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Print: Silhouet, Maldegem

©2012 Jonatan Taminau

2012 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5487 993 0
NUR 910
Legal Deposit D/2012/11.161/011

All rights reserved. No parts of this book may be reproduced or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the author.



Voor Maaike en Hanne



Committee members:

Internal members:

Prof. Dr. Ann Nowé
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Abstract

After more than a decade of microarray gene expression research there is
a vast amount of data publicly available through online repositories. It is
clear that for the future the new challenges for this technology lie in the
integration of this plethora of different data sets in order to obtain more
robust, accurate and generalizable results.

A first hurdle for this large-scale integration of studies coming from dif-
ferent labs, using different experimental protocols and even hybridized
on different platforms, is the retrieval of the data sets in a uniformed
standard. Nowadays it is unfortunately still not possible to retrieve gene
expression data in a completely consistent and trackable way and many
manual interventions are needed before the actual analysis can be per-
formed. This step is error-prone, leading to obscure errors and repro-
ducibility issues. In this thesis we present the InSilico DB, a tool that
provides consistently preprocessed and manually curated genomics data,
thereby overcoming many of the current issues related to data acquisi-
tion.

In a second hurdle towards the integration of multiple data sets, informa-
tion from individual gene expression data sets has to be combined and
we extensively describe and compare the two main approaches in order
to do so: meta-analysis, an approach that retrieves results from individ-
ual data sets and then combines the results; and merging, an approach
that first combines the actual expression values and then retrieves results
on this new data set. Both approaches are described in detail with special
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attention for their limitations, issues and advantages.

Both for the consistent retrieval of the data and for the integration of mul-
tiple data sets we developed two freely available R/Bioconductor pack-
ages providing the necessary tools. These two packages seamlessly in-
tegrate with each other and we illustrate their power in a final appli-
cation where we empirically compare both meta-analysis and merging
approaches for the identification of differentially expressed genes in lung
cancer.



Samenvatting

Na meer dan een decennium of microarray onderzoek is er een grote hoe-
veelheid data publiek beschikbaar via online repositories. Het is alsmaar
duidelijk dat de nieuwe uitdagingen in de nabije toekomst liggen in het
combineren van verschillende bestaande data sets om zo meer robuuste,
accurate en generaliseerbare resultaten te bekomen.

Een eerste obstakel voor deze grootschalige integratie van studies, ko-
mende van verschillende labs en gebruik makend van verschillende ex-
perimentele protocollen en technologieën, is het bekomen van de data
in een uniform en gestandaardiseerd formaat. Het is vandaag de dag
helaas nog niet mogelijk om op een volledig consistente en traceerbare
manier data uit deze repositories te verkrijgen en vele manuele interven-
ties zijn nodig vooraleer de effectieve analyse kan uitgevoerd worden.
Deze interventies kunnen leiden tot fouten die niet reproduceerbaar zijn.
In deze thesis presenteren we de InSilico DB, een online tool die consis-
tent gegenereerde en manueel gecureerde data aanbiedt en zo de huidige
problematiek van data acquisitie probeert te verhelpen.

In deze thesis is ook een tweede obstakel geı̈dentificeerd: het effectief
samenvoegen van de informatie van verschillende data sets. We beschrij-
ven uitvoerig de twee gangbare methoden. In meta-analysis worden eerst
resultaten bekomen van de individuele studies en dan worden die re-
sultaten gecombineerd. In merging gaat men eerst de numerieke gene
expressie waarden samenvoegen om dan resultaten te bekomen op deze
grote gecombineerde data set. Beide methoden worden in detail bespro-
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ken met speciale aandacht voor hun limitaties en sterkten.

Zowel voor de consistente acquisitie van de individuele data sets als
voor het uiteindelijke integreren, hebben we twee vrij beschikbare en
open software pakketten ontwikkeld die de nodige functionaliteit bevat-
ten. Deze twee pakketten zijn reeds opgenomen in het R/Bioconductor
framework en werken naadloos met elkaar samen. We illustreren hun
mogelijkheden in een finale applicatie waar we meta-analysis en merg-
ing met elkaar vergelijken in de context van het vinden van biomarkers
in verschillende bestaande long kanker studies.
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1
Introduction

Bioinformatics is an interesting and currently very challenging research
area which is, as the name already suggests, connecting the well estab-
lished fields of biology and informatics. Constantly improving this field
is necessary to cope with the exponential increase of the quantity (and
quality) of various kinds of biological data. From this huge amount of
biological and biomedical data we want to retrieve relevant information
which we then can transform into useful knowledge. This data⇒ infor-
mation⇒ knowledge workflow requires a multi-disciplinary interaction
between different domains.

In this thesis and the work we present, we are traveling on top, beyond
and hopefully across this bridge between biology and informatics. On
the one hand we present tools and solutions mainly inspired from com-
puter science to cope with this large amount of biological data and to
optimize the knowledge that can be extracted from it. On the other hand
we hope this work can serve as a roadmap for people on both sides, ea-
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2 Chapter 1. Introduction

gerly wanting to cross this bridge and face the many challenges.

A central tool or framework throughout this thesis is the Bioconductor
toolkit, which provides tools for the analysis and comprehension of high-
throughput genomic data [Gentleman et al. (2004)]. This framework con-
sists of a huge collection of public available and open source packages
for the statistical language R [R Development Core Team (2005)]. The
R/Bioconductor project’s focus is on reproducibility and in the same ide-
ology we made many of the tools developed during this thesis public
available. Two new packages were added to the Bioconductor repository
and many key code fragments are provided to the reader in Appendix A.

This dissertation was performed in the context of the InSilico project, a
five-years project funded by the Brussels Institute for Research and In-
novation (INNOVIRIS)1. This project consisted of more than eight pre-
and post doctoral researchers divided over the two participated labs: the
COMO lab from the Vrije Universiteit Brussel (VUB) and the IRIDIA lab
from the Université libre de Bruxelles (ULB). Many of the decisions and
directions in this dissertation were taken with respect to the common
goals of this project.

In this introductory chapter we will first outline the specific research area
we will focus on and clarify the actual aim of this thesis. We will provide
a per-chapter overview of the entire manuscript and end with a detailed
overview of my own contributions in each part.

1.1 Situation and Aim of this Thesis

Microarrays are a high-throughput technology to measure the abundance
of gene transcripts in a particular sample. Gene transcripts can be seen
as intermediate biochemical molecules that transfer the information cap-
tured in genes to the corresponding proteins. This transfer of information
is essential for every cell since genes are fixed in the DNA sequence that

1 http://www.innoviris.be/

http://www.innoviris.be/
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is stored in the nucleus, while proteins can travel across the whole cell
and organism to fulfill their specific roles. The abundance of transcripts
is actually an approximation of the intensities of the genes that are ex-
pressed in a given cell. Therefore, microarrays are mostly described as
measuring gene intensities or gene expression.

One of the big advantages with respect to other techniques measuring
gene transcripts, and what has lead to the major breakthrough of microar-
rays, was its ability to measure the expression of thousands of genes at
the same time. This immediately leads to a massive amount of data per
experiment.

Since the costs of microarray technology were constantly decreasing and
its use as discovery tool was proven, it gained a lot of popularity in the
last decade. Nowadays there is a vast amount of gene expression mi-
croarray data sets publicly available through several online repositories.
It is clear that in the near future the new challenges for this technology lie
in the integration of this plethora of different data sets in order to obtain
more robust, accurate and generalizable results.

In order to obtain a gene expression matrix, where the rows contain all
the genes measured on the array and the columns corresponds to the dif-
ferent samples, many complicated steps have to be performed. Roughly
speaking the major steps can be categorized as: tissue collection, mRNA
extraction, probe hybridization, fluorescence detection, image processing
and numerical preprocessing. It is clear that at each step many uncontrol-
lable factors or parameters can influence the resulting gene expression
matrix. This leads to many of the reproducibility and compatibility is-
sues generally associated with microarray data.

Unfortunately, it is currently still not possible to retrieve gene expression
data in a completely consistent and trackable way and many manual in-
terventions are needed before the actual analysis can be performed. This
step is error-prone, leading to obscure errors and reproducibility issues
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and severely hindering any comparative analysis.

Even when the data is unambiguously described and provided in a track-
able and reproducible manner it is still not possible to simply combine
several studies and conduct large scale integrative analysis. The many
uncontrollable factors during the different steps of the microarray anal-
ysis (e.g. temperature and light intensity during fluorescence detection,
different protocols and reagents for tissue extraction, different design of
arrays, etc.) lead to a situation were the data between different studies or
experiments are not comparable. The combination of all factors leading
to this incompatibility are called batch effects.

It is only recently that the research community is becoming aware of this
undesirable phenomenon [Leek et al. (2010)], currently blocking the in-
tegration of existing microarray data. The aim of this thesis is to further
investigate this problem. Moreover, we will propose new approaches to
deal with the issues currently hindering large-scale analysis and develop
and provide the necessary tools in order to do so.

1.2 Overview

We start this thesis by explaining the basic concepts related to microarray
technology and the type of data it produces in Chapter 2. By provid-
ing a brief introduction in basic cell biology, the underlying principles of
microarrays can be explained. Having at least a notion of the technical
details of gene expression microarray technology is important to under-
stand many of the issues encountered in the next chapters.

The first hurdle for conducting integrative microarray analysis is the prob-
lem of consistent data acquisition. The problems related to the retrieval
of consistent, reproducible and trackable data from public repositories
will be explained, with examples from literature, in Chapter 3.

In the next chapter we present a tool that was developed to overcome
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many of the problems related to data acquisition: the InSilico database.
This tool was one of the main objectives of the InSilico project. An over-
view of the implementation details is provided with special focus on the
genomic pipelines and the underlying backbone it uses in order to pro-
vide expert-curated and consistently preprocessed data. A detailed dis-
cussion of the functionalities of the tool and the specific choices that were
made help us to solve many of the issues identified in Chapter 3. We
end Chapter 4 by presenting our first publicly available R/Bioconductor
package inSilicoDb, which can be used to programmatically query the
InSilico database.

In the second part of this thesis we start by introducing the second hur-
dle towards integrative microarray analysis: the problem of combining
different studies. In Chapter 5 we discuss the many benefits of the inte-
gration of microarray data, together with the possible pitfalls. Two main
approaches are identified, each being the subject of the two following
chapters.

In Chapter 6 the meta-analysis approach is discussed and a concrete ap-
plication illustrating its possible use is presented. In this application
we use the massive amount of public available studies from the InSil-
ico database to screen for stable genes, which can be used as reference
genes for normalization purposes. We extracted a compact and diverse
list of 12 genes, all with a stable expression profile across all biological
conditions present in the InSilico database.

The second approach, merging, is the focus of Chapter 7. First the con-
cept and the main sources of batch effects are discussed, followed by an
extensive overview of the current methods to remove this batch effect
during merging. A complete list of both quantitative and visual valida-
tion methods for the batch effect removal process is provided as well. We
end Chapter 7 by presenting our second public available R/Bioconductor
package inSilicoMerging, which bundles most of the existing batch
effect removal and validation methods in a unified framework.
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Finally, a concluding application is presented in which we compare both
meta-analysis and merging approaches for integrative gene expression
microarray analysis in the context of the identification of differentially
expressed genes for lung cancer. Without looking at the different sub-
types of lung cancer, we obtain with both approaches a list of potential
biomarkers, which are believed to play a role in the most basic principles
or mechanisms of lung cancer, and cancer in general.

1.3 Contributions

My first contribution was in the development of the InSilico database
(described in Chapter 4) as part of the InSilico team2. I played an ac-
tive role in the design, development, implementation and maintenance
of this tool. An article presenting InSilico database is currently under re-
view for Genome Biology, one of the leading journals for high-quality and
innovative tools for computational biology ( [Coletta et al. (2012)], impact
factor: 9.04). My main contribution was the development of the genomic
pipelines (see Section 4.3.1) and the internal backbone (see Section 4.3.2),
both essential for the consistent data preprocessing and precomputing. A
spin-off is currently set-up to commercialize this tool.

In addition I also developed a R/Bioconductor package to programmat-
ically access and query InSilico database, called inSilicoDb (see Sec-
tion 4.4), which was published in Bioinformatics, one of the top ranked
journals in Mathematical and Computational Biology ( [Taminau et al.
(2011)b], impact factor: 4.88). As of July 2012, the inSilicoDb package
is downloaded more than 1500 times3 and is already used in large-scale
gene expression analysis published in other high-quality journals [Tomás
et al. (2012), Tamayo et al. (2011)].

2 https://insilico.ulb.ac.be/
3 http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.

html

https://insilico.ulb.ac.be/
http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.html
http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.html
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The application to identify stable genes through meta-analysis (see Sec-
tion 6.3) is novel and own work. This study is yet unpublished but a
manuscript is in preparation. Currently, wet-lab validation is ongoing in
collaboration with Dr Bram de Craene from the VIB Departement Molec-
ulair Biomedisch Onderzoek (UGent), where the stable genes will be val-
idated in the context of qPCR normalization.

For the merging of gene expression microarray data my earliest contri-
bution was an empirical comparison of different existing merging meth-
ods in three different cases with increasing complexity: NCI60 cell lines,
thyroid cancer and breast cancer [Taminau et al. (2009)c, Taminau et al.
(2010)c]. Next I was co-first-author of an extensive survey of batch ef-
fect removal methods which was published in Briefings in Bioinformatics
( [Lazar et al. (2012)a], impact factor: 9.28). This is still, to our knowledge,
the most thorough review of this topic that is gaining more and more at-
tention from the field.

In addition I also developed a R/Bioconductor package, called inSilico
Merging (see Section 7.4) which bundles most existing batch effect re-
moval methods for merging, together with a wide variety of validation
measures. This tool seamlessly integrates with the inSilicoDb pack-
age. As of July 2012, the inSilicoMerging package is downloaded
more than 500 times4, although not even published. An article presenting
the tool is currently under submission for BMC Bioinformatics ( [Taminau
et al. (Subm)], impact factor: 2.75).

The application in which I conducted integrative analysis of microarrays
through both meta-analysis and merging (see Chapter 8) is also novel
and own work. Further analysis of the results still needs to be done prior
to publication and a collaboration with experts in lung cancer is already
set up.

4 http://www.bioconductor.org/packages/stats/bioc/

inSilicoMerging.html

http://www.bioconductor.org/packages/stats/bioc/inSilicoMerging.html
http://www.bioconductor.org/packages/stats/bioc/inSilicoMerging.html
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1.3.1 Contributions Outside the Scope of this Thesis

During this thesis we traveled a few side tracks not covered in this final
manuscript. We will briefly list the different topics in this section. A com-
plete list of publications can be found in Appendix B.

At the beginning of my scholarship we investigated the use of Subgroup
Discovery, a rule-based machine learning technique lying on the intersec-
tion of predictive and descriptive induction, on symbolic music data. The
initial aim was to use this technique in a later stadia on biological data. In
a first preliminary study we applied subgroup discovery on a cohort of
symbolic folk music pieces to explain their geographical origin [Taminau
et al. (2009)b, Taminau et al. (2009)a].

In a second follow-up study we applied the same technique to a data set
composed of 112 string quartet movements from Haydn and 95 string
quartet movements from Mozart to find subgroups that are character-
ized by one of the two composers [Taminau et al. (2010)a, Taminau et al.
(2011)a]. Although we still are convinced this type of techniques may
be very suitable for genomic data, we decided to concentrate on the two
core aspects of this thesis listed above, and we left this interesting topic
to possible future research.

In two other publications that are not fully described in this thesis I had a
major contribution: an extensive overview of filter techniques for feature
selection in gene expression microarray analysis [Lazar et al. (2012)b]
and the combined application of feature selection and feature extraction
methods in the context of identifying gene signatures for breast cancer
aggressiveness [Taminau et al. (2010)b]. A concise continuation of this
research was also presented as a poster spotlight talk at the Cancer Bioin-
formatics Workshop 2010, Cambridge (UK)5.

Finally, I also had minor contributions in the application of computa-

5 http://www.enm.bris.ac.uk/cig/cb/canbioprog.pdf

http://www.enm.bris.ac.uk/cig/cb/canbioprog.pdf
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tional modeling techniques for distributed feature selection problems
[Gómez et al. (2009)] and for computer-aided ligand-based drug de-
sign [Pérez-Castillo et al. (2012)].





2
Preliminaries

In this chapter some context and basic information to understand gene
expression analysis is provided. We start by briefly summarizing the es-
sential biological background in Section 2.1. Within this context the work-
ing of two high-throughput gene expression profiling techniques will be
detailed: DNA microarrays in Section 2.2.1 and next-generation sequenc-
ing (NGS) in Section 2.2.2. Finally, the complete analysis workflow for
microarray gene expression data, from preprocessing to visualization, is
described in Section 2.3.

2.1 Biological Context

To understand and interpret the results of a microarray experiment, the
so-called gene expression values, it is important to be aware of the bio-
logical concepts behind this technology. In order to do so for any kind of
reader we have to go back to the Central Dogma of Biology [Crick (1970)],
proposed by Francis Crick, co-discoverer of the structure of the DNA

11
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molecule. In its simplest form, this framework, illustrated in Figure 2.1,
states that genes are transformed into proteins; but not vice versa. Genes,
which are parts of the DNA and located in the nucleus of every cell, carry
all information needed to grow and maintain every organism. This infor-
mation needs to be transformed into proteins, responsible for the proper
working (and sometimes failure) of the cell. This transfer of information
has however an intermediate step. First a gene is transcribed into a mRNA
molecule, containing the same information but able to leave the nucleus
through the rest of the cell. This mRNA, or messenger RNA, is a less
stable molecule but can be translated into a protein molecule, through a
complex process in which RNA base pairs are mapped onto amino acids,
the building blocks of a protein. The newly created protein can then per-
form his specific jobs in the cell.

Figure 2.1: An overview of the central dogma of biology. En-
zymes facilitating each step are labeled in pink. The orange ar-
rows describe the transfer of knowledge.

After the whole human genome was sequenced in 2001 [Venter et al.
(2001)], estimates of the number of genes in humans lie between 20.000
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and 30.000 [Pennisi (2003)], but not all these genes are transformed into
proteins all the time. Only part of the total number of genes are expressed
at a certain point in time, for example because the cell always needs spe-
cific basic proteins in order to stay alive, or in response to external trig-
gers of the cell. This whole process of expression is controlled by so called
transcription factors, proteins binding to specific places in the DNA and
thereby enhancing or inhibiting the expression of certain genes. These
transcription factors are again part of complex protein-protein networks,
containing multiple feedback loops.

The behavior or status of a cell can thus be defined by the composition
of its proteins. Healthy cells will have for example other proteins present
(and thus other genes expressed) than malignant or cancer cells. Many
drugs are based on a specific interaction with a protein which is known
to be (partially) responsible for that disease. It is therefore crucial to de-
tect those proteins as potential targets in early drug discovery [Lindsay
(2003)]. In general, the ability to quantify the level at which one or more
genes/proteins are expressed can provide a huge amount of valuable in-
formation. Ideally this measurement is performed by detecting the final
product, the proteins, but in reality it is often easier to detect the interme-
diate product: mRNA1. The complete set of (mRNA) transcripts in a cell,
and their quantity, is called the transcriptome.

Methods to quantify the levels of mRNA are northern blotting, a tech-
nique which detects size and sequence information of mRNA molecules
[Alwine et al. (1977)], and quantitative reverse transcription polymerase
chain reaction (qRT-PCR), a technique which amplifies copied DNA tem-
plates (cDNA) from mRNA molecules [Heid et al. (1996)]. Both tech-
niques are well suited to detect the expression of single genes with high
accuracy. With the invention of DNA microarrays on the other hand,

1 We have to note however that there is no exact one-to-one mapping from mRNA
to gene/protein due to an intermediate process called splicing in which a mRNA
molecule can give rise to different proteins through alternative splicing. This is how-
ever beyond the scope of this thesis but the reader should be aware of the assumption
made.
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transcript levels for thousands of genes can be measured simultaneously
[Schena et al. (1995), Lockhart et al. (1996), Brown & Botstein (1999)].
The remainder of this thesis will handle with the output of these high-
throughput gene expression microarrays and we will briefly explain its
working in the next section.

2.2 High-Throughput Gene Expression Technol-
ogy

Microarrays made the analysis of the transcriptome possible more then
a decade ago, and have produced much important information. Today,
researchers are increasingly turning to direct high-throughput sequenc-
ing (RNA-Seq) which has considerable advantages for examining tran-
scriptome fine structure. Both technologies show however similar per-
formance and complement each other [Malone & Oliver (2011)]. In this
section we explain both techniques and motivate our choice for focussing
on microarray technology in the remainder of this thesis.

2.2.1 DNA Microarray Technology

A DNA microarray is a 2D array on a solid substrate, usually glass or
silicon, composed of DNA fragments, called probes, positioned on its
surface. Other biological material can be assayed as well, resulting in a
wide variety of different microarrays (peptide, protein, microRNA, tis-
sue, etc.). For DNA microarrays each probe(set) represent a specific gene
coding region, see Figure 2.2 (a). In a next step, purified mRNA frag-
ments from a biological sample of interest are then fluorescently labeled
and hybridized to the chip, see Figure 2.2 (b). Finally, non-hybridized
fragments are removed by washing the array and laser based scanners
can detect the areas on the chip where hybridization occurred, see Figure
2.2 (c).

Currently there are four dominant microarray vendors offering DNA mi-
croarrays: Affymetrix (Santa Clara, CA, USA), Agilent Technologies (Santa
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(a) (b)

(c)

Figure 2.2: Visual overview of the working of DNA microar-
rays. (a) Zoomed and detailed view of a microarray chip. (b)
Hybridization of the RNA fragments of the biological sample
of interest (floating) and the probes of the array (fixed). The red
dot attached to the fragments represents the fluorescent label-
ing. (c) Quantify hybridization by laser based scanner for each
area of the array. Figures taken from [Affymetrix (2002)].
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Clara, CA, USA), Illumina (San Diego, CA, USA) and Roche Nimblegen
(Madison, WI, USA). Although each vendor manufactures his array in
a different way, the underlying mechanism is always the same: obtain
RNA or DNA fragments from a biological source of interest, hybridize it
to the probes on the array and measure the amount of hybridized frag-
ments.

In the remainder of this thesis we will focus on Affymetrix microarrays.
Affymetrix typically synthesizes 25-mer oligonucleotide probes on their
arrays, see Figure 2.2 (a). All probes on an Affymetrix array occur in
pairs, consisting of two different sequences: one that is complementary
to the transcript it is supposed to hybridize with, leading to a perfect
match (PM) and one that has a central mismatch in its sequence (MM).
The eventual expression value for that probe is a combination of both
values, where the mismatch probe can be used for initial normalization
and background correction. On more recent arrays we speak of probe sets
instead of probe pairs since more than two different sequences are used
per probe.

2.2.2 Next-Generation Sequencing (NGS)

Another more recent technique to investigate the transcriptome can be
found in one of the applications of next-generation sequencing (NGS). NGS
is an improved technology for sequencing large numbers of human ge-
nomes in a fast, inexpensive and accurate manner [Metzker (2010)]. This
production of large volumes of sequence data is the primary advantages
over conventional or first generation methods, used for example to se-
quence the first human genome [Venter et al. (2001)].

In contrast to hybridization-based methods (e.g. DNA microarrays, Sec-
tion 2.2.1), sequence-based methods directly determine the cDNA se-
quence, enabling more accurate results and overcoming several limita-
tions of hybridization methods. For gene expression analysis the method
RNA-Seq (RNA sequencing) was developed and its working is illustrated
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in Figure 2.3. Note that for the sequencing step any high-throughput se-
quencing technology can be used.

Although RNA-Seq and other NGS technologies clearly have a number
of advantages over microarrays, there still are some issues or childhood
diseases: the necessity of an amplification step prior to sequencing, cDNA
library construction, management and costs of large amounts of data,
etc. [Wang et al. (2009)].

Since measuring transcripts using NGS technology is very recent, analy-
sis software is still continually appearing and it is yet unclear how each
of those methods perform on different genomes (most studies are only
performed on mouse transcripts). Currently there are however two main
approaches for reconstructing transcripts from RNA-Seq reads [Haas &
Zody (2010)]. The assemble-then-align approach first assembles transcript
sequences before aligning. Examples methods are ABySS [Birol et al.
(2009)] and Oasis [Schulz et al. (2012)]. A second approach, the align-
then-assemble approach is more common and first aligns short RNA-Seq
reads to the genome, accounting for possible splicing events, and then
reconstructs transcripts from the spliced alignments. Example methods
are Cufflinks [Trapnell et al. (2010)] and Scripture [Guttman et al. (2010)],
both programs use the TopHat aligner [Trapnell et al. (2009)] to generate
spliced alignments.

