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Abstract Antibiotic resistance has increased over the past
two decades. New approaches for the discovery of novel
antibacterials are required and innovative strategies will be
necessary to identify novel and effective candidates. Related
to this problem, the exploration of bacterial targets that
remain unexploited by the current antibiotics in clinical use
is required. One of such targets is the β-ketoacyl-acyl car-
rier protein synthase III (FabH). Here, we report a ligand-
based modeling methodology for the virtual-screening of
large collections of chemical compounds in the search of
potential FabH inhibitors. QSAR models are developed for
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a diverse dataset of 296 FabH inhibitors using an in-house
modeling framework. All models showed high fitting, robust-
ness, and generalization capabilities. We further investigated
the performance of the developed models in a virtual screen-
ing scenario. To carry out this investigation, we implemented
a desirability-based algorithm for decoys selection that was
shown effective in the selection of high quality decoys sets.
Once the QSAR models were validated in the context of a
virtual screening experiment their limitations arise. For this
reason, we explored the potential of ensemble modeling to
overcome the limitations associated to the use of single clas-
sifiers. Through a detailed evaluation of the virtual screening
performance of ensemble models it was evidenced, for the
first time to our knowledge, the benefits of this approach in
a virtual screening scenario. From all the obtained results,
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we could arrive to a significant main conclusion: at least for
FabH inhibitors, virtual screening performance is not guar-
anteed by predictive QSAR models.

Keywords Ligand-based drug design · Virtual screening ·
FabH inhibitors · Ensemble modeling · QSAR

Introduction

Bacterial diseases have not yet been overcome. It is estimated
that two million people die every year as a consequence
of bacterial infections [1] and an increased resistance of
pathogens to the antibiotics in clinical use has been reported
[2]. This situation is aggravated by the fact that only two new
classes of antibiotics have been introduced in the marked
during the past 30 years [3]. In addition, known antibiotics
are directed against a small subset of bacterial targets. To
overcome this critical situation, it is urgent to develop innov-
ative approaches and strategies for the identification of novel
antibiotic candidates [4].

Traditionally, diverse targets in key processes of bacter-
ial cell cycle have been investigated in antibiotics research.
Some of these targets participate in critical cellular processes
such as cell wall biosynthesis, transcription and translation
of the genetic code, cell division, metabolic pathways, resis-
tance mechanism, and virulence factors [5]. Among them,
one of the biosynthetic pathways that can be effectively
employed as target for the development of new antibiotics
is that of fatty acid biosynthesis (FAS). The FAS pathway
displays some key features that make it attractive for the
development of new potential broad-spectrum antibacterial
agents. Two of these features are: (1) its essentiality for bac-
teria survival and (2) its divergence from the analog human
process [6]. The major difference between fatty acids syn-
thesis in humans and bacteria is that in humans this process
is carried out by a single multifunctional enzyme, while in
bacteria the pathway involves various enzymes which can be
separately considered putative targets [7].

Among the enzymes composing the type II FAS in bacte-
ria, β-ketoacyl-acyl carrier protein synthase III (FabH) plays
two important roles: (1) the initialization of the fatty acids
synthesis cycle and (2) the regulation of the whole path-
way [8]. This enzyme is present in many different impor-
tant human pathogens and has been shown to be essential
[9]. Also, compounds derived from different chemical scaf-
folds have been shown to inhibit FabH from a wide range
of microorganisms, including multi-drug resistant bacterial
strains [10–24]. From all these observations, it is inferred that
FabH can be used as a molecular target for novel antibiotic
candidates [9].

Apart from few modeling studies, the amount of data avail-
able for FabH and its inhibitors has not been exploited to
develop computational models to perform computer-aided

design of FabH inhibitors [13,25–27]. Specifically, no model
for the ligand-based virtual screening (VS) of large collec-
tions of chemical compounds to search for potential FabH
inhibitors has been reported.

One of the ligand-based modeling methodologies rou-
tinely employed in drug discovery projects is quantitative
structure–activity relationships (QSAR). The objective of
this type of methodology is to correlate the structures of a
set of molecules (encoded by molecular descriptors) with
their biological activity. Studies reporting the experimen-
tal corroboration of QSAR modeling predictions have been
published before [28]. However, obtaining predictive QSAR
models, and more important, models suitable for virtual
screening tasks is not straightforward.

There are several issues that have to be taken into con-
sideration during the whole process of QSAR model devel-
opment. As has been previously proposed, the quality of the
data used to train the models can have a huge influence on
their performance [29,30]. For this reason, before any cal-
culation the datasets must undergo a curation step including
but not limited to: the removal of salts/fragments; the use of
one unique representation of every functional group; the ade-
quate treatment of tautomeric forms; the removal of duplicate
compounds and the visual inspection of as much data as pos-
sible. This step is critical to develop predictive and reliable
high quality QSAR models.

One important consideration to make during the devel-
opment of classification models is the number of samples in
each group and how the dataset is split into the training, selec-
tion, and external validation subsets. Regarding the problem
of the balance between the number of samples in each cate-
gory for binary classification, it is necessary to balance the
actives and inactives groups to avoid models that would be
biased against the majority class and hence useless for virtual
screening. One of the options to balance the groups before
deriving the classification models is to reduce the number
of samples in the larger group [30]. On the other hand, to
obtain reliable QSAR models, the representative compounds
of the test set should be close to those of the training set and
vice versa. Furthermore, the representative compounds of the
training set should be distributed within the whole area cov-
ered by the entire dataset. Several methodologies have been
proposed to obtain an adequate partition of the datasets such
as Self-Organizing Maps, clustering, maximum dissimilar-
ity, fractional design, D-optimal design, the Kennard–Stone
method, and sphere exclusion algorithms [31–33].

Another issue to take into account is the performance of
the developed models in a virtual screening scenario. It is
also important that a model for virtual screening is able to
position active compounds at the beginning of the ranked list
[34,35]. In other words, a method achieving a good classi-
fication performance but ranking the active compounds at
the middle of the ordered list has no practical utility for vir-
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tual screening since they will never be selected for experi-
mental assays. Besides, the validation of a model for virtual
screening should be accomplished using a validation dataset
resembling a real virtual screening scenario. In this sense,
given that the amount of known inactive compounds for any
specific problem is limited, it is important to combine a set
of known active compounds with decoy molecules [35–37].
This means that the validation set for a virtual screening tool
should contain molecules that resemble the actives’ physico-
chemical properties and at the same time are structurally dis-
similar from them [34,35]. The ratio of active compounds to
inactive ones is also important during the validation process
since hit rates in real world problems range from 0.01 to
0.14 % [37]. Special attention should be paid to this last
issue since it has been demonstrated that this rate influence
the values of the metrics used to evaluate the performance of
virtual screening tools [34].

Here, we present the first study aimed to obtain a ligand-
based modeling tool suitable for the VS of large collections
of chemical compounds in the search for potential FabH
inhibitors. We provide a detailed description of the steps
involved in the obtaining of predictive QSAR models using
our in-house QSAR modeling framework. One of the objec-
tives of this research is to make a thorough validation of the
obtained QSAR models, and specifically evaluate their vir-
tual screening performance. Since a set of decoy molecules
is necessary for the correct assessment of the performance
of the models in the context of a virtual screening exper-
iment, we also present a novel strategy for the selection of
target-specific decoys sets. Although ensemble modeling has
been previously employed in improving classification per-
formance of QSAR models [38,39], to our knowledge their
worth for virtual screening has not been extensively evalu-
ated using large collections of decoy molecules. Here, we
provide evidences supporting the idea that ensemble model-
ing can be successfully employed to obtain reliable virtual
screening tools capable of overcoming the limitations asso-
ciated to the use of single models.

