Computational Modeling Lab
Department of Computer Science
Faculty of Sciences
Vrije Universiteit Brussel

Decentralised Reinforcement Learning
in Markov Games

Peter Vrancx

Dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Sciences

supervisors:
Prof. Dr. Ann Nowé
Dr. Katja Verbeeck



ii

Print: Silhouet, Maldegem

(©2010 Peter Vrancx

(©2010 Uitgeverij VUBPRESS Brussels University Press

VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28

B-1000 Brussels

Tel. ++32 (0)2 289 26 50

Fax ++32 (0)2 289 26 59

E-mail: info@vubpress.be

www.vubpress.be

ISBN 978 90 5487 715 8
NUR 984
Legal Deposit D/2010/11.161/036

All rights reserved. No parts of this book may be reproduced or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the author.



To Petra and Ruben.



iv

Committee Members:

Prof. dr. Ann Nowe
Vrije Universiteit Brussel
(supervisor)

Prof. dr. Dirk Vermeir
Vrije Universiteit Brussel

Prof. dr. Bernard Manderick
Vrije Universiteit Brussel

Prof. dr. Luc Steels
Vrije Universiteit Brussel

dr. Katja Verbeeck
KaHo Sint-Lieven (KU Leuven)
(supervisor)

Prof. dr. Gerhard Weiss
Maastricht University

Prof. dr. Martin Riedmiller
Albert-Ludwigs-University Freiburg

Prof. dr. Marco Saerens
Université Catholique de Louvain




Abstract

This dissertation introduces a new approach to multi-agent reinforce-
ment learning. We develop the Interconnected Learning Automata for Mar-
kov Games (MG-ILA) algorithm, in which agents are composed of a net-
work of independent learning units, called learning automata (LA). These
automata are relatively simple learners, that can be composed into ad-
vanced collectives and provide very general convergence results.

An advantage of our approach is that it has very limited information
requirements, since the automata coordinate using only their own reward
signals. This allows us to view a multi-state learning problem as a sin-
gle repeated normal form game from classical game theory. We use this
observation to develop a new analysis for multi-agent reinforcement learn-
ing. Using this method we show the convergence of MG-ILA towards pure
equilibrium points between agent policies.

We then proceed by investigating the properties of our algorithm and
proposing a number of extensions. Using results from evolutionary game
theory, we analyse the learning dynamics of our system and develop a
novel visualisation method for multi-state learning dynamics. We also
show how an updated learning rule is able to overcome local optima and
achieve global optimality in common interest problems. In conflicting in-
terest cases, we show how this technique can be combined with a simple
coordination mechanism to ensure a fair distribution of payoffs amongst
all agents.

We conclude the dissertation by examining some possible applications
of our system. We start by applying MG-ILA to multi-robot navigation and
coordination simulations. We show that, even when only partial state infor-
mation is available, the algorithm still finds an equilibrium between robot
policies. We also consider applications in the field of swarm intelligence.
We demonstrate how our system can be used as a model for systems using
stigmergetic communication. In these settings agents exchange informa-
tion by sharing local pheromone signals. Our model allows us to apply our
game theory based analysis to this class of algorithms, providing a new
method to analyse the global results of local pheromone interactions.



Vi
Samenvatting

Deze thesis introduceert een nieuw algoritme voor reinforcement leren
met meerdere agenten. Dit algoritme, dat we Interconnected Learning Au-
tomata for Markov Games (MG-ILA) noemen, stelt agenten voor door een
netwerk van onafhankelijke, lerende automaten. Deze leerautomaten kun-
nen worden samengesteld tot geavanceerde collectieven en bieden ook uit-
gebreide convergentieresultaten.

Een belangrijk voordeel van onze aanpak is dat leerautomaten maar een
minimale hoeveelheid informatie nodig hebben om hun gedrag te coordi-
neren. Elke automaat in het collectief baseert zich enkel op zijn individuele
beloningen om een strategie te leren, zonder gegevens over de andere au-
tomaten te vereisen. Deze eigenschap laat ons toe om de multi-toestand
leerproblemen die we in dit werk behandelen te modelleren als een spel uit
de klassieke speltheorie. Dit leidt tot een nieuwe analysemethode voor re-
inforcement leren met meerdere agenten, die we gebruiken om de conver-
gentie van MG-ILA naar pure equilibriumpunten tussen agentstrategieén
aan te tonen.

Vervolgens, onderzoeken we de eigenschappen van ons algoritme en
stellen we een aantal uitbreidingen voor. Door gebruik te maken van be-
staande resultaten uit de evolutionaire speltheorie, kunnen we de dynam-
ica van het algoritme onderzoeken en een originele visualisatiemethode
voorstellen. Voor problemen waar agenten hetzelfde doel nastreven, in-
troduceren we ook een alternatieve leerregel die het algoritme toelaat te
ontsnappen uit lokale optima en het globaal optimum te bereiken. In prob-
lemen waar de agenten conflicterende doelen hebben, gebruiken we deze
techniek in combinatie met een eenvoudig codrdinatiemechanisme om een
gelijkwaardige verdeling van beloningen voor de agenten te bekomen.

Tenslotte sluiten we de verhandeling af met een aantal mogelijke toe-
passingen voor ons raamwerk. We passen MG-ILA toe in simulaties van
codrdinatieproblemen met mobiele robots. We tonen aan dat, zelfs als de
robots onvolledige informatie over het systeem hebben, het algoritme nog
steeds een equilibrium vindt. Hierna, bekijken we toepassingen in het
swarm intelligence domein. We demonstreren hoe ons systeem kan di-
enen als model voor algoritmen waar agenten informatie uitwisselen door
het verspreiden van lokale feromoonsignalen. Dit laat ons toe om onze
speltheorie-analyse ook op deze klasse van algoritmen toe te passen en re-
sulteert in een nieuwe methode voor bepalen van de globale resultaten van
lokale feromooninteracties.



vii
Acknowledgements

This dissertation was realised thanks to the encouragement and support
of many people. I am indebted to following people for their contributions,
both scientific and otherwise:

The research contained in this dissertation was funded by a Ph.D grant
of the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders IWT Vlaanderen).

I am also very grateful to my supervisors Katja Verbeeck and Ann Nowé,
who provided me with the opportunity to do a PhD. They have continu-
ously guided me during the years of research and introduced me to most
of the techniques used in this work.

Further, I would like to thank the members of the examination commit-
tee, who took the time to read this dissertation and provided many helpful
suggestions and constructive criticisms.

A special thanks also goes to Karl Tuyls, who was kind enough to invite
me to visit the university of Maastricht. This stay led to many interesting
discussions and a fruitful collaboration. His guidance was essential to the
realisation of Chapter 5 of this dissertation.

During my PhD I have also had the privilege to collaborate with sev-
eral excellent researchers, all of whom have significantly contributed to the
work I present here: Maarten Peeters, Yann-Michaél De Hauwere, Steven
de Jong, Ronald Westra and Ville Kénonen.

I would also like to thank all other current and former colleagues at
CoMo, both for creating a pleasant working environment, as well as for
providing many fun distractions from work. Thank you, Bernard, Yann-
Aél, Tom, Stijn, Kris, David, Yifei, Walter, Pasquale, Ruben, Bart, Nyree,
Feng, Yailen, Mike, Allan, Abdel, Jonatan, Sven, Bert, Saba, Mohamed,
Pieter, Anne, Sam, Johan, Steven, Yoshi and Bram.

Finally, I would like to thank my family for their never-ending support.
I especially want to mention my parents, who have always encouraged me
during my education, and of-course Petra and Ruben for their love and
support.



viii



Contents

1 Introduction

1.1 IntelligentAgents . . . . . ... ... ... ...........
1.2 Learning in Markov games . . ... ... ...........
1.3 Assumptions. . ... ... ... ... ... ... ... ...
14 OurApproach . ... ... ... ... ... ... . .....
1.5 Outline of the Dissertation . . . . . ... ............

2 Stateless Environments

2.1 Single Automatasystems . ... ................
2.2 Multi-Automata Systems . . . . .. ... ..o Lo
23 Summary . . ... .o

3 Markov Decision Processes

3.1 Markov Decision Processes . . . ... ... ... .......
3.2 Reinforcement Learning . . ... .. ... ...........
3.3 Automata LearninginMDPs . . . ... ... .........
34 LimitingGames . . ... ... ..................
35 Summary . ... ... ...

4 Markov Games

41 MarkovGames . . ... ... .. ... ... e
42 Learning in finite Markov Games . . . . ... ... ... ...
43 Limiting gameanalysis . . . . . ... ... ...........
44 Experiments . . ... ... ... ... ... oL
45 RelatedWork . . ... ... . .. ... ... .
46 Summary . . . .. ..

5 Dynamics of Learning
51 Evolutionary Game Theory . .. ... ... ... .......
5.2 Piecewise Replicator Dynamics . . . . ... ... .......

X



CONTENTS

53 Experiments . . .. ... ... .. ... ... L. 95
5.4 Discussion and Related Work . . . ... ... .. .. ..... 100
55 Conclusions . . . . . . . . . i e 102
Beyond Equilibrium 103
6.1 Exploring Selfish Reinforcement Learning . . . . . . ... .. 105
6.2 Optimal LearninginMMDPs . . . ... ... ......... 108
6.3 Periodic policies for Markovgames . . . . . ... ... .. .. 110
6.4 Experiments . ... ... .. ... ... ... ... .. ... 116
6.5 Discussion and Related Work . . . .. ... ... ... .... 119
Partial Observability 123
7.1 Partially Observable Markov Games . . . . ... ... .. .. 124
72 Gridproblems . . . ... ... ... oo L 126
7.3 Theoretical Analysis . . ... ... ... ... ... ..... 131
74 Experiments . ... ... ... ... ... .. L. 135
75 RelatedWork . ... ... ... .. .. .. ... .. .. ... . 143
7.6 Conclusion . . . . . . . . . . . e 144
Modelling Stigmergy 145
8.1 Stigmergetic Algorithms . . . ... ... ... .. ... .. .. 146
8.2 CooperativeModel . . . ... ... ... ... o L. 149
8.3 Non-cooperativemodel . ... ... ............ .. 155
84 Experiments . ... ... ... ... ... . ... 161
85 Discussion . . . . .. . ... ... 164
8.6 Conclusion . . . . .. .. . . . . .. .. e 166
Conclusion 167
9.1 Contributions . . ... ... ... .. ... 168
92 Futurework . . .. .. . ... 169
Dynamical Systems 173
Al Terminology . . . ... ... ... .. ... . ... ... ... 173
A2 LinearSystems . ... ...................... 174

A3 Nonlinear Systems . . .. ... ................. 183



List of Figures

1.1

1.2

1.3

2.1
2.2

3.1
3.2
3.3

41
42
4.3

51

52

5.3

Overview of the learning settings considered in this disser-

tation. . . . . ... 5
Schematic representation of single agent reinforcement learn-

INg. . .. 6
Outline of the dissertation. . . . . . . . ... ... ... .... 13
Learning automaton and environment feedback loop. . . . . 19
Graphic representation of an n-player automata game . . . . 28
The recycling robot problem. . . . . ... ... ... ..... 37
Schematic overview of the actor critic framework. . . .. .. 46
MDP automata algorithm as an automata game . . ... .. 49
State diagram for the example Markov game. . . . . . . . .. 60

Game representation of the automata Markov game algorithm. 70
Typical run of the LA learning model of Section 4.2 (a)Results
on the MMDP of Example 6. (b)Results for the Markov game
of Figure 4.1. Both experiments used automata with the Lr_;
update scheme and a learning rate of A\; =0.05. . . ... .. 75

Dynamics for the stateless Prisoner’s Dilemma game (a) Di-
rection field for the replicator equations on this game. (b)
Sample paths showing the evolution of the action probabil-
ities in a repeated automata game. Both automata use the
Lr_1 update with learning rate 0.001. . . . . ... ... ... 88
Sample paths generated by the LA algorithm in state 1 when
agents use fixed strategy of Table 5.2 in state 2. (learning rate:

0.0001) . . ... .. 91
Boundaries which cause a change of equilibria in the other
state’s average reward game in the 2-state PD. . . . . .. .. 94

xi



xii

54

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4
6.5

6.6

6.7

7.1
7.2

7.3

LIST OF FIGURES

Piecewise Replicator dynamics for state 1 of the 2-state Pris-

oner’s dilemma example. . .. ... ... ... . ....... 96
Piecewise Replicator dynamics for state 2 of the 2-state Pris-
oner’s dilemma example. . .. ... ... ... . ...... 97

Sample paths for both states of the 2-state PD, generated by
automata using the Lr_; scheme with learning rate 0.0001.
(a) State 1. (b) State 2. Each row shows the evolution of ac-
tion probabilities (red) in both states until one of the region
boundaries (black) is crossed. Blue arrows give the vector-

field for the replicator dynamics. . . . ... ... ... .... 98
Two direction fields for state 1 of the common interest Markov
GAME. . . . . . e 99

Sample paths for both states of the common interest Markov
game, generated by automata using the MG-ILA with learn-

ing rate 0.0001. (a) State 1. (b) State2.. . . . . ... ... ... 99
Example runs of ESRL for repeated games (a) The Climbing

game. (b) Bach-Stravinsky game. . . . . .. .. ... ... .. 108
Rewards for 2 agents playing mixed agent game policies de-

scribed in Example10 . . .. ... .. o oo o oL 113
Idea behind the egualis learning algorithm. . . . . ... ... 114
Outline of the egualis learning algorithm. . . . .. ... ... 115

Typical run of the periodic policy algorithm on the Markov
game in Table 6.2.(a) Average reward over time for agent 1.
(b)Average reward over time for agent2. . ... ... .. .. 118
(a) Deterministic equilibrium solution for the grid world prob-
lem. (b) Average reward over time for 2 agents converging
toequilibrium. . .. ... o o o oo 118
Results of the homo egualis learning in the grid world prob-

lem. The coloured lines give the average reward over time

for both agents. Grey lines give the rewards for agents play-

ing one of the deterministic equilibria. . . . . ... ... ... 120

Small grid world problem described in Example 11. . . . . . 128
Markov game representation of the grid world problem of
Example11. . . ... ... ... ... ... . . . 128
Observation spaces for both agents have in the Markov game
of Example 11. Coloured circles indicate states which are
indistinguishable to the corresponding agent. . . . . . . . .. 130



LIST OF FIGURES xiii

74

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

8.1
8.2

8.3

Results for the grid world problem of Figure 7.1. (a) Average re-
ward over time for both agents using identical rewards of R1 (b)
Average reward over time for both agents, using reward function
R2. Both experiments used A =0.05. . . . ... ... ...... 136

Comparison of PLA with Lr_1 on the grid world problem of Fig-
ure 7.1, using reward function R1. The automata were initialized
to play their suboptimal equilibrium action with probability 0.82.
Settings were o, = 0.01 for Lp_rand b = 0.1,0 = 0.2, K =
L=n=1forthePLA.. . ... ... ... ... ......... 137

Environments for the robot navigation problems. Si and Gi
labels mark starting and goal locations for agent i. (a) The
MIT environment (2 agents) (b) The ISR environment (4 agents)138

Average number of steps an agent needs to get from its start-
ing location to the goal. Results averaged over 20 runs.(a)
The MIT environment (2 agents) (b) The ISR environment (4
agents) . . ... 139

Average number of collisions per start to goal episode. Re-
sults averaged over 20 runs. (a) The MIT environment (2

agents) (b) The ISR environment (4 agents) . .. ... .. .. 139
Example solution found by the MG-ILA algorithm in the ISR
environment with4agents. . .. ... ... ... .. .. ... 141
Examples of typical solutions found by the MG-ILA algo-

rithm applied to the MIT environment with 2 agents. (a)
Both agents take the shortest path to their respective goal
(b) Agents’ paths intersect in the centre of the environment. 141

Mobile ad-hoc networking domain. (a) Setup: 3 mobile net-
work nodes must connect a stationary source and sink node.

(b) Solutionnetwork. . . . .. ... ... ... ... ... .. 142
Average reward over time in the ad hoc networking domain.

Result averaged over 20runs. . . . . ... ... ... ..... 143
Example problem . . . . ... ... . ... ... .. ... .. 154

Results for Lr_; update on the example of Figure 8.1. (a)
Single Colony Experiment (b) Two colony experiment. Set-
tings where A = 0.001 and 100 ants per colony. . . . .. ... 160

(a) Predicted dynamics on the game in Table 8.1. (b) Experi-
mental results on the problem in Figure 8.1. . . . . . ... .. 162



xiv

8.4

Al
A2
A3
A4

AS5
A6

LIST OF FIGURES

(a) NFSNet former backbone (after [DCD98]). Each link rep-
resents 2 directed edges, numbers indicate delay of an edge.
(b) Example solution found by AntNet routing model using
Lr_r update (A = 0.001) with 2 colonies routing paths to

nodes12,14. . . . . . . . . ... 164
Phase plots for systems with 2 distinct real eigenvalues. . . . 178
Phase plots for systems with imaginary eigenvalues. . . . . . 179
Classification of planar linear dynamic systems. . ... ... 181
Vector field and solution for the system described in Exam-

plel4 . . . .. 182
Phase plot for the system described in Example 15 . . . . . . 185
The Lorenz attractor. . . . . . .. ... ... ... ....... 185



List of Tables

3.1

3.2

3.3

41

4.2

43

44

4.5

4.6

Transition probabilities and expected rewards for the recy-
cling robot problem. . . ... ... ... .. ... . ... ...

Expected discounted reward and limit average rewards for
all deterministic policies in the recycling robot problem.

Limiting game for the Recycling Robot problem from Exam-
ple2 . . .

Overview of the different limiting game views. Each view
analyses the problem at a different level. The table lists for
each view the players and corresponding action sets in the
limiting games as well as the problems to which this view is
applicable. . . . .. ... ... L oo

Common rewards for state transitions in the recycling robot
MMDP. . . ...

An identical payoff game with 2 players that approximates
the single agent view of the MMDP of Example 6. The unique
equilibrium is indicated inbold. . . . .. ... ... ... ..

An identical payoff game with 4 actions that approximates
the multi agent view of the MMDP of Example 6. Equilibria
are indicated inbold. . . . ... ... .. oL

An identical payoff game between 4 players that approxi-
mates the LA view of the MMDP of Example 6. Equilibria
are indicated inbold. . . . .. . ... ... L.

A conflicting interest game with 4 actions that approximates
the multi-agent view of the Markov game of Example 5. The
first matrix gives payoffs for agent 1, the second for agent 2.
Equilibrium payoffs are indicated inbold. . . . . .. ... ..

XV

63

64

67

69



XVi

4.7

51

52

5.3

54

6.1

6.2

6.3

7.1

LIST OF TABLES

Overview of current MARL approaches. Algorithms are clas-
sified by their applicability (common interest or general Markov
games) and their information requirement (scalar feedback

or joint-action information). . . .. ... ... ... ... 78

Example Markov games with 2 states and 2 agents with 2
actions in each state. Rewards for joint actions in each state
are given in the first row as matrix games. The second row
specifies the transition probabilities to both states under each
joint action. Rewards in both states have the same structure
as the Prisoner’s Dilemma game. . . . . .. ... ... .... 90

Average reward game for state 1 of the 2 state PD, when the
agents 1 and 2 play action cooperate in state 2 with probabil-
ities 0.7 and 0.2, respectively. . .. ... .. ... ... .... 90

Abstract average reward game for a state s with 2 actions
and2agents. . . . .. ... Lo 92

Common Interest Markov game with 2 states and 2 agents
with 2 actionsineachstate. . . ... ... ........... 95

(a) The climbing game. (b) The Bach-Stravinsky game. Both
games have stochastic rewards, normalised to be between 0
and 1. Nash Equilibria are indicated inbold. . . . ... ... 108

Markov game with 2 states and 2 agents. Each agent has 2
actions in each state: actions al and a2 for agent 1 and b1
and b2 for agent 2. Rewards for joint actions in each state
are given in the first row as matrix games. The second row
specifies the transition probabilities to both states under each
jointaction. . . ... .. ... 116

Approximating limiting game at the agent level for the Markov
game in Table 6.2. Equilibria are indicated inbold. . . . . . . 117

Reward functions for 2 different Markov Games. Each func-
tion gives a reward (ry,r2) for agent 1 and 2 respectively.
Rewards are based on the joint locations of both agents af-
ter moving. (a) Function R1 results in a Team Game with
identical payoffs for both agents. (b) Function R2 specifies a
conflicting interest Markov game. . . . . . . . ... ... ... 127



LIST OF TABLES

7.2

7.3

74

8.1

8.2

8.3

8.4

Limiting games for the reward functions given in Table 7.1.
(Top)Common interest game with both an optimal and a sub-
optimal equilibrium. (Bottom) Conflicting interest game with
a dominated equilibrium. Equilibria are indicated in bold.

Limiting automata games for the reward functions given in
Table 7.1. (a) Common interest game with both an optimal
and a suboptimal equilibrium. (b) Conflicting interest game
with a dominated equilibrium. Equilibria are indicated in
bold. . ... ... ...
Results of Lr_; and PLAs on the small grid world prob-
lem with reward function R1. Table shows the average con-
vergence to each equilibrium, total convergence over all tri-
als and average time steps needed for convergence. Stan-
dard deviations are given between parentheses. PLA set-
tingswereb=0.1,0 =02, K=L=n=1...........

Approximating game for the problem shown in Figure 8.1.
Players correspond to problem locations. The game payoffs
are the expected averages over time of the amount of food
collected under the corresponding policies. The unique equi-
librium is showninbold. . . . . . ... ... ... .. ... ..
Colony game approximating the multi-colony version of Fig-
ure 8.1. Equilibria are indicated inbold. . . . . ... ... ..
Pheromone game approximating the multi-colony version of
Figure 8.1. Column 1 lists possible plays, with column 2 giv-
ing the expected payoff for each player resulting from a play.
Equilibrium plays are indicated inbold. . . . . ... ... ..
Results obtained by AntNet model in NFSNET experiment.
Columns 2 and 3 give the average delay (standard devia-
tion) to destination nodes 12 and 14, respectively (results av-
eraged over 20 runs). For comparison purposes columns 4
and 5 give the delays that result from shortest paths based
routing to both destinations, without taking into account de-
lays caused by sharing edges. . . . . ... ... ... .....