In Section 4.3.1 we briefly detail the pipeline we used in InSilico DB. The
remainder of this thesis will however focus on microarray technology for
gene expression analysis.

2.2.3 Discussion

Both sequencing and hybridizing mRNA to arrays are high-throughput
ways to profile the transcriptome and for problems that can be addressed
by both, they show similar performance and complement each other [Mal-
one & Oliver (2011)]. Despite their recent fallback in popularity, microar-
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Figure 2.3: Overview of RNA-Seq technology. A transcript is
first converted into a library of cDNA fragments. Each fragment
is then sequenced using adaptors added to one (blue) or both
(blue & orange) ends. The resulting sequence reads are aligned
with a reference genome and classified as three types which are
all used to generate a expression profile for each gene. Figure
taken from [Wang et al. (2009)].

rays remain useful and accurate tools for measuring expression levels,
and RNA-Seq complements and extends microarray measurements.



Chapter 2. Preliminaries 19

The choice to focus on microarray data in this thesis was mainly influ-
enced by the global goal when the InSilico project was initiated five years
ago. The inSilico DB was developed to cope with the increasing amount
of unmanaged microarray studies (see Chapter 4) already present at that
time. Although we adapted this tool to store, preprocess and manage
NGS data as well, there are different needs for this new technology.

In the context of this thesis, the accumulated data and studies of a decade
of microarray research provides an unmatched variety of information
present in public repositories. Since it will take NGS technologies for
gene expression analysis several years to reach the same level of maturity,
both technology- and content-wise, it is in our opinion still worthwhile
to concentrate further on microarray technology.

2.3 Microarray Gene Expression Analysis

In this section we focus on the analysis of microarray gene expression
data. Many of the concepts, from pre-processing to analysis, are however
also applicable for RNA-Seq data.

2.3.1 Caveats of Microarray Technology

Although the general mechanism of microarrays described in the previ-
ous section looks straightforward, it is still a very complex method with
typical characteristics that make microarray analysis challenging. In the
context of this thesis it is essential to be aware of the possible limitations
and caveats of microarray data. We will do this by enumerating the most
important issues:

High level of noise

Since the early years of microarrays, noise and its impact on microarray
analysis has been recognized [Kerr et al. (2000), Tu et al. (2002), Ioanni-
dis (2005)] as an undesirable consequence of the technique, influencing
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downstream analysis. The purity of the samples and the many technical
steps in the method lead to variability in the experimental outcomes. Es-
pecially the measurements of low abundance genes are difficult to detect
accurately [Draghici et al. (2006)].

Poor reproducibility

Another open issue is the poor reproducibility of microarray results across
studies. Analyzing the same tissues using the same technology but by
different labs, can produce different analysis results, questioning both
reproducibility and reliability of microarrays [Marshall (2004)]. This issue
was clearly demonstrated by different studies showing the inability of re-
searchers to replicate differentially expressed gene lists (see Section 2.3.3)
across highly similar experiments [Tan et al. (2003),Michiels et al. (2005)].
However, it turned out that the choice of data analysis procedures ad-
dresses and circumvents many of these problems [Shi et al. (2005)].

Cross-platform Consistency

Another related issue is the robustness or consistency of results across
different platforms [Kitchen et al. (2011)]. Different platforms contain
different probes and therefore one of the main difficulties in the cross-
platform comparison of microarray data is to ascertain that probes on the
various platforms aimed at the same gene do in fact quantify the same
mRNA transcript [Draghici et al. (2006)]. Due to this and other factors,
consistency between different platforms suffers from similar but more
prominent problems as consistency within a platform.

Low sample size

The number of samples in microarray studies typically lie between 10-
1002. In order to generate robust gene signatures for predicting out-
come of disease, actually thousands of samples are needed [Ein-Dor et al.

2 The average number of samples per study for all 2267 studies assayed on the
Affymetrix Human Genome U133 Plus 2.0 platform found in InSilico DB is 33 sam-
ples per study. Code to obtain this value can be found in Appendix A.1.
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(2006)]. The current low sample sizes might actually hinder the identifi-
cation of truly important genes [Ioannidis (2005), Ein-Dor et al. (2005)].
Moreover, since in microarray studies each sample is characterized by
thousands of genes3 the low sample sizes make this data extra vulnera-
ble to the curse of dimensionality [Somorjai et al. (2003)] and this high di-
mension, low sample size (HDLSS) data requires specific statistical anal-
ysis [Benito et al. (2004)].

As already explained before, combining gene expression data from dif-
ferent studies can circumvent some of these issues but at the same time
can be highly influenced as well, as we will see in Section 7.2.

2.3.2 Microarray Data Preprocessing

The raw data resulting from a microarray experiment can be seen as an
image file capturing the observed fluorescent intensities for all probes. A
first step is to transform this image into numerical values. In the Affy-
metrix system, the raw image data is stored in DAT files and Affymetrix
has its own image analysis software to estimate probe intensity values,
resulting in a so-called CEL file, containing all probe-level data. Biocon-
ductor [Gentleman et al. (2004)], offers a lot of tools to import, examine
and normalize CEL files. At the end of this section we will provide a typ-
ical example workflow.

The actual preprocessing of microarray arrays starts with the CEL files
and usually involves three steps: background adjustment, normalization
and summarization. We will briefly explain each step:

Background adjustment

The major reason for background noise in microarray data is non-specific
binding, i.e. in reality the sample consists of a complex mixture of nu-
cleotide molecules and non-complementory sequences also bind to the

3 For the same Affymetrix Human Genome U133 Plus 2.0 platform, the number of
probes is 54675.
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probes. This first step consists of an adjustment for hybridization ef-
fects that are not associated with the interaction of the probes with target
DNA. Measurements on mismatch probes (MM) are designed to measure
this array specific background and several methods simply subtract the
perfect match probes (PM) intensities with the MM intensities to adjust for
background noise.

Normalization

In addition to background noise there are often other sources of variation
affecting the observed measurements that are not of biological interest.
These can be technical variations due to the scanner for example or vari-
ation introduced by the preparation of the samples. Most normalization
methods equalize a summary statistic of the distribution of the measure-
ments across arrays. This normalization implicitly assumes that biolog-
ical variations of interest may affect a number of probe intensities, but
should not change the mean or mode of the distribution of all intensities
on each array.

Summarization

In a last step the different probe sets are combined into one expression
value per probe. Most methods choose a robust summary that is resilient
to outliers. A difference can be made between single array summaries
and multiple array summaries, where the latter uses information across
arrays to identify outliers. The probe sets are usually summaried on a
log-2 scale.

For each step different methods are available and it is not clear which
ones, and in which combinations, are best suited. For example in [Harr
& Schlötterer (2006)] they propose different preprocessing methods de-
pending on the possible downstream analysis that will follow. Other
large comparison studies are performed as well [Bolstad et al. (2003)],
but with no golden standard so far.
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In Bioconductor plenty easy-to-use preprocessing methods are available
combining all three steps and they are widely used as a first step in
microarray data analysis. Some of the most used methods are Affyme-
trix’s Microarray Suite 5 (MAS5, [Affymetrix (2002)]), Robust Multichip
Average (RMA, [Irizarry et al. (2003)]), RMA using sequence informa-
tion (GCRMA, [Wu & Irizarry (2004)]), Variance Stabilization Normaliza-
tion (VSN, [Huber et al. (2002)]) and frozen RMA (FRMA, [McCall et al.
(2010)]). Their usage in the Bioconductor framework is very straightfor-
ward:

#path to example directory with CEL files

path = "/home/data/CEL/";

# read CEL files...

library(affy);

batch = ReadAffy(filenames=path);

# Perform preprocessing...

library(rma);

eset = rma(batch);

RMA is one of the mostly used preprocessing methods. Since it was shown
that the assumption of MM probes measuring only background intensi-
ties was not correct, RMA avoided this problem and uses only PM mea-
surements. It assumes a global background distribution common for all
probes that is normally distributed. For each sample, probe intensities
that are smaller than the empirical mode are used to estimate the mean
and variance of the background distribution. For the normalization step
it uses quantile normalization [Irizarry et al. (2003)], which forces all
samples to have the same empirical distribution of intensities after nor-
malization. As the name robust multichip average suggests, a multiarray
summarization is performed using median polish [Irizarry et al. (2003)]
as a robust procedure to protect against outliers.

After Affymetrix made their probe sequences public it was found out that
the middle base being purine (A or G) or pyrimidine (C or T) affects the
hybridization and partially explained why MM probes did not always
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offer the expected background measurements. GCRMA is an extension of
RMA that calculates affinity values for each probe sequence based on its
exact base sequence and use this extra information to adjust for the probe
specific background [Wu & Irizarry (2004)].

In FRMA a small adoption of the RMA methods was introduced. The quan-
tile normalization part is done based on a reference training set of pub-
licly available samples from a diverse population instead of using only
the samples of the study to normalize. Estimates of probe-specific effects
and variances are also obtained and all information is frozen [McCall et al.
(2010)]. For each new array to be preprocessed, background correction is
performed similar to the training set and then it is quantile normalized
based on the reference distribution. During summarization batch effects
are removed and variances of the gene-expressions are estimated by tak-
ing into account these probe-specific effects.

All these methods try to remove potential systematic bias and to make
different studies more comparable among each other. We can divide the
above mentioned methods in three groups: MAS5 can only be used on a
single array, RMA, GCRMA and VSN can be used on a set of arrays and fi-
nally we have FRMA which always uses a diverse cohort of samples from
a broad range of different studies on the same platform, even if used
on a single array. Most methods are not capable of removing batch ef-
fects and thus fail in making all microarray data comparable with each
other [Scherer (2009), Leek et al. (2010)], with exception of FRMA if all
samples are from the same platform. A more detailed discussion will fol-
low in Chapter 5 and further.

For more information on available R/Bioconductor packages for Affyme-
trix preprocessing the reader is invited to consult Chapter 2 in [Gentle-
man et al. (2005)]. A good overview of all statistical methods for prepro-
cessing of microarray data can be found in [Wu (2009)].

In the remainder of this thesis, preprocessed microarray data is denoted
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by Xm×n, where each column represents a sample and each row repre-
sents a feature. xij represents the expression value of feature i in sample j.
This notation is analog with the ExpressionSet, the central data struc-
ture from Bioconductor, a standard we fully support. Since most prepro-
cessing methods summarize their probe sets on a log-2 scale, it is further
assumed that every gene expression matrix is already log-2 scaled.

At this point it is important to note that the features after preprocessing
are probes and although it is possible to perform analysis on this probe-
level data it is often desirable to work with genes instead. There are two
main reasons. Firstly, genes are easier to interpret by biologists since they
have a function and annotation while a probe itself doesn’t mean any-
thing. Secondly and more important in the context of this thesis, probes
can’t be used to compare and integrate microarray data from different
platforms because probes are platform dependent (see Section 2.3). Map-
ping probes to genes is, again, an active research domain on its own and
the major challenge lies in the fact that multiple probes can match to the
same gene. Probes are much shorter sequences than genes and thus mul-
tiple probes can map to different regions of one gene. In Section 4.3.1
a detailed description of the probe-to-gene mapping used in the InSilico
DB pipeline is provided.

2.3.3 Microarray Data Analysis

The major objective of performing microarray experiments is to derive
biological knowledge or test biological hypotheses. The volume of in-
formation in microarrays and other high-throughput genomic data fa-
vors machine learning techniques which are positioned for problems of
pattern recognition in voluminous noisy data with minimal human in-
put [Mitchell (1997)]. From a machine learning perspective, roughly two
types of analysis can be performed: unsupervised analysis and supervised
analysis.

In unsupervised analysis the input data is explored without using ex-
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tra information and patterns and/or groupings are obtained which can
be tested against biological hypotheses. It was one of the first statistical
techniques to be applied on microarrays, due to its simplicity and lack of
assumptions needed. While it is still a very popular technique, questions
about validity and reproducibility are arising, leading to statements as
”Unsupervised classification is overused.” [Allison et al. (2006)].

Supervised analysis tries to find a relation between the input data and
external information, for example by assigning instances (e.g. samples
or genes) to a priori-defined classes (e.g. tumor subtypes). In supervised
analysis sample size is critical and simpler methods often out-perform
more complex approaches due to overfitting [Pranckeviciene & Somorjai
(2006)].

Many analysis tool kits for gene expression data exists (R/Bioconductor
[Gentleman et al. (2004)], GenePattern [Reich et al. (2006)], Galaxy [Goecks
et al. (2010)], Spotfire [TIBCO Software Inc., CA, USA], etc.), offering a
plethora of different analysis techniques. Many of these tools are publicly
available and even open-source. As already mentioned before, the anal-
ysis techniques themselves are not anymore the problem or bottleneck in
current microarray analysis, but building the complete and reproducible
workflow from data to results is still the challenge. In Figure 2.4 some
guidelines in each step of the workflow were proposed.

Although there are numerous studies, approaches and objectives reported
in literature for the analysis of gene expression data most research can be
divided into four broad categories: class comparison, class prediction,
class discovery and pathways analysis. We will briefly explain each cate-
gory:

Class Comparison

A very common objective and application of microarray studies is the
identification of genes that are consistently and significantly expressed at
different levels under different conditions. These genes are called infor-
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Figure 2.4: Guidelines for the statistical analysis of microarrays
at each step in a typical workflow. Figure taken from [Allison
et al. (2006)].

mative genes, biomarkers or differentially expressed genes (DEGs). The
discovery of DEGs is one of the most important applications of microar-
ray analysis. It is valuable to physicians to diagnose patients but also
to pharmaceutical companies aiming to identify genes for drug target
identification [Lazar et al. (2012)b]. Many strategies for feature/gene se-
lection are proposed over the last years, categorized in filter, wrapper,
embedded and ensemble techniques [Saeys et al. (2007)].

Filter techniques are the most used in the context of finding DEGs due to
its simplicity and its computational and statistical scalability. They can
be seen as a supervised feature selection method in which the biological
variable of interest is used as the discrimination factor. Most filter meth-
ods follow a typical scenario:
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1. Use a scoring function to quantify the difference in expression be-
tween different groups of samples, according to the biological vari-
able of interest and rank the genes.

2. Estimate the statistical significance (e.g. p-value, confidence inter-
vals, etc.) of the estimated scores.

3. Select the top ranked genes which are statistically significant as the
most informative genes.

4. Validate the selected subset of genes.

This workflow is also illustrated in Figure 2.5. Since all the steps are
independent from each other, there is a lot of freedom in the way they
can be performed and a large plethora of different methods indeed exist.
We made an extensive overview of these methods [Lazar et al. (2012)b]
which is unfortunately beyond the scope of this thesis.
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Figure 2.5: Illustration of a typical workflow for finding differ-
entially expressed genes (DEGs) or more generally filter rank-
ing methods. For each main step the different options are listed.
Figure taken from [Lazar et al. (2012)b].

In the example heatmap in Figure 2.6 for example (see Section 2.3.4), only
the top ten discriminating genes are shown. They were selected using the
R/Bioconductor limma package [Smyth (2004)] as can be seen in the code
in Appendix A.2.
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Class Discovery

Class Discovery is the search for a biologically relevant unknown taxon-
omy identified by a gene expression signature or a biologically relevant
set of co-expressed genes. Since the aim is to identify and group together
similarly expressed genes and then try to correlate the results to biology,
it is a typical example of a unsupervised learning task.

The basic methodology for class discovery is clustering. First the data is
clustered, based on a chosen clustering method and then the clusters are
validated through gene annotations, enrichment analysis (are the clusters
enriched by genes from functionally important categories, pathways, or
processes), or by replicating the results in other data sets. Clustering tech-
niques can be applied to group samples, genes or both together. Genes
can be clustered in order to identify groups of co-regulated genes, spatial
or temporal expression patterns, or to reduce redundancy in prediction
models. Samples are mostly grouped together to identify new biological
classes (i.e. new tumor classes or subtypes of existing classes).

Besides the many clustering algorithms also other less traditional meth-
ods are applied for class discovery via microarrays. Principal Compo-
nent Analysis (PCA) for example is a statistical technique used in vari-
ous fields, such as face recognition and image compression, and deter-
mines the key variables in a multidimensional data set that can explain
the differences in observations. Its properties makes it very suitable for
microarray data as well. Also matrix factorization methods can be used
to reduce the dimension of the data via a decomposition by parts, as was
for example reported in [Brunet et al. (2004)].

Class Prediction

In general, the goal of class prediction is to develop a multivariate func-
tion for accurately predicting class membership of a new instance and is
often referred to as supervised learning. In the context of gene expres-
sion analysis the instances are the samples and their class memebership
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depends on the biological variable of interest and is often called its pheno-
type. Common examples of supervised analysis applications in microar-
rays are tumor classification, subtype prediction, survival analysis, etc.

The basic methodology for class prediction is to start with two data sets, a
training set and test set. Use your training data set to build a classifier, or
predictor, based on your chosen classification method and use your test
data set to test the classifier. Many classification algorithms already exist
in the machine learning and data mining literature and most of them (K-
nearest neighbors (KNN), neural network (NN), decision trees, support
vector machines (SVM), etc.) also are available in the gene expression
analysis tool kits mentioned before.

Pathways Analysis

While a typical class discovery experiment looks for genes that are dif-
ferentially expressed between two or more conditions, they result very
often in long lists of genes which have been selected using some crite-
ria to assign them statistical significance. A common approach to further
interpret those lists is to relate the genes it contains with one or more
functional annotation databases such as the Gene Ontology (GO, [Ash-
burner et al. (2000)]), to determine the biological function of the genes,
or to pathway databases such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG, [Kanehisa & Goto (2000)]).

2.3.4 Visualization Methods for Gene Expression Data

In general, visualization is an essential part of exploring, analyzing and
reporting data. High-throughput data, like gene expression measure-
ments, creates many challenges for visualization methods. The dimen-
sions of the expression matrix are high and in most cases it is essential
that the data should be mapped to several biological variables of inter-
est. Many visualizations are used in literature with a lot of specific, case-
dependent customizations. In this chapter we will illustrate some of the
basic tools, together with the accompanied R code to obtain them.
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Heatmaps

From the beginning, heatmaps were used to represent microarray re-
sults [Eisen et al. (1998)]. A heatmap is a graphical representation of
data where the individual values contained in a matrix are represented
as colors and therefore it is a perfect visualization tool to present high-
dimensional data like a gene expression matrix in a structured way, able
to show both gene and sample clusterings in a single figure. Mostly,
heatmaps are combined by dendrograms on the sides to extra highlight
both clusterings. An example heatmap is shown in Figure 2.6. The columns
typically correspond with the samples and the rows with the probes/genes.
From the heatmap in Figure 2.6 one can immediately observe two clus-
ters of samples, labeled by the biological variable of interest (smoker vs
non-smoker).

Multidimensional Scaling

Another useful visualization technique is multidimensional scaling (MDS).
Starting from a matrix of all pairwise distances between all samples, the
aim of MDS is to arrange all samples in a 2-dimensional Euclidean space
such that the distances between the samples are as much similar as the
given distances as possible [Cox & Cox (2001)]. For all MDS plots in this
thesis we used the cmdscale R function, which uses the least-squares
definition of ”similar”. MDS is very similar to Principal Component
Analysis (PCA), and for a comparison the reader is invited to consult
Chapter 4 in [Lee & Verleyen (2007)]. An example MDS plot is shown in
Figure 2.7. Each circle corresponds to a sample, colored with respect to
the biological variable of interest (lung cancer vs control).

Other Methods

Scatterplots can also be used to plot data from two variables but often be-
come dense and uninformative with a high number of observations. Al-
ternatives to describe and visualize distributions are box plots and den-
sity plots. Volcano plots can be used to look at fold change and statistical
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Figure 2.6: Example heatmap of the top discriminating features
of dataset GSE4635. Expression values are colored from white
(low expression) to orange (high expression values), each block
represents the expression value of a gene in a specific sample.
The samples cluster by Smoker status (smokers : current and
non-smokers: never). R code to obtain this figure can be found
in Appendix A.2. Example taken from [Taminau et al. (2011)b].

significance simultaneously and also dendrograms are widely used to
represent distances between samples and/or genes.
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Figure 2.7: Example multidimensional scaling (MDS) plot of
dataset GSE19804, visualizing the distances between samples
within one dataset. Samples are colored corresponding their
Disease status (lung cancer vs control). R code to obtain this
figure can be found in Appendix A.3.





3
Retrieval of Genomic Data

A decade of microarray research has resulted in a plenitude of microar-
ray studies. Many of these studies have been gathered in gene expression
data repositories freely accessible for the scientific community. Amongst
others are the Stanford Microarray Database (SMD, [Sherlock et al. (2001)]),
ArrayExpress [Parkinson et al. (2011)] and Gene Expression Omnibus
(GEO, [Edgar et al. (2002)]). Those repositories have to adapt fast to the
current needs. GEO for example, established a decade ago as a public
repository for high-throughput gene expression data generated mostly
by microarray technology, already successfully switched to next-generation
sequencing technologies and currently contains over 20000 genomic stud-
ies [Barrett et al. (2011)].

With this large amount of genome-wide data available today at each re-
searchers fingertips, scientific results in biomedical research increasingly
arise from complex statistical analysis pipelines. This workflow usually
involves a wide range of different computational tools and/or software

35
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components, each with their specific set of constraints, models and pa-
rameters. It is essential that the complete analysis is appropriately and
unambiguously described to ensure that researchers can independently
reproduce or verify published results. This is unfortunately still not the
case, although solutions are proposed [Gentleman et al. (2005), Mesirov
(2010)]. In general, there is clearly a pressing need for transparency in
computational science [Yale Law School Roundtable on Data and Code
Sharing (2010)].

Prior to analysis, the raw data of most genomic experiments is normal-
ized or preprocessed with sophisticated algorithms which are also often
not described and documented in sufficient detail. Besides the numer-
ical data, the phenotypical meta-data of the samples are often encoded
in spreadsheet software and arbitrary mapped to the individual experi-
ments without any standards or versioning. Moreover, the normalization
methods, the gene annotation, and the phenotypic meta-data of the sam-
ples change in time as new insights are obtained, and must be kept up-to-
date. Finally, the data has to be transformed into the format accepted by
the data analysis tools. All those issues are also hindering reproducibility
even before analysis is started and require manual intervention. Manual
manipulation of genomic data before delivering it to the analysis tools is
not reproducible and error-prone, and should be avoided. Without ro-
bust error-checking mechanisms and peer involvement, errors can, and
do occur [Baggerly & Coombes (2009)].

The primary purpose of the public repositories is to guarantee the in-
tegrity of the data, not its usability. This means that the although the
data is always available in the form presented in its original publication,
it often lacks the necessary information for further analysis by other re-
searchers. A common application of public data is to compare it with
new results. In this case the data retrieved from public repositories does
not only have to be correct, it also has to be compatible with the new data,
e.g. the same up-to-date genomic features, preferably the same prepro-
cessing procedure, etc. Currently this is very hard to achieve. In GEO,
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for example, datasets can be retrieved as a probe expression matrix with-
out knowing the specific details of the preprocessing method. Blindly
combining or comparing these data without verifying if they were pre-
processed using the same methodology, can undesirably influence the
results of any analysis. We have to note that for some studies in GEO
also the raw CEL files are available for download but this is unfortu-
nately still not obligatory. A study in 2006 pointed out that only 48% of
all data in GEO and ArrayExpress was submitted with raw data [Larsson
& Sandberg (2006)], in addition they also pointed out that only 38% of
the data meet necessary quality and data format standards needed for in-
tegrative microarray research. Even with the raw CEL files it is for most
researchers not a trivial task to perform all complex computational steps
required for preprocessing in a consistent and correct way.

Another application of public data is to combine multiple sources in or-
der to discover new or more robust findings. Inconsistently preprocessed
data will also severely hinder this approach as will be explained in more
detail in Chapter 5 and further.

A clear example of the effects of inconsistently retrieved data can be
found in [Baggerly & Coombes (2011)], where they state: ”We were asked
if we could implement this approach to guide treatment at our institution; how-
ever, when we tried to reproduce the published results, we found that poor docu-
mentation hid many simple errors that undermined the approach [...] We spent
approximately 1500 person-hours on this issue, mostly because we could not tell
what data were used or how they were processed. Transparently available data
and code would have made checking results and their validity far easier. Because
transparency was absent, an understanding of the problems was delayed, trials
were started on the basis of faulty data and conclusions, and patients were en-
dangered. Such situations need to be avoided.” From this example it is clear
that not only the analysis part but also the data to start with should be
trackable. After all, the longer it takes to retract a flawed clinical paper,
the more patients are put at risk [Steen (2011)].