Computational methods

Dataset compilation

A dataset of 296 compounds was compiled from 11 literature
sources that report the antibacterial and inhibitory activities
of FabH inhibitors against E. coli and ecFabH [14–24]. In all
the papers the authors report the minimum inhibitory con-
centration (MIC) obtained via microdilution experiments for
all compounds and the FabH inhibitory activity of a subset of
the most active compounds determined by enzyme inhibition
assays. For that reason, it was decided to use MIC as prop-
erty to model. Since the MIC a discrete value, the compiled

dataset was used for classification studies. It is important to
highlight that all the compounds were synthesized and tested
in the same lab and that in all the papers the authors report
the antibacterial activity of Kanamycin B. Considering that
the experiment outcome can change depending on the exper-
imental conditions being used, even when the experiments
are carried out in the same lab following the same protocol,
the assessment of the same reference molecule in all the liter-
ature reports makes a consistent inter-experiments compari-
son possible. The activity threshold to consider a compound
in the active group was set to up to four times the MIC of
Kanamycin B. The remaining compounds were regarded as
inactives. This resulted in 125 active and 171 inactive com-
pounds.

Representation, curation, standardization, and codification
of molecular structures

The FabH inhibitors dataset was initially represented using
the SMILES notation and then converted to a multiple two-
dimensional SDF file using the MOLCONVERT tool of the
JChem v5.9 software package [40]. This dataset as well as the
decoy compounds candidates (see the next sections) was sub-
ject to a curation process to ensure a uniform structural rep-
resentation across all the compounds. The dataset was stan-
dardized using the STANDARDIZER module of the JChem
v5.9 software package [40]. During the standardization step,
several filters were applied in the following sequence: frag-
ment removal, removal of explicit hydrogen atoms, neutral-
ization, taumerization, transformation of functional groups
such as nitro to one unique representation, aromatization,
and addition of explicit hydrogen atoms. The next step for the
curation of the dataset is the identification of duplicate struc-
tures. Duplicate structures were detected with the EdiSDF
tool of the ISIDA/QSPR package [41].

Molecular descriptors were calculated with the DRAGON
v.6 software [42]. Initially, all the 1D and 2D descriptors were
computed (3763 in total) and constant features were removed.
Next, all pairs of descriptors with correlation greater than 0.9
were identified and only one feature from each pair was kept.

Dataset splitting

For the development of the QSAR models, the FabH
inhibitors dataset was split into training, selection, and exter-
nal subsets. The training set was used for feature selection
and classifiers training, the selection subset was reserved for
use with the training set for the model validation and selection
steps while the external set is only used to evaluate the final
generalization capabilities of the optimal models. It should
be pointed out that for the calculations here described all
the molecular descriptors were scaled to the interval [0,1]
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to avoid features in larger numeric ranges dominate those in
smaller ranges.

Before splitting the dataset into the three subsets, to avoid
models biased toward the majority class the number of sam-
ples in each group was balanced. The first step in balancing
the dataset is the calculation of the pairwise matrix of Euclid-
ean distances in the descriptors space. From this matrix, the
distance of the samples in the majority group to the minority
one was calculated as the mean distance of it to each sample
on the minority subset. Then, the size of the two groups was
balanced by removing the compounds in the majority group
that are furthest from the minority one.

From the balanced dataset, 20 % of the compounds in
each group were randomly selected as the external validation
set. The remaining data, regarded as the learning data sub-
set, were split into the training and selection subsets using
the three sphere exclusion algorithms proposed by Golbraikh
et al. [32] and that have been previously used for the ratio-
nal selection of training and test sets for QSAR modeling.
This method uses the distance between the samples in the N-
dimensional descriptor space as a measure of their similarity.
In brief, the algorithm starts by selecting one compound from
the data set and constructing a hypersphere around it. Then
the compound closer to hypersphere center is assigned to the
selection set while the hypersphere center and the rest of the
compounds inside it are assigned to the training set. Then,
the compounds inside the hypersphere are removed from the
initial pool of samples and the process is repeated until the
initial pool of compounds is empty. These calculations are
performed with the features scaled to the [0,1] interval to
avoid higher influence of the features with bigger numeric
ranges during the distance computations and comparisons as
well as during the hyperspheres construction.

The three variants 1M, 2M, and 3M of the sphere exclusion
algorithm proposed by the developers were implemented in
MATLAB R2009a [43].The radius of the constructed spheres
is defined as R = c(V/N )1/K, c is an adjustable parameter
named dissimilarity level, V is the volume occupied by one
sample that is set to 1, N is the number of samples in the com-
plete dataset and K is the number of molecular descriptors.
The dissimilarity level c was varied between 0.1 and 5 with
a step of 0.1 to obtain different partitions of the learning data
into training and selections subsets.

To evaluate the quality of the obtained learning set parti-
tions at each dissimilarity level, three parameters were eval-
uated: the diversity index of the selection set with respect to
the training set Msel,train(c), the diversity index of the train-
ing set with respect to the selection set Mtrain,sel(c) and the
diversity index of the training set Itrain(c). These parameters
characterize the closeness of the compounds in the selection
set to those in the training one, the closeness of the sam-
ples in the training set to those in the selection set and the
diversity of the training data subset, respectively. To com-

pute Msel,train(c) a sphere of radius R = c(V/N )1/K , is con-
structed taking as center each selection set sample, then the
number of points of the selection set for which the sphere
contains no point of the training set is determined to be Na,
finally Msel,train(c) = Na/Nsel where Noksel is the number of
compounds in the selection set. In a similar way is computed
Mtrain,sel(c) = Nb/Ntrain where Nb is the number of train-
ing samples for which the sphere contains no points of the
selection set and Ntrain is the number of samples in the train-
ing set. To calculate the diversity index of the training set
Itrain(c) spheres of radius R = c (V/N )1/K , are constructed
around each training sample and the number of points that
contains no other training sample inside its sphere Nc is deter-
mined. Then, Itrain(c) is computed as Itrain(c) = Nc/Ntrain.
According to these definitions an ideal learning set partition
should yield values of Msel,train(c) = 0, Mtrain,sel(c) = 0 and
Itrain(c) = 1.

QSAR modeling

QSAR modeling was carried out using an in-house frame-
work that relies on the classification algorithms that we previ-
ously implemented and validated [44]. This QSAR modeling
framework is based in the combination of three different fea-
ture selection and classification algorithms. To perform fea-
ture selection, we employed three algorithms that differ on
their underlying concepts: Genetic Algorithms (GA) which is
a well-known type of bio-inspired stochastic search engine;
bagged trees (BT) which are based on the manipulation of
the input data and classification trees; and features ranking
(FR) that is a stable feature selection technique, this means
that each time it is run with the same input data the subset
of selected features will be the same. The same diversity-
based idea was fallowed for the selection of the classifica-
tion algorithms to be combined with the feature selection
methods. We selected: Adaboost which is an ensemble-based
classification algorithm; Linear Discriminant Analysis that
is a well-established linear classifier; and the effective Least
Squares Support Vector Machines that is a non-linear mod-
eling approach.