XVii

132

159

160

165



xviii LIST OF TABLES



Glossary

abbreviation meaning

CALA continuous action learning automaton
EGT evolutionary game theory

ESS evolutionary stable strategy

ESRL exploring selfish reinforcement learning
ILA interconnected learning automata

MAS
MARL
MG
MDP
MMDP
Lp—cp
Lp1
Lr-p
LA
PLA
RD

RL

multi-agent system

multi-agent reinforcement learning
Markov game

Markov decision process
multi-agent Markov decision process
linear reward-¢ penalty

linear reward-inaction

linear reward-penalty

learning automaton

parameterised learning automaton
replicator dynamic

reinforcement learning

Xix



XX LIST OF TABLES
symbol meaning
general
A learning rate
~ discount factor
I probability vector (learning automata)
Sy (r-1)-dimensional unit simplex
w(A) set of probability distributions over set A
Pr{A} probability of A
P(A) power set of the set A
single agent:
™ policy
7(s,a) action probability for action in state s according to policy
.
7(s) action selected in state s under deterministic policy .
A(s) action set in state s
V7™ (s) value of state s under policy
Q" (s,a) Q-value of state action pair under 7
d™ (s stationary probability of state s under policy =
JT expected average reward under 7
R(s,a,s’) one step reward for transition from s to s’ using action a
R™(s) expected reward in state s under 7

T(s,a,s’) transition probability from s to s’ using action a
T7(s,s") transition probability induced by =

multi-agent:

n number of agents playing (Markov) game

A;i(s) agent ¢’s action set in state s.

a joint action (ay, . .., ay), specifying action for each agent.

T joint policy (m1,...,m,), specifying a policy for each
agent

(s,d) probability of playing joint action & in state s under 7

(s) joint action played in state s under joint policy 7, con-
sisting of deterministic policies for all agents

Ri(s,d,s") immediate reward received by agent i for transition

from s to s’ under joint action @



Chapter 1

Introduction

This dissertation studies reinforcement learning (RL) in multi-agent sys-
tems. Reinforcement learning is a technique that allows an agent to learn
optimal behaviour through trial-and-error interactions with its environ-
ment. By repeatedly trying actions in different situations the agent can
discover the consequences of its actions and identify the best action for
each situation.

However, when multiple learners use this approach in a shared envi-
ronment traditional RL approaches often fail. In the multi-agent setting
common assumptions that are needed for convergence are often violated.
Even in the simplest case where agents share a non-changing environment
and need to learn an action for only one situation, many new complexities
arise. When agent objectives are aligned and all agents try to maximise the
same reward, coordination is still required to reach the global optimum.
When agents have opposing goals, a clear optimal solution may no longer
exist. In this case we typically look for an equilibrium between agent strate-
gies. In such an equilibrium no agent can improve its payoff when the other
agents keep their actions fixed.

When we assume a dynamic environment, in addition to multiple agents,
the problem becomes even more complex. Now agents do not only have
to coordinate, they also have to take into account the current state of their
environment. This problem is further complicated by the fact that agents
typically have only limited information about the system. In general, they
cannot observe actions of other agents, even though these actions have a di-
rect impact on their rewards and their environment. In the most challeng-
ing case, an agent may not even be aware of the presence of other agents,
making the environment seem non-stationary. In order to develop a suc-



2 CHAPTER 1. INTRODUCTION

cessful multi-agent approach, all these issues need to be addressed.

Despite the added complexity, a real need for multi-agent systems ex-
ists. Often systems are inherently decentralised, and a single agent learning
approach is not feasible. This situation may arise because data or control
is physically distributed, because several different objectives are present or
simply because a single centralised controller requires to much resources.
Examples of such systems are multi-robot set-ups, decentralised network
routing, distributed load-balancing, electronic auctions, traffic simulations
and many others.

Different approaches toward independent multi-agent learning already
exist. However, most have only limited applicability or lack theoretical
results. Many approaches only consider stateless environments and cannot
deal with an environment that is affected by the agents” actions. Others
are restricted to specific payoff structures or require unrealistic amounts
of information about the system to assure convergence. Some may lack
convergence guarantees altogether and are developed experimentally for
very specific applications.

In this dissertation we propose a new approach for learning in multi-
agent environments. Rather than creating monolithic agents, we use agents
that are composed of a network of independent learning units, called learn-
ing automata (LA). Using these automata as building blocks for our agents
has several advantages. Both the long term convergence properties and the
learning dynamics of these automata are well studied [TS04, Tuy04]. Fur-
thermore, while they are relatively simple learners, LA offer a lot of flexibil-
ity in terms of interconnections between the automata, making it possible
to design agents consisting of a large interconnected collective of automata.
These advantages are further complemented by the fact that automata al-
gorithms have low information requirements and have even been shown to
work in partially observable environments [VVNO08b, PM97], making them
ideally suited for multi-agent systems.

In the following sections we give more information on the learning set-
ting we use and assumptions we made. Next, we describe our approach
in short. Finally, a detailed outline for the remainder of the dissertation is
added.

1.1 Intelligent Agents

Before introducing our problem setting, we will take a closer look at the
concept of an agent. Below we give a short discussion of basic agent con-



1.1. INTELLIGENT AGENTS 3

cepts, based on [Wei99].

While most researchers in artificial intelligence have some notion of
what exactly constitutes an agent, no generally agreed upon definition ex-
ists. Different fields of Al, may associate different properties with an agent.
Despite this discrepancy there are some general properties most people
agree an agent should have. These are summarised in the following def-
inition from [JSW98]:

Definition 1 An agent is a computer system that is situated in some environ-
ment, and that is capable of autonomous action in this environment in order to
meet its design objectives.

This definition deliberately neglects to define the environment in which
an agent is situated. This is because agents can be used in a wide range
environments with very different properties. In the next section we will
discuss the environment models considered in this dissertation. The auton-
omy requirement for an agent, is used here to indicate that agents can act
without the intervention of a human controller. Thus, the agent has control
over its own internal state and its behaviour.

The definition above, is ofcourse very broad and allows us to view al-
most any control system as an agent. The definition covers simple systems
such as a thermostat controlling a room’s temperature or software daemons
running background operating system processes. When considering agents
used in Al research, we typically want to restrict our attention to learning
agents that posses certain qualities that can be interpreted as intelligence.
Wooldridge [Woo09] specifies some additional properties that are often as-
sociated with an intelligent agent:

e reactivity: the ability to respond to a timely fashion to changes in the
environment.

e pro-activeness: to exhibit goal-directed behaviour and take the initia-
tive to satisfy design requirements.

e social ability: being capable of interaction with other agents (or hu-
mans).

Designing a system with these properties can be more challenging than
it appears at first. Consider for example the reactivity and pro-activeness
properties. Simple procedures in any program could be construed as exam-
ples of goal-directed behaviour, being executed when their pre-conditions



4 CHAPTER 1. INTRODUCTION

hold in order to achieve some post-condition. However, this view relies on
an environment which is static and fully known. In a (multi-)agent system,
we typically have to deal with with changes in the environment to which
an agent must react, i.e. the agent also needs to be reactive. The simple
thermostat described above, can be interpreted as such a reactive system,
continually reacting to changes in the room’s temperature. This system
however, is purely reactive. It does not systematically try to achieve its
goal, it only reacts to external changes. We want our agents to be able to
focus on a goal and take initiative to reach it. Thus the challenge in agent
systems is to find a good balance between reacting to changes and trying
to perform goal-directed behaviours. Below we will list some architectures
that implement these properties. Our interest is in learning systems, where
the agents try to identify the consequences of their actions, so that they can
perform those actions that lead to the desired outcome.

Many different architectures can be considered in order to implement
an agent’s internal functions. Logic based agents rely on symbolic rep-
resentations and logic deduction for their decision making, purely reac-
tive agents implement a direct mapping from situations to actions, while
belief-desire-intention (BDI) agents keep internal data-structures represent-
ing representing the agents beliefs, desires and intentions. In this disserta-
tion, however, we will focus on reinforcement learning agents, as described
in [BS98].

Reinforcement learning agents learn a mapping from environment sit-
uations to actions (called a policy) by repeated interaction with their envi-
ronment. Depending on the algorithm used, an RL agent keeps an inter-
nal state that can be, for example: a value function representing expected
future rewards of actions, some (possibly parameterised) representation
of a policy, or even a complete environment model. Most RL agents rely
on techniques from stochastic approximation or classical control theory to
learn this internal state and use it to select actions. Chapter 3 includes an
overview of common RL techniques. In the next section we take a closer
look at the problems our agents will deal with.

1.2 Learning in Markov games

The problems considered in this dissertation can be classified as shown in
Figure 1.1. On the one hand we can distinguish between single state (also
called stateless) systems and multi-state systems. On the other hand we can
also classify problems as either single agent or multi-agent. In a single state



1.2. LEARNING IN MARKOV GAMES 5

AGENTS A

. Normal Form Markov
Multi-Agent Game Games

Single Single Markov Decision

Agent Automaton Process

Single State Multi-State STATES
(stateless)

Figure 1.1: Overview of the learning settings considered in this disserta-
tion.

system the agent has to learn a single strategy in order to optimise its re-
ward. The environment can be stochastic, but expected rewards for actions
are stationary and do not change over time. In a multi-state system, how-
ever, actions result in both a reward and a state transition. The expected
reward of actions now depends on the state in which the action was taken.
Agents can even have different action sets, depending on the current state.
The agent’s task is now to map each system state to an appropriate strategy.
In doing so, the agent has to take into account not only the expected reward
for an action, but also the future states the action may lead to. The single
agent - multi-agent dimension distinguishes between systems with a single
learner and those in which multiple learners are present in the same envi-
ronment (either stateless or multi-state). Below we give a short description
of these settings.

Reinforcement Learning was originally developed for Markov Decision
Processes (MDPs) [BS98]. It allows a single agent to learn a policy that max-
imises a possibly delayed reward signal in a stochastic stationary environ-
ment. RL guarantees convergence to the optimal strategy as long as the



6 CHAPTER 1. INTRODUCTION

actions observations
> Environment

a(t) s(t+1), r(t+1)

@:

Figure 1.2: Schematic representation of single agent reinforcement learning.

agent can sufficiently experiment and the environment in which it operates
has the Markov property 1.

A single agent RL setting consist of a set of system states, a set of agent
actions and a function specifying the rewards the agent receives for per-
forming an action in a certain system state. Interactions between the agent
and its environment take place at discrete time steps or stages t = 1,2,. ...
At each stage ¢ the agent selects an action a(t), which serves as input to
the environment. The response an agent receives consists of 2 pieces of in-
formation: an immediate reward (¢ + 1)resulting from the action and a
description s(¢ + 1) of the new system state after the action is performed.
The agent’s goal is to learn a policy, mapping each possible state of the sys-
tem to an action in order to maximise the long term expected reward.

When we allow multiple agents to act in the same environment, the
preconditions for convergence of RL algorithms are generally no longer
satisfied. In this setting both agent rewards and the global system state de-
pend on the actions taken by all agents. As such, the learning agents not
only have to deal with the stochasticity of the environment, but also have
to take into account other agents with whom they might need to coordi-
nate or even compete. Moreover, agents have individual reward functions,
and in general, it is impossible to maximise the rewards for all agents si-
multaneously. In order to deal with the additional complexity caused by
multiple agents, the standard RL framework of Markov decision processes
is extended to the formal multi-agent setting of Markov games.

! A system has the Markov property if the present state predicts future states as well as
the whole history of past and present states do, meaning that the system is memoryless.



1.2. LEARNING IN MARKOV GAMES 7

Ina multi—agent RL system, n agents are present in the same environ-
ment. In the simplest case we consider a non-changing (i.e. stateless) envi-
ronment, and arrive at the repeated normal form game model from game
theory. A game models strategic interactions between a set of participants
called players. Each player has a set of actions he can perform and attempts
to optimise a payoff function. The payoff he receives, however, is deter-
mined not only by his own action but also by those of the other players. In-
teractions between the players take place at discrete time steps ¢t = 1,2, ...
The players independently select an action from their private action set, us-
ing a set of associated action probabilities, also called a strategy. The joint
action resulting from these independent action selections, triggers an indi-
vidual payoff for each player. Based on this payoff, players can then update
their strategies before the next round of the game begins. The main solu-
tion concept for these games is the Nash equilibrium. In a Nash equilibrium
no player can increase his expected payoff by changing his current strategy
while other players keep their strategies constant.

In the general multi-agent setting of Markov games, we combine mul-
tiple agents with a changing environment consisting of a set of possible
states. At every time step each agent individually selects an action. The
input to the environment at time ¢ is now the vector a(t) = (a1,...,a,)
containing the joint action of all agents. The result is again a transition to a
new system state s(¢ + 1) and an immediate reward (¢t + 1), individual to
each agent k. This setting can be seen as a set of games (one for each sys-
tem state), with the agents transitioning between the games based on their
joint actions. The main difference with single agent reinforcement learning
is that the both the system state and the individual rewards now depend
on all agents. Agents in this setting still attempt to learn a policy mapping
states to actions, but the ultimate outcome depends on the joint policy, i.e.
the combination of the policies of all agents in the system. Since the prob-
lems can be conflicting interest, we now consider Nash equilibria between
the agent policies as the solution concept. A Nash equilibrium between
policies can be defined as the situation where no agent can obtain a higher
reward by switching policies (i.e. possibly changing strategies in multiple
states simultaneously), when all other agents keep their policies fixed.

Different approaches can be taken with regard to learning in the multi-
agent set-up, depending on the information available to the agents. One
can assume that agents have full access to all system information and as
such know the system state as well as the actions and rewards of all other
agents. This allows agents to model their opponents and to estimate re-
wards for the combinations of agent actions. Many recent algorithms take



8 CHAPTER 1. INTRODUCTION

this approach, letting their agents learn over the joint actions instead of in-
dividual agent actions. However, assuming that agents have all this infor-
mation at their disposal is often unrealistic. In a fully distributed system an
agent might not be in a position to observe the environment interactions of
all other agents. In this case, providing the agent with this information may
result in a costly communication overhead. Therefore, other approaches
deal with situations in which only limited information is available to the
agents. In such settings the agents receive only partial information on the
state, action or reward variables. In Chapter 4, we give an overview of cur-
rent multi-agent RL, classified according to their information requirements.

In this dissertation we focus on the most restrictive case, in which the
agents observe only the current system state, their own action and their in-
dividual reward. From the point of view of a single agent it may even seem
as if the agent is alone in the environment. The influences of other agents
can only be observed through their effects on rewards and transitions. In
Chapter 7 we go even further, and allow agents only partial information on
the system state. Despite these restrictions, we will demonstrate that our
LA based approach is able to achieve coordination between the agents in a
wide range of possible settings.

1.3 Assumptions

Before describing our approach to learning in Markov games, we describe
some common assumptions and important concepts we consider in our
learning setting.

e discrete time: As mentioned above, we consider systems in which the
agents are required to select at discrete time steps. We do not consider
continuous time systems or issues that arise from discretising such
systems.

e stochasticity: The environment in which agents operate can be stochas-
tic. This means that both state transitions and rewards do not have
fixed values, but are drawn from a (stationary) distribution. As such
the same (joint) action may generate different results.

e state dependent environments: All approaches considered in this work
are applicable to general multi-state problems. By this we mean that
the environment can assume several different states and both the re-
ward and transition probabilities for a certain action depend on the



1.3. ASSUMPTIONS 9

current state. While these probabilities can vary from state to state,
we do assume that given the current state, these probabilities are sta-
tionary and do no vary over time. As was already mentioned above,
the special case in which the system consists of only a single state is
referred to as stateless.

e finite problems: For all problems we consider, we assume that both the
state space and the agents’ action sets are finite.

o unknown environment: As is common in RL, we assume that the en-
vironment in which agents operate is initially unknown. The agents
do not have any model or any other form of background knowledge
for their surroundings. Moreover, the agents cannot observe the tran-
sition or reward probabilities for environment states, only the tran-
sition that actually occurs and the reward generated for this transi-
tion are observed. As such the only way to gather this information is
through repeated experimentation.

e exact state observation: While the environment is unknown, we do as-
sume that agents have perfect observation of the current system state
i.e. we do not consider possibly noisy observations of the system
state. In Chapter 7 we do consider partial state observation, but again
these observations are noise free.

e common or conflicting interest: The problems in this dissertation can be
broadly classified as either common or conflicting interest. We con-
sider a problem to be common interest when agents goals are aligned
and all agents prefer the same joint actions. Problems where agents
have different preferences for certain joint actions are referred to as
conflicting interest. In general, agents can still have different reward
functions in common interest problems (as long as they agree on the
ordering of joint actions), but the only common interest problems we
consider are identical payoff games, i.e. problems where all agents
have the same reward function.

e fairness: In Chapter 6 we consider fair solutions. By this we mean that
we attempt to equalise the agents” average rewards over time, while
still allowing each agent to periodically obtain its preferred learning
outcome.

o distributed system: All methods are designed to operate in a distributed
manner. As such agents can run on separate systems and do not re-



10 CHAPTER 1. INTRODUCTION

quire a centralised implementation. The only way in which the agents
are connected, is by the influences they exert on their shared environ-
ment and each other’s rewards.

o homogeneous agents: The both the empirical and theoretical results
demonstrated in this dissertation always assume homogeneous agents.
By this we mean that all agents use identical learning algorithms. For
the theoretical results this also implies that convergence results only
hold when the algorithm is used in self-play.

o independent agents: All agents are considered to be fully independent.
By this we do not only mean that they do not share a centralised con-
trol, but also that they act without information on the rewards and
actions of other agents. Again with exception of the communicating
agents in Chapter 6, agents in our approach always act without any
knowledge of the existence of other agents.

1.4 Owur Approach

All algorithms which are developed in this work share the common ele-
ment that they rely on learning automata as basic building blocks. A sin-
gle learning automaton consists of a probability vector which governs ac-
tion selections and a learning rule which is used to update these probabili-
ties when feedback is received. These comparatively simple learning units
can be composed into larger networks in order to represent more complex
agents. We employ such networks to develop an algorithm for general sum
Markov games. This algorithm is then extended to provide additional func-
tionality in order to achieve optimality in common interest problems, learn
fair reward divisions or deal with partial state information.

The starting point for our Markov game algorithm is a learning au-
tomata based system for solving MDPs, described in Chapter 3. This al-
gorithm which we call MDP-ILA (interconnected learning automata for
MDPs), associates a single learning automaton with each possible system
state. The agent is then represented by this network of LA, in which con-
trol passes from one automaton to the next when state transitions are made.
Coordination between the automata is achieved based solely on the feed-
back signal, which consists of an estimate of the average reward received
between 2 subsequent activations of an automaton.

We extend the MDP algorithm to an algorithm for Markov games, which
we denote MG-ILA. The extended algorithm represents each agent by a



1.4. OUR APPROACH 11

separate network of LA. This results in one automaton being associated to
each system state, for each agent. When a state transition occurs, control
now passes from one set of automata to the next. Automata again coor-
dinate using only the reward signal, which is still the same for automata
representing the same agent, but can differ for automata representing dif-
ferent agents.

One of the most interesting aspects of the LA based approach is that the
interactions between automata can be viewed as a repeated normal form
game. This approximation is a powerful tool for analysing the convergence
properties of LA based algorithms. For the single agent MDP-ILA case, this
results in a game in which the LA in each state are the players. As such a
play in this game selects an action for each state and represents a determin-
istic policy for the MDP. Using the properties of MDPs, one can show that
the equilibria in this game correspond exactly to the optimal policies of the
MDP [W]N86]. Together with existing equilibrium convergence results for
LA, this establishes the optimality of MDP-ILA.

When we move to the Markov game framework and the corresponding
MG-ILA algorithm, we can still apply the game based analysis. Building
on the approach described above for MDPs, we develop a corresponding
analysis for Markov games. We start out by considering the approximating
automata game, but also show that a Markov game can be analysed as a
game at different levels, yielding additional insights to the problem under
study.

When we approximate the interactions between LA, the result is a game
where we have a player for each possible agent-state combination. Plays
in this game assign an action to each state, for each player and thus cor-
respond to a (deterministic) joint policy in the Markov game. We show
that an equilibrium point of this approximating automata game now cor-
respond to an equilibrium between agent policies. We combine this result
again with the equilibrium convergence of LA to establish equilibrium con-
vergence results for MG-ILA.

In addition to the automata game view which is the straightforward ex-
tension of the MDP approximation, we show that Markov games can be
analysed at different levels using similar normal form game approxima-
tions. We demonstrate how common interest Markov games can be treated
from a centralised control perspective in the superagent view. This view as-
sociates a player with each system state and simulates the situation where
agents have a shared, central control. While this solution method is usu-
ally unfeasible, the superagent view demonstrates the results that could be
obtained by applying centralised control to the problem. This view also



12 CHAPTER 1. INTRODUCTION

illustrates the problems that can arise from miscoordination when moving
to a distributed approach.

Another view we consider is the so called agent view. Here players
in the approximating game correspond to the agents in the Markov game.
The entire Markov game is then seen as a repeated game in which play-
ers’ actions correspond to their deterministic policies in the Markov game.
This view was considered before in [VNP04], but only for tree-structured
Markov games. It provides a convenient tool to analyse interactions be-
tween agent policies and allows us to reason about the Markov game at a
higher level, by considering policies instead of individual state strategies.
The usefulness of this approach is clearly demonstrated in Chapter 6, where
we consider a class of non-stationary policies. These policies can be seen as
mixed strategies in the agent view of the Markov game, and cannot be ex-
pressed by state-action probabilities only. We show how these policies can
be implemented using learning automata and demonstrate their usefulness
for obtaining a fair reward division among agents.

Another application of this view is shown in Chapter 7, where we con-
sider Markov games in which not all state information is visible to the
agents. Here the agents cannot uniquely identify states and considering
equilibria in the normal set of policies becomes meaningless, as agents
might not be able to express the necessary policies. However, by consid-
ering the agent view game consisting only of expressible policies we can
still describe the equilibrium points that can be learned by the agents, and
demonstrate convergence to these points.

In the following section we conclude this introduction with a more de-
tailed overview of the contents of this dissertation.