38 Chapter 3. Retrieval of Genomic Data

Most online repositories of genomic datasets encourage the use of stan-
dards for describing the biological samples. For example for microarray
datasets, the Minimum Information About a Microarray Experiment (MI-
AME) standard has been proposed and established [Brazma et al. (2001)].
Despite its success, MIAME is only a set of guidelines of what informa-
tion needs to be captured. MIAME does not provide, nor is intended
to provide, a format for representing this information and data. With-
out a standard computer-readable format, the utility of these data is lim-
ited [Brazma (2009)]. Other initiatives where proposed as well, such as
the XML-based MAGE-ML [Spellman et al. (2002)], but they were not
adapted as standards, mainly due to their complexity.

The MIAME standard is particularly successful for describing experi-
mental protocols but is however not sufficient to describe biological sam-
ple information or phenotypic meta-data. Because no standard has been
accepted yet to address this issue, clinical annotations are not standard-
ized in most genomic repositories. Handling information about the bio-
logical samples is still challenging in general. Biomedical ontologies exist
such as Unified Medical Language System (UMLS [Bodenreider (2004)]),
but these vocabularies are not universally accepted, can be subjective
depending on the intended application, change in time as knowledge
about the samples advances, or new information about the samples be-
comes available. Also, as top-down standards, they may not be appro-
priate for early stages, when the relevant sample data is only starting
to be aggregated and understood by the scientific community [Quacken-
bush et al. (2006)]. The creation of an ontology also requires automati-
cally text-parsing of biological annotation data through text-mining algo-
rithms which is still inefficient and leads to a high rate of errors [Butte &
Chen (2006)].

At this point we have to conclude that it is difficult to retrieve genomic
data in a consistent and unambiguously way. This is mainly due to the
complex preprocessing options for the numerical data which are not al-
ways sufficiently documented, and the lack of standards to describe phe-
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notypic meta-data. Moreover, since both numerical data and meta-data
can change in time, versioning of the data is necessary but currently ab-
sent. In the next chapter the InSilico DB will be presented, a genomic
datasets hub that tries to solve those issues, thereby hopefully paving the
road towards consistent retrieval of genomic data [Coletta et al. (2012)].





4
The InSilico Database

The InSilico Database (InSilico DB) can be seen as a genomic dataset hub
and an efficient starting point for analysing genome-wide studies using
existing gene expression analysis software [Coletta et al. (2012)]. Its
strength lies in its ability to seamlessly connect genomic datasets reposi-
tories to state-of-the-art and free graphical user interface (GUI) and com-
mand-line analysis tools. It is a powerful collaborative environment with
advanced capabilities for biocuration, dataset management and integra-
tion. The InSilico DB is the main result of the inSilico project1, a inter-
university initiative funded by the Brussels Institute for Research and
Innovation (INNOVIRIS)2, in which I participated the last five years. In-
side this project we build up the expertise needed to combine all these
different aspects of genomic research in order to create this tool.

In the following sections we will describe into more detail the different

1 https://insilico.ulb.ac.be
2 http://www.innoviris.be/
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parts of this tool: We will start with an overview of its content and general
architecture, next the different functionalities like browsing, exporting
and managing datasets will be described briefly, and we end with more
technical implementation details. Finally we introduce the inSilicoDb
R/Bioconductor package [Taminau et al. (2011)b] which was developed
to programmatically access the InSilico DB, enabling large-scale analysis
of gene expression repositories.

4.1 Overview of the InSilico DB

4.1.1 Content

The content of InSilico DB mainly consists of Microarray (see Section
2.3) and Next-Generation Sequencing (see Section 2.2.2) datasets originat-
ing from NCBI Gene Expression Omnibus (GEO)3, Short Read Archive
(SRA)4, the Cancer Genome Atlas project (TCGA)5 and the Broad Insti-
tute6. This data is pre-installed, meaning that is cleaned, preprocessed in
a consistent manner and curated, and therefore ready-to-use by the users.
To make this possible, several specific pipelines were implemented and
controlled by a framework called the InSilico backbone. More information
on these genomic pipelines will follow in Section 4.3.1.

Currently, InSilico DB supports Illumina microarray platforms, Illumina
NGS platforms and most of the Affymetrix microarray platforms. A more
detailed list can be found in Table 4.1 or on the projects website7. As of
April 2012, InSilico DB contains over more than 6000 individual public
datasets, accounting for more than 180.000 samples. 3000 datasets and
120.000 samples are manually curated and available for download.

Owing to the accumulated in-house and contributed biocuration efforts,

3 http://www.ncbi.nlm.nih.gov/geo
4 http://www.ncbi.nlm.nih.gov/sra
5 http://cancergenome.nih.gov
6 http://www.broadinstitute.org
7 https://insilico.ulb.ac.be/genomics-platforms

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/sra
http://cancergenome.nih.gov
http://www.broadinstitute.org
https://insilico.ulb.ac.be/genomics-platforms
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ID Title Technology Organism

GPL91 Affymetrix Human Genome U95A in situ oligonucleotide Homo sapiens
GPL8300 Affymetrix Human Genome U95 Version 2 in situ oligonucleotide Homo sapiens
GPL96 Affymetrix Human Genome U133A in situ oligonucleotide Homo sapiens
GPL97 Affymetrix Human Genome U133B in situ oligonucleotide Homo sapiens
GPL570 Affymetrix Human Genome U133 Plus 2.0 in situ oligonucleotide Homo sapiens
GPL571 Affymetrix Human Genome U133A 2.0 in situ oligonucleotide Homo sapiens
GPL3921 Affymetrix HT Human Genome U133A in situ oligonucleotide Homo sapiens
GPL6947 Illumina HumanHT-12 V3.0 oligonucleotide beads Homo sapiens
GPL1261 Affymetrix Mouse Genome 430 2.0 in situ oligonucleotide Mus musculus
GPL85 Affymetrix Rat Genome U34 in situ oligonucleotide Rattus norvegicus
GPL1355 Affymetrix Rat Genome 230 2.0 in situ oligonucleotide Rattus norvegicus
GPL9052 Illumina Genome Analyzer high-throughput sequencing Homo sapiens
GPL9115 Illumina Genome Analyzer II high-throughput sequencing Homo sapiens
GPL10999 Illumina Genome Analyzer IIx high-throughput sequencing Homo sapiens
GPL11154 Illumina HiSeq 2000 high-throughput sequencing Homo sapiens
GPL13477 Illumina Genome Analyzer IIX high-throughput sequencing Homo sapiens

Table 4.1: List of platforms currently supported in InSilico DB.
Each different technology requires a new and specific prepro-
cessing pipeline. Information gathered on April 2012

it is possible to map the biological variety of the data inside InSilico DB. A
wide variety of tissue types, cancer types, cell lines and control samples
are available, making this tool a perfect candidate as basis for large-scale
analysis and for comparison to in-house generated datasets. Table 4.2
gives more detailed statistics about the most commonly observed tissues.

4.1.2 Biocuration

As we have seen in the previous chapter, defining a system to structure
the totality of the clinical information available for samples and stud-
ies is not straightforward. Within InSilico DB we proposed a bottom-up
approach where users can structure samples information, starting from
unstructured annotations, and define their own vocabulary. Because the
curation of a dataset may differ depending on the intended application
and context (e.g. smoking as a behavior versus as a carcinogen, or a hu-
man cell line as human tissue or not) InSilico DB allows every dataset to
have multiple curations.
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T issueType #Cancers #Controls #Others #Total

Breast 8664 757 94 9515
Brain 1165 1825 4229 7219
Bone Marrow 4929 1975 306 7210
Lung 2376 1064 1001 4441
Liver 831 372 2227 3430
Prostate 2243 384 0 2627
Colon 1718 254 479 2451
Blood 177 648 1386 2211
Muscle 3 556 1640 2199
Kidney 887 346 811 2044
Ovary 1547 106 344 1997
Lymph node 1159 58 132 1349
Skin 319 278 743 1340

Table 4.2: List of most observed tissue types in InSilico DB. For
each tissue type the number of cancer, control and other sam-
ples is listed. Information gathered on April 2012

Additionally, InSilico DB accepts batch submissions from independent
bio-curation efforts. Batch submissions from the Broad Institute Library
of Integrated Network-based Cellular Signature project8 and from the
Gemma initiative [Zoubarev et al. (2012)] have been submitted and added.

In order to facilitate the curation process, an interface to visualize, semi-
automatically curate and enrich clinical annotations of genomic datasets
was developed. In this interface, pictured in Figure 4.1, information is
displayed using both a spreadsheet view and a tree view to make this
high-dimensional data workable. Curations can be created from scratch or
imported from comma-separated-value (CSV) files. In addition, existing
curations can be modified or enriched with for example analysis results.

This collaborative curation aspect of InSilico DB will hopefully help the
community to annotate all publicly available data sets with more com-
plete and structured meta-data. For all of the data sets present in InSilico
DB the original authors were contacted and many of them already en-

8 http://www.broadinstitute.org/LINCS/

http://www.broadinstitute.org/LINCS/
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Figure 4.1: Screenshot of the curation interface of the InSil-
ico DB. This view shows a specific curation for the GSE4635

dataset in both a spreadsheet view (left) and a tree view (right).
For this dataset four different curations exist as can be seen from
the drop-down menu on the top.

riched or improved the available meta-data.

4.1.3 Architecture

Before explaining the functionalities and implementation details of InSil-
ico DB we provide a conceptual overview of the architecture of the InSil-
ico DB tool. In Figure 4.2 we can observe the global three-tier-architecture
of the system, consisting of a Presentation part dealing with the Graphical
User Interface (GUI) of the tool, a Business Logic part containing all the
models and procedures and finally the Storage part which defines how
and where all the relevant data is stored.

All three main parts of the InSilico DB will be described in more detail
in Section 4.3. The functionality offered via the GUI to the users is il-
lustrated as uses cases in Figure 4.2 and will be listed in more detail in
Section 4.2.
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Figure 4.2: An overview of the InSilico DB architecture.

4.2 Functionality

As with most complex tools there are a lot of options and features the
user has access to. We will however only describe in this section the main
groups of functionality the InSilico DB has to offer:

Search/Browse

Every decent repository of data needs the option to query its content. In
the InSilico DB this can be done via a google-like free-text search where
the user can query for datasets based on an arbitrary keyword (e.g. thy-
roid, er status), a GEO platform or study identifier (e.g. GSE4635, GPL570)
or a curator. The resulting datasets are listed and the user can browse
through this list. In addition, the datasets can be filtered based on pub-
lic/private status, curation status, platforms, available preprocessings
and measurement type.
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Export

Genomic datasets can be exported to different analysis tools with one
click. Currently supported formats are: R/Bioconductor [Gentleman et al.
(2004)], GenePattern [Reich et al. (2006)] and Integrated Genomic Viewer
(IGV, [Robinson et al. (2011)]). For microarray data, users can choose
to export molecular measurements per platform-specific probes or sum-
marized by genes; and between the normalization provided by the orig-
inal authors, or a fRMA-renormalisation performed by InSilico DB9. For
RNA-Seq datasets, users can export gene-expression, splice junctions,
transcript expression estimates, and differential expression results. For
exome datasets, users can export annotated variants to IGV. Although for
every dataset there are multiple options, almost every instance is precom-
puted by the InSilico backbone and immediately ready for download. If
the precomputed dataset is not present in the system (because the dataset
was recently imported, there were errors or the curation/annotation was
changed recently) it will be generated by the InSilico backbone on-the-fly
and the user will receive notification when it is ready. The InSilico DB
content is also accessible from a programmatic interface that allows for
batch queries through the R/Bioconductor package inSilicoDb [Tam-
inau et al. (2011)b], see section 4.4.

Upload/Share

InSilico Db is a collaborative platform which allows users to upload pri-
vate datasets, compare them with public datasets and share them among
collaborators. A dedicated sharing interface enables users to define the
visibility of their data. This counts for both the numerical expression
data as for the clinical annotations. Comparable data management tools
are currently lacking.

9 For microarray datasets there are thus four different export options: probe/original,
probe/frma, gene/original and gene/frma.
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Curate

See Section 4.1.2 for a detailed description of the curation facilities of the
InSilico Db tool.

4.3 Implementation

To discuss the more technical implementation details we will again con-
ceptually break down the tool in the three layers depicted in Figure 4.2.

Presentation

InSilico DB as a tool is presented to the user as a interactive web appli-
cation, accessible via any web browser. For the development of the web
services there was opted for a combination of the Zend framework10, an
open source, object-oriented web application framework implemented
in PHP, and ExtJS11, a javascript library specialized in development of
interactive web applications. The Zend framework provides a Model-
View-Controller style of coding and is operating on the server-side. ExtJs
is responsible for the necessary javascript code on the client-side and en-
sures compatibility with all kind of browsers, a vital requirement for any
web application tool.

Business Logic

This layer encapsulates a wide variety of tools and scripts. The main part
is developed inside the Zend framework and handles user-interactive
tasks like querying data, user authentication, etc. The real logic sits how-
ever behind the scene and is mainly performed through R and Python
scripts repsonsible for creating and maintaining all genomic data. Those
scripts are bundled in an ordered pipeline and controlled by the InSilico
backbone (see Sections 4.3.1 and 4.3.2).

10 http://framework.zend.com/manual/en/introduction.overview.

html
11 http://www.sencha.com/products/extjs

http://framework.zend.com/manual/en/introduction.overview.html
http://framework.zend.com/manual/en/introduction.overview.html
http://www.sencha.com/products/extjs
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Storage

One of the most important aspects of a database or data repository is its
data and how it is stored. A decade of microarray technology has resulted
in a huge amount of raw data and with the increasing popularity of NGS
studies this can and will even increase exponentially. This affects the
way data has to be stored physically. From Figure 4.2 could already be
noticed that data is stored at two different locations. The meta-data, such
as relations, clinical annotations, curation information, etc. is stored in a
traditional relation database, enabling complex querying, while the more
heavy-weighted, numerical data is currently stored on a filesystem. This
filesystem has a strict structure to make automatical interaction with the
InSilico backbone possible.

4.3.1 Genomic Pipelines

InSilico DB currently contains more than 180.000 genomic profiles which
are all generated and processed in a consistent way. This is ensured by
strictly following genomic pipelines. A pipeline can be defined as an or-
dered sequence of preprocessing steps. Each of those steps, as already
introduced in Section 2.3.2, requires a number of settings or decisions
and for compatibility reasons it is important that those settings are not
mixed up.

All genomic data inserted in InSilico DB are associated with a platform
type (e.g. Affymetrix U133 Plus 2.0), a measurement type (e.g. RNA-Seq)
and parameters the user can select (e.g. fRMA preprocessing). The com-
bination of all these values defines the specific pipeline used to generate
all data.

While the overall implementation of the InSilico DB tool can be seen as a
collaborative effort of the entire InSilico team we will concentrate in this
section on my main personal contribution: the microarray data pipelines.
The other genomic pipelines implemented in the InSilico DB mainly deal
with the different types of next generation sequencing (NGS) data.
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For the proper generation of gene expression microarray data a simpli-
fied pipeline is presented in Figure 4.3, this pipeline is part of the actual
implementation of the InSilico DB. This pipeline contains a number of
tasks or jobs (grey boxes) and dependencies between jobs (black arrows).
If job A is dependent on job B (in graph: A⇒ B) it means that job A can’t
be started before job B was successfully executed.

Every job performing a specific task in the pipeline can be considered as
a script or stand-alone program. A job writes its result as a file on the
filesystem. The organization of the filesystem (e.g. where each job has
to write its results and using which name) is controlled by the InSilico
backbone. Using files as communication medium between the different
jobs makes it easy to debug and intervene between the different steps of
the pipeline. Another advantage is that the scripts can be implemented
in any programming or scripting language since the only constrained is
that it has to be able to read and write files from/to the filesystem. In
practice however, almost all jobs are R/Bioconductor scripts, due to the
availability of many high-quality bioinformatics packages.

To further illustrate the pipeline in Figure 4.3 we will now briefly describe
the separate jobs in top-down order. The MEAS PROBE FRMA job will be
explained in more detail.

GCT

This job transforms a genomic study, imported as a Bioconductors Ex-
pressionSet (eset) found on the filesystem, to a GCT file which can be
used as input for the external analysis program GenePattern [Reich et al.
(2006)]. For a defined curation of the study all phenotypic annotations
are stored in separate CLS files. Both GCT and CLS data file formats are
defined and supported by GenePattern12.

12 http://www.broadinstitute.org/cancer/software/genepattern/

tutorial/gp_fileformats

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_fileformats
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_fileformats
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Figure 4.3: Genomic pipeline for microarray data. Each grey
box represents a different job. Dependencies between jobs are
denoted by black arrows. An arrow with a star (*) means the
dependency on multiple jobs (e.g. for a study multiple samples
have to be generated). The labeled subgraph on the left will
be used as an example to demonstrate the InSilico backbone in
Section 4.3.2. CUR stands for Curated, MEAS stands for Measure-
ment.

CUR ESET

This job is straight-forward: it loads an eset, retrieves all phenotypic in-
formation for a given curation from the database, adds this information
to the ExpressionSet data structure and stores the resulting eset on the
filesystem.
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ESET

Not only complete esets but also the individual samples are stored as
files on the filesystem. For this job all samples belonging to the studies
are loaded from the filesystem and concatenated to each other to create
the ExpressionSet data structure. Additional log information is added to
the eset and extra control checks (e.g. have all samples the same number
of features?) are executed before storing the newly created eset to the
filesystem. As can be seen from Figure 4.3 this job can be dependent on
different jobs depending on the specified parameters.

MEAS GENE FRMA

The main role of this job is to perform a probe-to-gene mapping. An
eset with probes as features is loaded and an eset with genes as features is
stored back to the filesystem. As already explained in Section 2.3.2, multi-
ple probes can represent the same gene and their expression profiles have
to be collapsed into one expression profile. In our pipeline we do this by
taking for every sample the maximum expression value over all probes
mapping to the same gene. Alternatives are taking the mean expression
value for every sample or simply select the probe with the most variation
across all samples. An illustrative example with three probes mapping to
the same gene:

sample1 sample2 sample3

probe1 8 12 8

probe2 0 11 9

probe3 7 12 0

------------------------------------

gene 8 12 9

MEAS PROBE FRMA

This job stores a preprocessed sample on the filesystem. We will ex-
plain this job in detail together with a simplified code example in Ap-
pendix A.4. (1) In a first step the necessary Bioconductor annotation
package is identified, based on the defined platform. These annotation
packages contain the mapping between the manufacturers features (the
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probes) and a Entrez Gene Identifier (ENTREZ ID). For example, for
platform Affymetrix U133 Plus 2.0 the accompanying package is called
hgu133plus.db13. (2) In a next step the raw CEL files are loaded and we
perform frozenRMA preprocessing by applying the frma function [Mc-
Call et al. (2010)], which takes care of both background adjustment, nor-
malization and summarization steps. (3) At this point our samples are
stored as esets and we can use the appropriate Bioconductor annotation
package to retrieve for each probe its Entrez Gene Identifier, the gene
name and the gene description. This information can be used later for the
probe-to-gene mapping. (4) The eset is completed with meta-information
such as annotation and version of the used packages and finally (5) it is
stored on the filesystem.

CEL

This job ensures that the required raw CEL file for a given sample is re-
trieved from its source outside the InSilico DB system (e.g. from Gene
Expression Omnibus [Edgar et al. (2002)]) and stored on the filesystem.
In Figure 4.3 we can indeed observe that this job is not dependent on
another job.

MEAS GENE ORIGINAL

This job is similar to the MEAS GENE FRMA job and only performs a probe-
to-gene mapping. The only difference is its different dependency.

MEAS PROBE ORIGINAL

Like already mentioned before, the InSilico DB provides all microarray
data both in fRMA preprocessed format as in the format the authors of
the study original published it. Similar to the CEL job, this job retrieves
this original data. InSilico DB gives no guarantee how this data was pre-
processed but it is important for reproducing published studies.

13 http://www.bioconductor.org/packages/release/data/annotation/

html/hgu133plus2.db.html

http://www.bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
http://www.bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
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For other genomic data similar pipelines exist but they will not be de-
scribed in detail. For RNA-Seq data, reads alignment, transcripts and
gene expression abundance are computed using the TopHat-Cufflinks
and Cummerbund pipelines [Trapnell et al. (2012)]. For exome data, In-
Silico DB uses the genome analysis toolkit (GATK) ”best practice variant
detection method” pipeline [DePristo et al. (2011)].

4.3.2 The InSilico Backbone

To facilitate the task of applying a genomic pipeline on a large number
of data simultaneously with minimal or no manual intervention, InSilico
DB uses a workflow system developed in-situ. This system, called the
InSilico backbone controls all jobs of the genomic pipeline and their de-
pendencies. Given the fast evolution of the genomics field, its pipelines
and dependencies there is need for such architecture to update and re-run
preprocessing pipelines for all associated profiles in a stable, robust and
reliable framework. The InSilico backbone uses similar underlying mech-
anisms as those developed by Ensembl for their eHive solution [Severin
et al. (2010)]. Other similar initiatives, more focussed on the development
of workflows in particular, are Taverna [Hull et al. (2006)] and Pipeline
Pilot14 [Accelrys Software Inc, San Diego, USA].

The InSilico backbone is implemented in PHP and Java and stores all its
information in a MySQL database. The PHP part deals with requests and
the Java part is a service that takes care of calling the specific jobs and
monitoring them. A job is launched on our in-house cluster by relying
on a queue mechanism provided by the qsub program, responsible for
submitting batch jobs to the Sun Grid Engine. This way jobs that can run
concurrently are executed in parallel. When the backbone gets a request
for a certain file, it checks if that file has been already generated by its
assigned job and if it thus is available on the filesystem. If this is not
the case, it checks recursively, by following the jobs dependencies, how to
generate this file.

14 http://accelrys.com/products/pipeline-pilot

http://accelrys.com/products/pipeline-pilot
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The properties of each job, for example which files it can generate, which
files it will need, its dependencies, etc. are stored in a configuration file.
In Figure 4.4 is an excerpt from such a configuration file defining the
properties of the three jobs from the labeled subgraph in Figure 4.3. For
every job X the following properties are defined: X.script and X.args

tells the backbone which script has to be executed for this job with which
arguments, X.dep defines the dependency of this job, i.e. what job has to
be executed prior to this job, X.result and X.path specifies the exact
path on the filesystem the result of this job will be written to and finally
the X.qsub defines if a job has to be submitted to the qsub system or not.

MEAS_GENEFRMA.script = ’launchR.sh %scriptdir%/generate_MEASGENE.R’

MEAS_GENEFRMA.args = ’%dataName%%norm%%dataValues% %path% %scriptdir%’

MEAS_GENEFRMA.dep = ’MEAS_PROBE_FRMA’

MEAS_GENEFRMA.result = ’file’

MEAS_GENEFRMA.path = ’[...]%dataName%%norm%%dataValues%.RData’

MEAS_GENEFRMA.qsub = true

MEAS_PROBEFRMA.script = ’launchR.sh %scriptdir%/generate_MEASPROBE.R’

MEAS_PROBEFRMA.args = ’%dataName% %platform% %norm% %path% %scriptdir%’

MEAS_PROBEFRMA.dep = ’CEL’

MEAS_PROBEFRMA.result = ’file’

MEAS_PROBEFRMA.path = ’[...]%dataName%%norm%PROBE.RData’

MEAS_PROBEFRMA.qsub = true

CEL.script = ’DownloadCELFile.py’

CEL.args = ’%dataName% %platform% %path%’

CEL.result = ’file’

CEL.path = ’%cel_dir%/%platform%/%dataName%.CEL’

CEL.qsub = true

Figure 4.4: Excerpt from configuration file for the InSilico
backbone. Properties of the three jobs MEAS GENE FRMA,
MEAS PROBE FRMA and CEL are defined.

Job monitoring can be done through a specific administration interface.
The activity of the InSilico backbone is visualized by listing all the current
and the past jobs. A tree-view enables the monitoring of job dependen-
cies as well. In Figure 4.5 the top job (CUR ESET) could be expanded to
see the job it is dependent on (ESET), conform to the pipeline in Figure
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4.3. The next job is dependent on seven other jobs, for which the result-
ing files were found on the filesystem. This nicely illustrates the recursive
behavior of the InSilico backbone.

Figure 4.5: Screenshot of the administration interface of the In-
Silico DB. This view shows the activity of the InSillico backbone
by listing the current or latest jobs. Each job can be expanded to
see its dependent jobs.