The combination of these feature selection and classifica-
tion algorithms provides us with nine different pools of clas-
sifiers from which we can select the best performing model
to solve any particular QSAR modeling problem. As pointed
out before, in a typical QSAR modeling, there are many sta-
tistically equivalent solutions and a researcher won’t know a
priori whether a specific modeling approach will be effective
in finding a good enough solution to its problem or not. Thus,
to explore the structure-activity landscape using a diverse
set of modeling tools increases the chances of finding high
quality QSAR models. The procedure used for training each
model type set and select one optimal model is similar for all
modeling approaches. The overall QSAR modeling work-
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Fig. 1 Overall workflow followed to obtain the optimal model for each
classification strategy. For each of the nine classification approaches
used, we train a pool of models from which we select the optimal one
that combines accuracy, robustness, and potential predictive power. The
evaluation of the predictive power of the optimal model is accomplished
using the reserved external validation set. Finally, we select the optimal
classification approach among these nine optimal models

flow is shown in Fig. 1, and its pseudocode is provided in
Chart 1.

For every one of the three feature selection techniques, the
modeling process starts with the use of the training dataset
to generate a pool of potential solutions (or models) Si,j by
combining the feature selection algorithm FSi and the clas-
sification algorithm C j . In our QSAR modeling framework
GA are used for a wrapper while BT and FR are used as filter
methods. For this reason, and to save computation time, the
feature selection process for the BT and FR algorithms are
carried out only once, the selected features are saved, and
they are loaded later to train each type of classifiers based on
these filter methods.

The number of models generated by a particular modeling
approach depends on the classification tool being used. Once
this pool of models is obtained, the generalization capabil-
ity of each potential solution is evaluated using the selection

dataset. After this step, the pool of obtained models can be
optionally reduced to keep only those combining high fitting
and generalization capabilities S∗

i,j . Afterward, the models in
S∗

i,j are cross-validated using the Leave-One-Out and Boot-
strapping strategies to evaluate their robustness. Next, a con-
sensus ranking approach is applied to the whole set of models
S∗

i,j to retrieve the one that better combines accuracy, robust-

ness and generalization capabilities Sopt
i,j .

At this point, we have selected a model that combines
fitting, robustness and potential predictive power among all
potential solutions. Since the prediction of the selection data
subset is used as decision maker during the model selec-
tion step it cannot be considered as the final estimator of the
predictive power of the model. Because of this, and to cor-
rectly evaluate the generalization capabilities of the optimal
model, its real predictive power has to be corroborated using
the external validation data as the last step of the modeling
process. We should highlight that if the model selected as
optimal fails in achieving a good performance when predict-
ing the external validation subset, then it will be regarded as
having no real predictive power and hence it cannot be used
to predict new data.

Once one optimal model is selected for every one of the
nine implemented classification approaches, another consen-
sus ranking procedure is carried out to select among these
nine models the optimal classification technique Sopt to solve
the classification problem under investigation. This QSAR
modeling framework was implemented in MATLAB R2009a
[43]. The detailed description of the steps involved in each
block of Fig. 1 is provided as Supporting Information in Sect.
S1. This section includes the algorithms setup and parame-
ters optimization procedures as well as the steps followed to
validate and select the models. In addition, we provide the
description of the metric employed to compute the model dis-
tances in the descriptors space in the Supporting Information
Sect. S2.

Applicability domain

To define the applicability domain of the models, two defini-
tions were used. Both applicability domain definitions are
based on the descriptors range method [45]. For the first
definition of the applicability domain (ADD-1) each fea-
ture included in the model is used to build a hyper-rectangle
defined by the maximum and minimum values of the fea-
tures and to each dimension the standard deviation of each
feature is added in both directions. A sample is considered to
be inside the model’s applicability domain if it is contained
within the defined hyper-rectangle.

The second applicability domain definition (ADD-2) is
based on the Principal Component Analysis (PCA) of the
molecular descriptors included in the model as described in
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Chart 1 QSAR modeling framework pseudocode

1. //

2. // Require: Dataset Z = {x1, . . . , xn} and vector of observed classifications y

3. //

4. For each feature selection technique F Si in {G A, BT, F R}
5. For each classifier C j in {AB, L D A, L S − SV M}
6. If [(F Si = ’BT ’||F Si = ’F R’)&&( j = 1)]
7. Select features subset FS∗

i using F Si

8. Save FS∗
i

9. Use training data to find set of potential solutions Si,j by combining features subset FS∗
i and C j

10. Elseif (F Si = ’BT ’||F Si = ’F R’)

11. Load FS∗
i

12. Use training data to find potential solutions Si,j by combining features subset FS∗
i and C j

13. Else

14. Use training data to find potential solutions Si,j by combining F Si and C j

15. End If

16. Estimate the potential predictive power of models in Si,j using the selection data subset

17. Optionally, filter solutions to keep only fitted and potentially generalizable ones S∗
i,j

18. Cross-validate models in S∗
i,j

19. Consensus selection of the optimal model Sopt
i, j from the pool of potential solutions S∗

i,j

20. Use external dataset to evaluate the predictive power of Sopt
i, j

21. Return optimal model Sopt
i, j for the F Si C j combination

22. End For

23. End For

24. Consensus selection of the optimal classification technique Sopt among the Sopt
i,j set of optimal models

25. Return optimal classification model Sopt

our previous publication [44]. In brief, a PCA is performed
for the training data set and the Principal Components (PCs)
explaining 99 % of the observed variance are employed to
build a hyper-rectangle defining the AD of the model. Next,
the samples in the selection and external sets are projected
into the PC transformed space. The samples inside the pre-
viously defined hyper-rectangle are considered to be inside
the model’s AD. In other words, a sample is considered to
be inside the model’s AD if its PC transformed coordinates
are within the range of the corresponding training set PC
transformed coordinates. This second applicability domain
definition is more restrictive than the first one.

Virtual screening performance

To evaluate the performance of the developed models in a
virtual screening scenario the following metrics were com-
puted: Area Under the Accumulation Curve (AUAC); Area
under the Receiver Operating Characteristic Curve (ROC);
Enrichment factor (EF), and Boltzmann-enhanced discrim-
ination of ROC (BEDROC) [34,36]. It is important to note
that AUC and ROC don’t discriminate the early part of the

rank-ordered list from the last part and hence these metrics
are not appropriate to address the early recognition problem.
On the other hand, although correctly ranking virtual screen-
ing methods, EF has the disadvantage that it equally weights
all the active compounds within the considered cutoff. On
the other hand, BEDROC is able of overcoming the above
difficulties. The definitions of these metric are provided in
the Supporting Information Sect. S3

Decoys selection

The number of decoy molecules to select per known inhibitor
was selected following the guidelines provided by Truchon
et al. [34]. Specifically, the number of decoys was selected
using the empirical relationship proposed by Truchon et al.
between the maximum relative deviation �max , the number
of active compounds n and the enrichment parameter α:

Nmin = αn

2�max
(1)

The source of the compounds for the decoys selection was the
ZINC database and two decoys subsets were generated [46].
To build the first decoys subset the candidate molecules were
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first filtered to ensure that the decoy candidates are inside the
applicability domain of each model to be validated. In this
case, the first applicability domain definition was used since
it is less restrictive. To build the second decoys subset, no
applicability domain consideration was made.

As proposed by Huang et al. [47] a good decoys set should
be as topologically different as possible from the active com-
pounds and at the same time resemble their drug-like proper-
ties. Here, a desirability function that takes into account both
characteristics was defined. This “decoy-likeness” function
was expressed as the geometric mean of the topological dis-
similarity and the physicochemical similarity. Five physico-
chemical descriptors were calculated to encode the drug-like
properties: Molecular weight, Number of H-bond donors,
Number of H-bond acceptors, Number of rotatable bonds,
and LogP. These molecular descriptors were calculated with
the Dragon v6.0 software [42]. The physicochemical simi-
larity of two compounds was defined by their Euclidean dis-
tance on the 5-dimensional descriptors space and is denoted
as D_P Q(i, j).

