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Samenvatting

Reinforcement leertechnieken (RL) werden reeds succesvol toegepast in heel uiteen-
lopende onbekende omgevingen met een hoge graad van onzekerheid. Ook voor
domeinen waarin meerdere agenten actief zijn, is RL een interessant paradigma. In
dergelijke domeinen zijn er echter ook verschillende nieuwe problemen. De agenten
handelen autonoom en hebben mogelijk tegenstrijdige doelstellingen die zij wensen
te bereiken. Een voor de hand liggende oplossing is om de agenten te voorzien
van de nodige informatie over de toestand van de andere agenten, samen met hun
handelingen en beloningen. Dit laat de agenten toe om equilibriumpunten in de
toestandsruimte te leren, maar brengt een hoge kost met zich mee. De agenten
leren in de gecombineerde toestand-actie ruimte wat, gezien de grootte van deze
ruimte, het leerproces aanzienlijk vertraagt.

In deze doctoraatsverhandeling argumenteren wij dat in situaties waar de agenten
maar zelden met elkaar interageren, het interessanter is voor het leerproces om de
agenten onafhankelijk van elkaar te laten leren en elkaar enkel in rekening te brengen
als dit nodig blijkt. In de toestanden waar agenten elkaar niet beïnvloeden zijn de
toestandovergangsfunctie en de beloningsfunctie onafhankelijk van de toestand of
actie van de andere agenten in het systeem. In deze situatie kunnen de andere
agenten in de omgeving genegeerd worden en een RL techniek voor één enkele
agent kan toegepast worden. Wanneer deze vereiste over de onafhankelijk echter
niet geldt, hebben we te maken met een multi-agent coördinatie probleem en is een
multi-agent leertechniek vereist. Een belangrijke vraag hierbij is hoe gedetecteerd
kan worden wanneer de agenten interageren.

In deze thesis introduceren wij nieuwe leertechnieken die dergelijke interacties
kunnen detecteren en, gebruik makend van deze informatie, ofwel een onafhanke-
lijke leertechniek gebruiken, ofwel een multi-agent techniek. Het eerste algoritme,
genaamd 2Observe, maakt gebruik van de ruimtelijke relatie die bestaat in de toes-
tandsruimte om de verzameling van toestanden waarin agenten elkaar beïnvloeden
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te leren. Deze techniek is gebaseerd op generalized learning automata en kan deze
relatie benaderen. De tweede techniek, dat we CQ-learning noemen, gebruikt de
onmiddellijke beloningen die een agent krijgt om de invloed van andere agenten
in bepaalde toestanden te detecteren. Door het uitvoeren van statistische test op
significante verschillen tussen deze beloningen is het mogelijk om de relevante toes-
tandsinformatie van andere agenten in interacties te bepalen. Het laatste algoritme,
FCQ-learning, is een uitbreiding van dit idee, maar laat toe om coördinatieproble-
men te anticiperen, verschillende tijdsstappen voor deze de kop op steken, en hierop
te reageren. Dit resultaat wordt bereik door de statistische tests uit te voeren op
de som van de onmiddellijke en toekomstige beloningen.

Ten slotte demonstreren we ook hoe, gebruik makend van 2Observe en CQ-
learning, ervaring omtrent coördinatieproblemen kan veralgemeend worden en gedeeld
worden tussen agenten en omgevingen. Deze methoden zijn de eerste technieken
die dergelijke kennis kunnen doorgeven in multi-agent systemen.

Sparse Interactions in Multi-Agent Reinforcement Learning



Abstract

Reinforcement learning has already been widely used in unknown domains with a
high degree of uncertainty. Also for domains in which multiple agents are acting
together it is an interesting paradigm. In these domains however several additional
problems arise. Agents behave autonomously and might have conflicting goals. A
straightforward approach is to allow agents to always observe the state information
of the other agents, as well as their actions and rewards they receive. This allows
the agents to learn to reach equilibrium points in the environment, but it comes at
a high cost. Agents are learning in the joint state-action space which considerably
slows down the learning process.

In this dissertation we argue that in settings where the interactions between
agents are sparse, an efficient learning approach is to allow the agents to learn
individually and only take into account the other agents when necessary. In the
former case, agents are not influencing each other in a particular state. Hence, the
state transition function and the reward function are independent of the state and
action of any other agent acting in the environment. In this case, the learning can
be reduced to single agent reinforcement learning and the agent can safely ignore
the other agents in the environment. In the latter case, when this independency
requirement does not hold, we are dealing with a multi-agent coordination problem
and a multi-agent learning approach is required. A key question is how to determine
when interaction occurs.

We propose novel approaches which are capable of learning in which states such
sparse interactions occur and based on this information use either a single agent
approach or a multi-agent approach. The first algorithm, called 2Observe, exploits
spatial dependencies that exist in the joint state space to learn the set of states
in which sparse interactions occur. This approach is based on generalised learning
automata that can approximate these dependencies in the state space. The second
algorithm, called CQ-learning, uses the immediate reward signal to determine the
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influence of other agents in certain states. By performing statistical tests on these
immediate rewards, the relevant state information of other agents during sparse
interactions can be determined. The last algorithm, called FCQ-learning, extends
on this idea, but also allows to anticipate coordination issues, several timesteps
before they actually occur and as such dealing with the issue in a timely fashion.
This is achieved by performing the statistical tests on the sum of immediate and
future rewards.

Finally, we also introduce some methods to generalise knowledge about coordi-
nation problems and demonstrate how experience can be shared between agents and
environments using 2Observe and CQ-learning. These methods are the first in their
kind to provide knowledge transfer about coordination experience in multi-agent
systems.
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Chapter 1
Introduction

Artificial Intelligence, IT’S HERE.
– Business Week cover, July 9, 1984 –

The research presented in this dissertation is concerned with the application of
reinforcement learning in domains where multiple agents are acting. In this chapter
we will explain on a high level what agents are, what reinforcement learning is about
and how these are connected. Next we will focus on the additional problems that
arise when such agents are acting in the same environment and influencing each
other. This will lead us to the problem statement of this dissertation. Finally, we
give an outline of the research presented in the different chapters of this dissertation.

1.1 Agents in their environment
Everyone will agree upon the fact that computers are capable of performing complex
calculations or solving planning problems, such as trajectory planning, much faster
than a human ever will. But for a computer system being able to perform these
operations, a programmer implemented the desired functionality the system is sup-
posed to possess [Wooldridge (1999)]. However, despite many hours of debugging
and testing, it is impossible to foresee every possible parameter to which the system
may be exposed. Whenever such unanticipated situations occur, the application
will most often not respond as desired and possibly even malfunction. Hence it is
logical to create computer systems that have a higher degree of autonomy and are
capable of decision making without human intervention. Such computer systems
are called agents.

1



2 Chapter 1. Introduction

The field of Artificial Intelligence (AI) is broad and agents are being used widely
throughout it. Although being such a widespread term, no general consensus exist
about what exactly constitutes an agent. The definition by Jennings et al. represents
best the view about an agent that is adopted in this dissertation:

Definition 1. [Jennings et al. (1998)]: An agent is a computer system that is
situated in some environment, and that is capable of autonomous action taking in
this environment in order to meet its design objectives.

This definition is very open in the sense that it does not define precisely what
the environment should look like, how autonomous action should be viewed or what
the design objectives of the agent are. This definition however captures all the
requirements to which the notion of an agent used throughout this dissertation must
satisfy. An agent is observing the environment and acting upon these observations
through which it can change the environment. It does so in a closed loop with
the environment, as shown in Figure 1.1, and attempts to accomplish its design
objectives.

Agent

Environment

ActionsObservations

Figure 1.1: Agent in a loop performing actions in its environment,
based on observations it has from this environment.

These design objectives could go from something very simple, such as keeping
the temperature in a car constant at 22° Celsius. The observation the agent has
about the environment is the current temperature inside the car. Its actions are to
lower or increase the climate control. Or these objectives could be very complex,
such as personal recommendations on online shopping sites.

The environment described above for controlling the temperature in a car is a
very simple one. A much more complex is a nuclear reactor which has to be kept
within its safe operating temperature range. Both environments are concerned with
the temperature, but are very different in terms of parameters, observation and
control. In [Russel & Norvig (2010)] the following axes to classify environments
along are proposed:

• Observability
An agent can have complete access to all the information about the state the
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system is in at each point in time. Such systems are called fully observable.
Alternatively, certain required data cannot be measured because there are no
sensors available, or these are malfunctioning. Such environments are called
partially observable.

• Number of agents
This relates to the number of agents that are acting in the environment. A
computer program solving Sudoku is an example of a single-agent environ-
ment, whereas a computer program solving the game of chess is doing so in
a multi-agent environment. On a much higher scale, freight logistics are also
an example of a huge and very complex multi-agent system. Other ‘objects’
in the environment are considered to be agents if they attempt to maximise
some performance measure.

• Agents’ intentions
Agents act in their environment in order to complete their design objectives.
If these objectives are the same for all agents, the environment is said to be
cooperative. If however an agent attempts to optimise its own performance
measure and minimises the performance of the other agents, the environment
has a competitive nature.

• Transition probabilities
If the next state of the system is completely determined by the current state
and the action executed by the agent, the environment is deterministic. If
these transitions occur with some measurable probability, the environment
is said to be stochastic. If, in an extreme case, these transitions do not
have any probabilities attached to them, the environment is said to be non-
deterministic.

• Execution flow
In episodic environments, there is no dependency between the episodes. This
means that the actions taken by an agent are not affected by its actions in
the previous episode. Alternatively, the system can be sequential. In such
systems, the current decision could affect all future decisions.

• Evolution of the environment
If the environment does not change while the agent is deliberating over which
action to take, it is called a static environment. A more complex situation, in
which the environment does change and hence the speed at which the agents
have to select an action becomes important, is called a dynamic environment.

• State information
The information the agent has about the environment could be discrete or
continuous. Similar, the time could advance continuously or in fixed time
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steps and the actions the agent has to perform could also be continuous or
could be an action from a predetermined discrete set of actions.

• Knowledge
This refers to the knowledge the agent has about the dynamics of the envi-
ronment. Is the agent aware of the outcome of performing a particular action,
or is the environment unknown and does the agent have to learn the effect of
its actions?

Before explaining our learning approach to multi-agent systems, we will first
describe the assumptions of the research presented throughout this dissertation.
The environments used in this dissertation are partially observable. Multiple agents
are acting in the same initially unknown environment and agents do not have all
the information about the other agents. The observations the agents have about
the current state the system is in, are exact. Similar, if agents do observe each
other, these observations are exact i.e. we do not consider possibly noisy obser-
vations. The transitions the agents experience are deterministic. However, since
agents do not always have full information about each other, some transitions may
seem non-deterministic to the agents if agents are influencing each other ’s actions.
The testbed we used in our experiments are gridworld environments in which agents
might have a different goal location. This would indicate that agents have conflict-
ing interests. However, the goal is also to avoid collisions between agents. Hence,
our setting is partially competitive and partially cooperative. In order to reach their
respective goals, agents have to take a sequence of actions. As we will explain
shortly, the agents do this repeatedly, so our setting is both sequential as episodic.
Finally, agents are learning in discrete state spaces and select one of their actions
from a discrete set at every timestep.

So far, we have only considered agents using a simple mechanism to act, based
on the observations. In a sense, the agent responsible for the climate control in a
car, is nothing more than a simple if-then-else statement:

Algorithm 1 Climate control agent
1: Observe current temperature t
2: if t ≤ 22° then
3: Increase temperature of climate control
4: else
5: Decrease temperature of climate control
6: end if

In the next section we will amplify the notion of autonomous agents, by ex-
plaining the requirements which agents must satisfy in order to be called intelligent
agents.
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1.2 Intelligent agents

There is a popular cliché. . . which says that you cannot get out of com-
puters any more than you put in. Other versions are that comput-
ers only do exactly what you tell them to, and that therefore com-
puters are never creative. The cliché is true only in the crashingly
trivial sense, the same sense in which Shakespeare never wrote any-
thing except what his first schoolteacher taught him to write –words.

[Dawkins (1986)]

This section is loosely based on the overview paper of Wooldridge and Jen-
nings [Wooldridge & Jennings (1995)] and on the book chapter by Wooldridge
[Wooldridge (1999)] in [Weiss (1999)]. In these works, an agent is identified as an
entity capable of flexible autonomous actions in order to meet its design objectives.
This flexibility can stand for three things:

• reactivity: The ability to respond in a timely fashion to changes that occur in
the environment the agent perceives, in order to satisfy its design objectives.

• pro-activeness: The ability to take initiatives in order to achieve the goals of
its design objectives.

• social ability: The ability to interact with other agents and possibly humans,
in order to accomplish its design objectives

These three properties are all intended to accomplish the design requirements
of the agent. Pro-activeness is the most straight forward of these properties. Ev-
ery program, every procedure a programmer writes is intended to accomplish some
post-conditions, based on some pre-conditions. This pro-activeness assumes that
the pre-conditions remain valid and do not change until the post-conditions are
reached. This requirement is reasonable for static and fully known environments,
but in complex environments, where multiple agents are acting simultaneously, it is
usually not met. In such environments, an agent must react continuously to changes
in the environment or to the behaviour of other agents, while still accomplishing its
goal. It is clear that a good trade-off between these two objectives is necessary. The
final property of an intelligent agent is the capability of understanding the goals of
other agents and acting on this understanding in order to reach fruitful cooperation.

Multi-agent systems (MAS) are a commonly accepted approach for modeling
dynamical systems in which several agents are interacting because control and/or
data is decentralised. Jennings et al. define a MAS as follows:

Sparse Interactions in Multi-Agent Reinforcement Learning



6 Chapter 1. Introduction

Definition 2. A Multi-Agent System is a loosely coupled network of agents that
cooperate or compete with the goal of solving problems that are beyond the indi-
vidual capabilities of each agent

In this dissertation we are concerned with MAS, in which agents are learning
which actions to take in order to reach their design objectives. The learning approach
used is reinforcement learning (RL). In the next section we will explain this learning
paradigm and show its advantages compared to other learning approaches. We will
also demonstrate why RL agents satisfy all the requirements of an intelligent agent,
as described above.

1.3 Learning from experience
Many problems currently exist that remain unsolved. Not because computers do
not have enough computational power or memory to solve them, but because it
is not feasible to determine what the program should do due to the complexity
of the problem. Imagine for instance an automated manufacturing system. In
such systems, many parameters exist to control the flow of the manufacturing
process. Moreover, many of these parameters may even be unknown to the people
designing an agent to solve such systems, so calculating the optimal solution may
be impossible. Machine learning (ML) is an interesting paradigm for learning a
solution to such problems. Tom Mitchell defined this paradigm as follows [Mitchell
(1997)]:

Definition 3. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks
T , as measured by P improves with experience E.

ML can be divided into three categories. The first, are supervised learning
approaches. These are a generalised method for approximating unknown target
functions, by providing sample input-output pairs from the function to be learned.
This method is a good approach for problems such as face recognition, which cannot
be calculated or programmed by hand and where a human can provide correct
labels for the samples. For the example of the automated manufacturing system
however, the lack of examples of the target function to be learned still poses a
problem. Second, we have unsupervised learning approaches which attempt to
minimise some error on the output function. Clustering is a popular technique
within this category, but without an error function to minimise, this is also not
suitable for the manufacturing system. Finally, in between both approaches, there
is reinforcement learning. RL is an approach to mitigate the issues of supervised and
unsupervised approaches in certain problems. RL learns a solution through efficient
use of the experience from trial-and-error interaction with the environment. An RL
agent is only given a goal to achieve, based on the information of the current state
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of the system. Each decision the RL agent takes, results in a reward that evaluates
this decision. Hence, the goal of the agent is to optimise its long term performance,
which is measured by the total reward the agent accumulates over time. A RL agent
may for instance be asked to optimise the manufacturing process, where the utility
is based on the amount of finished products in a given time range. This is a very
intuitive way of representing problems and very similar to how humans do it.

Imagine the problem of learning a child to ride a bicycle. A parent can show
many times how to do it, but explain how to react to every possible sensation one
receives from riding a bike is impossible. So supervised learning approaches are un-
suitable. In practice, when a child learns to ride a bicycle it does so by trial-and-error
and learns (sometimes the painful way) how hard it should push on the pedals or
how far to turn the handle bars. The reward signal is the time the child can remain
on the bike, without having to put foot on the ground (or falling over).

A RL agent is learning, based on the current state of the environment, which
actions to take (i.e. it is reactive) in order to accumulate the highest reward (i.e.
it is pro-active) over time. Moreover, this reward signal can be based on the per-
formance of a group of agents (i.e. agents have to exhibit social behaviour). In
Figure 1.2 we show a schematic representation of a single reinforcement learning
agent in the environment.

Agent

Environment

Actions:
a(t)

Observations:
s(t+1),r(t+1)

Figure 1.2: RL agent acting in an environment. For every action a(t)
at timestep t it is informed of the next state of the system s(t+1) and
receives a reward for its action r(t+1).

Interactions between the agent and the environments take place in discrete time
steps t = 1, 2, . . .. At every time step t the agent selects an action a(t), which
is the input of the environment. This action results in an internal change in the
environment, after which the agent observes the new description of the state of
the system s(t + 1) and the immediate reward r(t + 1) which is the result of its
action. The agent is learning a policy, which is a mapping from each state the
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system can be in to an action, in order to maximise the total reward it accumulates
over time. This mapping is learned by maintaining estimates of the immediate and
future rewards an agent receives for an action in a particular state. After several
trials of a particular action, these estimates become more and more accurate to
the true value of that action. This is why RL is often referred to as learning from
experience.

In this dissertation we are concerned with multiple agents acting in the same
environment. As a result, the changes of the environment at every timestep are the
result of the actions of all the agents. If an agent cannot observe the actions of the
other agents, it becomes difficult to learn an optimal policy, since the environment
changes randomly from the viewpoint of this agent. This property leads us to the
problem statement we will address in this dissertation and which is explained in the
following section.

1.4 Problem statement

When multiple agents are acting in the same environment, the payoffs every agent
receives, together with the transition the system undergoes are dependent on the
states and actions of all agents. Imagine an environment with red and blue blocks
where an agent is trying to stack all red blocks. At the same time, another agent’s
goal is to stack all blocks in the environment regardless of their colour. We will refer
to the first agent as Agent 1, and to the second as Agent 2. If Agent 1 does not
observe the actions of Agent 2, but only the result of them through its observation
of the stack of blocks, it will loose a lot of time removing the blue blocks from the
stack. Similar, Agent 2 will not understand why there are blocks being removed
from the stack. Hence, the environment both agents observe is non-stationary.
In this example, agents can work together and find a solution that satisfies both
their design objectives. For instance, Agent 2 could wait until Agent 1 has finished
stacking the red blocks, before putting the blue blocks on top. This is however only
possible if agents are aware of each others’ actions and intentions.

Different learning approaches exist, with regard to such set-ups. These ap-
proaches can be categorised based on the information available to the agent. If
agents have full access to the entire system information, together with the actions
performed by all agents and the rewards they received, it is possible to model the
other agents and to estimate the rewards for the combination of actions of all agents.
As such, agents can learn over these joint actions and learn a good policy. How-
ever, assuming that agents have access to all this information, induces two problems.
The first one is that the system is less distributed. Agents still learn independently
and select their own actions, but with a large overhead in terms of costly com-
munication in order to provide all agents with the information about each others’
actions. The second problem concerns the size of the state-action space in which

Sparse Interactions in Multi-Agent Reinforcement Learning



1.4. Problem statement 9

agents are learning. For the example described above, this state-action space is the
combination of the possible location of the blocks, with all possible combinations
of the actions of the agents. This means, that the size of the state-action space
is exponential in the number of agents which considerably slows the learning process.

Other approaches attempt to solve this problem, where agents only use their
own local information and select their actions independently. They only experience
the presence of other agents through their rewards and through the transitions the
system undergoes. From the point of view of such an agent, it may even seem that
it is alone in the environment. Due to the lack of information, these approaches
require careful exploration in order to reach good results [Verbeeck (2004),Vrancx
(2010)].

In this dissertation we adopt a third possibility to mitigate this problem of either
always observe the information of other agents or never observe it. Our goal is
to introduce a flexible approach which allow agents to learn in which situations,
agents need state information from other agents, and in which situations their
own local state information is sufficient. This leverages the need for choosing only
one approach which might be very slow to learn (in the case of always using full
observations), or suboptimal for the problem at hand (in the case of independent
learners). We represent this principle using a gridworld example in Figure 1.3.
Agents have four actions at their disposal: NORTH, EAST, SOUTH, WEST which takes
them one cell up, right, down or left respectively. The grid is bounded, so agents
cannot exit the grid. Taking an action that would cause it to leave the grid, results
in the agent remaining in the same location. Finally, each cell can only contain a
single agent.

(a) Single-agent (b) Multi-agent,
     not interacting

(c) Multi-agent, 
     interacting

Figure 1.3: Sparse interactions in multi-agent environments.

In (a) we show a single agent acting in an environment. This environment is
stationary, as its transitions are the result of its own actions only. Figure 1.3(b)

Sparse Interactions in Multi-Agent Reinforcement Learning
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shows multiple agents acting in the same environment. The selected actions of the
agents are indicated by arrows. Since these actions are not interfering, the agents
can act independently and do not have to observe each other. The transition the
agents will make is the sole product of their respective actions. In Figure 1.3(c) this
is no longer the case. If agents perform their selected actions, they will interfere
as it is assumed that no two agents can be in the same cell at the same time. In
this situation the transition the agents experience will not be stationary since it
is dependent on the location and the action of the other agent. Such situations
are called sparse interactions. It should be clear that knowing when these sparse
interactions occur, is beneficial for both the learning speed of the agent since it can
learn most of the time using only local state information, and for the communication
required between the agents since they only need information of each other in a small
set of states.

This leads us to the research question which expresses the main motivation of
the research presented throughout this dissertation:

When should agents observe the state information of other agents
in order to avoid coordination problems?

We provide two approaches for answering this question. In the first one, which
is presented in Chapter 4, we assume that agents can always observe each other
through sensory input, even when the agents cannot influence each other. Our
approach learns to what extent agents should take each other into consideration
and coordinate with each other. In the second approach we argue that, when
agents follow a certain policy, agents will only influence each other in certain states
where their policies are interfering. In Chapter 5 we present an algorithm that is
capable of learning these states and allows agents to locally adapt their policies.

1.5 Contributions
Throughout this dissertation we will show that the following contributions have been
made:

• We present an overview of single agent reinforcement learning, in which we
describe what the elements of a reinforcement learning problem are and the
theoretical framework on which it can rely. We also provide a discussion
of the most important issue in reinforcement learning, i.e. the exploration-
exploitation dilemma. We give an overview of the most well-known solution
methods and we discuss the additional issues, as well as benefits that come
with multiple agents learning in the same environment.

Sparse Interactions in Multi-Agent Reinforcement Learning
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• We give a taxonomy of multi-agent learning research, based on the number
of strategic interactions between the agents.

• We argue that multi-agent learning research should particularly focus on
strategic interactions between agents. More specifically, that agents should
learn when to interact with other agents and when it is safe to ignore each
other. To this end we describe a two layer framework that captures this
key idea and which also represents the main intuition behind the research
presented in this dissertation.

• We describe an extension to decentralised Markov decision processes which
captures local interaction states. The interaction states are represented by a
function which takes the current state of an agent as its input and returns
the interaction states in which coordination with other agents should occur.

• Next to introducing a formal framework to capture local interactions between
dependent states we also introduce an algorithm, which we call 2Observe, that
learns the function to return with which agents interactions should occur.

• We show the need for sparse interactions in multi-agent reinforcement learning
since both extreme approaches, i.e. never observe other agents or always
observe other agents, suffer from suboptimal behaviour and/or long learning
times.

• We introduce an algorithm, called CQ-learning, that learns in which states
coordination is required between agents by performing statistical tests on the
immediate reward signal.

• One of the most important features of RL is the capability of dealing with
a delayed reward signal. Therefore, we extend CQ-learning to FCQ-learning
which can detect coordination problems, several time steps ahead before this
problem is reflected in the immediate reward signal. This algorithm is the
first in its kind to be able to deal with a delayed reward signal using sparse
interactions.

• In single agent RL the concept of transferring past experience to unseen envi-
ronments has gained much interest because of the significant improvement it
offers in the learning speed in these previously unseen environments. We use
this concept of transfer learning within a multi-agent concept to re-use coor-
dination experience. In a multi-agent context this experience can be re-used
for other agents and across environments.

Sparse Interactions in Multi-Agent Reinforcement Learning
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1.6 Outline of the dissertation
This section provides an overview of the research presented in this dissertation.

In Chapter 2 we present an in-depth overview of the necessary single agent rein-
forcement learning background needed to understand the research in later chapters.
First we explain the theoretical framework used in RL research, called a Markov de-
cision process. We then focus on action selection mechanisms and the exploration-
exploitation trade-off common to many reinforcement learning problems. We also
introduce model-based methods, known as dynamic programming, methods that
attempt to learn a model of the transition and the reward function, as well as
model-free methods. For these latter, we go in detail on Q-learning and learning
automata as these algorithms will form the basis of the research presented in sub-
sequent chapters.

In Chapter 3 we explain the concepts of RL in multi-agent settings. We present
a thorough overview of several multi-agent frameworks, such as Markov games and
decentralised Markov decision processes, before introducing the framework used
throughout the remainder of this dissertation: the decentralised sparse interaction
Markov decision process. This framework models the interactions that occur be-
tween agents in a particular set of states, under the assumption that the other
agents follow their respective policies. In this chapter we also present several multi-
agent learning approaches, together with the state of the art of MARL research with
sparse interactions.

Next, in Chapter 4 we introduce our two layer approach to detecting sparse
interactions between agents. We present a special kind of decentralised sparse in-
teraction Markov decision process called a decentralised local interaction Markov
decision process. This framework represents the interaction states of the agents as
a function of the current local state of an agent. We introduce 2Observe, which is
capable of approximating this function and solve the underlying decentralised local
interaction Markov decision process. This chapter presents an overview of the work
published in [De Hauwere et al. (2008)a], [De Hauwere et al. (2008)b], [De Hauwere
et al. (2009)a] and [De Hauwere et al. (2010)c].

In Chapter 5 we introduce two variants of Coordinating Q-learning (CQ-learning).
This algorithm is capable of solving a decentralised sparse interaction Markov de-
cision process. To do so, it learns the set of states in which interactions between
agents are reflected in the immediate reward signal and extends its state space rep-
resentation in these states to include the state information of the other agents in
the interaction. We also present some notions on the convergence of this algorithm
by analysing the dynamics of the system by means of evolutionary game theory. The
approach and results discussed in this chapter have been reported in [De Hauwere
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et al. (2010)b] and [De Hauwere et al. (2011)a].

In Chapter 6 we present an extension to the work introduced in Chapter 5. Fu-
ture Coordinating Q-leaning (FCQ-learning) is concerned with learning interaction
states even though the effect of interactions is only reflected in the reward signal,
several timesteps ahead. At the end of this chapter we give an empirical evaluation
of this algorithm to some gridworld environments that exhibit this kind of interac-
tions. Our research on future interactions has been published in [De Hauwere et al.
(2011)b] and [De Hauwere et al. (2011)c].

In Chapter 7 we present two extensions on the algorithms introduced in chap-
ters 4 and 5. These extensions allow for the transfer of coordination experience
between agents and environments in order to speed up the learning process, as well
as improve the final solution. Knowledge transfer has recently gained a lot of atten-
tion in single agent RL, but the work presented in this chapter is the first in its kind
for transferring knowledge in environments where multiple agents are acting. These
extensions on 2Observe and CQ-learning are also reported in [De Hauwere et al.
(2009)b], [De Hauwere et al. (2010)a], [De Hauwere et al. (2010)b] and [Vrancx
et al. (2011)].

We conclude this dissertation with a summary of the presented research and
give some directions for future research in Chapter 8.

A graphical overview of this outline is given in Figure 1.4. Arrows indicate the
recommended sequence of reading. Parallel chapters can be read in chronological
order but they do not depend on each other although small cross references are
possible.
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Chapter 1 (p. 1)
Introduction

Chapter 2 (p. 15)
Single agent reinforcement learning

Chapter 3 (p. 41)
Learning in multi-agent systems

Chapter 4 (p. 67)
Learning to focus on local states

Chapter 5 (p. 91)
Solving immediate coordination problems

Chapter 7 (p. 149)
Generalisation and transfer in MAS

Chapter 6 (p. 129)
Solving delayed coordination problems

Chapter 8 (p. 167)
Conclusion

Figure 1.4: Graphical overview of the outline of this dissertation. Ar-
rows indicate a dependency on the order in which the chapters should
be read.
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Chapter 2
Single agent reinforcement learning

I hear and I forget. I see and I remember. I do and I understand.
– Confucius, 551BC-479BC –

In this chapter we address the problem a single agent is facing when it has to
take decisions in a dynamic environment consisting of a finite set of states. It has
to learn which actions to take, resulting in both short and long term changes. Short
term changes consist in an evolution of the system to a next state, accompanied
by a feedback to the agent. The long term changes on the system are which future
states the agent will observe, together with future rewards it might obtain for follow-
ing a certain course of actions. These changes are used by the agent to learn which
actions it should take for a given state. So an agent learns from its experience.
This process of sequential decision making under uncertainty can be formalised by
a Markov Decision Process (MDP) [Puterman (1994)]. This is a theoretical frame-
work which models the dynamics of the system, in which the agent is learning. We
will describe this framework in Section 2.1.

Reinforcement Learning (RL) attempts to learn an optimal policy for such an
MDP, without knowledge about the MDP itself [Sutton & Barto (1998)]. It does
so, purely based on the experience that is gathered from acting in the environment.
This experience consists of the transitions the system undergoes, together with a
reinforcement signal the agent receives, both in the short and long run. RL finds
its origin from two major research tracks. One track originates in psychology, more
specifically animal learning by trial and error. The other pillar on which RL is based
is control theory.

15



16 Chapter 2. Single agent reinforcement learning

Edward Thorndike wrote the following in 1911, which is known as the Law of Effect:

Of several responses made to the same situation, those which are accompa-
nied or closely followed by satisfaction to the animal will, other things being
equal, be more firmly connected with the situation, so that, when it recurs,
they will be more likely to recur; those which are accompanied or close
followed by discomfort to the animal will, other things being equal, have
their connections with that situation weakened, so that, when it recurs,
they will be less likely to occur. The greater the satisfaction or discomfort,
the greater the strengthening or weakening of the bond.

[Thorndike (1911)]

This represents one of the key ideas of RL in which an agent’s goal is to learn
optimal actions in an unknown environment through trial and error, steered by a
numerical reward. To put it in Thorndike’s words: the actions taken in situations
that yielded positive reinforcements should result in a strengthening in the bond to
select those actions and vice versa. Two major issues exist in RL. Imagine a situation
in which the reinforcement is only given after several actions. For instance, in the
game of chess, a reinforcement is only given after winning or losing the game. This
is called a delayed reward . Backpropagating this reward signal is a necessity, to
ensure that an agent can take correct decisions, even though the immediate effect
of this decision might be sub-optimal.
The other main issue in RL is called the exploration-exploitation trade-off . Infor-
mally, this trade-off determines when an agent should stop looking for a better
action given a certain situation, and start exploiting its best known action so far. It
is clear that exploiting too early in the learning process could result in sub-optimal
policies, whereas delaying the exploitation of good actions will result in a worse
overall performance of the agent. Hence this issue is also known as the exploration-
exploitation dilemma. We will describe some of the approaches for dealing with
these issues in this chapter.

Control theory is the second track on which RL is based. This research area,
which uses mathematics for engineering applications, is concerned with the be-
haviour of dynamical systems. One of the pioneers of this field, Richard Bellman,
laid the foundations of Dynamic Programming (DP), on which many RL-algorithms
are built [Bellman (1957)]. DP is a way of computing optimal policies for an envi-
ronment, given a perfect model of this environment. Such a model is represented
as an MDP.

Throughout this chapter we will first describe MDPs and the elements which
make a problem a reinforcement learning problem. This general introduction will be
followed by a discussion and evaluation about some techniques for selecting actions
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in RL problems. Finding a good balance in which action to select, allows for a
balanced trade-off between exploring new actions and possibly finding better ones,
and exploiting actions which are currently considered to be good. In Section 2.5
we will give an overview of solution methods for both DP and RL. We will make a
distinction between techniques that directly adapt the policy and techniques that
change their estimates for the values of states and actions from which they compute
a policy. Finally, we will present two extensions to the MDP-framework. The first
models situations in which not all state features in the system are known to the
agent. This extension is referred to as a Partially Observable Markov Decision Pro-
cess. The second, captures certain dependencies that exist between state variables
in the transition function and is called a Factored Markov Decision Process.

Important references for this chapter, which give a detailed description of the
field of MDPs is [Puterman (1994)] and DP is explained in depth in [Bertsekas
(1995)a,Bertsekas (1995)b,Bertsekas & Tsitsiklis (1996)]. Important references for
RL are [Barto et al. (1989)], [Kaelbling et al. (1996)] and [Sutton & Barto (1998)].

2.1 Markov decision processes
Informally a Markov decision process is a model for sequential decision making. At
every time step t an agent must select an action a, given knowledge about the
current state of the system s(t). This action will result in a transition of the system
from state s(t) to state s(t+1) for which the agent receives a scalar reward r(t+1).
The transition to state s(t+ 1) is only dependent on the current state s(t) and the
action a(t) selected by the agent. In other words, the effect of this action and the
future evolution of the system is independent of the history of the system. This
independence relation is known as the Markov property1.
Formally, a Markov decision process can be described as follows:

Definition 4. A Markov decision process is a tuple (S,A,T,R), where:

• S = s1, . . . , sN is a finite set of states,

• A = ∪s∈SA(s) where A(s) is the finite set of available actions in state s ∈ S,

• T : S × A × S → [0, 1] is the transition function, T (s, a, s′), specifying the
probability of going to each state s′, from state s after action a is performed,

• R : S×A×S → R is the reward function, R(s, a, s′), specifying the expected
reward for the transition of s to s′ after action a is performed.

and an MDP obeys the Markov Property.

1 Named after Andrey Andreyevich Markov (1856 - 1922). A Russian mathematician, best known
for his work on the theory of stochastic processes
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Definition 5. A system is said to possess the Markov Property if the future state
transitions of the system are independent of the previous states, given the current
state:

T (s(t+ 1)|s(t), a(t), . . . , s(0), a(0)) = T (s(t+ 1)|s(t), a(t))

The goal of an agent is to learn a policy which maximises the expected future
reward an agent receives. This future reward can be defined in terms of the expected
average reward over time, or, as we will focus on in this dissertation, in terms of
discounted future rewards. In discounted MDPs rewards received at later time steps
are multiplied by a discount factor γ ∈ [0, 1] to represent the current value of these
future rewards.
An illustrative example of an MDP is the Stochastic Taxi Domain problem. This is
a stochastic extension to the taxi domain from [Dietterich (2000)].

Example 1: Consider the stochastic taxi domain problem depicted in Figure 2.1.
The taxi starts in a randomly chosen location and has to pick up a passenger at
one of the locations marked in red, green, yellow or blue. That passenger wishes
to be transported to one of the other coloured locations. The taxi must go to
the location of the passenger (chosen randomly), pick up the passenger, go to its
desired destination (also chosen randomly) and put down the passenger there.
The actions the agent can take, in this case the taxi driver, are four navigation
actions that move the taxi one square North, East, South, West, from its current
location, a Pickup action and a Putdown action. If a Pickup action is performed at
a location where a passenger was waiting, the passengers enters the taxi. Similar, a
passenger exits the taxi after a Putdown action at its destination. An illegal Pickup
action is trying to pick up a passenger in a location where there is no passenger.
An illegitimate Putdown action is trying to put down a passenger when the taxi is
empty, or when the passenger is not yet at its destination.
The dashed line on the second row represents a stop light. The taxi has a probability
of 0.7 of moving through to the next cell and a probability of 0.3 of remaining in
the same location. The taxi can avoid this uncertainty by taking a longer route
going through the passage on the fourth row.
Every action receives a reward of −1, except delivering the passenger at its desti-
nation, which yields a reward of +20. If an illegitimate Pickup or Putdown action
is attempted a penalty of −10 is given.
The state of the system is described by the location of the passenger (in the envi-
ronment or in the taxi), the location of the taxi and the requested destination of
the passenger.
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Figure 2.1: The stochastic taxi domain problem. Adapted from [Diet-
terich (2000)].