1.5 Outline of the Dissertation

The simplest learning setting we consider is the single agent, stateless en-
vironment setting. This setting is closely related to the n-armed bandit prob-
lem from machine learning literature. We consider a single learner (in our
case a learning automaton), who at every time step must choose an action
to perform. Its goal is to identify the optimal action through repeated ex-
perimentation. This problem is considered in Chapter 2. We will focus on
how learning automata deal with this setting and show how different au-
tomata learning schemes can be evaluated. When we extend the problem to
include multiple-agents, we arrive at the repeated (normal form) game set-
ting from classical game theory. In a repeated game, rewards for the agents



1.5. OUTLINE OF THE DISSERTATION 13

AGENTS A

Automata Markov Games
Multi-Agent Game (ch. 4-8)
(ch. 2) '
. Single Markov Decision
Single Automaton Process
Agent (ch. 2) (ch. 3)

Single State Multi-State STATES
(stateless)

Figure 1.3: Outline of the dissertation.

depend on the joint action selected by all agents. As such the agents have
to discover rewards as well as coordinate with other agents.

When moving to the single agent, multi-state setting, we arrive at Markov
decision processes, the traditional single agent reinforcement learning set-
ting which is also described above. In Chapter 3 we describe several tradi-
tional RL algorithms, that can be used to solve these MDPs. We will also
demonstrate how a network of learning automata can be used to learn an
optimal policy in MDPs. Moreover, we explain how the automata approach
leads to a non-traditional view of MDPs, by transforming the multi-state,
single learner problem into a stateless, multi-learner situation, i.e. a re-
peated game. This observation will be the basis for the contributions we
introduce in subsequent chapters.

Next, in Chapter 4 we move to the full Markov game case. This multi-
agent, multi-state framework is the most general setting we consider in this
dissertation, and contains the previous 3 settings as special cases. In Chap-
ter 4 we introduce the interconnected learning automata for Markov games
(MG-ILA) algorithm, which is our learning automata based approach for
Markov games. We also extend the limiting game analysis of Chapter 3



14 CHAPTER 1. INTRODUCTION

to the Markov game case, and show the convergence of MG-ILA to pure
equilibrium points. We previously described the MG-ILA algorithm and
its properties in [VVNO08a, VNVP08, VVNOS8b].

In the following chapters we consider a number of extensions to MG-
ILA. We start out by studying the dynamics of MG-ILA in Chapter 5. Based
on existing work using evolutionary game theory to study learning dynamics
in repeated games, we develop a novel framework for studying learning
dynamics in Markov games. Using the limiting game view of Chapter 4
we also show how to visualise the dynamics of MG-ILA in simple 2-state
problems. This chapter is based on our work in [VTWNO8].

In Chapter 6 we show how we can extend the basic MG-ILA algorithm,
in order to create more advanced solution methods. We start out by show-
ing how we can use a different learning scheme in order to obtain global
optimal convergence in common interest problems. We then move to gen-
eral Markov games and introduce a solution concept which focuses on as-
suring a fair reward distribution among the agents. By allowing limited
communication, agents can correlate their policies in order to alternate be-
tween outcomes preferred by different agents. We show that this approach
can equalise the average payoff of agents, while avoiding the lower pay-
off some agents would receive in an equilibrium outcome. This chapter is
based on results we published in [VVNO07d]

Finally, in Chapters 7 and 8 we consider some possible applications of
MG-ILA. In Chapter 7 we focus on coordination between mobile robots.
An additional difficulty in this setting is that we no longer assume that
the agents have full knowledge of the system state. Instead we consider a
more realistic setting in which agents learn using a local state, i.e. their own
location in the environment. Despite this restriction, we can still show that
agents find an equilibrium between their policies. Chapter 7 summarises
our results from [VVNO08b, VVNO07a, VVNO07c]

In Chapter 8 we use MG-ILA as the basis for a model for stigmergetic
algorithms. In these algorithms multiple agents coordinate their behaviour
and share information using indirect, environment mediated communica-
tion. This means that rather than direct message passing, agents commu-
nicate by locally altering their environment. In the case we consider, they
do this by leaving pheromone trails. We model this pheromone system by
embedding learning automata in the environment, and allowing multiple
agents to use and update the same automata. This model allows us to view
stigmergy as a special case of MG-ILA and to apply the same convergence
analysis as in earlier chapters. We also described the results in this chapter
in [VVNO07b, VVNar]



1.5. OUTLINE OF THE DISSERTATION 15

We conclude the dissertation in Chapter 9, where we give an overview
of the contributions that were made and list some possible future work.
This is followed by a short appendix which provides some background
material on dynamical systems theory.



16

CHAPTER 1. INTRODUCTION



Chapter 2

Automata Learning in Stateless
Environments

This chapter introduces the basic learning automaton that we use through-
out this dissertation. We explain how these automata learn in stateless envi-
ronments, both in single as well as in multi-automata settings. In the single
automaton case the automaton’s goal is to maximise its expected reward
over a set of available actions. We show how an automaton’s behaviour
can be evaluated and give results for the basic automata update schemes.
After examining the single automaton case, we introduce some basic
notions of game theory and show how normal form games can be used to
implement multi-automata systems. In these systems rewards depend on
the actions of all automata. If all automata receive the same reward, they
need to coordinate to optimise their rewards. When automata have indi-
vidual rewards an equilibrium is sought. In an equilibrium, no automaton
can improve its rewards without another automaton also changing its ac-
tion. We conclude with an overview of convergence results for automata
learners in games. References for this chapter are: [NT89, TS04, OR99]

2.1 Single Automata systems

We start out by considering a single learner (in our case an automaton)
interacting with its environment. This interaction takes the form of a feed-
back configuration in which the learner tries actions and receives a scalar
feedback signal in return. In this chapter we only consider relatively sim-
ple stateless environments. In this kind of environment each action has a
fixed reward probability which is kept stationary during the entire learn-

17



18 CHAPTER 2. STATELESS ENVIRONMENTS

ing period. The learner’s objective is to learn which action has the highest
expected reward.

In the following sections we formalise the notions of a learning automa-
ton and an environment. We also introduce a number of automata learning
schemes and show how their behaviour can be evaluated in the single au-
tomaton setting.

2.1.1 Learning Automata

Learning automata have their roots in mathematical psychology [BM55].
A learning automaton formalises a simple learning unit, that attempts to
learn an optimal action through repeated interaction with its environment.
While early automata designs relied on internal state transitions to learn
responses [Tse61], we will only consider so called variable structure au-
tomata. These automata keep a set of action probabilities that are updated
at every stage using a reinforcement scheme. Formally, a learning automa-
ton is defined as follows:

Definition 2 A variable structure learning automaton is described by a quadru-
ple {A, B, p, U} for which:

o A s the action or output set {a1,az, . ..a,} of the automaton

e B is the set of possible responses

o p'=(p1,...,pr) is a vector of the automaton’s action probabilities and
o U denotes the learning scheme the automaton uses to update p.

An automaton is connected to its environment in a feedback loop. This
environment defines the learning problem the automaton faces. At each
time step ¢ the automaton selects an action a(t) € A, based on its internal
action probability vector. This action serves as input to the environment
which produces a response b(t) € B that is given to the automaton. The
automaton can then alter its action probabilities based on the action it se-
lected, and the feedback it received.

Depending on the set B, different models of environments can be dis-
tinguished. P-model environments produce a binary feedback using B =
{0,1}. In a Q-model environment the feedback can take on a finite number
of values B = {b1,...,by,} with 0 < by,...,b,, < 1. Finally, in an S-model
environment B is the interval [0, 1] and the feedback is a continuous ran-
dom variable. In the following we will focus on P-model environments,



2.1. SINGLE AUTOMATA SYSTEMS 19

Environment

{A,B,p,U} {A,D,B}

[ Learning Automaton ]

b(t)e B

Figure 2.1: Learning automaton and environment feedback loop.

i.e. we assume that automata receive a binary feedback b(t) € {0,1}. Thus
0 represents a negative feedback, while 1 represents a positive feedback.
Note that while there are only 2 possible feedback signals, this does not
mean that the expected feedback for an action needs to be 0 or 1. Each
action has an associated (unknown) reward probability, that specifies the
probability of receiving a feedback of 1 when the automaton selects that ac-
tion. The automaton’s goal therefore, is to identify the action which has the
highest reward probability. This leads to the following formal definition of
an environment:

Definition 3 An automata environment is defined by the triple { A, ¢, B} with:

o A={ay,...,a,} the set of possible inputs the environment can accept.

o D ={dy,...,d,} the set of reward probabilities corresponding to the inputs
withd; = Pr{b(t) =1|a(t) =a;},i:1...r

e B is the set of outputs the environment can produce.

As was mentioned above, the sets A and B correspond to those used in
the definition of a learning automaton.

Several learning schemes for updating automata action probabilities
have been proposed. Among these, the linear Reward Penalty family is
probably the most studied. The basic idea behind these updates is to in-
crease the probabilities of successful actions, while lowering the probabili-
ties of actions that result in a low reward. The general linear reward penalty
update is given by:



20 CHAPTER 2. STATELESS ENVIRONMENTS

pi(t+1) = pi(t) + Ab(t)(1 — pi(t)) — A2(1 — b(t))pi(t) 2.1)
ifa(t) =a;

pit+1) = py6) = MBI (0) + Aol — ) (s — py(1)) 22)
if Qj 7é a;

with r the number of actions in the set A. A1 and A\ are constants, called
the reward and penalty parameter respectively. Depending on the values
of these parameters 3 distinct variations of the algorithm can be consid-
ered. When \; = \; the algorithm is referred to as Linear Reward-Penalty
(Lr—p) while it is called Linear Reward-ePenalty (Lr_.p) when Ay >> Xo.
If A2 = 0 the algorithm is called Linear Reward-Inaction (Lr_). In this case
A1 is also sometimes called the learning rate:

pit+1) = pi(t) + \b(t)(1 —pi(t)) (2.3)
ifa(t) =a;

pi(t+1) = p;(t) — Ab(t)p;(t) (24)
if a; 7& a;

Despite the fact that all these updates derive from the same general
scheme, they exhibit very different learning behaviours. In the next sec-
tions, we will discuss how these behaviours can be analysed and evaluated.

2.1.2 Norms of behaviour

When acting in a stationary environment, where the ¢; parameters are con-
stants, the goal of a learning automaton is to find the optimal action a,,
for which d,, = max; d;. The performance of the automaton is typically
evaluated by examining the expected reward given the current probability
vector p(t). This quantity is referred to as W (t). For a P-model environment
this quantity is given by:

Wi(t) = E[b()|p(t) (2.5)

- ZPr{b(t) = 1] a(t) = a;} Pr{a(t) = a;}

- S 26
=1



2.1. SINGLE AUTOMATA SYSTEMS 21

One possibility to evaluate the automatons performance is to compare it
to a pure-chance automaton, i.e. an automaton that selects all actions with
uniform probability without updating its action probabilities. The expected
reward for such an automaton is a constant, denoted W, which can be
calculated using Formula 2.6:

1 T
Wo = - ; d; (2.7)
This leads to the following definition:

Definition 4 A learning automaton is called expedient if

lim E[W(t)] > W, (2.8)

t—o00

Thus an automaton is expedient if it outperforms the pure chance au-
tomaton. Of course this is not a very demanding goal and ideally we would
like our automata to be optimal, meaning that it learns to maximise the ex-
pected reward:

Definition 5 A learning automaton is called optimal if

lim E[W ()] = dun, (2.9)

t—o00

where

dym = max d;

Unfortunately, achieving optimality is often not feasible in practice. There-
fore we introduce the concept of e-optimality:

Definition 6 A learning automaton is called e-optimal if for arbitrary € > 0:
lim E[W(t)] > dp —¢€ (2.10)
t—r00

can be achieved by a proper choice of automaton parameters.

In arbitrary environments the e-optimality of an automaton may de-
pend on the specific reward probabilities of the environment or the initial

conditions of the automaton. An alternative requirement for desired be-
haviour can be defined by absolute expediency:



22 CHAPTER 2. STATELESS ENVIRONMENTS

Definition 7 A learning automaton is said to be absolutely expedient if:
EW(t+1)|pt)] > W(t) (2.11)

This imposes an inequality on the conditional expectations of W (t) at ev-
ery time step. Taking expectations of both sides it can be seen that E[WW (¢)]
must be strictly monotonically increasing. In the stationary random envi-
ronments considered here, it can be shown that absolute expediency im-
plies e-optimality [NT89].

2.1.3 Analysis of behaviour

When the reward probabilities are fixed p(t + 1) is completely determined
by p(t) and {p(t) }+>0 is a discrete-time homogeneous Markov process. The
state space of this process is the unit simplex:

T
Sr:{ﬁ’ﬁ:(m,---,]?r)aoﬁpiSLZPlZl} (2.12)
i=1

A state p* in this space is called absorbing when p(t) = p* implies p(k) =
p* forall k > ¢.

The learning algorithms defined in Section 2.1.1 represent a mapping
U : S — S,. When the corresponding Markov process has absorbing
states, the algorithms are referred to as absorbing algorithms. This is the
case for instance for the Lr_; algorithm for which all unit vectors €;,i =
1...r are absorbing states. It can be shown [NT89] that the Lr_; scheme
converges to one of these states with probability 1. Furthermore, by making
the learning rate \; sufficiently small, one can make the probability of the
optimal action arbitrarily close to one, meaning that L1 is e-optimal.

In contrast the Lr_p and Lr_.p schemes are non-absorbing. Both these
schemes are ergodic, meaning that the action probabilities converge in dis-
tribution to a random variable p*,independent of the initial conditions. In
the case of the Lp_p scheme the mean of p can be made arbitrarily close to
the optimal unit vector by choosing sufficiently small learning parameters,
giving an e-optimal scheme.

2.1.4 Generalisations of Learning Automata

Several variations of the basic learning automaton have been developed.
We conclude this section with a brief overview of relevant developments
of the original LA scheme of Section 2.1.1.



2.1. SINGLE AUTOMATA SYSTEMS 23

The pursuit automaton modifies the update mechanism used by the stan-
dard automaton model. Instead of using the feedback b(¢) to directly up-
date the last action performed, pursuit LA keep estimates d=(dy,...,d)
which estimate the average reward received for each action. To calculate
these estimates the pursuit algorithm stores two vectors 2 = (z1,..., z)
and 7 = (m,...,nr), which respectively store the total reinforcement re-
ceived for each action and the number of times each action has been per-
formed. When the automaton receives response b(t) for performing action
a(t) = a; these vectors are updated as follows:

Zzi(t+1) = z(t)+0b(t)
Zj(t+1) = Zj(t)7i7éj
n(t+1) = ni(t)+1
ni(t+1) = mi(t), i #j

. Zi(t—i—l) o
di(t+1) = 77(75‘1‘1)’%_1’ ,T

(2.13)

The action probabilities of a pursuit automaton are updated based on
these estimates. More specifically, rather than updating the action that was
performed last, the pursuit algorithm updates the action which has the
highest estimated average reward. In vector notation this update is de-
scribed by:

Bt + 1) = 5(t) + M@y — A1) (2.14)

Here ) is the learning rate, m(t) is the index of the action with the highest
estimated reward at time ¢ and €, is the unit vector with a 1 at index
m(t). From this update it is clear that the pursuit algorithm performs an
Lr—; update of action a,,;) with a feedback of 1.

Theoretically the pursuit update can be shown to exhibit the same be-
haviour as the reward-inaction update of Section 2.1.1. This means that it is
e-optimal and converges to the set of unit vectors. The algorithm does have
some advantages over Lr_;. Since the feedback b(t) is not directly used
in the update of the probabilities, it does not need to be restricted to the
interval [0, 1]. Furthermore, empirical evidence suggests that the pursuit
algorithm converges much faster than Lr_;.

The parameterised Learning Automata (PLA) was introduced in [TP95].
The main innovation of PLA is that they no longer directly update the ac-
tion probabilities. Instead, they keep a vector of parameters @ € R", with



24 CHAPTER 2. STATELESS ENVIRONMENTS

one parameter u; corresponding to each action a;. From this parameter
vector the action probabilities are calculated, using some probability gen-
erating function g : A x R" — [0, 1]. Here g(a;, @) gives the probability of
selecting action a,. The advantage of this parameterisation is that it is eas-
ier to implement more complex update schemes for the parameter vector,
since it is not constrained to a probability vector. A common function used
to generate the action probabilities is the Boltzmann function:
— e
g(a;, @) = Zj o (2.15)
The basic PLA update scheme uses an adapted version of the REIN-
FORCE algorithm [Wil92]. This scheme defines a gradient descent pro-
cedure, which has the classic Lr_; learning rule as a special case. After
selecting action a; at time ¢ and receiving feedback b(t), a PLA will update
its parameters using following update:

st + 1) = us(8) + Ab(1)2 5“;_9 (a5, W) + N (us(8) + VAss(t)  (2.16)
with:
~K(x—L)>* z>1L
h(z) = 0 |z| <L (2.17)

~K(z+ L) z<-L

Here h/(z) is the derivative of h(z), {s;(t) : t > 0} is a set of i.i.d.
variables with zero mean and variance o2, ) is the learning parameter, o
and K are positive constants and n is a positive integer.

In this update rule, the first two terms implement the basic REINFORCE
gradient following rule. The third term was introduced to address issues
with the REINFORCE algorithm giving rise to unbounded solutions. It
keeps parameters bounded with |u;| < L. The final term is a random noise
term that allows the algorithm to escape local optima. PLA are mainly
used in settings containing multiple automata, where they offer stronger
convergence results than the basic Lr_; scheme. The precise convergence
properties of this learning scheme will be discussed in more detail in Sec-
tion 2.2.3.

2.2 Multi-Automata Systems

In the previous sections we considered the setting of a single automaton
interacting with its environment. While interesting, this model has only



2.2. MULTI-AUTOMATA SYSTEMS 25

limited practical applicability as it is relatively simplistic. In this section
we move to multi-automata systems, where several automata interact with
the same environment. We introduce the basic method for interconnecting
automata, called the automata game. In subsequent chapters we will use
this model to develop and analyse algorithms for more complex multi-state
environments.

Automata games view the LA as players in a strategic game from clas-
sical game theory. Their interactions can then be analysed using tools and
solution concepts from game theory. In the next section we give a brief
overview of these tools, before continuing with the analysis of automata
update schemes in multi-automata settings.

221 Game Theory Basics

The central idea of game theory is to model strategic interactions as a game
between a set of players. In this section we review basic game theoretic ter-
minology and define two common solution concepts in games: Nash equi-
libria and Pareto optimality. A detailed overview of normal form games
and their solutions can be found in [Gin00, OR99].

Definition 8 A normal form game is a tuple (n, Ay ., R1,... n), where
e 1,...,nisa collection of agents, also called players
o Ay, is the individual (finite) set of actions available to agent k.
o Ry : Ay x...x A, — Ris the individual reward function of agent k

The agents repeatedly play a game in which each agent k£ independently
selects an individual action a from its private action set A;.The combination
of actions of all agents at any time-step, constitute a joint action or action
profile d from the joint action set A = A; x ... x A,. For each joint action
a € A, R(d) denotes agent ks expected payoff .

In the two player case, normal form games are often represented by
their payoff matrix. An example of this can be seen in Example 1. In this
case the action selected by player 1 selects a row in the matrix, while that
of player 2 determines the column. The corresponding entry in the matrix
then gives the payoffs player 1 and player 2 receive for the play. Players 1
and 2 are also referred to as the row and the column player, respectively.

Depending on the reward functions of the players different classifica-
tions of games can be made. When all players share the same reward func-
tion the game is called a identical payoff or common interest game. If the total



26 CHAPTER 2. STATELESS ENVIRONMENTS

of all players rewards adds up to 0 the game is called a zero-sum game. In
the latter games wins for certain players translate to losses for other play-
ers with opposing goals. Therefore these games are also referred to as pure
competitive games. When considering games without special restrictions
we speak of a general sum game.

Example 1 (Normal Form Game)

| C D
C'| (55) (0,10)
D (10,0) (1,1)

The Prisoner’s Dilemma Game: 2 prisoners committed a crime together. They can
either cooperate (C) with each other and deny their crime (i.e. play the first action)
or defect (D) and betray their partner (i.e. play the second action). When only
one prisoner defects, he gets the maximum reward of 10, while the other one takes
all the blame for the crime and receives no reward. When they both cooperate, a
reward of 5 is received, otherwise they only get reward 1.

A strategy o, : A — [0, 1] is an element of 11(Ay), the set of probability
distributions over the action set Ay of player k . A strategy is called pure
if o;(a) = 1 for some action a € A; and 0 for all other actions, otherwise
it is called a mixed strategqy. A strategy profile & = (o1, ...,0,) is a vector of
strategies, containing one strategy for each agent. If all strategies in & are
pure it corresponds to a joint action @ € A. The expected reward for agent
k for a strategy profile & is given by:

Re(3) =Y [ oilaj) Re(@)
ach j=1

We can now introduce the concept of a Nash equilibrium:

Definition 9 Let ¢_j, denote the profile ¢ = (o1,...,0%,...,0,) minus the
strategqy oy, used by agent k. A strategy profile ¢ is then called a Nash equilib-
rium when we have for all k:

Ry(5) > Rx(G-1, U{0}}) V oy, € u(Ay)

where we use &_j, U {0}, } to denote the strategy profile equal to &, but with agent
k using oy, instead of oy.



2.2. MULTI-AUTOMATA SYSTEMS 27

A Nash equilibrium & is said to be pure when all strategies in & are
pure. From the definition it is clear that in a Nash equilibrium each agent is
playing a best response to the current strategies of the other players. This
means that, no player has an incentive to unilaterally deviate from this
strategy profile. Nash proved [Nas50] the existence of a (possibly mixed)
Nash equilibrium for any finite normal form game:

Theorem 1 (Nash,1950) Every finite normal form game has at least one Nash
equilibrium.

A Nash equilibrium represents a local optimum for self-interested agents,
since no agent can improve its payoff without the help of others. It does not,
however, consider group rationality and joint actions that result in higher
payoffs for all agents may exist. This leads to an alternative solution con-
cept known as Pareto optimality:

Definition 10 A strategy profile &1 is said to be Pareto optimal if there is no other
strategy profile o in which all players simultaneously do better and at least one
player is doing strictly better. The set of Pareto optimal strategies is called the
Pareto front.

So in a Pareto optimal solution it is not possible to improve an individ-
ual’s payoff, without making someone else worse off. Note that a Nash
equilibrium is not necessarily Pareto optimal and vice versa, a Pareto op-
timal solution is not necessarily Nash. This can be seen in the Prisoner’s
Dilemma Game of Example 1. The Nash equilibrium in this game is for
both players to defect (i.e. betray each other) and receive a reward of 1.
This equilibrium is not Pareto optimal, since both players could simultane-
ously do better if they both denied the crime. On the other hand, the Pareto
optimal solution where both agents play "cooperate” is not individually ra-
tional, since individually an agent can do better by switching to "defect’.