The computation of the topological dissimilarity between
the decoy candidates and the active compounds was based
on chemical fingerprints. The chemical fingerprints were cal-
culated with the GENERATEMD tool of the JChem v5.9
software package [40]. The dissimilarity of any pair of com-
pounds was defined as D_T (i, j) = 1 − T (i, j) being T
the Tanimoto coefficient between molecules i and j . The
topological dissimilarity D_T (i, j) was computed with the
COMPR tool of the JChem v5.9 software package [40]. Since
the diversity of the selected decoys is also important, N can-
didates were selected based on the decoy likeness metric
defined above and from them n < N decoys were selected
using clustering, N is selected according to Eq. 1. The dis-
tance for the clustering process was computed based on
both physicochemical similarity and topological dissimilar-
ity using the COMPR tool of the JChem v5.9 software pack-
age [40]. The pseudocode of the decoys selection process is
given in Chart 2.

Models ensemble for virtual screening

The models ensemble was build considering the applicabil-
ity domain of each individual model and the relative ranking
of each compound on the model’s ranked list as shown in
Chart 3. The assembling of the models starts with the search
of the compounds inside the applicability domain of each
model. Since considering predictions of samples that out of
the models’ applicability domain can lead to unreliable pre-
dictions, the applicability domain evaluation is a critical step
of the process. Next, the aggregated scores produced by each
model for the compounds inside its applicability domain are
used to obtain a ranking for those compounds. In the next
step, all the samples that have the same scoring value are

assigned the same ranking value. This particular step takes
into account that if more than one sample has the same scor-
ing value then they are indistinguishable by the model pro-
ducing the ranking. The last step in the generation of the
individual ranking of each model is to compute the relative
ranking of each sample in S as its rank value divided by the
number of unique score values in S.

To illustrate the importance of using the relative rank-
ing instead of the absolute one when comparing the perfor-
mance of two models, let’s suppose that, as is the case in
a real virtual screening experiment, two models A and B
have different coverage of the data being screened by their
applicability domains. Let’s also consider that the coverage
of the dataset by model A is greater than the coverage by
model B. In such scenario is obvious that to be ranked on
the same position by model A has more merit than to be
ranked in the same position by model B. The use of the rel-
ative ranking when comparing the ranks produced by two
models correctly addresses this problem. Once the relative
rank of every sample in each model considering the model’s
applicability domain is determined, these relative rank values
are averaged over the models the compound is inside their
applicability domains to obtain the final aggregated score.
Finally, the compounds are sorted according to these aggre-
gated scores in ascending order to obtain the final ensemble
ranking.

Results and discussion

Dataset preparation

The collection, curation, class assignment, representation,
codification, and dataset splitting processes were carried out
following the procedures described in the Computational
Methods section. The compilation of the dataset conducted
to 296 FabH inhibitors spanning 11 different chemical scaf-
folds. The whole dataset, including the discarded isomers, is
available as Electronic Supporting Information in SDF for-
mat. The SDF file, additionally to the compound structures,
includes: the compounds code; the MIC of each compound;
their activity relative the Kanamycin B according to the data
reported in each source experiment; their observed classifi-
cation; the link to the source references and their names. The
detailed results of this process are presented in the Supporting
Information Sect. S4 and they are summarized below.

From a total of 3763 1D and 2D DRAGON molecular
descriptors only a subset of 654 was used during the mod-
eling process. The balancing of the dataset resulted in 121
compounds in each group. Afterward, 24 compounds of each
group representing 20 % of total samples were randomly
selected for the external validation set. The remaining 194
compounds were regarded as the learning set that was split
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Chart 2 Pseudocode of the decoys selection process

1 //

2 // Requires a set of known active compounds and a set of decoy candidates

3 //

4 Calculate the physicochemical descriptors of the active molecules

5 Calculate the physicochemical descriptors of the decoy candidates

6 Calculate the chemical fingerprints of the active molecules

7 Calculate the chemical fingerprints of the decoy candidates

8 For each inhibitor

9 Calculate D_PQ of each decoy candidate to the inhibitor

10 Calculate D_T of each decoy candidate to the inhibitor

11 Put D_PQ and D_T in a [0 1] scale. The distances scaling was performed in such a way that the untransformed min(D_PQ) and the
untransformed max(D_T) were set to 1

12 Compute the decoy likeness of each candidate

13 Select the top N candidates according to their decoys likeness

14 Cluster the N top candidates and select n representative decoys

15 Remove the selected n decoys from the pool of candidates

16 End For

Chart 3 Pseudocode of the models ensemble process

1 //

2 // Requires a set of compounds S predicted by M models

3 //

4 // Generate each model individual ranking

5 //

6 For each model in M

7 Find the set of compounds inside its applicability domain S’.

8 Sort the scores of S’ in descending order

9 If there are samples with the same score in S’, then find the unique scoring values and assign identical ranking values to samples having the
identical score. These ranking values go from 1 to the number of unique scoring values in S’

10 Calculate the relative rank of each sample in S’ as its rank order divided by the number of unique scoring values in S’

11 End For

12 //

13 // Aggregate the individual rankings into one ensemble

14 //

15 For each sample in S

16 Find the set of models the sample is inside their applicability domain M’.

17 Compute the final aggregated rank as the sum over M’ of the sample’s relative rank divided by the number of models in M’

18 End For

into training and selection subsets using the three sphere
exclusion algorithms 1M, 2M, and 3M. This partition scheme
leads to the selection of 24–25 % of the learning data for the
selection subset and at the same time it guaranties the repre-
sentativeness of each classification group in the selection set.
The results obtained for such optimal learning dataset par-
tition are summarized in the Supporting Information Table
TS2, while the composition of the obtained datasets is pro-
vided in the Supporting Information Table TS3.

Classification performance

The three learning dataset partitions obtained with the three
sphere exclusion algorithms 1M, 2M, and 3M were mod-
eled using the QSAR modeling framework described in the
Computational Methods section. It should be remarked that
the external dataset that was randomly selected from the
balanced dataset is never used during the training or selec-
tion of the optimal models and it is reserved to evaluate the
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Table 1 Accuracy estimation parameters for the optimal model derived from each classification approach

Methoda Sizeb Train (%)c Sel. (%)d LOO (%)e Boot (%)f Ext (%)g

Sphere exclusion 1M

GA-AB 8 82.43(88.16/76.39) 69.57(90.48/52.00) 81.08 73.75 75.00(83.33/66.67)

GA-LDA 17 89.19(88.16/90.28) 76.09(76.19/76.00) 86.49 78.54 68.75(58.33/79.17)

GA-LSSVM∗ 21 97.30(100.00/94.44) 78.26(90.48/68.00) 91.22 84.09 77.08(75.00/79.17)

BT-LSSVM 24 100.00(100.00/100.00) 80.43(95.24/68.00) 76.35 72.37 75.00(70.83/79.17)

BT-AB 13 70.95(71.05/70.83) 69.57(80.95/60.00) 65.54 63.17 77.08(75.00/79.17)

BT-LDA 15 75.00(82.89/66.67) 71.74(80.95/64.00) 65.54 61.85 70.83(70.83/70.83)

R-LSSVM 24 100.00(100.00/100.00) 78.26(90.48/68.00) 77.03 69.31 75.00(66.67/83.33)