2.2 The reinforcement learning problem

Reinforcement learning is characterised by the problem that needs to be learned,
rather than by a particular set of algorithms. As such, any algorithm that can solve
a RL problem is a valid RL solution method. In this section we will begin by de-
scribing what makes a learning problem a RL problem, before going over some of
the most well known solution methods in the following section.

In RL problems, agents receive a reward signal for performing actions. The
learner must discover which actions yield the most reward, by trial and error. It
must discover a mapping from its input (its information about the environment),
to an action, without any information from a teacher about what is good and what
is bad. The only feedback it receives is a numerical reward signal. This is different
from most machine learning techniques in which the learner is explicitly told which
actions to take. In these so-called supervised learning approaches, the learner ob-
serves a set of input-output pairs and learns a mapping between them. It is also
different from clustering approaches, which are usually referred to as unsupervised
learning. RL is classified between these two learning techniques.
The numerical reward signal the agent observes, might not just be the cause of
the last action taken, but might originate from an action taken several timesteps
in the past or from a whole sequence of actions. This principle, known as delayed
rewards, together with stochastic events in the environment, are the two character-
ising attributes of RL problems and these make such problems both interesting and
challenging.

We depict the model of RL problems graphically in Figure 2.2. An agent is
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a(t)

s(t+1)

r(t+1)

Environment

Figure 2.2: The standard reinforcement learning model, adapted from
[Kaelbling et al. (1996)].

interacting with its environment by selecting an action a(t), based on its current
information of the state environment s(t) at every discrete time step t : 0, 1, . . ..
The response of the environment consists of a description of the new state s(t+ 1)
and an immediate numerical reward r(t + 1) representing how good (or bad) the
last performed action was. Transitions to the next state can be stochastic. This
means that the next state s(t+ 1) and reward r(t+ 1) are random variables given
with respect to a stochastic transition function T and a stochastic reward function
R. It is commonly assumed that these probability functions are stationary, i.e. they
do not change over time. In the following chapter we will discuss multi-agent RL
settings, and argue why this assumption is not necessarily met.

Definition 6. In a stationary environment, the probabilities of making state tran-
sitions or receiving specific reinforcement signals do not change over time.

If we go back to the taxi domain from Example 2.1 we can see that this problem
contains all the characteristics of a RL problem. The reward signal that indicates
whether the actions taken by the agent were good or bad is delayed since the only
positive reward given in the system is obtained for putting down the passenger at
its destination. Moreover, there is no teacher telling the taxi agent what its next
action should be. The agent must learn on its own an optimal policy for picking
up a passenger and putting him down at its destination, with respect to the total
cumulative reward. This leads us to describing the elements of a reinforcement
learning system. Besides the agent and the environment, one can identify three
main subelements:

• a policy π. An agent’s policy π is a function that maps states to a tuple of
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probabilities ~p for all actions an agent can take in that state. If S is the set
of states of the environment, π(s, a) denotes the probability of taking action
a ∈ A in state s ∈ S at time step t. When in all states s, π(s, a) = 1 for
some action a and 0 for all other actions, the policy is said to be deterministic.
Otherwise it is called a stochastic policy.

• a reward function R defining the quality of the action chosen by the agent.
It maps a state-action-state tuple to a single numerical reward.

• a value function V π(s) specifying the value of a state. It indicates how
good a particular state s is in the long run according to the current policy
π. This value indicates the total amount of reward an agent can expect to
accumulate in the future, starting from that state and following policy π.
Even if the immediate rewards that can be obtained in a particular state s
are low, the value of the state can still be high if it is followed by states that
yield high rewards.

The policy an agent adopts in a RL problem will be changed, based on the rewards
it receives. The goal of a RL algorithm is to maximise the total accumulated reward
it receives for taking actions in the environment. For instance if an agent found
an action in a certain state that results in a better payoff than the action currently
generated by the policy, the policy will be adapted to select this new action with a
higher probability. The choice whether to select currently known good actions, or try
out other actions is known as the exploration-exploitation dilemma. This dilemma
is discussed in the next section. A RL system may also contain a predictive model of
the environment. This model imitates the environment. For example, a model can
predict the probability for observing state s(t + 1) after performing action a(t) in
state s(t). In Section 2.5 we will on one hand present RL techniques that use such
a model to learn a policy and on the other hand describe approaches that directly
learn a policy without a model.

2.3 Action selection mechanisms
To explain the exploration-exploitation dilemma and introduce some of the most
common action-selection mechanisms we will use the n-armed bandit problems as
an example. In such problems, named after a slot machine or one-armed bandit,
the agent is faced with a choice among n different actions. The n-armed bandit is
a very simple RL problem, in which there are no delayed rewards, and only 1 state.
Every action results in a reward chosen from a stationary probability distribution.
The objective is to maximise the expected total reward over some period of time.
Each action selection is called a play. The expected values of the actions, i.e. the
reward they return is unknown to the agent. Otherwise it would be straightforward
to determine the best action and always select that action. An agent can maintain
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estimates over the actions and update these estimates over time. The choice the
agent has to make is when to start selecting the currently best action. Choosing
this best action is called greedy action selection. If this is done too early, the value
estimates of the agent might still be inaccurate and a suboptimal action might be
selected. If this is done too late, there might not be enough plays remaining to
collect a high reward over the entire time period. The reward through exploration is
lower in the short run, but might be higher on the long term after having discovered
the actions that yield the highest rewards. In order to select these actions an esti-
mate about the value of an action is maintained and updated at every timestep. A
straightforward way of maintaining such an estimate is the sample average method.
The estimate of the reward for action a at the t-th timestep Qt(a) is given by:

Qt(a) = r(1) + r(2) + . . .+ r(ka)
ka

,

where ka is the number of times action a has been selected prior to t and r(i) is
the reward received for action a at timestep i. In this dissertation we will be using
ε-greedy and softmax action selection strategies described below.

An ε-greedy selection strategy is a simple alternative to behaving greedily all the
time. The selection mechanism will select the best action most of the time, but with
a small probability ε it will select an action at random, uniformly, independent of the
action-value estimates. The main advantage of this approach is that as the number
of plays increases, all actions are still being explored. In the following chapter we
will describe why this is important.

Another technique for selecting actions is to map the estimates of the values
of every action to a probability distribution and then selecting actions probabilis-
tically according to this distribution. This is called softmax action selection. The
most commonly used distribution is the Boltzmann distribution. The probability of
selecting action a at the t-th play is given by:

Pr(a) = eQt(a)/τ∑n
b=1 e

Qt(b)/τ
, (2.1)

where τ is a positive, non-zero parameter called the temperature, n the number
of actions and Qt(a) is the estimate of the value of action a at timestep t. High
temperatures causes all actions to be (nearly) equiprobable, whereas the lower the
temperature the more greedy the action selection will be. The parameter τ can be
seen as how greedy the selection mechanism chooses its actions. By decreasing this
parameter over time, the selection mechanism will shift from more exploration in the
initial phase of the task (learning), to more exploitation at the end2 (earning). This
action selection mechanism overcomes one of the major drawbacks of the ε-greedy
approach. When using ε-greedy, the probability of choosing the next to best action

2 Note that with an ε-greedy selection mechanism it is also possible to reduce ε over time
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is equal to the probability of choosing the worst action. Since in a softmax approach
the probability of selecting an action is a grading function of their estimates, the
probability of choosing a very bad action is very small.

By over- or underestimating the initial values of actions, the dynamics of the
exploration process can be changed. For a more in-depth survey of a variety of
such ad-hoc action selection techniques we refer to [Thrun (1992)b,Thrun (1992)a,
Wiering (1999)]. In recent years, other techniques have emerged, aiming to steer
the exploration in RL problems by means of the incorporation of domain knowledge
[Grzes (2010)] or by providing the agents with additional reward signals to allow
them to learn faster in large environments [Grzes & Kudenko (2009)].

2.4 Evaluation of action selection mechanisms
In the previous section we briefly described greedy, ε-greedy and softmax action
selection mechanisms. In this section we will evaluate the behaviour of these mech-
anisms on 2 and 10-armed bandit problems. We performed 1000 tasks of each 1000
plays and present the average result over the tasks. For every task, the true value
of an action, Q∗(a), was generated from a normal distribution with mean 0 and
variance 1. The rewards for every task were generated from a normal distribution
with mean Q∗(a) and variance 1. The agent is updating the estimates of the value
of its actions using the sample average method.

2.4.1 2-armed bandit problem

We first show the behaviour of the action selection mechanisms using the 2-armed
bandit problem. One of the actions is the optimal one, whereas the other is subop-
timal. In Figure 2.3 we demonstrate the average probability of selecting the optimal
action for the different schemes. We have added an agent following a completely
random policy as a reference (ε = 1.0). All ε-greedy schemes need less than 200
plays to reach a probability of selecting the optimal action between 85% and 95%.
Note that when these schemes select a random action, they are just as likely to
select the optimal action as they are to select the suboptimal action.

For the softmax schemes using a Boltzmann distribution, we clearly see the effect
of the temperature parameter τ in the resulting probabilities. At the beginning of
the task, τ was set to 1000 and decayed at every play according to following formula:

τ = 1000 ∗ decayplay

We used 0.90,0.95 and 0.99 as the decay factor. From Figure 2.3 we see that the
faster we let the temperature decay, the earlier in the task it starts to play greedy
and plays the action with the highest Qt(a). Before the temperature decreases,
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this scheme acts similar to a completely random action selection mechanism and is
exploring between its possible actions. All softmax schemes reach a higher proba-
bility of selecting the optimal action than the ε-greedy schemes. This is due to the
fact that after some time the temperature parameter has become so small that the
scheme is acting completely greedy.
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Figure 2.3: Average probability that the agent selects the optimal
action under various action selection mechanisms in the 2-armed bandit
problem

In Figure 2.4 we show the reward the agents collect over the entire task. As in
the figure showing the probability of the optimal action, we also see here that the ε-
greedy schemes improve faster than the softmax approaches, but are outperformed
by these in the long run.

In a 2-arm setting we could also apply ε-greedy schemes with a decreasing ε.
As such, more control is obtained over the level of exploration at the beginning of
the task. In Table 2.1 we show the total reward the agents collected per task. For
this task, ε-greedy with ε = 0.1 and softmax with initial temperature at 1000 and a
decay rate of 0.9 perform almost on par, even though the softmax method selects
the optimal action more often. This is due to the fact that before the temperature
decreases, this scheme selects the suboptimal action in 50% of the plays. The ε-
greedy method exploits the optimal action earlier in the task and as such makes
up for not selecting the optimal action all the time. It should be clear that the
performance of every action selection scheme is very specific to the task at hand as
will be shown in the next chapter.
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Figure 2.4: Average reward the agent collects over time under various
action selection mechanisms in the 2-armed bandit problem

scheme Accumulated reward
ε-greedy,ε = 1.0 -6.561
ε-greedy,ε = 0.01 532.464
ε-greedy,ε = 0.05 531.823
ε-greedy,ε = 0.1 556.065
ε-greedy,ε = 0.2 445.134
softmax,τ = 1000 ∗ 0.99play 206.646
softmax,τ = 1000 ∗ 0.95play 486.821
softmax,τ = 1000 ∗ 0.9play 560.463

Table 2.1: Total accumulated reward per task in the 2-armed bandit
problem

2.4.2 10-armed bandit problem

In the 2-armed bandit problems of the previous section, only little exploration is
needed to identify the better of both actions. In this section we investigate how
these action selection mechanisms behave when the optimal action has to be selected
from 10 actions. Figure 2.5 show the probabilities of selecting the optimal action
for the different schemes. We clearly see that softmax outperforms the ε-greedy
methods and that a decay factor of 0.95 reaches the highest probability of selecting
the optimal action over 1000 plays. In Figure 2.6 we see a similar situation as in the
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2-armed bandit problem. The ε-greedy methods perform better in the beginning,
but are outperformed by the softmax methods in the end.
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Figure 2.5: Average probability that the agent selects the optimal
action under various action selection mechanisms in the 10-armed bandit
problem
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Figure 2.6: Average reward the agent collects over time under various
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The total accumulated reward, represented in Table 2.2, shows the benefits of
finding a correct trade-off between exploration and exploitation. A softmax scheme,
using a decay factor of 0.9, reached the highest cumulative reward over the entire
task. The rapid increase from the ε-greedy approaches in the first 100 plays is not
enough to reach the same cumulative reward as the softmax approach.

scheme Accumulated reward
ε-greedy,ε = 1.0 3.535
ε-greedy,ε = 0.01 1324.319
ε-greedy,ε = 0.05 1349.819
ε-greedy,ε = 0.1 1298.816
ε-greedy,ε = 0.2 1190.268
softmax,τ = 1000 ∗ 0.99play 511.756
softmax,τ = 1000 ∗ 0.95play 1333.369
softmax,τ = 1000 ∗ 0.9play 1409.146

Table 2.2: Total accumulated reward per task in the 10-armed bandit
problem

From these experiments we can conclude that different parameters for the explo-
ration strategies result in very varying outcomes. It should be clear that even in this
simple setting, a good balance must be found between exploration and exploitation.
Too little exploration leads to suboptimal results at the end of the learning process,
whereas too much exploration leads to bad performance during the learning process
and long learning times. The best choice of action selection mechanism is problem
dependent and there is no known way to automatically select the value of ε in ε-
greedy methods [Auer et al. (2002)], or at which rate to decrease the temperature
for the Boltzmann exploration strategy. In the following chapter we will illustrate
that this issue is even more pressing when multiple agents are acting in the same
environment.

2.5 Solution methods
In the previous sections we already introduced the theoretical framework on which
RL relies, the characterising attributes of RL problems, as well as some mechanisms
for selecting actions, given some estimates for the values of these actions. In this
section we provide an overview of solution methods to RL problems, with multiple
states and (possibly) delayed rewards. Two main categories of approaches exist.
On one side we have model-based techniques. These techniques use an explicit
model of the environment to calculate the optimal policy. This model can either
be available to the agent and dynamic programming methods can be applied, or
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the agent can learn this model while selecting actions. The latter can increase the
learning speed compared to traditional RL techniques and is applied in for instance
the dyna architecture and prioritized sweeping .

On the other side we have approaches which do not require an explicit model of
the dynamics of the system. These approaches are called model-free approaches.
Within these we can make the distinction between techniques that learn estimates
for the values of the actions, and subsequently derive a policy from these estimates,
and techniques that directly learn a policy and update this by means of a quality
measure. We will describe these approaches in Section 2.5.2

2.5.1 Model based approaches

A model in RL means some form of knowledge of the probabilities of the state
transition function T (s, a, s′) and the reward function R(s, a, s′). This could for
instance be a lookup table or a decision tree. When such a model is known in
advance, a policy π can be computed from it using dynamic programming.

2.5.1.1 Dynamic programming

The term dynamic programming (DP) encompasses a collection of algorithms that
can be used to compute an optimal policy π∗, if the agent has access to the un-
derlying model of the environment, represented as a Markov decision process (see
Section 2.1). Such policies can be derived by calculating the value of a state.

Definition 7. The value of a state s, given a policy π is the total amount of
reward an agent can expect to accumulate in the future, starting from that state s
following that policy.

V π(s) = Eπ {Rt|s(t) = s}

= Eπ

{ ∞∑
k=0

γkr(t+ k + 1)|s(t) = s

}
(2.2)

In a similar way, we can define the value of taking action a in state s:

Definition 8. The value of action a in state s, given a policy π is the total
expected amount of reward the agent can expect to accumulate in the future,
starting from state s, taking action a and thereafter follow policy π.

Qπ(s, a) = Eπ {Rt|s(t) = s, a(t) = a}

= Eπ

{ ∞∑
k=0

γkr(t+ k + 1)|s(t) = s, a(t) = a

}
(2.3)

Rewriting the state-value function of Equation 2.2 as a recursive function gives
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us the Bellman equation for V π:

V π(s) = Eπ {r(t+ 1) + γV π(s(t+ 1))|s(t) = s}

=
∑
a

π(s, a)
∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2.4)

This equation expresses the recursive relation between the value of a state and
the value of its successor states. It calculates a weighted average over all possible
successor states, based on the probability of occurring. When solving RL problems,
one wants to find the optimal policy, i.e. the policy which maximises Equation 2.4.
This optimal value function V ∗ for all states s ∈ S is defined as:

V ∗(s) = max
π

V π(s) (2.5)

Similar to this equation we can define the optimal state-value function Q∗ for all
states s ∈ S and for all actions a ∈ A:

Q∗(s, a) = max
π

Qπ(s, a) (2.6)

So Q∗(s, a) describes the expected return for taking action a in state s according
to a policy π and following an optimal policy after that:

Q∗(s, a) = Eπ{r(t+ 1) + γV ∗(s(t+ 1))|s(t) = s, a(t) = a}

The value of a state under the optimal policy is equal to the expected return for
the best action from that state. This is called the Bellman optimality equation for
V ∗ and can be derived as follows:

V ∗(s) = max
a∈A(s)

Qπ
∗
(s, a)

= max
a∈A(s)

Eπ∗ {Rt|s(t) = s, a(t) = a}

= max
a∈A(s)

Eπ∗

{ ∞∑
k=0

γkr(t+ k + 1)|s(t) = s, a(t) = a

}

= max
a∈A(s)

Eπ∗

{
r(t+ 1) + γ

∞∑
k=1

γkr(t+ k + 1)|s(t) = s, a(t) = a

}
= max

a∈A(s)
E {r(t+ 1) + γV ∗(s(t+ 1))|s(t) = s, a(t) = a}

= max
a∈A(s)

∑
s′

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)] (2.7)

In a similar way, the Bellman optimality equation for Q∗ is given by:

Q∗(s, a) =
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(2.8)

Given the transition function T and the reward function R, algorithms that solve
Equation 2.7 are known as dynamic programming algorithms. We will briefly review
the two most well-known DP algorithms: policy iteration and value iteration.
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Policy Iteration
The policy iteration algorithm will use the state-value function to calculate the value
of the entire policy, by calculating the value of all the states. This step is known as
the policy evaluation (PE) step. Using the newly calculated values of the states, in
the policy improvement (PI) step, the algorithm will attempt to find a better action
in all states. As long as the algorithm finds better actions, it will iterate over these
two steps as shown in Figure 2.7.

π0 Vπ0 π1 Vπ1 π2 Vπ2 π* V*
PE PI PIPE PE PEPIPI ...

Figure 2.7: Alternation between policy evaluation and policy improve-
ment steps, where each step yields a better policy, until termination
with the final policy π∗

Since the number of deterministic policies is finite for a finite MDP, i.e. |A||S|
and each policy πi is an improvement over the previous policy πi−1, this algorithm is
guaranteed to find the optimal policy in at most an exponential number of iterations
[Puterman (1994)]. The pseudocode for this algorithm is given in Algorithm 2.

Value Iteration
Another approach to find the optimal policy is to calculate the optimal value function
directly as is done in the value iteration algorithm. Value iteration does not need a
separate policy evaluation step, and as such is computationally less expensive than
policy iteration. Value iteration uses a simple backup operation to calculate the
optimal value function iteratively:

V π
′
(s)← max

a

∑
s′

T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2.9)

It can be shown that this process converges to the optimal value function V ∗

[Bellman (1957),Bertsekas (1976)]. As a stopping criterion the difference between
two successive value functions is commonly used. If this difference is arbitrarily
small, the optimal policy can be derived from the value function, by selecting the
greedy action for every state. The complete outline of the algorithm is given in
Algorithm 3.

These algorithms are a way of solving an MDP when the underlying transi-
tion and reward functions are known. In the following section we will discuss RL
algorithms in which these functions are unknown to the agent.

2.5.2 Model free approaches
In this section we will describe the RL counterparts of value and policy iteration. In
RL it is common that the agents do not have access to the underlying model of the
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Algorithm 2 Policy Iteration
1: Initialisation:
V (s) ∈ R and π(s) ∈ A(s) arbitrarily ∀s ∈ S

2: repeat
3: Policy evaluation:
4: repeat
5: ∆← 0
6: for all s ∈ S do
7: v ← V (s)
8: V (s)←

∑
s′ T (s, π(s), s′) [R(s, π(s), s′) + γV (s′)]

9: ∆← max(∆, |v − V (s)|)
10: end for
11: until ∆ < θ

12: Policy improvement:
13: policy-stable ← true
14: for all s ∈ S do
15: b← π(s)
16: π(s)← argmaxa

∑
s′ T (s, a, s′) [R(s, a, s′) + γV (s′)]

17: if b 6= π(s) then
18: policy-stable ← false
19: end if
20: end for
21: until policy-stable

problem they are trying to solve, i.e. the transition and reward functions cannot be
used explicitly but can only be experienced implicitly through interaction with the
environment. This concept of learning from experience is known as direct learning.
As with DP, we can also distinguish between approaches that learn the values of
the states and derive a policy from these values subsequently and approaches that
change the policy directly. We will begin by describing the Q-learning algorithm,
which is one of the most popular and well-known RL algorithms and is an example
of an approach that learns the values of the states. The research described in
Chapters 5 and 6 is based on this algorithm. In Section 2.5.2.2 we will describe
Learning Automata (LA). These simple reinforcement learning units have strong
theoretical convergence guarantees and can be combined into complex networks to
learn policies for the problem at hand. LA, which fall in the category of policy
iteration algorithms, form the basis of the research described in Chapter 4.
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Algorithm 3 Value Iteration
1: Initialise V arbitrarily ∀s ∈ S
2: repeat
3: ∆← 0
4: for all s ∈ S do
5: v ← V (s)
6: V (s)← maxa

∑
s′ T (s, a, s′) [R(s, a, s′) + γV (s′)]

7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ

10: Output a deterministic policy π, such that
11: π(s)← argmaxa

∑
s′ T (s, a, s′) [R(s, a, s′) + γV (s′)]

2.5.2.1 Q-learning

One of the most popular approaches for solving RL problems is Q-learning [Watkins
(1989),Watkins & Dayan (1992)]. The goal of Q-learning is to approximate the
optimal state-action values as given in Equation 2.8. Since we are dealing with
model-free approaches, the values for T (s, a, s′) and R(s, a, s′) are not available.
For this reason, Q-learning uses estimates for the values of future states in its
updating process. This principle is known as bootstrapping. The current estimates
of the state-action values are known as Q-values. Every estimate Q̂(s, a) is the
learner’s current hypothesis about the actual value of Q∗(s, a) for a state s and
action a. These Q-values are updated according to following update rule:

Q̂(s, a)← (1− α(t))Q̂(s, a) + α(t)
[
r + γmax

a′
Q̂(s′, a′)

]
(2.10)

where α(t) ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount rate. A
complete listing of the algorithm is given in Algorithm 4.

By iteratively updating these estimates Q̂, these values will converge to Q∗

under some general conditions [Tsitsiklis (1994)]:

• all state-action pairs are visited infinitely often,

• a suitable evolution for the learning rate is chosen.

Clearly, visiting all state-action pairs infinitely often is impracticable for real-world
applications of Q-learning. In such applications, the amount of exploration is usu-
ally reduced after the Q-values have converged (i.e. changes are smaller than some
∆). Techniques for tuning this exploration rate have already been discussed in Sec-
tion 2.3.

Sparse Interactions in Multi-Agent Reinforcement Learning



2.5. Solution methods 33

Algorithm 4 Q-learning
1: Initialise Q̂(s, a) arbitrarily
2: for each episode do
3: Initialise s
4: for each step in the episode do
5: Choose a from s using policy derived from Q̂ (cfr. Section 2.3)
6: Take action a, observe r,s′
7: Q̂(s, a)← Q̂(s, a) + α[r + γmaxa′ Q̂(s′, a′)− Q̂(s, a)] (cfr. Equation

2.10)
8: s← s′

9: end for
10: end for

Because Q-learning is learning the value of state-action pairs and deriving a
policy from these values, this algorithm is classified in the family of value iteration
algorithms. In the following section we describe learning automata which is an
example of a reinforcement learning approach that belongs to the policy iteration
algorithms.

2.5.2.2 Learning automata

Learning Automata (LA) are adaptive decision makers which are capable of acting
in highly uncertain stochastic environments. They have their roots in mathematical
psychology and were used in the fifties to describe human behaviour from psycho-
logical and biological viewpoints [Bush & Mosteller (1955)]. In the 1960’s LA were
used for engineering research [Tsetlin (1962)]. Nowadays, they are commonly used
in control problems for their low computational complexity such as in [Ahamed et al.
(2002)]. In its most basic form, a learning automaton is connected to its environ-
ment in a feedback loop [Narendra & Thathachar (1989)]. This feedback loop is
represented graphically in Figure 2.8

Each time step t the automaton selects an action a(t) ∈ A. This results in an
output of the environment r(t + 1) ∈ B. Using this response, the automaton will
update its internal probability distribution ~p over its action, according to its update
scheme U . This probability distribution is its policy.
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Learning automaton

U,p={p1,..., pn}

Environment

C={c1,..., cn}

IN

OUT IN

OUT

action
a(t) ∈ A

reward
r(t+1) ∈ B

Figure 2.8: Situated learning automaton in a feedback loop with the
environment.

Formally a learning automaton is described as follows:

Definition 9. A Variable Structure Learning Automaton can be defined as the
quadruple { A, B, ~p, U}, where:

• A is the action set of the automaton,

• B is the response set of the environment,

• ~p is a probability distribution over the actions,

• U is the update scheme used to update ~p.

and the environment in which the automaton is acting:

Definition 10. An Environment is a triple { A, C, B}, where:

• A is a finite set of possible inputs to the environment with |A| = n,

• C is a vector containing reward probabilities where each element ci ∈ C

corresponds to one action ai ∈ A and is defined as ci = Pr[B = 1|a(t) = ai]
, which is the probability of success if action ai was selected at timestep t,

• B is a finite set representing the possible outputs of the environment.

Note that the input set of the automaton, is the same as the output set of the
environment and the output set of the automaton is the same as the input set of
the environment.

Depending on the response set B, we distinguish different models for the envi-
ronment:

• P-model: In this model, the response set is binary: B = {0, 1}. 1 denoting
success and 0 denoting failure.

Sparse Interactions in Multi-Agent Reinforcement Learning



2.5. Solution methods 35

• Q-model: In this model, the response is an element of a finite set: B =
{b1, . . . , bm} with ∀i, where 0 ≤ bi ≤ 1.

• S-model: In this model, the response is a real value in the interval [0, 1].

The update scheme U follows the law of effect and will increase the probabilities
of actions that resulted in a favorable response and decrease the probabilities for
actions that resulted in an unfavorable response. The general scheme when action
ai was chosen at time step t is given by:

pi(t+ 1) = pi(t) + αr(t+ 1)(1− pi(t))− β(1− r(t+ 1))pi(t) (2.11)
with pithe probability of selecting action ai

pj(t+ 1) = pj(t)− αr(t+ 1)(pj(t)) + β(1− r(t+ 1))
(

1
n− 1 − p

j(t)
)

(2.12)

∀aj ∈ A, where aj 6= ai and pjthe probability of selecting action aj

where n is the total number of actions, r(t + 1) ∈ B is the response received for
performing action ai at time step t, α is the reward parameter and β is the penalty
parameter. Three common update schemes are defined in literature:

• Linear Reward-Inaction (LR−I) if β = 0 in Equations 2.11 and 2.12,

• Linear Reward-Penalty (LR−P ) if α = β in Equations 2.11 and 2.12,

• Linear Reward-ε-Penalty (LR−εP ) if β << α in Equations 2.11 and 2.12.

When used to solve MDPs, multiple learning automata can be connected to
form a network, assigning one automaton to each state. When the automaton in
state s is activated, it selects an action a ∈ A(s), according to the probability vector
~p associated with state s.The updates are performed using the accumulated reward
since the last visit to state s. The algorithm for optimising the expected average
reward over time is described in [Wheeler Jr & Narendra (1986)] and for optimising
the future discounted reward in [Witten (1977)].

2.5.3 Learning models
In Section 2.5.1 we have described approaches for calculating the optimal policy
when the models of the transition and the reward functions are known to the agent.
In the previous section, we discussed methods for learning an optimal policy when
this model is not known. Sutton’s dyna architecture provides a way to integrate
both of these approaches by simultaneously learning by trial-and-error in the real
world and by performing updates based on a learned model of the world [Sutton
(1990), Sutton (1991)]. It uses experience to build a model of the transition func-
tion and of the reward function. This model is then used simultaneously with real
experience, to update the policy. A graphical representation of this process is shown
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in Figure 2.9. In [Sutton (1990)] two actual algorithms based on the Dyna architec-
ture are given: Dyna-PI and Dyna-Q. The basic idea of the former is to alternate
real world experience with hypothetical experiences. In Dyna-Q, the Q-learning
algorithm is executed in the real world to generate experience, while, at the same
time, k additional updates are performed using experience gathered from the model.
This requires about k times the computation of Q-learning per time step, but, as
shown in [Sutton (1990)], the optimal policy is reached a lot sooner than with the
model-free Q-learning algorithm (Algorithm 4) for deterministic environments.

In later work, Moore and Atkeson developed prioritized sweeping, which stores
probabilities on state transitions in a priority queue to concentrate the computational
effort on the states with the largest probability of reaching an end state [Moore &
Atkeson (1993)].

Policy

Experience

ModelReal world

Take actions

Generate

Update

Figure 2.9: Dyna architecture: Simultaneously use experience to up-
date the policy and the model of the world, by taking actions in both
the real world as in the learned model.

2.6 Other MDP frameworks
All the algorithms and approaches we described above used the Markov Decision
Process as the underlying framework. As explained, an MDP consists of a set of
distinct states and the agent is informed about the state it is currently in. In practical
applications, such as robotics, this is however not always realistic. In an extension
of an MDP, called a Partially Observable Markov Decision Process (POMDP) the
agent is not informed of the state the system is currently in, but is rather given
a set of observations of the state which provide a hint of the state the system is
currently in [Astrom (1965)].

Based on these observations, the agent can calculate a belief state. A belief
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state is a probability distribution over states, representing the probability of being
in a certain state s, given a set of observations. Formally we can describe a POMDP
as follows:

Definition 11. A Partially Observable Markov Decision Process is a tuple
(S,A,O, T,Ω, R), where:

• S, A, T and R are the same as in an MDP,

• O : o1, . . . , oN is a finite set of observations,

• Ω : S × A× O → [0, 1] is the observation function Ω(o, s, a), specifying the
probability of observing o, given state s after taking action a.

POMDPs offer a challenging problem for RL, because the environment the
agents experience does not obey the Markov Property. An agent has no com-
plete perception of the state of the environment. A simple example of a POMDP in
which such problems occur is a continuous state problem which is being discretised
too coarse. Another example is when critical state information, that is required for
a Markovian description of the state, cannot be observed by the agent. A more
thorough overview of POMDPs together with some solution methods can be found
in [Littman et al. (1998)]. For a more in depth study of learning to act optimally
in partially observable domains, we refer to [Cassandra (1998)].

Sometimes it may be beneficial to represent states by means of a set of properties
instead of looking at states as atomic entities. This allows for the exploitation
of certain dependencies that exist between some of these state variables. This
framework is known as a factored Markov decision process (FMDP) [Boutilier et al.
(1995)].

In an FMDP system states are described using a set of random variables X =
{X1, . . . , Xn} where each state variable Xi can assume values in a finite do-
main Dom(Xi). Each possible system state corresponds to a value assignment
xi ∈ Dom(Xi) for every state variable Xi.
The state transition function in such systems can compactly be described by a
Dynamic Bayesian Network (DBN). This is a two-layer directed acyclic graph Ga
where the nodes are {X1, . . . , Xn, X

′
1, . . . , X

′
n}. Such a graph is maintained for

every action a and captures the dependencies between the state variables at time
step t (Xi) and the resulting state variables after the transition at timestep t + 1
(X ′i). In this graph, the parents of X ′i are denoted by Parentsa(X ′i). With every
node X ′i ∈ Ga, a conditional probability distribution
CPDa

Xi
(X ′i|Parentsa(X ′i)) is associated quantifying the DBN. This method ben-

efits from the dependencies that exist (or don’t exist) between the variables of the
network.
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Location of Taxi

Location of the passenger

Requested destination

Location of Taxi

Location of the passenger

Requested destination

timestep t timestep t+1

Figure 2.10: DBN for the Pickup-action of the stochastic taxi domain
problem (see Example 2.1). At the moment the taxi executes this action
it is not carrying a passenger.

Figure 2.10 shows the dependencies between the variables at timestep t and
timestep t + 1 when the Pickup-action is executed in the stochastic taxi domain
problem (see Example 2.1). The current context is that the taxi is not yet carrying a
passenger. The taxi remains in the same location so this variable is only dependent
on its value in the previous timestep. The passenger’s location can change from
being in one of the coloured cells to being inside the taxi, if the taxi is at the
location of the passenger and the passenger was not already in the taxi. The same
goes for the desired destination of the passenger. This will only change if the taxi
is at the same location as the passenger and the taxi is not already carrying a
passenger. Several works aimed at learning and exploiting this structure have been
published. Key references for this area of RL research are [Koller (1999)], [Guestrin
et al. (2004)] and [Degris et al. (2006)].

2.7 Summary

This chapter presented a brief overview of reinforcement learning. We started this
chapter by describing the underlying framework of RL: the Markov decision process.
Second, we explained how reinforcement learning is defined by the problem an
agent faces, rather than by a particular set of algorithms. We showed different
methods for selecting actions in unknown environments and gave a comparison
of their performance in n-armed-bandit problems, which can be seen as stateless
RL problems. We continued by introducing multi-stage reinforcement learning and
described solution methods for situations in which the model was known to the
agent: dynamic programming methods such as value and policy iteration. Situations
in which the model is unknown to the agent: Q-learning and learning automata.
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And situations in which the agent simultaneously learns a model of the world, as
well as a policy: the dyna architecture.

At the end of this chapter we shortly described some other frameworks that are
common in a RL context. In the POMDP framework an agent receives observations
and maintains beliefs over the actual system states it is in. We explained that care
had to be taken in such systems since the environment the agents are experiencing
is no longer assured to obey the Markov property. In a sense we could see a multi-
agent system as a POMDP in which the agent only has its own information and does
not have complete observability over the entire system state (i.e. the information
of all the agents).

In this chapter we assumed that the state and action space are discrete. For
the interested reader in continuous environments, we refer to [Busoniu (2008)]
and [Busoniu et al. (2010)].

The next chapter will describe the additional complexities when multiple agents
are acting in the same environment and how RL is being used in such settings.
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Chapter 3
Learning in multi-agent systems

Life can only be understood backwards; but it must be lived forwards.
– Soren Kierkegaard, 1813-1855 –

3.1 Introduction
Telecommunications, economics, mobile robots, traffic simulation, . . . are all exam-
ples of systems in which decentralisation of data and/or distribution of control is
either required or inherently present. As such the use of multiple interacting agents
is either a necessity to solve the problem at hand, or the most optimal way to do
so. Such systems are called Multi-Agent Systems (MAS). In MAS we can make a
distinction based on several dimensions [Kaminka (2004)]:

• Agent design: Agents can be heterogeneous or homogeneous.

• Perception: The view the agents have on the environment is usually dis-
tributed. They can all have their own view and state information about the
world, they can share information between each other, or they might all have
the same perception of the environment due to a central information system
(f.i. an overhead camera).