2.2.2 Automata Games

The basic method for interconnecting multiple automata is the automata
game. This model is based on the concept of normal form games described
above, with each automaton representing a player in the game.

In an automata game setting, multiple automata are connected to the
same, shared environment. The input to this environment is now a play of
all automata, rather than a single action. A play @(t) = (a1(t),...,an(t)) of
n automata is a vector of pure strategies chosen by the automata at stage



28 CHAPTER 2. STATELESS ENVIRONMENTS

b(t) = (bi(t),-..,ba(t))

a(t) = (ai(t),...,an(t)) g

H4zmZzoTl—<zm
I

——_>

Figure 2.2: Graphic representation of an n-player automata game

t, such that ay(t) is an element of the action set Aj of the kth automaton.
Correspondingly the outcome is now also a vector b(t) = (b1 (t), ..., bn(t)).
Each outcome b (t) can depend on the entire play @(t), not just on the ac-
tion selected by the corresponding automaton k. At every time-step all
automata update their probability distributions based on the responses of
the environment. Figure 2.2 gives a visual representation of an automata
game system.

This setting can be seen as a group of automata repeatedly playing
a normal form game. In contrast to the standard game theoretic setting,
however, players in the game are not aware of their opponents. All partici-
pants are considered to be ignorant, i.e. they update their action probabili-
ties without information concerning the number of other participants, their
strategies, actions or payoffs. In fact since they have no information regard-
ing other players, participants in the game need not be aware that they are
playing a game. From the point of view of an individual automaton, the
LA are facing a non-stationary environment rather than playing a game,
since they cannot observe their opponents. This setting is sometimes also
referred to as the unknown game model [Ban68]. Despite this lack of infor-
mation, we will in the next section see that LA still offer broad convergence
guarantees in games.



2.2. MULTI-AUTOMATA SYSTEMS 29

2.2.3 Convergence in Automata Games

In the case of common interest games we can extend the notion of e-optimality
to teams of automatons. Since all players in these games receive the same
payoff, joint actions which maximise the expected payoff for all agents are
guaranteed to exist. This means that the team of automata is said to be
e-optimal, if their payoff is within distance e of the maximum expected re-
ward, for arbitrary e. Since it is not possible to improve on the payoff of
the optimal joint actions, they are also pure strategy Nash equilibria of the
game. For the reward-inaction update following result has been shown:

Theorem 2 (Wheeler & Narendra, 1986) Let I be an identical payoff game among
n automata, all using identical Lp_1 schemes. If I has a unique pure strategy
Nash Equilibrium, then the collective of all learning automata is e-optimal.

However, in general, other possibly sub-optimal Nash equilibria can
exist. In this case the reward-inaction scheme can only guarantee conver-
gence to a pure Nash equilibrium and is only locally optimal. The selected
equilibrium in this case will depend on the initial probabilities of the au-
tomata.

Unfortunately, in general automata games the norms of behaviour de-
fined in Section 2.1.2 are ill-suited for the analysis of behaviour. This is
due to the fact that automata get individual rewards and therefore require-
ments such as (e—)optimality may not be achievable for all automata at the
same time. Instead we typically try to achieve convergence of the automata
team to a Nash equilibrium!. This means that no automaton alone can im-
prove its payoff by adjusting its strategy while other automata keep theirs
constant. Convergence results of this type are available for a wide range of
game settings. In two-person zero-sum games the Lr_; scheme converges
to the Nash equilibrium when it exists in pure strategies, while the Lr_.p
scheme is able to approximate mixed equilibria. As already mentioned
above, in n-person common interest games reward-inaction also converges
to a pure Nash equilibrium. In [SPT94], the dynamics of reward-inaction
in general sum games are studied. The authors proceed by approximat-
ing the update in the automata game by a system of ordinary differential
equations.? Following properties are found to hold for the Lz_; dynamics:

1Al’chough recent debate in the multi-agent community [SPG07] calls into question the
focus on Nash equilibria, it is still the most commonly used solution concept in MARL. In
Chapter 6 we shall discuss some methods of improving on equilibrium convergence.

*An overview of basic dynamic systems theory can be found in Appendix A.



30 CHAPTER 2. STATELESS ENVIRONMENTS

o All Nash equilibria are stationary points.
o All strict Nash equilibria are asymptotically stable.

o All stationary points that are not Nash equilibria are unstable.

Furthermore, in [Ver04] it is shown that an automata team using the
reward-inaction scheme will convergence to a pure joint strategy with prob-
ability 1. Together these results imply local convergence towards Nash
equilibria [Ver04]. The above results for the L r_; algorithm are summarised
in the following theorem:

Theorem 3 (Sastry,1995 - Verbeeck, 2004) In an n-player automata game with
each player using the L p_r update with sufficiently small learning rate, local con-
vergence towards pure Nash equilibria is established.

The parameterised learning automata described in Section 2.1.4 were
introduced to improve on the local optimality obtained by reward-inaction
in common interest problems. In [TP95] it was shown that the learning
scheme used by PLA converges weakly to the Langevin equation, imply-
ing that the algorithm globally maximises the reward function. However,
in order to keep solutions bounded, the parameters @ used by the automata
are restricted to a compact set. As such PLA may not be able to express
the optimal policy, but instead learn to maximise the reward function over
the compact set of parameters. This can be seen, for instance, when the
algorithm is used with Boltzmann action selection. Because the optimal
strategy in a common interest game is pure, the optimal reward is reached
as action parameters u go to infinity. As the parameterised LA update of
Equation 2.16 keeps parameters bounded with a predefined maximum ab-
solute value of L, this strategy cannot be expressed by the PLA. By setting
the boundaries L sufficiently large, however, the optimal strategy can be
approximated as as closely as is necessary. These results are summarised
in the following theorem:

Theorem 4 (Thatchahar & Phansalkar, 1995) Let I' = (n, Ay, ,, R) be an
identical payoff game among n automata, all using the PLA update scheme from
Equation 2.16. Then the automata will globally maximise E[R | ], subject to



2.3. SUMMARY 31

2.3 Summary

In this chapter we discussed automata learning in stateless environments.
We started by defining the basic concepts of a learning automaton and an
environment. This was followed by an explanation of how a single automa-
ton interacts with its environment and a discussion on the evaluation of an
automaton’s performance.

After providing some known results for the basic automata update schemes,
we move to multi-automata settings. We first gave a brief overview of
some basic game theoretic notions and then demonstrated how normal
form games can be used as a framework for multi-automata learning. We
finished the chapter with convergence results for these automata games.



32

CHAPTER 2. STATELESS ENVIRONMENTS



Chapter 3

Learning in Finite MDPs

In this chapter we move from the stateless environments considered in the
previous chapter, to problems where the environment can assume a finite
set of states. In these situations the learner is required not just to learn
a single action, but rather to sequentially select actions depending on the
current environment state. At each time step the action selected by the
agent produces a feedback and triggers a transition to the next state. The
ultimate goal is to maximise not just the immediate, but rather the long
term rewards.

In a realistic learning setting a learning agent will often face a dynamic
environment. The actions that an agent performs have an effect on its sur-
roundings and cause changes to which the agent must react. Decisions an
agent makes now may have a large impact on its future reward prospects
and the future state of the system. This also means that actions which the
agent preferred in the past, may no longer be applicable in the current state.
Therefore, in these settings, an agent’s goal is no longer to learn a single op-
timal action, but rather to optimise a sequence of actions, which take into
account the current state of the agent and its environment.

The sequential decision making problem described above can be for-
malised by the Markov Decision Process (MDP) model, which will be de-
scribed in detail in the next section. The MDP model has its roots in op-
erations research of the 1950s. It has since become the standard model
to describe a wide range of control and optimisation applications. Often
these MDPs are tackled by way of dynamic programming. Dynamic pro-
gramming algorithms use knowledge of the MDP’s state transition prob-
abilities and expected rewards to calculate an optimal solution. Most of
these approaches can be traced back to Bellman [Bel57], who formulated

33



34 CHAPTER 3. MARKOV DECISION PROCESSES

the optimality condition (the Bellman equation) for dynamic programming
in MDPs.

The dynamic programming approach can be contrasted with the learn-
ing approaches which are the focus of A.L research on MDPs. Here an
agent or learner no longer has explicit access to the underlying model of
the MDP. Algorithms which solve MDPs in this manner are collectively
referred to as reinforcement learning (RL). In a reinforcement learning set-
ting the agent has access only to a scalar feedback signal, which indicates
the reward for the last action taken. As such the learner has to use trial and
error to discover the effects of its actions and estimate their expected future
payoffs. In contrast with dynamic programming which is typically used to
compute an optimal solution off-line, reinforcement learning is generally
used on-line since it relies on direct experimentation to explore the envi-
ronment!. RL is closely related to dynamic programming however, and is
sometimes described as model-free dynamic programming, referring to the
lack of knowledge about transition probabilities and expected rewards.

The remainder of this chapter is structured as follows. We start by intro-
ducing the formal model that we shall use to describe these sequential de-
cision problems, the Markov Decision Process (MDP). Subsequent sections
will list some standard results for this model from reinforcement learning
theory. Finally, we show how learning automata can be used to find an op-
timal policy in MDPs and introduce the limiting game. This method allows
us to analyse multi-state LA algorithms by approximating their interactions
with a repeated automata game. This game can then be analysed using the
tools from game theory introduced in the previous chapter. The limiting
game view is not new [Wit77, WJN86], but has received little attention in
RL literature. We promote this view as it provides a useful tool and can
also provide a unified analysis for both single and multi-agent reinforce-
ment learning. This approach will play an important role in the remainder
of this dissertation. In the following chapters we will show how it can be
extended to multi-agent multi-state problems. We will demonstrate that
this formalism provides a useful tool for the design and analysis of multi-
agent algorithms. References for this chapter are: [Put94, BS98, WJN86]

! Although batch RL approaches which use stored data do exist. See for instance
[EGWO06]



3.1. MARKOV DECISION PROCESSES 35

3.1 Markov Decision Processes

We now introduce the formal model for the sequential decision problems
studied in this chapter. At every time-step ¢ = 1,2,... the system is de-
scribed by the current state s(¢) = s. The agent must select an action a(t)
from the set of possible actions for this state. The result of this action is that
the environment transitions to a new state s(t + 1) and the agent receives
a scalar reward r(t 4 1) for this transition. Additionally, it is assumed that
the probability for the transition and the expected reward associated with
it depend only on the current state and action. That is, the history of the
process before the current time step does not provide any supplementary
information if the current state is known.
Formally, a Markov Decision Process can be described as follows:

Definition 11 A (finite) Markov decision process is a tuple (S,A,R,T), where:
o S={s',...,sN} isa (finite) set of states.

o A : UsesA(s), where A(s) is the (finite) set of available actions in state
ses.

e T:5x AxS —[0,1] is the transition function, T (s, a, s") specifying the
probability of going to each state s’ when action a is played in state s.

e R:S5 x AxS — Ris the reward function, R(s, a, s') giving the expected
reward for the transition from state s to state s' under action a.

Additionally the process is assumed to obey the Markov property:

Definition 12 (Markov Property) A system is said to posses the Markov prop-
erty if the future behaviour of the process is independent of previous states, given
the current state:

T(s(t+1)|s(t),al(t),...,s(0),a(0)) =T (s(t+1)|s(t),alt))

A policy in the MDP is sequence 7 = {u(0), (1), ...}, where each p(t)
denotes a function which maps each state s to a probability distribution
over the action set A(s). Thus, each p(t) denotes the decision rule used
a time ¢ to select an action a(t). A policy = is called stationary or time-
independent when p(t) is constant over all ¢t and the same decision rule



36 CHAPTER 3. MARKOV DECISION PROCESSES

is used for all time steps. With the exception of Chapter 6 only stationary
policies are treated in this dissertation.

For a stationary policy 7, we use 7(s,a) to denote the probability of
taking action « in state s. When in all states s, 7(s,a) = 1 for some action a
and 0 for all other actions, the policy is said to be deterministic , otherwise
it is called stochastic. For deterministic (stationary) policies we also write
7(s) to indicate the action selected in state s under policy =.

The goal of the agent is to learn a policy which maximises the expected
future reward the agent receives. Several criteria can be used to define
the concept of future reward. In discounted MDPs rewards received at
future time steps are multiplied by a discount factor, in order to represent
the current value of future rewards. Starting from state s, the expected
discounted value for the process under a policy = is given by:

V™(s)=E" {nytr(t +1)]s(0)= s} 3.1
=0

Here 0 < v < 1is called the discount factor and the operator E™ denotes
expectation with regard to the policy 7.
Alternatively, in an average reward MDP, the agent attempts to optimise its
expected average reward over time:

U T 1 L d _
J"(s) = Th_r)réo TE {tzg r(t+1)]s(0) = s} (3.2)

The optimal policy 7* is defined as the policy which maximises the used
criterion for all states s. The corresponding optimal reward criteria are de-
noted as V* or J* respectively. It should be noted that, in general these
different criteria need not agree. Depending on which criterion is used, dif-
ferent policies can be optimal. This is the case since the discounted reward
criterion focuses more on short term rewards, while the average reward
only takes into account the long run behaviour of the process. However, in
any finite MDP a discount factor for which both criteria agree can be found
[Sch93].

Example 2 (MDP) As a simple example of an MDP we consider the Recycling
Robot Problem, based on the example by Barto and Sutton [BS98]. A mobile robot
is tasked with recycling cans in an office building. The robot has the necessary
systems for navigating the building, finding cans and recycling them. It has to
learn however, which high level strategy is most efficient. It can either actively
search for cans to recycle, or simply remain stationary and wait for people to bring



3.1. MARKOV DECISION PROCESSES 37

it cans. The robot runs on a rechargeable battery. When this battery runs low, the
robot can decide to return to its charging station in order to restore the battery to
full power. If the robot does not recharge in time, its battery dies and it needs to be
rescued. Below we describe this setting as an MDP.

wait r:2 (0.9) wait r:2 (0.9)
search r:10 (0.5) search r:10 (0.5)

wait r:2 (0.1)
search r:10 (0.5)

high >

recharge r:0 (1.0
search r:-3 (0.5)
wait r:-3 (0.1)

)

Figure 3.1: The recycling robot problem.

The system state is determined by the robot’s battery charge and can either
be s(t) = high or s(t) = low. The corresponding action sets are A(high) =
{search, wait} and A(low) = {search, wait, recharge}. Transition probabilities
and expected rewards are summarised in Table 3.1. Figure 3.1 gives a transition
diagram for the states of this problem.

In this problem 6 possible deterministic policies exist. Table 3.2 lists the ex-
pected discounted (v = 0.9) and average rewards for both states. The optimal
rewards for both criteria are listed in bold. As is clear from the table, in this case
both criteria agree on the optimal policy '(search,search)’. So the best strategy for
the robot is to always search for cans, even when it means that sometimes a penalty
for depleting its battery is incurred.

3.1.1 Properties of MDPs

Before proceeding with solution methods for MDPs, we give a short overview
of some relevant properties. These features are of importance mainly when
using the average reward criterion, as will be the case in the remainder of
this dissertation. A more detailed discussion of these facts can be found in
[Put94].



38 CHAPTER 3. MARKOV DECISION PROCESSES

st)=s|s(t+1)=5]| alt)=a | T(s,a,5') | R(s,a,s)
high high search 0.5 10
high low search 0.5 10
high high wait 0.9 2
high low wait 0.1 2
low high search 0.5 -3
low low search 0.5 10
low high wait 0.1 -3
low low wait 0.9 2
low high recharge 1.0 0
low low recharge 0.0 0

Table 3.1: Transition probabilities and expected rewards for the recycling
robot problem.

s V7 (high) | V™(low) | J™(high) | J™(low)
(search,search) 70.8 64.3 6.75 6.75
(search,wait) 40.2 27.0 2.29 2.29
(search,recharge) 69.0 62.1 6 .67 6.67
(wait,search) 22.1 24.5 2.25 2.25
(wait,wait) 15.5 10.5 1.75 1.75
(wait,recharge) 18.3 16.5 1.82 1.82

Table 3.2: Expected discounted reward and limit average rewards for all
deterministic policies in the recycling robot problem.

Markov Chains

The classification of MDPs is based on the underlying concept of Markov
chains. We will now give a short description of basic Markov chain theory.
For more information, we refer the reader to [Nor98]. A Markov chain
is a sequence of random variables {X(¢)}:>o taking values in a discrete
state space S. The transition probabilities T'(X (¢ + 1)| X (¢)) of the chain are
required to satisfy the Markov property as given in Definition 12, i.e. they
are independent of past states given the current state. We will only consider
stationary chains, in which transition probabilities are also independent of
time. In this case we can write p;; = T(X(t+ 1) = s/ | X(¢) = s') for the
probability of going to state s’ when we are in state s’. The Markov chain



3.1. MARKOV DECISION PROCESSES 39

can then be described by its transition matrix P = (p;j),i = 1,...,[S|;j =
1,...,]S]. Additionally, we can define the n-step transition probability as
pz(;-b) = Pr{X(t+n) = s/ | X(t) = s'}, i.e. the probability of going from s
to s7 in n steps.

A state s* of a stationary Markov chain is characterised based on the

probability of returning to that state after a visit, pz(i"). It is called transient if
there is a non-zero probability that the chain will never return to that state.
States that are not transient are called recurrent states. Equivalently, a state

is recurrent, if and only if:

ip%" ) =0
n=0

Additionally, if ged({n | pgln ) > 0}) = d (with d;1) then state ¢ is said to
be periodic> with period d. This means that when starting in state i at time
t, the chain has a positive probability of returning to this state only after an
exact multiple of d time steps have past, i.e at times ¢ + kd,k € N. When
d = 1, state s’ is called aperiodic.

A set of states C' is called closed when no state outside the set can be
reached from a state inside the set, i.e. p;z; = 0 for everyi € C and k ¢
C. When a closed set does not have any closed proper subsets it is called
irreducible. We now classify Markov chains based on their chain structure.
The structure of a Markov chain is determined by the partitioning if its
recurrent states into disjoint closed irreducible sets C;,¢ = 1,...,m. For
any (finite) Markov chain with state space S, we can write S as:

S=C,uCyU...UuC,uUT

Where the C; are the closed irreducible sets and T is the set of transient
states. Based on this partitioning Markov chains are classified as follows.
If S consists of a single closed set (i.e. m = 1 and T' = (), the chain is
irreducible. When S is finite and consists of a single closed irreducible set
together with a set of transient states, the chain is unichain . Otherwise the
chain is called multichain . In the following we will mainly deal with chains
that have the following property:

Definition 13 A Markov chain is ergodic if lim,, pz(?) = pj exists for all j,
independently of i with Zjes p; = land p; > 0,Vj. In this case (py, .- ,p‘*S|) is
called the limiting or stationary distribution of the Markov chain.

2gcd denotes the greatest common divisor.



40 CHAPTER 3. MARKOV DECISION PROCESSES

The necessary conditions for ergodicity are that the chain is irreducible
and the states are aperiodic®>. The stationary distribution of an ergodic
Markov chain can be calculated by finding the probability vector p'which
satisfies p'= pP. This stationary distribution is unique and independent of
the starting state of the chain.

Example 3 (Markov Chains) We now give a simple example of a Markov chain,
using a very simple weather model. Let X (t), represent the weather conditions on
day t. This variable can take values in the state space

S = {sunny(s), cloudy(c), raining(r)}. Transition probabilities indicate the
probability of observing a certain weather type tomorrow, given the current con-
ditions. We consider stationary transition probabilities specified by the following

matrix:
‘ S C T

5107 02 0.1
c|04 02 04
r{01 0.1 0.8

Entries in the matrix represent the probabilities for the next day given the
current weather. We can now analyse our model by looking at the Markov chain
X (t) giving the state of the weather on day t. Let p(t) denote the probability
vector giving the expected probabilities over the states at time t, i.e. p(t) contains
the probabilities of X (t) being sunny, cloudy or raining. Suppose we start on a
sunny day, which we represent as probability p(0) vector having a probability 1
for sunny:

ﬁ(O) = (17 0,0)

The probabilities for the weather on the next day X (1) are then given by:
7(1) = 5(0)P = (0.7,0.2,0.1)

So we have probability 0.7 of another sunny day and probabilities 0.2 and 0.1 for
clouds or rain, respectively For day 2 we get:

P(2) = p(1)P = p(0)P? = (0.58,0.19,0.23)
This process continues for time steps t = 3,4, .. .. In general, we have:

plt) = plt — )P = p(0) P’

3Although when studying periodic chains, it is possible to proceed by replacing the
limit in the definition with a Cesaro-limit.



3.1. MARKOV DECISION PROCESSES 41

Using the matrix P defined above, all states are recurrent (as we always have
a positive probability of going to each state) and aperiodic (since we can return
to each state in a single step), meaning that the chain is ergodic. We can now
calculate stationary probabilities for the states by solving: p'P = p. This results in
(rounded) probabilities (0.3636,0.1515,0.4848), i.e. the long term probability of
having a sunny day is about 0.36, independent of the starting state.
This result depends completely on the matrix P. For example if we were to use
following matrix:
|s ¢ 7
s 1.0 0.0 0.0
c|05 0.0 05
0.0 0.0 1.0

we obtain a multichain example. The state space can now be decomposed into
closed sets {sunny} and {raining} and the transient set {cloudy}. In this case
we arrive in either the state sunny or raining and never leave this state, since the
probability to stay is 1. The state cloudy is transient as we can never return to this
state after leaving it.

Classification of MDPs

When a fixed policy is played in an MDD, the sequence of states is a Markov
chain. For this reason MDPs are sometimes called controlled Markov chains.
Based on the properties of the Markov chains generated by the stationary
deterministic policies, MDPs can be divided into following classes:

o Recurrent: an MDP is recurrent if all states belong to a single recurrent
set under all stationary deterministic policies.

o Unichain: an MDP is if the Markov chain under all deterministic poli-
cies has a single recurrent set plus a (possibly empty) set of transient
states.

o multi-chain: an MDP is called multichain if at least one stationary pol-
icy generates multiple irreducible recurrent sets.

