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Abstract

Designing an adaptive multi-agent system often requires the specification

of interaction patterns between the different agents. To date, it remains

unclear to which extent such interaction patterns influence the dynamics

of the learning mechanisms inherent to each agent in the system. Here,

we address this fundamental problem, both analytically and via computer

simulations, examining networks of agents that engage in stag-hunt games

with their neighbors and thereby learn to coordinate their actions. We

show that the specific network topology does not affect the game strategy

the agents learn on average. Yet, network features such as heterogeneity

and clustering effectively determine how this average game behavior arises

and how it manifests itself. Network heterogeneity induces variation in

learning speed, whereas network clustering results in the emergence of

clusters of agents with similar strategies. Such clusters also form when the

network structure is not predefined, but shaped by the agents themselves.

In that case, the strategy of an agent may become correlated with that

of its neighbors on the one hand, and with its degree on the other hand.

Here, we show that the presence of such correlations drastically changes

the overall learning behavior of the agents. As such, our work provides

a clear-cut picture of the learning dynamics associated with networks of

agents trying to optimally coordinate their actions.

Keywords: Complex Networks, Evolutionary Game Theory, Learning Automata
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1 Introduction

In multi-agent systems (MAS), an agent’s success is often not solely the result
of its own actions, but depends also on the actions of other agents. Moreover,
agents often need to coordinate their actions to solve a particular task (Kraus,
1997). Game theory (Binmore, 1991; Osborne and Rubinstein, 1994) has proven
itself as an excellent framework to analyze both issues, representing the problem
of coordination between agents in terms of simple games such as the stag-hunt
game (Skyrms, 2004). In this game, two interacting agents have to choose
simultaneously to hunt either stag or hare. Hunting stag yields the highest
possible payoff, provided that the other agent cooperates and hunts stag as
well. In case the other agent does not to cooperate (i.e., he defects) and chooses
to hunt hare, the best reply is to do the same and to hunt hare. In other words,
agents obtain a high payoff by coordinating their actions, but may end up in a
suboptimal situation when taking the safest bet.

As such, the stag-hunt game represents, in a simplified manner, coordination
problems like those encountered in swarm robotics (Dorigo et al., 2005) or the
evolution of language (Christiansen and Kriby, 2003). Swarm robotics research
investigates how the collective behavior of social insects can be exploited for
designing multi-robot systems. A very interesting feature of these insects is
their remarkable capacity for coordination, even without any central author-
ity, allowing them to solve tasks that cannot be handled by one insect alone
(e.g., carrying heavy prey). The field of language evolution, on the other hand,
studies how language conventions emerge in a population of agents, leading to
the formation of a common vocabulary and grammar. In this domain, agents
learn from observations or from interaction with other agents to coordinate on
a particular signaling systems that allows them to communicate in a correct
manner.

In many MAS, not all agents are equally likely to interact with each other.
Instead, they interact along the links of complex networks, with applications
such as network routing (Perkins and Royer, 1999; Johnson et al., 2001) and
sensor networks (Akyildiz et al., 2002). In recent years, it has been recognized
that the specific structure of networks plays an important role in the overall
behavior of many dynamical processes that take place on them, with examples
ranging from disease spreading (May, 2006) to opinion formation (Sood et al.,
2007) and evolutionary game dynamics (Szabó and Fáth, 2007).

Here, we investigate how and under which conditions the structure of the
interaction network influences the learning dynamics of the agents when they
engage in stag-hunt games with their neighbors in the network. Contrary to
previous work (Santos et al., 2006b), we focus on a learning scheme that relies
purely on trial-and-error (individual-based learning), rather than imitation (so-
cial learning). Specifically, we implement each agent as a learning automaton
(Narendra and Thathachar, 1989), which uses only its game payoff to improve
its game strategy. This study provides theoretical insight into how particular
network features affect individual-based learning, and is a first step towards a
better understanding of the similarities and differences with what is known from
social learning.