R-AB 1 70.95(78.95/62.50) 58.70(71.43/48.00) 70.95 70.95 70.83(75.00/66.67)

R-LDA 7 73.65(86.84/59.72) 58.70(80.95/40.00) 72.97 68.57 68.75(79.17/58.33)

Meanh 14.44 84.38 71.26 76.35 71.40 73.15

Sphere exclusion 2M

GA-AB 5 78.38(86.49/70.27) 78.26(95.65/60.87) 78.38 72.36 72.92(83.33/62.50)

GA-LDA 15 85.14(85.14/85.14) 80.43(91.30/69.57) 83.78 73.59 70.83(66.67/75.00)

GA-LSSVM∗ 18 96.62(98.65/94.59) 86.96(86.96/86.96) 87.16 80.57 72.92(70.83/75.00)

BT-LSSVM 19 100.00(100.00/100.00) 84.78(91.30/78.26) 73.65 70.01 85.42(87.50/83.33)

BT-AB 9 70.27(78.38/62.16) 80.43(82.61/78.26) 64.19 63.85 70.83(79.17/62.50)

BT-LDA 16 76.35(82.43/70.27) 80.43(86.96/73.91) 70.27 64.63 79.17(79.17/79.17)

R-LSSVM 25 97.97(98.65/97.30) 84.78(95.65/73.91) 70.95 66.42 70.83(66.67/75.00)

R-AB 14 69.59(77.03/62.16) 73.91(95.65/52.17) 68.92 63.72 62.50(58.33/66.67)

R-LDA 18 70.27(78.38/62.16) 78.26(86.96/69.57) 63.51 61.34 64.58(66.67/62.50)

Meanh 15.44 82.73 80.92 73.42 68.50 72.22

Sphere exclusion 3M

GA-AB 11 81.38(84.93/77.78) 75.51(83.33/68.00) 78.62 72.59 79.17(83.33/75.00)

GA-LDA 12 86.21(86.30/86.11) 73.47(79.17/68.00) 84.83 78.45 68.75(62.50/75.00)

GA-LSSVM∗ 17 86.90(86.30/87.50) 77.55(83.33/72.00) 83.45 76.88 68.75(62.50/75.00)

BT-LSSVM 12 97.93(100.00/95.83) 73.47(83.33/64.00) 79.31 72.37 68.75(75.00/62.50)

BT-AB 11 73.10(86.30/59.72) 65.31(79.17/52.00) 70.34 67.92 75.00(83.33/66.67)

BT-LDA 12 77.24(79.45/75.00) 67.35(79.17/56.00) 71.72 70.79 70.83(70.83/70.83)

R-LSSVM 17 100.00(100.00/100.00) 75.51(83.33/68.00) 78.62 70.66 72.92(70.83/75.00)

R-AB 7 71.72(83.56/59.72) 65.31(83.33/48.00) 70.34 65.99 72.92(79.17/66.67)

R-LDA 16 77.24(80.82/73.61) 71.43(83.33/60.00) 59.31 62.45 75.00(79.17/70.83)

Meanh 12.78 83.52 71.66 75.17 70.90 72.45

∗ The optimal model per experiment better combining robustness and generalization capabilities is highlighted
a Modeling approach
b Number of feature or single feature LDA models that the model contains
c Accuracy in the prediction of the training dataset represented as Accuracy (Sensitivity/Specificity)
d Accuracy in the prediction of the selection dataset represented as accuracy (sensitivity/specificity)
e LOO cross-validation accuracy
f Bootstrap cross-validation accuracy
g Accuracy in the prediction of the external dataset represented as accuracy (sensitivity/specificity)
h Mean value of the accuracy estimation parameters
GA Genetic Algorithm feature selection, BT Bagged Tress feature selection, R Ranking feature selection, LS-SVM Least Square Support Vector
Machine, AB Adaboost Ensemble, LDA linear discriminant analysis

generalization capabilities of the selected optimal models
to correctly asses the real predictive power of the selected
optimal models. The accuracy estimation parameters for the
optimal model derived from each classification approach are
presented in Table 1. The subset of features each model is

trained from and the models’ parameters are provided in the
Electronic Supporting Information Table TS4.

As can be seen from Table 1, it is possible to obtain mod-
els with high values of the accuracy estimators for the FabH
inhibitors dataset regardless the training/selection partition-
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ing schema used. Moreover, all the models show high gen-
eralization capabilities as seen from the accuracy in predict-
ing the external dataset. There are not significant differences
between the mean accuracy estimators values when the learn-
ing data partitioning algorithm changes, however, the data
training/selection partition obtained with the 1M algorithm
yields slightly robust and generalizable models as shown by
the mean LOO, Bootstrap and External Set accuracy values.

Nevertheless, since there are not large differences in the
mean accuracy of the prediction of the external test set, the
above results suggest stability and statistical equivalence on
the quality of the models independently of the learning set
partitioning algorithm. It is also interesting to note that the
best performing QSAR modeling approach, selected accord-
ing to the procedure described in [44] (and also in the Sup-
porting Information Sect. S1) for selecting the optimal clas-
sification approach, is the GA–LSSVM wrapper for all the
three data partitioning algorithms.

Hitherto, all the evidence suggests that most of the 27
classifiers analyzed have a similar performance according
to the investigated statistical parameters. To further explore
the equivalence of these models regarding the information
used for training and their outputs, their distance matrices in
the features and models’ outputs spaces were examined. The
pairwise distances in the descriptors space were calculated
as described in our previous publication [44] (see Support-
ing Information Sect. S2). To compute the distance between
the model’s outputs, the Hamming distance was employed
[48]. A representation of both pairwise distance matrices is
provided as Supporting Information in Fig. FS2 and they are
computed using the learning (training+selection) dataset and
the predictions obtained for the external dataset, respectively.
We also examined the frequency each sample in the external
dataset is misclassified by all models. The detailed results of
these analyses are provided in the Supporting Information
Sect. S5.

The information provided by these experiments confirms
two main facts: biological activity is a complex process
involving many variables; and a computational model can-
not capture all the relevant information in a SAR landscape
without losing generalization capabilities. Therefore, every
classification method can only partly explain the observed
structure–activity relationship which leads to obtain statisti-
cal equivalent solutions.

Virtual screening performance

As shown above, using nine different classification
approaches and three algorithms to split the learning dataset
it is possible to obtain accurate, robust, and generalizable
QSAR models for the classification of FabH inhibitors. The
practical relevance of QSAR models for drug discovery relies
on their prospective application as virtual screening tools.

Thus, a thorough evaluation of each model obtained is needed
before deciding whether they can be used for virtual screen-
ing experiments or not.

In a real virtual screening scenario the dataset contains
thousands of inactive compounds and only a few actives. To
evaluate the performance of the trained models in a scenario
closer to a real virtual screening experiment some additional
validations are needed. The most important condition that
a model has to fulfill to be considered for virtual screening
applications is to be able to rank the actives molecules at
the beginning of its ranked list. That is, it should correctly
address the early recognition problem which means that it has
to be able to rank active compounds at the very beginning of
its ranked list. Since there are, not only for the problem being
investigated but also for every molecular target, only a limited
number of confirmed non-active molecules, a plausible solu-
tion to realistically estimate the VS performance of any algo-
rithm intended to be used as such is to collect a large enough
set of decoy molecules. Decoys are molecules that are likely
to be inactive since they are structurally dissimilar from the
known inhibitors. Besides, to avoid an easy discrimination
by the models based solely on the physicochemical proper-
ties, the decoys are selected to have physicochemical prop-
erties as similar as possible to those of the known inhibitors.
To study the performance of the models in virtual screening
experiments, the 24 compounds in the external dataset were
selected and decoys were extracted from the ZINC database
(more than 18 million of compounds) following the protocol
described in the Computational Methods section.

