Review of Lecture 8

• Bias and variance

Expected value of E_{out} w.r.t. \mathcal{D}

$$= \text{bias} + \text{var}$$

$g^{(\mathcal{D})}(x) \rightarrow \bar{g}(x) \rightarrow f(x)$

• Learning curves

How E_{in} and E_{out} vary with N

B-V:

VC:

$N \propto \text{"VC dimension"}$
Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 9: **The Linear Model II**
Where we are

- Linear classification ✓
- Linear regression ✓
- Logistic regression
- Nonlinear transforms ✓
Nonlinear transforms

\[\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_d) \]

Each \(z_i = \phi_i(\mathbf{x}) \) \quad \mathbf{z} = \Phi(\mathbf{x})

Example: \(\mathbf{z} = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2) \)

Final hypothesis \(g(\mathbf{x}) \) in \(\mathcal{X} \) space:

\[\text{sign} \left(\mathbf{\tilde{w}}^\top \Phi(\mathbf{x}) \right) \quad \text{or} \quad \mathbf{\tilde{w}}^\top \Phi(\mathbf{x}) \]
The price we pay

\[x = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} z = (z_0, z_1, \cdots, z_{\tilde{d}}) \]

\[\downarrow \quad \downarrow \]

\[w \quad \tilde{w} \]

\[d_{VC} = d + 1 \]

\[d_{VC} \leq \tilde{d} + 1 \]
Two non-separable cases
First case

Use a linear model in \mathcal{X}; accept $E_{\text{in}} > 0$

or

Insist on $E_{\text{in}} = 0$; go to high-dimensional \mathcal{Z}
Second case

\[\mathbf{z} = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2) \]

Why not: \[\mathbf{z} = (1, x_1^2, x_2^2) \]

or better yet: \[\mathbf{z} = (1, x_1^2 + x_2^2) \]

or even: \[\mathbf{z} = (x_1^2 + x_2^2 - 0.6) \]
Lesson learned

Looking at the data before choosing the model can be hazardous to your E_{out}

Data snooping
Logistic regression - Outline

- The model
- Error measure
- Learning algorithm
A third linear model

\[s = \sum_{i=0}^{d} w_i x_i \]

linear classification

\[h(\mathbf{x}) = \text{sign}(s) \]

linear regression

\[h(\mathbf{x}) = s \]

logistic regression

\[h(\mathbf{x}) = \theta(s) \]
The logistic function θ

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$

soft threshold: uncertainty

sigmoid: flattened out ‘s’
Probability interpretation

\[h(x) = \theta(s) \] is interpreted as a probability

Example. Prediction of heart attacks

Input \(x \): cholesterol level, age, weight, etc.

\(\theta(s) \): probability of a heart attack

The signal \(s = w^T x \) “risk score”
Genuine probability

Data \((\mathbf{x}, y)\) with binary \(y\), generated by a noisy target:

\[
P(y \mid \mathbf{x}) = \begin{cases}
 f(\mathbf{x}) & \text{for } y = +1; \\
 1 - f(\mathbf{x}) & \text{for } y = -1.
\end{cases}
\]

The target \(f : \mathbb{R}^d \rightarrow [0, 1]\) is the probability

\[
\text{Learn } g(\mathbf{x}) = \theta(\mathbf{w}^\top \mathbf{x}) \approx f(\mathbf{x})
\]
Error measure

For each \((x, y)\), \(y\) is generated by probability \(f(x)\)

Plausible error measure based on likelihood:

If \(h = f\), how likely to get \(y\) from \(x\)?

\[
P(y \mid x) = \begin{cases}
 h(x) & \text{for } y = +1; \\
 1 - h(x) & \text{for } y = -1.
\end{cases}
\]
Formula for likelihood

\[P(y \mid x) = \begin{cases} h(x) & \text{for } y = +1; \\ 1 - h(x) & \text{for } y = -1. \end{cases} \]

Substitute \(h(x) = \theta(w^T x) \), noting \(\theta(-s) = 1 - \theta(s) \)

\[P(y \mid x) = \theta(y \, w^T x) \]

Likelihood of \(\mathcal{D} = (x_1, y_1), \ldots, (x_N, y_N) \) is

\[\prod_{n=1}^{N} P(y_n \mid x_n) = \prod_{n=1}^{N} \theta(y_n \, w^T x_n) \]
Maximizing the likelihood

Minimize

\[- \frac{1}{N} \ln \left(\prod_{n=1}^{N} \theta(y_n \mathbf{w}^\top \mathbf{x}_n) \right)\]

\[= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^\top \mathbf{x}_n)} \right) \]

\[\theta(s) = \frac{1}{1 + e^{-s}} \]

\[E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1 + e^{-y_n \mathbf{w}^\top \mathbf{x}_n}}{e(h(\mathbf{x}_n),y_n)} \right) \]

“cross-entropy” error
Logistic regression - Outline

- The model
- Error measure
- Learning algorithm
How to minimize E_{in}

For logistic regression,

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n w^T x_n} \right) \quad \leftarrow \text{iterative solution}$$

Compare to linear regression:

$$E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} (w^T x_n - y_n)^2 \quad \leftarrow \text{closed-form solution}$$
Iterative method: gradient descent

General method for nonlinear optimization

Start at $\mathbf{w}(0)$; take a step along steepest slope

Fixed step size: $\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$

What is the direction $\hat{\mathbf{v}}$?
Formula for the direction \hat{v}

$$\Delta E_{\text{in}} = E_{\text{in}}(w(0) + \eta \hat{v}) - E_{\text{in}}(w(0))$$

$$= \eta \nabla E_{\text{in}}(w(0))^T \hat{v} + O(\eta^2)$$

$$\geq -\eta \| \nabla E_{\text{in}}(w(0)) \|$$

Since \hat{v} is a unit vector,

$$\hat{v} = -\frac{\nabla E_{\text{in}}(w(0))}{\| \nabla E_{\text{in}}(w(0)) \|}$$
Fixed-size step?

How η affects the algorithm:

- η too small
- η too large
- Variable η – just right

η should increase with the slope
Easy implementation

Instead of

\[\Delta w = \eta \hat{v} \]

\[= -\eta \frac{\nabla E_{\text{in}}(w(0))}{\|\nabla E_{\text{in}}(w(0))\|} \]

Have

\[\Delta w = -\eta \nabla E_{\text{in}}(w(0)) \]

Fixed learning rate \(\eta \)
Logistic regression algorithm

1. Initialize the weights at $t = 0$ to $\mathbf{w}(0)$
2. for $t = 0, 1, 2, \ldots$ do
3. Compute the gradient

$$\nabla E_{in} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n}{1 + e^{y_n \mathbf{w}^T(t)x_n}}$$

4. Update the weights: $\mathbf{w}(t + 1) = \mathbf{w}(t) - \eta \nabla E_{in}$
5. Iterate to the next step until it is time to stop
6. Return the final weights \mathbf{w}
Summary of Linear Models

Credit Analysis

- Approve or Deny
- Amount of Credit
- Probability of Default

Perceptron

- Classification Error
 - PLA, Pocket, ...

Linear Regression

- Squared Error
 - Pseudo-inverse

Logistic Regression

- Cross-entropy Error
 - Gradient descent