Given this setup, we first examine how network features such as clustering
and heterogeneity affect the learning process. The amount of clustering in a
network is typically represented by its clustering coefficient, which refers to the
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degree to which neighbors of a certain node are also connected to each other.
A prototypical situation that involves clustered networks are MAS embedded
in spatial environments, such as sensor networks. Heterogeneity, on the other
hand, is here defined as the differences in connectivity among the agents, and
corresponds to the variance in the network’s degree distribution. This variance
is typically small in spatial MAS, due to physical limitations, but may be sizable
in problems such as network routing where some nodes may have a significantly
more important role than others. We show that both network features do not
influence the average strategy obtained at the global level, i.e. over all agents in
the network, in contrast to what has been observed when using social learning
(Santos et al., 2006b). Yet, at the level of the individual agents (the local level),
the network topology does play an important role, viz. (i) clusters of agents with
similar strategies emerge depending on the clustering coefficient of the network,
and (ii) heterogeneity induces variation in the learning speed of the agents in
the system. Agents occupying high degree nodes converge faster than those
occupying low degree nodes.

Clusters of agents with similar strategies may form spontaneously, but may
also arise when agents are allowed to adjust both their strategy and their neigh-
bor relations (Santos et al., 2006a; Van Segbroeck et al., 2008, 2009). Such
networks, whose structure is adaptive, occur frequently in MAS, for instance in
applications of swarm intelligence (Bonabeau et al., 1999). Indeed, cooperative
agents that have the ability to choose their neighbors in the network will look
for other cooperative agents to interact with, thereby creating correlations be-
tween the strategies of connected agents. We show that the presence of such
correlations changes the spectrum of games in which the agents in the network
become fully cooperative. A similar observation is obtained when correlating
the strategy of the agents with their connectivity, highlighting another impor-
tant feature of adaptive networks. Since cooperative agents will most likely
attract more connections than defective agents, their degree in the network will
naturally increase. Here, we demonstrate that the average level of cooperation
in the MAS increases under such constraints.

Taken together, our current work justifies both analytically and in simula-
tions why the specific structure of static networks does not affect the global
average learning behavior in a typical MAS, and why the presence of correla-
tions that emerge naturally in adaptive networks modifies the collective learning
dynamics.

2 Materials and Methods

We consider a network of constant size N . Each node in the network is occupied
by exactly one agent. Agents may interact with each other only if they are
directly connected in the network. Each agent learns from its interactions,
adjusting its strategy accordingly.
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2.1 Interactions between agents

Interactions are modeled as symmetric two-player games defined by the payoff
matrix

(

C D

C R, R S, T

D T, S P, P

)

. (1)

An agent who chooses to cooperate (C) with someone who defects (D) receives
the sucker’s payoff S, whereas the defecting agent gains the temptation to defect,
T . Mutual cooperation (defection) yields the reward R (punishment P ) for both
agents.

We enter the realm of the stag hunt (Skyrms, 2004) or coordination game
whenever these payoff values fulfill the condition

S < P < T < R (2)

(Macy and Flache, 2002). As in all social dilemmas, mutual cooperation (R) is
preferred over mutual defection (P ) and over an equal probability of unilateral
cooperation and defection (2R > T + S). In a well-mixed population the game
dynamics will end in either of the two stable, pure Nash equilibria: (C, C) and
(D, D). The equilibrium corresponding to mutual cooperation is always Pareto
dominant (P < R). The defective equilibrium is, however, strictly risk dominant
when R + S < T + P . We will treat only this social dilemma in this work.

We adopt the common convention (e.g., Santos et al. (2006b)) of normalizing
the payoff values so that the difference between the payoffs associated with the
two Nash equilibria becomes 1, taking R = 2 and P = 1. Fixing the value of T

to 1.5 (other values produce equivalent results) leaves only one parameter S to
tune the game. When cooperation and defection are equally likely, the expected
payoff E[πC ] for cooperating is R

2 + S
2 , whereas the expected payoff E[πD] for

defecting equals T
2 + P

2 . It is easy to see that in this case, E[πC ] > E[πD] for
S > 0.5, and E[πC ] < E[πD] for S < 0.5. Hence, the cooperative equilibrium is
strictly risk-dominant when S > 0.5, whereas the defective equilibrium is strictly
risk-dominant when S < 0.5. When S = 0.5, neither cooperation nor defection
are strictly risk-dominant, meaning that both Nash equilibria are equally likely
to be selected.