In this dissertation we will focus on the ergodic case, where the Markov
chains under all deterministic stationary policies are ergodic, also see As-
sumption 1 below. This case is a subset of the recurrent MDP case* above

“In fact since we can also deal with the periodic case(see previous footnote), many
authors do not distinguish between the ergodic and the recurrent case. See for example
[Put94, FVV97].



42 CHAPTER 3. MARKOV DECISION PROCESSES

and has some nice analytical properties. Firstly, since all states are recur-
rent, we are sure that every state is visited infinitely often, under any policy.
This is often a requirement for the convergence of learning algorithms. Sec-
ondly, as noted above we can determine a stationary distribution for the
Markov chain under any stationary policy . This distribution, over the
states s € S, denoted by d”(s), can be used to express the average expected
reward for the policy (defined in Equation 3.2) as follows:

JT = Zd”(s) Z (s, a) Z T(s,a,s")R(s,a,s) (3.3)

seS acA(s) s'eS

Where d"is the stationary distribution over the states under policy .
This expected average reward for a policy, is also constant over all states.
Furthermore in the ergodic case an optimal deterministic policy, which
maximises this reward always exists.

3.2 Reinforcement Learning

Reinforcement learning (RL) algorithms attempt to learn an optimal pol-
icy for an MDP, using only the reward signals obtained through repeated
interactions with the environment. RL approaches can be divided intro 2
classes. Value iteration algorithms learn the optimal value function. From
this learned value function an optimal policy can then be derived. Below
we introduce Q-learning, one of the most popular reinforcement learning
algorithms, which is an example of value iteration.

Alternatively, policy iteration algorithms directly build an optimal policy.
Generally they consist of two interleaved phases: policy evaluation and
policy improvement. During the policy evaluation phase the value of the
current policy is estimated. Based on this estimate the policy is the locally
improved during the policy improvement phase. This process continues
until no further improvement is possible and an optimal policy is reached.
The learning automata introduced in the previous chapter can be seen as
an example of simple policy iterators. In Section 3.3 we will show how
multiple LA can be used to develop a policy iteration RL algorithm for
MDPs.

Both policy iteration and value iteration reinforcement learning are de-
rived from their dynamic programming counterparts. However, as RL does
not assume a given model for the MDP, several new problems are encoun-
tered. One of the key issues in RL is that learners need to explore the en-
vironment in order to discover the effects of their actions. This implies



3.2. REINFORCEMENT LEARNING 43

that the agent cannot simply play the actions that have the current highest
estimated rewards, but also needs to try new actions in an attempt to dis-
cover better strategies. This problem is usually known as the exploitation-
exploration trade-off. Two basic ways exist to address this question.

On-policy methods estimate values of the policy that is currently being
used and attempt to improve on this policy. Since on-policy algorithms
also use the policy that is being learned for exploration, they can only im-
plement policies that include sufficient exploration while still learning. The
actor-critic methods discussed in Section 3.2.3 can be seen as an example of
this approach. In contrast, in off-policy methods the agent uses a behaviour
function or control policy, which differs from the goal policy that is being
learned. In this case the process is often divided in a learning phase dur-
ing which the optimal policy is learned, and a control phase during which
it is used for control. The Q-learning algorithm in the next section is an
example of this type of algorithm.

3.21 Q-learning

On of the most popular model-free approaches is Q-learning [WD92]. The
goal of the Q-learning algorithm is to learn optimal state-action values or
Q-values

Q"(s,a) = Elr(s,a) + 7V (st41) | s(t) = 5, a(t) = d] (3.4)

The Q-value Q™ (s, a) denotes the expected (discounted) value of return
for starting in state s, taking action a and following policy 7 thereafter. A
policy 7* is optimal when

Q*(s,a) = maxQ"(s,a), Vs € S, a € A(s) (3.5)
These Q-values can be seen to correspond to the value V' by noting that:

Vi(s) = ax, Q" (s,a) (3.6)

Given the optimal values @, an optimal policy can easily be formu-
lated by selecting the action with the highest Q-value in each state. The
Q-learning algorithm uses stochastic approximation techniques to make
successive estimates of the optimal Q)*. At each time step the system is
in a certain state s and the Q-learner performs an action a, selected by its
control policy. After performing action a, the Q-learner observes its im-
mediate reward r and the new system state s’. This information is then



44 CHAPTER 3. MARKOV DECISION PROCESSES

used to update the Q-value estimate for the state-action pair (s, a), using
the Q-learning update:

Q(s,a) + (1 =N)Q(s,a) + A\[r + Y max Q(s',d")] (3.7)

Where \ € (0, 1) is the learning rate, and v € [0, 1] is the discount factor.
Under quite general conditions it can be shown that the estimated values of
the Q-learning algorithm converge to Q* [Tsi94]. The complete Q-learning
algorithm is listed in Algorithm 1.

Algorithm 1 Q-Learning

initialise Q(s, a) to zero, Vs, a.

s < s(0)

loop
e Select an action a and execute it
e Observe immediate reward r and new state s’
e Update Q(s,a):

Q(s,a) « (1 = X)Q(s,a) + Alr + max Q(s',d')]

es« s
end loop

One of the key insights used in developing the Q-learning algorithm
is that the control policy used to generate actions need not correspond to
the greedy policy that is being learned by the algorithm. In fact provided
that it keeps updating all state-action pairs any behaviour policy can be
used [Tsi94]. Therefore Q-learning is an example of off-policy learning. To
meet the theoretical convergence requirements an control policy is required
to visit every state-action pair infinitely often. In practice, however, one
generally tests if the Q-values have stabilised and reduces the amount of
exploration accordingly as the algorithm proceeds.

3.2.2 R-learning

The Q-learning algorithm described above is able to learn a policy that
maximises the expected discounted future rewards in a wide range of set-
tings. It can also be used for undiscounted problems (i.e. v = 1), provided
that the Q-values are bounded. However, for undiscounted MDPs alter-
native approaches have been formulated, which are specifically tailored to



3.2. REINFORCEMENT LEARNING 45

such problems. Schwartz [Sch93] developed an algorithm called R-learning
for average reward MDPs. This algorithm, which follows the same tem-
plate as Q-learning, attempts to learn policies which maximise the average
reward, while preferring policies which give higher transient payoffs. The
algorithm attempts to learn relative values for the state-action pairs, called
R-values, instead of Q-values:

R™(s,a) =Y E™{r(t+k)—J" | s(t) = s,a(t) = a}
k=1

These values correspond to the transient difference in reward relative to
the average reward under policy 7, when starting from state s and taking
action a. While in the ergodic MDPs to which R-learning can be applied the
average reward J” is the same for all states under a policy , the transient
rewards R™ may differ. R-learning attempts to learn those optimal polices
which have the highest transient reward. To approximate the R-values it
replaces the Q-learning update in Algorithm 1 with following rule:

R(s,a) + (1 = X)Q(s,a) + M[r—J+ max R(s',a")]

Here ), is again a learning rate and J is an approximation of the average
reward for the greedy policy with respect to the R-values. This approxima-
tion is made by using following rule:

J = (1= A2)J + Ao[r + max R(s',a') — max R(s, a)]

whenever the updated R-value R(s, a) corresponds to max, R(s, a), with Ay
another a learning rate. While the algorithm has been thoroughly evaluated
empirically [Mah96], currently no convergence guarantees are known for
R-learning.

3.2.3 Actor-Critic Methods

Policy iteration methods learn optimal policies by iteratively improving the
current policy used by the learner. At each time-step the learner has a cur-
rent policy 7, which is used for action selection. This policy is then locally
improved by first evaluating the policy, and then finding states in which
the policy can be improved. In the original dynamic programming version
of policy iteration, policy evaluation was achieved by calculating the value
function V™ for the current policy. In RL methods, however, we can no



46 CHAPTER 3. MARKOV DECISION PROCESSES

_’Tor_]_

A

evaluation

state > Critic action

A

reward

Environment [«

D

Figure 3.2: Schematic overview of the actor critic framework.

longer directly compute this value, because we no longer have a model of
the environment. This limitation gave rise to the Actor-Critic framework.

Actor-critic methods are composed of 2 separate components. In addi-
tion to a representation of the current policy (the actor), actor-critic algo-
rithms also learn an evaluation of this policy (the critic). The actor part is
responsible for selecting actions based of the current policy. Rewards re-
ceived for select actions are given to the critic, however. The critic uses
these rewards to estimate the value function for the current policy. Based
on this value function, it provides a feedback to the actor, which can then
improve the policy. A schematic overview of this system is given in Fig-
ure 3.2.

In the next section we give an example of a simple implementation of
this framework, using learning automata. In such a system, the current
policy is represented by the set of all action probability vectors of all au-
tomata. A feedback for this policy is calculated by estimating the current
state-action values in each state.

3.3 Automata Learning in MDPs

We now show how a network of learning automata can be used to solve an
MDP in a completely decentralised manner. We focus on the algorithm for
average reward MDPs proposed by Wheeler and Narendra [W]JN86], but a
similar algorithm exist for the discounted case [Wit77].



3.3. AUTOMATA LEARNING IN MDPS 47

The basic idea is that each automaton is responsible for learning the
appropriate action in a single state. Control of the system passes from one
automaton to the next as the system changes states. When the automaton
in state s is activated, it selects an action a € A(s) according to its action
probability vector. The automata are not informed of the immediate reward
that is received after their action is performed. Instead, when the system
returns to a previously visited state s, the automaton receives 2 pieces of
information: the current time step and the total reward gathered up to the
current time step. These quantities allow the automaton to calculate Ar,
the reward gathered since the last visit to state s, and At, the time that has
passed since this visit. Both are added to the respective cumulative total
reward p(s, a) and time 7)(s, a), corresponding to the action a taken on the
last visit to state s. This action is subsequently updated using following
feedback:

p(s; a)
B = (3.8)
This feedback signal, together with the reward-inaction updated de-
scribed in Equation 2.3 are denoted by the authors in [WJN86] as learning
scheme T1. The complete algorithm, which we refer to as the Interconnected
Learning Automata (ILA) algorithm is listed in Table 2.
The average reward received for a policy depends on the structure of
the Markov chain generated by that policy. To apply the ILA algorithm
following assumption is made:

Assumption 1 (ergodicity) The Markov chain of system states generated by
each policy  is ergodic.

This assumption assures us that there are no transient states and that
for each policy a stationary distribution over all states exists. In [WJN86],
the authors show that, under Assumption 1 following result holds:

Theorem 5 (Wheeler & Narendra,1986) Associate an automaton LA;, using
update T'1, with each state of an N state MDP. Provided that the Markov Chain
corresponding to each policy 7 is ergodic, the learning algorithm is e-optimal.

The proof of this theorem relies on the following properties:

1. The asymptotic behaviour of the MDP-ILA algorithm can be approx-
imated by an identical payoff automata game.



48 CHAPTER 3. MARKOV DECISION PROCESSES

Algorithm 2 MDP-ILA
initialise rpyrey(5), tprev(S), Gprev ().t Tiot,p(s, @), N(s, a) to zero, Vs, a.
s < s(0)
loop
if s was visited before then
e Calculate received reward and time passed since last visit to state
st

Ar = Ttot — rprev(s)
At =1t — tprev(s)

e Update estimates for action ap,e,(s) taken on last visit to s:
(s, aprev(s)) = p(s, aprev(s)) + Ar

77(37 aprev(s)) = 77(37 ap?“ev(s)) + At
e Calculate feedback:

o p(S, aprev(s))
) = o apren®)

e Update automaton LA, using Lr_; update with a(t) = aprev(s)
and j(t) as above.

end if

e Let LA, select an action a.

e Store data for current state visit:

tprev(s) <t

Tprev(s) < Ttot
Aprev(S) < a

e Execute a, observe immediate reward r and new state s’
o5+ s
® Tiot < Ttot + T
ot +—t+1
end loop




3.4. LIMITING GAMES 49

m
J
—__>
LA2 -

\ A
4ZmMZZ013—<2Z2m

——_>

Figure 3.3: MDP automata algorithm as an automata game

2. The automata game corresponding to an ergodic MDP has a unique
equilibrium, corresponding to the optimal policy. This property is
explained in detail in the next Section.

3. According to Theorem 2 in Chapter 2, a team of automata using Lr_;
in an identical payoff game with a unique equilibrium, converges to
this equilibrium.

In the following section we explain in detail how this automata game
approximation is applied.

3.4 Limiting Games

Limiting games were introduced in [Wit77, WJN86] as a tool to analyse the
convergence behaviour of the MDP-ILA algorithm described above. The
purpose of a limiting game is to approximate the asynchronous updating
in a multi-state automata environment, by the synchronous interactions of
an automata game.

For a given MDP, its limiting game can be constructed as follows. The
automata used to select actions in each state of the MDP are the players in
the game. Each automaton has the action set corresponding to the available
actions in its state. This means that a play in the game selects an action for



50 CHAPTER 3. MARKOV DECISION PROCESSES

every state of the MDP and as such corresponds to a deterministic policy
for the MDP. At each time step, the joint strategy used by all automata in
the game maps action probabilities to each state and as such describes the
stationary policy currently used in the MDP.> The payoff received by play-
ers in the limiting game is exactly the expected average reward for the de-
terministic policy corresponding to the last play. Under the Assumption 1
noted in the previous section, the expected reward is the same starting from
all states, and can be calculated using Equation 3.3.

Definition 14 (Limiting Game) Given an ergodic MDP (S, A, R,T), the cor-
responding limiting game is an automata game (|S|, A, ||, R), where:

e 1,...,|S| are the automata playing the game, one for each state in S
o A; = A(s") is the action set of automaton i

e R(a) = J™ is the common reward function for all agents. Here for any play
a = (a1,...,ag)),  is the corresponding deterministic policy which has
7(s") = a;, with a; the action taken by automaton i in d.

Theorem 6 (Wheeler & Narendra,1986) For any ergodic MDP, the correspond-
ing limiting game has a unique, optimal equilibrium.

We now give an outline of the proof for this theorem, provided in [WJN86].
The proof follows the proof of convergence for policy iteration given by
Howard [How60]. Assume we have an ergodic, N-state MDP and let 7 =
(a1,...,an) be a non-optimal equilibrium point of its limiting game. Fol-
lowing Howard we can then calculate the relative state values v™(s’) for
states s’ under this policy by solving:

N
J" = q"(s") + ZT(si, ai, o™ (s%) — v (s?) (3.9)

j=1
Where ¢" (s') = Zj\;l T(st, m(s%), s R(s*, 7(s'),s’) and v™(sV) is set to
zero to guarantee a unique solution. Since 7 is non-optimal, a better policy
can be found using policy iteration. Assume that s’ is one of the states
where this better policy differs from 7. We can then build a policy 7/, which
differs from 7 only in state st by maximising following quantity over all

actions k € A(s%):

°In view of this relation between policies and strategies in the game, we will sometimes
use game theoretic terminology to describe policies as pure or mixed, instead of determin-
istic or stochastic as is more common in RL literature.



3.4. LIMITING GAMES 51

N
(s k) = ¢"(s%) + Z T(s',k,s7)v™(s7) — v™(s") (3.10)

j=1
Here the values v™(s?) are those calculated above for the original 7. One
property of the quantities 77 is that J™ = Zjvzl d™ (s7)r™(s7,7"), where d™
are the stationary probabilities under policy 7’ and 7™ (s?, 7') is the quantity
obtained by following policy 7’ in state s/, but using values v™ associated

with 7. Since we have maximised over all actions in state s*, we have:

(s 7)) > T7(s%,7)
()7 = (s, m), A
From this together with the observation that 77 (s/, ) = J it follows
that:

N N
JU = AN () () > Y dT () (T = T (34D
j=1 j=1

This means that the play 7’ gets a strictly higher payoff than 7, while
differing from 7 only in the action taken by player ¢. This contradicts the
assumption that 7 is an equilibrium point of the limiting game, since player
i can change its action to improve its payoff. This completes the proof that
only the optimal policy can be an equilibrium in the limiting game. O

The above results, together with Theorem 2, indicate that the linear
reward-inaction update scheme will converge to the unique equilibrium
in any limiting game corresponding to an ergodic MDP. To see that this be-
haviour is also valid for the asynchronous update scheme 7'1 described in
the previous section, we must compare the rewards in the limiting game,
with the actual rewards received using 7'1: s(w,t) = {S(t) | m = 7}. Since
these returns depend on ¢, the T'1 update is not the same as learning in the
synchronous game setting. However, in an ergodic MDP following prop-
erty holds: lim; ,o s(m,t) = J™ [WJN86]. So for sufficiently large ¢, the
ordering among s(7,¢) and J™ entries in the game will be the same and the
limiting game analysis will provide a good approximation of the MDP-ILA
algorithm’s behaviour. This implies that in order to get accurate conver-
gence in an MDP the learning rate used by the automata should be suffi-
ciently small, so that the returns for the current policy can be accurately
estimated.



52 CHAPTER 3. MARKOV DECISION PROCESSES

Additionally, Wheeler and Narendra [W]JN86] note that updates in the
scheme 7'1 used above occur asynchronously, as opposed to the standard
repeated game setting, where all players update synchronously. This does
not cause issues,however, as the ergodic assumption ensures that all au-
tomata continue to be updated. These observations allow us to conclude
that the limiting game analysis will provide an accurate prediction for the
behaviour of the M DP — ILA algorithm. Additionally, since Theorem 6
holds for all limiting games, we can conclude that the algorithm is optimal
in ergodic MDPs, without having to analyse the limiting games for specific
MDPs.

Example 4 (Limiting Game for a MDP) Consider again the recycling robot prob-
lem described in the previous example. We will now show how this MDP can be
cast as a limiting automata game. Since this problem has only 2 states, the cor-
responding game will have 2 automata players. Player 1 corresponding to state
high has 2 actions: search and wait. Player 2 corresponding to state low has 3
actions: search, wait and recharge. Each play in the game corresponds to one
of the deterministic policies in Table 3.2. Since the MDP is ergodic, the expected
reward starting from both states is the same. Table 3.3 shows the game in matrix
form (with rewards normalised to be in [0, 1] in order to apply Lr_1). The unique
pure equilibrium is indicated in bold. 1t is immediately clear that this equilibrium
corresponds to the optimal deterministic policy.

Player 2
search wait recharge
— search | 0.75 0.45 0.74
5 wait | 040 036 037

P

Table 3.3: Limiting game for the Recycling Robot problem from Example 2

3.5 Summary

In this chapter we treated single agent learning in multi-state environments.
In this setting an agent needs to learn a mapping or policy which deter-
mines the best action to take dependent on the current state of its surround-
ings. We defined the Markov decision process model which describes this
setting, and briefly discussed the reinforcement learning approach to solv-



3.5. SUMMARY 53

ing these problems. We then showed how a network of the learning au-
tomata, that were introduced in the previous chapter, can be used to find
optimal policies. Finally we showed that the behaviour of such an au-
tomata network can be predicted by analysing a corresponding automata
game.



54

CHAPTER 3. MARKOV DECISION PROCESSES



Chapter 4

Decentralised Learning in
Markov Games

After considering multi-agent, stateless problems and single agent, multi-
state problems in the previous chapters, we now move to the full multi-
agent, multi-state model. Introducing multiple agents to the MDP model
significantly complicates the problem agents face. Both rewards and changes
in the environment now depend on the actions of all agents present in the
system. Agents are therefore required to learn in a joint action space. More-
over, since agents can have different goals an optimal solution which max-
imises rewards for all agents simultaneously may fail to exist.

To accommodate the increased complexity of this problem we use the
representation of Markov games [Sha53]. While they were originally intro-
duced in game theory, Markov games were more recently proposed as a
standard framework for multi-agent reinforcement learning [Lit94]. As the
name implies, Markov games still assume that state transitions are Marko-
vian, however, both transition probabilities and expected rewards now de-
pend on a joint action of all agents. Markov games can be seen as an exten-
sion of MDPs to the multi-agent case, and of repeated games to multiple
states. If we assume only 1 agent, or that other agents play a fixed policy,
the Markov game reduces to an MDP. When the Markov game has only 1
state, it reduces to a repeated normal form game.

In recent years many different approaches have been proposed to tackle
Markov games. Most of these approaches focus on finding an equilib-
rium between agent policies, i.e. a situation in which no agent can single-
handedly improve its payoff. However, almost all of the systems currently
developed have either a very limited applicability, or lack convergence

55



56 CHAPTER 4. MARKOV GAMES

guarantees in all but the most restrictive cases. In Section 4.5 we give an
overview of current approaches, together with their applicability.

In this chapter we introduce our own Markov game algorithm. Our
goal is to develop a broadly applicable system, which nonetheless can be
assured to converge in self-play. The algorithm we propose is an extension
of the MDP-ILA algorithm of the previous chapter. Like MDP-ILA it learns
using only the basic reinforcement model. That is, agents only know the
actions they selected and their individual feedback signal. They do not
require any information on the actions or rewards of other agents present
in the system.

In addition to the new algorithm, we also extend the limiting game
analysis to multi-agent problems. We show how limiting games can be
calculated for Markov games, and how these games can be valuable tools
for the analysis and design of algorithms. Applying this analysis we will
show the convergence of the proposed Markov game algorithm. We will
see that for common interest Markov games, like for the MDPs in the pre-
vious chapter, we can approximate the problem by identical payoff au-
tomata game. However, due to the additional need for coordination be-
tween agents, we can only guarantee local optimality using the standard
reward-inaction update. In general Markov games we can still apply the
limiting game approximation, but the resulting games are now general sum
games. The convergence results of Chapter 2 assure us that the collective
automata can find pure equilibria in these games. Additionally, we will
show that the pure equilibria of the limiting automata game are exactly the
pure Nash equilibria of the Markov game.

The remainder of the chapter is structured as follows. We start out by
formally defining the Markov game framework and the common interest
special case of Multi-agent MDPs. Subsequently, we show how the MDP-
ILA algorithm can be extended to accommodate multiple agents. This is
followed by an extension of the limiting game analysis, which is first ap-
plied first to the common interest and then to the general Markov game
case. Finally, we use this analysis to demonstrate the convergence of the
extended ILA algorithm. We conclude the chapter with a discussion on
related work. References for this chapter are: [Lit94, BBDS08, VVNO08b,
VVNO8a]



4.1. MARKOV GAMES 57

41 Markov Games

An extension of the single agent Markov decision process (MDP) to the
multi-agent case can be defined by Markov Games [Sha53]. In a Markov
Game, actions are the joint result of multiple agents choosing an action
independently.