• Goals: In a MAS, the decision making is decentralised. This means that each
agent makes its own decisions in order to achieve its goals. When dealing with
multiple agents, these agents can either act as a team, working together,
trying to achieve the same common goal, or they can each have their own
goals and conflicting interests. In the former it is important to coordinate
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actions in order to achieve the goal as best as possible using all available
resources. In the latter, it is important to take fairness into consideration and
attempt to find a good solution for the entire system and not just for a single
agent.

• Communication and interaction: Agents can have many interactions with
each other, communicating their own preferences, actions, learned models,
. . . or agents could act completely independent.

These distinctions in MAS could follow from the system in which the agents are
acting, or could be a design choice depending on the application for which MAS are
a solution.

Despite the added complexity that comes naturally with multi-agent systems,
we can also list several benefits [Bond & Gasser (1988),Sycara (1998)]:

• Speedup: Due to the parallel computation, multi-agent systems can solve
certain problems faster than a centralised sequential system.

• Robustness: Since several agents are acting in the same environment, pos-
sibly achieving the same goal, there is no single point of failure present in the
system. If one agent fails, the system might undergo a performance drop, but
the entire system will not fail.

• Scalability: Similar to how one failing agent might only have a negative
impact on the performance of the system, adding additional agents to the
systems might improve the global performance of the system.

• Costs: As with most technological advances, the cost of several systems is
usually lower than the cost of one system with twice the power.

• Maintainability: It is easier to maintain a system, built up of several inde-
pendent entities rather than a monolithic one.

In the previous chapter we focused on the theoretical framework and solution
methods for learning optimal behaviour through trial-and-error interactions with
the environment with only a single agent present. However, when multiple learners
simultaneously apply reinforcement learning in a shared environment, the traditional
approaches often fail.

In the multi-agent setting, the assumptions that are needed to guarantee con-
vergence are often violated. Already in the most basic case where agents share a
stationary environment and need to learn a strategy for a single interaction, many
new complexities arise. Even when agent objectives are aligned and all agents try to
maximise the same reward signal, coordination is still required to reach the global
optimum. When agents have opposing goals, a clear optimal solution may no longer
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exist. In this case, an equilibrium between agent strategies is usually looked for. In
such an equilibrium, no agent can improve its payoff when the other agents keep
their actions fixed.

When, in addition to multiple agents, we assume a dynamic environment which
requires multiple sequential decisions, the problem becomes even more complex.
Agents do not only have to coordinate, they also have to take into account the
current (and possible future) state of their environment containing other agents.
This problem is further complicated by the fact that agents typically have only
limited information about the system. In general, they may not be able to observe
actions or rewards of other agents, even though these actions have a direct impact
on their own rewards and the environment in which they are acting. In the most
challenging case, an agent may not even be aware of the presence of other agents,
making the environment seem non-stationary. In some limited cases, the agents
have access to all this information, but actually learning in a joint state-action
space makes the problem much harder to solve, both computationally and in terms
of the coordination required between the agents. In order to develop a successful
multi-agent approach, all these issues need to be addressed. Figure 3.1 depicts
a typical model of Multi-Agent Reinforcement Learning (MARL). Multiple agents
are connected to an environment, which transitions to a new state, based on the
combined effect of the actions of all the agents. It informs the agents of this new
state, together with a (individual) reward signal for the past joint action.

Agent 1

Agent 2

Agent n

...

E
N
V
I
R
O
N
M
E
N
T

joint state s(t+1)
reward r(t+1)

r1(t+1)
a1

a2

an

joint action a(t)

s(t+1)

s(t+1)

s(t+1)

r2(t+1)

rn(t+1)

Figure 3.1: Standard model of multi-agent reinforcement learning
[Nowé et al. (2011)].
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The need for adaptive multi-agent systems, combined with the complexities of
dealing with interacting learners has led to the development of the field of multi-
agent reinforcement learning, which is built on two basic pillars: the reinforcement
learning research performed within AI (See Chapter 2), and the interdisciplinary work
on game theory. While early game theory focused on purely competitive games, it
has since developed into a general framework for analyzing strategic interactions.
It has attracted interest in fields as diverse as psychology, economics and biology.
With the advent of multi-agent systems, it has also gained importance within the
AI community. For a more broad overview of MAS and additional references, we
refer to [Wooldridge (2002)] and [Vlassis (2009)]. For MARL we refer the interested
reader to the overview papers by Shoham et al. [Shoham et al. (2003)] and Busoniu
et al. [Busoniu et al. (2008)].

In the remainder of this chapter we will present a collection of approaches to
model a MAS. Each of these frameworks is different in terms of the rewards the
agents receive, how the actions are selected, and the view the agents have over
of the system. After introducing these theoretical frameworks that are capable of
representing the complexities of learning in MAS, we will shortly describe some well
known existing MARL algorithms. After having introduced this background of multi-
agent systems we will explain the current trend in MARL research. This new focus
in MARL captures the dependencies that exist between agents in certain regions of
the state space, and attempts to reduce the state-action space in which the agents
have to learn. These dependencies are called sparse interactions. Finally, we will
elaborate on novel algorithms that are able to learn and exploit these interactions.

3.2 Overview of multi-agent frameworks

The multi-agent systems considered in this chapter are characterised by strate-
gic interactions between the agents. By this we mean that the agents in these
systems are autonomous entities, which have individual goals and independent de-
cision making capabilities, but which also are influenced by each others’ decisions.
We distinguish this case from the approaches that can be described as distributed
or parallel reinforcement learning. In such systems multiple learners collaboratively
learn a single policy. This includes approaches dividing the learning state space
among agents [Steenhaut et al. (1997)], systems where multiple agents update the
policy in parallel [Mariano & Morales (2001)] and swarm based techniques [Dorigo
& Stützle (2004)]. Many of these systems can be treated as advanced exploration
techniques for standard reinforcement learning and are still covered by single agent
theoretical frameworks, such as the framework described in [Tsitsiklis (1994)], since
the assumptions made there explicitly allow agents to use temporally outdated Q-
values. The convergence of the algorithms remain valid as long as outdated infor-
mation is eventually updated. For example, it allows to use outdated Q-values in
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the max-operator in the right hand side of the standard Q-learning update rule (see
Equation 2.10). This is particularly interesting if the Q-values belong to different
agents exploring different parts of the environment. The systems covered by this
chapter, however, go beyond the standard single agent theory, and as such require
a different framework to model certain properties.

Over the years many taxonomies for MAS have been published. In the most
recent one problems are classified according to four agent modelling dimensions:
model of the agent and model of other agents, learning or non-learning agents, indi-
vidual or group input, and cooperative or conflicting interests [Guttmann (2009)]. In
this dissertation we are concerned with the interactions that occur between learning
agents. An overview of multi-agent learning research based on strategic interactions
between agents is given in Figure 3.2. The techniques listed are categorised based on
the amount of information they require during the learning phase. On the horizontal
axis is the information contained in the state space. On the vertical axis is shown
how actions are being selected in the system. Near the origin, agents always select
their actions independently, whereas at the top of the figure, agents select their
actions in conjecture with each other. So, at the bottom left we have techniques
that completely ignore other agents and only observe their own state information
and select their actions without coordinating with other agents. These techniques
have been described in Chapter 2. While designed for use in single agent learning,
agents could also apply these techniques in a shared environment. However, as
such, the influence of other agents is completely ignored and their convergence is
not guaranteed. We will discuss this issue in Section 3.2.1.

At the top right we list techniques that use full joint state information and se-
lect their actions together either implicitly, or explicitly. Agents select their actions,
based on some knowledge about the other agents, or they coordinate to select an
action. At the bottom right, we list some techniques that use full joint state observ-
ability, but select their actions independently. These algorithms do not observe the
actions of other agents. All these approaches lie at an extreme point, i.e. always
observe the state and/or action information of other agents or never observe it. The
main focus of this dissertation lies in between these approaches. In the following
chapters we will describe several algorithms, that only use full joint state observabil-
ity in situations where this complete state information is required, and select actions
independently. These algorithms are marked in bold and red in the figure and are
our own contributions. 2Observe will be explained in Chapter 4, CQ-learning will be
described in Chapter 5 and FCQ-learning in Chapter 6. At the end of this chapter
we describe two other related algorithms that also exploit the dependencies that
exist among the agents in certain states: Utile Coordination [Kok et al. (2005)]
and more recently Learning of Coordination [Melo & Veloso (2009)].
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Local state information Joint state information

Independent
action selection

Joint action
(view or selection)

- Q-learning
- Learning automata
- Single agent RL

- MMDP-ILA
- MG-ILA

- Nash-Q,CE-Q,...
- SuperAgent
- JAL

- Utile Coordination

- Learning of Coordination
- CQ-Learning
- 2Observe
- FCQ-Learning

Figure 3.2: An overview of multi-agent research categorized by the
strategic interactions.

We will begin by giving a thorough explanation of why the single agent MDP is
no longer suitable for situations where multiple agents are acting in the same envi-
ronment. This analysis is followed by the introduction of a framework for modelling
multi-agent learning problems, called Markov Games in Section 3.2.2. This frame-
work generalises the Markov Decision Process (MDP) setting usually employed for
single agent RL. It considers both interactions between agents and a dynamic en-
vironment. Section 3.2.3 describes the current state of the art in MARL research,
which takes the midground between independent learning techniques and Markov
game techniques operating in the full joint-state joint-action space.

3.2.1 Single agent MDPs

The main problems of using the single agent MDP for environments where multiple
agents are present, is that the Markov property no longer holds and that envi-
ronments seem to be non stationary to the agent. Algorithms based on the MDP
framework, such as independent Q-learning may still be applied, but the results may
vary, depending on the number of interactions with other agents. To illustrate this
we performed some experiments with multiple agents in a small environment where
interactions occur very often. The environment is illustrated in Figure 3.3 [Green-
wald & Hall (2003)]. Two agents have to reach the same goal, marked by the
coloured dot, without colliding into any walls or into each other from their start
position, marked by the X. Agents are colliding with each other if they attempt to
move to the same cell at the same time. The state information for each agent,
contains only their current location. A penalty of −10 is given for colliding with the
other agent, −1 for every action and +20 for reaching the goal.
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Figure 3.3: Grid game 2 from [Greenwald & Hall (2003)]. A game
with a high number of strategic interactions between the agents.

The algorithm used for this experiment was Q-learning, with a learning rate of
0.1 and a softmax exploration strategy with a decreasing temperature. This selection
strategy was selected because it obtained the best results in our bandit experiments
in single agent environments (See Section 2.4). The value for the temperature was
as follows: τ = max(100 ∗ 0.99timestep, 0.05).
50 independent runs of the algorithm were performed and the results presented here
are the averages over these runs.

In Figure 3.4 we show the number of steps both agents needed to complete an
episode, i.e. reach the goal state. On the left hand side of this figure we see that
initially the learning process is optimising the performance of both agents and the
number of steps to reach the goal is decreasing. So slowly, agents are converging
to the shortest path towards the goal. As can be seen from Figure 3.3, the shortest
path to the goal of both agents coincides. Thus, as learning progresses, the agents
start colliding more often and learn not to take the action that will lead them directly
to the goal. On the right hand side we illustrate this effect over 5, 000 episodes.
Since agents are still exploring a little, they still manage to reach the goal eventually.
In RL however, it is common to turn off the exploration after some time and only
play the policy to which the agents have converged. In this very simple scenario
this would however have a terrible impact, since neither agent would ever reach the
goal anymore.

Agent 1 needs considerably less steps than Agent 2. This can be explained by
the fact that the Q-value of its action that would lead it in the direction to the goal
is relatively still a bit better than the actions that would lead towards a boundary in
the grid and hence is selected slightly more often by the softmax strategy. Using an
ε-greedy strategy would allow agents to have a similar performance and, depending
on the value of ε, even lead to much better solutions. These results are shown in
Figure 3.5 with ε = 0.9. Agents learn the same Q-values, but their exploration rate
remains constant over time. Moreover, the action that leads them in the direction
of the goal is selected with an equal probability as the other suboptimal actions.
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Figure 3.4: The number of steps needed for both agents to complete
an episode in the Grid game 2 environment using a softmax exploration
strategy with τ = max(100 ∗ 0.99timestep, 0.05). (a) shows the first
1, 000 episodes, (b) shows the results over 5, 000 episodes.

One could add a wait action to allow one agent to go through the small passage
before the other, but since agents cannot differentiate on the position of the other
agent, this will result in both agents converging to their wait action in their initial
position and never reach the goal.

Figure 3.6 shows the average number of collisions that occurred during the
learning process using a softmax strategy. On the left hand side we see the progress
over the first 1, 000 episodes. Initially this number was decreasing, until the agents
started to converge towards the shortest path around the 700th episode, where
there is a sudden increase in the number of collisions. This resulted in low Q-values
for the only action that leads towards the goal. Both agents preferred the three
actions that caused them to bump into a wall, since the penalty for this was lower
than for bumping into each other. On the right hand side we show the results
over 5, 000 episodes. The number of collisions eventually goes to zero, but this
comes with a huge overhead in the number of steps the agents take to go to the
goal in this very small environment. If the agents would play purely greedy at the
end, they would never collide anymore, but they would also no longer reach the goal.

When using an ε-greedy strategy agents still collide and never learn to completely
avoid collisions. The results for ε = 0.9 are shown in Figure 3.7. What agents gain in
terms of the number of steps, they loose again in terms of the number of collisions.
Overall an ε-greedy strategy is less extreme than the softmax strategy. For this
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Figure 3.5: The number of steps needed for both agents to complete
an episode in the Grid game 2 environment using an ε-greedy exploration
strategy (ε = 0.9). (a) shows the first 1, 000 episodes, (b) shows the
results over 5, 000 episodes.
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Figure 3.6: The number of collisions per episode in the Grid game 2
environment using a softmax exploration strategy with τ = max(100 ∗
0.99timestep, 0.05). (a) shows the first 1, 000 episodes, (b) shows the
results over 5, 000 episodes.

reason we will use this exploration strategy when using independent learners in this
dissertation.
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Figure 3.7: The number of collisions per episode in the Grid game
2 environment using an ε-greedy exploration strategy (ε = 0.9). (a)
shows the first 1000 episodes, (b) shows the results over 5000 episodes.

These experiments clearly show that using single agent algorithms in settings
where the behaviour of agents influences the rewards of the other agents, is far
from optimal. Different results can be obtained with other exploration strategies
and action selection mechanisms, but the behaviour of such single agent algorithms
remains unpredictable and completely unsuitable for this kind of multi-agent en-
vironments. Such environments require more informed algorithms that use more
information about the other agents in the environment.

3.2.2 Markov games and Decentralised MDPs

As shown above, an agent cannot simply ignore the presence of other agents and
thus we can no longer rely on single agent MDPs as a framework. An extension
of the single agent MDP to the multi-agent case is straightforward and can be
defined by Markov games. In a Markov game (MG), actions are the joint result of
multiple agents choosing an action independently, based on the state information
of the entire system (i.e. all the agents).

Definition 12. A Markov game is a tuple (n, S,A1,...,n, T,R1,...,n):

• n the number of agents in the system.

• S = {s1, . . . , sN} a finite set of system states.

• Ak the action set of agent k.
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• T : S ×A1 × . . .×An → µ(S) the transition function.

• Rk : S ×A1 × . . .×An × S → R, the reward function of agent k.

Note that Ak(si) is now the action set available in state si to agent k, with
k : 1 . . . n and i : 1, . . . , N . Transition probabilities T (si,~ai, sj) and rewards
Rk(si,~ai, sj) now depend on a current state si, next state sj and a joint ac-
tion from state si, i.e. ~ai = (ai1, . . . ain) with aik ∈ Ak(si). The reward function
Rk(si,~ai, sj , ) is now individual to each agent k. Different agents can receive dif-
ferent rewards for the same state transition. Transitions in the game are again
assumed to obey the Markov property. A special case of this framework in which
all agents share the same reward function is called a Multi-agent Markov Decision
Process (MMDP) [Boutilier (1996),Claus & Boutilier (1998)]. This special case is
used to model fully cooperative multi-agent tasks.

As was the case in MDPs, agents try to optimise some measure of their future
expected rewards. In this dissertation we are concerned with systems that try to
maximise their future discounted reward. The main difference to single agent RL
is that now these criteria also depend on the policies of other agents. This results
in the following definition for the expected discounted reward1 for agent k under a
joint policy ~π = (π1, . . . , πn), which assigns a policy πk to each agent k:

V ~πk (s) = E~π

{ ∞∑
t=0

γtrk(t+ 1) | s(0) = s

}
(3.1)

It is clear that learning in a Markov game introduces several new issues over
learning in MDPs with regard to the optimal policy that should be learned. In an
MDP, it is possible to prove that, given some basic assumptions, an optimal deter-
ministic policy that maximises the reward, always exists. In Markov games however,
it is in general impossible to maximise this criterion for all agents simultaneously
since they can all have a different reward function. Therefore, we typically rely on
equilibria as the solution concept for these problems. The best response equilibrium
for instance calculates the best course of actions to take, given the policy of the
other agents. If all agents adopt this strategy, they are playing according to a pure
Nash equilibrium. This means that for none of the agents another policy exists
which gives a higher expected future reward, provided that the other agents keep
their policies fixed. However, this only holds if, like in a single agent MDP, it is
sufficient to consider only those policies which deterministically map each state to
an action. It is however possible in MG that the equilibria can only be reached using

1 Another measure of the future expected reward is for instance the average reward method. For
agent k this is defined as:

J~πk (s) = lim
T→∞

1
T
E~π

{
T∑
t=0

rk(t+ 1) | s(0) = s

}
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stochastic policies. As such, it is not sufficient to let agents map a fixed action to
each state: they must be able to learn a mixed strategy. The situation becomes
even harder when considering other reward criteria, such as the average reward, since
then it is possible that no equilibria in stationary strategies exist [Gillette (1957)].
This means that in order to achieve an equilibrium outcome, the agents must be
able to express policies which condition the action selection in a state on the en-
tire history of the learning process. Fortunately, one can introduce some additional
assumptions on the structure of the problem to ensure the existence of stationary
equilibria [Sobel (1971)].

In a Markov Game it is assumed that the agents have continuous implicit com-
munication, since each agent is aware of the complete state (including inherently
internal state information of other agents), as well as the actions performed by the
agents at every time step. This is sometimes called a superagent view of the en-
tire system. Having access to all this information is appealing from an equilibrium
learning point of view, but is rarely the case in practical situations. Moreover, such
a view looses one of the most appealing features of multi-agent systems, i.e. their
decentralised control. A more general framework, with which it is possible to model
the state information the agents have access to is a Decentralised Markov Decision
Process (DEC-MDP) [Bernstein et al. (2002),Becker et al. (2004)]. In this model,
at each step, each agent receives local information and chooses an action based on
this local information. It cannot observe the actions of the other agents or their
rewards. Similar to a MG however, the transitions and rewards received depend
on the vector of actions of all agents and the combination of the information of
all agents, uniquely describes the state the system is currently in. The difference
between a MG and a DEC-MDP is illustrated in Figure 3.8. On the left hand side
is the MG view on the system, in which agents observe the state and actions of all
agents in the system. On the right hand side is the DEC-MDP view in which agents
only observe their own state and actions. The underlying dynamics of a MG and a
DEC-MDP are the same, but the information provided to the agent is different. In a
DEC-MDP, the agents share the same reward function, so in the example depicted,
Agent 1 receives a penalty because Agent 2 collided against a wall.
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Markov Game DEC-MDP
Observations of Agent 1 = Observations of Agent 2 Observations of Agent 1 Observations of Agent 2

State = 〈7,9〉
Actions = 〈EAST,NORTH〉
Rewards = 〈0,-1〉
New state = 〈8,9〉

State = 〈7〉
Action = 〈EAST〉
Reward = 〈-1〉
New state = 〈8〉

State = 〈9〉
Action = 〈NORTH〉
Reward = 〈-1〉
New state = 〈9〉

Figure 3.8: Left hand side: MG view of the system. Right hand side:
DEC-MDP view of the system.

Formally a DEC-MDP is defined as follows:

Definition 13. A Decentralised Markov Decision Process is a tuple
(n, S,A1,...,n, T,R,Ω, O), with:

• n the number of agents in the system,

• S = S0 × S1 × . . .× Sn the set of joint states, where Sk indicates the set of
states of agent k = 1, . . . , n and S0 contains all external features2,

• Ak = the action set of agent k,

• T : S ×A1 × . . .×An → µ(S) the transition function.

• R : S ×A1 × . . .×An × S → R the reward function,

• Ω = Ω1 × Ω2 × . . . × Ωn a finite set of joint observations, where Ωk is the
set of observations for agent k,

• O : S × A × S × Ω → R the observation function. O(oi|s, (a1, . . . , an), s′)
is the probability of making observation oi ∈ O when taking joint action
(a1, . . . , an) in state s and transitioning to state s′ as a result.

2 We factored the state space to separate the state features of the agents and the external state
features [Becker et al. (2003)].
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We can also define the following property of a DEC-MDP:

Definition 14. A DEC-MDP is fully joint observable if there exists a mapping
J : Ω1 × . . .×Ωn → S, such that whenever O(ok|s, (a1, . . . , an), s′) is nonzero for
all agents k, then J(o1, . . . , on) = s′.

If a DEC-MDP only has local full observability every agent can only determine
its own local state unambiguously, from its local observations. To fully understand
what this means, we must explain what we mean by system state and local state.

Definition 15. We assume that the state space S can be factored as S = S0×S1×
. . .×Sn. Each system state s is a tuple (s0, s1, . . . , sn), with si ∈ Si, i = 0, . . . , n.
This system state contains all the information regarding the current internal state
in which the agents are (Si, i = 1, . . . , n), as well as the external information about
the environment(S0).
The local state of an agent k contains all the internal information about the current
state of the agent (Sk), as well as the external information about the environment
(S0).

If we go back to our example of Figure 3.8, S0 is empty, S1 contains the loca-
tions of agents 1. Similar, S2 contains the locations of agents 2. The system state
is defined as 〈s1, s2〉. So a MG always uses the system, whereas in the DEC-MDP
view, both agents only have access to their local states 〈s1〉 and 〈s2〉 respectively.
Since agents do not share their observations (which are the same as their local
states in this example), this DEC-MDP only has local full observability.

In this dissertation we adopt the following notation: s is the system state and
contains all the information about all agents and the environment. sk is the local
state of agent k and contains the internal information of agent k, together with
the information about the environment. s−k contains the system state information
without the information of agent k. Similar, a is the joint action, ak the action of
agent k and a−k the joint action without the action of agent k. sK is the joint
state information for a set of agents K, containing their internal information, as
well as the environmental information. Note that if |K| = n, then sK = s.

A special case of DEC-MDPs in which agents have individual reward functions
is called a Decentralised Markov Game (DEC-MG) [Aras et al. (2004)].

Definition 16. A Decentralised Markov Game is a tuple (n, S,A1,...,n, T,Rk,Ω, O),
where n, S,A1,...,n, T,Ω and O are defined as in Definition 13 and
Rk : S×A1×. . .×An×S → R is the reward function of agent k. Rk(s, (a1, . . . , an), s′)
is a real number representing the reward obtained by agent k from taking joint action
(a1, . . . , an) in state s and transitioning to state s′.
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Another special case is a Transition Independent DEC-MDP (TI-DEC-MDP). A
TI-DEC-MDP is a subclass of the general DEC-MDP in which the state transitions
are only dependent on the local state and action of an agent and not on the entire
system state and joint actions. This formalism was introduced in [Becker et al.
(2004)] to exploit a certain independence between the agents. Note that the agents
still share the same reward function. This independence relaxes the complexity re-
quirements to NP-complete in finite horizon settings, where general DEC-MDPs are
shown to be NEXP-complete [Goldman & Zilberstein (2004)].

If we assume that each agent has full observability and that the DEC-MDP is
fully joint observable, the DEC-MDP becomes a MMDP (or a MG in the case of
a DEC-MG). However, in many of these joint states, the outcome of the transition
function is only dependent on the action of one agent and independent of the local
state/action of the other agents. This means that in many states, we are actu-
ally dealing with a TI-DEC-MDP. Situations where this independence assumption
does not hold, are called sparse interactions. In the following section we discuss
a formal framework for modelling these interactions. This framework lies between
DEC-MDPs and TI-DEC-MDPs and models the transition and reward dependencies
that occur in certain regions of the state space. As such this allows for a sparse
representation of the joint state space, which is then only considered during those
sparse interactions.

3.2.3 Sparse interactions
In many multi-agent environments, agents only need to interact with each other
in specific regions of the state space because in these regions the agent experience
influence of other agents, i.e. they are not independent of each other. These
independencies that occur in certain states are sparse interactions [Melo & Veloso
(2010)b].

Definition 17. In a DEC-MDP, an agent k is independent of agent l in a state
s ∈ S if the following conditions hold at state s:

• The transition probabilities for the local state of agent k at s do not depend
on the state/action of agent l:

P [sk(t+ 1) = vk | s(t) = u, a(t) = b]
= P [sk(t+ 1) = vk | s−l(t) = u−l, a−l(t) = b−l]

• It is possible to decompose the reward function, such that the reward signal
both agents experience is independent of each others actions at state s.

So intuitively this means that an agent k depends on the state information
or the action of another agent l in a particular state s if either the transition
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function cannot be decoupled from the state information or action of agent l or the
reward cannot be decomposed such that agent k does not experience any influence
from the actions of agent l at s. An important remark concerning this definition
must be made. First, these interactions are dependent on a particular agent in a
particular state. This means that state s is not necessarily an interaction state for
any other agent than agent k, although it certainly can be. Moreover, if there is a
dependency between agent k and agent l at state s, it does not mean that there
is also a dependency between agent l and agent k at state s. This relation is not
symmetrical.

Given these rules for independence, sparse interactions are defined as follows:

Definition 18. In a DEC-MDP a set of agents K interact at state s if the following
conditions simultaneously hold:

• If agent k ∈ K and agent k depends on agent l in state s, then agent l ∈ K

• If agent l ∈ K and ∃ agent k, such that agent k depends on agent l, then
agent k ∈ K

• There is no strict subset K ′ ⊂ K, such that the above conditions hold for
K ′.

If a set of agents K interact in state s, we refer to sK as an interaction state for
the agents in K.

Following from the definition of interaction states, we can now define interaction
areas:

Definition 19 (Interaction area). An interaction area SI is a set of joint states
for which the following conditions hold:

1. SI ⊂ SK for some set of agents K, where SK is the joint state space of the
agents in K,

2. ∃s⇒ s ∈ SI and s is an interaction state for the agents in K,

3. For any si ∈ SI , aik ∈ Ak and sj /∈ SI ,

P [SK(t+ 1) = sj |SK(t) = si,~aK(t) = ~aiK ] =
∏
k∈N

T (sik, ak, s
j
k)

4. the set SI is connected. This means that for every pair of states x, y ∈ SI ,
there exists a sequence of actions, such that y is reachable from x (or vice
versa), through a set of states U ∈ SI .

The introduction of such interaction states leads to a specialisation of a DEC-
MDP, in which this local dependency between agents is represented. This speciali-
sation is called a Decentralised Sparse Interaction MDP (DEC-SIMDP). Intuitively
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such a DEC-SIMDP is a collection of single agent MDPs for states that are not a
member of an interaction area and a collection of MMDPs containing the states of
the interaction areas.

Definition 20 (DEC-SIMDP). A N -agent Decentralised Sparse Interaction MDP
with a set of L interaction areas {SI1 , . . . , SIL} is a tuple of :

Γ =
(
Mk, (M I,l, SI,l)

)
,with k ∈ 1, . . . , L and l ∈ 1, . . . , L

where

• each Mk is an MDP, Mk = (Sk, Ak, Tk, Rk), that individually models agent
k in the absence of other agents,

• each (M I,l, SI,l) is a MMDP that represents a local interaction between K
agents in the states of SI,l. For this joint state space representation holds:
SIK ⊂ S: M I,l = (|K|, SK , A1,...,|K|, T,R

I), where RI represents the reward
function for the agents in the interaction.

Once again, we could extend this definition to a Decentralised Sparse Interaction
Markov Game (DEC-SIMG) for the situation where agents do not share the same
reward function.

3.2.4 Discussion
In Table 3.1 we list the information that is contained in the system state and
in the local state for the multi-agent taxi domain problem given in Example 2
[Ghavamzadeh & Mahadevan (2004)].

Example 2: Consider the multi-agent taxi domain problem of [Ghavamzadeh
& Mahadevan (2004)] shown in Figure 3.9. The environment is inhabited by two
taxis. As in Example 2.1, passengers appear at one of the coloured cells and wish
to be transported to one of the other cells. The goal is to increase the throughput
of the system, i.e. carry as many passengers from their origin to their destination in
a predefined amount of time. Multiple agents can obtain a better result than one
agent alone, but if both agents try to pick up the same passenger, precious time is
lost.
The state variables for this domain are the locations of the taxis (25 possibilities
each), the status of the taxi (carrying a passenger or not), the status of the pickup
locations (passenger waiting or not for each coloured cell), the desired destination
of the possible passenger for one of the coloured cells (one of the other three or n.a.)
and the destination where the taxi is heading (one of the coloured cells or n.a.).
The complete size of the state space of this problem is 252 × 22 × 52 × 24 × 44 =
256, 000, 000.
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The actions the agents can take are the same as for the single agent variant: four
navigation actions that move the taxi one cell North, East, South, West, from its
current location, a Pickup action and a Putdown action.

Figure 3.9: The multi-agent Taxi domain problem [Ghavamzadeh &
Mahadevan (2004)].

The numbers listed are based on a situation in which two taxis are present in
the environment and only one passenger. If we model this problem as an MDP, the
agent could observe over one million distinct states. However, since only a single
agent is modelled, but two agents are changing the environment, the environment
becomes non-stationary and this description is not Markovian. Modeling it as an
MG, results in a total of 256 million states, since this contains the location, status,
and destination of both taxis. If the problem is modeled as a DEC-MDP, the local
state is not necessary equal to the system state. The agent could for instance only
have information about its own location, next to the position and destination of the
passengers, or, if the system is fully joint observable, it could have access to the
same information as in an MG. We did not list any exact numbers but only a lower
and upper bound for the last framework we discussed, DEC-SIMDPs, since for this
framework the number of states depends on the interaction area. One could for
instance define the interaction area to contain only those states in which both taxis
their status is empty. It is reasonable to assume that if a taxi is already transporting
a passenger, it should not know about the actions and intentions of the other taxis
in the system. On the other hand if the taxis are empty, they could coordinate in
order to decide which agent should pick up which passenger. This would prevent
the loss of time and resources if both taxis were to try to pick up the passenger and
at the same time reduce the state space in which the agents are trying to learn,
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since they only observe the other agent in those situations where they need to.

In the next section we will first give a short overview and references to some
solution methods for multi-agent problems modelled as an MG. Second, we will
describe some algorithms that explicitly exploit the sparse interactions that exist in
the multi-agent environment.

State information M
DP

M
G

DE
C-
M
DP

DE
C-
SI
M
DP

System state

Taxi position • • • •
Taxi status • • • •
Taxi destination • • • •
Other taxi pos • • •
Other taxi status • • •
Other taxi dest • • •
Passenger pos • • • •
Passenger dest • • • •

#States ×103 1,024 256,000 256,000 256,000

Local state

Taxi position • • • •
Taxi status • • • •
Taxi destination • • • •
Other taxi pos • � N

Other taxi status • � N

Other taxi dest • � N

Passenger pos • • • •
Passenger dest • • • •

1,024 256,000 1,024 Between
#States ×103 or 1,024 and

256,000 256,000

Table 3.1: Table representing what information is contained in the sys-
tem state and in the local state for the multi-agent taxi domain problem
under different multi-agent models. • indicates that this information is
completely encapsulated in this state, � indicates that this information
is either always available in this state or never, N indicates that this
information is sometimes available in this state.
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3.3 Solution methods
Even though some successes are known for single agent RL in multi-agent envi-
ronments [Sen et al. (1994), Claus & Boutilier (1998)], as shown in the previous
section care has to be taken when applying such methods to multi-agent settings.
We followed this discussion by an overview of several multi-agent frameworks. Most
multi-agent learning algorithms are based on the MG framework. This means that
they have full information about the complete system state. In this framework we
distinguish algorithms that learn actions independently and algorithms that learn
joint actions.

Examples of the former are algorithms based on learning automata, such as
MMDP-ILA and MG-ILA for cooperative and conflicting interest environments, re-
spectively. MMDP-ILA is guaranteed to converge to global optimal points of the
MMDP [Vrancx et al. (2007)], whereas MG-ILA will converge to a pure equilibrium
point between the agent policies [Vrancx et al. (2008)]. Other examples of algo-
rithms that independently learn actions are Policy Search [Peshkin et al. (2000)] and
Policy Gradient [Könönen (2003)b]. Neither of these provide the same convergence
guarantees as MMDP-ILA or MG-ILA.

Examples of the latter are mostly variants of Q-learning for multi-agent settings
that attempt to learn an equilibrium policy or make assumptions about the strategies
of the other agents. Nash-Q is an example of an algorithm that learns an equilibrium
policy [Hu & Wellman (1998)]. It observes the rewards for all agents and keeps
estimates of Q-values, not only for the learning agent, but for all agents. As such,
the joint action selection in each state can be seen as a game, where the entries in
the payoff matrix are the Q-values of the agents for the joint action. Nash-Q will
then assume that all agents in the game play according to a Nash Equilibrium of
this game. This principle can also be applied in combination with other equilibrium
concepts, such as correlated equilibria [Greenwald & Hall (2003)] or the Stackelberg
equilibrium [Könönen (2003)a].

Algorithms that make assumptions about the policy of the other agents are
for instance minimax Q-learning and friend-or-foe Q-learning . Minimax Q-learning
is restricted to zero-sum games and attempts to learn the best response to the
opponents’ best action [Littman (1994)]. This approach was later expanded to
general-sum games in which the agent tries to determine whether the other agents
are friends or foes [Littman (2001)a]. Based on this distinction either the max or
the min operator is used in the update rule of the Q-values.

Other well known Q-learning variants are Team Q-learning , in which agents
individually learn the optimal joint action for every state [Littman (2001)b], and
Joint-Action Learners [Claus & Boutilier (1998)], which also learns these joint ac-
tions, but also maintains beliefs about the strategies of the other agents for its
exploration strategy.
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All the techniques above are aimed at coordinating actions, either explicitly or
implicitly. To do so, they always observe the entire joint-state space. As mentioned
previously, this state space is exponential in the number of agents (so is the action
space) and thus intractable for most problems. The trend in multi-agent reinforce-
ment learning research seems to be to explore when these other agents have to be
observed. In the following section we introduce two novel approaches that adopt
this principle.

3.3.1 Sparse multi-agent view

In Section 3.2.3 we have introduced the DEC-SIMDP framework which models the
dependencies that exist between agents in a subset of the entire joint state space.
Several planning algorithms that exploit these sparse interactions exist [Spaan &
Melo (2008),Melo & Veloso (2010)a]. We will however not focus on these planning
algorithms, but describe two learning approaches: Utile Coordination (UC) [Kok
et al. (2005)] and Learning of Coordination (LoC) [Melo & Veloso (2009)].

3.3.1.1 Utile Coordination

Kok & Vlassis are interested in using a sparse representation for the joint action
space of the agents. More specifically they are interested in learning joint-action
values for those states where the agents explicitly need to coordinate. In many
problems, this need only occurs in very specific contexts [Guestrin et al. (2002)b].
Sparse Tabular Multiagent Q-learning has a list of states at its disposal in which
coordination is necessary. In these states, agents select a joint action, whereas in
all the uncoordinated states they all select an action individually [Kok & Vlassis
(2004)b]. By replacing this list of states by coordination graphs (CG) it is possible
to represent dependencies that exist only between some agents [Guestrin et al.
(2002)a,Kok & Vlassis (2004)a,Kok & Vlassis (2006)]. This technique is known as
Sparse Cooperative Q-learning (SCQ) Figure 3.10 shows a graphical representation
of a simple CG for a given situation where the effects of the actions of agent 4
depend on the actions of agent 2 and the actions of agent 2 and 3 both depend
on the actions of agent 1, so the nodes represent the agents, while an edge defines
a dependency between two agents. If agents transitioned into a coordinated state,
they applied a variable elimination algorithm to compute the optimal joint action for
the current state. In all other states, the agents select their actions independently.