2.2 Learning

At each discrete time step t, a randomly selected agent i interacts with a random
neighbor j. Each of the two agents chooses its action (C or D) based on its
strategy. The strategy of agent i (respectively, j) is encoded as a single time-
dependent probability pi(t) (respectively, pj(t)) to cooperate. Each agent uses
the payoff it receives upon interaction to update its strategy. The strategy of
agent i is updated according to the rule

pi(t + 1) =

{

pi(t) + λβi(t) [1 − pi(t)] when i chooses C at time t

pi(t) − λβi(t)pi(t) when i chooses D at time t
(3)

and that of agent j similarly. βi(t) ∈ [0, 1] denotes the feedback agent i obtains
at time t. This feedback is given by the game payoff the agent received, divided
by the maximum possible payoff value (R = 2 in our case, see condition (2)).
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Figure 1: Construction of networks with varying clustering coefficient CC. (a)
We start with a regular ring lattice. The neighbors of each node are often also
connected to each other, resulting in a high value of CC. (b) Select a fraction
f of the edges. Group the selected edges into pairs, and swap the ends of each
pair (keeping the degree of each node fixed). This rewiring procedure destroys
part of the original clustering. (c) Ultimately, i.e., for f = 1, we obtain what we
call a homogeneous random network, which exhibits an extremely low degree of
clustering.

Formula (3) shows that when an agent chooses to cooperate, its probability to
cooperate in the future will increase proportionally to the obtained feedback.
Similarly, an agent who chooses to defect will become more likely to defect in the
future. The parameter λ, known as the learning rate, specifies the immediate
impact of the feedback on the agent’s strategy. Agents that learn in this way
are essentially finite-action learning automata with a reward-inaction update
scheme (Narendra and Thathachar, 1989), which are known to converge to an
equilibrium point, i.e., a pure Nash equilibrium. Learning automata belong to
the class of policy iteration approaches to reinforcement learning (Sutton and
Barto, 1998). Policy iteration approaches manipulate the strategies directly, in
contrast to value iteration approaches that indirectly represent the strategies
via the optimal value function. A key feature of learning automata is that the
action selection and policy evaluation are all integrated into one mechanism.
More elaborate approaches exist that include forms of exploration. Yet in all
cases, they learn and explore purely starting from their current individual state
and feedback. As such the automata selected here represents a base-mechanism
which can be extended into multiple other policy iteration schemes that separate
action selection from the policy representation and policy evaluation. As long
as the approach guarantees convergence to a Nash equilibrium, we expect that
these extensions will not change the conclusions we draw here.

2.3 Network topology

The first aspect of individual-based learning in networks that we investigate is
the direct impact of the network topology. As explained in the introduction, we
address two distinct network features: clustering and heterogeneity.

To determine the effect of clustering, we define networks with a varying
clustering coefficient C (Watts and Strogatz, 1998). C is defined as the average
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of all local clustering coefficients Ci (0 < i < N), which are in turn given by
the number of edges between the neighbors of node i divided by the maximum
possible number of edges between those neighbors. We start with regular ring
lattices of degree Z (with Z ≥ 2). The nodes of such networks are placed on
a ring and connected with their Z nearest neighbors (Z

2 on each side). Many
neighbors of each node are therefore also neighbors of each other, resulting in a
high clustering coefficient. We now gradually decrease this clustering coefficient
by rewiring an increasing fraction f of the total number of edges (Szabó and
Vukov, 2004; Santos et al., 2005), ultimately leading to a random network whose
clustering coefficient approaches 0 (see the inset of Figure 2b). In order to avoid
changing the degree distribution of the network, we apply the rewiring procedure
introduced by Maslov and Sneppen (2002). The algorithm repeatedly swaps the
ends of two randomly selected edges, provided no duplicate edges arise, until
the necessary number of edges have been rewired (see Figure 1). We ensure that
edges are rewired only once during the entire procedure.