Definition 15 A Markov game is a tuple (n, S, A1, n, R1,..n,T), with:
o n the number of agents in the system.

o S={s',...,sN} afinite set of system states

Ay, the action set of agent k.

Ry : S x Ay x...x A, xS — R, the reward function of agent k

o T':Sx A x...x A, — u(S) the transition function.

Note that Ay (s?) is now the action set available in state s* for agent k,
withk : 1...nand i : 1,..., N. Transition probabilities T'(s%,d’,s’) and
rewards R¥(s?,a’, s’) now depend on a starting state s’, ending state s/ and
ajoint action from state s?, i.e. @ = (ai,...a}) witha}, € Ay (s’). The reward
function Ry (s%,d’,s’,) is now individual to each agent k. Different agents
can receive different rewards for the same state transition. Transitions in
the game are again assumed to obey the Markov property of Definition 12.

As was the case in MDPs, agents try to optimise either their future dis-
counted or their average reward over time. The main difference is that now
these criteria also depend on the policies of other agents. This gives follow-
ing definition for the expected discounted reward for agent k under a joint
policy 7

Vi(s) = ET {Z’ytrk(t +1)]s(0)= s} 4.1)
t=0
while the average reward for agent k is defined as:
1 T
JL(s) = Th_r)réo TE {; re(t+1) | s(0) = s} (4.2)
Expectations are now taken with respect to a joint policy 7@ = (7y,...,my),

which includes a policy 7, for every agent k. We will focus on the average



58 CHAPTER 4. MARKOV GAMES

reward criterion. We will again assume that the Markov Game is ergodic
in the sense that there are no transient states present and a limiting distri-
bution d7(s) on the states exists for all joint policies 7. We will only treat
non-randomised, stationary policies:

Assumption 2 (Markov game ergodicity) The Markov chain of system states
generated by each joint policy 7 is ergodic.

Let 7 = (m1,...,m,) denote a joint policy in which agent & uses the
(deterministic) policy 7, and 7(s") is the joint action played in state s’, i.e
7(s") = (m1(s"),...,m(s")). In this case the expected average reward for

agent k£ under 7 is the same for all states and can be written as follows:

N

JE=3"d7(s") Y T(s 7(s"), ') Ry(s, 7 ("), ) (4.3)

=1 j=1

Due to the existence of different reward functions, it is in general impos-
sible to find an optimal policy for all agents. Instead, equilibrium points are
sought. In an equilibrium, no agent can improve its reward by changing its
policy if all other agents keep their policy fixed.

Definition 16 Let 7@ = (m1,...,m,) denote a joint policy in a Markov game I in
which agent k uses policy mj, and let 7_j, denote the same joint policy without the
policy of agent k. 7 is an average reward Nash equilibrium of I if for all s € S
andk:1,...,n:

JTE () 2 JTH (s), val, € 10y
where Jy, is defined in Equation 4.2 and 11}, is the set of policies available to agent
k.

In general, a Markov game using the average reward criterion in Equa-
tion 4.2 does not necessarily have an equilibrium point in stationary (i.e.
non-history dependent) policies. Examples of Markov games which only
have equilibria in history dependent strategies can be found [Gil57]. It can
be shown however that Markov games, satisfying Assumption 2 have at
least one equilibrium in stationary policies [Sob71]. This equilibrium need
not consist of pure policies, however.

In a special case of the general Markov game framework, the so-called
team Markov games or multi-agent MDPs (MMDPs) [Bou96] optimal poli-
cies still exist. In this case, the Markov game is purely cooperative and all



4.1. MARKOV GAMES 59

agents share the same reward function. This specialisation allows us to de-
fine the optimal policy as the joint agent policy, which maximises the payoff
of all agents.

Definition 17 (Multi-agent MDP) A Multi-agent Markov Decision Process is
a cooperative Markov game (n, S, A1, n, R,T) in which all agents share the same
reward function R.

Because the agents share the same transition and reward function, one
can think of the collection of agents being a single super agent with joint
actions at its disposal and whose goal is to learn the optimal policy for the
joint MDP.

Since the agents’ individual action choices may be jointly suboptimal,
the added problem in MMDPs is for the agents to learn to coordinate their
actions so that joint optimality is achieved. The value of a joint policy
7 = (m1,..., ) with 1 the policy of agent £ can still be defined by Equa-
tion 4.3, but is now the same for all agents.

Under Assumption 2, it is sufficient to only consider joint policies in
which the agents choose pure strategies. This can easily be seen, as the
problem can be reduced to an ergodic MDP by considering the super agent
view described above. As noted in the previous chapter an optimal, deter-
ministic policy always exist for these MDPs. Moreover, since no agent can
improve on the payoff of this optimal joint policy, it will also be a pure Nash
equilibrium for the MMDP. Unfortunately, the MDP approach used in the
Chapter 3 can only be applied if we allow centralised control of all agents.
As we are specifically considering multi-agent systems, this approach is
generally not applicable. In this chapter we shall examine the difficulties
that we encounter when moving from centralised control to a decentralised
system with multiple independent agents.

Example 5 (Markov game) Consider again the recycling robot problem from
Chapter 3. We now add a second robot to the problem. The first robot has ex-
actly the same actions as in the original problem: search (s), wait (w) and recharge
(r). The second robot can choose either to aid the first robot (a) or wait for cans to
recycle (w). Robots recycle the most when one goes out to search and one waits for
the other robot to bring it cans. In this situation, the robot who goes to search gets a
slightly lower reward since in expends more energy. If both robots go out to search
they hinder each other and receive lower rewards. Similarly if both simply wait
around, they collect less cans. Both robots get a reward depending on the amount
recycled.



60 CHAPTER 4. MARKOV GAMES

(s,a) r:1/3,1/3 (0.3) (s,a) r:1/3,1/3 (0.3)
(w,a) r:1,2/3 (0.1) (w,a) r:1,2/3 (0.1)
(s,w) r:2/3,1 (0.9) (s,w) r:2/3,1 (0.9)
(w,w) r:1/3,1/3 (0.5) (w,w) r:1/3,1/3 (0.5)

s,a) r:1/3,1/3 (0.7)
w,a) r:1,2/3 (0.9)
s,w) r:2/3,1 (0.1)
w,w) r:1/3,1/3 (0.5)

(
(
(
(

»
|

high

s,a) r:0,0 (0.7)
w,a) r:0,0 (0.9)

(

(w,

(r,a) r:0.3,0.3 (1.0)
(s,w) r:0,0 (0.1)
(w,w) r:0,0 (0.5)
(r,w) r:1/6,1/6 (1.0)

Figure 4.1: State diagram for the example Markov game.

To simplify matters we do not consider the battery level of the second robot
(for example because it is solar powered). Thus the resulting still has 2 states
corresponding to the battery level of the first robot (i.e. high or low). When in the
‘low” state robot 1 has the option to choose action recharge to immediately return
to state "high’. If it does not recharge but depletes its batteries, it is rescued and
returned to state "high” but both robots are punished with a reward of 0.

The resulting problem is depicted in Figure 4.1. Here arrows indicate state
transitions. The labels on the arrows give the transition probability and expected
rewards for both robots (r) when this transition is made under each joint action.

4.2 Learning in finite Markov Games

In this section we extend the ILA-model of the previous chapter to the
framework of Markov games. Instead of putting a single learning automa-
ton in each state of the system, we propose to put an automaton LA (k,1)
in each state s° withi : 1,..., N, for each agent k, k : 1,...,n. At each time
step only the automata of a single state are active; a joint action triggers
the LA from that state to become active. Each automaton then individually
selects an action. The resulting joint action triggers the next state transition
and immediate rewards.



4.3. LIMITING GAME ANALYSIS 61

As before, LA (k,i) active for agent k in state s’ is not informed of
the one-step reward R(s’,a’, s’) resulting from choosing joint action @’ =
(ai,...,al) with @i € Ai(s') in s* and leading to state s/. When state s is
visited again, all automata LA(k,7), k : 1,...,n presentin this state, receive
two pieces of data: the cumulative reward r, gathered by agent k up to
the current time step and the current global time ¢. From these, all LA(k, 7)
compute the incremental reward Arj generated for agent k since this last
visit to the state and the corresponding elapsed global time At. These val-
ues are then added to the cumulative totals for the action aj:

prai) < prlay) + Ary
me(ay,) < ne(ay) + At
Here a}, is the action that agent k chose as part of joint action a’ that
was selected when the state s* was visited the last time. The environment
response L A(k, i) receives for selecting aj, is exactly the same as in the MDP
version of the algorithm, but now calculated for each agent separately:

Br(t) = pk(a%) (4.4)
Nk (%)

The complete algorithm is listed in Algorithm 3.

4.3 Limiting game analysis

In this section we extend the limiting game analysis to Markov games. This
extension allows us to depart from the traditional state-action value per-
spective on Markov games, and instead to view them as repeated normal
form games. We also show how we can examine the problem at different
levels, to better understand the issues at hand.

First, we will examine the special case of MMDPs were all agents share
the same payoff function. Three different viewpoints emerge; the single su-
peragent view, the agent view and the LA-game view. Each of these views
considers the problem at a different level, introducing additional complex-
ities that arise at that level. The superagent view is concerned only with
selecting the optimal joint action at each state and (unrealistically) assumes
that centralised control of the agents is feasible. In the agent view we study
the interactions between individual agent policies and the coordination re-
quired between agents to find the optimal joint policy. The lowest level LA



62 CHAPTER 4. MARKOV GAMES

Algorithm 3 MG-ILA
initialise 7prev (S, k), tprev(s), Qprev(s, k)t Tot(k),pr (s, a), nk(s,a) to zero,
Vs, k,a.
s < s(0)
loop
for all Agents k do
if s was visited before then
e Calculate received reward and time passed since last visit to
state s:

Ark = Ttot(k) - Tprev(sa k)
At =t — tpren(s)
e Update estimates for action ap,c, (s, k) taken on last visit to s:
Pk(8; aprev(8, k) = pr(s; aprev (s, k)) + Ary,

nk(s’aprev(s’ k) = nk(s’aprev(sa k) + At
e Calculate feedback:

o pk(s, aprev(sa k))
ﬁk(t) N ﬁk(s,aprev(s’k))

e Update automaton LA(s,k) using Lr_; update with a(t) =
aprev (S, k) and S (t) as above.
end if
e Let LA(s, k) select an action ay.
end for
e Store data for current state visit:

tprev(s) <t

Tprev(sa k) < Ttot(k)
Aprev (S, k) <+ ag

e Execute joint action @ = (ay, ..., a,), observe immediate rewards 7
and new state s’
o5+ s
o 1yt (k) < ror(k) + 1
ot +—t+1
end loop




4.3. LIMITING GAME ANALYSIS 63
View Players Action set Applicability
Super agent | 1 player per state | joint action set | Only MMDPs
in each state:
XAk (s)
Agent 1 player per | agent’s pure poli- | MMDPs and
agent cies: X Ag(s) Markov Games
Automata |1 player per | agent’s action | MMDPs and
state-agent com- | set in each state | Markov Games
bination Ak (s)

Table 4.1: Overview of the different limiting game views. Each view analy-
ses the problem at a different level. The table lists for each view the players
and corresponding action sets in the limiting games as well as the problems
to which this view is applicable.

view, not only deals with the coordination between agents, but also exam-
ines the interplay between state level action selections of the same agent.

As will become clear later, when applying the same analysis to general
Markov games we lose the superagent perspective, but we are still able to
study the agent and LA views. Table 4.1 lists the different views together
with their applicability and describes the normal form game they use to
study the problem.

We also show that under the Assumption 2, the agent and LA game
view share the same pure equilibrium points. Using this result we can
apply the automata game convergence proofs from Chapter 2 to show the
convergence of our extended MG-ILA algorithm to a pure equilibrium.

4.3.1 MMDPs

Since the utility of a state in an MMDP is the same for all agents, the prob-
lem can be stated as an MDP in which the actions in each state are the joint
actions of the agents. This means that a pure optimal policy in which all
agents maximise their pay-off can still be found, using the MDP-ILA al-
gorithm of the previous chapter. The use of this model is possible only
if we assume that the agents are of one mind and select a joint action to-
gether. However this assumption is far from realistic. In general, agents are
independent and select their actions individually. This complicates learn-
ing considerably since individual agent actions may be jointly suboptimal.



64 CHAPTER 4. MARKOV GAMES
Therefore an important issue in learning MMDPs, is that of coordination.

Example 6 (MMDP) As an example of an MMDP we consider the 2-robot recy-
cling problem from Example 5, but with both agents having the reward function
listed in Table 4.2. The problem states, transitions and actions are kept identical to
the previous example. The main difference is that now both robots receive the same
reward for each transition. Despite this fact, we will show that local optima can
still occur and both robots need to coordinate to achieve the optimal payoff.

St St+1 a R(St,ﬁ, St+1)
high | low (search,aid) 0.25
high | low (wait,aid) 0.75
high | low | (search,wait) 1.0
high | low (wait,wait) 0.25
high | high | (search,aid) 0.25
high | high (wait,aid) 0.75
high | high | (search,wait) 1.0
high | high (wait,wait) 0.75
low | low (search,aid) 0.25
low | low (wait,aid) 0.75
low | low | (search,wait) 1.0
low | low (wait,wait) 0.25
low | high (search,aid) 0
low | high (wait,aid) 0
low | high | (recharge,aid) 0.3
low | high | (search,wait) 0
low | high (wait,wait) 0
low | high | (recharge,wait) 0.1

Table 4.2: Common rewards for state transitions in the recycling robot
MMDP.

Single Super Agent View

We start by examining a centralised view on the Markov game. While this
may not correspond to a realistic multi-agent learning setting, it is nonethe-
less interesting to see what can be achieved when coordinated selection of
join-actions in each state is possible. When we (unrealistically) assume that



4.3. LIMITING GAME ANALYSIS 65

the agents are of one mind, we can think of a single super agent being ac-
tive. The joint actions of the MMDP are the actions of the super agent. In
this case, the problem reduces to an MDP and can be solved by the model
of Chapter 3, i.e. put one learning automaton in each action state. We can
now look at the limiting game for this MDP, which we will call the super-
agent view of the MMDP. The resulting game will have a player for every
state. The action set for player i is the joint action set A;(s?) x ... x A,(s?)
of the corresponding state s’. A play in this game selects a joint action

a = (ai,...,a}) for every state s'. Such a play @ = (a',...,a") can be
seen to correspond to a deterministic joint policy 7 = (71,...,7,) where
T(s") =a'.

Definition 18 The super-agent view of an MMDP (n, S, A; . n,R,T) is the
limiting game for the MDP (S, A, R, T') with:

A(sY) = Ai(s') X ... x Ap(s') Vste S

The MMDP in Example 6 is then approximated by a 2 player identical
pay-off game, i.e. 2 player because there are 2 states. Player 1 corresponds
to state high and has action set {(search, aid), (wait, aid), (search,wait),
(wait,wait)} consisting of all possible joint actions in this state. Player 2
corresponds to state low and can perform the same actions, in addition to
actions (recharge, wait) and (recharge,aid). The rewards in the game are
given by the long-term expected reward per time step. In total 24 pure joint
policies are possible. This game is given in Table 4.3. One can see that only
optimal equilibria are present.

As proved in Theorem 5, the interconnected learning model of Sec-
tion 3.3 will find the optimal joint policy of the problem, i.e the super agent
chooses joint action (search, wait) in both states low and high.

The multi-agent View

In the multi-agent view, we no longer assume that agents jointly select their
action in each state. In this view we examine the outcomes of joint policies
from the perspective of the agents. The entire Markov game is represented
as a single normal form game in which each agent has its deterministic
policies in the Markov game as actions in the repeated game. Note that
despite the fact that we have different players and action sets, a play in
this game still corresponds to a joint (deterministic) policy for the Markov
game. The reward each player receives for such a play is again the reward
for the joint policy as given by Equation 4.3.



66 CHAPTER 4. MARKOV GAMES

state : low

=
= ~ S g = 8
S S So = g S
< S} S < =] S
S = = N ] =
S S S S s S
2 = = =2 = S

(search,aid) | 0.1625 0.1734 0.2706 0.8187 0.1771 0.1882
(wait, aid) 0.3703 0.4125 0.5368 0.8850 0.3482 0.4421
(search,wait) | 0.9364 0.9075 0.9364 0.9500 0.8542 0.9182
(wait,wait) | 0.1771 0.1875 0.2667 0.8850 0.1875 0.2000

state: high

Table 4.3: An identical payoff game with 2 players that approximates the
single agent view of the MMDP of Example 6. The unique equilibrium is
indicated in bold.

We will see that by decentralising decision making over the agents,
we lose the global optimality of the super-agent view. In this view of the
Markov game suboptimal Nash equilibria can occur, due to miscoordina-
tions of the agents. The pure Nash equilibria given in this view are exactly
the pure equilibria of the Markov game as given by Definition 16.

Definition 19 The multi-agent view of an ergodic MMDP game (n,S,A,R,T) is a
normal form game (n,I1; 5, J), where:

e eachagent k : 1,...,n in the Markov game corresponds to a player.

o each player k has its set of possible deterministic policies Il in the Markov
game as action set.

e the reward received by all players for a play @ = (m1,...,m,) is J* as
defined by Equation 4.3

This means that the underlying game played now depends on the agents’
individual policies. Consider the agent game for Example 6. Again this
game is a 2-player identical payoff game. But here we have a 2-player
game, because we have 2 agents. Player one corresponds to the first agent
and can take actions [search, search], [search, wait], [wait, search|, [wait,
wait], [search, recharge] and [wait, recharge]. Player 2 corresponds to the
second agent and has access to actions [aid, aid], [aid, wait], [wait, aid] and



4.3. LIMITING GAME ANALYSIS 67

[wait, wait]. Note that here [a;, a3] denotes a policy instead of a joint action,
i.e. the agent takes action a; in state high and action as in state low.

In Table 4.4 we show the game matrix for the MMDP in the example.
Surprisingly, in this game, 4 equilibria are present of which 1 is optimal
and 3 are sub-optimal. While, as is shown in Theorem 6, in the super agent
view only optimal equilibria can appear, this is clearly not the case in the
multi-agent view.

It should be noted that in the agent view we are looking at the pos-
sible outcomes for deterministic policies of the agents. This analysis is no
longer valid when one considers stochastic policies and mixed strategies of
the game. This is due to the fact that mixed strategies in the multi-agent
view need not correspond to stationary strategies. Consider for example
the game given in Table 4.4. A mixed strategy in this game where the agent
1 plays each of the policies (wait,wait) and (search,search) 50% of the time,
i.e. either select ‘'wait” in both states or select ‘search” in both states. This
strategy cannot be implemented in the Markov game by using stationary
policies. Any policy which randomises the action selection based only on
the system state will result in sometimes combining action ‘wait” with ac-
tion ‘search’. Thus while the pure strategies of the agent view correspond
to the (stationary) deterministic policies of the Markov game, this is not
always the case for mixed strategies. In subsequent chapters we will con-
sider a method for implementing non-stationary policies corresponding to
mixed strategies of the agent game.

agent2

policies [aid, aid] |wait,aid] [aid,wait] [wait, waits]
—  [search, search] 0.1625 0.8844 0.8187 0.9500
= [wait, search] 0.3703 0.1771 0.8850 0.7917
%o [search, wait] 0.1734 0.9075 0.1771 0.8542
[wait, wait] 0.4125 0.1875 0.3482 0.1875
[search,recharge] | 0.2706 0.9364 0.1882 0.9182
[wait, recharge] | 0.5368 0.2667 0.4421 0.2000

Table 4.4: An identical payoff game with 4 actions that approximates the
multi agent view of the MMDP of Example 6. Equilibria are indicated in
bold.



68 CHAPTER 4. MARKOV GAMES

The Learning Automata View

The third and last view we have on the control problem is the automata
view. In this view we consider the game between all the learning automata
that are present in the different action states, using the MG-ILA algorithm.
This limiting automata is the direct extension of the limiting game for the
MDPs of Chapter 3.

Each player in the game is again an automaton. The difference with the
MDP case is that instead of a single player per state, we now have n players
for each state, one representing each agent. A player (k,i) representing
agent k in state s, has the corresponding action set A (s’) available. This
means that a play in this game results in 1 action for each agent, for each
state and so is again a joint policy (as was also the case in the previous
views). Rewards for a play are again given by calculating the expected
average reward as given by Equation 4.3. In the MMDP case this means
that all automata receive the same payoff for a joint policy. Unfortunately,
as was the case in the agent view, the unique equilibrium property of MDPs
no longer holds and sub-optimal equilibria can occur. In the next section
we will show that this view shares the same pure equilibria with the multi-
agent view and that the ILA model is able to find an equilibrium policy of
the Markov game.

Definition 20 The automata view for an MMDP (n, S, Ay, n, R, T) is the lim-
iting automata game (n x |S|, A}:::::‘f', J) with:

e One player (k, i) corresponding to each possible state-agent pair (k, s*).

o Al = Ay(s") the action set of player (k, 1)

e J7 the reward all players receive for a play 7.

For the MMDP of Example 6 this results in a 4 automata game. The
complete game is shown in Table 4.5. For reasons of clarity we abbreviate
each action to its first letter. Players are indicated by the agent and state
combination they represent, i.e. (2,1) is the automaton used by agent 2 in
state low.

4.3.2 Markov Games

In this section we extend our approach to general Markov games. In these
games each agent k has its own reward function Rj. The expected individ-
ual reward Jj, of agent k can now be calculated by using Equation 4.3.



4.3. LIMITING GAME ANALYSIS 69

(D),h,eD,eh) | J* || @hah.eheh)| J*
(S,S,AA) 0.1625 (S,S,A,W) 0.8187
(W,S,A,A) 0.3703 (W,S,A,W) 0.8850
(S,W,A,A) 0.1734 (S,W,A,W) 0.1771

(WW,A,A) 0.4125 (W,W,A, W) 0.3482
(S,R,A,A) 0.2706 (S,R,A,W) 0.1882
(WR,A,A) 0.5368 (WR,A,W) 0.4421
(S,S,W,A) 0.8844 (S,S,W,W) 0.9500
(W,S,W,A) 0.1771 (W,S,W,W) 0.7917
(SWW,A) 0.9075 (S,W,W,W) 0.8542
(WW,W,A) 0.1875 (W,W,W,W) 0.1875
(S,R,W,A) 0.9364 (S,R,W,W) 0.9182
(WR,W,A) 0.2667 (WR,W,W) 0.2000

Table 4.5: An identical payoff game between 4 players that approximates
the LA view of the MMDP of Example 6. Equilibria are indicated in bold.