It is clear that the consistent and large-scale generation of current high-
throughput data requires systems like the InSilico backbone, and to con-
clude this section we will list its advantages:

• Flexibility and scalability. New data of interest can be added in real-
time without any human intervention. Additions of new genomic
pipelines can be added by just adapting the configuration file of the
backbone.

• Intermediate results. Since communication between jobs is done by
files, every file can be seen as an intermediate result in the work-
flow and decisions can be made to store or delete them. Caching
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of intermediate results has however also a drawback since there
is a substantial overhead in loading and saving files in the overall
workflow.

• Efficient use of resources. Only files of interest can be generated on-
the-fly, resulting in fewer need for file storage and computation
power. Pre-computation is however still possible for jobs that re-
quire high computational time and are known to be of interest.

• Automatic monitoring. Execution times and outcomes for every job
are logged in a database and can be consulted through a specific
administration interface.

• Streamlined error management. Since the outcome of each script is
checked, the state of every file is known. These states can be: ready,
executing, waiting, error, etc. Actions can be taken accordingly in a
way the integrity of the data is kept.

Both the genomic pipelines and the InSilico backbone play a crucial role
in the InSilico DB for providing high quality data.

4.4 The inSilicoDb R/Bioconductor Package

In addition to the InSilico DB as an interactive web service a different
front-end in R was developed: the inSilicoDb package. This package
is part of R/Bioconductor [Gentleman et al. (2004)] and was presented
as a publicly available tool15 through a Bioinformatics publication [Tam-
inau et al. (2011)b]. The use of this package builds on the Bioconduc-
tor project’s focus on reproducibility by enabling a clear workflow in
which not only analysis, but also the retrieval of verified data, is sup-
ported. Through the inSilicoDb package, the InSilico DB content is
made available for enhanced programmatic access. It enables large-scale
genome-wide analysis through automated scripting by seamless integra-
tion with the R/Bioconductor genome-wide datasets visualization and

15 http://www.bioconductor.org/packages/release/bioc/html/

inSilicoDb.html

http://www.bioconductor.org/packages/release/bioc/html/inSilicoDb.html
http://www.bioconductor.org/packages/release/bioc/html/inSilicoDb.html
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analysis platform.

Other and similar software packages to retrieve gene expression datasets
in R/Bioconductor exist, like for example GEOquery [Davis & Meltzer
(2007)]. However, the information about the samples is in a raw form re-
quiring a manual curation step in transit between a data repository (e.g.,
GEO) and a data analysis platform (e.g., R/Bioconductor). In contrast,
inSilicoDb streamlines this process by providing data verified by the
underlying InSilico DB tool.

The basic use of the package is straightforward. To retrieve a dataset:

> library("inSilicoDb");

> eset = getDataset(dataset="GSE4635", platform="GPL96");

There are three possible outcomes for this request:

• Ok. The requested study is available (i.e. precomputed in the InSil-
ico DB system) and is immediately downloaded and stored in the
eset variable.

• Error. The dataset is not available and can not be generated by the
InSilico backbone. This can be due to an internal error, due to cor-
rupted CEL files, etc. A message indicating the error will be pro-
vided and the eset variable will be set to NULL.

• Waiting. The dataset is not available at this moment but will be
generated by the InSilico backbone. A message with the estimated
generation time will be provided. After that time the user can retry
to download this study. The eset variable will also be set to NULL.

In addition to the dataset name and the platform (both required param-
eters), the getDataset function also accepts three optional parameters.
To choose the normalization, the user can set the norm parameter to
"FRMA" or "ORIGINAL". To select the features, the features param-
eter can be set to "GENE" or "PROBE". See Section 4.2 for more details.
An example to demonstrate the use of the features parameter:
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> library("inSilicoDb");

> eset = getDataset(dataset="GSE4635", platform="GPL96", features="PROBE");

> nrow(eset);

Features

22283

> eset = getDataset(dataset="GSE4635", platform="GPL96", features="GENE");

> nrow(eset);

Features

12718

The third optional parameter is the curation parameter. As already ex-
plained in Section 4.1.2 different curations are possible for each dataset.
By default, the inSilicoDb package always returns the preferred cura-
tion. To have an overview of all curations an additional function print

CurationInfo exists:

> printCurationInfo(dataset="GSE4635", platform="GPL96");

INSILICODB: ============================================

INSILICODB: curation id: 14926 (preferred)

INSILICODB: ============================================

INSILICODB: curator: Virginie de Schaetzen

INSILICODB: date: 2011-12-13

INSILICODB: keywords: Age,Sex,Anatomical Site,Cell Type,Smoker,Ethnicity,

INSILICODB: Cigarette Consumption (pack/years),platform

INSILICODB:

INSILICODB: ============================================

INSILICODB: curation id: 5092

INSILICODB: ============================================

INSILICODB: curator: colin molter

INSILICODB: date: 2011-06-28

INSILICODB: keywords: Smoker,tissue,status,age,race,sex,pkyrs,history,

INSILICODB: patient_id

INSILICODB:

INSILICODB: ============================================

INSILICODB: curation id: 3743

INSILICODB: ============================================

INSILICODB: curator: Dmitriy Leyfer

INSILICODB: date: 2011-02-04

INSILICODB: keywords: CELL,AGENT

INSILICODB:

INSILICODB: ============================================

INSILICODB: curation id: 9016

INSILICODB: ============================================

INSILICODB: curator: GEO

INSILICODB: date: 2006-04-07

INSILICODB: keywords: description,title,source_name,characteristics

This dataset contains four different curations in the InSilico DB, the first
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one is labeled as preferred. By specifying a curation id a different curation
can be retrieved. (The same example is visualized in Figure 4.1).

> eset = getDataset(dataset="GSE4635", platform="GPL96");

> colnames(pData(eset))

[1] "Age" "Sex"

[3] "Anatomical Site" "Cell Type"

[5] "Smoker" "Ethnicity"

[7] "Cigarette Consumption (pack/years)" "platform"

> eset = getDataset(dataset="GSE4635", platform="GPL96", curation="9016");

> colnames(pData(eset))

[1] "description" "title" "source_name" "characteristics"

The getDataset returns an ExpressionSet object, the standard R/Biocon-
ductor data structure containing both numerical, feature and phenotypi-
cal information. It is also possible to only retrieve phenotypical informa-
tion with the getAnnotations function.

To make the returned ExpressionSet objects more trackable, versioning
information is added to the data structure:

> eset = getDataset(dataset="GSE4635", platform="GPL96", curation="9016");

> notes(eset)

$hgu133aVersion

[1] "2.5.0"

$measurementType

[1] "RNA"

$inSilicoCurationId

[1] "14926"

In GEO, a Series is composed of (the same) samples assayed on one or
more platforms. In InSilico DB, the series are conveniently represented by
multiple datasets. Two auxiliary functions to allow flexible management
of studies with multiple platforms are provided: getDatasets to re-
trieve, for a given series, all gene expression matrices, and getPlatforms
to retrieve all platforms:

> getPlatforms(dataset="GSE781");

[1] "GPL96" "GPL97"

> esets = getDatasets(dataset="GSE781");

> sapply(esets, annotation);

[1] "hgu133a" "hgu133b"
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Finally, a function to query the InSilico DB is provided: getDatasetList.
This function retrieves the identifiers of all datasets in the InSilico DB.
These identifiers can be used as input for the other functions. It is possible
to limit the search to only datasets satisfying certain constraints such as a
given platform, manually curated or not, fRMA preprocessing available
or by querying for a specific keyword. The following example illustrates
some of the possibilities of this search:

#Retrieve ALL datasets

> lst = getDatasetList()

INSILICODB: 6120 datasets found.

#Retrieve only datasets for GPL570 platform which are curated

> lst = getDatasetList(platform="GPL570", curated="TRUE")

INSILICODB: 1588 datasets found.

#Retrieve all fRMA preprocessed datasets dealing with thyroid cancer

> lst = getDatasetList(norm="FRMA", query="thyroid")

INSILICODB: 42 datasets found.

In Table 4.3 all functions with their required and optional parameters are
summarized. In the code fragment of Appendix A.1 we could already see
the combination of using the getDatasetList and getAnnotations.
In the remainder chapters more examples of large-scale analysis using
the inSilicoDb package will be provided.

To conclude, the inSilicoDb R/Bioconductor package provides an effi-
cient means of performing large-scale genomic analysis on the large and
growing amount of gene expression profiles using automated scripting.
The underlying InSilico DB framework allows search and browsing of cu-
rated datasets that can then be automatically retrieved, adding a means
for reproducible data sourcing to the reproducible analysis platform R/
Bioconductor. As of July 2012, the inSilicoDb package is downloaded
more than 1500 times16 and is already used in large-scale gene expression
analysis published in high-quality journals [Tomás et al. (2012), Tamayo
et al. (2011)].

16 http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.

html

http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.html
http://www.bioconductor.org/packages/stats/bioc/inSilicoDb.html
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Function Req. Param Opt. Param

getDatasetList platform, norm, query, curated
getDataset dataset, platform norm, features, curation
getDatasets dataset norm, features, curation
getPlatforms dataset
getAnnotations dataset, platform curation
printCurationInfo dataset

Table 4.3: Summary of all relevant functions in the
inSilicoDb package with their Required and Optional pa-
rameters. More details can be found in the examples in the main
text.



5
Integrative Analysis of Microarray

Data

In Chapter 3 the retrieval of microarray data from public repositories was
already discussed. These repositories contain a plentitude of data gath-
ered in more than a decade of microarray gene expression research and it
is one of the challenges for the near future to integrate this vast amount
of data [Moreau et al. (2003),Larsson & Sandberg (2006),Sarmah & Sama-
rasinghe (2010)].

In this chapter we first present the two main approaches or frameworks
for conducting integrative analysis, further defined as meta-analysis and
merging, and explain their main differences. The rest of this chapter con-
sists of a discussion on the advantages and disadvantages of integrating
individual gene expression microarray data sets. In the following chap-
ters we go into further details for both the meta-analysis approach in
Chapter 6 and the merging approach in Chapter 7 and finally we present

63



64 Chapter 5. Integrative Analysis of Microarray Data

an empirical comparison of both approaches in Chapter 8.

5.1 Terminology and Description

In literature it is not always clear what exactly is meant by integrative-,
comparative-, meta-, or large-scale analysis in titles or descriptions of ge-
nomic studies. Before going into more details on the specific approaches
we provide some definitions of the specific terms we will use in the fol-
lowing chapters:

Integrative Analysis: - Combining the information of multiple, independent
but related studies in order to extract more general and more reliable conclusions.

This definition is very vague on purpose and only reflects the fact that
several independent microarray studies should be combined in order to
fully explore the potential of the wide variety of gene expression data
available nowadays. For integrative analysis two main approaches ex-
ist, mainly differing in how, or more precisely at what level, the differ-
ent studies are combined. We start by providing a definition for both ap-
proaches, followed by a more detailed comparison.

Meta-Analysis: - The use of statistical techniques to combine multiple re-
sults, each derived from individual studies, into one more general result.

To illustrate this framework a schematic overview of a typical meta-analysis
to retrieve gene lists from microarray data can be found in Figure 5.1(a).

Merging: - The combination of multiple data sets into a global data set on
which results can be derived with more statistical power.

A schematic overview of integrative analysis through merging to retrieve
gene lists from microarray data can be found in Figure 5.1(b).
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Figure 5.1: Schematic overview of the two main approaches of
integrative microarray analysis in the context of the identifica-
tion of differential genes (DEGs). (a) meta-analysis first derives
results from each individual study and then combines the re-
sults. (b) merging first combines the data and then derives a
result from this large data set.

Several other definitions or approaches exist in literature. In [Larsson
et al. (2006)] for example they speak about Comparative Microarray Analy-
sis to describe meta-analysis of microarrays. Moreover they refine meta-
analysis to be summarizing, hypothesis-driven and exploratory. In their
study they however conclude that ”[...] integration of microarray data from
different studies or in comparison with whole data repositories could signifi-
cantly refine the conclusions and interpretations obtained from single microar-
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ray experiments.” [Larsson et al. (2006)], thereby sharing our point of view
on the benefits of integrative analysis of microarray data.

Another terminology can be found in [Sarmah & Samarasinghe (2010)],
where they refer to meta-analysis as integration at the interpretation level
and to merging as integration with rescaling of the expression values.

5.2 Benefits of Integrative Analysis

One of the current limitations of microarray gene expression analysis is
the fact that findings are not always reproducible in other independant
studies and are, due to their small sample sizes, not robust to the mildest
of data perturbations [Michiels et al. (2005), Ein-Dor et al. (2005)]. Typi-
cally tens of thousands of probes/genes are investigated in only tens or
hundreds of biological samples, making microarray analysis extra vul-
nerable to the curse of dimensionality [Somorjai et al. (2003)]. For example,
to generate robust gene signatures for predicting outcome of disease, ac-
tually thousands of samples are needed [Ein-Dor et al. (2006)].

Combining information from multiple existing studies can increase the
reliability and generalizability of results. Through the integrative analysis-
of microarray data we can increase the statistical power to obtain a more
precise estimate of gene expression results, immediately overcoming the
problem of the low sample sizes. At the same time the heterogeneity of
the overall estimate is assessed, making results more generalizable. This
way we avoid the danger of study-specific findings only applicable for
example to patients or samples of a specific geographical region.

Besides strengthening and extending the results gathered from individ-
ual studies, integrative analysis can also provide a broader picture of
gene expression in various biological processes since it is not limited to
the specific objectives and constraints of individual studies. Moreover, it
can also compensate for possible errors and undesired biases in individ-
ual studies.
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Integrative analysis is also a relatively easy and inexpensive way of gain-
ing new biological insights since it makes comprehensive use of already
available data, accumulated through the years by various groups all over
the world.

5.3 Issues of Integrative analysis

Based on the definitions of integrative analysis through merging or meta-
analysis, both approaches may sound easy and straightforward to con-
duct, but several issues always arise. In Figure 5.2 some key issues in
conducting meta-analysis already identified by [Ramasamy et al. (2008)]
are shown. While specific for meta-analysis, many of them are also rele-
vant for integrative analysis via merging.

From the list of seven key issues taken from Figure 5.2 it is remarkable
that the first five issues are completely related to data acquisition or re-
trieval of microarray data, together with its phenotypical meta-data. Is-
sues like how to consistently extract the data from a given study (Issue
2), how to annotate the individual data sets (Issue 4) and how to resolve
the many-to-many relationship between probe and genes (Issue 5) were
already identified in Chapter 3 as issues for the analysis of single mi-
croarray studies. The InSilico DB, described in Chapter 4, provides al-
ready the solution for those issues. Moreover, by providing consistently
preprocessed and expert-curated data, the InSilico DB also facilitates the
preparation of data sets from different platforms (Issue 3) and its exten-
sive browse and search capabilities successfully guide the identification
process for suitable studies (Issue 1).

The last two issues are more study-specific. How the different results are
combined (Issue 6) depends on the type of information that is available
and requested while the final analysis and reporting (Issue 7) depends on
the main objective of the integrative analysis study. In Chapter 6 we will
describe the possible ways of combining results in the context of meta-
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Figure 5.2: List of key issues for conducting meta-analysis of
microarray gene expression data identified by [Ramasamy et al.
(2008)] . For each issue a number of practical steps are provided.
Figure taken from [Ramasamy et al. (2008)].

analysis into more detail.

In [Sarmah & Samarasinghe (2010)] a more extensive enumeration of is-
sues for integrative analysis is presented. One of their issues is often
neglected and questions the effect of the excluded genes, i.e. the genes that
are not common in all data sets used in the large-scale analysis. In the
merging approach the merged data set only consists of genes common
between all studies and the more different platforms used, the smaller
the intersection of genes will be. Assessing the effect of these excluding
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genes on the analysis results is indeed a very important concern which
didn’t receive much attention so far. For the meta-analysis approach it
depends on the specific implementation if and how many genes will be
discarded for further analysis.

We have to note that for the merging approach an additional issue, not
mentioned in Figure 5.2, should be included. Before combining the ex-
pression values of different studies, they have to be made compatible to
each other. Since the use of different experimentation plans, platforms
and methodologies by different research groups introduces undesired
batch effects in the gene expression values [Leek et al. (2010), Scherer
(2009)] an additional transformation of the data to remove those effects
is needed. In Chapter 7.3.2 we give an extensive overview of those meth-
ods.

In a recent study the question if the advantage of increased sample size
is outweighing the disadvantages of merged data sets was addressed for
the survival prediction in breast cancer [Yasrebi et al. (2009)]. They iden-
tified the following issues when merging different data sets: diversity
of microarray platforms, heterogeneity of sample cohorts and reduced
number of genes in the merged data sets. However, predictors derived
from the merged data sets were robust, consistent and reproducible, and
helped to better understand the biases and shortcomings of the individ-
ual studies [Yasrebi et al. (2009)].

5.4 Summary

The vast amount and increasing number of publicly available gene ex-
pression studies provide strong motivation for the integrative analysis of
microarray data. Combining data or results from different studies car-
ries the potential towards higher accuracy, consistency and robustness of
findings. The integrated result often offers a more complete and general-
izable insight in the biological processes.
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Two possible approaches or frameworks for integrative analysis that are
currently in practice are presented. Their main difference lies at the level
at which information is combined; in meta-analysis information is com-
bined at the result level while merging already combines the numerical
data before deriving results. Both approaches will be further described
in detail in the following chapters.



6
Meta-Analysis

In this chapter we will go further into detail on the meta-analysis ap-
proach for conducting integrative analysis of gene expression microar-
ray studies. The statistical foundations of this set of techniques were
already described long before microarray technology even exists and it
was adopted quickly after the first online repositories were populated
with similar and related studies.

The choice of the specific method for combing the results in a typical
meta-analysis is important and depends on the type of response (e.g.
binary, continuous, survival) and the final objective of the study. The
identification of differentially expressed genes (DEGs) between two well-
known conditions is still one of the most fundamental applications of
microarrays and was therefore the focus and objective of most success-
ful meta-analysis studies reported in literature. In Section 6.1 we provide
an extensive state-of-the-art by describing several methods for conduct-
ing meta-analysis in the context of the identification of DEGs and group
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them in four generic approaches.

In the following Section 6.2 we briefly discuss what to do in other situa-
tions and/or objectives and we end with presenting a large-scale meta-
analysis of gene expression microarray studies to identify robust and sta-
ble genes in Section 6.3. This study consists of more than 34000 different
samples from 365 studies made available by the InSilico DB.

6.1 Meta-Analysis Methods for the Detection of
Differentially Expressed Genes

To combine the information of multiple gene expression studies in the
context of the identification of differentially expressed genes (DEGs) many
different strategies are proposed. They can be grouped in four generic ap-
proaches, as identified by [Ramasamy et al. (2008)]. In order to provide
a well covered state-of-the-art of the different meta-analysis procedures,
we will describe each category into more detail.

Combining p-values

In individual studies, many statistical tests for the detection of DEGs can
be applied. These tests usually score genes by reporting p-values, ex-
pressing the probability that the observed level of differential expression
is significant or could have occurred by change. Once those p-values, or
the adjusted p-values as discussed in Section 2.3.3, are obtained for each
gene in each study, they can be combined. Some methods (also called
omnibus procedures [Hedges & Olkin (1985)]) can then be used to test the
statistically significance of the p-values of a given gene across all studies.

In one of the first real applications of meta-analysis for microarrays [Rhodes
et al. (2002)] four data sets were combined to determine genes that are
differentially expressed between benign and malignant prostate tissues,
e.g the classical normal versus tumor case. They used a variant of Fisher’s
method, which sums the logarithm of the p-values across all four studies,
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obtained by a one-sided hypothesis test.

In general, using this approach of combining p-values, for each gene i a
summary statistic Si can be obtained by:

Si =
n∑
k=0

log(pki ) (6.1)

with pki the p-value of gene i in study k, obtained after a statistical test. A
final list of differentially expressed genes can then be selected by sorting
the summary statistic and applying a specific cut-off value.

Although omnibus procedures are straightforward and versatile, they
have the disadvantage that by working only with p-values, the actual
level of differential expression is ignored as well as the fact if the differ-
ential expression is positive or negative. Because of this drawback new
approaches emerged.

Combining Effect Sizes

Meta-analysis based on the t-statistic was already reviewed in 1999 by
[Normand (1999)] in the broader context of biostatistical applications.
A few years later this framework was adopted for the first time for mi-
croarray analysis [Choi et al. (2003)] to identify differentially expressed
genes between tumor and non-tumor tissues in liver and prostate can-
cer. Their method estimates the effect size of gene i as the measure of
differential expression, and earlier defined as the standardized mean dif-
ference [Hedges & Olkin (1985)]:

ei =
xTi − xNi

σi
(6.2)

with xTi and xNi representing the means of the tumor and normal groups
for gene i respectively, and σi indicating an estimate of the pooled stan-
dard deviation.
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Once the study-specific effect sizes for each gene are obtained they pro-
posed a hierarchical modeling approach to assess both intra- and inter-
study variation when combining effect sizes across the multiple data sets.
Their model-based method estimates the overall effect size as the mea-
surement of the magnitude of differential expression for each gene through
parameter estimation and model fitting, see [Choi et al. (2003)] for more
information.

In a later comparative study it was concluded that although this ap-
proach greatly improve over the individual studies it was outperformed
by ranking methods based on sensitivity and selectivity criteria, because
it usually suffers from a potentially large amount of false positives [Hong
& Breitling (2008)].

Combing effect sizes is also used by others. In [Grützmann et al. (2005)]
they used it to reveal that four different pancreatic cancer gene expression
data sets shared a significant number of up- and down-regulated genes,
independent of the technology used. In [Elo et al. (2005)] they proposed
a small correction factor to calculate the estimate of the effect size, also
known as the Hedges’ adjusted g [Hedges & Olkin (1985)] which pro-
vided more stable results, especially in the case of small sample sizes.

Vote Counting

Vote counting is another very straightforward meta-analysis technique
and in the context of microarray it was described in [Rhodes et al. (2004)].
For the identification of DEGs, each study can vote if a specific gene is
considered differentially expressed or not and all votes are combined
by counting them. Many adaptations to this scheme exist, for example
weighting of the votes [Xu et al. (2008)].

Despite the fact that it is well known that vote counting is statistically
inefficient [Friedman (2001)], naive vote counting is still selected as pre-
ferred tool in many biological applications, mainly for its convenience
and simplicity [Tseng et al. (2012)].
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Combining Ranks

Methods to combine robust rank statistics were introduced to alleviate
the problem of outliers in methods combining p-values. Another advan-
tage is the fact that the rank product is a non-parametric statistic. Instead
of p-values or effect sizes, the ranks of differential expression evidence
are calculated for each gene in each study. The test statistic can then be
calculated as the product, mean or sum of ranks from all studies.

In [Hong et al. (2006)] the more advanced RankProd method was pro-
posed that calculates the products of ranks of fold change in each inter-
group pair of samples. In their comparative study earlier mentioned,
they showed its better performance as compared to combining p-values
and effect sizes [Hong & Breitling (2008)].

When only the (ordered) DEG lists per study are available, various rank
aggregation methods were proposed [DeConde et al. (2006)], which were
developed to combine lists from literature.

6.2 Meta-Analysis in Other Situations

In the previous section we focussed on the identification of DEGs as main
objective. For other applications of microarray analysis like class dis-
covery and prediction, the same approaches are generally applicable for
combining results in individual studies. In the next section for example
we used a method very similar to the method of combing effect sizes pro-
posed by [Choi et al. (2003)] by only changing the implementation of the
effect size for each gene.

Besides the objective of the analysis, also the data that is available can
limit the possible techniques that can be used. For example, is the ex-
pression data available in order to calculate p-values and effect sizes, or
are only the resulting gene lists available for each individual study? A
number of other considerations for selecting the best approach were also
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proposed by [Ramasamy et al. (2008)]. What is for example the the ability
of each techniques to handle studies with very low sample sizes? What
to do with different platforms consisting of a different set of genes? etc.

It is clear that the actual implementation of a complete meta-analysis
study is very customizable, depending on the specific details of the in-
dividual studies. The overview of the methods described in the previous
section is thus far from complete. It can however serve as a good starting
point for the selection of an appropriate technique but needs adaption in
order to answer the specific objective of a specific study, as will be illus-
trated in the following section.

6.3 Identification of Stable Genes Through Meta-
Analysis

In this section an application of the meta-analysis approach for integra-
tive analysis of gene expression data is presented. A large-scale screen-
ing of 365 microarray studies was conducted to identify potential stable
genes, i.e. genes with a constant expression across different tissues and
biological conditions. We were able to identify a compact and diverse set
of 12 promising stable genes which can be used as reference.