The minimum number of molecules to be used for vali-
dating the models for virtual screening was calculated using
Eq. 1. It was estimated for the case when the 24 inhibitors are
considered (n = 24), the 80 % of the total screening score
comes from the top 1% of the ranked list (α = 160.9) and
the maximum relative deviation is set to 5 % (�max = 0.05).
Solving Eq. 1 with these parameters values yields that the
minimum number of molecules (actives+decoys) to use in
the virtual screening validation set is 38616. This means that
for each active molecule 1608 decoys should be selected and
that the validation dataset will contain 0.06 % of active com-
pounds.

Before selecting the decoy molecules two more issues
need to be taken into account. First, when comparing the
performance of different classifiers for virtual screening the
number of samples considered by each model as well as
the actives rate should be approximately the same. Second,
only those predictions made for samples inside a model’s
applicability domain can be considered reliable. To make
the performance of each model comparable, the ZINC data-
base was first filtered to keep only those compounds inside
each model’s applicability domain. Since this filtering step
can drastically reduce the number of available decoy mole-
cule candidates, the less strict applicability domain definition
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ADD-1 (see the Computational Methods section) was used.
From here, on this virtual screening validation set where each
decoy is inside every model applicability domain is refer-
enced as Virtual Screening Validation Set 1 (VSVS-1) and
the decoy molecules contained on it is referenced as Decoys
Set 1.

On the other hand, the assumption that all molecules are
inside a model’s applicability domain is far from a real life
scenario. For this reason a second decoys subset was selected
without making any prior consideration about whether they
fall within the individual models’ applicability domains. The
validation set containing the 24 active compounds from the
external dataset and these decoys is referenced as Virtual
Screening Validation Set 2 (VSVS-2) from here on and the
decoys set it contains is referenced as Decoys Set 2. The
decoy molecules were selected using the procedure described
in the Computational Methods section and the 1608 decoys
per active compound were the centroids of the same num-
ber of clusters whose members are the 5,000 decoy candi-
dates with the highest “decoy-likeness+.” The physicochem-
ical properties of the selected decoys sets are summarized
in the Supporting Information Table TS6 and it can be seen
that they cover the range of these properties for the active
compounds. The SDF files of both decoys sets are provided
as Supporting Information.

To further asses the quality of both Virtual Screening Val-
idation Sets we examined the mean physicochemical sim-
ilarity, the mean structural (topological) dissimilarity and
the mean decoy-likeness of each subset of decoys selected
for every known inhibitor to all the active compounds. The
detailed results of these analyses are provided in the Sup-
porting Information Sect. S6 and based on them, we can be
confident that both decoys sets are adequate for evaluating
the performance of the classifiers previously developed in the
context of virtual screening experiments.

To study how the applicability domain of the models can
influence their virtual screening performance, we computed
the percent of coverage of these virtual screening valida-
tion sets by the applicability domain of each model. The
results of these calculations are summarized in the Support-
ing Information Table TS7. As expected the whole VSVS-1
is within the applicability domain of each of the 27 classifi-
cation models when it is defined by the ADD-1. On the other
hand, when no prior assumption is made for the selection
of the decoys set the coverage of the resulting VSVS-2 by
each model applicability domain is variable. The data shown
in Table TS7 are consistent with the fact that the ADD-2 is
stricter than ADD-1. As discussed before, to use the stricter
ADD-2 considerably limit the number of molecules that can
be used as the source for decoys.

However, to use such flexible applicability domain defin-
ition in a real virtual screening experiment can be dangerous
since the predictions made for samples close to the hyper-

rectangle boundaries could exhibit low reliability. Based on
this, the VSVS-1 is used to accomplish the comparison of
the different classifiers and the final evaluation of the virtual
screening tools is made using the combination of VSVS-
2 and ADD-2. The accumulation curves obtained for each
model when the VSVS-1 is evaluated are shown in Fig. 2 and
the values obtained for ROC, BEDROC, and EF are summa-
rized in Table 2.

Before analyzing the results of the virtual screening sim-
ulations, one additional consideration needs to be made.
For the Adaboost-based classifiers, it should be taken into
account that the output of an Adaboost ensemble is the
weighted sum of LDA model’s outputs. Hence, they do not
produce continue score values but levels of scores defined
by the number of LDA models used to train the ensemble.
If a subset of top ranked samples coming from a set of sam-
ples with equal score values were to be selected, then a ran-
dom selection process should be followed since such samples
are indistinguishable. Following this reasoning, to obtain the
rankings for this type of models, the compounds were sorted
according to their scores, and all the samples having the same
score were randomly distributed inside the unique score bin.

A general observation when the accumulation curves and
their virtual screening performance metrics are analyzed is
that, despite most of them show ROC values away of that
corresponding to a random distribution, only a few models
can actually achieve good initial enrichment of active com-
pounds. It is worth noting that the model showing the best
classification performance for each learning dataset partition
(the GA-LSSVM model in all the three cases, see Table 1)
is unable to provide initial enrichments greater than what is
expected from a uniform distribution of the active samples in
the ranked list. More important, the results obtained confirm
what has been proposed before: high values of ROC or pre-
dictive QSAR models don’t guarantee a good virtual screen-
ing performance. When a bigger subset of the ranked list is
considered, more models yield enrichments of actives above
random but most of them merely outperform the behavior of
the uniform distribution. Some other important conclusions
can be derived from the analysis of the performance of these
models. For example, only 7 out the 27 models (27 %) are
able to yield enrichment values superior to what is expected
from a uniform distribution of the actives for the top 1 % of
the ranked list. If the number of samples to be selected by the
virtual screening tool increases, for instance up to 8 % of the
screened data, a model such as the BT-LDA model derived
when the learning dataset is split with the sphere exclusion
algorithm 3M could be considered for virtual screening.

It can also be seen that only one model per data parti-
tion: BT-LSSVM for the partition obtained with the sphere
exclusion algorithm 1M and R-LSSVM for the data partitions
derived with the sphere exclusion algorithms 2M and 3M are
able to achieve high initial enrichments even when only the
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Fig. 2 Accumulation curves (fraction of actives retrieved vs. fraction
of data screened) obtained with the VSVS-1 for each of the 27 trained
classifiers. The results are presented for the dataset partitions obtained

with the three sphere exclusion algorithms 1M, 2M, and 3M. Despite all
models being predictive QSAR models, not all of them are good virtual
screening tools

top 1 % of the ranked list is considered. One could consider
that any of these three models can be used for virtual screen-
ing, however, if the values of the coverage of the VSVS-2
by these models’ applicability domains are analyzed (see the
Supporting Information Table TS7), it can be noticed that it is
very poor: only 5.98, 2.92 and 8.22 % of the VSVS-2 is cov-
ered by the BT-LSSVM (SE 1M), R-LSSVM (SE 2M) and

R-LSSVM (SE 3M), respectively. Since the VSVS-2 is closer
to what is expected to be found in a real virtual screening
problem, the poor coverage of its members by these mod-
els’ applicability domains can limit their worth for virtual
screening. The effect of the limitations that their applicabil-
ity domains can impose to a virtual screening campaign are
more marked when a stricter definition of the applicability
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Table 2 Metrics used to evaluate the virtual screening performance of the trained models