In later work, the authors introduced Utile Coordination [Kok et al. (2005)].
This is a more advanced algorithm that uses the same idea as SCQ, but instead of
having to define the CGs beforehand, they are being learned online. This is done by
maintaining statistical information about the obtained rewards conditioned on the
states and actions of the other agents. As such, it is possible to learn the context
specific dependencies that exist between the agents and represent them in a CG.
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A1

A2

A4

A3

Figure 3.10: Simple coordination graph. In the situation depicted the
effect of the actions of agent 4 depends on the actions of agent 2 and
the actions of agent 2 and 3 both depend on the actions of agent 1.

This technique is however limited to fully cooperative MAS.
Care has to be taken in the update rule of the Q-values when dealing with sparse

interactions. Since the system can transition between all combinations of coordi-
nated and uncoordinated states. The authors used the following approach. When
transitioning between two uncoordinated states, the independent action Q-values
can easily be updated. Similar for the transition between coordinated states, the
joint Q-values are used in the bootstrapping process. When moving from a coordi-
nated state to an uncoordinated state, the independent Q-values are used for the
backup of the joint Q-values. Conversely, when the agent goes from an uncoordi-
nated state to a coordinated state, the joint Q-values are used in the backup process
of the independent Q-table.

The primary goal of these approaches is to reduce the joint-action space by
only learning (or computing) joint actions in interaction states. However, all the
algorithms described above, always employ a complete multi-agent view of the entire
joint-state space to select their actions, even in states where only using local state
information would be sufficient. As such, the state space in which they are learning
is still exponential in the number of agents, and its use is limited to situations in
which it is possible to observe the entire joint state.

3.3.1.2 Learning of Coordination

Spaan and Melo approached the problem of coordination from a different an-
gle [Spaan & Melo (2008)]. They introduced a new model for multi-agent de-
cision making under uncertainty called interaction-driven Markov games (IDMG).
This model contains a set of interaction states which lists all the states in which
coordination should occur.

In later work, Melo and Veloso [Melo & Veloso (2009)] introduced an algorithm
where agents learn in which states they need to condition their actions on the local
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state information of other agents to reduce the joint state space in which agents are
learning. As such, their approach can be seen as a way of solving an IDMG where
the states in which coordination is necessary is not specified beforehand. To achieve
this they augment the action space of each agent with a pseudo-coordination action
(COORDINATE). This action will perform an active perception step. This could for
instance be a broadcast to the agents to divulge their location or using a camera
or sensors to detect the location of the other agents. This active perception step
will decide whether coordination is necessary or if it is safe to ignore the other
agents. Since the penalty of miscoordination is bigger than the cost of using the
active perception, the agents learn to take this action in the interaction states of
the underlying IDMG. This approach solves the coordination problem by deferring
it to the active perception mechanism.

The active perception step of LoC can consist of the use of a camera, sensory
data, or communication to reveal the local state information of another agent. As
such the outcome of the algorithm depends on the outcome of this function. Given
an adequate active perception function, LoC is capable of learning a sparse set
of states in which coordination should occur. Note that depending on the active
perception function, this algorithm can be used for both cooperative as conflicting
interest systems.

As in Utile Coordination, the authors use a variation on the standard Q-learning
update rule:

QCk (s, a)← (1− α(t))QCk (s, a) + α(t)
[
rk + γmax

a′
Qk(s′k, a′k)

]
(3.2)

Where QCk represents the Q-table containing states in which agent k will coordinate
and Qk contains the state-action values for its independent states. So the update
of QCk uses the estimates of Qk. This represents the one-step behaviour of the
COORDINATE action. This allows for a sparse representation of QCk , since there is
no direct dependency between the states in this joint Q-table. The pseudo code for
this technique is given in Algorithm 5. πe stands for a policy that ensures enough
exploration (such as an ε-greedy policy3) and πg stands for the greedy policy. Âk
is the action set of agent k, without the COORDINATE action. We will refer to this
technique in the remainder of this dissertation as LoC (Learning of Coordination).

3 See Section 2.3
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Algorithm 5 Learning of Coordination (LoC)
1: Initialise Qk and QCk ;
2: Set t = 0;
3: while forever do
4: Choose Ak(t) using πe
5: if Ak(t) = COORDINATE then
6: if ActivePercept() = TRUE then
7: Âk(t) = πg(QCk , S(t));
8: else
9: Âk(t) = πg(Q∗k, Sk(t));
10: end if
11: Sample Rk(t) and Sk(t+ 1);
12: if ActivePercept = TRUE then
13: QLUpdate(QCk ;S(t), Âk(t), Rk(t), Sk(t+ 1), Qk);
14: end if
15: else
16: Sample Rk(t) and Sk(t+ 1);
17: end if
18: QLUpdate(Qk;S(t), Âk(t), Rk(t), Sk(t+ 1), Qk);
19: t = t+ 1
20: end while

where QLUpdate(Q; s; a; r; s′;Q′) is equivalent to

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a′

Q′(s′, a′)) (3.3)

3.4 Summary

In this chapter we describe the problems an agent faces when learning in a multi-
agent environment. If the agents are acting in the same environment, using only a
local view of the state space, the environment seems non-stationary to the agents.
A naive solution is to include all the information about the other agents. Such
an approach can be modelled using the Markov games framework. This frame-
work allows for multi-agent extensions of Q-learning, such as Nash Q-learning or
Correlated Q-learning, to learn equilibrium policies. However, providing the agents
with all the information about all the agents results in an exponential explosion of
the size of the state space in which agents are learning and is unsuitable for all
but the smallest environments with a limited number of actions. Next to being
computationally intensive, none of these techniques have convergence guarantees.
Techniques based on LA, such as MMDP-ILA and MG-ILA, have these guarantees
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under some general assumptions, but are still learning in a complete joint state
space. Other frameworks, that are more realistic from a multi-agent point of view
are based on decentralised Markov decision processes. In this framework, agents
have a local view of the environment, and the combination of the views of the
agents constitute the state in which the system is currently.

An important extension on which we focus is a decentralised sparse interaction
Markov decision process, which models the interactions and dependencies that oc-
cur between certain agents in the environment. Agents have a local view in most
states, but can observe other agents in particular regions of the state space, called
interaction areas, in which the state transition function does not only depend on an
agent’s own local state and local action. We describe two algorithms, Utile Coordi-
nation and Learning of Coordination which exploit these interaction dependencies.
The former uses coordination graphs to represent these dependencies and selects
actions using a variable elimination algorithm. The latter uses joint state informa-
tion in those situations where an external perception mechanism informs the agent
when coordination is beneficial. This could for instance be a broadcast to detect
the presence of other agents, or using an overhead camera.

In the next chapter we propose a new approach that is based on the sparse
interaction model. We assume that interaction areas can be calculated from the
current local state the agent is in. The algorithm we propose, called 2Observe, uses
generalized learning automata to learn these interaction states.
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Chapter 4
Learning to focus on local states

Do what you can, with what you have, where you are.
– Theodore Roosevelt, 1858-1919 –

In the previous chapter we discussed several multi-agent reinforcement learning
frameworks, classified by the number of strategic interactions and the level of ob-
servability the agents have of the entire system. We described the most complete
form, called Markov games, in which agents have information about the complete
system state and action set and reward signals of all agents at their disposal. We also
described the DEC-MDP framework, which models the situation in which agents
only have a local view of the dynamics of the system at their disposal. Given only
such partial observability of the dynamics of the entire system, the agent is possibly
experiencing the environment as non-Markovian. In many environments however,
it is possible to define the state information required for the agent to experience
a Markovian environment under certain assumptions. This is modelled by DEC-
SIMDPs, which provide a basis for learning and exploiting the sparse interactions
that exist among agents. In this chapter we introduce a framework in which agents
can learn independently of each other, depending only on local state information in
those states where the global state does not provide any additional useful informa-
tion. The framework is very similar to a DEC-SIMDP, but instead of having a list
of the states that are part of an interaction area, the interaction areas are described
by an interaction function. This allows not only for a compact representation of
the interaction area, but aims to exploit certain spatial relations that exist in the
joint state space. Throughout this chapter we will give an example of situations
that comply with this model, as well as describe a framework for modeling these
relations. Furthermore, we will present 2Observe. This is an algorithm, capable of
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approximating this interaction function. Finally, we will validate this approach using
experiments in various gridworld environments.

4.1 Two layer framework
As explained in Section 3.2.3 in the previous chapter, agents should only rely on
global state information, in those situations where the transition the system un-
dergoes and the rewards the agents experience is not only dependent on the local
state information of the agent performing the action. As such, an agent can learn
to act optimally in a greatly reduced state space. The driving question to exploit
these sparse interactions is ’When is an agent experiencing influence from another
agent?’. Answering this questing, allows an agent to know when it can select its
actions independently (i.e. the state transition function and reward function are
only dependent on its own action) or when it must coordinate with other agents
(i.e. the state transition function and the reward function is the effect of the joint
action of multiple agents). This leads naturally to a decomposition of the multi-
agent learning process into two separate layers. The top layer will learn when it is
necessary to observe the state information about other agents and select whether
pure independent action selection is sufficient, or whether some form of coordination
between the agents is required. The bottom layer contains a single agent learning
technique, to be used when there is no risk of influence by other agents, and a
multi-agent technique, to be used when the state transition and reward the agent
receives is dependent of the current state and actions of other agents. Figure 4.1
shows a graphical representation of this framework.

Can another agent in uence me?

Act independently, as if single-agent. Use a multi-agent technique to 
coordinate.

No Yes

Figure 4.1: Two layer framework for modeling problems in which a
function can be approximated that returns the list of states in which
interaction is beneficial.

In the previous chapter we have introduced two algorithms, called Utile Coor-
dination and Learning of Coordination. Both these techniques are implementations
of the framework described above and explained in Section 3.3.1. Utile Coordina-
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tion uses statistical tests on the top level to determine in which states there is a
net improvement in the reward signal for a particular joint action performed by the
agents. If the rewards an agent receives are better for a particular joint action in
a state, this indicates that agents can improve their performance by coordinating
with each other in this state. The multi-agent approach that is used is a variable
elimination algorithm. The agents will calculate the best course of action in that
state, based on the actions of the other agents. If no difference in the reward signal
is detected for different joint actions, the agent selects an action independently but
still uses joint state information to do so.

Learning of Coordination assumes that an active perception mechanism is avail-
able on the top level. This mechanism could be anything from an overhead camera,
to communication or even a predefined list of states, that informs the agent if co-
ordination is necessary in the current local state of an agent. If coordination is
needed, this mechanism also informs the agent about the relevant state information
upon which it should select an action. Otherwise, an action is selected using only
local state information. Compared to Utile Coordination, this algorithm does not
require full observability over the entire joint state-action space, but relies heavily
on this active perception mechanism.

Note that both these approaches have a different view on reducing the joint
state-action space in which agents are learning. UC reduces the joint action space
by only selecting a joint action in those states where coordination is required. LoC
reduces the joint-state space, by only using joint state information when coordina-
tion is required. In this chapter we describe our implementation of this two-layer
framework, that attempts to reduce the state space in which agents are learning,
without additional requirements such as an active perception mechanism. We use
mobile robots with proximity sensors as an application of this framework. An exam-
ple of a robot system with such sensors is the Khepera III robot by K-Team [K-Team
(2009)] (see Figure 4.2).

This robot has ultrasonic sensors measuring the distance between objects and
the front and sides of its base. These sensors have a range going from 20cm to
4m. Given an unknown environment, the distance at which the robot should detect
objects to avoid collisions is related to its current speed (and possibly the speed of
other robots in the environment). Given the reduced speed at which these robots
are operating, the sensors detect obstacles far in advance, long before an action to
deal with these obstacles is required. In Figure 4.3 we illustrate a simplified version
of this issue which we adopt for our experiments. In (a) the robots use the entire
range of their sensors and even detect remote obstacles that are not influencing the
robot. (b) shows the relevant range at which obstacles should be observed1. (c)
shows the same range, but with the presence of another robot in this range.

1 For this example we assume that robots move 1 cell per time step
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Figure 4.2: Khepera III robot by K-Team

The observed region in Figures 4.3(b) and 4.3(c) indicate what the agent should
learn at the top level. If there is no other robot in this region (Figure 4.3(b)) the
agent can act independently. If another robot is present (Figure 4.3(c)) coordina-
tion is required to ensure that both robots do not collide in the next time step. The
entire joint state space contains the information if the sensors were to detect every-
thing within their range. Since much of this information will not be important, our
goal is to reduce the range of the sensors to a level that contains only the relevant
information. Also note that although we will speak about collisions throughout this
dissertation, this does not actually imply a physical collision between the robots.
Robots have various other sensors to detect imminent collisions and avoid them.
The purpose here is not so much to replace this feature, rather than to avoid having
to use it.

We will first formalise this agent-centric view of the interaction area before
describing a solution method for this type of multi-agent problems with sparse
interactions.

4.2 Decentralised Local Interactions Markov Deci-
sion Process

We assume that there exists a relationship between the current local state an agent
is in, and the (possible) interaction area of which this state is part. As described
above, for mobile robots, this interaction area is the spatial region around the current
location of the robot. This means that an interaction area can be represented as a
function I, which, given the current local state sk(t) returns the interaction area for
that state. It is based on the state information of this interaction area that the agent
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(a) entire range (b) relevant range with 
     no other robot

(c) relevant range with 
     one other robot

Figure 4.3: States observed by the ultrasonic sensors of the robot if
(a) the entire range is used, (b) only the relevant range is used but no
other robot is present, (c) only the relevant range is used and another
robot is present.

should then select an action. Problems for which this assumption holds, are modeled
as a Decentralised Local Interactions Markov Decision Process (DEC-LIMDP). A
DEC-LIMDP shows close resemblance to a DEC-SIMDP, with the major difference
being that the list of states in which interaction can occur, is now replaced by the
interaction function I.

Definition 21. A Decentralised Local Interaction Markov Decision Process is
a tuple (n, S,A1,...,n, I1,...,n, T,R1,...,n), with:

• n the number of agents in the system,

• S = S0 × S1 × . . . × Sn the set of joint states, where Sk indicates the set
of states of agent k = 1, . . . , n and S0 contains all external features of the
environment,

• Ak = the action set of agent k, with k = 1, . . . , n

• Ik : Sk →
∏M

SM = the interaction function. Ik(sik) returns a set, which
contains the local state, sik ∈ Sk of agent k, and which may, additionally,
contain state information about other agents M that are part of the interac-
tion.2

• T : S×A1× . . .×An×S → R the transition function. T (s′|s, (a1, . . . , an))
is the probability of the outcome state s′ when the joint action (a1, . . . , an)
is taken in state s, with s, s′ ∈ S and (a1, . . . , an) ∈ A1 × . . .×An,

2 In states in which interaction with other agents is not necessary, the following holds: Ik(sik) =
{sik}
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• Rk : S×A1× . . .×An×S → R the reward function. Rk(s, (a1, . . . , an), s′)
is a real number representing the reward obtained from taking joint action
(a1, . . . , an) in state s and transitioning to state s′, with s, s′ ∈ S and
(a1, . . . , an) ∈ A1 × . . .×An

Given a DEC-LIMDP, the answer to the question when an agent experiences
influence from another agent is exactly the function I. So an agent should attempt
to approximate its function I in order to determine when to observe the interaction
area or when its local state information is sufficient.

Such a DEC-LIMDP is also an implementation of the two layer framework of
Figure 4.1. If the output of the interaction function I is the same as the local state
information of the agent, the agent will not experience any influence from any other
agent and can act independently (bottom left in Figure 4.1). If the output of this
interaction function contains more information than just the local state information
of the agent, the agent should act upon this information, and use a multi-agent
technique capable of dealing with these external influences (bottom right of Fig-
ure 4.1).

4.3 Generalized learning automata
As described above, agents should approximate their interaction function Ik, in
order to learn when to act using more information than just its own local state.

Generalized learning automata (GLA) are simple associative reinforcement learn-
ing units that learn a mapping from given inputs or contexts to actions. They are
widely used for classification tasks and have appealing theoretical convergence guar-
antees. This makes them suitable for approximating the interaction function and
to be used for the top level in our implementation of the two-layer framework. We
will begin by defining the necessary background of learning automata, required for
the remainder of this chapter.

4.3.1 Definitions

The LA we considered in Section 2.5.2.2 only use the reinforcement they receive
from the environment as input. The automaton learns the optimal action that re-
sults in the maximum expected reward. In a pure RL setting, an agent however
attempts to learn which actions yields the highest expected (delayed) reward, in the
context of the state of the environment. Using traditional LA, this can be achieved
by creating networks of LA, where each automaton is responsible for learning the
optimal action for one state of the environment. An alternative is to use an addi-
tional input to the automaton, in the form of a context vector representing the state
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of the environment. Such an automaton is called a Generalized learning automa-
ton [Thathachar & Sastry (2004)]. At each time step the GLA receives an input
which describes the current system state. Based on this input and its own internal
state the unit then selects an action. This action serves as input to the environment,
which in turn produces a response for the GLA. Based on this response the GLA
then updates its internal state. Such a situated GLA is represented in Figure 4.4.

Generalized learning automaton
u,g,U

Environment

C={c1,..., cn}

IN

OUT IN

OUT

action
a(t) ∈ A

- reward
  r(t+1) ∈ β
- context
  x(t+1) ∈X

Figure 4.4: Situated generalized learning automaton in a feedback loop
with the environment.

Definition 22. Formally, a generalized learning automaton can be represented
by a tuple (X , A, β, ~u, g, U), where:

• X is the set of inputs to the GLA. Individual context vectors are denoted by
~x ∈ X ,

• A = {a1, . . . , ar} is the set of outputs or actions the GLA can produce,

• β ∈ [0, 1] denotes the feedback the automaton receives for an action,

• ~u is a real vector representing the internal state of the unit,

• g is the probability generating function

P{a(t) = a|~u, ~x} = g(~x, a, ~u) (4.1)

where g has to satisfy following conditions:

g(~x, a, ~u) ≥ 0 ∀~x, a, ~u∑
a

g(~x, a, ~u) = 1 ∀~x, ~u

• U is a learning algorithm which updates ~u, based on the current value of ~u,
the given input, the selected action and response β.
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In general, the internal state ~u of a GLA is a set of r vectors for each of the r
actions: ~u = {~u1, . . . , ~ur}.

The earliest algorithm capable of performing updates on these internal state
vectors is called REINFORCE [Williams (1992)], which uses the following update
rule:

U : ~ui(t+ 1) ← ~ui(t) + λβ(t+ 1)∂ln g(~x(t),a(t),~u(t))
∂~ui

(i = 1, . . . , r) (4.2)

where ~ui is the ith component of ~u.
A basic property of the REINFORCE algorithms is the stochastic gradient follow-

ing property. However , this algorithm may result in unbounded behaviour because
~u → ∞. An analysis of this phenomenon together with a modification of this al-
gorithm to ensure boundedness is introduced in [Phansalkar et al. (1990)]. This
modified update scheme is as follows:

U : ~ui(t+ 1) = ~ui(t) + λβ(t+ 1)∂ln g(~x(t),a(t),~h(~u(t)))
∂~ui

+λKi(hi(~ui(t))− ~ui(t)) (i = 1, . . . , r)
(4.3)

where ~h(~u) = [h1(~u1), h2(~u2), . . . hr(~ur)] , with each hi defined as:

hi(η) =


Li η ≥ Li
0 |η| ≤ Li
−Li η ≤ −Li

(4.4)

In this update scheme λ is the learning rate and Li,Ki > 0 are constants. The
update scheme can be explained as follows. The first term added to the parameters
is a gradient following term, which allows the system to locally optimise the ac-
tion probabilities. The next term uses the hi(~ui) functions to keep the parameters
~ui bounded within predetermined boundaries [−Li, Li]. In [Thathachar & Sastry
(2004)] it is shown, that the adapted algorithm described above, converges to local
maxima of f(~u) = E[β|~u], showing that the automata find a local maximum over
the mappings that can be represented by the internal state in combination with the
function g.

In the remainder of this chapter we use the following set-up for the GLA. With
every action ai ∈ A the automaton can perform, it associates a vector ~ui. This
results in an internal state vector ~u = [~uT1 . . . ~uTr ] (where T denotes the transpose).
With this state vector we use the Boltzmann distribution as probability generating
function:

g(~x, ai, ~u) = e−
~xT ~ui
τ∑

j e
−
~xT ~uj
τ

(4.5)
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with τ a parameter that represents the temperature. Of course, since this
function is fixed in advance and the environment in general is not known, we have
no guarantee that the GLA can represent the optimal mapping. For instance, when
using the function given in Equation 4.5 with a 2-action GLA, the internal state
vector represents a hyperplane. This plane separates context vectors which give
a higher probability to action 1 from those which prefer action 2. If the sets of
context vectors where different actions are optimal, are not linearly separable the
GLA cannot learn an optimal mapping.

To allow a learner to better represent the desired mapping from context vectors
to actions, we can utilise systems composed of multiple GLA units. For instance
the output of multiple 2-action GLAs can be combined to allow learners to build a
piecewise linear approximation of regions in the space of context vectors. In general,
we can use systems which are composed of feedforward structured networks of GLA.
In these networks, automata on one level use actions of the automata on the previous
level as inputs. If the feedforward condition is satisfied, meaning that the input of
a LA does not depend on its own output, convergence to local optima can still be
established [Phansalkar & Thathachar (1995)].

4.4 GLA for multi-agent state space aggregation

Our goal is to use GLA to determine in which states an agent experiences an in-
fluence of other agents. Similar to the ideas used for single agent reinforcement
learning problems with large state spaces, we are trying to generalise policies over
similar states. In multi-agent systems additional problems arise however. System
control is distributed and agents might have conflicting goals, which results in an
additional requirement for coordination between the agents. Solving this problem
in a centralised way would result in an exponential growth of the state-action space
in the number of agents. This motivates the need for a decentralised approach
using a generalisation over the state space. As a basic tool for our approach we use
GLA as described in Section 4.3. As explained, these automata have the advantage
that they are computationally simple and can be combined into larger networks to
offer greater flexibility to accurately approximate regions in the state space. Even
when multiple GLA are networked, strong theoretical convergence properties ex-
ist [Phansalkar & Thathachar (1995)].

Figure 4.5 shows the general agent learning set-up. Each time step t a vector ~x(t)
giving a factored representation of the current system state is generated. This vector
is given to each individual agent as input. The agents internally use a set of GLA
to select an action corresponding to the current state. The joint action ~a(t) of all
agents serves as input to the environment, which responds with a feedback β(t+1)
that agents use to update the GLA. One of the main advantages of this approach
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is that convergence guarantees exist for general feedforward GLA structures. In this
chapter we study common interest problems where each agent uses one or more
GLA. As such, this system can be viewed as a single large network of GLA, thus
ensuring convergence to a local optimum.

GLA 1 GLA m

GLA 1 GLA m

E
n
v
i
r
o
n
m
e
n
t

a(t)...

Agent 1

Agent n

x(t)

...

...

Figure 4.5: Learning set-up. Each agent receives a factored state
representation as input. The GLA of the agents select the action to be
performed.

What follows is a demonstration of the capabilities of GLA in a number of
relatively simple experiments.

4.4.1 Agents using a single GLA
Our basic experimental set-up is shown in Figure 4.6. Two agents A and B move
on a line between [−1, 1]. Each time step both agents select action left (L) or
right (R), move and then receive a reward based on their original joint location
and the joint action they chose. Each agent then updates using only the reward
signal and the joint location, without any knowledge of the action selected by the
other agent.

If Agent A is to the left of Agent B, the optimal action for both agents is to take
action Left. If Agent A is to the right of Agent B, the highest reward is obtained if
both agents select action Right. If the absolute value of the distance between the
agents is less than 0.5, the highest reward is obtained if both agents move apart
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Agent A Agent B

L LR R

-1 1

Figure 4.6: Experimental set-up. Two agents move around on a line
between positions −1 and 1. Each time step both agents take a step
left or right.

from each other. The reward scheme is as follows:

1. +1 if both agents choose action Left, if Agent A is to the left of Agent B,
0 otherwise.

2. +1 if both agents choose action Right, if Agent A is to the right of Agent
B, 0 otherwise.

3. +1 if both agents choose a different action, if the absolute value of the
distance between both agent is less than 0.5, 0 otherwise.

This means that there are three regions in the state space in which a different
action is optimal for the agents. This is shown in Figure 4.7. In region 1 Agent
A is left of Agent B. In the second, Agent A is to the right of Agent B. The third
region encapsulates all the states where the absolute value of the distance between
the two agents is less than 0.5.

For this experiment each agent uses a single GLA with 2 actions corresponding
to the agent’s actions L and R. Each time step we give both agents an input vector
~x = [x1 x2 1], where x1 is the position of agent A and x2 is the position of agent
B. The third component is always set to 1, as is usually done with context vectors.
This is called the bias in pattern recognition tasks or neural networks and allows the
internal state to better represent the target function [Mitchell (1997)]. The GLA
use a vector ~ui = [~u1 ~u2 ~u3] for each action i. The learning process of a GLA can
then be seen as moving the lines (~u1 − ~u2)T~x = 0 and (~u1 − ~u3)T~x = 0 which
separates regions in the state space where the GLA prefers action L from those
where it prefers action R. Typical results obtained with this system can be seen in
Figure 4.8. This result was obtained running the experiment for 100.000 iterations.
Each iteration consists of a single action choice and update for both agents. After
each move and subsequent learning update, the agents were reset to new random
positions and the game was restarted. This was done to avoid the undersampling
problem which occurs easily when dealing with such large state spaces.
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Figure 4.7: State space regions for experiment 1.
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Figure 4.8: Experimental results for the first experiment. (a) Typi-
cal Results for approximations of the regions in the state space learnt
by agents. Lines separate regions where agents prefer different actions.
Joint actions with highest probability are given in each region.(b) Proba-
bilities of optimal action in region 1 for both agents. Parameter settings
where λ = 0.005,Ki = Li = 1 T = 0.5

Since GLA take context vectors as input, it is possible to present the state in-
formation in different forms to the agent. Figure 4.9 shows a comparison of the
average reward obtained, with three distinct ways of information. We compared
the use of the joint location, as described above, to an absolute distance metric
(AbsoluteV alue(Pos(AgentA) − Pos(AgentB))) and a deictic distance metric
(Pos(AgentA) − Pos(AgentB)). This experiment was run without tuning of the
exploration of the Boltzmann action selection method. Hence, the results we de-
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scribe here are only meant as a criterion to compare the influence of the information
given in the context vectors and not as an absolute performance evaluation of the
GLA.
The absolute distance metric clearly performs the worst due to the inability of
making a distinction between different positions of the other agent (left or right).
When using a deictic representation, the GLA obtain higher rewards than when the
joint location was used. This seems contradictory to the work published in [Finney
et al. (2002)], in which deictic representations worsen performance. However, the
research described in that paper also introduces partial observability when using
deictic representations. This is not the case in our scenario.
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Figure 4.9: Comparison of the influence of the state information given
to the GLA.

4.4.2 Agents using multiple GLA

In the second experiment we examine a situation where the different regions in the
state space are not linearly separable. In such a case the agents cannot exactly
represent the optimal mapping, but rather have to approximate it using different
hyperplanes. We use the same set-up as in the previous experiment, but now we
consider two regions, as given in Figure 4.10.

The reward scheme for this setup is the following.

1. Region 1, delimited by the inside of the parabola: A reward of +0.9 is given,
when both agents choose action Left (L), 0.1 otherwise.
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2. Region 2, delimited by the outside of the parabola: A reward of +0.5 is given,
when both agents choose action Right (R), 0.1 otherwise.
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Figure 4.10: State space regions for Experiment 2.

Both agents use a system consisting of 2 GLA, connected by an AND operation.
The agents have 2 actions: L and R. Both GLA also have 2 actions. If the automata
both choose the same action, the agent performs action L, otherwise it performs
action R. Figure 4.11(a) shows typical results for the boundaries that the agents learn
to approximate the parabola. Figure 4.11(b) shows for both agents the evolution
of probability of the optimal action L in region I. The probabilities in this plot
were obtained by generating 100 points in the region with uniform probability and
calculating the average probability over these points during learning.

While it can be seen from the results in Figure 4.11 that the agents are able
to approximate the desired regions, this experiment also demonstrated the limits
of GLA. As was mentioned in the previous section the GLA are only guaranteed to
converge to a local optimum. This means that the agent can get stuck in suboptimal
solutions. Such a situation was observed when the reward for the optimal action
in region 2 is increased. In this case it is possible for the agents to get stuck in a
situation where they both always prefer the optimal action for region 2 and neither
agent has a good approximation of the region inside the parabola. Since the rewards
of both agents are based on their joint action, no agent can get out of this situation
on its own. The agents can only improve their pay-off by switching actions inside
region 1 together. In such a situation with multiple local optima, the final result
obtained by the agents depends on the initialisation of the automata.
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Figure 4.11: Experimental results for the second experiment. (a) Typ-
ical results for approximations for parabola learnt by agents. (b) Prob-
abilities of optimal action in region I for both agents (average over 100
runs). Parameter settings were λ = 0.005,Ki = Li = 1, T = 0.5

4.5 Learning the interaction function
In the previous section we have shown that GLA are useful for aggregating states
in multi-agent settings, and are able to learn these aggregations online, using a
reinforcement signal. This makes GLA prime candidates for using at the top level of
the framework described in Section 4.1. Our goal is to move away from approaches
that make a very black and white distinction between observing the other agents or
not observing them. In the previous section we have shown that GLA are capable
of learning boundaries in the state space and select different actions based on these
boundaries. In mobile robotics, the application we use for our approach, we can
represent the fact whether an agent should observe other agents, as a boundary
around its own location. This means that if another agent is too close, it is not safe
anymore to just ignore it. What follows is a description of the 2Observe algorithm,
which uses a GLA to learn the boundary that delimits when an agent is too close to
be ignored. The approach proposed here bears some resemblance to the adaptive
resolution methods used in single agent RL. There the learning agent uses statistical
tests to determine when a greater granularity in the state space representation is
needed. Examples of these kind of systems are the G-learning algorithm [Chapman
& Kaelbling (1991)] and the U-tree algorithm [McCallum (1995)]. A more detailed
description of these approaches is given in Chapter 5.

4.5.1 2Observe
In the previous section we used GLA in an ad-hoc manner, learning on only one
layer. In this section we will implement the two layer framework from Section 4.1.
We have compared different representations for giving the GLA information about
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the distance between the robots. A deictic representation proved to yield the best
results for these kind of settings. Hence, in this section we provide the GLA with the
Manhattan distance between the two agents if they are within each others line-of-
sight (i.e. no walls between them). At the top level of the two layer framework, we
employ GLA to learn, based on the rewards they receive and the provided distance,
how close the other agent can be before there is a possibility of colliding.

The main advantage of using GLA is that the first layer of the algorithm can
learn to determine which technique on the second level must be chosen, without
explicitly storing estimates or samples of visited state-action pairs. All necessary
information is encoded in the parameters of the GLA, which are typically much
smaller in number than the states about which information needs to be kept. The
possibility of combining GLA into a larger network which can learn more complex
representations, also gives us the flexibility to adapt the complexity of the first layer
to the needs of the problem at hand. Moreover, since there are no absolute state es-
timates being used, these GLA are independent of the current location of the agent.

At the second level of the learning algorithm two possible methods can be used,
depending on the outcome of the first layer of the algorithm. If this first layer
determines that other agents can safely be ignored 2Observe uses independent Q-
learning. Otherwise, a simple form of coordination through communication is used.

If the GLA have learnt to coordinate their actions in a particular state they first
observe if a collision will occur if both agents would just choose their preferred
action. If this is the case, one agent is selected randomly to perform its action,
while the other selects an alternative action. If no collision will occur, both agents
can select their action independently (see Algorithm 4). One could chose to always
play this coordination mechanism, since it is ensured to be collision free, but that
would imply a strong dependency on fault-free communication between the agents,
which is undesirable or even impossible in many systems. The algorithm is more
formally described in Algorithm 6.
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Algorithm 6 2Observe
1: For each agent and every 〈sk, ak〉 pair, initialise the table entry for Q̂(sk, ak)

to zero,
2: Initialise the GLA for each agent arbitrarily,
3: loop
4: Observe the current state s and the distance between the agents δ
5: if GLA of both agents select to coordinate, based on δ then
6: agents use coordination mechanism to select the actions to avoid a collision
7: else
8: Each agent k independently selects action ak, based on their action selec-

tion strategy
9: end if
10: Observe rqk and rck, where r

q
k is the reward for the actions selected by the

Q-learning algorithm and rck is the reward for the action selected by the GLA
of agent k.

11: Observe the new state s′k
12: Update the Q-table entry of 〈sk, ak〉 wit rqk according to Equation 2.10
13: sk ← s′k
14: Update the GLA for input δ with rck according to Equation 4.3
15: end loop

sk is the local state information of the agent k, ak the action selected by agent k,
rck the reward for the selected action of the GLA at the top level for agent k, rqk the
reward for selected action of the Q-learning algorithm on the second layer for agent
k.
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4.5.2 Experimental results
To validate our approach, we apply it to various gridworld problems. These are a
simplified version of the problems mobile robots face when navigating in unknown
environments and contain all the difficulties of much harder problems [Sutton &
Barto (1998)]. It is also widely used in the RL community and thus it provides a
good testbed for comparing and evaluating our algorithm to other RL techniques.
We compare the results of 2Observe with independent Q-learning agents, with the
MMDP framework, as well as with a DEC-MDP approach. Figure 4.12 shows
a graphical representation of the gridworlds we used. Figure 4.12(a) shows the
TunnelToGoal environment, Figure 4.12(b) the 2-robot game and Figure 4.12(c) the
ISR environment. The agents both have to reach their respective goals, indicated
with the coloured dots 3, starting from their initial positions marked by the coloured
X, while avoiding to bump into walls and into each other. Agent 1 is indicated in
red, agent 2 is indicated in blue. The agents have four actions at their disposal
(N,E,S,W), which moves them respectively up, right, down or left for 1 cell.

(a) (b) (c)

Figure 4.12: Different gridworlds in which we experimented with our
algorithm. In (a) both agents have the same goal state (G), whereas
in (b) and (c) the agents have different goals marked by coloured dots.
The initial positions are indicated with a X. We refer to the different
gridworlds as follows: (a) TunnelToGoal, (b) 2-robot game, (c) ISR.
(b) and (c) are variations of the games in [Melo & Veloso (2009)]

Before discussing the results of the different techniques, we analyse the state-
action spaces used by the different approaches in these 2-agent gridworlds. An
overview is given in Table 4.1. The independent Q-learners do not take any infor-
mation about the other agents into account, resulting in an individual state space
of the number of locations in the grid, and 4 possible actions per state. The joint

3 In Environment (a), the agents share the same goal location indicated with a dot in both
colours
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TunnelToGoal 2-robot game ISR

Independent Q-Learning #States 25 36 43
#Actions 4 4 4

DEC-MDP #States 625 1296 1849
#Actions 4 4 4

MMDP #States 625 1296 1849
#Actions 16 16 16

2Observe
#States 25 36 43
#Actions 5 5 5

Table 4.1: Comparison of the state-action space in which different RL
approaches are learning for the gridworlds of Figure 4.12

state learners (DEC-MDP) learn in a state space represented by the joint locations
of the agents, but select their actions independently, so they have 4 possible actions
per joint state. The MMDP learner also uses the joint state space representation
of the agents but also selects joint actions, resulting in 16 possible actions for every
joint state (i.e. all possible combinations of the 4 individual actions). For 2Observe,
the actual size of the joint state space is not so important because no explicit value
is kept for every state. Hence, our algorithm is learning in the same state action
space as the independent Q-learners, relying on some communication in situations
where collisions might occur.