Since there is no longer a single reward function we cannot treat the
problem as a single agent MDP anymore, and the single agent view of the
previous section is no longer applicable.

It is still possible, however, to approximate the Markov Game using the
agent and learning automata views. The definitions of both limiting games
can easily be extended to include individual rewards. The corresponding
definitions are given below in Definition 21 (agent view) and Definition 22
(LA view). The main difference with the MMDP section is that the resulting
approximating games are no longer common interest, but rather conflicting
interest. In the agent game, each agent can now get a different reward for a
joint policy. In the automata game, automata belonging to the same agent
k all get the same payoff Jj;, while those belonging to different agents can
get different rewards. In the next section we give convergence results for
MG-ILA for these more general games, which include the MMDPs of the
previous section as a special case.

Definition 21 The multi-agent view of an ergodic Markov game (n,S,A1.. n,
Ry .. »,T)is a normal form game (n, 11y p,Jp

-----

o cachagent k : 1,...,n in the Markov game corresponds to a player.

o cach player k has its set of possible deterministic policies I, in the Markov
game as action set.



70 CHAPTER 4. MARKOV GAMES

Jﬁ"
1
LA
- >
N (e €20 iy :
> -
< v
LA . |
(,1sl) 7= (m,...,m)| R
—» O
N —
M
E
N
T
LA
c (n,1) Tn
T
8, T
<
Jﬁ"
n

Figure 4.2: Game representation of the automata Markov game algorithm.

o the reward received by player k for a play 7 = (1, ..., m,) is J as defined
by Equation 4.3

Definition 22 The automata view for a Markov game (n, S, A1, n, Ri,. n,T)1s
the limiting automata game (n x |S|, A}::::'ns‘, J) with:

e One player (k, i) corresponding to each possible state-agent pair (k, s*).
o Al = Ay (s") the action set of player (k, i)

o JT the reward all players (k,i),4 : 1,..., N receive for a play 7.

The resulting limiting game for the multi-agent view is shown in Fig-
ure 4.6

4.3.3 Theoretical Results

In this section we theoretically examine the convergence properties of the
MG-ILA algorithm. We do this by showing a correspondence between the



4.3. LIMITING GAME ANALYSIS 71

agent2
policies [aid, aid] |wait,aid] [aid,wait] [wait, wait]
— [search, search] 0.2167 0.5958 0.5667 0.6333
€ [wait, search] 0.4937 0.2361 0.6400 0.5556
§D [search, wait] 0.2313 0.6100 0.2361 0.5833
[wait, wait) 0.5500 0.2500 0.4643 0.2500
[search,recharge] | 0.3196 0.6333 0.2647 0.6212
[wait, recharge] 0.6684 0.3222 0.6053 0.2778
agent?2
policies [aid, aid] |wait,aid] [aid,wait] [wait, wait]
— [search, search] 0.2167 0.8875 0.8292 0.9500
2 [wait, search] 0.3479 02361  0.8767  0.8056
8 [search, wait] 0.2167  0.9067 0.2361 0.8611
[wait, wait) 0.3667 0.2381 0.3452 0.2500
[search,recharge] | 0.3196 0.9364 0.2647 0.9242
[wait, recharge] 0.4930 0.3222 0.4298 0.2778

Table 4.6: A conflicting interest game with 4 actions that approximates the
multi-agent view of the Markov game of Example 5. The first matrix gives
payoffs for agent 1, the second for agent 2. Equilibrium payoffs are indi-
cated in bold.

pure equilibria of the agent view and LA view limiting games. Because
of this correspondence, we can use MG-ILA to search equilibria at the au-
tomata level, and still be assured that the equilibrium that is found, is also
an equilibrium between agent policies. We only treat the general Markov
game case, since results for this case also hold for MMDPs as a special case.

Note first that a play for the LA-view is automatically also a play for the
agent view. The same notation can be used, only the interpretation is differ-
ent. A play in the multi-agent view gives for each agent a set of individual

actions, one for each action state: Tpuiti—agent = (71,-..,m,) wWith m, =
[ai,...,ad]. Inthe LA-view a play is composed of an individual action for
each LA in the system. Assuch @4 = (ai,...,ad,ad,...,ad,...;ak, ... a)

which is exactly the expansion of my,ti—agent- As note above, both these
plays correspond to a deterministic joint policy for the Markov game.
We can now state the following:



72 CHAPTER 4. MARKOV GAMES

Theorem 7 Given a Markov Game I = (n, S, A1, n, Ri,...n,T). Assume that
the Markov Chain, corresponding to each joint policy 7 is ergodic. If 7 is a pure
equilibrium policy in the multi-agent view, 7 is also an pure equilibrium policy for
the LA-view and vice versa.

Proof:

First we note that an equilibrium in the agent game must always be an
equilibrium in the LA game. This is easy to see, because a learning automa-
ton switching its action corresponds to a single agent changing its policy in
a single state. So in any situation where no agent alone can improve its ex-
pected reward by changing policies, it must also be impossible for a single
learning automaton to improve its payoff.

Now suppose that # = (71, ...,m,) is an equilibrium for the LA game
view but is not an equilibrium point for the agent game view. This means
no automaton alone can improve its payoff by switching to another action.
To get out of the equilibrium at least 2 LA should change their action choice.
However since we assumed that 7 is not an equilibrium point in the agent
view, it is possible to find a single agent & that can improve its payoff simply
by changing its strategy 7 = [a},...,al |. Because of the above, it has to
do this by changing the actions of 2 or more different LA. For simplicity
assume that agent k changes its strategy in state s’ and state s/ with i # j1
and call this new strategy 7} = [b},...,bY].

Denote 7_j, to be the joint policy 7 without the policy of agent £ and
(7_k(s%), ) with 75 € Ag(s!) x ... x Ag(sV) the joint policy in which all
agents play follow 7, except agent £ who follows policy 7;. Furthermore
define (7_j(s"),a})) as the joint action in state s’ where all agents follow 7
but agent k plays action axj, € Ay (s'). Then by construction we have that
for 1y = [a},...,al] and 7, = [bl,...,bY], the following holds: ai # b,
al £b,V:1. NI# i,j:al =bf and J" 7 5 jFrm),

We will now show that 7 cannot be an equilibrium of the automata
game, by showing that agent £ can change its policy in exactly 1 state (i.e.
let 1 LA change its action) and receive a strictly higher payoff. Remember
thatI' = (n,S, A1 n, Ri,. n,T)is the Markov game under consideration.
We now construct a corresponding MDP T'y, = (S, Ax, R',T") where:

e I' and I';, have the same set of states S

o A; is the action set of agent & in the Markov game.

!The case where 3 or more automata should switch their action is analogous.



4.3. LIMITING GAME ANALYSIS 73

o R/(s',al,s’) = Ri(s(7_i(s%),at),s’), where Ry is the reward func-
tion of agent k in the Markov game.

o T'(s',al,s’) =T(s', (R_y(s"),al), s’) with T the transition function of
I', gives the transition probabilities in the MDP.

So the MDP I'y, is exactly the Markov game but with all agents m # k
playing according to the fixed joint policy 7. Since we have assumed that
the Markov game is ergodic, the MDP will also be ergodic. This means that
according to Theorem 5 of Chapter 3 the limiting game for this MDP only
has optimal equilibria. As was shown in the proof of the theorem, for each
sub-optimal policy, a better policy which differs only in a single state can
be constructed. Because of the definition of 7" and R/, the expected average
reward of a policy 7 in the MDP is exactly:

JT = J]E;ﬁ_k ,T)

Now consider the policies 7, and 7, for agent k in I'. These are also
policies in the MDP and we have:

Jﬂ;c _ Jlgfr,k,ﬂ;) > Jlgﬁ_kﬂk) — JTk

So 7, cannot be an optimal policy for the MDP I';, and we can find
a better policy m* which differs from 7 in only 1 state. This policy 7= is
also a valid policy for agent £ in the original Markov game I'. So we now
have a policy 7+ in the original agent game which differs from the original
policy 7, only in the action of a single automaton LA(k, %), and receives a

strictly higher payoff J™ = J, ,gw"“ﬂ*). This means that a single automaton
of agent k can change its action to receive a higher payoff and thus 7 cannot
be an equilibrium in the full automata game. This contradicts our original
assumption that 7 is an equilibrium for the automata game, but is not an
equilibrium for the agent game view. Therefore we can conclude that both
views share the same pure equilibria.

0

Corollary 1 The MG-ILA model proposed in 4.2 converges locally to an equilib-
rium in pure strategies in a Markov game that satisfies Assumption 2.

Proof:

According to Theorem 3, of Chapter 2 the automata will converge a
pure equilibrium point of the corresponding automata game. But because



74 CHAPTER 4. MARKOV GAMES

of Theorem 7 this point will also be an equilibrium point of the limiting
agent game.

d

4.4 Experiments

We now demonstrate the behaviour of the LA learning model on the sam-
ple problems described in the examples above. Figures 4.3(a) and (b) show
the results of the algorithm on the sample MMDP and Markov game of
Examples 6 and 5, respectively. Since we are interested in the long term
convergence, we show a typical run, rather than an average over multi-
ple runs. To demonstrate convergence to the different equilibria, we use a
single very long run (1 million time steps) and restart the automata every
200000 steps. After every restart the automata are initialised with random
probabilities to allow them to converge to different equilibria.

In Figure4.3(a) we see the common average reward for both agents in
the MMDP of Example 6. The agents converge once to the suboptimal
and three times to the optimal equilibrium point. After 200000 the time
steps the average reward approaches the predicted values of 0.9500 and
0.8850 very closely. In Figure 4.3(b) we show the average reward for both
agents on the Example 5, since each has its own reward function. Out of
the 5 initialisations, the algorithm converges 3 times to the equilibrium play
where agent 1 uses policy [search, search] and 2 uses [wait, wait]. The last
2 the agents converge 2 to the equilibrium in which they play [wait, search]
and [aid, wait], respectively. Again the average rewards can be seen to
closely approximate the predicted values, now with different payoffs for
each agent.

4.5 Related Work

Stochastic or Markov games were introduced by Shapley [Sha53] and ex-
tended to the infinite horizon in [HK66]. Early Markov game research fo-
cused mainly on existence criteria and computation methods for equilibria
[FVVO97]. Littman first suggested the use of Markov games as a framework
for multi-agent reinforcement learning [Lit94]. A recent overview of multi-
agent reinforcement learning (MARL) approaches for Markov games can
be found in [BBDSO08].

Many of the MARL approaches for Markov games are based on the



4.5. RELATED WORK 75

MG-LA: MMDP MG-ILA: Markov game

°
2
°
2

W
W

g ool 1 g el P

i Y / / o

s 05 4 s 05 I | f | g

F) g o0 | | / |

e L | g L 1 | | ]
t 1 t | | | ]

0 L L L L L 0 L L L | L | L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 le+06
iteration iteration

(a) (b)

Figure 4.3: Typical run of the LA learning model of Section 4.2 (a)Results
on the MMDP of Example 6. (b)Results for the Markov game of Figure 4.1.
Both experiments used automata with the Lr_; update scheme and a learn-
ing rate of A\; = 0.05.

Q-learning algorithm detailed in Section 3.2.1. The most straightforward
strategy is to directly apply Q-learning (or another reinforcement learning
algorithm), by using independent agents who effectively ignore each other.
This setting is examined in [SSH94, CB98], for instance. However, not tak-
ing into account the other agents means that learners face a non-stationary
environment and convergence guarantees are lost. This issue has lead to
the development a large number of Q-learning extensions, with varying
assumptions and convergence results.

In MMDPs the Team Q-learning algorithm [LitO1b] lets agents indepen-
dently learn the optimal the common Q-values. The approach assumes
that the optimal joint actions are unique, however, and agents may fail
to coordinate if this is not the case. Alternatively, Distributed Q-learning
[LROO] allows agents to find the common, optimal joint policy, but the al-
gorithm is only applicable in deterministic environments. The Sparse Tab-
ular Q-learning (STQ) technique uses the Coordination graphs introduced in
[GLPO02] to prevent miscoordination. These graphs explicitly specify the
states in which agents need to coordinate their actions. Agents can then
rely on single agent Q-learning by default, but learn over joint actions when
coordination is required. While STQ requires the coordination graphs to
be specified manually beforehand, in [KtHBVO05] the authors an extended
method, called Utile Coordination, to learn the graphs.

In 2-player zero-sum Markov games minimax-Q can be used. This al-
gorithm alters the Q-learning update rule to use the minimax value to es-



76 CHAPTER 4. MARKOV GAMES

timate returns for state-action pairs. This method is extended in [LitOla]
to the Friend or Foe Q-learning (FFQ) algorithm for general sum Markov
games. This algorithm classifies agents as either friend or foes depending
on whether or not they cooperate with the learner to maximise its expected
payoff. While FFQ can be shown to converge, convergence to a Nash equi-
librium is only achieved in common interest and zero-sum games.

Nash-Q [HW98, HWO03] views the learning problem as a sequence of
stage games, which are determined by the Q-values of the current state. The
Q-values are then updated by assuming that the agents will play according
to a computed Nash equilibrium in all subsequent states. Under some very
restrictive conditions on the structure of the stage games, Nash-Q can be
shown to converge to a Nash Equilibrium.

In [LRDO07, Li03] Nash-R, an average reward version of Nash-Q, is pro-
posed. This method, together with the MG-ILA approach proposed in this
dissertation, are the only MARL approaches we are aware of that do not
use the discounted reward criterion. While both Nash-R and MG-ILA are
defined for ergodic Markov games, Nash-R agents need additional infor-
mation on their opponents” actions and rewards in order to compute the
stage games. Furthermore, convergence to a Nash equilibrium requires the
same restrictive conditions as Nash-Q.

Another issue with both Nash-Q and Nash-R is that currently no ef-
ficient method for computing Nash equilibria is known. This makes the
Nash update rule costly, since it requires the calculation of Nash equilibria
for the stage games. This can be remedied by using other equilibrium con-
cepts to update Q-values. Correlated Q-learning (CE-Q) [GHS03] and Asym-
metric Q-learning [Kon03a] rely on the correlated equilibrium [Aum?74] and the
Stackelberg equilibrium [vS34] concepts, respectively. Both algorithms follow
the Nash-Q principle of updating Q-values using equilibrium values, but
their respective equilibrium concepts can be computed efficiently.

As an alternative to equilibrium based updates, Q-values may also be
estimated by using models of the other agents. Nonstationary Converging
Policies (NSCP) agents, for example, learn models of opponents and uses
these models to compute a best response. This best response policy is then
used to estimate state values in the Q-learning update. Finally, the Hyper-
Q algorithm [Tes04] estimates the strategies of other agents and uses this
information as part of its state representation. The idea is that this will
allow the agent to adapt better adapt to non-stationary opponents. How-
ever, since the strategies of agents are continuous variables, it cannot use
the standard Q-learning formulation and needs to rely on function approxi-
mation techniques. This makes obtaining general convergence results more



4.6. SUMMARY 77

difficult.

Regrettably, recent research [ZGL06] indicates that learning Q-values
may not be sufficient in order to always guarantee convergence to an equi-
librium in all general Markov game settings. Naturally, other learning
methods, that are not based on Q-learning do exist. The Policy Search al-
gorithm [PKKMOO0] is able to find local optima over factored policies in
MMDPs, but cannot guarantee equilibrium convergence. Similarly Policy
gradient [Kon03b] method and can be used with function approximation
techniques. The strongest optimal convergence guarantees for common in-
terest problems are provided by Optimal Adaptive Learning (OAL) [WS03].
This algorithm learns the optimal joint policy by constructing virtual games
on top of every stage game of the MMDDP. In Chapter 6 we will define an-
other ILA algorithm, MMDP-ILA, which is also able to find optimal poli-
cies, but does not need additional information on other agents.

Bowling [BV01la] proposes the "Win or Learn Fast” (WoLF) approach.
This heuristic method increases or decreases the learning rate based on the
performance of the agent. This approach can be combined with different
learning schemes, such as: Infinitesimal Gradient ascent (IGA) [SKMO00], Gen-
eralised IGA (GIGA) [Zin03]and Policy Hill Climbing (PHC) [BV01b] This
has lead to a whole family of WoLF algorithms: WoLF-IGA [BV01a], GIGA-
WoLF [Bow05], WoLF-PHC [BV01b] and PDWoLF [BP03]. While WoLF-
IGA and GIGA-WoLF are evaluated only for repeated normal form games,
WOoLF-PHC and PDWOoLF have been shown to achieve good results in gen-
eral Markov games.

As is clear from the descriptions above a large body of work on multi-
agent reinforcement learning exists. Unfortunately, none of these methods
can offer general equilibrium convergence. Additionally, most methods
do not only require a scalar feedback signal, but also need information on
other agents” actions and rewards which can limit their applicability. Ta-
ble 4.7 gives an overview of the approaches described above, their infor-
mation requirements and their target tasks.

4.6 Summary

In this chapter we study the problem of learning Markov Games with inde-
pendent agents that only have knowledge of their own payoff, reward and
the current state. We propose a model based on interconnected learning
automata algorithm for MDPs. The extended algorithm puts an additional
learning automaton for each agent in each state and updates the automata



78 CHAPTER 4. MARKOV GAMES

Applicabillity
MMDP General Markov Games
- Policy Search [PKKMO00] MG-ILA [VVNO08a]
g Independent Policy Gradient [Kon03b] (WoLEF-)PHC [BV01b]
& Ape ¢ MMDP-ILA [VVN07d] PDWoLF [BP03]
5 gents Independent |
3 pendent learners
E [CB98]
g OAL [WS03] Nash-Q [EW98]
é Joint Team-Q [Lit01b] Nash-R [Li03]
= Action Distributed Q [LROO0] FFQ [Lit01a]
:E Learners STQ [KV04] Hyper-Q [Tes04]
Utile Coordination Asymmetric Q [Kon03a]
[KtHBVO05] NSCP [WR04]

Table 4.7: Overview of current MARL approaches. Algorithms are classi-
tied by their applicability (common interest or general Markov games) and
their information requirement (scalar feedback or joint-action information).

for each agent as was done in the single agent case.

Additionally, we extend the limiting game method introduced in the
previous chapter, and show that limiting games can be used to study Markov
games from different perspectives. These limiting games view the Markov
game as a single large normal form game, rather than taking the common
state-action view employed by most RL techniques. For the common in-
terest MMDP case 3 viewpoints emerge. In the centralised superagent per-
spective, we maintain the optimality results obtained for MDPs in Chap-
ter 3. When looking at the problem from a multi-agent point of view, we
lose the optimality guarantee, due to the possibility of agent miscoordi-
nation. Finally,we can also examine the problem from the state-based au-
tomata view. This view corresponds to treating the problem as an automata
game, as was done for MDPs. When moving from the common interest
case to general Markov games, the centralised approach becomes impossi-
ble, but the other perspectives remain.

An important result is also obtained, linking the low level automata
view to the multi-agent view, and showing that both contexts share the
same pure equilibria. Together with existing automata convergence results,
this property ensures the equilibrium convergence of the extended ILA al-
gorithm. This result was also experimentally demonstrated on some small
sample problems. We finish the chapter by situating our new algorithm in



4.6. SUMMARY

the existing body of related work.

79



80

CHAPTER 4. MARKOV GAMES



Chapter 5

Dynamics of Learning

A powerful tool to analyse learning in repeated games is the relation be-
tween RL and replicator dynamics (RD). More precisely, in [TtHV06, BS97,
PTLO8] the authors derived a formal link between the replicator equations
of Evolutionary Game Theory (EGT) and reinforcement learning techniques
such as Q-learning and Learning Automata. In particular this link showed
that in the limit these learning algorithms converge to a certain form of the
RD. This allows us to use the RD to establish what states a given learning
system will settle into over time and what intermediate states it will go
through. Recently it was demonstrated that there are a number of benefits
to exploiting this link: the model predicts desired parameters to achieve
Nash equilibria with high utility, the intuitions behind a specific learning
algorithm can be theoretically analysed and supported by using the basins
of attraction, and it was shown that the framework could easily be adapted
and used to analyse new MAL algorithms, such as for instance lenient Q-
learning [PTLO8].

A limitation of using the RD as a model of MAL, however, is that it has
only been applied in stateless repeated games. In this chapter we propose
an extension of this method to general Markov games. By applying the lim-
iting game approach introduced in the previous chapters, we show that the
EGT connection can still be used to study multi-state problems. We demon-
strate the EGT analysis in multiple state problems for multiple agents using
the MG-ILA algorithm as RL technique. We do this by introducing a combi-
nation of switching dynamics and RD, which we call Piecewise Replicator
Dynamics, to describe the learning processes over the multiple states. We
calculate a limiting average reward game for each state, which takes into
account the rewards that are obtained in the other states. This game can

81



82 CHAPTER 5. DYNAMICS OF LEARNING

then be studied using the replicator dynamics. The resulting dynamics ap-
ply under the assumption that agents are only learning in a single state. In
reality, however, agents update their action probabilities in all states, and
these probabilities will all change in parallel. Changes in action probabil-
ities in one state will cause the average reward games to change in other
states. The dynamics observed for an average reward state game are only
a snapshot of the true learning dynamics.

To account for these changes we model the system as a piecewise dy-
namical system. Based on the qualitative changes in the dynamic, we par-
tition the state space in a number of cells which correspond to the different
possible attractors in the state games. We assume that each cell has its own
tixed replicator dynamic. The entire system can then be modeled by updat-
ing the current action probabilities in each state, according to the replicator
dynamics of the current cell. When the action probabilities leave this cell
the equilibria of the state game change, and we get a new replicator dy-
namic that drives the system. In this way we follow the trajectory in all
states through multiple cells and dynamics until an equilibrium is reached.

The remainder of this chapter is structured as follows. In Section 5.1.1
we elaborate on the necessary background. Section 5.2 introduces piece-
wise replicator dynamics for modeling multi-learning in multi-state prob-
lems. Section 5.3 demonstrates our approach with some experiments. Fi-
nally, we conclude with a discussion in Section 5.4. References for this
chapter are: [Gin00, TtHV06, VTWNO8]

5.1 Evolutionary Game Theory

Evolutionary Game Theory (EGT) studies the propagation of strategies through
a population of agents. Rather than the rationality based approach of tra-
ditional game theory, EGT uses biological principles like fitness and natu-

ral selection to determine the outcome of a repeatedly played game. The
underlying idea here is that strategies which have a higher payoff will be
adopted by more agents and will spread faster.