6.3.1 Introduction

Obtaining a set of genes with constant expression among different kind of
tissues or experimental conditions is increasing in importance in current
biomedical research since they can help to tackle the difficult and often
subtle problem of normalizing various kinds of biological data, like gene
expression microarray analysis or real-time reverse transcription polyme-
rase reaction (qRT-PCR) [Vandesompele et al. (2002), Bär et al. (2009)].
Those stable genes, or reference genes, can also be used for validation
purposes, for example for different normalization methods in the context
of gene expression meta-analysis [Autio et al. (2009)]. In general, they
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provide a background model to compare other measurements against.

Initially, housekeeping genes were selected as natural candidates for the
role of reference genes. By definition, housekeeping genes are ubiqui-
tously expressed in all different types of cells [Zhu et al. (2008)], which
reflects the biological concept of genes maintaining the basic function-
ality of the cell [Butte et al. (2001)]. However, numerous studies have
shown that those housekeeping genes are actually regulated and their
expression levels varies under certain experimental conditions [Cheng
et al. (2011)].

The increasing amount of microarray analysis is an excellent source for
the identification of genes with stable expression. Initially only single
studies or a limited set of studies were used to retrieve reference genes
[She et al. (2009), Szabo et al. (2004), Lee et al. (2007), Popovici et al.
(2009)], mostly only for specific biological conditions. Recently also large-
scale analysis of microarray data was performed to identify stable genes
[de Jonge et al. (2007), Cheng et al. (2011)]. We indeed believe that the
vast amount of gene expression data available offers a unique opportu-
nity to increase the statistical power of large-scale analysis and is key in
obtaining stability and generality among proposed stable gene lists. In
this study we use a cohort of 365 studies retrieved from InSilico DB (see
Chapter 4) consisting of in total more than 34000 samples, representing
a wide variety of different biological conditions. Following the method-
ology presented in the next section, we end up with a list of 12 potential
reference genes.

6.3.2 Methodology

Our methodology to screen for stable genes is illustrated in Figure 6.1
and is mainly a refinement of the more general methodology for meta-
analysis presented in Figure 5.1(a).

From Figure 6.1 we can see that our methodology consists of four main
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Figure 6.1: Schematic overview of the workflow for the identi-
fication of stable genes through meta-analysis in different steps.
(Step1) retrieval of studies (Step2) calculate stability scores for
each gene (Step3) combine stability scores per gene (Step4) fil-
ter based on semantic similarity. All steps are explained in more
detail in the text. GO: Gene Ontology.

steps:

Step 1: Retrieval of appropriate studies

To select all individual studies for this large-scale analysis we used the
query possibilities of InSilico DB. Using the getDatasetList function
from the inSilicoDb package (see Section 4.4) we retrieved all studies
with the following two constraints:

• Hybridized on the Affymetrix Human Genome U133 Plus 2.0 plat-
form (GPL570).
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• Contains at least 30 samples in order to be considered as statistically
relevant.

This way we retrieved a list of 365 microarray gene expression studies,
containing samples from a diverse set of tissues (breast, colon, blood,
bone, lung, etc.) and cell lines under varying conditions. This list was
retrieved programmatically without any manual interaction1. All studies
together sum up to a total of 34578 samples.

Step 2: Calculate Stability Scores

For each gene in each data set a score can be calculated to measure its
stability in each data set. We opted for the Coefficient of Variation (CV ),
previously used in [de Jonge et al. (2007)], and defined for gene i as
follows:

CVi =
σxi
xi

(6.3)

with xi the mean expression of gene i and σxi the standard deviation ex-
pression of gene i. By using the CV measure, we searched for genes that
are expressed but have low variability in their expression in each avail-
able data set. This way we avoided lowly expressed genes which have
a more stable expression by definition but are not usable or preferred as
reference genes.

Step 3: Combine Stability Scores

Once the CV for each gene was calculated for each individual data set,
we define for each gene the global stability score as the median value of
all CV measures for that gene across all data sets, further referred to as
CV ∗. Based on this CV ∗ measure all genes can be ranked and the top 100
ordered genes were kept for further analysis.

1 We have to note here that although the entire code to retrieve this data set list is
reproducible, if we run the exact code again at a later point in time, we will obtain
a different and larger list of studies due the almost weekly increasing content of
InSilico DB.
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Step 4: Semantic Similarity Filtering

In a last step we excluded genes that were too closely related or similar
from a biological point of view to genes that were more stable. Starting
in decreasing order, the semantic similarity of each of the genes of the top
100 list obtained in Step 3 was calculated with each higher ordered gene.
When a lower ranked gene had a high semantic similarity with a higher
ranked gene, the lower ranked gene was removed from the set.

To calculate the semantic similarity between two genes we adopted a
measure to estimate the functional similarities of genes based on gene an-
notation information from Gene Ontology (GO), proposed by [Wang et al.
(2007)]. The GO ontology provides a systematic language, or ontology,
for the consistent description of attributes of genes and gene products, in
three key biological domains that are shared by all organisms [Ashburner
et al. (2000), Gene Ontology Consortium (2008)]:

• Cellular Component (CC): the parts of a cell or its extracellular en-
vironment.

• Molecular Function (MF): the elemental activities of a gene product
at the molecular level, such as binding or catalysis.

• Biological Process (BP): the operations or sets of molecular events
with a defined beginning and end, pertinent to the functioning of
integrated living units: cells, tissues, organs, and organisms.

The graph-based method of [Wang et al. (2007)] determines the semantic
similarity of two GO terms based on both the locations of these terms in
the GO graph and their relations with their ancestor terms, for each sub-
ontology (MF, BP or CC). This method is available through the mgoSim
function from the R/Bioconductor package GoSemSim [Yu et al. (2010)].

To calculate our semantic similarity we take an average of this method
for molecular function (MF) and biological process (BP) and ignore the
cellular component (CC) information. The details of our implementation
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can be found in Appendix A.5.

By applying this last step we reduced the ordered list of the 100 most
stable genes into a compact and diverse list of 12 genes.

6.3.3 Results and Discussion

After applying the complete workflow described in the previous section
we obtained a list of 12 genes:

> reference_genes

[1] "RPL37A" "EEF1A1" "TPT1" "ATP13A5" "DCAF6" "ACTG1"

[7] "OAZ1" "CALM2" "SH3KBP1" "MATR3" "COX4I1" "FTL"

Although we considered a list of 100 stable genes (Step 3) we obtain a
very compact and diverse final list of genes after applying the fourth and
last step, the semantic filtering. To motivate the importance of this last
step, let us first have a look at the top 100 genes we would have obtained
without filtering for semantic similarity (for clarity only top 50 is shown):

> sorted_stable_genes[1:50]

[1] "RPL37A" "EEF1A1" "RPL7" "RPL41" "RPL37" "RPL9" "RPS16"

[8] "RPS23" "RPS11" "HUWE1" "RPS2" "RPL27" "TPT1" "RPL27A"

[15] "RPS3A" "HNRNPA1" "RPL38" "RPLP0" "RPLP1" "ATP13A5" "RPL34"

[22] "RPS27" "DCAF6" "RPS13" "RPS18" "RPS15A" "RPL13" "RPS28"

[29] "RPL3" "EIF1" "RPL23A" "RPL39" "RPL30" "ACTG1" "RPL10"

[36] "RPS12" "RPL6" "RPS20" "EEF2" "RPS15" "EEF1G" "RPL24"

[43] "ACTB" "RPL21" "RPL19" "OAZ1" "RPS24" "HNRNPK" "RPS10"

[50] "RPL4"

This list is very similar to the lists obtained in [de Jonge et al. (2007)]
and [Popovici et al. (2009)]. Like those lists they are mainly dominated
by ribosomal proteins, which makes sense from a biological point of view
since ribosomal proteins are a major component of basic physiologic pro-
cesses in all cells and a primary target of changing conditions [Popovici
et al. (2009)].

We do believe however that the semantic filtering is a necessary step to
obtain reference genes that are useful in applications that can benefit from
the use of control genes. In order to motivate this we have to recall the



82 Chapter 6. Meta-Analysis

main objective, i.e. finding genes that are stable under every possible bi-
ological condition. Strictly speaking it can be assumed that there simply
exists no gene that is universally stable in its expression in all biological
situations [Lee et al. (2002), Cheng et al. (2011)]. What we actually try to
do however is finding genes that are stable in most situations. By select-
ing genes with diverse functionality we further decrease the chance that
under a very specific condition, maybe not covered in our training cohort
of 365 studies, all or most of our proposed genes are not stable.

To illustrate this reasoning we would like to point out that even for the
ribosomal proteins there exists situations where their expression is not
constant, as was demonstrated in a recent study [Thorrez et al. (2008)].
Based on these observations the authors concluded that ribosomal pro-
teins could not be considered as true reference genes. In fact [de Jonge
et al. (2007)] already made a similar statement: Interestingly, the identified
candidate novel housekeeping genes do not vary much in terms of functional-
ity; they are predominantly ribosomal proteins involved in protein biosynthesis.
Therefore, experimenters that tinker with this specific cellular process would bet-
ter use other candidate housekeeping genes of our analysis, for example OAZ1.
Their final list of 15 stable genes consists of 13 genes coding for ribosomal
proteins and thus for situations under which these genes are not stable
only 13% of the reference genes can be used reliably.

With our approach of selecting the most diverse genes in terms of their
functionality, we minimize the chance that under specific conditions sev-
eral or most of the proposed genes are varying. In this perspective, we
believe this set actually can be seen as a universal set of reference genes.

Our results are very comparable to the analysis conducted in [Cheng et al.
(2011)] on 13 different organ/tissue types. Below their list of 9 genes that
expressed a stable behavior in at least eight different organ/tissues:

> genes_cheng

[1] "HUWE1" "RPL37A" "TPT1" "RPL41" "EEF1A1" "LRRC40" "RPS20"

[8] "NACAP1" "RPL23A"
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Genes RPL37A, TPT1 and EEF1A1 are shared between both gene lists.
Genes HUWE1, RPL41, RPS20 and RPL23A also appear in our top 100
gene list but have a high semantic similarity with higher ranked genes
and where thus discarded. Genes LRRC40 and NACAP1 were not identi-
fied by our approach as being stable.

6.3.4 Conclusion

In this integrative analysis of gene expression data for the identification
of stable genes through meta-analysis we obtain comparable results as
was found in similar, but smaller studies. We implemented however an
innovative new step in which genes were filtered based on their semantic
similarity, thereby overcoming some of the issues previous attempts had.
This results in a compact but diverse set of 12 genes which we believe is
a good reference set for normalization purposes.





7
Merging

In this chapter we will go further into detail on the merging approach
for conducting integrative analysis of gene expression microarray stud-
ies. Compared to meta-analysis, the merging approach is rather recently
recognized as a potential solution for large-scale analysis and many of its
aspects are not yet well understood. Attention and interest for this type
of methods is however growing and we hope with the work presented in
this chapter to contribute to the current needs.

In the first section we briefly introduce the merging approach with two
concrete examples. In the next section we discuss batch effects, a cen-
tral problem when merging gene expression microarray studies from dif-
ferent sources. In Section 7.3 an extensive overview of methods to re-
move batch effects are presented, for the first time in a unified termi-
nology in order to spot their similarities and differences, as well as their
strengths and limitations. In a next section we emphasis the current state-
of-the-art validation framework for batch effect removal. Finally, the

85
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inSilicoMerging R/Bioconductor package [Taminau et al. (Subm)]
is introduced in Section 7.4, which bundles many of the batch effect and
validation methods which were earlier described.

7.1 Introduction

The merging of different gene expression data sets into a global one to
conduct large-scale analysis is only recognized recently as a viable ap-
proach. Meta-analysis on the other hand was adopted much quicker.
This is mainly because of the higher sensitivity of the merging approach
to incompatibility issues of the data and its higher computational de-
mands in terms of memory.

In a recent study a merged gene expression matrix of more than 5000
samples from 206 different studies was created [Lukk et al. (2010)] and
visualized via Principal Component Analysis (PCA), see Figure 7.1.

This global map of human expression from a large microarray data set
looks very impressive and a similar exercise on a much larger cohort of
studies from the InSilico DB gave similar results1. This cohort contains
more than 28000 samples across 985 studies and the creation of a Multi-
dimensional Scaling (MDS) plot took more than a week of computation
time (including more than 12 GB of memory), clearly approaching the
boundaries of what is possible with standard modern computers.

From the study in [Lukk et al. (2010)] we can have the impression that
the problem of integrating data is solved and that all information needed
can be found in that joint gene expression space. Although it was not the
original intention of the authors, an important question is if we can gen-
eralize these results. To find an answer let us first consider the following
issues:

1 Results of this study are not published but an internal report can be found here:
http://como.vub.ac.be/˜jtaminau/Report_BigMDS.pdf.zip

http://como.vub.ac.be/~jtaminau/Report_BigMDS.pdf.zip
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Figure 7.1: Principal Component Analysis (PCA) of the merged
data set from [Lukk et al. (2010)]. Each dot represents one of the
5.372 samples and is colored according to the biological group
the sample belongs to. On the left it is shown that the first
principal axis separates hematopoietic system-derived samples
from the rest of the samples. On the right, samples are colored
to show that the second principal axis predominantly arranges
the malignancy of the samples. Figure taken from [Lukk et al.
(2010)].

• First of all we have to note that all samples come from the same
platform (Affymetrix Human Genome U133A, GPL96) and are thus
by design already very compatible with each other. When mixing
different platform types this is not the case.

• This work just provides a very global picture of gene expression
data and it still remains unclear if it is applicable to discover for
example new biomarkers or to reveal new biological insights.

• The difference in the biological groups (e.g. blood samples versus
tissue samples or tissues versus cell lines) they selected is known to
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be significantly large and is clearly bigger than the technical vari-
ation of the different studies. But the question is if this is always
the case, for example what when we are interested in the difference
between different tumor subtypes?

• What those plots don’t show is the study bias, e.g. how are the sam-
ples positioned in this space with respect to the study they belong
to. In our earlier work1 we found out that samples from the same
study often group together.

To illustrate some of these considerations we would like to refer to a
study we performed and where we studied the merging of different mi-
croarray data sets in three different cases with increasing biological com-
plexity [Taminau et al. (2009)c].

In the first case two studies, each containing 60 cell lines (NCI60) and
assayed on different platforms, were merged the same way as in [Lukk
et al. (2010)] and by using several appropriate normalization methods. A
Multidimensional Scaling (MDS) plot visualizing both situations can be
found in Figure 7.2. We would expect that samples from the same cell line
but from different studies still would cluster together after merging, they
are copies from each other after all. This was however only the case when
an appropriate normalization technique was used (for visualization pur-
poses we colored the samples based on tumor type instead of cell line).

In a second case four different studies with thyroid tissues were merged
together. This time the biological variable of interest was the disease sta-
tus, being either normal or tumor. Similarly, if no proper transformation
was applied to make the different studies compatible which each other
the specific biological variation was lost due to the higher technical vari-
ation present between the different studies. Note that two studies, in
Figure 7.3 represented by the circle (©) and triangle (4) symbols, were
even performed by the same lab. Although they are closer grouped to-
gether than compared to the other studies a significant study bias still can
be observed.
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Without batch effect removal With batch effect removal 

Figure 7.2: Multidimensional Scaling (MDS) plots for the NCI60
case described in [Taminau et al. (2009)c]. Each dot represents
a sample and is colored by tumor type, the different symbols
correspond to the study the sample belongs to. On the left we
have the situation before batch effect removal and on the right
after proper batch effect removal. Figure taken from [Taminau
et al. (2009)c].

From these examples it is clear that the use of different experimentation
plans, platforms and methodologies by different research groups intro-
duces data incompatibilities in the gene expression values, severely hin-
dering downstream analysis. The problems raised by the batch specific
unwanted variation as well as the potential sources leading to batch ef-
fects have already been revealed and widely discussed in a number of
publications [Scherer (2009), Leek et al. (2010)]. These data incompatibil-
ities between studies will further be referred to as batch effects, and the
normalization or transformation process to remove them as batch effect
removal methods.
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Without batch effect removal With batch effect removal 

Figure 7.3: Multidimensional Scaling (MDS) plots for the Thy-
roid case described in [Taminau et al. (2009)c]. Each dot rep-
resents a sample with the different symbols corresponding to
the studies the samples belong to. Normal samples are colored
blue, thyroid cancer samples red. On the left we have the situ-
ation before batch effect removal and on the right after proper
batch effect removal. Figure taken from [Taminau et al. (2009)c].

7.2 Batch Effects

In this section the concept of batch effects will be clarified by analyzing
several definitions found in literature. Also a brief summarization of the
possible sources leading to batch effects will follow.

7.2.1 Definitions

Providing a complete and unambiguous definition of the so-called batch
effect is a challenging task, especially because its origins and the way it
manifests in the data are not completely known or not recorded. This
is the reason why here we enumerate several definitions as found in the
literature. According to these definitions, the batch effect can be defined
as one of the following:
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Definition 1: - the uncontrollable errors unrelated to the biological variation
[Gagnon-Bartsch & Speed (2011)].

Definition 2: - the cumulative errors introduced by time and place-dependent
experimental variations [Chen et al. (2011)].

Definition 3: - sub-groups of measurements that have qualitatively different
behavior across conditions and are unrelated to the biological or scientific vari-
ables in a study [Leek et al. (2010)].

Definition 4: - systematic differences between the measurements of different
batches of experiments [Luo et al. (2010)].

Definition 5: - systematic technical differences when samples are processed
and measured in different batches [Scherer (2009)].

From all these definitions two main complementary characteristics of the
batch effects can be identified: a first one which makes the distinction
between the batch effects and the biological information (Definitions 1
and 3), and a second one which generically reveals the sources of batch
effects (Definitions 2, 4 and 5). We provide a more general definition of
the batch effects by combining the two main ideas that derive from the
definitions mentioned above, as follows:

Definition 6: - the batch effect represents the systematic technical differences
when samples are processed and measured in different batches and which are
unrelated to any biological variation recorded during the MAGE experiment
[Lazar et al. (2012)a].

Here, the term batch denotes a collection of microarrays (or samples)
processed at the same site over a short period of time using the same
platform and under approximatively identical conditions, as mentioned
in [Chen et al. (2011)].
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It is important to highlight the distinction between the terms noise, bias
and batch effect. Noise can be seen as the effects of technical components
which are not part of the system under investigation but which, if they
enter the system, lead to variability in the experimental outcomes. The
main difference between noise and batch effect is the systematic nature
of the latest. The term bias has a wider meaning which includes not only
technical but also other confounding factors2. It is defined as uninten-
tional, systematic association of some characteristic with a group in a way
that distorts a comparison with another group.

7.2.2 Potential Sources

In order to develop adequate batch removal techniques it is important to
understand the nature and the behavior of batch effects. Unfortunately
this is not straightforward because at each step of a microarray experi-
ment, a number of potential sources are susceptible to generate batch ef-
fects. There are several works in which the authors focused their efforts
in identifying and explaining the potential sources of batch effects [Luo
et al. (2010), Scherer (2009), Suárez-Fariñas et al. (2005)]. Here we will
only list the potential sources of batch effects and the stage where they
appear.

As a general accepted rule, microarray experiments can be summarized
in five stages: growing the organism, tissue sampling, RNA processing,
hybridization and data extraction, and different sources of batch effects
can affect the outcome of the experiments, as illustrated in Figure 7.4. Ev-
ery step that requires manual intervention can lead to batch-specific vari-
ance since every lab, and even every person, has its own methodology or
procedure (in Figure 7.4 it can indeed be observed that Personnel Effects
affect every step) . This can be improved by following strict and well-
defined protocols for each step since less batch effect can be observed
between studies performed by the same lab than studies performed by

2 Confounding factors (also known as distorting factors), represent variables or factors
that distort the observed association between the biological variation of interest and
the conducted study.
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different labs. However, many other factors which are more difficult to
control (e.g. environmental conditions, location, date, etc.) are still hav-
ing a combined influence, making batch effects very hard to avoid sys-
tematically.
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Figure 7.4: A visualization of potential batch effect sources at
each stage of a microarray analysis experiment. The grey boxes
represent the potential sources of batch effects affecting the dif-
ferent steps in a typical microarray experiment, illustrated by
the white boxes. Figure taken from [Lazar et al. (2012)a].

For more details and complete explanations on the above mentioned batch
effects the reader is invited to consult Chapter 4 in [Scherer (2009)].

7.3 Merging Microarray Gene Expression Data
by Removing Batch Effects

Merging and batch effect removal of gene expression data is often used in
the same context. In the reminder of this thesis we will refer to merging as
the process to physically combine two or more data sets into a new larger
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data set and to batch effect removal as the transformation on the data in
order to make the separate data sets more compatible. Merging without
any removal of batch effects is thus possible and is nothing more than a
sample-wise concatenation of the different single data sets.

A number of batch effect removal methods exist and are reasonably doc-
umented (and validated) in their original publications. Due to differences
in notations it is however very hard to obtain a general overview of the
batch effect removal methods to spot their weaknesses, strengths or sim-
ilarities. In this section we will provide an extensive overview of the dif-
ferent methods using a unified framework. To avoid any confusion we
start by elucidating our terminology, followed by a detailed description
of each method.

To our knowledge, no other survey of batch effect removal methods using
a unified terminology exists before and most of this work was published
in Briefings in Bioinformatics [Lazar et al. (2012)a].

7.3.1 Terminology and General Assumptions

In Section 2.3.2 we already denoted a preprocessed microarray data set
by Xm×n, where each column represents a sample and each row repre-
sents a feature. xij represents the expression value of feature i in sample
j. All samples from this data set belong to the same batch X . Other
batches are represented similarly, for example Y m′×n′ for batch Y . In Ta-
ble 7.1 an overview of all notations used to describe the different batch
effect removal methods is given.

We have to note that in the context of merging of microarray data sets
the features are always genes instead of probes. As we recall, probes are
platform-dependent features which makes the merging of data sets from
different microarray platforms impossible. Different probe-to-gene map-
ping procedures exist and it is important that this mapping is consistently
performed over all single data sets before merging.
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Notation Explanation

Xm×n, Y m′×n′ microarray data set (batch) with m (m′) genes and n (n′) samples
X̂m×n, Ŷ m′×n′ microarray data set (batch) with m (m′) genes and n (n′) samples

after batch effect removal
xij , yij expression of gene i in sample j in corresponding batch
x̂ij , ŷij expression of gene i in sample j in corresponding batch after

batch effect removal
xi, yi mean expression of gene i in corresponding batch
σxi , σyi standard deviation expression of gene i in corresponding batch
xrij , yrij expression of gene i in j’th reference sample in corresponding batch
bXij , bYij bias for gene i in sample j of corresponding batch
εXij , εYij noise in gene i of sample j of corresponding batch
γXi , γYi additive gene i specific bias for corresponding batch
δXi , δYi multiplicative gene i specific bias for corresponding batch

Table 7.1: Overview of consistent and unified notations used
in the remainder of this chapter to describe the different batch
removal methods.

When combining the expression values from multiple data sets, it is as-
sumed that all data sets have the same distribution of samples for each
biological variable of interest. It is for example impossible to remove
batch effects between two studies for which one study only contains con-
trol samples and another only diseased samples, when the disease status
is the biological variable of interest.

In general, it is assumed that the batch effect comes in either multiplica-
tive or additive form, or a combination of both. Since preprocessed gene
expression data is always log transformed, these effects are both repre-
sented as additive terms. All batch effect removal methods assume that
the measured expression values of gene i in sample j of batch X can be



96 Chapter 7. Merging

expressed in a general form as follows:

xij = x′ij + bXij + εXij (7.1)

with x′ij the actual gene expression, bXij the batch effect term and εXij a noise
term. Clearly, x′ij is the value of interest as this represents the actual abun-
dance of mRNA of that gene in a particular sample. Different batch ef-
fect identification and removal methods refine this general description
by splitting bXij in different terms, or by adding terms that are specific
for known covariates3. Within this general description, the term bXij can
indicate the batch effect related to any of the sources mentioned in 7.2.2.

7.3.2 Overview of Batch Effect Removal Methods

There are two main approaches for removing batch effects: location-scale
(LS) methods and matrix-factorization (MF) methods. LS methods as-
sume a model for the location (mean) and/or scale (variance) of the data
within the batches and proceeds to adjust the batches in order to agree
with these models. MF techniques assume that the variation in the data
corresponding to batch effects is independent on the variation correspond-
ing to the target biological variable of interest and can be captured in a
small set of factors which can be estimated via matrix factorization meth-
ods. The strategy adopted by these methods is to identify and remove
the influence of these factors. A smaller group of valuable methods for
batch effect removal is based on data discretization. In Figure 7.5 a basic
taxonomy of the batch effect removal methods that will be described in
this section is provided. For completeness, methods not belonging to the
three approaches described above are briefly mentioned as well.