Model ROC BEDROCa EFb

α = 160.9 α = 32 α = 20 1 % 5 % 8 %

Perfect rankingc 1.00 1.00 1.00 1.00 100 20 12.5

Random Rankingc 0.50 0.00 0.01 0.03 1 1 1

Sphere exclusion 1M

GA-AB 0.65 0.000 0.011 0.029 0.00 0.83 0.52

GA-LDA 0.57 0.000 0.018 0.042 0.00 0.83 0.52

GA-LSSVM 0.78 0.000 0.031 0.092 0.00 0.00 1.04

BT-LSSVM 0.71 0.609 0.656 0.669 66.56 13.32 8.85

BT-AB 0.68 0.048 0.111 0.147 8.31 2.50 2.08

BT-LDA 0.69 0.006 0.071 0.108 0.00 1.66 2.60

R-LSSVM 0.67 0.000 0.004 0.020 0.00 0.00 0.00

R-AB 0.72 0.007 0.084 0.130 0.00 3.33 2.60

R-LDA 0.64 0.000 0.019 0.045 0.00 0.83 1.04

Sphere exclusion 2M

GA-AB 0.57 0.000 0.000 0.004 0.00 0.00 0.00

GA-LDA 0.51 0.000 0.005 0.016 0.00 0.00 0.54

GA-LSSVM 0.50 0.000 0.000 0.002 0.00 0.00 0.00

BT-LSSVM 0.71 0.005 0.054 0.087 0.00 1.66 1.04

BT-AB 0.56 0.000 0.010 0.025 0.00 0.00 1.04

BT-LDA 0.60 0.000 0.000 0.002 0.00 0.00 0.00

R-LSSVM 0.61 0.529 0.558 0.565 54.1 11.65 7.29

R-AB 0.66 0.014 0.092 0.137 4.15 2.50 3.12

R-LDA 0.67 0.000 0.009 0.036 0.00 0.00 0.00

Sphere Exclusion 3M

GA-AB 0.80 0.020 0.106 0.180 4.15 3.33 5.20

GA-LDA 0.60 0.000 0.007 0.020 0.00 0.00 0.52

GA-LSSVM 0.57 0.000 0.009 0.033 0.00 0.00 0.52

BT-LSSVM 0.73 0.000 0.011 0.041 0.00 0.00 0.52

BT-AB 0.86 0.044 0.288 0.382 4.15 9.99 7.29

BT-LDA 0.78 0.005 0.093 0.157 0.00 4.16 4.16

R-LSSVM 0.63 0.595 0.616 0.619 62.40 12.49 7.81

R-AB 0.66 0.000 0.024 0.059 0.00 0.00 2.08

R-LDA 0.66 0.000 0.016 0.041 0.00 0.00 1.04

a BEDROC calculated for three different values of α. Each value means that 80 % of the total score comes from 1, 5 and 8 % of the ranked list,
respectively
b Enrichment Factor at 1, 5 and 8 % of the screened data
c Value of each metric for a perfect ranking (all actives at the beginning of the list) and for a random distribution (actives uniformly distributed
along the ranked list)

domain is used. Given that a too narrow applicability domain
is closely related to highly specialized models, a too limited
applicability domain would also have a negative impact on
the ability of a screening tool to discover new structural scaf-
folds.

The finding that all the models previously developed have
limited or none value for virtual screening can be disap-
pointing. A possible solution to these limitations is the use
of ensemble modeling. It has been previously shown that

ensemble modeling is effective in improving the classifica-
tion performance of the base classifiers as well as their cover-
age of chemical space [38,39,44]. However, to the best of our
knowledge, no work has been devoted to study an analogous
positive effect of this approach on virtual screening perfor-
mance. Theoretically, by using ensemble modeling it would
be possible to take advantage of each model’s positive char-
acteristics and overcome their individual limitations in vir-
tual screening. To test this hypothesis a few ensembles were
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Table 3 Virtual screening performance metrics for the different ensembles built with the VSVS-1

Model Sizea ROC BEDROCb EFc

160.9 32 20 1 % 5 % 8 %

Perfect Rankingd 1.00 1.00 1.00 1.00 100 20 12.5

Random Rankingd 0.50 0.00 0.01 0.03 1 1 1

Ensemble 1 9 0.79 0.234 0.455 0.512 33.28 11.66 8.33

Ensemble 2 9 0.68 0.030 0.164 0.234 4.16 5.83 5.20

Ensemble 3 9 0.79 0.212 0.393 0.450 29.12 11.66 7.29

Ensemble 4 27 0.76 0.275 0.453 0.503 37.44 12.49 7.81

Ensemble 5 7 0.73 0.403 0.516 0.545 49.92 11.66 7.81

Ensemble 6 14 0.78 0.320 0.496 0.540 37.44 12.49 7.81

Ensemble 7 2 0.72 0.108 0.210 0.267 12.48 4.99 4.68

Ensemble 8 2 0.63 0.088 0.204 0.261 16.65 5.83 4.68

Ensemble 9 3 0.81 0.278 0.446 0.486 37.44 10.82 7.29

a Number of models the ensemble is composed of
b BEDROC calculated for three different values of α. Each used value means that 80 % of the total score comes from 1, 5 and 8 % of the ranked
list, respectively
c Enrichment Factor at 1, 5 and 8 % of the screened data
d Value of each metric for a perfect ranking (all actives at the beginning of the list) and for a random distribution (actives uniformly distributed
along the ranked list)

trained for the VSVS-1 using the procedure described in the
Computational Methods section. These ensembles differed
in the way their members were selected and they are defined
as provided in the Supporting Information Table TS8. Their
performance statistics are shown in Table 3 and the obtained
accumulation curves are plotted in the Supporting Informa-
tion Fig. FS5. The detailed list of the members of each ensem-
ble is provided in the Electronic Supporting Information in
Table TS9.

The results provided in Table 3 and in Fig. FS5 clearly
show that the three ensembles built with models from the
three different learning data partition algorithms (Ensembles
4, 5 and 6) outperform those trained with models coming
from only one of the three sphere exclusion algorithms. The
importance of excluding the models with a low performance
on the very first fraction of the ranked list can be illustrated
by the comparison of Ensembles 4 (formed by all the 27
classifiers) and Ensemble 9 (three models from the 3M data
partition). The first of these ensembles contains nine times
more models than the second one, and they have about the
same performance as can be seen from Table 3 and Support-
ing Information Fig. FS5.

It is true that the ensembles built with models coming from
any data partition algorithm and filtered to discard those with
a low performance at the very beginning of their ranked lists
outperform the ensembles trained with all the models. How-
ever, this observation cannot be extrapolated to the ensembles
trained with models coming from only one particular learn-
ing dataset partition. These observations are not surprising
and they find a simple explanation in two main facts. First,

it is well known that one of the key characteristics of a good
ensemble is the diversity of its members and as was previ-
ously shown there is equivalent inter- and intra-dataset par-
tition models’ diversity in both the input and output spaces.
Second, diversity is not enough to have a good ensemble,
it is also important to have a number of models that can
cover as much as possible the input space. The diversity of
the models in the cases above discussed is guaranteed as
was previously discussed. A comprehensive comparison of
these ensembles is available in the Supporting Information
Sect. S7.