We determine the influence of heterogeneity by comparing the learning pro-
cess in homogeneous random networks (Santos et al., 2005) with that in random
scale-free networks (Albert and Barabási, 2002). Homogeneous random net-
works represent the extreme case where all nodes have exactly the same number
of neighbors, evidenced by a degree distribution that has one single peak. They
are random in the sense that edges connect nodes that are chosen randomly, to
the extent that the given degree distribution remains satisfied. We generate such
networks by randomizing regular ring lattices, applying the algorithm described
above for f = 1. Scale-free networks form the other extreme case in terms of
heterogeneity, having a degree distribution that follows a power law. Several
algorithms to construct such networks have been proposed over the years, the
most famous one probably being that of Barabási and Albert (1999). The spe-
cific construction algorithm defines the exponent γ associated with the degree
distribution of the resulting networks. Here, we adopt the configuration model
Molloy and Reed (1995) to construct random scale-free networks with γ = 3,
a typical exponent of many real-life scale-free networks (Albert and Barabási,
2002). The randomness of the networks allows us to study pure heterogeneity
effects, detached from any other structural network features associated with a
particular construction algorithm.

2.4 Correlations in the network

The next part of our investigation concerns distinct connectivity patterns be-
tween agents with different initial strategies. First, we introduce correlations be-
tween the initial strategies of these agents (which we refer to as strategy-strategy

correlations) and study how they affect the learning process. Afterwards, we
examine the impact of correlations between the initial strategy of an agent and
its degree (strategy-degree correlations).

In order to isolate the effect of strategy-strategy correlations, we use ho-
mogeneous random networks, thereby excluding specific network features like
clustering and heterogeneity from the analysis. The strategy of an agent is de-
termined by a parameter δ ∈]0, 0.5[. Initially, 50% of the agents in the network
cooperate with a high probability, adopting strategy pC = 1−δ. The other 50%
adopt strategy pC = δ and have therefore a high probability to defect. Here,
we take δ = 0.2. Yet, the results remain qualitatively the same for any value of
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δ ∈]0, 0.5[ (Note that δ should be strictly larger than 0 in order to avoid that
agents stick to their initial strategy at any time).

We start by distributing the two types of agents randomly in the network.
We then apply a rewiring procedure similar to the one discussed above (i.e., for
tuning the clustering coefficient). However, instead of taking all possible links
into account for rewiring, we consider only those links connecting agents with
a different strategy. By swapping a fraction fcd of those links, connecting the
cooperative agents with each other and the defective agents with each other,
the initial strategies of connected agents become correlated. When fcd = 0, on
average 50% of the neighbors of a cooperator (defector) will be other coopera-
tors (defectors). When fcd = 1.0, cooperators will only be connected to other
cooperators, and defectors to other defectors.

We study strategy-degree correlations by considering random scale-free net-
works in which agent strategies are initialized in one of three manners, viz. (i)
positive, (ii) negative and (iii) no strategy-degree correlations. In each of the
three cases, we first produce the random scale-free network of N nodes and
then independently produce N probabilities pi(0), one for every agent i, from
a uniform distribution U(0, 1). In case (i), we place these N probabilities in
decreasing order. The node to which the highest (i.e., most cooperative) pi(0)
value is assigned is selected from the existing network with a probability pro-
portional to its degree. The second highest pi(0) value is assigned similarly,
and so on until all probabilities are assigned to nodes in the network. In this
way, agents in high degree nodes tend to be more cooperative than those in low
degree nodes. We use the same initialization strategy for case (ii), but this time
we order the N initial strategies in increasing order. As a consequence, agents
with many neighbors tend to be less cooperative than those that have only few.
Finally, in case (iii), the N strategies are randomly distributed in the network,
so that strategy-degree correlations are absent.