Location-Scale Methods

The main idea behind location-scale (LS) methods is to transform the data
from each batch to have similar (equal) mean and/or variance for each

3 A covariate is a variable that is possibly predictive of the outcome under study, such
as the condition of the experiments or biological information such as male/female.
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Figure 7.5: A basic taxonomy of the batch effect removal meth-
ods for gene expression data described in this chapter. Figure
taken from [Lazar et al. (2012)a].

gene. It is assumed that these transformations, while trivially making
data more comparable, do not remove any biological signal of interest.

Batch mean-centering

Assuming the prevalence of multiplicative systematic batch effects, batch
mean-centering (BMC) was introduced in [Sims et al. (2008)]. This simple
method transforms the data by subtracting the mean of each gene over
all samples (per batch) from its observed expression value, such that the
mean for each gene becomes zero. BMC assumes that in the general ex-
pression in Equation 7.1, bXij represents the multiplicative gene specific
batch effect.

x̂ij = xij − xi (7.2)

Gene standardization

Gene-wise standardization transforms all genes to have zero mean and
standard deviation one by subtracting the mean and dividing by the stan-
dard deviation of each gene over all samples within a batch. A Z-score
standardization is used for this purpose. Similar to BMC, it is assumed
that in the general expression in Equation 7.1, the bXij represents the mul-
tiplicative gene specific batch effect. The pure (batch effect free) gene
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expression values are obtained as follows:

x̂ij =
xij − xi
σxi

(7.3)

Ratio based methods

Ratio based methods [Li & Wong (2001)] scale the expression value of
each gene in each sample based on a set of reference samples in each
batch. If there is more than one reference sample, the arithmetic or ge-
ometric mean value of the expression values in the reference samples
can be used. It is also possible to use a universal set of reference sam-
ples [Novoradovskaya et al. (2004)]. We denote by xril the value of the ith

gene in the lth reference sample in batch X . It is assumed that the genes
in the reference samples are subjected to the same batch effect as in the
rest of the samples and therefore the term bXij in Equation 7.1 will be re-
moved by subtracting the mean of each gene of the reference samples of
the corresponding batch. Assuming k reference samples for batch X , the
following two methods are proposed:

Arithmetic mean ratio-based method (Ratio-A):

x̂ij = xij −
1

k

k∑
l=1

xril (7.4)

Geometric mean ratio-based method (Ratio-G):

x̂ij = xij − k

√√√√ k∏
l=1

xril (7.5)

The geometric mean has the benefit that it is less sensitive to outliers.
Instead of using the mean also the median could be used.
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Scaling relative to reference data set

In [Kim et al. (2007)] the authors propose to change the distribution of
a gene based on the distribution of that same gene in a reference data
set. Samples are grouped by their biological variable of interest. Assume
without loss of generality that Xm×n is the data to be adjusted and Y m′×n′

the reference data. Furthermore, assuming that the samples of each data
set are divided into k categories such that xcij is the expression value of
gene i in the jth sample belonging to category c in batchX , the batch effect
adjusted data are derived as follows:

x̂cij = xcij
σyci
σxci
−
(
xci
σyci
σxci
− yci

)
(7.6)

ŷcij = ycij (7.7)

with c representing the category, while xci (yci ) and σxci (σyci ) are the means
and the standard deviations of gene i in all X (Y ) samples belonging to
category c respectively.

COMBAT method

COMBAT [Johnson et al. (2007)], also known as Extended Johnson-Li-
Rabinovich (EJLR) or Empirical Bayes (EB) method, is a method using es-
timations for the LS parameters (mean and variance) for each gene. The
parameters are estimated by pooling information from multiple genes
with similar expression characteristics in each batch. There exist both a
parametric and nonparametric approach and we give a concise explana-
tion. Details can be found in the original publication.

It is assumed that measured gene expression values of gene i in sample j
in each batch can be expressed as a specialization of Equation 7.1 as:

xij = αi + Cβi + γXi + δXi ε
X
ij (7.8)

where αi is the gene expression not related to any known covariates, C is
a design matrix for sample conditions (known covariates), βi is the vector
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of regression coefficients corresponding to C, γXi and δXi are the additive
and multiplicative batch effects for gene i respectively and εXij are noise
terms. εXij are assumed to follow a normal distribution with mean zero
and variance σ2

i . The first step in COMBAT is to standardize the data
using estimates α̃i, β̃i, δ̃Xi and σ̃2

i for the corresponding variables. The
standardized gene expression zij is assumed to be normally distributed
according to N(γXi , (δ

X
i )

2
) and is given by:

zij =
xij − α̃i −Cβ̃i

σ̃Xi
(7.9)

The batch effect adjusted data are given by:

x̂ij =
σ̃i

δ̂X∗i
(zij − γ̂X∗i ) + α̃i + Cβ̃i (7.10)

where γ̂X∗i and δ̂X∗i are estimates of batch effect parameters in Equation
7.8 estimated using parametric or nonparametric empirical priors. In case
of parametric priors it is assumed that γXi ∼ N(γX , (τX)2) and (δXi )2 ∼
InverseGamma(λX , θX), where γX , (τX)2, λX and θX are estimated em-
pirically.

Cross-platform normalization

The basic idea behind the cross-platform normalization approach (XPN
[Shabalin et al. (2008)]) is to identify homogeneous blocks (clusters) of
gene and samples in both data sets that have similar expression char-
acteristics. In XPN, a gene measurement within one such block can be
considered as a scaled and shifted block mean, where both scaling and
shifting are dependent on the gene i and sample j. The recorded gene
expression is then expressed as a specialization of Equation 7.1 by:

xij = AXα∗(i),β∗(j)b
X
i + cXi + σXi ε

X
ij (7.11)

where AXα∗(i),β∗(j) is a block mean and bXi and cXi represent gene and plat-
form specific sensitivity and offset parameters respectively. The functions
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α∗() and β∗() map a specific gene measurement in a sample to their cor-
responding multi-platform cluster. The noise variables εXij are assumed
to be independent and normally distributed. Using maximum likelihood
methods estimates for the parameters in Equation 7.11 (ÃXij , b̃Xi , c̃Xi and
σ̃Xi ) are obtained for each batch. Common model parameters (Âij, b̂i, ĉi
and σ̂i) were calculated as weighted averages of these batch specific esti-
mates. Subsequently, the batch effect adjusted data is given by:

x̂ij = Âα∗(i),β∗(j)b̂i + ĉi + σ̂i

(
xij − ÃXα∗(i),β∗(j)b̃Xxi − c̃

X
i

σ̃Xi

)
(7.12)

Distance-weighted discrimination

Distance-weighted discrimination (DWD [Benito et al. (2004)]), an adap-
tation of the Support Vector Machines (SVM [Cristianini & Shawe-Taylor
(2000)]) principle, can be used for batch effect removal as follows. As a
starting point, samples from a single batch are regarded as belonging to
a specific class and DWD is used as a classification algorithm by finding
the optimal hyperplane w× x+ b = 0 separating samples from the differ-
ent classes (batches), with w the normal vector of the hyperplane. Next
the samples in each batch are projected in the direction of the normal vec-
tor to this hyperplane by calculating the mean distance from all samples
in each batch to the hyperplane ( dX) and then subtracting the normal
vector to this plane multiplied by the corresponding mean distance.

x̂ij = xij − dXwi (7.13)

Matrix factorization-based methods

The idea behind these methods resides in the observation that the most
important source of differentially expression is nearly always across batches
rather than across biological groups [Leek et al. (2010)]. Based on this ob-
servation, these methods rely on the following strategy:



102 Chapter 7. Merging

1. Perform matrix factorization of the input data matrix (which is in
general obtained by sample-wise concatenating of the data sets to
be combined); the matrix factorization is usually performed using
either Singular Value Decomposition (SVD [Alter et al. (2000)]) or
Principal Components Analysis (PCA [Jolliffe (2002)]), such that the
first factor has the highest possible variance (which is associated
with batch effects).

2. Remove the factors associated with batch effects and reconstruct
back the batch effect adjusted data set.

In the discussion below we assume that we wish to combine data from
two batches Xm×n and Y m′×n′ , and denote by Cm′′×n′′ = [Xm′′×n Y m′′×n′ ]

the sample wise concatenation over common genes of the studies, with
m′′ the number common genes between X and Y and n′′ = n+ n′.

Singular Value Decomposition based batch effect removal

Singular Value Decomposition can be used to adjust for batch effects by
factorizing the input gene expression data matrix and then reconstructing
it while filtering out those factors that are associated with the batch effect.
In a first instance, the matrix Cm′′×n′′ is factorized using SVD as follows:

Cm′′×n′′ = Um′′×n′′Σn′′×n′′(V n′′×n′′)T (7.14)

where Cm′′×n′′ = [Xm′′×n Y m′′×n′ ], m′′ is the number of common genes
between X and Y , n′′ = n + n′ is the total number of samples in X

and Y , while the columns of Um′′×n′′ and the rows of (V n′′×n′′)T form
orthonormal basis for the samples (eigensamples)/ genes (eigengenes)
respectively. The matrix Σn′′×n′′ is a diagonal matrix containing the sin-
gular values (s1 ≥ . . . ≥ sn′′ ≥ 0). The reconstruction of the data, with
the batch effect removed can be done by removing those components in
the corresponding matrices that are believed to map to the batch effect:

Ĉm′′×n′′ = Um′′×lΣl×l(V n′′×l)T (7.15)
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with l ≤ n′′ and Um′′×l, Σl×l and (V n′′×l)T representing the same matrices
with the rows (columns) corresponding to the components mapping to
the batch effect removed. As an alternative matrix factorization method,
PCA can be also employed.

Surrogate Variable Analysis (SVA)

In [Leek & Storey (2007)] the assumption made is that it is possible to
identify the signal in Cm′′×n′′ due to the biological variance of interest
and obtain the residualsRm′′×n′′ after the removal of this signal. The vari-
ation in these residuals is then assumed to be unwanted variation caused
by batch effects. In order to remove this unwanted variation, a matrix
factorization is then applied on the residuals.

The main variation in the residuals is used as factors to be adjusted for
in downstream analysis. This is done by estimating surrogate variables
representing the unknown confounding effects by iteratively weighting
a subset of the factors identified in the decomposition. For details the
reader is referred to [Leek & Storey (2007)].

Remove Unwanted Variation, 2-step (RUV-2)

In [Gagnon-Bartsch & Speed (2011)] a similar method for batch effect re-
moval is proposed which makes use of a set of control genes to identify
the factors associated with the batch effect. It is assumed that the control
genes are a priori known to be uncorrelated with the biological factor of
interest. Assume that there are p control genes, then the RUV-2 method
proposes to apply a matrix factorization on these genes to identify the
components corresponding to the batch effects. Thus, instead of perform-
ing SVD on Cm′′×n′′ it is done on a submatrix Cp×n′′

c , where the subscript
c indicates that only the p control genes are considered as input in this
step. Similarly Up×l

c and Up×n
c are the submatrices concerning the control

genes of the corresponding matrices in Equation 7.14.

Based on visual inspection or some variation criteria the first l compo-
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nents Up×l
c of the eigensamples Up×n

c are deemed relevant, and are then
added as covariates to any type of downstream analysis. When this in-
formation is passed on to COMBAT this can be used to adjust the data for
batch effects; another option is to reconstruct the data using the obtained
decomposition by removing the first l components.

The last two methods (SVA and RUV-2) identify factors associated with
batch effects but do not straightforward return an adjusted merged data
matrix. These methods can however be used for batch effect removal in
two ways: (a) combining them with another batch effect removal method
(for instance COMBAT) including the identified batch effects as covari-
ates, (b) reconstructing the data after removing factors identified as being
associated with batch effects.

Discretization Methods

Discretization methods aim to transform the expression values into con-
sistently defined categories, or bins, based on their level of expression.
Quantile Discretization for example is a discretization method based on
equal frequency binning by using the quantiles as cut points for the bins
[Warnat et al. (2005)]. Based on fRMA (see Section 2.3.2, [McCall et al.
(2010)]), a novel algorithm for generating barcodes was introduced in [Mc-
Call et al. (2011)]. The barcode representation of a sample is a vector of
ones and zeros denoting which genes are estimated to be expressed and
unexpressed, respectively. These estimates are based on huge set of sam-
ples which were collected and consistently normalized using fRMA (per
platform).

After discretization, a loss of information is inevitable but it has been
shown that these methods can sometimes even lead to similar or im-
proved accuracy depending on the type of downstream analysis [McCall
& Irizarry (2011)].



Chapter 7. Merging 105

Other Methods

Other less popular techniques for batch effect removal not fitting in the
above three categories also exist.

Quantile Normalization (QN) is more frequently used for normalization
at the probe level, for example in RMA preprocessing (see Section 2.3.2,
[Irizarry et al. (2003)]), but has been also used explicitly for batch effect
removal [Bolstad et al. (2003), Lacson et al. (2010)]. two similar ideas
to QN are Median Rank Scores (MRS, [Warnat et al. (2005)]) and gene
Quantiles (GQ, [Xia et al. (2009)]).

In [Jiang et al. (2004)], Distribution Transformation (DisTran) was pro-
posed, where a reference sample is constructed based on a combination
of the mean expression of samples having the same biological value of
interest. All other samples are then transformed to have the same distri-
bution as this constructed reference sample.

7.3.3 Validation of Merged Gene Expression Data Sets

Evaluating and validating the batch effect removal methods is important
but at the same difficult, due to the unclear objective of the batch removal
process. It is clear that after batch removal, two data sets from different
sources should be comparable or compatible, but researchers can use their
freedom in choosing the specific criteria to evaluate how two data sets are
comparable. This leads to a wide plethora of different validation tech-
niques found in literature, as can be seen from Figure 7.6. In this section
we will describe the most important ones, based on a simple taxonomy
(see Figure 7.6).

We also implemented all described validation methods in the inSilico
Merging package, which was accepted to be part of the R/Bioconductor
[Gentleman et al. (2004)] repository and thus public available. A com-
plete description of the package can be found in Section 7.4.
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Figure 7.6: A basic taxonomy of the validation tools to evaluate
the merging process of gene expression data described in this
chapter. Figure taken from [Lazar et al. (2012)a].

Validation tools for batch effect removal can be mainly divided in two
groups, qualitative or visualization tools and quantitative measures. In
general, the visualization tools provide a crude approximation of the ef-
ficiency of the batch effect removal method and can be used to provide
a first and rapid inspection of the results. It immediately shows if the
merging did made sense and if the global batch effect is still present or
not. For more rigorous evaluation the more accurate quantitative mea-
sures should be used.

Visualization Tools

The most common and straightforward way to evaluate the effectiveness
of batch effect removal methods is by visualization means. We divided
the visualization tools in two groups: gene-wise and global tools. Both
categories work on a different level. As the name suggests, gene-wise
tools provide a local visualization of the batch effect at the gene level. It
is expected that the gene expression levels of the same gene across differ-
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ent studies have similar distributions if no batch effect is present4. As will
be demonstrated later, the batch effect can be different for each gene. The
global tools provide a ”big picture” of the presence of the batch effect.
According to these tools, it is expected that the samples corresponding to
the same category of the target biological variable of interest will group
together, regardless of the study they originate from. The two groups of
tools provide complementary information about the batch effect and it is
advisable to be jointly used for evaluation.

All visualization tools are illustrated by using the appropriate functions
from the inSilicoMerging package. Two lung cancer data sets with
equal distribution of control and lung cancer samples (GSE19804 and
GSE10072) were retrieved using the inSilicoDb package, see Section
4.4. All examples illustrate the COMBAT method for merging, compared
to merging without taking care for batch removal. Code to generate all
plots in this section can be found in Appendix A.6.

Gene-wise boxplots

Gene-wise box plots are used to compare the distributions of genes in
different data sets and its use in the context of batch effect removal vali-
dation was suggested in [Leek et al. (2010), Kim et al. (2007)]. Boxplots
are a graphically summarization of a discrete distribution via five param-
eters: minimum, maximum and the lower, upper and median quartile. A
batch effect removal method is considered to be effective if the box plots
are located around the same value. An illustration is provided in Fig-
ure 7.7, where the boxplots of an arbitrary selected gene (MYL4) in the
two data sets are shown without (NONE) and with (COMBAT) applying
batch effect removal.

4 This is of course under the assumption that two data sets have the same distribution
of samples relative to the target biological variable of interest as defined as a general
assumption for merging, see Section 7.3.1. Otherwise the different estimates of the
statistical parameters will be different even when there is no batch effect affecting
the data.
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Figure 7.7: Illustration of gene-wise boxplots as validation tool
for batch effect removal: a) before and b) after batch effect re-
moval (using COMBAT method).

Gene-wise density plots

Another way to visually inspect the distribution of expression values of
a gene is by plotting the probability density function (pdf) of that gene.
In [Kim et al. (2007)] this was done by plotting the pdfs of several genes
randomly selected genes. The densities can be estimated via the Parzen-
Rosenblat method [Parzen (1962)]. A batch effect removal method is con-
sidered to be effective if the pdfs are fully overlapping. An illustration is
provided in Figure 7.8, where the densities of an arbitrary selected gene
(MYL4) in the two data sets are shown without (NONE) and with (COM-
BAT) applying batch effect removal.

Dendrograms

In cluster analysis, a dendrogram is a tree representation of the clus-
tering solution obtained via hierarchical clustering. In general, dendro-
grams are commonly used to cluster either genes or samples in homoge-
neous groups. In the context of batch effect removal, the dendrograms
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Figure 7.8: Illustration of gene-wise density plots as validation
tool for batch effect removal: a) before and b) after batch effect
removal (using COMBAT method).

are mainly used to visualize how well the samples exhibiting the same
biological characteristics originating from different studies, cluster to-
gether [Kim et al. (2007), Leek et al. (2010)]. Another important interpre-
tation of dendrograms as validation tool for batch effect removal is that
if the samples mainly cluster by study, it is a clear indication that batch
effects are present. This can be helpful in situations where the annota-
tions corresponding to the biological characteristics of samples might not
be available or might not have a strong influence on gene expression. An
illustration is provided in Figure 7.9, where the dendrograms after clus-
tering the two data sets are shown without (NONE) and with (COMBAT)
applying batch effect removal. For clarity purposes only 40 samples were
arbitrary selected.

Multidimensional Scaling (MDS) plots

In MDS plots samples are positioned in a 2-dimensional Euclidean such
that their underlying distances are as much like the underlying distances
in the probe-sample space. Samples can be colored based on the target bi-



110 Chapter 7. Merging

1 1 1
1

1 1
1 1 1 1 1 1

1
1

1 1 1
1 1

2 2
2 2 2 2 2

2
2 2

2
2 2 2

2 2 2
2 2

2 2

NONE

(a)

2
2 2 1 1

2 1
2 2

2 2
1 1 2 1 2

1
1

2
2 2

1
1 2

2 2
1

2 2
2 1

1
1 1

1
1 1
2

2 1

COMBAT

(b)

Figure 7.9: Illustration of dendrogram plots as validation tool
for batch effect removal: a) before and b) after batch effect re-
moval (using COMBAT method). For clarity purposes, samples
are labeled by a number corresponding to the study they origi-
nate from.

ological variable of interest on based on the study they originate from to
determine if samples group by study or by the same biological character-
istics. The inSilicoMerging package provides the option to double-
label the samples, by using different colors and symbols. An illustra-
tion is provided in Figure 7.10, where the MDS plots after clustering the
two data sets are shown without (NONE) and with (COMBAT) applying
batch effect removal.

Relative Log Expression (RLE) plots

RLE plots were initially proposed to measure the overall quality of a
data set aiming to identify bad chips [Brettschneider et al. (2008)] but
were recently also proposed to validate batch effect removal methods
[Gagnon-Bartsch & Speed (2011)]. For each gene, the median log expres-
sion level is computed over all samples, then for each gene on each sam-
ple, the deviation from the median log expression level is computed by:
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Figure 7.10: Illustration of multidimensional Scaling (MDS)
plots as validation tool for batch effect removal: a) before and
b) after batch effect removal (using COMBAT method).

xi,j − median(xi). Finally, an RLE plot is obtained by plotting for each
sample a boxplot for all its deviations. For an efficient batch effect re-
moval method, the individual boxplots will all be distributed around 0.
An illustration is provided in Figure 7.11, where the dendrograms after
clustering the two data sets are shown without (NONE) and with (COM-
BAT) applying batch effect removal. For clarity purposes only 40 samples
were arbitrary selected.

In addition to the five above described visualization tools, two other tools
were also reported: correlation heat maps and variance components pie
charts [Luo et al. (2010)].

Quantitative Measures

The following measures provide a more objective evaluation of the batch
effect removal process by providing a numerical score. Those quanti-
tative measures are very effective for comparing the results of different
methods. In Figure 7.6 and in [Lazar et al. (2012)a] the most common
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Figure 7.11: Illustration of relative log expression (RLE) plots
as validation tool for batch effect removal: a) before and b) after
batch effect removal (using COMBAT method).

measures are described, but in this section we will limit ourselves to the
measures implemented in the inSilicoMerging package (see Section
7.4).

Measuring the overlap of samples and genes

Measuring the expected overlap between samples of two independent
studies before and after applying batch effect removal was proposed as
a validation strategy in [Shabalin et al. (2008)]. The overlap is quantified
as follows:

1. Compute the distance between each sample in the first study and
its nearest neighbor in the second study.

2. Repeat step 1 by changing the roles of the studies

3. Average the results in steps 1 and 2

A method is considered to be effective if it results in a substantial overlap
between samples and thus the higher the overlap, the better the integra-
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tion process.

Following the same idea, also the overlap between genes can be used in
this context. Therefore we implemented a novel quantitative validation
index which calculates the average difference in the distribution of all
genes in the individual studies as follows:

GOVi =

∑
|Pxi − Pyi |

2
(7.16)

where Pxi and Pyi are the normalized pdfs (such that
∑

i Pxi = 1 and∑
i Pyi = 1) of gene gi in the first respectively second data set and they are

empirically estimated using Parzen-Rosenblatt density estimation method
[Parzen (1962)]. Note that this index is bounded in [0 1], the minimum
value being obtained when the two distributions are identical while the
maximum value is reached when the two distributions are completely
separated. The global cross-studies genes’ overlapping index is given by:

GOV =

∑m
i GOVi
m

(7.17)

wherem is the number of common genes between the two data sets. Note
that GOV is still bounded in [0 1], providing a clear quantification of the
batch effect removal or of the quality of the data integration process.

Both the overlap scores of samples and genes are implemented in the
inSilicoMerging package by the measureGenesOverlap and
measureSamplesOverlap functions respectively.

Comparing the distribution of genes’ asymmetry

Another simple and efficient way to quantify the results of batch effect
removal methods proposed in [Shabalin et al. (2008)], is to compare the
distribution of samples’ asymmetry before and after batch removal. For a
given random variable, a raw approximation of its asymmetry is given by
the difference between its mean and median values. However, the skew-
ness is another efficient statistical measure that quantifies the asymmetry
of a distribution, and it can be used instead. This index is computed as
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being the area between the cumulative density functions (cdfs) of samples’
asymmetry, estimated before and after batch effect removal. This index
can be defined as follows:

biasX,X̂ =
b∑
i=a

(CDFX(i)− CDFX̂(i)) (7.18)

where CDFX and CDFX̂ represent the cdfs of samples’ asymmetry be-
fore or after batch effect removal, while a and b are the minimum, respec-
tively the maximum values of samples’ asymmetry before and after batch
effect removal. A method is considered to be efficient if, after batch effect
removal, the two cdfs are as similar as possible, and so the index should
have a value close to 0.

The asymmetry index is implemented in the inSilicoMerging pack-
age by the measureAsymmetry function.

Evaluation via differential expression analysis

Several studies propose to evaluate the effectiveness of the batch effect
removal methods in the context of the differentially genes expression
(DEG) analysis [Gagnon-Bartsch & Speed (2011), Sims et al. (2008), Leek
& Storey (2007)]. It is generally assumed that DEG analysis performed
on the adjusted data set should result in a more reproducible list of genes
which are differentially expressed. The authors in [Gagnon-Bartsch &
Speed (2011)] propose a quality metric to measure the effectiveness of a
batch effect removal. The metric proposed is proportional to the num-
ber of positive control genes, i.e. genes that are known a priori to be truly
differentially expressed, found in the top k ranked genes according to a
particular method for differentially expressed genes (DEGs) discovery.
A batch effect removal method should be considered as being effective
if the number of positive control genes found in the adjusted data set in-
creases with respect to those found in the original studies.