All experiments were run with a learning rate of 0.05 for the Q-learning algorithm
and Q-values were initialised to zero. An ε-greedy action selection strategy was used,
where ε was set to 0.1. The GLA have a learning rate of 0.01, use a Boltzmann
action selection strategy and were initialised randomly. All experiments were run
for 10.000 episodes, where an episode is the time needed for both agents to reach
the goal, starting from their initial positions and all experiments were averaged over
10 runs. The number of steps shown in the results is the total number of steps
required to complete an episode. The episodes were not bounded to allow agents to
find the goal without time limit. If an agent reaches the goal, it receives a reward of
+20. For the MMDP learner the reward of +20 was given when both agents reach
their goal positions, but once an agent is in its goal, its actions no longer matters,
since the goal state is an absorbing state. If an agent collides with another agent,
both are penalised by −10. Bumping into a wall is also penalised by −1. For every
other move, the reward was zero. For every collision, whether it was against a wall
or against another agent, the agent is bounced back to its original position before
the collision occurred.

In these experiments we assume that the range of the sensors is larger than
the distance within which interaction with other agents can occur. Following this
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assumption, the GLA were rewarded individually according to the following rules:

• GLA coordinated if there was danger of collision or did not coordinate if there
was no danger: +1

• GLA coordinated if there was no danger of collision or did not coordinate if
there was danger: −1

This reward scheme assumes that the environment is aware of the situations in
which coordination must occur, so that it can reward the agents accordingly.

The left part of Figure 4.13 ((a),(c) and (e)) show the average number of steps
both agents needed to reach their goal during learning in the different environments.
The right part of Figure 4.13 ((b),(d) and (f)) show the number of times agents
collided with each other per episode (i.e. from start to completion). The results
for the TunnelToGoal environment are given at the top, The 2-robot in the middle,
and ISR at the bottom. Both joint-state approaches have not learned the shortest
path after 105 iterations, due to the limited exploration rate and the size of the
state action space (2, 500; 5, 184 and 7, 396 values to be learned for the different
environments). In the TunnelToGoal and in the IRS the independent Q-learners
both behave poorly because when following their individual shortest paths to reach
the goal, they will certainly collide with each other. In the 2-robot environment the
independent Q-learners manage to find a good collision-free solution, due to the
fact that agents can avoid each other by going through different doorways since
multiple shortest paths exist. In all environments, 2Observe manages to find a pol-
icy without collisions with other agents and without a large overhead in the number
of steps needed to complete an episode.

In Figure 4.14 we show the number of times the agent used their coordination
mechanism to avoid a collision, from top to bottom, for TunnelToGoal, 2-robot
game, ISR. There is a slight overhead in the number of times this action is used,
because the agents are unable to distinguish when another agent is very close but
moving away or moving towards it. For the TunnelToGoal environment, this means
that the agents are coordinating the entire path in the tunnel, even though this
is only needed at the entrance, since after that, they are just following each other
towards the goal. In the next chapter we propose another approach for sparse
interactions that mitigates this issue.
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Figure 4.13: Left side: average number of steps, right side: average
number of collisions (results averaged over 10 runs) for TunnelToGoal
at the top, 2-robot game in the middle and ISR at the bottom.
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Figure 4.14: Average number of coordinations (results averaged over
10 runs) for (a) TunnelToGoal, (b) 2-robot game, (c) ISR.
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4.6 Summary
The contributions presented in this chapter are fourfold. First we introduced a way
to decompose multi-agent learning tasks in two layers. On the top layer it is decided
which state information of other agents should be observed in the current state, in
order to detect and solve coordination problems. At the bottom level there is on one
hand a traditional single agent RL technique, if the agent can safely act upon its
own local state information, or, on the other hand, a multi-agent approach, capable
of dealing with the influences from other agents. In this chapter we are concerned
with mobile robots as an application domain. In these domains, the influence of
other agents can be characterised by their relative closeness to each other. This
means that the top level of our framework is concerned with learning when close is
too close.

Second, we introduced a formal model, called decentralised local interaction
Markov decision process. This model is very similar to the DEC-SIMDP introduced
in Section 3.2.3 but rather than containing a list of states that are part of an
interaction area, a DEC-LIMDP contains a function which returns this list of states,
given the current state of the agent. Hence, in mobile robot systems, this interaction
function returns exactly when close is too close.

Third, we described generalized learning automata and applied these units to
achieve state aggregation in multi-agent systems. These associative RL units are
capable of online learning of a mapping from a given input to an output without
the need to store a value for every possible state-action combination.

As such, these GLA provide the basis for the fourth contribution presented in
this chapter: the 2Observe algorithm. This algorithm is a concrete implementation
of the two layer framework. A GLA is installed at the top level of this framework
to learn how close robots may be from each other, before the possibility exists that
these robots will collide. At the bottom level a single agent Q-learner was used if
the robots could not collide during the next time step. However, if both agents
deemed that there was a risk of colliding in the next time step, a coordination
mechanism was employed, during which the agents communicated their intentions
in order to select the best and safest action. This risk is measured by the presence
of another agent, independent of the history of its actions in that particular situation.

Note that 2Observe can be seen as a form of obstacle avoidance for robots. It
is however more advanced than traditional algorithms because it can learn to avoid
other robots, based on their specifications, without prior knowledge about them. If
two other robots are in the environment, both operating at different speeds, the
2Observe algorithm will learn a different mapping for both of these robots without
prior knowledge about which robot moves faster.

Although having strong theoretical convergence properties, the GLA used in the
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2Observe algorithm need a separate reward signal from which they learn about the
coordination requirements in the environment. If this reward signal is combined with
the reward signal of the navigation task the agents are solving, the GLA are unable
to learn a good coordination policy in a reasonable time. Due to the nature of
certain problems this assumption is not always possible. As such, other algorithms
that perform good, without these theoretical guarantees might be a better choice
for certain problem domains. A wide range of techniques can be used in the context
of the general two-layer framework. In the next chapter we introduce algorithms
and present their results in which we use statistical tests on the reward signal at the
top level to determine the influence of other agents in a given state.
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Chapter 5
Solving immediate coordination problems

Mistakes, obviously, show us what needs improving. Without mistakes,
how would we know what we had to work on?

– Peter McWilliams, 1949-2000 –

In this chapter we introduce Coordinating Q-Learning (CQ-Learning). The ob-
jective of this algorithm is to reduce the state space in which agents have to learn
compared to the traditional multi-agent learning techniques described in Chapter 3.
To do so, CQ-Learning learns the compact set of states in which agents are influ-
encing each other. By only considering the joint state information in these states,
CQ-Learning does not need to observe the state information of other agents, if this
does not yield any additional information. I.e. only sparse interactions are consid-
ered. We begin by analysing the characteristics of these interaction areas before
introducing two versions of CQ-Learning, both with similar performance results but
with different initial assumptions. The first variant uses a single agent model of the
reward function of the problem the agent is attempting to solve and uses this as a
baseline to detect influences from the other agent. The second variant exploits the
initial exploration strategy of the agents during their learning process. This initial
exploration is a good measure for what happens if agents were to be learning alone
in the environment. Hence, it is a good baseline against which interactions with
other agents can be identified.

5.1 Analysis of sparse interactions
When multiple agents are learning a certain goal in an unknown environment, in-
dependently from each other, an agent might at a certain point experience the
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influence from the other agents. The situations and more specifically the states
where these influences are experienced are the interaction areas of the environment.
In Figure 5.1 this concept is represented using the 2-robot gridworld environment
introduced in the previous chapter. The goal is marked by the letter G, together
with the index for respectively agent 1 and agent 2 and the initial position of the
agents is indicated with a red X for agent 1 and a blue X for agent 2.

(a) Single agent, alone (b) Multi agent, far 
     away from each other

(c) Multi agent, (too) 
     close to each other

G G2 G1 G2 G1

Figure 5.1: Sparse interactions that occur between the agents. (a)
An agent acting alone never interacts (b) multiple agents far from each
other are not interacting (c) multiple agents close to each other do
interact

Using full observation it is straightforward to predict that if both agents take
the shortest path to the goal, the influence they will experience, will occur at the
corridors in the center of the environment. In Section 3.2.1 we showed that if
multiple agents learn to accomplish a certain goal, independently from each other,
the number of interactions between them increases as learning progresses. Initially
agents are behaving random, but as their Q-values start to converge, the agents
begin to follow a certain policy. In certain environments this policy will result in
an increase in the number of strategic interactions between the agents. In this
dissertation we consider MARL tasks in which these interactions will occur in the
same limited set of states. This chapter is concerned with learning this set of
states, in order to use a focused multi-agent approach when selecting an action in
these states. In Figure 5.1(a) we illustrate the base case, from which we will start.
When an agent is acting alone, the environment it experiences is stationary and the
rewards it receives from the environment are only due to its own actions. In 5.1(b)
we show the situation in which two agents are present, but they are in locations far
away from each other. Hence, during the next time step they are unable to hinder
each other and, from the view point of one agent, this situation can be seen as
the one depicted in Figure 5.1(a). I.e. it can act independently, since the other
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agent will not influence it. In Figure 5.1(c) we depict the situation in which agents
have already learned how to reach their goal and start to collide more often at a
corridor in the center of the environment. Both agents are close to each other and
will collide in the next timestep if they execute their preferred action (indicated by
the arrow).

These interactions are reflected in the reward signal the agents receive. Colli-
sions result in high penalties. Hence, by detecting these penalties it is possible to
determine the required state information to avoid these significantly lower rewards.
As for 2Observe, the techniques we present in this chapter are an instantiation of
the two layer framework (Section 4.1). The 2Observe algorithm from the previous
chapter uses an agent centric view of the environment and aims at approximating a
function which reflects when agents are interacting. The purpose of the techniques
in this chapter are to learn the absolute set of states in which the agents are in-
teracting. As such, these techniques solve the underlying DEC-SIMDP the agents
are facing. This framework is described in Section 3.2.3 and models the interaction
states in which agents are influencing each other. We will approach this problem
from two angles. In the first one we assume that agents have been learning alone
in the environment for some time before being put together. As such, they have
not only learned a policy for accomplishing the single agent version of the task at
hand, but they have also learned a model of the reward function for the single agent
problem. This information will be used to detect the influence of other agents.
Second, we will explain an approach when both agents are learning together from
the beginning. This approach is based on our findings of Section 3.2.1 in which we
have shown that the number of strategic interactions between agents increases in a
compact set of states as learning progresses.

5.2 Learning interaction states

In this section we introduce CQ-learning. This algorithm learns the set of states
that belong to the interaction area of the underlying DEC-SIMDP. The algorithm
identifies these states by detecting statistically significant changes in the reward
signal and by testing which of the state information of other agents is causing these
changes. In these interaction areas an agent should take other agents into account
when choosing its preferred action. If it has identified such interaction state, CQ-
Learning will select its actions based on the combination of its own local state
information together with the relevant state information about the other agents
participating in the interaction. In the context of gridworlds we can formulate these
situations as follows: if two agents are adjacent to each other, but their respective
preferred actions will not influence each other, the algorithm will not coordinate
since there is no need to do so (Figure 5.1(b)). If they are however adjacent and
their preferred action, will result in a collision (Figure 5.1(c)), the CQ-Learning

Sparse Interactions in Multi-Agent Reinforcement Learning



94 Chapter 5. Solving immediate coordination problems

agents will select an action using augmented state information:

Definition 23. We assume the state space S is factored as S = S0 × S1 × . . . Sn,
where S0 contains the state information about the environment itself, and Sk con-
tains the internal information about agent k with k = 1, . . . , n and n the number
of agents present in the system.
The augmented state ~sk of an agent k is a tuple (s0, sk, [SI ]), which contains the
current state information about the environment s0, the state information about
the agent sk and the state information SI about all the agents participating in the
interaction.

A high level graphical representation of augmented state information is given in
Figure 5.2. Agents begin with 9 local states. The combination of these states is
the system state. After some time, Agent k, using CQ-learning detects a change in
the immediate reward signals it experiences in state 4. The algorithm will observe
the system state each time it encounters this local state in order to identify the
extra relevant information required to avoid this change in the reward signal. Once
the agent has learned on which other agents it is dependent in this local states,
these states are augmented to include the state information of those other agents.
In our example, CQ-Learning detected a change in the reward signal for state 4,
and identified the relevant state information of agent l to be states 1, 2 and 3.
〈4− 1〉,〈4− 2〉,〈4− 3〉 are the resulting additional augmented states. If agent l is
in any other state, when agent k is at state 4, agent k selects its actions, purely
based on state 4.

Augment

32

7 98

5

1

4 6

32

7 98

5

1

4 6

State space Agent k State space Agent l

Figure 5.2: Graphical representation of CQ-learning. Independent sin-
gle states are expanded to augmented states where necessary. In this
example, the state information about another agent are added to the
state information of agent k in state 4 after detecting changes in the
immediate reward signal.
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5.2.1 CQ-learning with initialised agents

So far we have introduced augmented states and explained the general idea about
CQ-Learning. This algorithm is designed for environments in which the influence of
other agents is reflected in the immediate reward signal. We will now describe in
depth the three main parts of which this algorithm is composed: detecting conflict
situations, selecting actions and updating the Q-values:

• Detecting conflict situations
Agents must identify in which states the reward signal they experience is
affected by another agent. The algorithm stores the last N rewards it expe-
rienced for a particular state-action pair in order to perform a statistical test
on them to determine whether these rewards are as expected or if they are
influenced by external factors. CQ-Learning needs a baseline for this test. In
this section we assume that agents have learned a single agent model about
the expected payoffs for selecting an action in a particular local state. In
future sections we will relax this assumption. We will refer to this expectation
as E(Rk(sk, ak)). Alternatively, this model can be provided to the agents.
From this model, the agents can calculate the optimal single-agent policy for
the scenario where there are no other agents in the environment. The agents
follow this policy even when multiple agents are present and keep a history
of the last N rewards they receive for every local state-action pair they en-
counter and store it in a sliding window Wk(sk, ak) (for agent k). Since we
have an expectation of rewards, and a sufficiently large sample of actual ob-
tained rewards, the influence of other agents can be detected by performing a
one-sample Student t-test to verify if the null hypothesis that the population
of Wk(sk, ak) is equal to the expected value E(Rk(sk, ak)) holds [Cochran
& Snedecor (1989)]. A description of this test is given in Appendix B.
We distinguish two possible outcomes:

1. The Student t-test rejects the null hypothesis that the populationWk(sk, ak)
comes from a normal distribution with a mean equal to E(Rk(sk, ak)).
In this case, CQ-learning marks this state. Each time it visits a marked
state, the algorithm will sample the reward signal according to the joint
state space. This is done pairwise, i.e. local state of the agent + local
state information of another agent, for all other agents. These sam-
ples are stored in Wk(sk, ak, sl) where sl contains the state information
about another agent l, with k 6= l. The same statistical test is per-
formed to identify for which values of sl the null hypothesis is rejected.
sk is augmented to ~sk which includes these values of sl for which the
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null hypothesis did not hold1. In the context of Figure 5.2, sk is local
state 4 of agent k, sl are states 1,2 and 3 of agent l, resulting in aug-
mented states ~s1

k = 〈s4
k, s

1
l 〉, ~s2

k = 〈s4
k, s

2
l 〉 and ~s3

k = 〈s4
k, s

3
l 〉. In our

gridworld example, the augmented state contains the joint location of
agents that will collide if they were to select the action with the highest
single agent Q-value. Note that agents could also always sample rewards
from the entire joint state space and only perform the second statistical
test. This would however not be an improvement, since this would imply
a multiplication of the complexity of the algorithm in terms of memory
to store all these samples and in terms of computational requirements
to perform the statistical tests. Moreover, in the majority of the joint
state space, the null hypothesis will hold, in case of sparse interaction,
which we assume in this work. CQ-learning first identifies where these
interactions occur and then detects which other agents are part of the
interaction.

2. The Student t-test fails to reject the null hypothesis that the immediate
rewards the agent receives Wk(sk, ak) come from a normal distribution
with mean E(Rk(sk, ak)). If the distribution is unknown, alternative
non-parametric tests can be used.
From this Student t-test can be concluded that the agent is not ex-
periencing any influence from other agents and can continue selecting
actions independently, using only its own local state sk.

This process is shown graphically in Figure 5.3

1 During our experiments we observed that the sliding window, containing the samples of the
important state information Wk(sk, ak, sl), was the first to contain N samples and hence also
the first to be detected by the statistical test. This is due to the fact that agents follow their
policies and will interact with each other more often in the same states that are causing the
conflict.
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Figure 5.3: Evolution of the statistical tests in CQ-learning. A change
is first detected by agent k in state s4

k, after which it starts sampling
the state information of agent l and detects s3

l to be the relevant state
information causing this change.

• Selecting actions
At every time step, the agents observe their local state sk. In the base case,
in which sk is not part of an augmented state, an agent can safely select its
action based only on sk. On the other hand, if sk is part of an augmented
state ~sk, the agent will observe the other state information in ~sk. If the system
state contains the information encapsulated by ~sk, i.e. another agent l is in
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the same local state sl as stored in ~sk, the agent will select an action based
on the augmented state. In the context of Figure 5.3 this situation occurs
when agent k is in state s4

k and agent l is in state s3
l . If the system state

does not contain the information from ~sk, it means that the other agents are
in a different state that will not influence agent k. Hence, the agent will, as
in the base case, select an action, solely based on its local state sk.

• Updating the Q-values
We distinguish two cases for updating the Q-values depending on whether the
agent was in an augmented state or not:

1. The system contained all the information from an augmented state ~sk for
agent k and the agent selected its action based on ~sk. In this situation
the following update rule is used:

Qaug
k (~sk, ak)← (1−αt)Qaug

k (~sk, ak)+αt[Rk(s, ak)+γmax
a′
k

Qk(s′k, a′k)]

(5.1)
where Qk stands for the Q-table containing the local states, and Qaug

k

contains the Q-values for the augmented states. Note that this second
Q-table is initially empty and is being created during the runtime of
the algorithm, as interaction states are being learned. The Q-values of
the local states of an agent are used to bootstrap the Q-values of the
augmented states. This is done for two reasons. First, during the update
process, the agent has not yet determined whether its next state is also
an augmented state. Second, the Q-values of the local states represent
the best possible situation, when the other agents will not influence the
agent in the future. As such, these Q-values are an optimistic estimate
of the future rewards the agent can expect2.

2. The agent selected its action based on the local state information sk.
These Q-values have already been learned in the single agent version of
the task at hand and hence they do not have to be updated. However,
the regular Q-learning update rule (as in Equation 2.10) can still be
applied:

Qk(sk, ak)← (1− αt)Qk(sk, ak) + αt[Rk(s, ak) + γmax
a′
k

Qk(s′k, a′k)]

(5.2)

The entire pseudo-code for CQ-learning is given in Algorithm 7.

2 Single agent Q-learning also bootstraps using the best possible future scenario by using the
max operator in Equation 2.10.
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Algorithm 7 CQ-Learning algorithm for agent k
1: Train Qk independently first, initialise Qaug

k to zero and Wk = empty;
2: Set t = 0
3: while true do
4: observe local state sk(t)
5: if sk(t) is part of a augmented state ~sk and the information of ~sk is present

in the system state s(t) then
6: Select ak(t) according to Qaug

k

7: else
8: Select ak(t) according to Qk
9: end if
10: observe rk = Rk(s(t), a(t)), s′k from T (s(t), a(t))
11: Store 〈sk(t), ak(t), rk(t)〉 in Wk(sk, ak)
12: if Student t-test rejects h0 : Wk(sk, ak) comes from a distribution with mean

E(Rk(sk, ak)) then
13: Store 〈sk(t), ak(t), sl(t), rk(t)〉 in Wk(sk, ak, sl) for all other agents l
14: for all extra state information si about another agent l present in s(t)) do
15: if Student t-test rejects h0 : Wk(sk, ak, sl) comes from a distribution

with mean E(Rk(sk, ak)) then
16: augment sk with sl to ~sk and add it to Qaug

k

17: end if
18: end for
19: end if
20: if sk(t) is not part of any ~sk or the information of ~sk is not in s(t) then
21: No need to update Qk(sk).
22: else
23: Update Qaug

k (~sk, ak) ← (1 − αt)Qaug
k (~sk, ak) + αt[rk +

γmaxa′k Qk(s′k, a′k)]
24: end if
25: t = t+ 1
26: end while
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5.2.2 Illustrative results
As explained, CQ-learning uses a single agent model of the reward function of the
multi-agent problem it is trying to solve. This model can either be provided, or
it can be learned by allowing the agents to learn independently for some time in
the environment previous to acting together in it. Before introducing an exten-
sion to CQ-learning for which this single agent model is not required, we will show
some initial results of CQ-learning for the environments used in the experiments
of 2Observe in the previous chapter: TunnelToGoal, 2-robot game and ISR (see
Figure 4.12). The arrows with full tails indicate actions the agents took using only
their local state information. The arrows with dotted tails represent actions taken
based on augmented state information. Coloured cells indicate the augmented state
information for Agent 1 in red, and Agent 2 in blue.

G

Figure 5.4: Solution found by CQ-learning for the TunnelToGoal en-
vironment. Agent 2 (with start position marked by the blue cross),
performed a kind of wait action by moving towards the boundary of
the grid, so Agent 1 (with start position marked by the red cross) could
go first in the tunnel towards the goal.

In Figure 5.4 we show the relevant part of the path the agents follow from their
start position to the goal. Agent 1 started at the top left of the grid (marked
by the red cross), Agent 2 started at the bottom left (marked by the blue cross).
CQ-learning has learned to augment the cells at the entrance of the tunnel with
the opposing cell for both agents. The result of this can be seen in the actions the
agents selected. At the entrance of the tunnel, Agent 1 selected to go down and
continue following its shortest path. Agent 2 selected to go to the right, which was
a zero-operation since the grid is bounded on that side. Hence, this action could
be seen as a form of wait action. After this timestep in which both agents played
an action based on augmented state information, they selected their actions using
local state information and followed the shortest path to the goal. Note that the
identification of these states is not necessarily symmetrical. It is possible that one
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agent detects a state in which it collides often while the other agent has not marked
this state as being one in which coordination with the other agent is required. As
such, the first agent can solve the problem by augmenting its state and avoid the
other agent before the latter ever detected the conflict.

This solution seems unfair for Agent 2, but this is due to the technique used at
the multi-agent level, which is ε-greedy independent action selection, based on joint
state information. Since both agents in an interaction state also have a common
goal, i.e. avoid a collision, other approaches are possible in which agents alternate
between who goes first. This lies however outside of the scope of this dissertation.
We refer to [de Jong (2009)] for a recent overview of fairness in MAS.
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Figure 5.5: Solution found by CQ-learning for the 2-robot environ-
ment. The numbers next to the arrows indicate the timesteps. Agent 1
(indicated in red), performed some actions to allow Agent 2 (indicated
in blue) to pass first.

The 2-robot game depicted in Figure 5.5 offers a more challenging environment.
In this environment, the single agent solution might already provide a shortest path
in which both agents would never collide. In this case, CQ-learning would behave
identical to Q-learning with greedy action selection. In the figure we represent a
situation in which the agents have learned a shortest path which leads to collisions
when applied together. Agent 1 (the red arrows) performs some actions in the
middle of the grid, to allow Agent 2 (the blue arrows) to pass first. The aug-
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mented states for this environment are all centered around the passages between
the different sections of the grid. This can also be seen from the locations in which
the agents selected an action using their augmented states (the arrows with dotted
tails). The indices next to the arrows indicate the timestep in which this action
was performed. At timestep 7, Agent 2 is passing Agent 1, after which both go
towards the goal, following the shortest path and selecting their actions using only
local state information.

G1
G2

Figure 5.6: Solution found by CQ-learning for the ISR environment.
Agent 1 performs a kind of wait action, by moving towards the bound-
ary of the grid, so both agents can cross at the next timestep.

In the third environment, ISR, shown in Figure 5.6 we again show the relevant
part of the path and the augmented states for both agents. Agent 1 (the red arrows)
executed one action so it would remain in the same location to allow the other agent
to come closer. During the next time step both agents then switched locations and
followed their single agent policy to their respective goals. An alternative for Agent
1 would have been to move out of the way, but this would result in a longer path
to reach the goal than to collect the penalty for moving towards the boundary of
the grid.
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5.2.3 CQ-learning with random initial policies
In some situations the requirement that agents have an expectation of the immediate
payoffs for every state-action pair cannot be met. Either because this model is not
available or because training the agents separately in the environment beforehand is
not possible. In such situations another baseline is needed to detect the influence of
other agents. In Section 3.2.1 we presented results for independent agents learning
in the same environment. These results motivate the idea behind a baseline when
a model is not available. Initially agents are acting randomly because the Q-values
were uniformally initialised. Gradually, the agents converge to the optimal policy
of their navigation task and they start to experience the systematic influence of
each other in certain states. Hence, it is reasonable to conclude that the rewards
collected in the initial stage of the learning process are a good estimate of the
rewards the agent would receive if it would have been acting alone in the environ-
ment. This assumption can be used to detect conflict situations that might occur
in a later stage of the learning process, when the agents’ Q-values start to converge.

Initially, agents select their actions using only their own local state information.
The agents maintain a list of rewards for every local state-action pair they visit.
The first N rewards received for a certain action ak in a local state sk are stored
forever in W 1

k . Every reward received for this particular pair (sk, ak) after the first
N samples, is added to a sliding window W 2

k of fixed size N , replacing the oldest
sample in a first-in-first-out way. This concept is shown graphically in Figure 5.7.

Wk new reward

N samples

N samples

2

Wk
2

Wk
1

Wk
1

Figure 5.7: Sliding window principle of CQ-Learning. W 1
k is fixed,

W 2
k contains the last N received rewards for a certain state-action pair

(sk, ak).

This version of CQ-Learning also uses a Student t-test. However, now agents do
not have a single expected mean of the payoffs for a certain state-action pair, but
two histories of payoffs. The two-sample variant of this statistical test is used to de-
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termine whether the means of the two normally distributed populations of samples
are equal. By taking the difference between the populations and testing whether the
mean is zero, we can determine if the samples from one population are significantly
lower than the samples from the other population [Cochran & Snedecor (1989)].
At every timestep such an independent two sample Student t-test is performed for
the current state-action pair of the agent to determine whether the null hypothesis
holds. If the more recently received rewards (W 2

k ) come from a distribution with the
same or a higher mean than the rewards of W 1

k the agent is observing significantly
different (lower) rewards than in the initial learning phase and the algorithm will
perform a one sample Student t-test to determine if the last received reward was
smaller than the mean from W 2

k . If so, we can conclude that the agent’s last action
resulted in negative reward, due to a lack of coordination with other agents. As for
the version in the previous section, the algorithm will augment the local state of
the agent to include the state information of the conflicting agent, after which the
agent will act using this augmented state.

The second adaptation that is made to the original CQ-learning algorithm is
the introduction of a confidence value for the augmented states. Since the baseline
the agents are using for comparison might be under heavy influence from the other
agents, which have not yet converged, a confidence value is maintained for every
augmented state. This value gives an indication of how often this augmented state
is observed relative to how often the agent was acting in its local state. If this
confidence value drops below a certain threshold, the augmented state is not used
any more and the agent will again select its actions using only the local state
information, which was part of this augmented state. This ensures that due to
the exploration in the early phase of the learning process, the agents do not end
up with a large augmented state space containing many states that are no longer
encountered, once the Q-values converge. The pseudo-code for this modified CQ-
learning algorithm is given in Algorithm 8.
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Algorithm 8 CQ-Learning algorithm for agent k with random initial policies
1: Initialise Qk, Qaug

k to zero and W 1
k = W 2

k = empty;
2: Set t = 0
3: while true do
4: observe local state sk(t)
5: if sk(t) is part of ~sk and the information of ~sk is present in s(t) then
6: Select ak(t) according to Qaug

k

7: else
8: Select ak(t) according to Qk
9: end if
10: observe rk = Rk(s(t), a(t)), s′k from T (s(t), a(t))
11: if |W 1

k (sk, ak)| < N then
12: Store 〈sk(t), ak(t), rk〉 in W 1

k (sk, ak)
13: else
14: Store 〈sk(t), ak(t), rk〉 in W 2

k (sk, ak)
15: Delete oldest sample from W 2

k (sk, ak) if |W 2
k (sk, ak)| > N

16: end if
17: if Student t-test rejects h0 : W 1

k (sk, ak) = W 2
k (sk, ak) then

18: if Student t-test fails to reject h0 : rk < W 2
k (sk, ak) then

19: augment sk(t) with sl to ~sk for all state information sl of agents l
present in s(t) and add them to Qaug

k

20: end if
21: end if
22: if sk is not part of any ~sk or the information of ~sk is not present in s(t) then
23: Update Qk(sk, ak)← (1−αt)Qk(sk, ak)+αt[rk+γmaxa′k Qk(s′k, a′k)];

24: lower the confidence value of all ~sk, where sk(t) is part of ~sk
25: else
26: Update Qaug

k (~sk, ak) ← (1 − αt)Qaug
k (~sk, ak) + αt[rk +

γmaxa′k Qk(s′k, a′k)]
27: increase the confidence value of ~sk
28: end if
29: t = t+ 1
30: end while
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5.3 Experimental results

(a) Grid Game 2
(b) TunnelToGoal

(c) ISR

(d) CIT

(e) TunnelToGoal_3

(f) CMU

Figure 5.8: The different games used throughout this experiment.

The testbed for our algorithms is a set of two and three-agent gridworld games
with varying difficulty in terms of size complexity and number of possible encounters
between the agents. We compared our algorithms to independent Q-learners (Indep)
that are learning without any information about the presence of other agents in the
environment and are acting using local state information only. Joint-state learners
(JS), which receive the state information of all the agents but chose their actions
independently. Joint-state-action learners (JSA) which receive the complete system
state as input and select a joint action. This is a so-called superagent. Finally,
we also compare our approach with Learning of Coordination (LoC) (described in
Section 3.3.1.2). For the JSA-learners, a reward is given when both agents reach
their goal state, but once an agent enters his goal state, it remains in the goal. In
other words, the goal states are absorbing states. As such, we could apply joint-
state-action learners, despite the fact that this approach requires a pure cooperative
MAS. With all other approaches a reward for reaching the goal state is given im-
mediately to the agent entering its goal.
The environments we used are depicted in Figure 5.8. The layout of the environ-
ments (c), (d) and (f) was also used by [Melo & Veloso (2009)]. Unlike the research
performed in that work, we allow agents to collide in all locations of the gridworld
and not only in a small predetermined set of states. The starting positions of the
agents are represented by an X. The respective goals for the agents are indicated
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with dots in the same colour. For environments (c),(d) and (f) this is the starting
position of the other agent. If the agents share the same goal state, as is the case in
environments (a), (b) and (e), the dots are a linear blend of their respective colour
codes.
All these environments induce some form of coordination problem where following
the shortest path to the respective goals of the agents would result in collisions be-
tween them. All experiments were run for 20, 000 episodes (an episode is completed
if all agents reach their respective goal state) using a learning rate of 0.1. Explo-
ration was regulated using a fixed ε-greedy policy with ε = 0.1. If the agents collide
they remain in the location they were in before the collision and receive a penalty of
−10 for colliding. In all other situations, transitions and rewards are deterministic.
For CQ-learning with random initial policies (CQ_NI), the windows, containing the
rewards W 1

k and W 2
k , have a maximum size of 60. For CMU the ε parameter was

set to 0.2 for CQ_NI and LoC and the size of the sliding window was reduced to
10 samples. This was necessary, because due to the nature of this environment.
This environment has many corridors, where a lack of exploration would cause the
agent to loop for a long time before finding the exit, if it collided several times at
that exit. The number of samples for the sliding window was reduced for the same
reason. The large environment caused agents to easily get stuck in a loop, before
having learned to observe the state information of the other agent. By reducing the
number of samples required for this test, agents detect the influence of the other
agents earlier and augment their state information sooner.

Note that our approach is concerned with learning when interaction between
agents is necessary and not with using the most optimal single agent learning ap-
proach for the task at hand. Several alternative approaches to standard Q-learning
are possible since CQ-learning follows the two-layer framework introduced in the
previous chapter. The results described in the remainder of this paragraph are the
averages taken over 50 independent runs.

For LoC we implemented the active perception function as follows:

• return TRUE if another agent is less than 2 locations away (i.e. agents could
collide in the current timestep);

• return FALSE otherwise.

In [Melo & Veloso (2009)] a list of states in which the agents had to coordinate
was maintained. Since in the environments used in our experiments, collisions
can occur in every location, this list would contain every possible combination of
locations that are less than two cells apart from each other. Hence, we feel that our
implementation of this active perception function is more realistic when dealing with
mobile agents. Our function could easily be put in the context of sensors detecting
other agents in a certain range, as was the focus of the research described in the
previous chapter.
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In Table 5.1 we show the results of the performance of all six algorithms in the
different environments. The results are the averages over the last 100 episodes when
agents have converged. Below the name of the environment we list the minimum
number of steps one agent needs to reach its goal if it is not influenced by another
agent. Next to the size of the state and action space, we show the number of times
the agents collide on average during one episode as well as the number of steps
needed for both agents to reach the goal. We see that all approaches manage to
find a collision free path, except for the independent learners in the Grid game 2
environment. This is due to the nature of this environment as explained in detail
in Section 3.2.1. If both agents take the shortest (and only) path to the goal from
their initial states, they are immediately penalised by a collision. Since they are not
aware of each other they cannot condition their actions on the location of the other
agents.

In all other environments this problem is much less due to the exploration strat-
egy of the agents. If we take TunnelToGoal for instance, taking the shortest path to
the goal would result in a collision at the entrance of the tunnel. However since the
agents take a random action in 10% of the cases, they only rarely find themselves in
that situation. Using a different exploration strategy, such as Boltzmann exploration
with a decreasing temperature parameter results in similar behaviour as observed
in Grid game 2, because the collisions would only start to occur often, when the
temperature is already quite low. At this point, their Q-values change to avoid that
action, and, as temperature lowers even more, the action that leads them to the
goal will no longer be explored.

CQ-learning on the other hand uses exactly this situation to start observing the
state of the other agents and to condition its actions on the local state information
of the other agents. Throughout most experiments, CQ-learning manages to find
a shorter path to the goal compared to the other algorithms, using a much smaller
state space than both joint-state learners and without suffering from the caveats
of ignoring the other agents. For the TunnelToGoal gridworld for instance, both
agents learned to take each other into consideration at the entrances of the tunnel,
resulting in a state space consisting of 26 states, which is only one more than
independent learners and 599 states less than joint-state learners.
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Env Alg #states #actions #coll #steps
Grid_game_2 Indep 9 4 2.7 22.2± 17.9

JS 81 4 0.1 4.0± 0.2
(min steps: 3) JSA 81 16 0.0 4.7± 0.1

LOC 9.9± 0.5 5 0.1 4.0± 0.4
CQ 10± 0.0 4 0.0 3.6± 0.3

CQ_NI 10.9± 2.0 4 0.1 4.0± 0.3
TunnelToGoal Indep 25 4 0.9 30.1± 131.7

JS 625 4 0.0 14.7± 9.2
(min steps: 10) JSA 625 16 0.0 18.0± 2.3

LOC 26± 0.6 5 0.2 12.3± 11.9
CQ 26± 0.0 4 0.0 10.6± 0.3

CQ_NI 26± 0.0 4 0.1 11.8± 0.6
ISR Indep 43 4 0.4 9.3± 44.8

JS 1849 4 0.1 5.7± 1.6
(min steps: 4) JSA 1849 16 0.0 7.6± 1.4

LOC 51.3± 82.3 5 0.2 6.7± 7.5
CQ 49.0± 2.3 4 0.1 5.1± 0.7

CQ_NI 49.9± 7.8 4 0.1 6.0± 1.9
CIT Indep 69 4 0.0 19.3± 58.5

JS 4761 4 0.1 17.3± 19.3
(min steps: 10) JSA 4761 16 0.1 22.7± 12.9

LOC 96.4± 61.7 5 0.2 18.9± 60.2
CQ 74.2± 2.5 4 0.0 10.7± 0.3

CQ_NI 70.9± 21.8 4 0.0 18.9± 59.9
TunnelToGoal_3 Indep 55 4 0.6 23.6± 84.16

(3 agents) JS 166375 4 0.0 24.0± 31.6
(min steps: 10) JSA 166375 64 0.2 34.5± 24.5

LOC 61.6± 10.0 5 0.6 13.7± 87.7
CQ 78.7± 31.17 4 0.1 14.52± 9.9

CQ_NI 159.2± 1240.5 4 0.4 19.49± 213.9
CMU Indep 133 4 0.0 43.8± 33.1

JS 17689 4 0.0 55.5± 129.0
(min steps: 31) JSA 17689 16 0.0 74.8± 24.1

LOC 154.0± 53.28 5 0.1 46.0± 68.8
CQ 133.0± 0.0 4 0.0 31.0± 0.0

CQ_NI 135.52± 21.1 4 0.0 40.6± 14.3

Table 5.1: Results and state action space information for the different
environments and algorithms. (Indep = Independent Q-Learners, JS
= Joint-state learners, JSA = Joint-state-action learners, CQ = CQ-
Learners.)
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For LoC the size of the state space is the number of locations in the environment
combined with the number of states in which the pseudo coordination action has the
highest Q-value. The upper bound of the size of the state space LoC can observe,
in our implementation of the active perception function, is the number of possible
locations in the gridworld multiplied by 12. This is because the active perception
function will return true for a maximum of 12 locations of another agent (i.e. the
locations that can be reached within 2 steps).