3 Results and Discussion

3.1 Learning in complete networks

Before addressing the problem of learning in networks with a specific topology,
we investigate the learning process in complete networks to use as a comparison
to ground the other results. The expected probability that an agent j cooperates
at time t is given by

〈p〉t =
1

N

N
∑

i=1

pi(t). (4)

A random neighbor of j will cooperate at time t with approximately the same
probability. The two agents interact and update their strategies according to
Equation (3). The expected change in 〈p〉 resulting from this update is given
by

∆〈p〉 = 2 〈p〉t λ E[βC ] (1 − 〈p〉t) − 2 (1 − 〈p〉t)λ E[βD]〈p〉t
= 〈p〉t(1 − 〈p〉t) [2 λ (E[βC ] − E[βD])] (5)

where E[βC ] (E[βD]) denotes the expected feedback an agent obtains when co-
operating (defecting). Note the correspondence between Equation (5) and the
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standard replicator equation from evolutionary game theory (Hofbauer and Sig-
mund, 1998).

Equation (5) implies that cooperation will become more likely when E[βC ] >

E[βD], whereas the opposite will be true when E[βC ] < E[βD]. The transition,
i.e., E[βC ] = E[βD], occurs for

〈p〉
∗

=
P − S

R − S − T + P
(6)

Hence, when 〈p〉0 > 〈p〉
∗

(respectively, 〈p〉0 < 〈p〉
∗
), all agents will learn to

cooperate (respectively, defect) 100% of the time.

3.2 Global effects of the network topology

As a first step to investigate the effect of the network topology, we simulate
the learning process in regular ring lattices, homogeneous random networks, as
well as random scale-free networks. Comparison of the results for regular ring
lattices with those for homogeneous random networks demonstrates the effect
of the clustering coefficient. By comparing homogeneous random networks with
scale-free networks, we address the role of heterogeneity.

We simulate the learning process on each type of network for different values
of the sucker’s payoff S ∈ [0, 1]. At the start of each simulation, we initialize the
strategy pi(0) of each agent i to 0.5, making cooperation and defection equally
likely. Each simulation continues until a stationary regime has been reached,
i.e., until the average strategy of the agents changed less than 10−5 during the
last 106 time steps. For each value of S, we run 1000 independent simulations
and calculate the strategy the agents learn on average.

Figure 2a shows that this strategy does not depend on the specific structure
of the interaction network. Indeed, in each of the three types of networks,
a transition from full defection to full cooperation occurs at S = 0.5. This
transition corresponds exactly to the one predicted by Equation (6) for 〈p〉0 =
0.5. This means that on average the network does not change the probability
that an agent perceives either cooperation or defection, so that the learning
process in any of the three types of networks becomes equivalent to that in a
complete network. In other words, wiring agents in a different way will not have
any direct impact on the average strategy of the agents in the network.

3.3 Local effects of the network topology

The individual strategies that make up the average behavior exhibit some re-
markable features. The first one concerns the final distribution of agent strate-
gies in networks with varying clustering coefficient, which are created following
the methodology described in Section 2.3. The value of the sucker’s payoff S is
set to 0.5, so that neither cooperation nor defection dominates. Running simu-
lations with this parameter setting will produce networks that have on average
50% fully cooperative agents and 50% fully defective agents. Although the ac-
tual clustering coefficient does not influence the final fraction of each strategy
(see Figure 2a), we observe that it does play an important role in the position of
cooperators and defectors in the network. We visualize this effect by measuring
the average difference in strategy between each agent i and its neighbors. We
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Figure 2: Global and local behavior in networks. In all four panels, we use
pi(0) = 0.5, λ = 0.01, N = 103 and Z = 8 as parameter values. (a) Average
strategy of the agents as a function of the sucker’s payoff S for different network
structures. The specific type of network does not affect the critical value of S at
which the transition from full defection to full cooperation occurs. (b) Average
strategy disassortativity D for S = 0.5 in networks created from regular ring
lattices by rewiring a fraction f of the edges. The inset shows the clustering
coefficient C of the resulting networks, divided by the clustering coefficient C0

of the original lattice. The strategy an agent learns is more similar to that of its
neighbors when the network has a higher clustering coefficient. (c) Fraction of
agents with individual strategy disassortativity Di within the ranges specified
by the X-axis, using the same settings as in panel b. (d) Average strategy of the
agents as a function of their position (degree) in a random scale-free network,
and this at different points in (simulation) time t, given S = 0.7. Agents that
occupy high degree nodes will converge much faster than those occupying low
degree nodes.