If the positive/negative control genes are unknown, the authors in [Nueda
et al. (2011)] propose an evaluation strategy based on functional enrich-
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ment analysis [Al-Shahrour et al. (2007)] which assesses whether specific
cellular functions are overrepresented within a set of significant genes.

In [Sims et al. (2008)], the authors propose a different way to use DEG
analysis to assess the efficiency of batch effect removal methods, at gene/
probe level. The idea is to first identify lists of the most DEGs in the newly
combined data set and to compare those lists with the most DEGs from
other single or differently combined data sets. The efficiency of a method
is in this case proportional to the number of overlapping probes in the
compared lists. This approach has the advantage that no prior or case-
specific information is needed.

The index implemented in the inSilicoMerging package is based on
the approach by [Sims et al. (2008)] by the function measureSignificant
GenesOverlap. To calculate the DEGs, the R/Bioconductor package
limma [Smyth (2004)] was selected.

Correlation coefficients

In the context of batch effect removal, the correlation coefficient is used
to observe and to quantify how much the batch effect removal methods
affect the data [Shabalin et al. (2008), Kim et al. (2007)]. Note that this
evaluation method does not give any clues on how effective a method is,
but it is more a way to choose between two different methods that per-
form similarly according to other evaluation indices. In such situations,
the method that least affects the data should be preferred. This index is
computed as being the average correlation coefficient between genes or
samples before and after removing the batch effect. Low values will indi-
cate that the batch effect removal distorted the initial data, and hence the
method will be considered as inefficient. A very similar idea led to the
integrative correlation coefficient, as described in [Cope et al. (2007)].

The correlation coefficient of genes and samples is implemented in the
inSilicoMerging package by the measureGenesMeanCorrCoef and
measureSamplesMeanCorrCoef functions respectively.
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7.4 The inSilicoMergingR/Bioconductor Pack-
age

A public available package combining most of the batch removal and val-
idation methods described in the previous sections was developed and
added to the Bioconductor repository [Gentleman et al. (2004)]. This
package, called inSilicoMerging5, is able to merge different data sets
by applying five different batch effect removal techniques (BMC, COM-
BAT, DWD, GENENORM and XPN, see Section 7.3.2 for more details).

The implementation of COMBAT was based on the R code made avail-
able by the original authors on their website6. The implementation of
DWD uses the kDWD function from the corresponding DWD R package
[Huang et al. (2012)]. XPN has been implemented based on Matlab code
provided by the authors7. The remaining merging algorithms were im-
plemented using basic R functions. All implementations were tested by
empirical validation and where possible, by comparing results with those
from the original implementations. Some methods are only reported and
implemented to merge exactly two studies (e.g. XPN and DWD). In or-
der to be able to merge any number of studies, this package added an
additional step. This step combines all studies two-by-two and is called
recursively on the intermediate results until only one, merged, dataset
remains. Its behavior is illustrated in the following pseudo-code:

list of studies = [ A ; B ; C ; D ; E ]

m(X,Y) = applying merging technique ’m’ on dataset ’X’ and ’Y’

combineByTwo:

iteration 1 : [ E ; m(A,B) ; m(C,D) ] => [ E ; AB ; CD ]

iteration 2 : [ CD ; m(E,AB) ] => [ CD ; EAB ]

iteration 3 : [ m(CD,EAB) ] => [ CDEAB ]

5 http://www.bioconductor.org/packages/release/bioc/html/

inSilicoMerging.html
6 http://www.bu.edu/jlab/wp-assets/ComBat/Downloadfiles/ComBat.

R
7 https://genome.unc.edu/xpn/

http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html
http://www.bioconductor.org/packages/release/bioc/html/inSilicoMerging.html
http://www.bu.edu/jlab/wp-assets/ComBat/Download files/ComBat.R
http://www.bu.edu/jlab/wp-assets/ComBat/Download files/ComBat.R
https://genome.unc.edu/xpn/
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Evaluating and validating the results of batch effect removal methods is
perhaps as important as the batch effect removal process itself. Without
good and reliable evaluation tools, these methods could result in an even
increased distortion of the data, introducing serious errors in the results
of any downstream analysis performed. Therefore, five simple but pow-
erful visual inspection tools and six quantitative measures to evaluate the
different batch-effect removal methods, are provided as well (see Section
7.3.3 for more details).

In Table 7.2 all functions with their required and optional parameters are
summarized. batchAnnot and targetAnnot are labels to retrieve for
each sample the batch information and the target biological variable of
interest respectively. This information is supposed to be included in the
ExpressionSet structure. The three last methods in the table also re-
quire the data set before applying batch effect removal (esetBefore) to
calculate its measure.

Function Req. Param Opt. Param

merge esets, method

plotGeneWiseBoxPlot eset, batchAnnot targetAnnot, gene
plotGeneWiseDensity eset, batchAnnot gene
plotDendrogram eset, batchAnnot
plotMDS eset, batchAnnot targetAnnot
plotRLE eset, batchAnnot

measureGenesOverlap eset, batchAnnot
measureSamplesOverlap eset, batchAnnot
measureAsymmetry eset, batchAnnot
measureSignificantGenesOverlap esetBefore, esetAfter, batchAnnot, targetAnnot
measureGenesMeanCorrCoef esetBefore, esetAfter, batchAnnot
measureSamplesMeanCorrCoef esetBefore, esetAfter, batchAnnot

Table 7.2: Summary of all relevant functions in the
inSilicoMerging package with their Required and Optional
parameters.

Several of the batch effect removal techniques included in the inSilico
Merging package have been implemented prior to this package. A major
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benefit of our package is the consistent interface for all merging methods
and its integration in the R/Bioconductor framework. We will briefly dis-
cuss the added value of our package compared to those that are already
available in R.

The authors of the original COMBAT method for example, work in their
implementation with several matrices containing the numerical data, rel-
evant annotation and covariates. Within our package, all this information
in encoded in the ExpressionSet structure.

The authors of the DWD method recently have constructed the DWD R/
Bioconductor package [Huang et al. (2012)]. This package is intended as
a general use of the distance-weighted discrimination technique and not
specific for the goal of batch effect removal. It is therefore not straight-
forward to use for merging gene expression data sets and once again the
relevant data is dispersed over several objects as opposed to using the
ExpressionSet data structure. In addition, the necessary transforma-
tion of the gene expression values was added to this package in order to
obtain a merged data set as result.

The CONOR package most closely approaches our software as it includes
multiple batch removal methods and several methods based on discretiz-
ing the gene expression data. However, it lacks the user friendliness pro-
vided by our package and the direct integration with the Bioconductor
framework. The CONOR package is available through the CRAN repos-
itory [Rudy & Valafar (2011)].

To the best of our knowledge no explicit software has been developed for
validating the quality of the batch removal process of microarray gene ex-
pression data sets. The collection of both qualitative and quantitative val-
idation methods is therefore a unique property of the inSilicoMerging
package.

Although this package can be used as a stand-alone tool, its power lies
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in the combination with tools like the inSilicoDb package (see Section
4.4, thereby paving the way towards large-scale meta-analysis of com-
plete gene expression repositories. An illustration of this combination
can be found in the code fragment of Appendix A.6.

As of July 2012, the inSilicoMerging package is downloaded more
than 500 times8, although not even published. An article presenting the
tool is currently under submission [Taminau et al. (Subm)].

8 http://www.bioconductor.org/packages/stats/bioc/

inSilicoMerging.html

http://www.bioconductor.org/packages/stats/bioc/inSilicoMerging.html
http://www.bioconductor.org/packages/stats/bioc/inSilicoMerging.html




8
Integrative Analysis of Microarray

Data: an Application

In this chapter a practical application is presented combining all the in-
formation and tools from the previous chapters. A large-scale integrative
analysis is performed on lung cancer microarray data to identify consis-
tent and robust differentially expressed genes (DEGs) which can be used
as promising biomarkers for lung cancer.

Lung cancer was selected as a case study for the identification of DEGs
since it is one of the leading causes of cancer-related deaths in the world,
with unfortunately one of the lowest survival rates within 5 years after
diagnosis [Hayat et al. (2007)].

For this large-scale study different but similar microarray data sets are
combined or integrated in order to find DEGs using information from
multiple experiments. We will compare the two possible approaches for

121
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this integrative analysis: meta-analysis (see Chapter 6) and merging (see
Chapter 7) and discuss the different results.

The rest of this chapter is structured as follows: We first provide all
details concerning the different data sets and how we obtained them.
Then the process to identify differentially expressed genes and the global
methodology is explained. For both cases we present the results, fol-
lowed by a discussion.

8.1 Data and Methods

In this section we present the data sets that will be used in this application
and how we obtained them through carefully querying the InSilico DB.
We then explain into detail the experimental setup we used to compare
both meta-analysis and merging as potential methodologies for the large-
scale integration of multiple datasets for the discovery of differentially
expressed genes (DEGs) for lung cancer.

8.1.1 Data

A list of potential data sets for this application was programmatically re-
trieved from the InSilico DB using the getDatasetList function from
the inSilicoDb package (see Section 4.4, [Taminau et al. (2011)b]). This
list was further restricted by defining the following constraints:

• Only fRMA processed studies were considered, i.e. studies for which
the original CEL files were available and which were consistently
preprocessed by the internal InSilico genomic pipeline. See Section
4.3.1 for more details.

• Each study should contain at least 30 samples in order to be able to
be statistically relevant.

• Each study should contain both samples from normal tissue and
from lung cancer tissue, more or less equally distributed. In order to
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achieve this we looked at the "Disease" keyword which is avail-
able in most curations and filtered on "lung cancer"|"adenocar

cinoma" values and "control"|"normal"|"healthy" values
for lung cancer and normal samples respectively.

• Only studies assayed on Affymetrix Human Genome U133A (GPL96)
and Affymetrix Human Genome U133 Plus 2.0 (GPL570) were taken
into consideration.

This search resulted in a list of six studies, summarized in Table 8.1. For
each dataset a new curation was made and stored in the InSilico DB to
make it trackable. These curations contain the Disease keyword with
control and lung cancer as keywords and are used as such through
the rest of this chapter.

Data set P latform #Genes #Samples Reference

(control/cancer)

GSE10072 GPL96 12718 107 (49/58) [Landi et al. (2008)]
GSE7670 GPL96 12718 66 (27/27) [Su et al. (2007)]
GSE31547 GPL96 12718 50 (20/30) NA(i)

GSE19804 GPL570 19798 120 (60/60) [Lu et al. (2010)]
GSE19188 GPL570 19798 156 (65/91) [Hou et al. (2010)]
GSE18842 GPL570 19798 91 (45/46) [Sanchez-Palencia et al. (2011)]

Total 590 (312/266)

Table 8.1: List of six lung cancer microarray data sets used in
this application.
(i)This dataset has no accompanying publication.

8.1.2 Identification of Differentially Expressed Genes.

A very common objective and application of microarray studies is the
identification of genes that are consistently and significantly expressed
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according to a target biological variable of interest. These genes are called
informative genes, biomarkers or differentially expressed genes (DEGs).
Many methods and approaches to find DEGs exist and here we opted
for the R/Bioconductor limma package [Smyth (2004)]. A recent and
detailed overview of all possible methods can be found in [Lazar et al.
(2012)b].

After applying limma we call every gene significantly differentially ex-
pressed if:

• it that has an adjusted p-value lower than 0.05

• it has a log fold change higher than 2

DEG lists should also be robust or consistent. In order to test the robust-
ness of DEG lists we implemented an extra resampling step on top of the
limma method. In each iteration, we randomly keep 90% of the samples
and apply limma to obtain a DEG lists fulfilling the two above mentioned
criteria on this subset. After n iterations we obtained n different DEG lists
and our final, robust, DEG list will be the intersection of those lists. Since
we take the intersection over all iterations it seems intuitive that by in-
creasing the number of iterations n the size of the final intersection will
be decreased. In our simulations we found however that there is mostly a
convergence around 50 iterations, depending on the quality of the study.
This is illustrated for the study GSE10072 in Figure 8.1(a), the other five
studies have similar graphs. To play safe we always used a iteration size
n of 100 for all our experiments.

One could argue that taking the intersection over all iterations is quite
strict and maybe we are missing DEGs that for example are present in
99% or 95% of the lists. This however rarely happens since almost all
genes either appear either in all DEG lists of all iterations, either in the
DEG list of only one iteration. This is again illustrated for study GSE10072
in Figure 8.1(b). This means that genes found as DEGs on the complete
data set, but not after using the resampling test are definitely false pos-
itives and by only looking at the intersection we almost don’t miss any
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potential false negatives. This once more strengthens the importance of
using appropriate robustness checks.

Finally, the procedure to find significantly and robust DEGs can be found
in Appendix A.7.
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Figure 8.1: Result of simulations to motivate the selected pa-
rameters for the resampling test. (a) the length of the intersec-
tion of all DEG lists in function of the number of iterations. Con-
vergence can be observed around 50 iterations. (b) In this plot
the frequency of all genes over all iterations are shown. The
most right bar are all genes belonging to each DEG list, i.e. our
final robust DEG list. This simulation was performed with 100
iterations.

8.1.3 Experimental Setting

The workflow for both meta-analysis and merging approaches was al-
ready visualized in Figure 5.1. For the meta-analysis part, see Figure
5.1(a), we obtain a robust DEG list for each of the six studies and then
look at the intersection of those DEG lists. This final list of DEGs will
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contain all genes that were found to be informative in all single studies.

For the merging part, see Figure 5.1(b), we first merge all six studies into
one global one using the following batch effect removal methods from
the inSilicoMerging package: NONE (no batch effect removal), BMC
(batch-mean centering, [Sims et al. (2008)]), COMBAT (empirical bayes,
[Johnson et al. (2007)]), DWD (distance-weighted discrimination, [Ben-
ito et al. (2004)]) and XPN (cross-platform normalization, [Shabalin et al.
(2008)]. More information on the different batch effect can be found in
Section 7.3.2. Then we applied on each merged data set the same proce-
dure to find robust DEGs and we immediately have our final list of the
DEGs.

For both cases we also applied the same methodologies by using renor-
malized data sets using RMA instead of fRMA in order to confirm all
results.

8.2 Results and Discussion

In this section we will present and discuss the gene lists found by the two
approaches:

8.2.1 Meta-Analysis Approach

We first look at the results of the meta-analysis case by looking at the
number of DEGs obtained on the single data sets as listed in Table 8.2.
In the third column the number of DEGs without using resampling is
shown, followed by the number of DEGs after applying resampling as
explained in the previous section. We notice that using this resampling
strategy leads to a decrease in the number of DEGs for all data sets (ratios
between 60-80% depending on the specific data set).

Another observation that can be made is the higher number of DEGs for
the last three data sets. This difference is probably due to the difference in
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Preprocess Data set #DEGs(i) #DEGs #DEGs(ii)

(resamp) (intersection)

RMA

GSE10072 81 70


25

GSE7670 81 49
GSE31547 52 35
GSE19804 161 112
GSE19188 405 325
GSE18842 632 503

fRMA

GSE10072 90 74


25

GSE7670 79 52
GSE31547 67 43
GSE19804 158 109
GSE19188 351 284
GSE18842 499 398

Table 8.2: Number of differentially expressed genes (DEGs) for
all single data sets. The final result of this meta-analysis case is
the intersection of the different lists in the last column.
(i)Number of DEGs found on the complete data set without re-
sampling.
(ii)Number of DEGs in the intersection of the DEG lists of all
single data sets after using resampling.

platform: GPL96 for the first three studies and GPL570 for the last three
studies, see Table 8.1. Since the former platform has more than 7000 genes
less than the latter platform a higher chance of finding DEGs is obvious.
Also note from Table 8.1 that the average sample size for platform GPL96
is around 74, while for platform GPL570 it is around 122, this also can
have a minor effect on the robustness of DEGs.

The final list of DEGs in the meta-analysis case can be obtained by taking
the intersection of all single-study DEG lists. This list of 25 genes consists
of genes that are consistently differentially expressed in all six studies



128 Chapter 8. Integrative Analysis: an Application

and can be considered as the most promising list of biomarkers for lung
cancer, based on our input data. Note that using RMA or fRMA does not
significantly influence the number of found DEGs in all studies. The final
gene lists in both cases are not identical but have an overlap of 23 genes.
Below are the fRMA DEGs listed:

> degs_meta

[1] "ABCA8" "ADH1B" "AGER" "C10orf116" "CAV1" "CD36"

[7] "CDH5" "CLDN18" "CLEC3B" "CLIC5" "EDNRB" "FABP4"

[13] "FAM107A" "FCN3" "FHL1" "FOSB" "HBB" "KAL1"

[19] "LDB2" "MT1M" "SPP1" "TCF21" "TMEM100" "TNNC1"

[25] "WIF1"

Many of those genes are already identified as potential biomarkers: AGER,
CLIC5 and TNNC1 for example were confirmed to be related to survival
outcome in non-small cell lung cancer via RT-PCR validation [Urgard
et al. (2011)]. EDNRB was already identified as a promising candidate
biomarker for lung cancer [Knight et al. (2009)]. FHL1, FABP4, EDNRB
and AGER were also selected as lung adenocarcinoma marker genes af-
ter joint analysis of two microarray gene expression data sets [Jiang et al.
(2004)]. CAV1 is believed to be a tumor suppressor. and was found to be
down-regulated in many types of cancers including lung cancer [Sunaga
et al. (2004)]. Glycoproteomic analysis revealed HBB as a differentially
expressed protein [Rho et al. (2009)].

Other genes (e.g. CD36, CLEC3B, C10orf116 and MT1M) have not been
reported to be (lung) cancer related yet and might present new discover-
ies.

8.2.2 Merging Approach

In the merging part, all six data sets are first merged into one global data
set and thus only one DEG list is finally retrieved (see Figure 5.1 for a
reminder). Different batch effect removal methods can however be ap-
plied, resulting in different DEG lists. The results are presented in Table
8.3 by listing the number of found DEGs for every batch effect removal
method and preprocessing method (RMA or fRMA).
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Preprocess BERM (i) #DEGs(ii) #DEGs #DEGs(iii)

(resamp) (intersection)

RMA

NONE 160 128


118
BMC 151 129
COMBAT 151 129
DWD 151 130
XPN 170 146

fRMA

NONE 131 112


102
BMC 124 109
COMBAT 125 110
DWD 125 111
XPN 143 123

Table 8.3: Number of differentially expressed genes (DEGs) for
all merged data sets
(i)BERM: Batch Effect Removal Method.
(ii)Number of DEGs found on the complete data set without re-
sampling.
(iii)Number of DEGs in the intersection of the DEG lists of all
single data sets after using resampling.

We can make a number of interesting observations based on the results
of Table 8.3:

Resampling is still needed

After merging there is still a need for resampling as it clearly helps to
remove false positives, although the difference in number of DEGs with
and without resampling is less prominent than in the meta-analysis ap-
proach (ratios between 85-89% for the different batch effect removal meth-
ods).
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Using fRMA results in less DEGs than using RMA

Using fRMA as preprocessing method results in significantly less DEGs
than using RMA preprocessing for all batch effect removal methods. This
was not the case in the meta-analysis approach for the single data sets
and was not expected. No reasonable explanation can be found at this
moment and although very interesting to find out, it currently remains an
open question. For the remainder of this application we will concentrate
us on the fRMA results.

Relatively low impact of using batch effect removal

With the exception of the XPN method, the methods BMC, COMBAT and
DWD are not able to find significantly more DEGs than when no batch
effect removal at all is performed. In Figure 8.2 the MDS plots of the
merged data set NONE is shown after both RMA and fRMA preprocess-
ing and in both cased a clear batch effect can be observed1. With this un-
desirable effect present, the similar results of NONE and the other batch
effect removal methods are remarkable.

The explanation lies in the fact that MDS plots provide a global view on
the data, while the identification of DEGs is more based on local effects,
i.e. the specific expression of one gene in certain conditions. Not all genes
are affected by batch effect removal in the same way, and for those genes
batch effect removal methods will not change anything. Moreover, even
if a gene is affected by batch effect removal we observed that the differ-
ence between the two modes or conditions of the gene (in our case control
versus lung cancer) is almost always preserved over all samples of the
merged data set. Two more in-depth examples of genes are provided to
illustrate this further.

To select specific genes to investigate in detail we can look at all genes

1 Note that fRMA already succeeds in grouping the samples per platform instead of
per study like RMA. In this regard fRMA can already be seen as a special, platform-
specific batch effect removal method.
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identified as DEGs by the NONE method but not by for example the
COMBAT method:

> setdiff(degs_merged[["NONE"]], degs_merged[["COMBAT"]])

[1] "ADRB1" "AKR1B10" "CCNB1" "DLGAP5" "DSP"

Gene ADRB1 for example is identified as a DEG without batch effect re-
moval but not afterwards. Is the batch effect removal method distorting
the biological signal of this gene?

We can look at the boxplots of this specific gene in Figure 8.3. On the
top left plot we can notice that this gene is only differentially expressed
in three studies and those three studies are from the same GPL570 plat-
form. For the other studies from the GPL96 platform, the situation is
completely different with an almost stable expression of the ADRB1 gene.
The difference in expression in the three studies is however big enough
to bias the global expression as being differentially expressed, as can be
seen in the bottom left plot. If we apply batch effect removal, all samples
from both platforms are brought closer together and thereby decreasing
the influence of the differentially expression of platform GPL570. This re-
sults in a global expression that is not differentially expressed anymore,
see bottom right plot2.

For the other genes AKR1B10, CCNB1, DLGAP5 and DSP which were only
identified by the NONE method a similar situation occurs. From one
point of view COMBAT and the other batch effect removal methods in-
deed remove a biological relevant signal that is present in the data, or at
least part of the data, but one can argue that this signal is not consis-
tent across all individual studies and can be due to a technical, platform-
dependent artifact.

We also investigate another set of genes, i.e. genes that are only found af-
ter applying batch effect removal. This time we list all genes that were

2 Note that a log fold change higher than 2 was defined as a requirement for being
identified as differentially expressed
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identified as beging a DEG by the COMBAT method, but not by the
NONE method:

> setdiff(degs_merged[["COMBAT"]], degs_merged[["NONE"]])

[1] "LRRN3" "PDK4" "TPX2"

The boxplots in Figure 8.4 provide us again a more in-depth look for the
first gene in this list, gene LRRN3. If we compare the top left and top right
plots we can see that COMBAT nicely removes the batch effect between
the different studies for this gene and creates a clear and consistent dif-
ferentially expression profile across all samples. This leads to a situation
in which this gene is labeled as differentially expressed by the COMBAT
method, but not by the NONE method since it, just slightly, fails for the
log fold change requirement. In this case, instead of a technical artifact,
it is actually the batch effect that distorts the global expression profile of
the LRRN3 gene.

These two examples show that there are small differences between the
different batch effect removal methods but merely comes down to genes
that fall just above or below the defined thresholds for the log fold change.
To compare the merging approach with the meta-analysis approach we
therefore use the intersection of the DEGs found by the different batch ef-
fect removal methods for fRMA. This list consists of 107 genes (see Table
8.3).

8.2.3 Comparing Meta-Analysis and Merging Approaches

If we compare the final DEGs for the meta-analysis approach with the list
obtained in the merging approach we can conclude that more DEGs are
identified through merging. Moreover, all 25 identified DEGs through
meta-analysis are also identified in the merging approach. Below we list
the additional genes identified as being DEGs and for a few selected ones
we demonstrate their relation to lung cancer through literature.