Our variant on CQ-learning with random initial policies also performs well com-
pared to other approaches. This technique also finds collision free policies, but needs
a few steps more than with initial policies, but less than the other approaches. This
is due to the simultaneous learning of the goal and avoiding the other agents. It is
possible that agents have learned to avoid each other using only their independent
state information, before enough samples have been collected for the statistical test
to conclude that a richer state information would prove more beneficial. Moreover
we also see that the state space of this algorithm is even slightly smaller than for
CQ-learning. This is because of the confidence value we maintain for every aug-
mented state. If these augmented states are not encountered a sufficiently number
of times, they are reduced to simple states again. This process is shown in Fig-
ure 5.9(a) for the TunnelToGoal_3 environment. We show the evolution of the size
of the state space over time for the different agents.
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Figure 5.9: (a) Evolution of the size of the state space in which CQ-
learning is learning in the TunnelToGoal_3 environment and (b) graph-
ical representation of states in which global state information is used.

We have indicated with the solid black line the size of the state space in which
each independent Q-learning agent is learning. For joint-state and joint-state-action
learners the line representing the size of the state space is constant at 553 = 166, 375
for this environment. To allow for better readability, this line is not shown in the
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figure. The variation in the lines representing the state space of CQ-learning with
random initial policies for the different agents is caused by the fixed exploration
strategy which is used. This causes agents to deviate sometimes from their pol-
icy which results in additional states in which collisions might be detected. These
states however are removed again pretty quickly thanks to the confidence value that
is maintained for augmented states. Since these states are only occasionally visited
and the other agents are only rarely at the same location as when the collision
state was detected, so the confidence value of these states decreases rapidly. In
Figure 5.9(b) we show in which locations the agents will observe other locations
in order to avoid collisions. We used the same colours as in Figure 5.9(a) for the
different agents. The alpha level of the colours represent the confidence value each
agent has in that particular augmented state. The lighter the colour, the lower the
confidence value for that augmented state. The agents have correctly learned to
observe other agents around the entrance of the tunnel, where collisions are most
likely if the agents follow their respective shortest paths to the goal. In all other
locations, they act using only their local state information.

In Figure 5.10 we show a running average with a window of 50 episodes of the
number of steps needed to complete the episode for the different environments.
The first 3, 000 episodes are shown. In all environments we see the number of steps
rapidly decreasing. CQ is right from the beginning lower than all the algorithms
because they have a model of the reward function for the corresponding single agent
task at their disposal and can quickly follow the optimal policy. As soon as this
algorithm collected enough samples to conduct its statistical test, the number of
steps needed to complete an episode using this algorithm lowers even more since
agents also avoid collisions now.
CQ_NI has a similar behaviour as Indep in the initial phase of the learning process.
In terms of behaviour both algorithms are identical at the beginning, until CQ_NI
identified interaction states and augmented them. At this point, CQ_NI quickly
learns a shorter path to the goal than Indep. The algorithm reaches a solution in
which a comparable or slightly lower number of steps is required to complete an
episode compared to JS or JSA. This can be seen in Table 5.1 in which we also list
the number of steps needed if agents are alone in the environment, following the
shortest path.
LoC initially needs to learn in the local state space, using 5 possible actions (4
navigation actions + COORDINATE). The COORDINATE action causes an update in
the Q-table containing joint state values which is bootstrapped with the single state
Q-values. Contrary to CQ_NI this causes the joint Q-values to be updated using
local state Q-values which are not representing the correct state-action values yet.
In CQ_NI this table already contains more useful information since these have been
updated while the algorithm was collecting samples for the sliding windows. This
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effect is visible in all but the smallest environments, in which learning goes so fast,
that LoC already has good estimates very early in the learning process.
It is clear that the environment with the largest joint state space, i.e. TunnelTo-
Goal_3 is the most challenging for the joint-state and joint-state-action learners.
They both need a long time before finding an acceptable solution in terms of the
number of steps needed to complete an episode. Even after 20,000 episodes their
policy is still significantly worse than the other algorithms (see Table 5.1).
In Figure 5.10(f) we show the evolution over the first 15,000 episodes for the CMU
environment. We see that CQ_NI and Indep struggles with the layout of the envi-
ronment. The agents have to select the same action for many timesteps to reach
the other end of the environment, while they are unaware of the presence of other
agents. Collisions with other agents result in long episodes before the goal is reached
(if it is reached at all) if agents do not explore enough. CQ_NI is able to learn a
solution faster and circumvent this issue since after some time, certain states get
augmented and the agent can select its action using these augmented states.
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(a) Grid Game 2 (b) TunnelToGoal
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(c) ISR (d) CIT
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Figure 5.10: Running average over 50 episodes of the number of steps
all agents need to reach the goal in the different environments.
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The evolution of the number of collisions between the agents is shown in Fig-
ure 5.11. Again, we only show the first 3,000 episodes.
Independent learners have trouble finding collision free policies except for environ-
ments (c), (d) and (f). In ISR agents learn to select non-interfering paths at the
bottom left and as such still perform quite good, but in CIT and CMU however
since the corridors are small, 1 agent takes a detour to the goal, whereas the other
agent takes the shortest path. In CIT the shortest path consists of 10 steps, whereas
the detour taken by the other agent requires 22 steps. In all other environments
the agents collide in the same locations, but since they use an ε-greedy exploration
strategy it is often the case that agents escape from a collision due to an exploratory
action and as such do not observe the collision enough to learn to take a different
path. The result is that they do not learn collision free policies.
Throughout all environments both CQ-learning variants learn collision free policies
and learn to avoid collisions already early in the learning process. We see the same
effect in the TunnelToGoal_3 environment for JS and JSA as in the figure repre-
senting the number of steps to complete an episode. These algorithms need a much
longer learning time before they can reduce the number of collisions.
In CMU the same behaviour as CQ_NI is observed. Because agents are still ex-
ploring a lot in this challenging environment, the number of collisions can suddenly
increase if agents converge to a certain path towards the goal. Since it takes some
time to collect enough samples for the statistical tests, we see several peaks in the
number of collisions before the agents stabilise to a collision free policy.
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Figure 5.11: Running average over 50 episodes of the number of col-
lisions that occur per episode.
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Finally, in Figure 5.12 we show how often agents used more than just their
local state space. For LoC the number of joint plays is the number of times the
COORDINATE action was selected during an episode. For CQ and CQ_NI this is the
number of times they used an augmented state to select an action. We do not show
the other algorithms as for Indep this would be a constant line at 0 and for JS and
JSA this information is the same as the number of steps per episode since these
algorithms always use the complete system state to act.
We see that LoC initially selects its COORDINATE action quite often, even more so in
the TunnelToGoal_3 environment. This is due to the fact that in the initial phases
of the learning process, while agents are still searching for the goal, they can collide
in every possible location and hence this COORDINATE action becomes attractive in
every location. When agents start converging to their policy for reaching the goal,
this action becomes less attractive due to the penalty associated with it, and the
number of joint plays decreases.
Both CQ variants are more stable in the number of joint plays because selecting
to use the state information of another agent does not depend on its exploration
strategy, but on the samples it has collected. If a cost would have been attached
to observing the state information of other agents, this means that this can be
kept lower compared to LoC. Even though collision can happen in every location
in the initial phase of the learning process, they must happen very regularly before
the statistical test will conclude that the collisions happen significantly more often.
With LoC this trade-off is less subtle since this algorithm uses a Q-value for the
COORDINATE action. In combination with an ε-greedy strategy, this value is often
selected as being the best, before the reward for reaching the goal is backpropagated
enough to prefer one of the navigation actions.
The cause of the peaks in the results of CQ_NI is the fact that the agents are
simultaneously learning a policy and attempting to avoid other agents. If collisions
suddenly occur more often, the state is augmented and the collisions decrease. This
augmented state however influences the path the agents adopt and as such, the
number of collisions might increase again since agents explore the best course of
action in this augmented state. This continues until all relevant states are aug-
mented and agents found a collision free policy. After some time, the augmented
states that are not encountered anymore are reduced again and agents only use
their local state information to act.
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Figure 5.12: Running average over 50 episodes of the number of
times the agents choose to use state information about other agents
per episode.
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5.4 Notions on convergence
In this section we will analyse the behaviour of CQ-learning by using the replica-
tor dynamics (RD). The RD is an approach, originating from evolutionary game
theory (EGT), in which the dynamics of strategy reproduction in a population is
investigated. EGT studies the propagation of strategies through a population of
agents from a biological point of view. The spread of a strategy in a population is
analysed by means of fitness and natural selection. At every timestep, two members
of the population are selected randomly to play a game pairwise. The offspring an
agent generates for the next generation is proportional to its performance in the
game. Hence, strategies that have a high fitness will reproduce faster and spread
throughout the population [Weibull (1997)]. An important principle is evolutionary
stability . This means that when the entire population follows a strategy, and that
the population is resistant to the invasion of another strategy. The kind of games
we consider in this section are 2-player 2-action games which are represented by
their payoff matrix. An example of such a matrix is given in Table 5.2.

Column player
Action 1 Action 2

Row player
Action 1 1,1 1,2
Action 2 2,1 0,0

Table 5.2: Payoff matrix of a normal form game

The first number in every cell in the matrix represents the payoff for the row
player, whereas the second number represents the payoff for the column player. So
if the row player selects Action 2 and the column player selects Action 1, the
row player receives a payoff of 2 and the column player a payoff of 1. Given
this basic introduction on (evolutionary) game theory, we will now present the
basic notions on the replicator dynamics before showing how these can be used
to analyse the behaviour of CQ-learning theoretically. For a more in depth overview
of (evolutionary) game theory, we refer the reader to [Weibull (1997), Samuelson
(1998),Osborne & Rubinstein (1999),Gintis (2000),Tuyls & Nowé (2005)].

5.4.1 Replicator dynamics
In this section, which is based on [Vrancx (2010)], we only consider the situation
in which a population of agents play a pure strategy. We define the population
of agents at timestep t as n(t), with ni(t) agents playing a pure strategy σi, i =
1, . . . , r (for r pure strategies). The proportion of agents playing σi at timestep
t is then xi(t) = ni(t)/n(t) and the state of the population is described by the
vector ~x(t) = (x1(t), . . . , xr(t)). Given an infinite population, this situation can be
mapped on a single agent learning a mixed strategy for the game [Tuyls (2004)].
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The expected payoff over the entire population when it is in state ~x is denoted
by R̄(~x):

R̄(~x) =
∑
i

xiR(σi, ~x) (5.3)

where R denotes the expected payoff in the game of strategy σi, when playing
against a opponent, drawn randomly from population ~x. Given that the amount of
new individuals in the population playing strategy σi is proportional to R(σi, ~x(t)),
then the expected proportion of individuals playing strategy σi in the next generation
is given by:

xi(t+ 1) = Ni(t)R(σi, ~x(t))∑r
j=0 Nj(t)R(σj , ~x(t))

= xi(t)
R(σi, ~x(t))
R̄(~x)

(5.4)

Which allows to write the evolution of σi in the population as:

xi(t+ 1)− xi(t) = xi(t)
R(σi, ~x(t))− R̄(~x)

R̄(~x)
(5.5)

The description above assumes that generations are not overlapping. Each
generation lives for one period before being replaced by its offspring.

For the case where agents are continuously being replaced, the expected number
of agents playing σi is given by:

ni(t+ δ) = ni(t) + δni(t)R(σi, ~x(t)) (5.6)

with δ the period of time in which a fraction of the population playing σi produces
R(σi, ~x(t)) offspring. This results in a population evolution described by:

xi(t+ δ)− xi(t) = xi(t)
δR(σi, ~x(t))− δR̄(~x(t))

1 + δR̄(~x(t))
(5.7)

Taking the limit δ → 0 and a proper rescaling of time, Equation 5.7 results in
the continuous time replicator dynamic:

dxi
dt

= xi(R(σi, ~x(t))− R̄(~x(t))) (5.8)
Assuming that the game rewards are given by the payoff matrix A, this equation

can further be rewritten. The average payoff R̄ for the entire population is the
product ~xA~x and the expected payoff for strategy σi is the i-th component of the
vector A~x (denoted by (A~x)i). This results in the following equation:

dxi
dt

= xi((A~x)i − ~xA~x)) (5.9)

If multiple populations are playing the game, for instance in asymmetric games3,

3 In asymmetric games the different players of the game do not necessarily have the same action
sets at their disposal.
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we need two systems of differential equations: one for the population representing
the row player (X), and one for the population representing the column player (Y ).
This results in the following replicator equations for the two populations:

dxi
dt

= [(A~y)i − ~x ·A~y]xi (5.10)

dyi
dt

= [(B~x)i − ~y · B~x]yi (5.11)

From Equations 5.10 and 5.11 it is clear that the growth rate of the types in
each population is also determined by the composition of the other population.

These replicator equations can be linked to evolutionary stable strategies by
following theorem [Hofbauer et al. (1979)]:

Definition 24. If a strategy ~σ is an evolutionary stable strategy, then the population
state ~x = ~σ is asymptotically stable under the replicator dynamic.

This theorem means that for any path starting sufficiently close to state ~x, this
path will converge to state ~x under the RD. Hence, the evolutionary stable strategies
are attractor points for the RD.

In 1997 Börgers and Sarin demonstrated the connection between evolutionary
game theory and reinforcement learning [Börgers & Sarin (1997)], by studying the
continuous time limit of an RL update scheme called Cross’ Learning [Cross (1973)].
In 2004, Tuyls developed a version of the RD, allowing us to analyse the behaviour
of Q-learning with a Boltzmann exploration strategy [Tuyls et al. (2003)]. Finally,
Wunder et al. analysed the convergence of Q-learning with an ε-greedy exploration
strategy in 2-player 2-action games in [Wunder et al. (2010)]. In the next section
we use the replicator equations from [Tuyls et al. (2003)] to analyse the behaviour
of CQ-learning. Suppose the payoff matrices are represented by A and B for the
two players and τ is the temperature of the Boltzmann exploration function, these
equations are:

dxi
dt

= α

τ
((A~y)i − ~x ·A~y)xi + xiα

∑
j

xj ln(xj
xi

) (5.12)

dyi
dt

= α

τ
((B~x)i − ~y ·B~x)yi + yiα

∑
j

yj ln(yj
yi

) (5.13)

5.4.2 Convergence of CQ-learning

5.4.2.1 One step coordination problems

In this section we analyse the behaviour of CQ-learning by means of the Grid game 2
environment as an example. The grid game, together with the numbered locations
is shown in Figure 5.13(a).
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1 2 3

4 5 6

7 8 9

(a) (b)

Figure 5.13: (a) Grid game 2 environment with numbered locations.
(b) Representation of the Q-values of one agent acting alone for the
different actions in the different states if only a reward of +20 is given
for reaching the goal. (Yellow = +20, Orange = +18, Red = +16.2,
Blue = +14.58)

We use the first variant of CQ-leaning, in which agents have converged to the
optimal single agent policy. Three possible scenarios exist for the interaction state
in which the agents are in locations 〈7, 9〉.

1. The red agent in location 7 has detected the conflict and is selecting an action
based on augmented state information 〈7, 9〉, whereas the blue agent has not
detected any conflict yet and selects an action using state information 〈9〉.
In this situation the blue agent is still following its single agent policy, which
is a stationary policy from the viewpoint of the red agent. Hence, the red
agent will select an action that will cause it to remain in location 7, while the
blue agent moves to location 8. In the next timesteps, the agents are not in a
conflict situation and both of them follow their single agent policy until they
reach the goal.

2. The blue agent in location 9 has detected the conflict and is selecting an
action based on augmented state information 〈9, 7〉, whereas the red agent
has not detected any conflict and selects an action using state information
〈7〉.
The outcome of this situation is similar to the one described above, with the
red agent selecting its preferred action and reaching the goal first.

3. Both agents have detected the conflict situation and are selecting their action
based on augmented state information. As such, they are playing a coordi-
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nation game between selecting the action that would take them to location 8
(and colliding if the other agent does the same), or taking any of their other
actions and remaining in their respective cells. Based on a reward of +20 for
reaching the goal, a penalty of −10 for colliding and a discount factor of 0.9,
the particular game is given by Table 5.3. These values are deduced from
the single agent Q-values, since these are the ones used in the bootstrapping
process of CQ-learning. These values are shown in Figure 5.13(b). A yellow
arrow represents a value of +20, an orange arrow represents +18, a red arrow
+16.2 and finally a blue arrow represents a value of +14.58. The greedy
action in state 〈7〉 or state 〈9〉 results in a transition to state 〈8〉 if only one
of the agents selects it, hence its value of +16.2. If both agents select it, the
value in the table represents the discounted value of the state the agent is
currently in minus the penalty for colliding. Note that the value of the state
equals the Q-value of the best action for that state.

Blue Agent
Non-greedy Greedy

Red Agent
Non-greedy 14.58,14.58 14.58,16.2
Greedy 16.2,14.58 4.58,4.58

Table 5.3: Payoff matrix of the coordination game in the Grid game 2
environment for the situation where both agents are selecting an action
using augmented state information.

The behaviour of this system can be analysed using Equations 5.12 and 5.13 of
the replicator dynamics, and the basins of attraction are shown in Figure 5.14(a).
The settings were α = 0.00001 and τ = 0.01. On the right hand side, in Fig-
ure 5.14(b) we plotted sample paths of the Q-learning process with the same pa-
rameters. The probability of selecting the action non-greedy is on the x-axis for
the red agent and on the y-axis for the blue agent. From this figure it is clear that
the learning process approximates the paths of the differential equations to one of
the stable points (i.e 〈greedy,non-greedy〉 or 〈non-greedy,greedy〉).
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Figure 5.14: The x-axis represents the probability of selection action
non-greedy for the red agent. The y-axis represents this probability
for the blue agent. (a) Vector field of the replicator dynamics for α =
0.00001 and τ = 0.01 and the payoff matrix given in Table 5.3. (b)
Sample paths of Q-learning under the same settings.

From this we can conclude that CQ-learning will solve the coordination problem
for all three scenarios, under the assumption that the payoff matrix for the coordi-
nation game resembles the matrix shown in Table 5.4, with P < S < T .

Agent 2
Non-greedy Greedy

Agent 1
Non-greedy S,S S,T
Greedy T,S P,P

Table 5.4: Payoff matrix of the coordination game in CQ-learning for
the situation where both agents are selecting an action using augmented
state information.

If we take the value of the next state after an interaction as V ∗(C) (where C is
state 〈8〉 in the Grid game 2 environment, so V ∗(C) = 18 for this example), P1 the
penalty for the non-greedy action and P2 the penalty for miscoordination, these
values are as follows:

• S = P1 + γ2V ∗(C)

• T = γV ∗(C)

• P = P2 + γ2V ∗(C)

From these values it is clear that P < S < T will hold as long as P2 < P1. In the
example described above, P2 = −10 and P1 = 0.
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5.4.2.2 Multiple step coordination problems

In some situations the agent transitions between multiple augmented states. This
is the case in the solution depicted in Figure 5.5, where the actions of the red agent
in timesteps 6 and 7 are both selected based on augmented state information. In
this situation the agents repeatedly played the coordination game of Table 5.4. The
values are obtained in the same way as for the Grid Game 2 environment. The game
played at timestep 6 is given in Table 5.5 and at timestep 7 in Table 5.6.

Blue Agent
Non-greedy Greedy

Red Agent
Non-greedy 11.81,11.81 11.81,13.13
Greedy 13.13,11.81 1.81,1.81

Table 5.5: Payoff matrix of the coordination game in the 2-robot
environment from Figure 5.5 at timestep 6.

Blue Agent
Non-greedy Greedy

Red Agent
Non-greedy 10.63,13.12 11.81,14.58
Greedy 11.81,13.13 1.81,4.58

Table 5.6: Payoff matrix of the coordination game in the 2-robot
environment from Figure 5.5 at timestep 7 if both agents augmented
their state information.

The game in Table 5.5 follows the outline described in Table 5.4 and the agents
will converge to one of the Nash equilibria. In Table 5.6 we show the game matrix
for the situation where the blue agent played its greedy and the red agent played
its non-greedy action in the previous timestep. The payoffs for both agents are
not symmetrical anymore since the blue agent is closer to achieving its goal, hence
also the higher values in its payoff matrix. The dynamics of this game are given in
Figure 5.15(a). Because the payoffs of the blue agent are higher, the dynamics for
playing its greedy action are stronger than those to play its non-greedy action.
Moreover, it is logical to bias the agent having selected its non-greedy action at
the previous timestep, to do this again. The sample paths of the behaviour of
Q-learning agents are given in Figure 5.15(b). We clearly see that Agent 1 again
selects its non-greedy action to solve the coordination problem.
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Figure 5.15: The x-axis represents the probability of selection action
non-greedy for the agent having selected its non-greedy action in the
previous timestep. The y-axis represents this probability for the other
agent. (a) Vector field of the replicator dynamics for α = 0.00001 and
τ = 0.01 and the payoff matrix given in Table 5.6. (b) Sample paths
of Q-learning under the same settings.

The same reasoning can be made for even more consecutive interactions and
the analysis of the dynamics performed in the same way. However, the scope of
this dissertation is to learn using sparse interactions in which coordination is only
needed in a limited set of states and not in the entire state space.

5.5 Discussion and related work
When trying to learn good policies in environments where multiple agents are
present, many things must be taken into consideration when selecting an algo-
rithm. For instance, is all the information about the other agents available or can
it be obtained through communication, do the agents have common interests, how
many other agents are present, etc. If all information is available, learning in the
entire joint-state joint-action space will be beneficial, but at a high cost in terms of
learning time. If this cost is too high, independent learners could be used, but the
outcome of this approach is very uncertain.

For these reasons a new research track in multi-agent reinforcement learning has
emerged that lies in between both of these approaches. Although sparse interactions
is a new paradigm within MARL, the ideas behind it, are closely related to feature
selection techniques which go back to the late 1990s. CQ-learning can be seen
as a feature selection technique which is learning when state features, containing
information about other agents, is relevant. For a thorough overview of feature
selection we refer to [Guyon et al. (2006)]. These ideas were first transferred to
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single agent RL. The G-tree algorithm is a decision tree learning algorithm that aims
to generalise inputs in large domains [Chapman & Kaelbling (1990), Chapman &
Kaelbling (1991)]. It does so, by incrementally building a tree-structured Q-table
and splits leafs based on statistics of the reinforcement data rather than input-
output pairs. With memory considerations in mind, this algorithm only maintains
statistics in the leaf nodes. However, this implies that at each split, the algorithm
must re-learn that part of the state space from scratch. Moreover, the G-algorithm
is only capable of detecting significant distinctions in isolation. I.e. only one state
feature may be responsible for a significant change in the reinforcement in order to
be detected. These two limitations of the G-algorithm were the inspiration of an
improved version, called the U-tree algorithm [McCallum (1995)].

These ideas from single agent RL found their way to multi-agent RL with the
Utile Coordination algorithm [Kok et al. (2005)]. This algorithm is restricted to
common interest problems and requires full observation about the state information
of all agents, and the actions they performed. In certain domains, where this
information is only available through explicit communication, this might be a very
costly operation. CQ-learning relaxes this requirement by only requesting joint state
information when there are strong indications that the presence of other agents
causes significant influence for certain states.

Another approach using sparse interactions that does not explicitly rely on sta-
tistical tests is LoC [Melo & Veloso (2009)]. This algorithm, together with Utile
Coordination, are explained in detail in Section 3.3.1. LoC allows for conflicting
interest games, but imposes an additional requirement: an active perception mech-
anism must be present to detect the influence of another agent. A requirement not
present in CQ-learning, since it uses its statistical tests on the joint state informa-
tion to detect this influence. Moreover, LoC was only tested for domains where the
influence of another agent was limited to a predefined number of states. If this in-
fluence was present in all states, as was the case in the experiments in this chapter,
LoC could be seen as a simplified version of the 2Observe algorithm, introduced in
Chapter 4. Both algorithms learn single and multi-agent policies in the same way,
but 2Observe also simultaneously learns the active perception function, whereas
LoC assumes this function is available. Also note that although the pseudocode in
Algorithms 7 and 8 describe a setting in which a statistical test at every timestep,
it is more realistic to perform this test every t timesteps, where t is chosen in such
a way that the system still responds to coordination problems in a reactive way.

Finally, CQ-learning also bears resemblance to Hierarchical RL (HRL) such as the
Max-Q algorithm [Dietterich (1998)]. The learning problem could be decomposed
in several subtasks, each of which requires different state information to accomplish
that particular subtask. If this information is available, HRL approaches could be
used. In [Dietterich (2000)] a proof is given regarding the assumptions to which
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this state abstraction must comply in order to converge. In [Jong & Stone (2004)]
a method is described to learn this state abstraction, by analysing the underlying
MDP the agent is trying to solve. The focus of CQ-learning is also to learn which
state information is relevant, but is learning in a multi-agent environment. It is aug-
menting its state representation to include all the relevant information in a state,
rather than to remove all irrelevant information as is done in [Jong & Stone (2004)].

To summarise, CQ-learning uses more relaxed assumptions compared to other
techniques that exploit the sparse interactions that exist between agents. The al-
gorithm still assumes that state information about other agents is accessible, but
attempts to explicitly learn when it is necessary to use this information. Compared
to commonly accepted multi-agent approaches, CQ-learning also reaches collision
free policies, but requires less steps to complete an episode and uses minimal ex-
tra information to do so. The cost however is that CQ-learning is computationally
more expensive than these other approaches because of the statistical tests and the
samples required for them. On the other hand, CQ-learning does not suffer from
the exponential explosion in the state-action space in function of the number of
agents and, as can be seen from the experiments with three agents, the benefits
of CQ-learning become more explicit when more agents are present in the environ-
ment. Also note, that CQ-learning does not require all agents to be present in the
environment from the beginning. Agents can be added and removed during the
learning process, since CQ-learning treats all agents homogeneously and learns in
which states to observe the other agents. If another agent is no longer present, the
action can be selected using only local state information.

5.6 Summary

In this chapter we presented two variants of CQ-learning. This algorithm uses
statistical tests on the immediate reward signal to take the midground between
acting completely independent using only the local state space of an agent and
acting in a complete joint-state space. The first variant uses a single agent model
of the reward function of the problem task as a baseline to detect the influence of
other agents. If the test concludes that a richer state representation is required, the
model could be extended to include this additional information and plan in a sparse
multi-agent model. Although not explored in this chapter, this single agent model
of the reward function could also serve as a basis for Dyna approaches to increase
the learning speed of the core task.

The second variant does not require this model, but uses a sliding window to
store the immediate rewards and compares them against the first rewards seen for
a particular state-action pair. This principle is inspired by the fact that the number
of interactions between agents increases as learning progresses and as agents start
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to converge to a policy. As such, these first rewards are a good estimate of the
expected payoff if agents are acting alone in the environment. Since this baseline is
heavily influenced by the behaviour of the agents in the early phases of the learning
process a confidence value is maintained for the augmented states. This value allows
the reduction to local states if experience shows that these augmented states are
only rarely visited.

We have validated our approach in a set of gridworlds of various size and diffi-
culty and showed the set of states in which the agents use global state information.
These experiments allow us to conclude that agents using CQ-learning not only
learn collision free policies in these gridworlds, but also learn shorter paths than
other multi-agent approaches. CQ-learning was also applied to the Khepera robots,
using an overhead camera to obtain the state information of other agents. The
results obtained in this scenario were similar to the experiments described in this
chapter.

CQ-learning is however not restricted to gridworlds, but can be applied to any
domain, in which the influence of other agents is reflected in the immediate reward
signal the agents experience. In many situations however, the influence of other
agents, is only reflected several timesteps ahead in the future. When using gridworlds
as an example this could for instance be when the order in which agents enter the
goal is important. Problems characterised by these delayed influences are the scope
of the research presented in the next chapter.
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Chapter 6
Solving delayed coordination problems

The future depends on what we do in the present.
– Mohandas Karamchand Ghandi, 1969- –

One of the main advantages of RL is the capability of dealing with a delayed
reward signal. Using an appropriate backup diagram, rewards are backpropagated
through the state space. This allows agents to learn to take the correct action that
results in the highest future (discounted) reward, even if that action results in a
suboptimal immediate reward in the current state. In a multi-agent environment,
agents can use the same principles as in single agent RL, but have to apply them
in a complete joint-state-joint-action space to guarantee optimality. Learning in
such a state space can however be very slow as argued in previous chapters. In this
chapter we present our approach for mitigating this problem. Future Coordinat-
ing Q-learning (FCQ-learning) detects strategic interactions between agents several
timesteps before these interactions occur. FCQ-learning uses the same principles as
CQ-learning (see Chapter 5) to detect the states in which interaction is required,
but several timesteps before this is reflected in the reward signal. In these states,
the algorithm will augment the state information to include information about other
agents which is used to select actions. The techniques presented in this chapter are
the first to explicitly deal with a delayed reward signal when learning using sparse
interactions.

6.1 Delayed coordination problems
In single agent RL, the reward signal an agent receives for an action may be delayed.
When multiple agents are acting together and influencing each other, the effect of
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such interactions may only become apparent during the course of action. Let us
consider a variant on the TunnelToGoal environment as an example, depicted in
Figure 6.1. Agents have to reach the goal location in a predetermined order, i.e.
Agent 1 must reach the goal location before Agent 2. This requirement is reflected
in the reward signal the agents receive when they reach the goal. If Agent 1 is first,
they both receive a reward of +20, if Agent 2 is first in the goal state, both agents
only get a reward of +10. Independent learners are once again unable to detect
the reason for this change in the reward signal since they are unaware of the other
agent and as such cannot learn to reach the optimal policy. Agents observing the
complete system state will be able to solve this problem, but as explained in the
previous chapter, this imposes high requirements on the observability the agents
have about the system or their communication abilities.

G 1 2

Reward for reaching the goal:
 Agent 1 is rst: Both receive +20
 Agent 2 is rst: Both receive +10

Figure 6.1: A variant of the TunnelToGoal environment in which the
order with which the agents enter the goal influences the reward they
observe.

Since the path to the goal is surrounded by walls, the agents must coordinate at
the entrance of the goal, in order to enter the goal in the correct order. They will
however only observe the fact that they had to coordinate when it is already too
late, i.e. when they have reached the absorbing goal state. In a similar way, if we
think about mobile robots navigating in an environment, it is possible that there are
some bottleneck areas, such as small alleys where robots cannot cross each other.

6.2 Learning with delayed coordination problems
In this section we explain our approach of dealing with delayed coordination prob-
lems. So far, all research within the sparse interaction framework are only using
immediate rewards as a way to detect the need for coordination. As we explained
in the previous section, this view is too limited, since it is not acceptable to assume
that this need for coordination is reflected immediately in the reward signal following
the action. Using the full MG view of the system, such delayed reinforcement signals
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are propagated through the joint state space and algorithms using this MG view can
still learn optimal policies. It should however be clear by now, that this view of the
system is not a realistic one. A DEC-SIMDP is more realistic since it models exactly
the coordination dependencies that exist between agents in a limited set of states.
Since it is not modeled how these dependencies can be resolved, the DEC-SIMDP
is still applicable as a framework for delayed coordination problems. We will follow
the same approach as in the previous chapter and will again introduce two variants
of an algorithm, called Future Coordinating Q-learning (FCQ-learning). This algo-
rithm is closely related to CQ-learning described in Chapter 5. Coordination states
are again detected by means of statistical tests on the reward signal, after which
the conflicting states are augmented to include the state information of the agents
participating in the interaction.

6.2.1 FCQ-learning with initialised agents

The first variant of FCQ-learning assumes that agents have been learning for some
time alone in the environment. As a result, their Q-values have converged to the
true state-action values. These Q-values will be the baseline for the statistical tests
that will determine in which states coordination is needed. The basic idea is that
if agents experience a negative influence from each other, the Q-values for certain
state-action pairs will decrease. Since the Q-values are used to bootstrap, this
influence will gradually spread throughout the Q-table. We illustrate this effect in
the environment depicted in Figure 6.2. The agent’s initial position is marked with
an X, its goal, with the letter G. One agent was learning alone in the environment
and was given a reward of +20 for reaching the goal. Moving into a wall was
penalised with −1. All other actions resulted in a payoff of 0. The agent was
trained using a learning rate of 0.02 and acted completely random until its Q-values
converged. This exploration strategy ensures that all state-action pairs are visited
enough to allow the Q-values to converge to the true state-action values. After
convergence, this Q-table was stored in Q∗.

After the learning process, the reward for reaching the goal was decreased to
+10 and the agent selected its actions using an ε-greedy strategy with ε = 0.1. In
Figure 6.3 we show the evolution of the Q-values for the actions of the policy to
which the agent converged. In the legend of this figure we show the index of the
state (which corresponds to the indices in Figure 6.2) together with the index of the
action (1 = NORTH, 2 = EAST, 3 = SOUTH, 4 = WEST). The state at the top of the
legend is the one closest to the goal, the one at the bottom is the initial position
of the agent. We see that the Q-values quickly drop near the goal, followed by the
Q-values for states further and further away from the goal until the start location
of the agent.

To detect these changes statistically, FCQ-learning uses a Kolmogorov-Smirnov
test (KS-test) for goodness of fit. This statistical test can determine the significance
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Figure 6.2: Evolution of the states in which a KS-test for goodness of
fit detects a change in the Q-values. The darker the shade of the cell,
the earlier the change is detected.

of the difference between a given population of samples and a specified distribution.
A thorough explanation of this test is given in Appendix B.2. Since the agents
have converged to the correct Q-values, the algorithm will compare the evolution
of the Q-values when multiple agents are present to the values it learned when
acting alone in the environment. To validate this idea we tested its concepts in the
TunnelToGoal environments from the previous chapter.

To validate the use of a statistical test to detect these changes, a window of
Q-values was maintained with the last N values of the Q-value of that particular
state-action pair in the experiment described above. We will refer to this window as
WQ
k (sk, ak). This window, contains the evolution of the Q-value of that state-action

pair over the last N updates after we decreased the reward for reaching the goal. A
KS-test for goodness of fit was used to compare the values of WQ

k (sk, ak), to the
optimal Q-value Q∗(sk, ak). The order in which significant changes in the Q-values
are detected is shown in Figure 6.2. The darker the shade of the cell, the earlier
the change was detected. The KS-test detected this change first in the Q-values
of the cell adjacent to the goal state. Since the Q-values are still being updated,
the KS-test continued detecting changes further away from the goal, towards the
starting position of the agent. This experiment was done using a confidence level
of 99.99% for the KS-test. Even with this confidence, the test correctly identifies
the states in which the Q-values change due to the changed reward signal and does
not identify additional changes due to small fluctuations in the Q-values.