refer to this value as the strategy disassortativity of the agent, which is defined
as

Di(t) =
1

Ni

∑

j∈N(i)

|pi(t) − pj(t)| , (7)

where N(i) (respectively, Ni) denotes the neighbors (respectively, number of
neighbors) of agent i. This value is similar to the index of dissimilarity defined
in the context of social segregation literature (Schelling, 1971, 1978). Figure 2b
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shows the average strategy disassortativity

D =
1

N

N
∑

i=1

Di (8)

of all agents in the network at the end of the simulations, as a function of the
fraction of edges f that are rewired in a regular ring lattice (see Section 2.3).
When f is small, the strategy of the agents is very similar to that of their
neighbors, which means that clusters of cooperators and defectors emerge. This
is nicely illustrated in Figure 2c, which shows the distribution of the strategy
disassorativity of all agents in the network. When f = 0, the strategy dis-
assortativity of almost 70% of the agents is smaller than 0.1. Rewiring more
and more edges inhibits the spontaneous formation of clusters, a result that is
clearly visible in both Figures 2b and 2c. This phenomenon is correlated with
the impact of the rewiring procedure on the clustering coefficient C of the net-
work. The inset of Figure 2b shows that C drops very rapidly when f increases
from 0 to 0.5, but remains almost constant afterwards. The average strategy
disassortativity D follows the same trend.

The second local effect of the network topology concerns the impact of het-
erogeneity on the learning speed of different agents. Since high degree nodes
engage in more interactions than the low degree nodes, they will converge much
faster to an equilibrium. This is nicely illustrated in Figure 2d, where we show
the average strategy of nodes with given degree at different points in simulation
time. Initially, all agents cooperate 50% of the time and defect 50% of the time.
For S = 0.7, the hubs will learn to cooperate quickly and have almost converged
after 3 × 105 iterations. At this point in the simulation, the low degree nodes
still have a very long way to go. On average, the stationary regime is reached
after 5 × 106 iterations. When S < 0.5, a similar phenomenon occurs. In this
case, the high degree nodes will learn to defect much more rapidly than the low
degree nodes.

Thus, both network clustering and heterogeneity induce specific effects at the
individual level which are not visible when considering only the average behavior
in a MAS. Spontaneous clustering of agents with similar strategies does not only
occur in certain static network structures, but is also a typical characteristic of
adaptive networks (Santos et al., 2006a; Van Segbroeck et al., 2008, 2009), as
explained in the introduction. In essence, network adaptivity introduces two
types correlations in the network, viz. (i) strategy-strategy correlations, and (ii)
strategy-degree correlations. In the next subsection, we investigate how each of
these correlations affects the overall game behavior of agents in a network.

3.4 Influence of strategy correlations in the network

As discussed in Section 2.4, we study strategy-strategy correlations by consider-
ing homogeneous random networks with two types of agents: those who initially
cooperate most of the time and those who that initially defect most of the time.
Strategy-strategy correlations arise by rewiring a fraction fcd of the edges be-
tween agents with different initial strategies. Rewiring more and more of these
edges segregates the network into two sparsely connected groups: one contain-
ing the cooperative agents and the other containing the defective ones. Due to
this segregation, the expected feedback of the agents in the cooperative group
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Figure 3: Correlation effects. In both panels, we use λ = 0.0025, N = 103 and
Z = 8 as parameter values. (a) The effect of strategy-strategy correlations. We
distinguish two types of agents: those that are initially mostly cooperative and
those that are initially mostly defective. The correlation factor fcd determines
the level of segregation between these two groups of agents. As soon as fcd > 0,
agents in the cooperative (defective) group learn to cooperate (defect) even when
S < 0.5 (S > 0.5). S∗

1 (S∗
2 ) corresponds to the analytical approximation of the

critical S value for agents in the cooperative (defective) group. Note that S∗
1 for

fcd = 0.8 lies outside the frame to the left. (b) Introducing correlations between
the initial strategies of the agents and their degree shifts the critical value of S

where the transition from full defection to full cooperation takes place. Having
more cooperative (defective) agents in high degree nodes increases the basin of
attraction of the cooperative (defective) equilibrium.

will differ from that of the agents in the defective group. As a consequence,
agents in the cooperative group will remain cooperative for smaller values of S

than usual, whereas those in the defective group will remain defective for larger
values of S than usual (see Figure 3a).

