game.
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absolute tense, 34
assimilation, 33
automatic grammar creation, 91

base grammar, 96

computational introspection, 55
computational reflection, 54, 55
construction, 14, 15
construction application, 25
Construction Grammar, 13
construction inventory, 13
construction network, 22
construction organization, 20
construction poles, 15
construction sets, 21
construction templates, 23, 83
construction types, 35
constructional dependency, 22
constructivism, 80

convergence, 112
conversational repair strategies, 87
coupled feature structure, 15

decision tree, 91
diagnostics, 57-60
diagnostics and repairs, 99
diphthongization, 33

Embodied Construction Grammar, 12

FCG, see Fluid Construction Grammar

feature matrix, 35

Finite-state morphology, 51
finite-state transducer, 51

flexibility strategy, 57

Fluid Construction Grammar, 12—-13
footprints, 19

goal test, 26
grammar engine, 25

hashed construction set, 97
Head-driven Phrase Structure Grammar, 12

ICALL, 68
initial feature structure, 26
irregular verbs, 45

J-operator, 17, 25
J-unit, 17

language agent, 3
learning strategies, 99
learning strategy, 99
lexical constructions, 35

match, 25

merge, 25

meta-level architecture, 58
morphological constructions, 39

Onoma, 91
Open learner models, 132

parsing, 25

phonological constructions, 40, 48
phrasal constructions, 38

primary verbs, 92

problem, 57
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problem-driven learning, 99
processing constructions, 25
production, 25

programmed instruction, 151

re-entrance, 65

reflective architecture, 56
reflective language processing, 56
regular verbs, 42

relative tense, 34

render-robust, 47

rendering, 47

repairs, 57, 60—-61

robustness, 56

Rosetta Stone, 100

search process, 26

semi-regular, 92

semi-regular verbs, 44

Sign-based Construction Grammar, 12
SOAR, 55

special operators, 20

SPLLOC, 73

student agent, 5

tag operator, 18

templates, see construction templates
top unit, 26

transient linguistic structure, 16

tutor agent, 6

tutoring strategies, 6

Two-level Morphology, 51

unmarked cases, 22

variable, 15, 16
verb ending, 31
verb types, 33
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