These states narrow down the set of states we have to consider to detect in which
state we actually have to coordinate. In these states, our Q-values are significantly
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Figure 6.3: Evolution of the Q-values for the optimal policy after the
reward signal for reaching the goal was altered from +20 to +10.

deteriorating and since the Q-values give an indication of the best possible future
rewards an agent can expect from that state onward, it is in these states that
FCQ-learning will sample the state information of other agents, together with the
received rewards until the episode ends. This approach of collecting rewards until
termination of an episode is known as Monte Carlo sampling. Again, this principle
is similar to how CQ-learning samples, but in FCQ-learning the collected rewards
until termination of the episode are stored instead of just the immediate rewards.
These rewards are also grouped, based on the state information of the other agents.
This is shown in Figure 6.4.
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Figure 6.4: Detecting conflict states with FCQ-learning

In every local state in which a change in the Q-values was detected, the agent
will observe the state information of the other agents when it is at that local state
and collect the rewards until termination of the episode. When the algorithm has
collected enough samples, it performs a Friedmann test. This non-parametric sta-
tistical test is used to compare observations repeated on the same subjects, or in
this case, on the same local states. More information about this test can be found
in Appendix B.3. Using a multiple comparison test on this statistical information,
the algorithm can determine which state information of other agents is influencing
these future rewards and hence augment the local state of the agent with the rel-
evant information about other agents. It should be noted that these states will be
augmented in a similar order as the changes in the Q-values are being detected. The
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algorithm will however continue augmenting states, until it reaches a state in which
the coordination problem can actually be solved. Similar to the second variant of
CQ-learning, described in Section 5.2.3, a confidence value is maintained for every
augmented state. This confidence value is increased each time an augmented state
is observed, and decreased if the augmented states of the current local state are
not observed. As such, states that are not observed anymore after the coordination
problem was solved, are being reduced again to simple local states.

Action selection is done in the same way as for CQ-learning. Agents will check if
their local state has previously been augmented. If this is the case, they will observe
the system state in order to verify if the agents are currently in that augmented
state. If so, they will select an action based on this augmented state and increase
its confidence value. Otherwise, they will select an action using their local state
information and decrease the confidence value for the augmented states.

Updating the Q-values is also done in the same way as CQ-learning. We refer
the reader to Section 5.2.1 for the explanation and the update rules.
The pseudo code for FCQ-Learning is given in Algorithm 9

6.2.2 FCQ-learning with random initial Q-values

Having initialised agents beforehand which have learned the correct Q-values to
complete the single agent task is an ideal situation, since agents can transfer the
knowledge they learned in a single agent setting to a multi-agent setting, adapting
only their policy when they have to. Since this is not always possible, we propose
a simple variant of FCQ-learning. In the algorithm presented in Section 6.2.1, the
initialised Q-values are being used for the KS-test which will detect in which states
the agent should start sampling rewards. As such, this test prevents sampling
rewards and state information about the other agents in those states where this is
not necessary, since it allows an agent to only sample in those states that are being
visited by the current policy and in which a change has been detected. If this limited
set of states in which coordination problems should be explored cannot be obtained
because it is impossible to train the agents independently first, it is possible to
collect samples for every state-action pair at every timestep. This results in a lot
more data to run statistical tests on, most of which will be irrelevant, but relaxes the
assumption of having the optimal Q-values of the single agent problem beforehand.
The changes in Algorithm 9 for this variant are to remove the lines regarding the
KS-test on lines 11 to 14 and line 19 and to change the training of the agents on
line 1. The resulting algorithm is given in Algorithm 10.
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Algorithm 9 FCQ-Learning algorithm for agent k
1: Train Qk independently first and store a copy in Q′k, initialise Q

aug
k to zero, and

list of sample states to {};
2: Set t = 0
3: while true do
4: observe local state sk(t)
5: if sk(t) is part of an augmented state ~sk and the information of ~sk is present

in s(t) then
6: Select ak(t) according to Qaug

k using ~sk
7: else
8: Select ak(t) according to Qk using sk
9: end if

10: observe rk = Rk(s(t), a(t)), s′k from T (s(t), a(t))
11: if KS-test fails to reject the hypothesis that the Q-values of Q′k(sk(t), ak(t))

are the same as Qk(sk(t), ak(t)) then
12: add state sk(t) to the list of sample states
13: end if
14: if sk(t) is a sample state then
15: Store the state information of other agents, and collect the rewards until

termination of the episode
16: if enough samples have been collected then
17: perform Friedmann test on the samples for the state information of the

other agents. If the test indicates a significant difference, augment sk
to include state information of the other agents for which a change was
detected.

18: end if
19: end if
20: if sk(t) is part of an augmented state ~sk and the information of ~sk is present

in s(t) then
21: Update Qaug

k (~sk, ak)← (1−αt)Qaug
k (~sk) +αt[rk + γmaxa′k Qk(s′k, a′k)]

22: increment confidence value for ~sk
23: else
24: Update Qk(sk)← (1− αt)Qk(sk) + αt[rk + γmaxa′k Qk(s′k, a′k)].
25: decrease confidence value for all ~sk = 〈sk, sl〉 for which sl is not present

in s(t).
26: end if
27: t = t+ 1
28: end while
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Algorithm 10 FCQ-Learning algorithm with random initial Q-values for agent k
1: Initialise Qk and Qaug

k to zero, and list of sample states to {};
2: Set t = 0
3: while true do
4: observe local state sk(t)
5: if sk(t) is part of an augmented state ~sk and the information of ~sk is present

in s(t) then
6: Select ak(t) according to Qaug

k using ~sk
7: else
8: Select ak(t) according to Qk using sk
9: end if
10: observe rk = Rk(s(t), a(t)), s′k from T (s(t), a(t))
11: Store the state information of other agents, and collect the rewards until

termination of the episode
12: if enough samples have been collected then
13: perform Friedmann test on the samples for the state information of the

other agents. If the test indicates a significant difference, augment sk
to include state information of the other agents for which a change was
detected.

14: end if
15: if sk(t) is part of an augmented state ~sk and the information of ~sk is present

in s(t) then
16: Update Qaug

k (~sk, ak)← (1−αt)Qaug
k (~sk) +αt[rk + γmaxa′k Qk(s′k, a′k)]

17: increment confidence value for ~sk
18: else
19: Update Qk(sk)← (1− αt)Qk(sk) + αt[rk + γmaxa′k Qk(s′k, a′k)].
20: decrease confidence value for all ~sk = 〈sk, sl〉 for which sl is not present

in s(t).
21: end if
22: t = t+ 1
23: end while
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6.3 Experimental results
We use a set of two and three-agent gridworld games in which we introduced delayed
coordination problems. These environments are shown in Figure 6.5. Agents cannot
only collide with each other in every cell, but in environments (a), (b) and (c) the
agents also have to enter the goal location in a specific order. In environment (d) it
is clear that if agents adopt the shortest path to the goal, they collide in the middle
of the corridor. The initial position of the agents is marked by an X, the goal is
indicated with a bullet in the same colour as the initial position of that agent. For
environments in which the agents share the same goal, the goal is indicated with a
linear blend. Agents receive a reward of +20 if they reach the goal in the correct
order, otherwise they only receive a reward of +10. Collisions between agents are
penalised with −10, moving into a wall is penalised with −1. We use this illustrative
setting, but this problem can easily be mapped on a production process where the
different parts that constitute the finished product have to arrive in a certain order
to the assembly unit.

We compared both FCQ-variants to independent Q-learners (Indep) that learned
without any information about the presence of other agents in the environment,
joint-state learners (JS), which received the joint location of the agents as state
information but chose their actions independently and with LoC (described in Sec-
tion 3.2.3). For LoC we could not implement a form of virtual sensory input to
detect when coordination was necessary for the active perception step as we did
in the previous chapter. The reason for this is that a sensor cannot determine the
need for interaction in the future. To circumvent this issue, we used a list of joint
states in which coordination with the other agent would be better than to play
independent1. For environment (d) for instance (Bottleneck), this list contained
all the joint states in and around the tunnel at the middle, such that agents could
still back out of the tunnel and let the other pass first. Note that FCQ-Learning is
learning this list of states in which the active perception function returns true and
this information should not be given beforehand.

All experiments were run for 20,000 episodes (an episode was completed when
all agents were in the goal state) using a learning rate of 0.1 with a time limit of
500,000 steps per episode. Exploration was regulated using a fixed ε-greedy policy
with ε = 0.1. If agents collided they remained in their respective original locations
and receive a penalty for colliding. On all other occasions, transitions and rewards
were deterministic. The results described in the remainder of this paragraph are the
running averages over 50 episodes taken over 50 independent runs. The size of the
queue with the stored samples was 10.

We will begin by giving an overview of the final solutions found by the different

1 As such this implementation could be seen as incorporating domain knowledge in the algorithm.
If this knowledge however is not available, an active perception function that always returns
true, might be a good option.
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algorithms. Besides collision free, these solutions should yield the highest reward
per episode and the least number of steps to complete an episode. The results are
shown in Table 6.1. All values are averaged over the last 100 episodes after agents
converged to a policy.

(a) Grid Game 2

(c) TunnelToGoal (d) Bottleneck

(b) TunnelToGoal_3

Figure 6.5: Gridworld environments with future coordination problems.
In environments (a), (b) and (c) agents have to enter the goal in a spe-
cific order. In environment (d) they have to coordinate before entering
the corridor in the middle.
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In the smallest environments the agents always using the joint state space per-
form best. This is due to the fact that since agents actively have to coordinate and
enter the goal in a particular order, always observing the other agents provides all
the sufficient information. In small environments this is still manageable. In en-
vironments with larger state spaces, both FCQ variants reach policies that require
a smaller number of steps to complete an episode than the other approaches. In
the largest environment, TunnelToGoal with 3 agents, FCQ-learning outperforms
all others in both number of steps to complete an episode and the average reward
collected per episode. Independent learners simply don’t have the required informa-
tion to complete this task, whereas joint-state learners have too much information
which causes the learning process to be very slow. Moreover, a lack of sufficient
exploration still results in suboptimal policies after 20,000 learning episodes.

LoC is unable to reach acceptable results compared to the other approaches. Its
active perception function is giving the correct states in which coordination should
occur, but since this is not reflected in the immediate reward signal, the penalty for
using this action is too big. An adaptation to use the sum of the rewards until ter-
mination of an episode could be beneficial, but as shown in [Melo & Veloso (2009)],
there is an important relation between the immediate rewards and the penalty for
miscoordination. Finding the right balance for the reward signal when this depen-
dency between agents is reflected in the future rewards might prove to be very
hard or even impossible, since this is not necessary uniform over the state space.
FCQ-learning does not require such fine tuning of the reward signal for the specific
problem task at hand and is as such more suitable for these future coordination
issues.

In Figure 6.6 are some sample solutions found by FCQ-learning for the different
environments. Agent 1 is indicated in red, Agent 2 in blue and Agent 3, if present,
in green. Arrows with full tails represent actions taken using only local state infor-
mation. The arrows with dotted tails represent actions taken based on augmented
state information. For environments (a), (b) and (c), Agent 1 (red) has to reach the
goal before Agent 2 (blue) and Agent 2 in its turn had to enter the goal state before
Agent 3 (green) if there are three agents present. In all environments FCQ-learning
correctly coordinated. In Environment (b), we see that Agent 2 performed a small
loop to let Agent 1 pass first. Similar, Agent 3 also ’delayed’ for quite some time
before going towards the entrance of the tunnel to reach the goal. Note that these
policies are still using an ε-greedy strategy with ε = 0.1, so the agents sometimes
performed an exploratory action. This why Agent 1 (in red) did not follow the
shortest path in environment (b). In environment (d) we can clearly see that Agent
2 backed out of the corridor again, so Agent 1 could pass first. In environments (a)
and (c) Agent 2 performed the equivalent of a ’wait’ action, by taking an action
that would lead it towards a boundary in the grid. This is a better choice under the
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current settings of the discount factor and the reward for reaching the goal than to
move 1 cell away from the goal since this would make the final path to the goal 2
steps longer.

G

G

(a) (b)

G

G1G2

(c) (d)

Figure 6.6: Sample solutions found by FCQ-learning for the different
environments. Agent 1 is indicated in red, Agent 2 in blue and Agent
3 in green.

So far we have shown through these experiments that FCQ-learning manages to
find good policies which are both collision free and in which agents have successfully
solved the future interactions between them. Next, we are also concerned with the
learning speed, as this is the issue most multi-agent approaches suffer from when
using the complete joint-state joint-action space.

In Figure 6.7 we show the evolution of the rewards the agents collect per episode.
Both independent learners and LoC have trouble correctly coordinating. They
quickly settle for a suboptimal policy. JS improves its reward over time, but in
the TunnelToGoal environment with three agents (Figure 6.7(b)), this approach
needs over 2,000 learning episodes more than the FCQ-variants, to obtain a reward
level that is still slightly less than FCQ. With FCQ we clearly see the sampling phase,
during which a decrease in the reward is observed. This quickly increases again, as
soon as interaction states have been augmented. In the Bottleneck environment
(Figure 6.7(d)), FCQ-learning needs more time than joint state learners to reach
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a stable policy, but this policy results in a higher average payoff than the policy of JS.
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Figure 6.7: Reward collected per episode by the different algorithms
for the (a) Grid game 2, (b) TunnelToGoal_3, (c) TunnelToGoal and
(d) Bottleneck environments.

Sparse Interactions in Multi-Agent Reinforcement Learning



144 Chapter 6. Solving delayed coordination problems

Figure 6.8 shows the number of steps needed to complete an episode during the
learning process. In all environments we observe the same effect as in the figures
for the collected reward per episode. Initially the number of steps of FCQ-learning
is increasing. This is during the time frame in which it is collecting samples and
identifying in which states it should observe the state information of other agents
contained in the system state to select an action. As soon as the correct states
are augmented, a sudden decrease in the number of steps to complete an episode
can be seen. Again, JS needs a lot of time to reduce the number of steps required
to complete an episode in the TunnelToGoal_3 environment due to the size of the
state space in which it is learning. FCQ-learning does not suffer from this issue
since the size of the state space is not linked so closely to the number of agents
in the system. In the Bottleneck environment (Figure 6.8(d)) the results for LoC
are not visible, because after 10,000 learning episodes, this algorithm still did not
manage to find a policy which required less than 100 timesteps to complete the task
to reach the goal. Contrary to the independent learners however, it did manage to
find a policy. Independent learners encountered high penalties in the corridor and
as such this path was only rarely taken.

This is the same effect we saw in the Grid Game 2 environment which was
analysed in Section 3.2.1. In the Bottleneck environment the problem is even bigger,
since agents have to take four consecutive actions to pass through the corridor. If
the Q-values of these actions in these states are not the highest ones, the probability
on this happening through consecutive exploratory actions is 0.0001.
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Figure 6.8: Number of steps needed to complete an episode by the
different algorithms for the (a) Grid game 2, (b) TunnelToGoal_3, (c)
TunnelToGoal and (d) Bottleneck environments.

Finally, we show the average number of collisions per episode in Figure 6.9.
Again we see the effect of the sampling phase of both FCQ-learning variants. The
number of collisions between the agents using this algorithm increases until the
states in which coordination is required are augmented, after which this number
drops to 0. Again, JS-learners need more episodes in the TunnelToGoal_3 environ-
ment compared to both FCQ-learning algorithms and both independent learners as
LoC are unable to learn collision free policies.
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Figure 6.9: Number of collisions per episode for the different algorithms
for the (a) Grid game 2, (b) TunnelToGoal_3, (c) TunnelToGoal and
(d) Bottleneck environments.

Three approaches learn to augment their state information in the set of in-
teraction states of the underlying DEC-SIMDP: LoC and both FCQ variants. In
Figure 6.10 we show the number of times these algorithms selected an action using
such augmented information per episode. For LoC this means the number of times
the agents selected their COORDINATE action per episode. Initially the FCQ variants
never do this, until enough samples of future rewards are collected. For the Bot-
tleneck environment (Figure 6.10(d)) the line representing the results for LoC lies
outside of the plotted area. This approach selects its COORDINATE action a lot and
is still constantly selecting this action after 10, 000 learning episodes (approximately
400 times per episode). Both FCQ variants select an action based on augmented
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state information about equally as much. FCQ with independently learned Q-values
selects it a little less since it already knows the optimal single agent policy and thus
agents do not collide as often as when they are still learning a policy to reach the
goal state.
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Figure 6.10: Number of times the different algorithms used information
from the system state to select an action per episode for the (a) Grid
game 2, (b) TunnelToGoal_3, (c) TunnelToGoal and (d) Bottleneck
environments.
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6.4 Summary
In this chapter we presented an algorithm that learns in which states of the state
space an agent needs to include knowledge or state information about other agents
in order to avoid collisions that occur in the future. Situations in which such prob-
lems occur are for instance when multiple autonomous robots are required to go
through a small corridor where they can only pass one at a time. By means of
statistical tests on the obtained rewards and the local state information of other
agents, FCQ-learning is capable of learning in which states it has to augment its
state information in order to select actions using this augmented state information.
We have shown two variants on this algorithm which perform similar in terms of the
quality of the found solution, but have a different computational complexity in terms
of processing power and memory usage, due to the number of samples collected and
on which statistical tests have to be performed. The first one requires single agent
Q-values of the problem task it is learning to detect good candidate states in which
it might be able to solve interaction problems. In these candidate states the state
information of other agents is observed in order to determine which of this state
information is relevant to solve the future coordination problem. The second variant
uses all states as candidate states. As such it does not require pre-learned Q-values,
but it uses the system state more often and performs more statistical tests than the
first variant.

FCQ-learning is the first algorithm capable of solving delayed coordination prob-
lems using only sparse interactions. Sparse interactions have already been shown to
have many advantages in literature. When solving problems in which delayed coordi-
nation problems occur, sparse interactions also prove to be beneficial. The biggest
improvement could be seen in our experiments using three agents. The learning
process of agents who always use the joint state space was very slow compared to
our approach based on sparse interactions. Not only in terms of learning speeds,
but also in terms of quality of the final solution, FCQ-learning outperforms the
other approaches in the larger environments. We can conclude that FCQ-learning
goes beyond the state-of-the-art in multi-agent reinforcement learning and closes
the gap between the sparse interaction framework and problem tasks characterised
by delayed reward signals.
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Chapter 7
Transfer learning and generalisation in

multi-agent systems

If you have knowledge, let others light their candles in it.
– Margaret Fuller, 1810-1850 –

Reinforcement learning is a mature technique for solving complex problems.
Significant advances have been developed to speed up the learning process through
the incorporation of domain knowledge [Goetschalckx (2009)], the decomposition
of problems in subtasks [Dietterich (2000),Hengst (2005)], the use of a generalised
state space representation [Boyan & Moore (1995),Sutton (1996)] or learning higher
level actions, composed of multiple one step actions, i.e. options [Sutton et al.
(1999)]. All these approaches aim at improving the learning process but for every
new task the RL algorithm has to start the learning process from the beginning.
Recently the idea of transfer learning has been applied to reinforcement learning
tasks. Transfer learning leverages the experience an agent acquires in a source task
in order to improve its performance in a related target task. This chapter is con-
cerned with applying transfer learning to the problem of coordination in multi-agent
systems. The core idea is that if agents learn to coordinate in one environment,
this knowledge can be generalised and used to speed up the coordination process in
other related (multi-agent) tasks.

7.1 Transfer learning
In this section we provide a description of transfer learning for single agent reinforce-
ment learning tasks. This summary is inspired by [Taylor & Stone (2009)]. The
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concept of transferring knowledge is not a new one. As early as 1901, Thorndike
and Woordworth experimented with how certain experiences learned using one func-
tion, affected the learning process of a different function [Thorndike & Woodworth
(1901)]. The word function referred to various things such as spelling, multipli-
cation, chess playing, reasoning, etc. From psychology, this area of research was
applied to machine learning tasks, planning tasks and many others. Recently, this
topic gained attention in the RL community by attempting to transfer knowledge
between RL tasks. A fully autonomous RL agent capable of transferring knowledge
needs to undertake three different steps according to [Taylor & Stone (2009)]:

1. Select an appropriate previously learned source task or tasks for the current
target task at hand.

2. Learn the relation between the source and the target task.

3. Transfer the knowledge from the source to the target task.

At this time, no methods exist that are capable of solving all three steps. Most
techniques use a single human-picked source task to transfer knowledge to the tar-
get task. Alternatives exist in which all tasks from a certain set are used to transfer,
such as [Singh (1992)]. This work successfully transfers experience from elemental
sequential tasks to composite sequential decision tasks. These composite task are
the concatenation of multiple elemental tasks. More advanced approaches use a
library of source tasks and use only the most relevant ones for transfer [Lazaric
(2008)]. The work by Lazaric selects source tasks according to distance and align-
ment of 〈s, a, r, s′〉-tuples between source and target task. Another alternative is
to modify a general source task to make it useful for the specific target task at
hand [Sherstov & Stone (2005)]. The idea in this paper is to group states together
in classes based on the probability of a given outcome for a certain action and then
to transfer the set of optimal actions to the target task. As such, the target task
can be learned using a reduced set of actions.

The relation between the source task and the target task defines what knowledge
can be transferred. If both tasks share the same state variables and actions, it is
possible to transfer the action-value function without any additional operations. If
however there are differences in the way states are represented or how actions are
labelled, a mapping between the source task and the target task is required. An
example of a mapping that could be performed is changing the labels of the actions
from the source task to the labels of the actions in the target task.

If transferring the action-value function is not possible, other information that
could be shared between tasks go from a set of 〈s(t), a(t), r(t+ 1), s(t+ 1)〉-tuples
at the simplest level to a complete model of the source task. A thorough overview
of different mappings for the states and actions between source and target tasks is
given by [Taylor (2008)].
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Only two attempts at using transferred experience in multi-agent RL are cited in
the overview paper of transfer learning by Taylor and Stone [Taylor & Stone (2009)].
These approaches, [Kuhlmann & Stone (2007)] and [Banerjee & Stone (2007)] both
deal with extensive form games. No work has been reported on transfer learning in
stochastic games (aka Markov games). These works both focused on the General
Game Playing problem from [Pell (1993)]. The challenge in this problem is to create
an agent that is capable of playing unseen games without human intervention. To
do so, knowledge from past games needs to be transferred in order to improve
its performance in the current game. Agents receive a description of the current
game, so they can identify similarities to previous games. Although multiple agents
are playing the same game, these approaches are not concerned with transferring
coordination experience. An example of a task from [Kuhlmann & Stone (2007)] is
a miniature checkers game played on a 5 × 5 board. In the source task the agent
has 5 pieces at its disposal, whereas in the target task, only 4 pieces are present.
In the next sections we introduce a novel concept which applies transfer learning to
the problem of multi-agent coordination in general Markov games.

7.2 Transfer learning using generalized learning au-
tomata

7.2.1 Overview of the approach

As explained in the previous section, transfer learning is a way of reusing knowledge
learned in one task to speed up the learning process in a different task. This section
continues on the work we explained in Chapter 4. In that chapter we introduced
the 2Observe algorithm, capable of approximating the interaction function of the
underlying DEC-LIMDP. This framework models a certain type of MAS with sparse
interactions, where the interaction area can be calculated from the local state in-
formation of one agent. This is the case in mobile robots, where the interaction
area is given by the surrounding locations of the agent. 2Observe uses a generalized
learning automaton to approximate this interaction function. In the experimental
section we used gridworlds as a testbed and provided the agents with the Manhattan
distance between them as input for the GLA. We showed that agents were capa-
ble of learning a threshold for the safe distance at which agents could ignore each
other. This GLA can be reused in different environments in which the underlying
DEC-LIMDP uses the same interaction function and agents have the same basic
capabilities as in the original environment. Such transfer is the simplest setting
described in [Taylor & Stone (2009)] and apart from the fact that information is
inherently multi-agent information, this can be seen as transferring knowledge be-
tween tasks. On the other hand, this GLA can also be reused for other agents using
the same 2Observe algorithm. This approach is illustrated in Figure 7.1. The GLA
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from one agent is transferred to another agent. As such, the target agent can reuse
the experience from the source agent, informing it when coordination is needed.

Generalized learning 
automaton

Single agent Q-learning
Coordination through 

communication

Coordination is 
not needed

Coordination is 
needed

Generalized learning 
automaton

Single agent Q-learning Coordination through 
communication

Source agent Target agent

2Observe algorithm 2Observe algorithm

Coordination is 
not needed

Coordination is 
needed

Figure 7.1: Transfer of GLA between agents using the 2Observe algo-
rithm

Given that the input for the target agent has the same representation as the
input given to the source agent, no task mappings are required to transfer this GLA.
A GLA should not be seen as a black box, but rather as a computational entity.
Hence, transferring this knowledge from the source agent to the target agent is
done by transferring the internal state vector ~u from one agent to the other.

7.2.2 Experimental results

In this section we illustrate how transferring the knowledge about coordination from
one agent to another improves the overall learning process of the task the agent is
required to solve. We use the same environments as the ones used in Chapter 4,
shown in Figure 4.12. We first let two agents learn in the environment using the
2Observe algorithm. After convergence, a third untrained agent is added to the
environment. This third agent also uses the 2Observe algorithm, but receives at its
top level the trained GLA of one of the other agents. At the second level the agent
uses a single agent Q-learning algorithm, with the Q-values initialised to zero. The
learning settings were identical to those of the other agents, i.e. an ε-greedy strategy
with ε = 0.1 and a learning rate of 0.05. Its goal was the same as the goal of one of
the other agents, selected at random at the beginning of the learning process. Its
initial position was selected at random at every episode. As such, unlike the other
agents with a fixed initial location and fixed goal, this agent would not converge to
a fixed path to reach the goal. Hence, it could appear near other agents at different
locations in the grid, rather than only in those locations where the paths of the
agents intersect. Since GLA use an agent-centric view, i.e. the distance between
the agents, no mappings have to be performed to transfer the GLA to the third
agent and this random initial location does not influence the decisions of the GLA.
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In Figure 7.2 we show the results on each of the test environments. The top
row shows the results for the TunnelToGoal environment, the middle row for the
2-robot environment and the bottom row shows the results for ISR. On the left are
the results for the number of steps required to complete an episode. On the right
we show the number of times agents coordinated with each other and how often
they collided. All results are averaged over 10 independent runs. Agent 3 is the
target agent which used the GLA of one of the other agents. It should be noted
that the agents only transfer experience related to coordination and not with regard
to the navigation task.

We barely see any influence with regard to the number of steps to complete an
episode for agents 1 and 2. Since these agents have learned when to coordinate
with another agent and have the correct Q-values, the presence of a third agent has
no negative impact on their performance. The third agent converges to a shorter
path in the TunnelToGoal and the 2-robot environment and a longer path in the
ISR environment compared to the other two agents. This is because this agent
starts from a random position. In the first two environments this position is bound
to be closer to the goal than the initial position of the other agents. In ISR, we see
the opposite effect since the agent will most likely begin further away from its goal
than the other agents are from their respective goals. Hence the longer number of
steps to complete an episode we see in Figure 7.2(e). These figures clearly show
that agents 1 and 2 do not suffer from adding a third untrained agent, indicating
that the GLA still correctly returns whether coordination is needed.

On the right hand side we see that the number of collisions remains constantly
at zero. This indicates that the transfer was successful and that not only the first
two agents did not have to re-learn when coordination is required in this environ-
ment, but also that Agent 3 was coordinating with the other agents as if it had been
trained together from the beginning. It can completely rely on its GLA and learn its
navigation task without collisions. The number of coordinations per episode also
quickly stabilises. Compared to the results of Chapter 4 in Figure 4.14, the agents
coordinated more often. This is a consequence of the presence of the third agent.
The number of agents has increased, but the size of the environment remained the
same, so the density of agents increased in the environment.

In this section we described a novel approach for transferring experience with
regard to coordination between agents by means of GLA. This transfer could easily
be accomplished because the GLA were trained using the 2Observe algorithm which
uses agent centric state information about the need for coordination. In the next
section we introduce an approach based on CQ-learning which uses absolute state
information to represent the sparse interactions between agents. We will illustrate
how, from these sparse interactions, a generalised representation can be used to
transfer coordination experience.
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Figure 7.2: Results for transfer of coordination experience to additional
agents
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7.3 Transfer learning using CQ-learning

7.3.1 Overview of the approach

In this section we illustrate an approach to transfer coordination experience in multi-
agent systems based on Coordinating Q-learning (CQ-learning), which we explained
in Chapter 5. CQ-learning is a multi-agent extension to the basic Q-learning algo-
rithm and aims at adapting the state space in which each agent is learning when
using only local state information is not sufficient. As such it avoids the exponential
increase of the state space that is often seen in multi-agent learning systems. It
allows agents to learn using only their local state space whenever the agents are
not influencing each other. The idea behind this algorithm is to start with a mini-
mal state space, using only local states. CQ-learning will maintain statistics on the
rewards an agent receives, together with the state information of other agents. If
significant changes are detected, the local state information of the agents is aug-
mented to include the state information of other agents. Using this richer state
representation the agent is able to coordinate its actions based on the state infor-
mation of other agents. The question behind the research we present in this section
is whether it is possible to draw some conclusions from the states in which such
coordination is required. In the navigation tasks we have considered so far it is
easy to see that agents affect each other if they are too close to each other. In the
gridworlds used in our previous experiments this was the case if agents were less
than three locations apart from each other.

Our first goal is the same as in Chapter 4: learn this threshold. In this section,
we will learn this based on the experience from a related, more simple task and
transfer this information to a more complex task. Our source task is a simple 5× 5
training grid shown in Figure 7.3. In this training grid, no goal was defined and
agents acted randomly, learning the state information of interaction states. In Chap-
ter 5 we demonstrate how CQ-learning identifies the absolute location of the other
agents that is causing collisions in a gridworld environment. To allow for a better
generalisation, this information is converted to an agent centric representation. By
this we mean that samples are described using the distance between the agents hor-
izontally (∆x) and vertically (∆y). Let us consider the situation where Agent 1 has
learned to augment its state information in the location with coordinates (2,2), to
observe if there is another agent present in the location with coordinates (1,3). This
information was converted to (-1,1). Using such an agent-centric representations
allows to map multiple danger states to the same Q-values. For example, the dan-
gerous situations with the agents in grid locations (2,3) and (1,4) or with the agent
in grid locations (3,4) and (2,5), are both mapped to Q-values for situation (-1,1).
As such, agents can gather experience based on their mutual configuration, rather
than on absolute locations. These agent centric Q-values for interaction states are
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maintained in the Qaug-table of CQ-learning.

1 2 3 4 5

1

2

3

4

5

Figure 7.3: 5× 5 training grid used as a source task.

With this relative information, a propositional rule learner is trained to learn
simple rules about when interactions will take place. The rule system is based on
Ripper [Cohen (1995)], which has also been used for rule transfer in single agent
reinforcement learning [Taylor & Stone (2006)]. The classifier is trained with both
safe and dangerous situations. Finally, after this classifier is trained, two pieces of
information are transferred from the source task to the target task: the trained
classifier and the Q-values (using agent-centric state information) of the danger
states. In the target task, the agent can then rely on the classifier to decide whether
coordination is required. If a danger state is encountered for the first time, this state
is added as a separate state using the absolute state information of the agents and
the Q-values are initialised with the transferred Q-values. These transferred Q-
values already have a low value for the action that would result in a collision. If the
current state is not dangerous, a single agent Q-learner is learning the navigation
task. This approach is shown in Figure 7.4.

7.3.2 Experimental results
We now evaluate the transfer approach empirically, using a number of different
settings. In each case the transfer agents were trained individually on the source
task described above for 50, 000 time steps, before being transferred to their target
problem.

Table 7.1 shows an example rule set, learned by this system on the source task.
These rules show in an easy human-readable way, that agents should coordinate if
they can move to the same location with a single action.

The target environments we used in these experiments are TunnelToGoal, ISR
and CIT, which were also used in previous chapters. In this chapter, each agent
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CQ-learning
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Figure 7.4: CQ-learning is identifying interaction states, which are used
as input for a rule learning system. This trained rule classifier is then
transferred to the target task, together with the Q-values for interaction
states.

IF ∆x ≤ 1 AND ∆y ≤ 1 AND ∆x ≥ −1 AND ∆y ≥ −1 ⇒ DANGEROUS
IF ∆x ≤ 0 AND ∆x ≥ 0 AND ∆y ≤ 2 AND ∆y ≥ −2 ⇒ DANGEROUS
IF ∆y ≤ 0 AND ∆y ≥ 0 AND ∆x ≥ −2 AND ∆x ≤ 2 ⇒ DANGEROUS
ELSE ⇒ SAFE

Table 7.1: Example classifier learned by Ripper after training on the
source task.

starts from a random location and must reach its respective goal location. When an
agent reaches its goal, it stays there until all agents have finished and the episode
ends. The transfer agents are compared with agents using standard CQ-learning.
In Chapter 5 we already showed that CQ-learning outperforms both independent
Q-learners and joint learners on these learning tasks. The transfer learners and
CQ-learning are each allowed 2000 start-to-goal episodes on the target tasks. Both
algorithms use identical Q-learning settings using a learning rate of 0.1, a discount
factor of 0.9 and an ε-greedy action selection with a fixed ε = 0.2.

Figure 7.5 shows the results on each of the target tasks. We evaluate the
algorithms’ performance based on the number of steps agents require to complete
an episode and the total number of collisions between the agents per episode. All
results are averaged over 25 independent experiments. When looking at the number
of collisions during learning on the right hand side of the figure, the transfer agents
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clearly perform better. They immediately start out with a lower number of collisions,
and keep outperforming CQ-learners even in the long run.

When evaluating the learners with regard to the number of steps criterion shown
on the left hand side of the figure, it should first be noted that the transfer agents
do not transfer any knowledge with regards to the navigation task at hand, but
only use transfer to avoid collisions. However, the transfer algorithm does show a
better initial performance in terms of the number of steps to reach the goal needed
in the ISR and CIT environments. In these larger environments the CQ-learners
eventually match the transfer agents and asymptotically show a slightly better per-
formance. This is caused by the transfer agents preferring a safe action (i.e. move
away from the other agent) in states which are marked dangerous by the classifier,
but which do no lead to collisions under the greedy policy. CQ-learning tends not
to mark these states as dangerous and does not have this problem. In the smaller
TunnelToGoal environment the CQ-learning agents show a better performance over
the entire run. This is caused by the fact that in such a small environment, the clas-
sifier will almost always decide that coordination is required and select a safe action.

From these experiments we come to the same conclusion as in the previous
section, where we transferred GLA between agents. Much of the complexities of
learning in multi-agent systems, such as coordination with other agents and the
size of the state space, can be avoided by using a layered approach. Learning when
coordination should occur, is not necessarily linked to the core task of the system (in
these cases navigating in a gridworld). So learning about coordination can be done
in simpler settings under the assumption that the coordination requirements in both
source task and destination task are the same or that they can be mapped on each
other. This allows the agent to focus purely on the core task at hand and as such
learn faster and only consider other agents, if there is a need for coordination. As
shown in this section, these benefits become more apparent in larger target tasks.
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Figure 7.5: Results for transfer of coordination rules using CQ-learning
from a simple training grid to more complex navigation tasks
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7.4 Generalisation using CQ-learning

7.4.1 Overview of the approach

In the previous section we used an agent centric representation of the interaction
states to train a rule learning system. In this section we introduce an alternative
approach which also generalises this information regarding interaction states. Fig-
ure 7.6 shows the idea of our approach. The bottom part of the figure represents
CQ-learning and was already shown in Figure 5.2.
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Figure 7.6: Extra layer on top of CQ-learning to learn a generalisation
of when coordination is needed.

