Review of Lecture 12

- Regularization

 constrained \rightarrow unconstrained

 $E_{\text{in}} = \text{const.}$

 w_{lin}

 normal

 $w^T w = C$

 Minimize $E_{\text{aug}}(w) = E_{\text{in}}(w) + \frac{\lambda}{N} w^T w$

- Choosing a regularizer

 $E_{\text{aug}}(h) = E_{\text{in}}(h) + \frac{\lambda}{N} \Omega(h)$

 $\Omega(h)$: heuristic \rightarrow smooth, simple h

 most used: weight decay

 λ: principled; validation

 $\lambda = 0.0001$ $\lambda = 1.0$
Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 13: Validation
Outline

• The validation set

• Model selection

• Cross validation
Validation versus regularization

In one form or another, \(E_{\text{out}}(h) = E_{\text{in}}(h) + \text{overfit penalty} \)

Regularization:
\[
E_{\text{out}}(h) = E_{\text{in}}(h) + \cancel{\text{overfit penalty}}
\]
regularization estimates this quantity

Validation:
\[
\hat{E}_{\text{out}}(h) = E_{\text{in}}(h) + \text{overfit penalty}
\]
validation estimates this quantity
Analyzing the estimate

On out-of-sample point \((\mathbf{x}, y)\), the error is \(e(h(\mathbf{x}), y)\)

Squared error: \((h(\mathbf{x}) - y)^2\)

Binary error: \([h(\mathbf{x}) \neq y]\)

\(\mathbb{E}[e(h(\mathbf{x}), y)] = E_{out}(h)\)

\(\text{var}[e(h(\mathbf{x}), y)] = \sigma^2\)
From a point to a set

On a validation set \((x_1, y_1), \ldots, (x_K, y_K)\), the error is \(E_{\text{val}}(h) = \frac{1}{K} \sum_{k=1}^{K} e(h(x_k), y_k)\)

\[
E \left[E_{\text{val}}(h) \right] = \frac{1}{K} \sum_{k=1}^{K} E \left[e(h(x_k), y_k) \right] = E_{\text{out}}(h)
\]

\[
\text{var} \left[E_{\text{val}}(h) \right] = \frac{1}{K^2} \sum_{k=1}^{K} \text{var} \left[e(h(x_k), y_k) \right] = \frac{\sigma^2}{K}
\]

\(E_{\text{val}}(h) = E_{\text{out}}(h) \pm O \left(\frac{1}{\sqrt{K}}\right)\)
K is taken out of N

Given the data set $\mathcal{D} = (x_1, y_1), \cdots, (x_N, y_N)$

K points \to validation $\quad N - K$ points \to training

$O\left(\frac{1}{\sqrt{K}}\right)$: Small $K \implies$ bad estimate

Large $K \implies$?

![Graph showing expected error vs. number of data points](image)
K is put back into N

$$
\mathcal{D} \quad \rightarrow \quad \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{val}} \\
\downarrow \quad \downarrow \quad \downarrow \\
\mathcal{N} \quad \mathcal{N} - K \quad K
$$

$$
\mathcal{D} \quad \Rightarrow \quad g \\
\mathcal{D}_{\text{train}} \quad \Rightarrow \quad g^-
$$

$$
E_{\text{val}} = E_{\text{val}}(g^-) \quad \text{Large } K \quad \Rightarrow \quad \text{bad estimate!}
$$

Rule of Thumb:

$$
K = \frac{N}{5}
$$
Why ‘validation’

D_{val} is used to make learning choices.

If an estimate of E_{out} affects learning:

the set is no longer a test set!

It becomes a validation set.
What’s the difference?

Test set is unbiased; validation set has optimistic bias

Two hypotheses \(h_1 \) and \(h_2 \) with \(E_{\text{out}}(h_1) = E_{\text{out}}(h_2) = 0.5 \)

Error estimates \(e_1 \) and \(e_2 \) uniform on \([0, 1]\)

Pick \(h \in \{h_1, h_2\} \) with \(e = \min(e_1, e_2) \)

\(\mathbb{E}(e) < 0.5 \) optimistic bias
Outline

- The validation set
- Model selection
- Cross validation
Using \mathcal{D}_{val} more than once

M models $\mathcal{H}_1, \ldots, \mathcal{H}_M$

Use $\mathcal{D}_{\text{train}}$ to learn g_m^{-} for each model

Evaluate g_m^{-} using \mathcal{D}_{val}:

$$E_m = E_{\text{val}}(g_m^{-}); \quad m = 1, \ldots, M$$

Pick model $m = m^*$ with smallest E_m
The bias

We selected the model \mathcal{H}_{m^*} using D_{val}

$E_{\text{val}}(g_{m^*})$ is a biased estimate of $E_{\text{out}}(g_{m^*})$

Illustration: selecting between 2 models

![Graph showing expected error vs validation set size for $E_{\text{out}}(g_{m^*})$ and $E_{\text{val}}(g_{m^*})$.]
How much bias

For M models: $\mathcal{H}_1, \ldots, \mathcal{H}_M$ \mathcal{D}_{val} is used for "training" on the finalists model:

$$\mathcal{H}_{\text{val}} = \{ g_1^-, g_2^-, \ldots, g_M^- \}$$

Back to Hoeffding and VC!

$$E_{\text{out}}(g_{m^*}^-) \leq E_{\text{val}}(g_{m^*}^-) + O\left(\sqrt{\frac{\ln M}{K}}\right)$$

regularization λ early-stopping T
Data contamination

Error estimates: $E_{\text{in}}, E_{\text{test}}, E_{\text{val}}$

Contamination: Optimistic (deceptive) bias in estimating E_{out}

Training set: totally contaminated

Validation set: slightly contaminated

Test set: totally ‘clean’
Outline

- The validation set
- Model selection
- Cross validation
The dilemma about K

The following chain of reasoning:

$$E_{out}(g) \approx E_{out}(g^-) \approx E_{val}(g^-)$$

(small K) \hspace{1cm} (large K)

highlights the dilemma in selecting K:

Can we have K both small and large? 😊
Leave one out

$N - 1$ points for training, and \textbf{1 point} for validation!

$$\mathcal{D}_n = (x_1, y_1), \ldots, (x_{n-1}, y_{n-1}), (x_n, y_n), (x_{n+1}, y_{n+1}), \ldots, (x_N, y_N)$$

Final hypothesis learned from \mathcal{D}_n is g^-_n

$$e_n = E_{\text{val}}(g^-_n) = e(g^-_n(x_n), y_n)$$

cross validation error: \[E_{cv} = \frac{1}{N} \sum_{n=1}^{N} e_n \]
Illustration of cross validation

\[E_{cv} = \frac{1}{3} (e_1 + e_2 + e_3) \]
Model selection using CV

Linear:

Constant:
Cross validation in action

Digits classification task

Different errors

\[(1, x_1, x_2) \rightarrow (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, \ldots, x_1^5, x_1^4 x_2, x_1^3 x_2^2, x_1^2 x_2^3, x_1 x_2^4, x_2^5)\]
The result

without validation

\[E_{\text{in}} = 0\% \quad E_{\text{out}} = 2.5\% \]

with validation

\[E_{\text{in}} = 0.8\% \quad E_{\text{out}} = 1.5\% \]
Leave more than one out

Leave one out: \(N \) training sessions on \(N - 1 \) points each

More points for validation?

\[
\frac{N}{K} \text{ training sessions on } N - K \text{ points each}
\]

10-fold cross validation: \(K = \frac{N}{10} \)