> setdiff(degs_merged, degs_meta)

[1] "ACADL" "ADAMTS8" "ADRB2" "AOC3" "AQP1" "AQP4"

[7] "ASPM" "C13orf15" "C7" "CA4" "CACNA2D2" "CAV2"

[13] "CDC20" "CEACAM5" "CFD" "CHRDL1" "CLIC3" "COL10A1"
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[19] "COL11A1" "CPB2" "CXCL13" "CXCL2" "DLC1" "DUOX1"

[25] "EMCN" "FIGF" "FMO2" "FOXF1" "GIMAP6" "GINS1"

[31] "GPM6A" "GPX3" "GREM1" "HMGB3" "HPGD" "HSD17B6"

[37] "IL33" "IL6" "KLF4" "KRT6A" "LAMP3" "LEPR"

[43] "LIMCH1" "LPL" "MARCO" "MFAP4" "MMP1" "MMP12"

[49] "OLR1" "PDZD2" "PGC" "PIP5K1B" "PLA2G1B" "PPBP"

[55] "RAMP3" "RRM2" "S100A2" "SCGB1A1" "SCN7A" "SDPR"

[61] "SFTPA2" "SFTPC" "SFTPD" "SLC1A1" "SLC39A8" "SLC6A4"

[67] "SOSTDC1" "SPINK1" "SPOCK2" "STXBP6" "SULF1" "TGFBR3"

[73] "TMPRSS4" "TOP2A" "UPK3B" "VIPR1" "ZBTB16"

Together with CAV1, which was also identified in the meta-analysis ap-
proach, CAV2 also is related to survival in lung cancer [Wikman et al.
(2004)]. C13orf15, formerly named RGC32, is playing an important role
in the pathogenesis of nonsmall cell lung cancer [Kim et al. (2011)]. It
was also demonstrated that chemokines (CXCL13 and CXCL2) are piv-
otal determinants of the angiogenic activity of non-small cell lung can-
cer [Strieter et al. (1995)]. The results in [Feng et al. (2001)] suggest that
S100A2 expression is suppressed early during lung carcinogenesis and
that its loss may be a contributing factor in lung cancer development or
a biomarker in this process.

A more in depth and complete scan of the literature is beyond the scope
of this thesis but similarly most genes are proven or suggested to play
an important role in the development of lung cancer and are potential
biomarkers.

Significantly more DEGs can be found with the merging approach than
with the meta-analysis approach. This confirms an earlier statement made
by [Xu et al. (2008)]: ”The major limitation of meta-analyses is that the small
sample sizes of individual studies, coupled with variation due to differences in
study protocols, inevitably degrades the results. Also, deriving separate statis-
tics and then averaging is often less powerful than directly computing statistics
from aggregated data.”
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8.3 Conclusions

After comparing meta-analysis and merging as two potential approaches
for the identification of differentially expressed genes through the inte-
gration of multiple microarray gene expression data sets we can con-
clude that significantly more DEGs can be found through merging than
through meta-analysis. The final DEG list found after merging the six
data sets consists of 107 genes, includes all genes found after meta-analysis,
and is showed to be stable and robust after applying a strict resampling
procedure. A brief literature study showed relevance for most of these
genes and this list can be considered as an ideal starting point for further
analysis.

Interestingly, the identification of DEGs is not hindered by batch effects
when the different data sets are merged together. The different batch
effect removal methods give very similar gene lists. We looked at two
genes that behave differently due to batch effects in detail to explain this
difference and found out that they always are flirting with the log fold
change threshold we defined.
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Figure 8.2: Multidimensional scaling (MDS) plots of the merged
data set with no batch effect removal. (a) after applying fRMA
as preprocessing method for the individual data sets and (b)
after applying RMA as preprocessing method for the individual
data sets. Samples are colored based on the target biological
variable of interest and the different symbols correspond to the
individual studies.
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Figure 8.3: Different boxplots for ADRB1 gene. On the left we
have two boxplots for the merged data set without batch effect
removal (NONE) and on the right for the merged data set with
batch effect removal (COMBAT). All boxplots are grouped and
colored based on the target biological variable of interest, the
boxplots on top are further grouped per original data set.



Chapter 8. Integrative Analysis: an Application 137

●

4
6

8
10

12

NONE

G
S

E
10

07
2

G
S

E
10

07
2

G
S

E
18

84
2

G
S

E
18

84
2

G
S

E
19

18
8

G
S

E
19

18
8

G
S

E
19

80
4

G
S

E
19

80
4

G
S

E
31

54
7

G
S

E
31

54
7

G
S

E
76

70
G

S
E

76
70

G
S

E
76

70

●

●

●

lung cancer
control
unknown

●

6
8

10
12

COMBAT

G
S

E
10

07
2

G
S

E
10

07
2

G
S

E
18

84
2

G
S

E
18

84
2

G
S

E
19

18
8

G
S

E
19

18
8

G
S

E
19

80
4

G
S

E
19

80
4

G
S

E
31

54
7

G
S

E
31

54
7

G
S

E
76

70
G

S
E

76
70

G
S

E
76

70

●

●

●

lung cancer
control
unknown

●

4
6

8
10

12

NONE

co
nt

ro
l

lu
ng

 c
an

ce
r

un
kn

ow
n

●

●

●

lung cancer
control
unknown

●

6
8

10
12

COMBAT

co
nt

ro
l

lu
ng

 c
an

ce
r

un
kn

ow
n

●

●

●

lung cancer
control
unknown

Figure 8.4: Different boxplots for LRRN3 gene. On the left we
have two boxplots for the merged data set without batch effect
removal (NONE) and on the right for the merged data set with
batch effect removal (COMBAT). All boxplots are grouped and
colored based on the target biological variable of interest, the
boxplots on top are further grouped per original data set.





9
Conclusions

In this last chapter we will summarize the results and contributions of
this thesis, followed by an enumeration of the open and promising re-
search directions for future work.

9.1 Overview

After more than a decade of microarray gene expression research a vast
amount of data became publicly available through online repositories.
It is clear that the new challenges for this technology lie in the integra-
tion of this plenitude of available data in order to obtain more robust,
accurate and generalizable results. The integrative analysis of this data is
inexpensive since it happens on a computational level without need for
extra wet-lab experiments. Information from different studies can be in-
tegrated or combined on the interpretation level in a typical meta-analysis
set-up or the gene expression values can be combined directly, creating a
virtual combined gene expression matrix.

139
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For both approaches we identified however several issues and two main
hurdles are currently hindering the success of large-scale integrative anal-
ysis of microarray gene expression data.

The first hurdle is the problem of retrieving genomic data in a consistent
and unambiguously way. This is mainly due to the complex preprocess-
ing options for the numerical data which are not always sufficiently doc-
umented, and the lack of standards to describe phenotypic meta-data.
These issues lead to many unnecessary manual interventions to parse
data from one format to another, leading to error-prone situations that
are not trackable or reproducible. To overcome these limitations we pre-
sented the InSilico DB, a tool that provides expert-curated and consis-
tently preprocessed gene expression data with direct access to various
analysis software kits.

The actual integration of different gene expression studies is also hin-
dered by study-specific biases, or batch effects, originating at the vari-
ous technical steps throughout a classic microarray experiment. Labs use
different protocols, experimental settings, parameters and even different
arrays, leading to incompatible data, both on the numerical level as on
the meta-data or phenotypical level. An extensive survey of batch effect
removal methods and the corresponding validation tools are provided
in a unified framework. A R/Bioconductor package combining all this
functionality was also developed and presented.

Finally we presented two practical applications to demonstrate the use-
fulness of integrating multiple microarray gene expression studies. These
two applications use all software we made available in a clear and illus-
trative manner.
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9.2 Contributions

Our first contribution was in the development of highly specialized ge-
nomic pipelines for the preprocessing of gene expression microarray data.
These pipelines are controlled and guided by a supervised process called
the inSilico backbone. Both the pipelines and the backbone are essen-
tial pieces of the inSilico DB framework and enables the management of
expert-curated and consistently preprocessed genomics data.

Next, an extensive overview of batch effect removal methods for the
merging of gene expression data was presented. This survey is novel
and complete since for the first time a unified notation was used to de-
scribe all the methods. No other similar work exists so far and an article
submission was well accepted as a useful contribution to the research do-
main.

Two open-source and well-documented R/Bioconductor packages were
developed and released. Both have the aim of overcoming the current is-
sues of integrative analysis of gene expression analysis. The inSilicoDb
package enables consistent and trackable retrieval of genomic data and
the inSilicoMerging package provides tools to merge multiple datasets.
Both packages seamlessly integrate which each other and are already
used by the scientific community.

Two large-scale integrative applications using the massive amount of data
available in the InSilico DB were presented, both containing innovative
elements in their workflow. In the first application we screened for genes
with a stable expression across various biological conditions and obtained
a compact but diverse set of 12 reference genes. In the second application
we used both a merging and a meta-analysis approach to identify differ-
entially expressed genes for lung cancer. Both applications extensively
use the developed and freely available inSilicoDb and inSilicoMer-
ging packages and key code excerpts are provided for full transparency
and reproducibility.
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A more detailed summation of the contributions can be found in Section
1.3 and in Appendix B a complete list of the publications obtained during
this thesis can be found.

9.3 Future Directions

We can divide the future work into two main categories: extensions of
the developed R/Bioconductor packages and further validation of the
presented applications:

9.3.1 Extensions of the R/Bioconductor Packages

The inSilicoDb package needs to adapt fast to any new type of data or
to new methodologies. For example the retrieval of RNA-Seq data (see
Section 2.2.2) was made possible upon request recently. Another ongo-
ing update is the option of using custom CDF files from the BrainArray
group of the University of Michigan [Dai et al. (2005)]. CDF files contain
information about where each probe is located on the chip and which
probes go together to form a probe set for a specific gene. By default
this mapping is proposed by the manufacturer Affymetrix [Affymetrix
(2002)], but alternatives emerged, showing an improvement in precision
and accuracy [Sandberg & Larsson (2007)]. The custom CDF proposed by
the BrainArray group has the additional advantage that all probes have
a one-to-one mapping with the target genes, avoiding the need for a spe-
cific probe-to-gene mappings.

For the inSilicoMerging package the same can be applied. New batch
effect removal techniques should be added to the package. Moreover we
developed our own batch removal method: GENESHIFT, a non-parametric
method based on two key elements from statistics: empirical density es-
timation and Kullback-Leibler divergence. This method is now being
tested using the inSilicoMerging framework and will soon be pub-
lished.
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9.3.2 Further Validation of the Two Applications

The application presented in Section 6.3 with the screening of stable genes
through meta-analysis needs some extra validation. Currently we have
a collaboration with Dr. Bram de Craene from the VIB Departement
Moleculair Biomedisch Onderzoek (UGent) and our proposed set of 12
reference genes is being tested in qRT-PCR experiments to compare its
performance to current state-of-the-art genes. Based on these results an
adaptation or refinement of the screening process can be made.

For the final application in which we discovered several potential biomark-
ers for lung cancer there is also room for a similar opportunity to test
and validate the proposed genes. An initial analysis by mapping the
genes onto pathways already revealed interesting results and can guide
further analysis. For example overrepresentation of the following path-
ways were found when mapping genes to the KEGG database [Kanehisa
& Goto (2000)]: Cytokine-cytokine receptor interaction, PPAR signaling
pathway and Focal adhesion. Contacts with experienced clinicians in the
oncology field were made for further collaborations.





A
Code Fragments Used in this

Thesis

A.1 Code to obtain average number of samples
per study from InSilico DB

1 #-------------------------------------------------------------------------------

2 # Get list of available datasets on GPL570 platform

3 #-------------------------------------------------------------------------------

4 library("inSilicoDb");

5 lst = getDatasetList(gpl="GPL570");

6

7 #-------------------------------------------------------------------------------

8 # Sum number of samples for all studies

9 #-------------------------------------------------------------------------------

10 total = 0;

11 for(gse in lst)

12 {

13 annot = pData(getAnnotations(gse, gpl="GPL570"));

14 total = total + nrow(annot);

15 }

16
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17 #-------------------------------------------------------------------------------

18 # Print output

19 #-------------------------------------------------------------------------------

20 cat("Number of studies on GPL570 platform in InSilicoDB:",length(lst),"\n");

21 cat("Average number of samples:",total/length(lst),"\n");

A.2 Code to obtain heatmap from GSE4635 dataset
1 #-------------------------------------------------------------------------------

2 # Retrieve dataset

3 #-------------------------------------------------------------------------------

4 library("inSilicoDb");

5 eset = getDataset("GSE4635", "GPL96", norm="FRMA", genes=TRUE);

6

7 #-------------------------------------------------------------------------------

8 # Find significant genes

9 #-------------------------------------------------------------------------------

10 library("limma");

11 labels = pData(eset)[ ,"Smoker"];

12 design = model.matrix(˜labels);

13 fit = eBayes(lmFit(eset, design));

14 t = topTable(fit, coef=2)[,c("SYMBOL","logFC","adj.P.Val")];

15 deg = t[sort(t[,"logFC"],index=TRUE, decr=TRUE)$ix,"SYMBOL"];

16

17 #-------------------------------------------------------------------------------

18 # Save heatmap in pdf file

19 #-------------------------------------------------------------------------------

20 pdf(file="../Figures/heatmap.pdf");

21 heatmap(exprs(eset[deg,]), labCol=labels, margins=c(4,4), Rowv=NA);

22 dev.off();

A.3 Code to obtain mds plot from GSE19804 dataset
1 #-------------------------------------------------------------------------------

2 # Retrieve dataset

3 #-------------------------------------------------------------------------------

4 library("inSilicoDb");

5 eset = getDataset("GSE19804", "GPL570", norm="FRMA", genes=TRUE);

6

7 #-------------------------------------------------------------------------------

8 # Custom plot function

9 #-------------------------------------------------------------------------------

10 myPlot = function(mds, labels)

11 {

12 #-- Add margin to the right for the legend

13 tmp = par()$mar;

14 par(xpd=T, mar=par()$mar+c(0,0,0,8));

15



Appendix A. Code Fragments Used in this Thesis 147

16 plot(mds$points,col=labels,lwd=2,xlab="",ylab="");

17

18 #-- Plot legend

19 range_x = range(mds$points[,1]);

20 range_y = range(mds$points[,2]);

21 x = range_x[2] + (range_x[2]-range_x[1])*0.1;

22 y = range_y[2] - (range_y[2]-range_y[1])*0.1;

23 labels = unique(labels);

24 legend(x,y,legend=labels,pt.lwd=2,pch=1,col=labels);

25

26 #-- Reset Margin

27 par(xpd=F, mar=tmp);

28 }

29

30 #-------------------------------------------------------------------------------

31 # Save mds plot in pdf file

32 #-------------------------------------------------------------------------------

33 pdf(file="../Figures/mds.pdf");

34 mds = cmdscale(dist(t(exprs(eset))), x.ret=TRUE);

35 labels = pData(eset)[ ,"Disease"];

36 myPlot(mds, labels);

37 dev.off();

A.4 Example code to generate fRMA sample in
InSilico DB

1 #-------------------------------------------------------------------------------

2 # Parameters of script:

3 #-------------------------------------------------------------------------------

4 # gpl (platform id)

5 # cel_path (path of input CEL files)

6 # name (name of the output file)

7 # out_path (path of the ouput file)

8

9 #-------------------------------------------------------------------------------

10 # function to find information from annotation maps

11 #-------------------------------------------------------------------------------

12 getFromMap = function(annot, id, probes)

13 {

14 res = mget(probes, ifnotfound=NA, get(paste(annot,id,sep="")));

15 return(as.vector(unlist(as.list(res))));

16 }

17

18 #-------------------------------------------------------------------------------

19 # (1) define appropriate Bioconductor packages

20 #-------------------------------------------------------------------------------

21

22 annot = NULL;
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23 if(gpl=="GPL570") { annot = "hgu133plus2"; }

24 if(gpl=="GPL571") { annot = "hgu133a2"; }

25 # [...] for all platforms

26 if(is.null(annot)) { stop("Unknown platform: ",gpl); }

27

28 #-------------------------------------------------------------------------------

29 # (2) perform frma preprocessing

30 #-------------------------------------------------------------------------------

31

32 library(frma);

33 library(affy);

34 abatch = ReadAffy(filenames=cel_path, cdfname=annot);

35

36 #-- For some platforms background info is public

37 if(annot=="hgu133plus2" | annot=="hgu133a")

38 {

39 eset = frma(batch);

40 }

41

42 #-- For others we had to build them ourselves

43 else

44 {

45 frmavecs = paste(annot,"frmavecs",sep="");

46 library(frmavecs, character.only=TRUE);

47 eset = frma(abatch,input.vecs=data(package=frmavecs));

48 }

49

50 #-------------------------------------------------------------------------------

51 # (3) Add feature information (probe/gene info) to eset

52 #-------------------------------------------------------------------------------

53

54 lib = paste(annot,".db",sep="");

55 library(lib, character.only=TRUE);

56

57 features = cbind(getFromMap(annot, "ENTREZID", rownames(data)),

58 getFromMap(annot, "SYMBOL", rownames(data)),

59 getFromMap(annot, "GENENAME", rownames(data)));

60 colnames(features) = c("ENTREZID", "SYMBOL", "GENENAME");

61 rownames(features) = rownames(exprs(eset));

62

63 featureData(eset) = new("AnnotatedDataFrame",

64 data = as.data.frame(features));

65

66 #-------------------------------------------------------------------------------

67 # (4) Add annotation info to eset

68 #-------------------------------------------------------------------------------

69

70 annotation(eset) = annot;

71 version = installed.packages()[lib,"Version"];

72 notes(eset)[[paste(annot,"Version",sep="")]] = version;

73

74 #-------------------------------------------------------------------------------
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75 # (5) Store eset to filesystem

76 #-------------------------------------------------------------------------------

77

78 assign(name,eset);

79 save(list=name, file=out_path);

A.5 Function to calculate the semantic similar-
ity of two genes

1 library("org.Hs.eg.db");

2 library("GO.db");

3 library("GOSemSim");

4

5 #-------------------------------------------------------------------------------

6 # Generic function to retrieve info from bioconductors ’Bimaps’ structure

7 #-------------------------------------------------------------------------------

8 getFromMap = function(map, id)

9 {

10 res = mget(as.character(id), ifnotfound=NA, map);

11 return(as.vector(unlist(as.list(res))));

12 }

13

14 #-------------------------------------------------------------------------------

15 # Get Gene Ontology ids for a specific ontology (MF, BP or CC)

16 #-------------------------------------------------------------------------------

17 getGoIds = function(gene, ont)

18 {

19 id = getFromMap(org.Hs.egSYMBOL2EG, gene);

20 goIds = mappedRkeys(org.Hs.egGO[as.character(id)])

21 idx = sapply(goIds, function(x){Ontology(x)==ont});

22 return(goIds[idx]);

23 }

24

25 #-------------------------------------------------------------------------------

26 # Get similarity score for a specific ontology (MF, BP or CC)

27 #-------------------------------------------------------------------------------

28 getSimilarityForOnt = function(gene1, gene2, ont)

29 {

30 go1 = getGoIds(gene1, ont);

31 go2 = getGoIds(gene2, ont);

32 return(mgoSim(go1,go2,ont));

33 }

34

35 #-------------------------------------------------------------------------------

36 # Get semantic similarity score

37 #-------------------------------------------------------------------------------

38 getSimilarity = function(gene1, gene2)
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39 {

40 sim_MF = getSimilarityForOnt(gene1, gene2, ont="MF");

41 sim_BP = getSimilarityForOnt(gene1, gene2, ont="BP");

42 return((sim_MF + sim_BP) / 2);

43 }

A.6 Code illustrating all visualization tools for
the validation of batch effect removal meth-
ods

1 source("http://bioconductor.org/biocLite.R")

2

3 #-------------------------------------------------------------------------------

4 # retrieve two datasets

5 #-------------------------------------------------------------------------------

6 biocLite("inSilicoDb"); # get latest version from bioconductor

7 library("inSilicoDb");

8 eset1 = getDataset("GSE19804", "GPL570", norm="FRMA", genes=TRUE);

9 eset2 = getDataset("GSE10072", "GPL96", norm="FRMA", genes=TRUE);

10 esets = list(eset1,eset2);

11

12 #-------------------------------------------------------------------------------

13 # merge the two datasets (using "NONE" and "COMBAT" methods)

14 #-------------------------------------------------------------------------------

15 biocLite("inSilicoMerging"); # get latest version from bioconductor

16 library("inSilicoMerging");

17 eset_NONE = merge(esets, method="NONE");

18 eset_COMBAT = merge(esets, method="COMBAT");

19

20 #-------------------------------------------------------------------------------

21 # (1) Boxplots (code to generate Figure 7.7)

22 #-------------------------------------------------------------------------------

23

24 gene = "MYL4"

25 # ... or take take random gene

26 #gene = sample(rownames(exprs(eset_NONE)), 1);

27

28 main = paste("NONE"," (gene = ",gene,")",sep="");

29 plotGeneWiseBoxPlot(eset_NONE, batchAnnot="Study", gene=gene, main=main,

30 legend=FALSE);

31 main = paste("COMBAT"," (gene = ",gene,")",sep="");

32 plotGeneWiseBoxPlot(eset_COMBAT, batchAnnot="Study", gene=gene, main=main,

33 legend=FALSE);

34

35 #-------------------------------------------------------------------------------

36 # (2) Density Plots (code to generate Figure 7.8)

37 #-------------------------------------------------------------------------------
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38

39 gene = "MYL4"

40 # ... or take take random gene

41 #gene = sample(rownames(exprs(eset_NONE)), 1);

42

43 main = paste("NONE"," (gene = ",gene,")",sep="");

44 plotGeneWiseDensity(eset_NONE, batchAnnot="Study", gene=gene, main=main,

45 legend=FALSE);

46 main = paste("COMBAT"," (gene = ",gene,")",sep="");

47 plotGeneWiseDensity(eset_COMBAT, batchAnnot="Study", gene=gene, main=main,

48 legend=FALSE);

49

50 #-------------------------------------------------------------------------------

51 # (3) Dendrograms (code to generate Figure 7.9)

52 #-------------------------------------------------------------------------------

53

54 # take 40 random samples...

55 idx = sample(1:ncol(eset_NONE), 40);

56

57 plotDendrogram(eset_NONE[,idx], batchAnnot="Study", main="NONE",

58 legend=FALSE);

59 plotDendrogram(eset_COMBAT[,idx], batchAnnot="Study", main="COMBAT",

60 legend=FALSE);

61

62 #-------------------------------------------------------------------------------

63 # (4) MDS plots (code to generate Figure 7.10)

64 #-------------------------------------------------------------------------------

65

66 plotMDS(eset_NONE, batchAnnot="Study", targetAnnot="Disease", main="NONE",

67 legend=TRUE);

68 plotMDS(eset_COMBAT, batchAnnot="Study", targetAnnot="Disease", main="COMBAT",

69 legend=TRUE);

70

71 #-------------------------------------------------------------------------------

72 # (5) RLE plots (code to generate Figure 7.11)

73 #-------------------------------------------------------------------------------

74

75 # take 40 random samples...

76 idx = sample(1:ncol(eset_NONE), 40);

77

78 plotRLE(eset_NONE[,idx], batchAnnot="Study", main="NONE",

79 legend=FALSE);

80 plotRLE(eset_COMBAT[,idx], batchAnnot="Study", main="COMBAT",

81 legend=FALSE);



152 Appendix A. Code Fragments Used in this Thesis

A.7 Function used to obtain robust differentially
expressed genes through bootstrapping

1 library(limma);

2 library(Biobase);

3

4 #-------------------------------------------------------------------------------

5 # Returns the intersection of several lists

6 #-------------------------------------------------------------------------------

7 intersectOfLists = function(lst, coverage=1.0)

8 {

9 n = length(lst);

10 t = table(unlist(lst));

11 idx = (t >= coverage*n);

12

13 return(dimnames(t[idx])[[1]]);

14 }

15

16 #-------------------------------------------------------------------------------

17 # apply limma and return gene lists for each permutation

18 #-------------------------------------------------------------------------------

19 applyLimma = function(eset,

20 nbrPerm = 100,

21 filter_fc = 2.0,

22 filter_pvalue = 0.05)

23 {

24 incl = 0.9;

25 lsts = list();

26 for(i in 1:nbrPerm)

27 {

28 #-- Take random incl% of samples

29 idx = sample(1:ncol(eset), ncol(eset)*incl);

30

31 x = exprs(eset)[,idx];

32 y = pData(eset)[idx,"Disease"];

33

34 design = cbind(Grp1=1,Grp2vs1=y);

35 fitted = lmFit(x,design);

36

37 res = eBayes(fitted);

38 res = topTable(res, coef=2, number=dim(x)[1], adjust.method="BH",confint=FALSE);

39 idx = abs(res[,"logFC"]) > filter_fc;

40 res = res[idx,];

41 idx = abs(res[,"adj.P.Val"]) < filter_pvalue;

42 res = res[idx,];

43 res = res[order(abs(res[,"adj.P.Val"]),decreasing=FALSE),];

44

45 lsts[[i]] = res[,"ID"];

46 }

47
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48 lst = intersectOfLists(lsts);

49 return(lst);

50 }
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(Subm). Unlocking the potential of publicly available microarray
data using inSilicoDb and inSilicoMerging R/Bioconductor pack-
ages. BMC Bioinformatics . [Cited on pages 7, 86, and 119].

[Taminau et al. (2010)b] TAMINAU, J., MEGANCK, S., LAZAR, C.,
WEISS-SOLIS, D. Y., COLETTA, A., WALKER, N., BERSINI, H. &
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