During the execution of CQ-learning, interaction states are identified and agents
augment their local state information to include the state information of other
agents. In each of these interaction states, the agent has learned the relevant state
information when these interactions occur. The combination of an agents’ local
state, with the extra state information from this sparse interaction, can then be
used to train a classifier in order to obtain a generalised concept of these sparse
interactions. In the previous section this was done using the Ripper classifier. In
this section we will use a feedforward neural network. Such networks are a robust
approach of approximating target functions, by minimising the error over many
attribute-value pairs.

As in the previous section, we refactor the information of augmented states to
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an agent-centric representation. Samples are described using the horizontal (∆x)
and vertical (∆y) distance between agents. Augmented states receive a value of 1
as target value, indicating that in these states coordination is required. All other
combinations of agents’ location that are not augmented because the agents are
not influencing each other, receive a target value of 0. Finally, the samples with
which the network are trained, also contain the actions of the agents. As such, it
is possible to distinguish between situations in which agents are so close they could
collide, but if their intended actions would lead them away from each other, this
situation is still safe and receives an output value of 0. The neural network used for
the generalisation of CQ-learning is shown in Figure 7.7.

Δ(x)

Δ(y)

a1

a2

input hidden output

0 | 1

Figure 7.7: Neural network used for the generalisation after CQ-
Learning. Different quantities of units in the hidden layer were used
during the experiments.

Such a generalisation allows for very specific polling of the joint state space
to verify if certain conditions are met. In our experiments we demonstrate that it
allows the agent to select whether it should observe the presence of another agent
in a certain location or not, independent of the actual location the agent is in. This
is a similar result to what 2Observe is learning. In Figure 7.8 we show a side by side
comparison of the generalisation both algorithms learn. On the left hand side we see
the generalisation of 2Observe. This algorithm has learned to coordinate with agents
that are in any of the surrounding locations that are less than 3 cells away from the
current position of the agent. Note that this is the same generalisation as the rule
learning system learned in the previous section. On the right hand side we show
the generalisation we obtain using a neural network with the information of CQ-
learning. The neural network gives a very specific location that should be observed
when the agent wants to perform action EAST. In practice this neural network could
be used as follows. Assume an agent wants to perform action EAST. It can query its
neural network using various distances and possibilities for the location and action
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of another agent. For the queries that result in a high output value, the agent can
then activate a particular sensor, rotate its camera, or broadcast a request to ask for
the location and intentions of an agent in the dangerous location. If this intention
is not to perform the dangerous action, indicated by the neural network, no further
coordination is required and the agent can select its actions independently, using its
local state information only.

(a) Generalisation learned
     by 2Observe

(b) Generalisation learned
     with CQ-learning
     (for action EAST)

Figure 7.8: Comparison of generalisations learned by 2Observe and
CQ-learning.

7.4.2 Experimental results
In our experiments we used some of the environments we used for CQ-learning in
Chapter 5, shown in Figure 5.8. The experiments in this chapter are performed
on TunnelToGoal, 2-robot game, ISR, CIT and CMU. We allowed CQ-learning to
learn in the environment, using the same settings as described in Section 5.3. Af-
ter the learning process we used the collected samples to train the neural network.
About an equal number of samples for dangerous situations as for safe situations
are used. In our experiments we observed that this meant that many safe sam-
ples were discarded, since there are more safe situations in these environments than
there are dangerous situations. Of all collected samples 80% were used to train the
neural network. The remaining 20% were used for the validation of the network.
In Table 7.2 we show the accuracy of the network on this validation set. Differ-
ent quantities of hidden units with a logistic sigmoidal output activation function
were used. Using at least 4 units in the hidden layer resulted in a correct identifica-
tion of safe and dangerous situations in more than 96% of the cases for both agents.
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Environment Agent
# hidden units in the neural network
1 2 4 6 8

TunnelToGoal 1 88.21% 93.70% 98.53% 98.54% 98.71%
2 97.74% 98.52% 98.63% 98.64% 98.64%

2-robot game 1 98.35% 98.35% 98.35% 98.35% 98.35%
2 99.62% 99.62% 99.62% 99.62% 99.62%

ISR 1 89.93% 92.54% 96.65% 97.31% 97.53%
2 90.46% 95.24% 97.87% 98.43% 98.97%

CIT 1 81.97% 93.00% 97.00% 97.82% 98.04%
2 86.88% 91.95% 97.62% 98.67% 98.84%

CMU 1 76.93% 96.53% 96.63% 97.11% 97.21%
2 97.90% 98.67% 99.23% 99.29% 99.53%

Table 7.2: Accuracy of the neural network in the different games with
different quantities of hidden units.

If avoiding miscoordination is critical in the particular situation at hand, one
could choose to initialise the weights of the neural network, in such a way that
initially all situations are considered to be dangerous. As more samples are used
to train the neural network, the weights will be adapted to output a value of 0
(i.e. no coordination is required), for those situations where enough safe samples
have been observed. Alternatively, the weights could also be initialised to see every
sample as being safe, learning in a bottom-up way when coordination is needed.
Sample results for these initialisations are shown in Figure 7.9. The contour plot
shows the output of the neural network. The setting is as follows: two agents are
two locations apart from each other and their selected actions are to go directly
towards each other. Without coordination, performing this action would for sure
result in a collision. A red value indicates a high need for coordination, whereas
values closer to blue, represent samples in which agents do not need to observe
each others’ state information. On the left hand side, the weights were initialised
to consider every sample as safe. A big red spot at 〈∆x = −2,∆y = 0〉 indicates
that coordination is required for the current situation. On the right hand side, the
weights are initialised to consider every sample as dangerous. The network outputs
high values for most situations but has already adapted its weights to output low
values at the top right, where ∆x > 2 and ∆y > 2, and at the bottom left, where
−4 < ∆x < −2 and ∆y < −1. The current situation 〈∆x = −2,∆y = 0〉 also
returns a high output value indicating a high need for coordination.

Depending on the particular problem at hand, one would prefer one approach
over the other. Initialising with weights that return high output values is much safer
to avoid collisions in unseen situations, but will result in more coordination actions
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between the agents than if the network is initialised with weights to output a low
value for unseen situations.

(a) (b)

Figure 7.9: Output of the neural network for actions EAST, WEST
for respectively Agent 1 and Agent 2. A high output value (close to
1) means there is a high need for coordination for that situation, a
low output value (close to 0) means there is no need for coordination.
(a) the neural network was initialised with all safe samples and (b) the
network was initialised with dangerous samples.

In Figure 7.10 we show the output of a neural network that was initialised with
weights that return low values for all samples for the different actions an agent
can take. We see that the network correctly identified the dangerous locations at a
distance of 2 cells of the agent in the respective directions the action would take the
agent. The actions of the other agents are the inverse, ensuring a collision would
occur without coordination.

Similar to the generalisations learned by 2Observe and the rule learning system,
the neural networks that are being trained by the samples from the CQ-learning algo-
rithm are also useful in other environments, and for different agents. Depending on
the original task, there might however be a bias in the neural network. Certain sit-
uations are prone to occur more often in certain environments. For instance, in the
TunnelToGoal environment, the agents will observe more collisions when moving on
the vertical axis towards each other, since this is a critical point in this environment.

If the generalisation is used within the same environment, for agents having the
same start-goal positions this does not cause a problem. In these cases, the neural
network could also be trained online, together with CQ-learning. Initially the agent
could rely on exact state information to solve coordination issues, but as soon as
the neural network reaches a certain performance level, it could start to select its
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actions based on this, rather than using exact locations. This performance level
could be heterogeneous over the state space. A possibility would be to start using
the neural network over exact locations as soon as it outputs the same decision
regarding coordination requirements as can be drawn from the augmented states.
Such an approach would also be more robust for situations in which agents do not
have fixed initial positions. If the generalisation is intended to be used in different
environments or for different agents, it is best to train it in a simple training grid,
as was done in the previous section.

EASTWEST

NORTH

SOUTH

Figure 7.10: Output of the neural network for all actions that would
result in two agents colliding in the next timestep.
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7.5 Summary
In this chapter we have introduced three novel extensions to learning multi-agent
coordination solutions. So far, such coordination problems have only been studied
for one environment and were linked to specific states of that environment. We
illustrated that with our 2Observe algorithm, which we introduced in Chapter 4, it
is possible to transfer learned experience about coordination requirements between
environments and between agents. This allows for faster learning in the target task,
since agents are learning using only local state information and are using transferred
knowledge for the coordination part of the task at hand.

A second approach, based on CQ-learning performed very similar. CQ-learning
uses additional state information to augment local states and learn interaction
states. Interaction states were refactored to agent centric representations after
which a rule learning system was used to learn simple, human readable rules about
the situations in which coordination between the agents was required. The idea
behind this concept is that there is a relation between the interaction states which
can be exploited. In the gridworld environments we have been using in our exper-
iments, this relation is the distance between the locations of both agents. These
rules were transferred from a simple training grid to more complex gridworlds. In
our experiments we illustrated that this improved the learning speed of the agents
in more complex target tasks.

Third, we introduced an alternative approach to this rule learning system. We
again added an additional layer on top of CQ-learning to generalise the information
about interaction states. This extra layer in its turn, uses this state information to
learn a generalised representation of the coordination requirements that exist be-
tween the agents using a neural network. This neural network allows for very specific
querying of the intentions of other agents. We tested this approach in gridworlds,
but this idea is applicable to other environments as well. In routing problems the
relationship between interaction states could be the sum of the number of packets
in the queues of the agents. If this sum is larger than the throughput of the next
node, agents must coordinate and possible choose an alternative routing scheme.
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Chapter 8
Conclusion

All good things must come to an end
– Geoffrey Chaucer, 1343-1400 –

Learning in agent systems has been done since the early days of artificial intelli-
gence. The purpose of such learning agents is the creation of intelligent systems ca-
pable of autonomous decision making without human interactions. Moreover these
systems should also be capable of evolution and adaptation to changing (external)
features or additional information that becomes available. A particular domain in
AI that is concerned with creating such systems is reinforcement learning. RL is a
powerful tool for learning in initially unknown, possible stochastic environments. It
uses a numerical feedback signal from the environment to achieve optimal behaviour
through repeated trial and error interactions with this environment. Several algo-
rithms exist that converge to the optimal policy for single agent RL. The simplicity
of the learning set-up, together with its broad applicability to a various range of
problem domains which can be solved in a decentralised way, such as routing or
automated guided vehicles, make RL extremely suitable for learning in multi-agent
systems.

In MAS several additional challenges arise. One of the most important ones is
the issue of coordination between the agents. Since one of the main advantages
of a MAS is the ability to solve problems in a decentralised way it is desirable to
avoid the requirement that each individual agent has access to all the information in
the system. This would again result in a more monolithic system and, even worse,
induce a large communication requirements in the system. Requirements that are
usually undesirable or even impossible to guarantee. This issue can easily be solved
if agents are aware of the coordination dependencies that exist in specific parts of
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the state space. This concept has only recently gained attention in the multi-agent
learning community. It is however not always realistic to assume that these coordi-
nation dependencies are known or that these can be calculated beforehand.

In this dissertation we presented several novel approaches for mitigating this
issue. In the problems we considered, agents could accomplish a certain subtask
of the goal of the system, but in order to optimally satisfy this goal, coordination
between agents was required. We presented several algorithms which allow agents
to learn in what parts of the state space coordination dependencies are present if
multiple agents are acting simultaneously. In the following section we will give an
overview of the research contained in this dissertation.

8.1 Contributions

This section summarises the research explained throughout this dissertation con-
cerned with reinforcement learning with sparse interaction in multi-agent systems.
We started by presenting an overview of the field of RL. This background is needed
for understanding the domain of MARL, which was introduced in Chapter 3. It is
also in this chapter that we explained sparse interactions. This concept attempts
to exploit the dependencies that exist between agents in certain parts of the state
space. These dependencies are visible in the outcome of the transition and reward
functions of the agents. During such sparse interactions these functions result in
different outcomes if, other things being equal, the state information and actions of
the other agents in the system change. Note that the algorithms described in this
dissertation are aimed at systems with sparse interactions. Although the approaches
scale up to multiple agents, if all agents are constantly interacting, other techniques
are more suitable. We discussed the current state-of-the-art of approaches that ex-
ploit these sparse interactions and acknowledged its benefits in learning in MAS.
What follows is an overview of the contributions we have made within this field that
go beyond the state-of-the-art.

In Chapter 4 we considered a special case of sparse interactions. We described
how the list of states in which coordination is needed can, in particular situations,
be modeled as a function of the current state of the agent. We formalised this idea
by introducing a DEC-LIMDP. This framework represents the interaction areas of
an agent as a function of the current local state of the agent. This allows for a
more compact representation of these interaction areas than the more general DEC-
SIMDP, in which a list of the states of the interaction area is maintained. Moreover,
a DEC-LIMDP is more suitable for representing MAS in which the interaction areas
are spatially related in the joint state space. We introduced a new algorithm,
called 2Observe for learning in such systems. 2Observe uses a generalized learning
automaton to approximate the interaction function. By querying the automaton
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at every time step about the relevant state information for the current state, it is
possible to allow agents to learn using only local state information if the GLA decides
that no coordination is necessary. However, if the GLA decides that coordination is
required, 2Observe uses a mechanism based on communication to select an action.
We first demonstrated that GLA are an appealing technique for approximating these
spatial relations in the joint state space. Second, we compared 2Observe to other
commonly accepted multi-agent approaches and illustrated that it reached a better
performance in various environments.

Chapter 5 introduced CQ-learning.This algorithm is a way of solving problems
that can be modelled as a DEC-SIMDP. A CQ-learning agent, performs a Student
t-statistical test to determine whether the immediate rewards it perceives are what
it expects for that particular state-action pair. We introduced two variants on this
algorithm, which use a different baseline for this statistical test. The first variant
assumes that an agent has been learning for some time alone in the environment
or that a model of the reward function is available to the agent. As such it can
perform a one-group Student t-test to test for significant differences in the reward
signal it receives when multiple agents are acting in the same environment. The
second variant exploits the fact that agents are still exploring their actions in the
early stage of the learning process. We showed that the number of interactions in
this early stage of the learning process is low and increases as learning progresses.
Therefore, the rewards an agent receives in the initial phase of learning are a good
estimate of what it would perceive if acting alone in the environment. With this data
a two-group Student t-test can be performed to detect significant changes between
the expected rewards and the actual rewards an agent receives. These tests allow
to detect in which states agents are interacting with other agents and initiates the
second step of the algorithm. This is to detect which additional state information
is relevant in order to learn to coordinate. This information is again obtained using
statistical tests and as soon as the relevant state information of another agent has
been identified, the local state information of the agent is extended to include this
state information. We call this an augmented state. In our experiments we have
shown that CQ-learning uses a reduced set of augmented states in which it learns
to find conflict-free policies, while maintaining good learning times compared to
approaches using always the entire system state (i.e. the information of all agents).
CQ-learning was compared to Learning of Coordination (referred to as LoC in this
dissertation) and was shown to outperform this approach. Moreover, CQ-learning
does not require the presence of an active perception function available which in-
forms agents about the need for coordination as LoC does. Finally, CQ-learning was
only evaluated in settings with a deterministic transition and reward function, but
scales easily to stochastic settings since both Q-learning as the statistical tests used
do not require a deterministic environment.

In Chapter 6 we expanded this approach to detect future interaction problems.
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One of the most appealing features in RL is the ability to deal with a delayed
reward signal. In multi-agent RL, this is also possible but comes with a high cost.
The reward signal must be propagated through the entire joint state-action space
which is exponential in the number of agents. Our approach, called FCQ-learning,
is capable of mitigating this issue by detecting and exploiting sparse interactions. In
this algorithm we use a Kolmogorov-Smirnov test for goodness of fit to verify if two
groups of samples come from the same distribution. These groups are a sequence
of Q-values for a particular state action pair. Agents will perceive a change in their
future rewards by detecting it in the changing Q-values. In states in which the Q-
values have decreased, the agent will sample the future rewards based on the joint
state space in order to identify the relevant state information that is causing this
decrease. A multiple comparison test indicate which state information of another
agent is relevant and, as for CQ-learning, the local state information of the agent is
extended to an augmented state which contains this additional relevant information.
Based on these augmented states, the agents can coordinate several timesteps before
this need is explicitely reflected in the reward signal. Our experiments have shown
that the benefits of FCQ-learning become more apparent if more than two agents are
present in the environment. We again compared against commonly accepted multi-
agent reinforcement learning approaches and against LoC, for which we used domain
information to create the active perception function. FCQ-learning outperforms
LoC since it takes future rewards into consideration, rather than only the immediate
rewards, which do not sufficiently represent the coordination requirements. As with
CQ-learning, FCQ-learning also scales to stochastic environments. FCQ-learning
is the first algorithm in its kind to be able to solve future coordination problems
without having to learn all the time in the joint state-action space.

Chapter 7 extended the work from chapters 4 and 5 by introducing a way to
transfer coordination experience between environments and agents. Transfer learn-
ing has gained an increasing interest in the reinforcement learning community in
recent years. It offers the ability to significantly improve learning speeds in new
unseen tasks, based on previous experience. This makes it an appealing concept to
use in a multi-agent reinforcement learning context. The work done in this area was
restricted to a game-theoretic setting in which learned experience from past games
was used to increase learning speed in unseen games. In our research we focused on
transferring coordination experience between agents and environments. The first
part of this chapter was based on the 2Observe algorithm. We have shown that if an
additional agent starts acting in the same environment, the learned approximation
of the interaction function can be transferred to this new agent. As such, this agent
can purely focus on the core task it has to solve, and re-use the experience from
other agents. In the second part of this chapter we elaborated on extensions to the
CQ-learning algorithm. This algorithm is capable of identifying the relevant state
information for coordination problems between agents. Using this state information
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it is possible to train a classifier to learn a generalised representation of the interac-
tion states of the agents. By training this classifier in a simple environment, before
transferring it to more complex settings, agents could again purely focus on the core
task they have to solve. Alternatively we used a neural network to generalise the
state information from augmented states. This also allows for easy mapping of this
coordination information to other agents/environments since it is no longer linked
with concrete state information, but uses an agent centric representation. A neural
network also allows for very specific querying of the system state to only explicitly
coordinate with other agents in those states where this is required.

8.2 Additional remarks

Throughout this dissertation we used gridworlds as a running example for our ex-
periments. This testbed is very popular within the RL community, since it allows
for intuitive representations of the problem tasks. Moreover, in the context of this
dissertation, it is easy to represent coordination requirements between agents as
collisions in a gridworld, and dependencies between the policies of agents as the
order in which agents have to enter the goal. The algorithms in this dissertation are
however not restricted to such environments, but are applicable for a wider range
of task problems in which agents only interact with each other in certain states.
Consider for example a routing problem in which each agent controls a router. As
long as the queue containing the packets in the system does not significantly grow,
all the agents can select the best next hop and follow their normal routing scheme.
If however, the latency of the system suddenly increases because of a bottleneck in
the network layout, agents should observe each others state information, i.e. their
queues, in order to follow an alternative routing scheme which improves the overall
throughput of the system again [Littman & Boyan (1993)].

A second remark we would like to make regarding the research in this dissertation
concerns the notion of collisions in a gridworld. These ‘collisions’ in a gridworld
represent two or more agents transitioning to the same location. In the routing
example explained above, a ‘collision’ represents a significant increase in the latency
of a certain router. We would like to emphasize that even in the context of mobile
robots, such collisions do not actually require two robots to bump into each other.
Such mobile robots are equipped with sensors that will detect such collisions before
they actually occur. The idea behind the algorithms in this dissertation is to avoid
using this failsafe feature, rather than attempting to replace it.
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8.3 Directions for future research
To conclude this dissertation, we list some future directions that could be taken to
extend the presented research:

• Planning algorithms for DEC-LIMDP: in Chapter 4 we have introduced an
algorithm, capable of solving a DEC-LIMDP using a RL approach. In some
situations the underlying model of the environment is available, meaning an
agent has the interaction function at its disposal, together with the transition
and the reward functions. As such, planning in these environments becomes
an appealing approach to exploit the particular structure of these environments
and solve these problems. Algorithms for planning in a DEC-LIMDP can be
based upon general planning algorithms for Markov games, since environments
that can be modelled as a DEC-LIMDP, can also be modelled as a Markov
game.

• Alternative single-agent approach in CQ-learning: In Chapter 5, we introduced
CQ-learning, which uses normal single agent Q-learning to learn the core task
of the problem at hand. Although having theoretical convergence guarantees,
Q-learning is usually not the most suitable approach as it requires a long
learning time and much exploration. It is straightforward to apply Dyna-Q
(see Section 2.5.3) instead of basic Q-learning for the first variant of CQ-
learning, because it uses a single agent model of the reward function. This
model can be used to significantly speed up the learning process of the core
task, and also lead to a faster identification of the interaction states.

• Alternative multi-agent approach in CQ-learning: to select actions in inter-
action states, CQ-learning uses a Q-learning approach based on joint state
information. It uses the Q-values of the local states of the agent to bootstrap,
since the agent is not aware at the time of the update, whether coordination
will be required during the next timestep. This part of the algorithm leaves
room for improvement. For instance using the principle of an elegibility trace
to update the last N visited states (augmented or local), based on the remain-
der of the episode, could lead to more accurate Q-values. Moreover, using
such updates, it could turn out that if agents have multiple optimal actions in
a state, using this update rule, coordination problems can be solved, without
having to use augmented state information.

• Alternative interaction state detection in CQ-learning: the statistical test used
by CQ-learning which determines whether states are to be augmented is a
Student t-test. This test assumes that the samples come from a normal
distribution. As such this test is capable of dealing with stochastic noise, as
long as the reward signal remains within the confidence interval of the normal
distribution for that particular state-action pair in non-interaction states. In
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[Vrancx et al. (2011)] this test was already replaced by a Friedmann test
which has no requirements with regard to the distribution of which the samples
originate.

• Beyond pairwise interactions: both CQ-learning and FCQ-learning are con-
cerned with pairwise interactions that occur in the environment. In particular
states, it is possible that a coordination with two or more other agents is re-
quired. A straightforward approach is to perform statistical tests, on all pos-
sible combinations of the state information of the other agents. This results
in an exponential increase in the computational complexity of the algorithm,
since it has to perform a statistical test on all combinations. However, the
state space in which agents have to learn would still remain manageable, so an
additional question here is whether agents are still reactive enough to perform
actions in a timely fashion.

• Learning options for non-interaction states: the option framework is a way
of speeding up the learning process, by allowing an agent to take a sequence
of actions during a period of time [Sutton et al. (1999)]. This sequence
of actions is called an option. The option framework can be combined with
CQ-learning, which would allow agents to execute options, between interac-
tion states, which would again speed up the learning process. On the other
hand, the principles of CQ-learning can also be used in the option frame-
work, to decompose an option into several suboptions, as interaction states
are identified.

• Higher level interactions: both CQ-learning and FCQ-learning attempt to
solve coordination issues at a primitive action level. These algorithms can
however be seen in a broader way as a technique of detecting when the current
policy fails due to the interference of other agents and in which situations this
interference takes place. As such it can be put in the wider context, such
as robocup, where a team of agents can evaluate its strategy and learn a set
of pre-conditions about the other team to detect when their strategy fails.
These algorithms would then be used on top of strategies, learning when to
adapt a strategy to the particular strategy of the opponent.

• Multi-agent transfer learning: in Chapter 7 we introduced two approaches of
transferring knowledge between agents and environments in general Markov
games. These approaches were restricted to the transfer of coordination ex-
perience between agents. Transfer learning has however a much wider ap-
plicability and many principles of single agent-learning can be adapted to
settings where multiple agents are present. This area of multi-agent research
is yet to be explored. The combination of techniques from single agent RL,
together with the capabilities of CQ-learning can significantly improve multi-
agent learning in terms of both speed and quality of the found solution.
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• Combining 2Observe and CQ-learning: 2Observe is capable of learning the
relevant sensor range within which coordination with other agents is required.
CQ-learning is capable of learning in which states coordination is required.
Combined, it is possible to learn the relevant sensor range in different parts
of the state space. This is especially interesting in environments where the
dynamics of the transition function are not uniform over the entire state space.

In closing, although our experiments share many similarities with real world
applications, they were still simulations. Future research should be motivated by a
desire to apply these techniques and ideas to actual real world applications.
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Appendix A
Gridworld environments

This appendix presents an overview of the gridworld environments used throughout
this dissertation. The initial position of an agent is marked with a X, its goal with a
dot in the same colour. If agents share the same goal location, the dot is composed
of a linear blend of the colours of the agents.

Grid game 2

Figure A.1: Grid game 2
2 agents, 9 locations

TunnelToGoal

Figure A.2: TunnelToGoal
2 agents, 25 locations
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2-Robot game

Figure A.3: 2-Robot game
2 agents, 36 locations

ISR

Figure A.4: ISR
2 agents, 43 locations
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CIT

Figure A.5: CIT, 2 agents, 69 locations

TunnelToGoal_3

Figure A.6: TunnelToGoal_3
3 agents, 55 locations
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CMU

Figure A.7: CMU
2 agents, 133 locations

Bottleneck

Figure A.8: Bottleneck
2 agents, 43 locations
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Appendix B
Basic notions on statistical tests

B.1 Student t-test
The Student t-test was developed by William Sealy Gossett (b1876-d1937) in 1908
to test the quality of stout for Guinness®. Assume we have n independent samples
{x1, . . . , xn} from a normally distributed population with mean µ and standard
deviation σ. We would like to verify whether µ = µ0, based on the samples. Both
µ and σ are however unknown variables. µ can be estimated by using the mean x̄n
of the samples:

x̄n = 1
n

n∑
i=1

xi (B.1)

and the standard deviation Sn of the samples with:

Sn = 1
n− 1

n∑
i=1

(xi − x̄n)2 (B.2)

With these estimates, we can calculate a confidence interval for a certain confidence
level 1− α around the mean x̄n.
This confidence interval for confidence level 1− α is calculated according to:[

x̄n −
Sn√
n
tn−1,1−α/2, x̄n + Sn√

n
tn−1,1−α/2

]
(B.3)

where tn−1 represents a t-distribution with n− 1 degrees of freedom.
The value t represents the deviation of the sample mean from the population

mean measured in units of the mean’s standard error Sn
√
n:

t = x̄n − µ
Sn/
√
n

(B.4)

A t-distribution is derived from a normal distribution, but has a wider base. In
Figure B.1 we show the t-distribution, for various degrees of freedom. Figure B.2
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represents the corresponding cumulative probability distribution. Note that in the
limit, where n→∞, the t-distribution overlaps with the normal distribution.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Value

Pr
ob

ab
ilit

y

 

 
n=1
n=2
n=5
n=10
n=Inf

Figure B.1: T-distributions for various degrees of freedom.
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Figure B.2: Corresponding cumulative distribution functions of Fig-
ure B.1 for various degrees of freedom.

From Equation B.4 follows that the null hypothesis for the Student t-test is
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based on following statistic:

T = x̄n − µ0
Sn/
√
n

under H0 : µ = µ0 (B.5)

If rather than to verify if the sample mean come is equal to the population mean,
we want to test if the means of two groups of sizes n and m are equal, this test is
called a two-group t-test. The null hypothesis is that µ1 = µ2. The statistic T is
now given by:

T = x̄1
n − x̄2

m

S12
nm

√
1
n + 1

m

under H0 : µ1 = µ2 (B.6)

Where x̄1
n and x̄2

m represent the respective sample means of both groups and
S12
nm stands for the weighted average of the standard deviation of the samples in

both groups. It can be calculated as follows:

S12
nm = (n− 1)S1

n + (m− 1)S2
m

n+m− 2 (B.7)

The confidence interval for the two-sided two-group t-test is given by:

[
−tn−1,1−α/2, tn−1,1−α/2

]
(B.8)
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α
Percentiles of the t-distribution (two sided)

0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001
1 3.078 6.314 12.706 31.820 63.657 127.321 318.309 636.619
2 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599
3 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 1.397 1.860 2.306 2.897 3.355 3.833 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 1.345 1.761 2.145 2.625 2.977 3.326 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 1.337 1.746 2.120 2.584 2.921 3.252 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.090 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

30 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
70 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435

80 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
90 1.291 1.662 1.987 2.369 2.632 2.878 3.183 3.402
100 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.391
150 1.287 1.655 1.976 2.351 2.609 2.849 3.145 3.357
200 1.286 1.652 1.972 2.345 2.601 2.839 3.131 3.340

∞ 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Table B.1: Percentiles of the two sided t-distribution
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B.2 Kolmogorov-Smirnov test
The Kolmogorov-Smirnov test (KS-test) is a non-parametric test that is used to
compare a sample probability distribution against a reference distribution (one-
sample KS-test) or to compare two samples against each other (two-sample KS-
test). For the former, the null hypothesis is that the sample is drawn from the
reference distribution. For the latter the null hypothesis is that both samples are
drawn from the same distribution. Since it is a non-parametric test, there are no
additional restrictions on the distribution of the sample(s).

The test statistic is the maximum distance between both empirical distribution
functions (two sample test) or between the empirical distribution and the cumula-
tive distribution function against which we test (one sample test). The empirical
distribution function for n independent and identically distributed random variables
Xi is defined as:

Fn(x) = 1
n

n∑
i=1

IXi<x (B.9)

where IXi<x is the indicator function:

IXi<x =

1 if Xi < x

0 otherwise
(B.10)

The formula for the statistic of the one-sample test is:

Dn = max
x

(|Fn(x)− F (x)|) (B.11)

and for the two-sample test:

Dn,m = max
x

(|F 1
n(x)− F 2

m(x)|) (B.12)

For the one sample test, the null hypothesis is rejected at level α if
√
nDn > Kα (B.13)

and for the two sample test if √
nm

n+m
Dn,m > Kα (B.14)

where Kα is the critical value of the Kolmogorov distribution at level α. The critical
values for some common confidence levels are given in Table B.2

An example of the empirical cumulative distribution for a one sided test is given
in Figure B.3 and for a two sided test both empirical cumulative distributions are
shown in Figure B.4.
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Figure B.3: Empirical cumulative distribution with the standard normal
distribution.
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Figure B.4: Two empirical cumulative distributions.
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n
D (one sided)

0.1 0.05 0.025 0.01 0.005
1 0.9000 0.9500 0.9750 0.9900 0.9950
2 0.6838 0.7764 0.8419 0.9000 0.9293
3 0.5648 0.6360 0.7076 0.7846 0.8290
4 0.4927 0.5652 0.6239 0.6889 0.7342
5 0.4470 0.5094 0.5633 0.6272 0.6685

6 0.4104 0.4680 0.5193 0.5774 0.6166
7 0.3815 0.4361 0.4834 0.5384 0.5758
8 0.3583 0.4096 0.4543 0.5065 0.5418
9 0.3391 0.3875 0.4300 0.4796 0.5133
10 0.3226 0.3687 0.4092 0.4566 0.4889

11 0.3083 0.3524 0.3912 0.4367 0.4677
12 0.2958 0.3382 0.3754 0.4192 0.4490
13 0.2847 0.3255 0.3614 0.4036 0.4325
14 0.2748 0.3142 0.3489 0.3897 0.4176
15 0.2659 0.3040 0.3376 0.3771 0.4042

16 0.2578 0.2947 0.3273 0.3657 0.3920
17 0.2504 0.2863 0.3180 0.3553 0.3809
18 0.2436 0.2785 0.3094 0.3457 0.3706
19 0.2373 0.2714 0.3014 0.3369 0.3612
20 0.2316 0.2647 0.2941 0.3287 0.3524

21 0.2262 0.2586 0.2872 0.3210 0.3443
22 0.2212 0.2528 0.2809 0.3139 0.3367
23 0.2165 0.2475 0.2749 0.3073 0.3295
24 0.2120 0.2424 0.2693 0.3010 0.3229
25 0.2079 0.2377 0.2640 0.2952 0.3166

26 0.2040 0.2332 0.2591 0.2896 0.3106
27 0.2003 0.2290 0.2544 0.2844 0.3050
28 0.1968 0.2250 0.2499 0.2794 0.2997
29 0.1935 0.2212 0.2457 0.2747 0.2947
30 0.1903 0.2176 0.2417 0.2702 0.2899

40 0.1655 0.1891 0.2101 0.2349 0.2521
> 40 1.07/

√
n 1.22/

√
n 1.36/

√
n 1.52/

√
n 1.63/

√
n

Table B.2: Critical values for the one-sided Kolmogorov-Smirnov test
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B.3 Friedman test
The Friedman test is, like the KS-test, a non-parametric statistical test. It was
developed by the U.S. economist Milton Friedman to detect differences in treatments
across multiple test attempts.

If the data is for the form {xij}n×k, with each of the n rows representing a block
and each of the k columns a treatment. A single observation is the intersection of
each block and treatment. From this data, the rank can be calculated within each
block:

r̄·j = 1
n

n∑
i=1

rij r̄ = 1
nk

n∑
i=1

k∑
j=1

rij (B.15)

The test statistic is calculated as follows:

Q = SSt
SSe

(B.16)

where SSt and SSe can be calculated from the rank as follows:

SSt = n

k∑
j=1

(r̄·j − r̄)2, SSe = 1
n(k − 1)

n∑
i=1

k∑
j=1

(rij − r̄)2 (B.17)
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Abbreviations

AI Artificial Intelligence

CG Coordination Graph
CPD Conditional Probability Distribution
CQ-learning Coordinating Q-learning

DEC-MDP Decentralised Markov Decision Process
DEC-MG Decentralised Markov Game
DEC-LIMDP Decentralised Local Interactions Markov Decision Process
DEC-SIMDP Decentralised Sparse Interactions Markov Decision Process
DEC-SIMG Decentralised Sparse Interactions Markov Game
DBN Dynamic Bayesian Network
DP Dynamic Programming

EGT Evolutionary Game Theory

FCQ-learning Future Coordinating Q-learning
FMDP Factored Markov Decision Process

GT Game Theory
GLA Generalized Learning Automata

IDMG Interaction Driven Markov Game

KS Kolmogorov-Smirnov
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LA Learning Automaton
LoC Learning of Coordination

MARL Multi-agent Reinforcement Learning
MAS Multi-agent Systems
MDP Markov Decision Process
MMDP Multi-Agent Markov Decision Process
MG Markov Game

PE Policy Evaluation
PI Policy Improvement
POMDP Partially Observable Markov Decision Process

RD Replicator Dynamics
RL Reinforcement Learning

SCQ Sparse Cooperative Q-learning

TI-DEC-MDP Transition Independent Decentralised Markov Decision Process

UC Utile Coordination
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Notation

general
τ Temperature parameter
α(t) learning rate at timestep t
γ discount factor
Single agent reinforcement learning
S = s1, . . . , sN Set of states
A(s) action set in state s.
T (s, a, s′) probability of going from state s to state s′ after

performing action a.
R(s, a, s′) expected reward for performing action a in state s

and transitioning to state s′.
πt The policy at timestep t
πt(s, a) Probability of taking action a in state s at timestep

t

V π(s) The value of state s under policy π
Qπ(s, a) The value of action a in state s under policy π
V ∗(s) The value of state s under an optimal policy
Q∗(s, a) The value of action a in state s under an optimal

policy
Multi agent reinforcement learning
n number of agents
S = s1, . . . , sN Set of system states.
Sk = s1

k, . . . , s
N
k Set of local states of agent k.
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Multi agent reinforcement learning (cont.)
si Each system state consists about the state informa-

tion of the environment s0, combined with the local
state information of all agents s1, . . . , sn with every
sj ∈ Sj

Ak(s) action set of agent k in state s.
~a joint action (a1, . . . , an) specifying the action of all

agents
R(s,~a, s′) expected reward for all agents for performing joint

action a in state s and transitioning to state s′.
Rk(s,~a, s′) expected reward for agent k for performing joint

action a in state s and transitioning to state s′.

Note: superscripts refer to the index of actions/states/. . . , whereas subscripts refer
to the index of the agent. For example sik represents the ith local state of agent k.
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