We can again make an analytical approximation of the critical value of S

at which each of these transitions occurs. In the previous subsection, we have
seen that Equation (5) provides an accurate description of the learning process
in case all agents have the same initial strategy, irrespective of the network
topology. This is, however, no longer true when the network is segregated into
two groups of agents with a fundamentally different strategy. Indeed, in that
case we can no longer estimate the probability to receive cooperation by the
global average 〈p〉. Instead, the agents in the first group receive cooperation
with probability 〈p〉1 and those in the second group with probability 〈p〉2. As
such, the following two equations describe the learning process of the MAS

∆〈p〉1 = 〈p〉
1
t (1 − 〈p〉

1
t )

[

2 λ
(

E[β1
C ] − E[β1

D]
)]

∆〈p〉2 = 〈p〉
2
t (1 − 〈p〉

2
t )

[

2 λ
(

E[β2
C ] − E[β2

D]
)]

(9)

where E[β1
C ]

(

E[β2
C ]

)

denotes the expected feedback an agent in the first (sec-
ond) group obtains when cooperating. Similarly, E[β1

D] and E[β2
D] denote the

expected feedback for defection in each of the two groups. Note that the two
equations are coupled, in the sense that the expected feedback values depend
on both 〈p〉1 and 〈p〉2. The strength of this coupling depends on the value fcd.
When fcd is sufficiently large, we can treat the two equations as if they were
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independent of each other, as illustrated in Figure 3a. The vertical lines in this
figure represent the values S∗

1 (S∗
2 ) at which E[β1

C ] = E[β1
D]

(

E[β2
C ] = E[β2

D]
)

,
assuming that the agents interact with a member of the first group with proba-
bility 1

2 + 1
2fcd

(

1
2 − 1

2fcd

)

, and with one of the second group otherwise. Figure
3a shows that the accuracy of S∗

1 and S∗
2 improves when increasing fcd. When

considering for instance fcd = 0.8, the analytical prediction fits perfectly with
the simulations. When fcd is too small, the two groups of agents are too much
intertwined, resulting in rather poor analytical predictions.

3.5 Influence of strategy-degree correlations in the net-

work

Finally, we investigate the effect of strategy-degree correlations. We address
this issue by considering random scale-free networks with initial agent strategies
selected from a uniform distribution U(0, 1). Correlations between strategy and
degree are introduced following the methodology discussed in Section 2.4. In the
case of positive strategy-degree correlations, the high degree nodes are initially
more cooperative than the low degree ones. As a consequence, the expected
feedback of the agents becomes degree-dependent. Based on this observation,
one would expect that the learning process can only be described analytically
by considering one equation for each degree present in the network. We can,
however, calculate analytically the average probability that a cooperative action
occurs during each interaction:

〈p〉 =
∑

j

P (j)

[

∑

k

kP (k)
〈p〉j+〈p〉k

2
∑

s sP (s)

]

. (10)

P (j) denotes the probability of selecting a node with degree j, which depends
on the degree distribution of the network. The agent associated with this node
interacts with a randomly selected neighbor, who is of degree k with probability
proportional to kP (k) (Pastor-Satorras and Vespignani, 2001). The average
probability that a cooperative action takes place during this interaction is given

by
〈p〉j+〈p〉k

2 , where 〈p〉i denotes the average strategy of nodes with degree i. We
now calculate the values P (i) and 〈p〉i observed in the simulations. Plugging
the resulting value for 〈p〉 into Equation (5) gives us an estimate of the critical S

value at which cooperation and defection are equally likely. This value, indicated
by the vertical line in Figure 3b, shows a remarkable fit with the simulation
results. The presence of positive strategy-degree correlations increases 〈p〉, so
that the transition from full defection to full cooperation shifts in favor of the
cooperative strategy. In the case of negative strategy-degree correlations, similar
arguments explain why the transition from defection to cooperation shifts in
favor of the defective strategy.