From all these ensemble comparisons, it can be concluded
that to select the models from any data partition that are able
to retrieve at least a compound at the top 1 % of the ranked
list and to combine them in an ensemble is an effective strat-
egy to train a virtual screening tool. We should highlight
the effectiveness and simplicity of this proposed heuristic to
effectively select the members of the ensemble. Despite this
being true, it should be kept in mind that the VSVS-1, which
decoys are inside each model’s applicability domain, is not
representative of a real virtual screening scenario. For this
reason a second decoy molecules set was selected without
making any prior assumption about the model’s applicability
domain and it was combined with the 24 active compounds
of the external dataset to form the Virtual Screening Valida-
tion Set 2 (VSVS-2). As shown in the Supporting Informa-
tion Table TS7 the coverage of this second decoys set by the
models’ applicability domains changes from one model to
other. As previously discussed, since the models’ applicabil-
ity domains are different the metrics used to evaluate each
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Fig. 3 Accumulation curves (fraction of actives retrieved vs. fraction of data screened) obtained for the ensemble trained with the VSVS-2 and
their members. The curves are plotted for whole screened data (left) and for the top 5 % of the ranked lists (right)

model quality for virtual screening are not comparable. The
performance of each individual model when they are used to
predict the VSVS-2 was investigated and the obtained accu-
mulative curves are presented in the Supporting Information
Fig. FS6.The models that are able to identify at least one
active compound on the first 1 % of their ranked lists are
shown in red since they will be used to train an ensemble
following the same procedure as before for Ensemble 5.

According to the results obtained for the ensemble model-
ing using the VSVS-1, the models that are able to retrieve at
least one active compound on the top 1 % of their respective
ranked list were selected to build the final ensemble to be
employed for the virtual screening of databases of chemical
compounds for the identification of potential FabH inhibitors.
These models resulted to be: BT-LSSVM (1M), BT-AB
(1M), R-AB (1M), R-LSSVM (2M), GA-AB (3M), BT-AB
(3M), and R-LSSVM (3M). It is interesting to note that each
of the three feature selection techniques (Genetic Algorithms,
Bagged Trees and Features Ranking) as well as two clas-
sification algorithms (Adaboost and Least-Square Support
Vector Machines) are represented in this set of seven models
the ensemble will be built from. According to the Support-
ing Information Table TS7, all these models have an uneven
coverage of the VSVS-2 by their applicability domains rang-
ing from 2.92 to 96.84 %. In contrast, the ensemble formed
by these models covers 98.97 % of the VSVS-2. It can be
thought that most of this ensemble applicability domain cov-
erage is provided by the R-AB model derived from the 1M
dataset partition that covers by itself 96.84 % of the VSVS-2;
however, only 28.29 % of the VSVS-2 is exclusively cov-
ered by this model applicability domain. This means that the
remaining models together cover 70.58 % of the VSVS-2
which represents a 14.84 % increment relative to the next
model with the highest coverage of the VSVS-2 (BT-AB
(3M)). The accumulative curves of the ensemble formed by
these models as well as that of its members are plotted in
Fig. 3. This ensemble will be referred as VSVS-2 Ensemble
from here on.

It is worth noting that when the results obtained with both
the VSVS-1 and the VSVS-2 are analyzed, seven models
are found in each case that are able to retrieve at least one
active compound on the top 1 % of their respective ranked
lists. Even more interesting, six of those models are the same
in both experiments: BT-LSSVM (1M), BT-AB (1M), R-
LSSVM (2M), GA-AB (3M), BT-AB (3M), and R-LSSVM
(3M). This last observation highlights the robustness of the
developed methodology. It might seem from Fig. 3 that the
performance of the trained ensemble is not as good as that of
the BT-LSSVM (1M), R-LSSVM (2M) and R-LSSVM (3M)
models, nevertheless as previously discussed the applicabil-
ity domain of these models only cover 5.98, 2.92 and 8.22 %
of the VSVS-2, respectively. In other words, these three mod-
els can be regarded as very specialized ones, meaning that
working by themselves they have very strict limitations on
the data they can predict, but if they are used together as
members of an ensemble they can provide it with very useful
information. The virtual screening performance estimators
for this ensemble (VSVS-2 Ensemble) are summarized in
Table 4.

For the modeling experiment using the VSVS-2 that
is closer to a real virtual screening scenario, the perfor-
mance statistics also show that the trained ensemble (VSVS-
2 Ensemble) is able to perform much better than what is
expected from a uniform distribution of the active compounds
in the ranked list. Despite being lower than for Ensemble 5,
the performance metrics of the VSVS-2 Ensemble show that
it is able to retrieve 33 % of the active compounds in the first
1 % of the ranked list and up to 60 % of them in the first 5 %.
This means that the top 1 % of the ranked list contains 33.29
times more actives than expected from a uniform distribu-
tion of the inhibitors in the whole dataset. The fact that no
prior consideration about the models’ applicability domains
is made before screening the database and it is only consid-
ered to select which ensemble members will contribute to the
prediction of each sample, adds an extra value to the proposed
virtual screening setup. Granted that for real virtual screen-
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Table 4 Virtual screening performance estimators for the ensemble built using the VSVS-2

Model Size(a) ROC BEDROCb EFc

160.9 32 20 1 % 5 % 8 %

Perfect Rankingd 1 1 1 1 100 20 12.5

Random Rankingd 0.5 0 0.01 0.03 1 1 1

VSVS-2 Ensemble 7 0.88 0.234 0.457 0.510 33.29 12.49 7.81

a Number of models the ensemble is composed of
b BEDROC calculated for three different values of α. Each used value means that 80 % of the total score comes from 1, 5 and 8 % of the ranked
list, respectively
c Enrichment Factor at 1, 5 and 8 % of the screened data
d Value of each metric for a perfect ranking (all actives at the beginning of the list) and for a random distribution (actives uniformly distributed
along the ranked list)

ing campaigns the fraction of the database to be selected for
further analysis depends on the number of screened com-
pounds and the available experimental resources and that the
VSVS-2 Ensemble achieves a good performance at the ana-
lyzed dataset fractions, this ensemble can be considered the
best performing tool for the ligand-based virtual screening
of databases to search for potential novel FabH inhibitors.

Concluding remarks

Here, we presented the results of the training and valida-
tion of binary classification models aimed to identify poten-
tial FabH inhibitors. QSAR models were trained using the
combination of different feature selection and classification
techniques as implemented in our in-house QSAR modeling
framework and different partitions of the learning dataset into
training and selection subsets. One optimal model per classi-
fication experiment was selected based on a consensus rank-
ing approach and these optimal models showed high accu-
racy, robustness, and generalization capabilities. Besides, the
set of optimal classifiers was shown to be diverse in both the
information they are trained from and their outputs.

During the modeling process, we paid attention to factors
known to negatively affect the performance of QSAR models.
By considering these factors in our modeling experiments, we
were able to obtain predictive QSAR models. However, when
these models were validated in the context of a real virtual
screening scenario they had very limited or none applicability
for real virtual screening campaigns.

It was shown, for the first time, that using ensemble mod-
eling can overcome the virtual screening limitations associ-
ated to the application of single models, complementing the
well-known capabilities of ensemble modeling to improve
classification performance as well as chemical space cover-
age. The final virtual screening tool, the VSVS-2 Ensemble,
was shown to combine the positive features of the individ-
ual classifiers and to provide high initial enrichment of active
compounds at the very first part of the ranked list. The results

obtained herein lead us to our main “cheminformatically rel-
evant” finding: a predictive QSAR model is not necessarily
a good virtual screening tool. For this reason, we propose
that the retrospective validation of the QSAR-derived vir-
tual screening tools using problem-specific decoy molecules
should become a regular practice in ligand-based drug dis-
covery.

We are currently combining the VSVS-2 Ensemble and
our previously reported structure-based modeling workflow
of FabH inhibitors [27] in the virtual screening of commer-
cially available collections of chemical compounds.
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