4 Conclusion

In this work, we have examined the role of network clustering and heterogene-
ity in MAS where the agents, located at the nodes of the network, learn to
coordinate their actions in a stag hunt game. The results show that neither of
these topological features affects the average level of cooperation in the system.
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Moreover, the outcome of the learning process in networks with different topolo-
gies is equivalent to that in complete networks, for which we derived analytical
predictions.

However, closer inspection of the learning dynamics reveals that network
clustering and heterogeneity induce specific phenomena at the level of the indi-
vidual agents that do not occur in complete networks: (i) Heterogeneity alters
the convergence speed of the agents, i.e., agents located in the hubs of the net-
work tend to converge much faster than those located in sparsely connected
nodes, and (ii) Agents with similar strategies tend to cluster depending on the
clustering coefficient of the network.

The first feature suggests that the initial environment perceived by the agents
in high degree nodes defines to a large extent the overall final behavior of the
MAS. The agents in the hubs are by far the first to converge, which gives them
the opportunity to change the environment of the other agents and, as such,
alter their learning process. This issue may have important implications in sit-
uations where cultural evolution is at work as well, i.e., when individuals do
not learn by trial-and-error only, but also by imitation (Boyd and Richerson,
2005). If individual-based learning is more costly than social learning, then the
agents in the network may prefer to imitate the behavior of their neighbors,
rather than having to learn it themselves. Depending on the network structure,
there may be an optimal distribution of the two learning schemes in the popula-
tion, minimizing the total learning cost without compromising the population’s
capacity to adapt to changing environmental conditions (Rendell et al., 2010).

The second feature implies that although the clustering coefficient does not
affect the average fraction of cooperation in the MAS, it does change the ac-
tual payoffs the agents receive. Indeed, cooperative agents will collect a higher
payoff in networks with a higher clustering coefficient, because such networks
allow them to form clusters with other cooperative agents, protecting them
from interactions with defective agents. Hence, it will be easier for agents to
coordinate their actions when a certain amount of clustering is introduced in
the interaction topology. Without clustering, agents seem to be more exposed
to a mixed environment and find it more difficult to agree upon their actions.
Such effects have also been observed in the Talking Heads experiment (Steels,
1999). A common language evolved more easily when the agents were forced
to remain in the same location for a while, before migrating to other groups in
other locations.

In addition, we know from previous research (e.g., Santos et al., 2006a) that
clusters of cooperative and defective agents, as observed in networks with high
clustering coefficient, are known to emerge in MAS where the agents have the
ability to individually choose their interaction partners. For instance, when
agents decide to change partner based on the outcome of the game, all agents
look for cooperative agents to interact with, while trying to avoid contact with
defective agents. Together, cooperators may form clusters in order to produce
strong islands in a highly competitive environment. On the other hand, the
fact that all agents try to interact with cooperators creates correlations between
agent strategy and degree. From a learning perspective, adaptive network struc-
tures are important since they alter the feedback the agents receive about their
behavior in the current environment. By simply introducing the types of corre-
lations one can expect in MAS with adaptive networks, we showed here that the
final level of cooperation indeed changes. Furthermore, in this case, we are also
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able to predict analytically where the transition from cooperation to defection
will take place. Even though the present work already suggests what can be
expected from learning in adaptive networks, we leave the explicit analysis to
future work. At that point, differences in time-scales between network dynamics
and learning dynamics will require intensive examination.

For now, the take-away message is that topological differences do not pro-
duce a different final behavior in coordination games when agents are learning
individually. Correlations, on the other hand, which can be produced by dif-
ferent mechanisms such as reciprocity and partner choice (Hammerstein, 2003),
may effectively alter the way agents perceive the game and, as a consequence,
shift the final outcome.
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