In EGT, games are played by a population of agents. Members of the
population are selected randomly to play the game pairwise. Each indi-
vidual uses a fixed strategy. The fitness of an individual is the expected
payoff of that individual’s strategy, considering the current distribution of
strategies in the population. After playing the game, the population is re-
placed by a new generation. Each agent produces offspring using the same
strategy, to take its place in the next generation. However, the number of



5.1. EVOLUTIONARY GAME THEORY 83

offspring an agent produces is determined by its performance in the game.
This ensures that strategies that have a high fitness will reproduce faster.

In the following sections we provide a short overview of the key con-
cepts of EGT. This is followed by an explanation of the relation between
EGT and reinforcement learning. A more detailed account of EGT can be
found for instance in [Wei97, Gin00, Sam98].

5.1.1 Evolutionary Stability

One of the fundamental questions of EGT is whether a strategy is evolu-
tionary stable. Evolutionary Stable strategies (ESS) are those strategies that
are resistant to invasion by another strategy. This means that when the en-
tire population plays the strategy, a small number of mutants that switch
to a different strategy cannot take over the population. The mutants will
always have a lower expected payoff and thus a lower rate of reproduction.
This ultimately leads to the extinction of the invading strategy. Let R(o, p)
denote the expected payoff strategy o receives when playing against pop-
ulation p, i.e. R(o, p) is the expected payoff in the game when an opponent
is drawn randomly from population p. The population p here is described
in terms of the fractions of members that play each available strategy. We
can now formally define the ESS concept as follows:

Definition 23 A strategqy o is an evolutionary stable strategy if for all ' # o,
there exists a § €]0, 1] such that for all 0 < e < 6,

R(o,(1 —¢€)o +€a’) > R(o’,(1 — €)o + ed”)

where R is the payoff function for the game being studied and ((1 — €)o + eo”)
describes a population with fraction 1 — e of individuals playing strategy o and
fraction € playing strategy o’

This definition describes the requirement for a strategy to be resistant
to takeover by a mutant strategy. Suppose that a population originally con-
sisting entirely of players using strategy o, incurs a small fraction € of muta-
tions, causing the mutated players to switch to strategy o’. For this mutant
strategy to take over the entire population they need to achieve a higher
payoff than strategy o when we draw an opponent from the mutated pop-
ulation, i.e. have a probability 1 — € of drawing an opponent playing ¢ and
probability e of drawing an opponent playing ¢’. When no such mutant
strategy can be found, o is an ESS.

Maynard-Smith [Smi82] demonstrated that evolutionary stability is ac-
tually a refinement of the Nash equilibrium concept:



84 CHAPTER 5. DYNAMICS OF LEARNING

Theorem 8 (Maynard-Smith,1982) The set of evolutionary stable strategies for
a particular repeated game is a subset of the set of Nash equilibria for that game.

Thus an evolutionary stable strategy implies a Nash equilibrium, but
not necessarily the other way around, as non evolutionary stable Nash
equilibria may exist. This means that ESS can be considered a refinement of
the Nash equilibrium concept. In the next section we relate the ESS concept
with the dynamics underlying strategy reproduction.

5.1.2 Replicator Dynamics

A second approach in EGT is to look at the dynamics of strategy reproduc-
tion in a population. Here the population is considered to consist of agents
playing pure strategies. Now we consider a population of N(t¢) agents at
time ¢, with NV;(t) agents playing pure strategy 0;,i = 1,...,r. The propor-
tion of agents playing o; at time ¢ is then x;(t) = N;(¢)/N(t) and the state of
the population can be described by the vector Z(t) = (x1(¢),...,z,(t)). We
now look at the changes in this population state as time proceeds.

Denote by R() the expected payoff over the entire population when it
is in state '

R f) = szR(UZ,f)

If we assume that the amount of new individuals playing strategy o; is pro-
portional to R(o;, Z(t)), then the expected proportion of individuals play-
ing strategy o; in the next generation is given by:

Ni(t)R(i, (t))
2 =0 Nj () R(aj, (1))

= (R I 1)

R(Z)

CEi(t + 1) =

Which in turn means the evolution of o; in the population can be written
as:

R(oi, #(t)) — R(Z)

Bt +1) — 24(t) = mi() (5.2)

The description above assumes that generations are not overlapping.
Each generation lives for one period before being replaced by its offspring.
We now consider the case where agents are being continuously replaced,



5.1. EVOLUTIONARY GAME THEORY 85

i.e. we consider a period of time 7 in which a fraction 7 of the popula-
tion reproduces. With each selected individual playing o; giving birth to
R(0;,Z(t)) offspring, the expected number of agents playing o; at time t+7
is:

Ni(t —+ 7') = Nl(t) + TNZ'(t)R(O'Z', f(f))
This results in a population evolution described by:

TR(0;, f(t))7— TR(Z(t))
1+ 7R(Z(t))

zi(t+7) — i (t) = zi(t)

By taking the limit 7 — 0 and a proper rescaling of time, we arrive at
the continuous time replicator dynamic:

d.%'i
dt

When we take into account that the rewards are obtained by playing a
normal form game, we can further rewrite these equations. Assume that
the game rewards are given by the payoff matrix A. The average payoff
R for the entire population can then be written as the product #AZ. The
expected payoff for strategy o; is the ith component of the vector AZ, which
we denote as (AZ);. This results in the following equation:

= 2;(R(03, (1)) — R(Z(1))) (5.3)

dl‘i
dt

The discussion above assumes a single population playing the game.
One can also consider a multi-population version of this system. In this
case opponents in the game are drawn from different populations. This is
necessary, for instance, in asymmetric games where the different players
of the game have different action sets. For simplicity, we restrict the dis-
cussion to two player games. As a result, we now need two systems of
differential equations: one for population representing the row agent (X)
and one for the column agent (Y'). This translates into the following repli-
cator equations for the two populations:

= z;((AT); — TAT)) (5.4)

dx; oL
= (A7) — 7 - Al (5:5)
Wi _ (B#): - 5- By, (5.6)

dt



86 CHAPTER 5. DYNAMICS OF LEARNING

As can be seen in Equations 5.5 and 5.6, the growth rate of the types in
each population is additionally determined by the composition of the other
population.

The replicator equations can be linked to evolutionary stable strategies
by following theorem [HSS79]:

Theorem 9 (Hofbauer et al.,1979) If a strateqy & € S, is an ESS!, then the
population state ¥ = ¢ is asymptotically stable under the replicator dynamic.

This means that any path starting sufficiently close to state Z, will con-
verge to this state under the replicator dynamic. Thus the ESS of the previ-
ous section are attractor points for the RD.

5.1.3 Connection with Reinforcement Learning

A connection between evolutionary game theory and reinforcement learn-
ing was first demonstrated by Borgers and Sarin [BS97]. In their paper they
study the continuous time limit of an RL update called Cross” Learning
[Cro73]. It is shown that this limit converges to the continuous time repli-
cator dynamic described above. This result provides a formal link, which
allows us to use the RD as tool to study the behaviour of RL algorithms.
This method was used for instance in [TVL03] to visualise basins of attrac-
tion.

Cross’ learning is a simple reinforcement scheme for learning in re-
peated games. It was first proposed by Bush and Mosteller [BM55]. Cross
[Cro73] studied a special case in which reinforcements are limited to be
positive. Players using Cross’ learning keep a probability vector p, which
is updated after every play in the game. For a 2-player normal form game,
with payoff matrix A = (a,, ), the update equations are given by:

pi(t+1) = ap+ (1 —ap)pi(t) (5.7)
pi(t+1) = (1—ap)p;(t) (5.8)

where i is the index of the action selected by the agent and a;, is the matrix
entry corresponding to the joint action chosen in the game at time ¢. As
is noted in [Tuy04], these updates are a special case of the Linear Reward-
Inaction scheme described in Section 2.1.1. This can easily be seen by taking
the learning rate A\; = 1 and setting the feedback b(t) to the reward a;;
achieved in the game.

'Recall that S, is the (r — 1)-dimensional unit simplex, defined in Equation 2.12.



5.1. EVOLUTIONARY GAME THEORY 87

To see the relation with the RD we calculate the expected change in
the probability vectors p'and ¢ for two agents using Cross’ learning in a
repeated normal form game with payoff matrices A and B. Define Ap; =
pi(t+1) —p;(t) and Ag; = ¢;(t + 1) — g;(t). Then the expected updates
given the current probabilities are:

ElAp; | p(1),q(1)] = pi(®)[(Ag(#)); — p(t)AG(D)] (5.9)
ElAqe | p(t),q()] = qe()[(Bp(t))r — q(t)Bp(t)] (5.10)

Taking the probability vectors p'and ¢'as population states and defining
fitness for strategies j and k as (Aq(t)); and (Bp(t)), respectively, the equa-
tions above are the discrete replicator dynamics for 2 populations. Letting
the time between updates in the Cross’ learning scheme go to 0, we arrive
at the continuous RD of Equations 5.5, 5.6. Thus the expected changes in
probability updates of Cross” Learning (and Lr_) are given by the RD. In
[BS97], Borgers and Sarin go on to proof that the actual movements of the
learning process match the expected updates.

Example 7 As an example for the application of RD in stateless games, we illus-
trate the dynamics of the well known Prisoner’s Dilemma (PD) game. Recall from
Example 1 that the (normalised) reward matrices for this game are:

0.6 0.0 0.6 1.0
A‘[Lo 0.2} B_[o.o 0.2}

When we put these rewards into Equations 5.5, 5.6, we get following dynamic
system:

d

% = p1[0.6g1 — (0.6p1q1 + p2q1 + 0.2p2q2)]
dq1 o 9

o - o [0.6p1 — (0.6p1q1 + p1g2 + 0.2p2go)]

Where py and q, are the probabilities to play action 1 (cooperate) for agent
1 and 2, respectively. Figure 5.1(a) shows the direction field for this dynamic.
Figure 5.1(b) plots the action probability trajectories generated by LA playing the
repeated game. These trajectories are generated by initialising 2 automata with
random action probabilities and repeatedly letting them play the game, using a
reward-inaction update. As is clear from the figures, the behaviour of the automata,
closely follows the paths predicted by the direction field.



88 CHAPTER 5. DYNAMICS OF LEARNING

Direction Field Prisoner’s Dilemma Sample Paths Prisoner's Dilemma

N
N\
N
N\
AR
NN\
AN
N\
NN\
N\
\\
\\

Probability C Agent 2
Probability C Agent 2

AN
ANNNNNAN

AN U N N N N N N N
VWV

[UEVENENE N N NANANA NN
AAUNNNNNNN
\
\
\
[NASN N RN RN
LRV
EESSNS NN NN NN NN
[SENANE NG N NO G NN NN
EENENENE N NS N N RN

[N NN NN
LR
IENENENE NN NONO N NN NN

\
\
\
\
\
\
\

HEUANANANA NI NA NA N N N NN

-

03 04 05 06 07 08 09 1
Probabilty C Agent 1

(a) (b)

Figure 5.1: Dynamics for the stateless Prisoner’s Dilemma game (a) Direc-
tion field for the replicator equations on this game. (b) Sample paths show-
ing the evolution of the action probabilities in a repeated automata game.
Both automata use the Lr_; update with learning rate 0.001.

L L
05 0.6

1
03 0.4
Probability C Agent 1

o
oL
2
°
~
°
°
®
°
©
-
°
o
N

5.2 Piecewise Replicator Dynamics

Analyzing the learning dynamics becomes significantly more complex when
we move from stateless games to multi-state problems. As the agents have
independent action probabilities for each state, the result is a very high
dimensional problem. In order to deal with this high dimensionality we
present an approach to analyse the dynamics per state.

5.2.1 Average Reward State games

In order to deal with the high dimensionality of multi-state dynamics, we
map the dynamics on the states. This allows us to deal with the different
states separately. The main idea is to define the limiting games of previous
chapters for individual states. For each state of the Markov game, we define
an average reward state game. This game gives the expected reward for all
joint actions in the state, under the assumption that the agents play a fixed
strategy in all other states. When we assume that the action probabilities
in the other states remain fixed, we can use Equation 4.3, which we repeat
below, to calculate the expected average rewards for each joint policy that
results from playing a joint action in this state, while following the fixed
policy elsewhere. The game obtained by these rewards can then be studied
using the replicator dynamics, exactly as was described in the previous



5.2. PIECEWISE REPLICATOR DYNAMICS 89

section.

N
TR =Y "d" (s> T(s7(s"), s ) Ru(s', 7(s"), 7)
i=1 j=1

This method allows us to calculate limiting games, as was introduced
in the previous chapters. We now follow the same approach but map the
limiting games onto the states of the Markov game. The average reward state
game for a state s is obtained by calculating the expected average rewards
for possible plays in s, while assuming that a fixed policy is used in all other

states:

Definition 24 Let be (n,S, A, R,T) be an ergodic Markov game. Denote by
7 ° the joint policy 7 without the components corresponding to state s. Then
the average reward state game for state s is defined as the normal form game

(n, A1, n(s),J), in which each agent i receives reward Ji(a’ﬁis) for the play a,
i.e. the average expected reward agent i receives for the joint policy which plays d
in state s, but is equal to 7 in all other states.

Consider for example the Markov game in Table 5.1. In this 2 agent
game we have 2 states, both with immediate rewards following the struc-
ture of the Prisoner’s dilemma game. When the agents both play the same
action (i.e joint action (D,D) or (C,C)) the system has a 0.9 probability of
staying in the same state and a 0.1 probability of moving to the other state.
When the agents play different actions (i.e. joint actions (C,D) or (D,C) )
these probabilities are reversed.

As the rewards in each state have the same structure as the PD repeated
game of the previous section, one might assume that the agents will con-
verge to the equilibrium point (D,D) in both states. The only pure equilibria
in the multi-state example, however, are the points where one agent plays
defect(D) in state 1 and cooperate(C) in state 2, and the other agent does ex-
actly the opposite. This means that instead of mutual defection, the agents
converge to a situation, where an agent is exploited in one state, but ex-
ploits the other agent in the other state. This is an important difference
from the stateless game, where the players converge to mutual defection.

We now demonstrate how average reward state games can be used to
analyse the dynamics. Assume both agents play a fixed strategy in state
2. The possible rewards they can then obtain are determined by their play
in state 1. We now calculate the expected average reward for each of the
4 plays (C,C), (C,D), (D,C), and (D, D), assuming that play in state 2
remains fixed.



90 CHAPTER 5. DYNAMICS OF LEARNING

2 State PD

State 1 State 2
C D C D
Rewards | C 03,03 00,10 | C 04,04 0,1
D 10,00 02,02 | D 1,0 01,01
(C.0)—(09,0.1) (C,0)—(0.1,09)
g (C,D)—(0.1,0.9) (C,D)—(0.9,0.1)
Transitions |y ) _0.1,0.9) (D,C)—(0.9,0.1)
(D,D)—(0.9,0.1) (D,D)—(0.1,0.9)

Table 5.1: Example Markov games with 2 states and 2 agents with 2 actions
in each state. Rewards for joint actions in each state are given in the first
row as matrix games. The second row specifies the transition probabilities
to both states under each joint action. Rewards in both states have the same
structure as the Prisoner’s Dilemma game.

C D
C | 0.28,035 0.08,0.78

D | 0.48,0.39 0.19,0.26
Table 5.2: Average reward game for state 1 of the 2 state PD, when the

agents 1 and 2 play action cooperate in state 2 with probabilities 0.7 and
0.2, respectively.

Table 5.2 gives an example average reward game obtained for state 1
of the 2 state PD game, when agent 1 and agent 2 have a fixed probability
of 0.7 and 0.2 respectively, to play action ‘Cooperate” (C) in state 2. The
corresponding direction field is shown in 5.2(a). This figure was generated
by applying the RD to the game in Table 5.2. Figure 5.2(b) are sample paths
showing the evolution of action probabilities in state 1 when applying the
MG-ILA algorithm, but keeping action probabilities in state 2 fixed at the
values given above.

5.2.2 Piecewise Modelling

The main problem with analysing the dynamic on an average reward state
game, is that it assumes that agents are only learning in a single state, and
are keeping the action probabilities in other states fixed. In reality agents
update their action probabilities in an interleaved way in all states, and



5.2. PIECEWISE REPLICATOR DYNAMICS 91

Direction Field State 1 Sample Paths State 1

PPN

Probability C State 1 Agent 2

. . . . . . . . .
0 0.1 0.2 0.3 04 05 0.6 0.7 08 09 1 0 02 0.4 06 08 1
Probability C agent 1 Probability C State 1 Agent 1

() (b)
Figure 5.2: Sample paths generated by the LA algorithm in state 1 when
agents use fixed strategy of Table 5.2 in state 2. (learning rate: 0.0001)

these probabilities will all change in parallel. The dynamics observed for
an average reward state game are only a snapshot of the true learning dy-
namics. As the probabilities in other states change, the state game and
corresponding dynamic will also change.

To account for these changes we model the system as piecewise dynam-
ical system. This means that we partition the state space of all action prob-
abilities in all states into a number of discrete cells. Each cell corresponds
to a different set of attractors in the average reward state games and has its
own associated dynamics. This approach is based on the piecewise linear
models described in [GK73, dJGH"04]. Here, however, we don’t consider
linear models, but rather the non-linear RD.

More precisely, for each state we examine the boundaries where the
replicator dynamics of the state game change qualitatively. We do this by
looking for points where equilibria disappear or new equilibria appear. It
is important to note that we focus on qualitative changes of the dynamic
system. Within each region quantitative changes of the dynamic can still
occur as the payoffs in the game change, but the same attractor points re-
main present. When the action probabilities cross a cell boundary, however,
they will cause a radical change in the dynamic in the corresponding state.
Inside each cell we assume that the probabilities are governed by a fixed
replicator dynamic.

Consider for example, the 2 state, 2 action case. If we want to determine
the equilibria in the state game for state 1 we need to look at the action
probabilities in state 2. Let (p, 1 — p) and (g, 1 — ¢) be the strategies used in



92 CHAPTER 5. DYNAMICS OF LEARNING

| bl b2
al | (J71J3) (7))
a2 | (Ji*,J2%) (I Jp")

Table 5.3: Abstract average reward game for a state s with 2 actions and 2
agents.

state 2 by agent 1 and 2 respectively. By this we mean that agent 1 selects its
tirst action with probability p and its second action with probability 1 — p
To determine the structure of the state game we need to look at 4 policies:

7 = [(1,p),(1,9)]
T2 = [(0,p),(1,9)]
73 = [(1,p),(0,9)]
7s = [(0,p),(0,9)]

Where we describe each joint policy by the action probabilities for ac-
tion 1 in both states, for both agents. That is, [(1,p), (1, ¢)] denotes the joint
policy in which agent 1 plays his first action with probability 1 in state 1 and
with probability p in state 2. The second agent plays action 1 with proba-
bilities 1 and ¢ in state 1 and 2, respectively. The abstract average reward
state game, for this case is given in Table 5.3. We can now calculate when
a play in the state 1 game is an equilibrium as p and ¢ change. Consider
for instance the play (al,bl), i.e. both agents playing their first action. In
order for this play to be an equilibrium, the following inequalities need to
be satisfied:

1
Jl

1
J2

Jr (5.11)
JIs (5.12)

In these constraints .J is calculated using Equation 4.3 for the joint poli-
cies listed above. These average rewards depend on both the stationary
state distributions under the corresponding policies, as well as the expected
rewards. We can expand the equation to write down the expected game re-
wards in the terms of p and ¢:

JF = d™(s1)Ry(s1,(al,bl)) + d™ (s2)[pqR1(s2, (al,bl))
+(1 — p)gRi1(s2, (a2,b1)) + p(1 — q)R1(s2, (al,b2)) (5.13)
+(1 - p)(l - Q)Rl (327 (a27 52))]



5.2. PIECEWISE REPLICATOR DYNAMICS 93

Putting the results above back into the equilibrium constraints 5.11 and
5.12, we can solve for p and ¢ and obtain the action probabilities where
equilibria (dis)appear. In the example below we apply this method to the
2 — state Prisoner’s dilemma Markov game.

Example 8 Consider the example 2-state Prisoner’s dilemma in Table 5.1. We will
now calculate when mutual defection, i.e. join-action (D, D), is an equilibrium
in the average reward game for state 1. For this we need to calculate when the
constraints J7* > J7* and J3* > J3* hold. Filling in the transition probabilities
for joint policy 74 = ((0,p), (0, q)) we get following transition matrix:

0.9 0.1

T =
4/5p +4/5q — 8/5pq + 1/10  8/5pq +9/10 — 4/5q — 4/5p

In Section 3.1.1 we explained that we can find the stationary distribution for
this matrix by solving p'= p T™. This gives following formula’s for the stationary
state probabilities:

7a(1\ _ (16pg—1—-8q—8p) Tl o2\ _ -1
A" (s") = Hepg=r=sg=sp » ¢ '(5") = (Topg=2—s1=8p)

Inputting these values in Equation 5.13 we get:

0 _ (16pg—1—8q—8p) 1
Ji = (16pq7278q78p)0.2 + Top—2—87—8p) [0.4pq

+(1—p)g+0.1(1 — p)(1 — q)]

Repeating this procedure for policy 73 = ((0,p), (1,q)) we get:

7t -9
JiE = (16pg — 10 — 8q — 8p) [0.4pg + (1 — p)g + 0.1(1 — p)(1 — q)]

This means we can solve constraint J{* > J** to obtain:

14qg — 3
P <
2q — 2

This calculation can be repeated for the all other policies, equilibria and states. The
end result is shown in Figure 5.3. Here we show for each state the boundaries
which cause equilibria to (dis)appear in the other state. Each region in the state
space is labelled with the pure equilibria present in the state game for the other
state when the state’s action probabilities are in that region.



94 CHAPTER 5. DYNAMICS OF LEARNING

Pure Equilibria State 1 Pure Equilibria State 2

I (CD) I (CD)
Il: (C.D)+(D,C) Ii: (C.C)
1ll: (D,D) 1ll: (C.D)+(D,C)
IV: (D.C) IV: (D.C)

Probability C State 2 Agent 2
Probability C State 1 Agent 2

0 02 04 06 08 1 0 02 04 06 08 1
Probability C State 2 Agent 1 Probability C State 1 Agent 1

(a) (b)

Figure 5.3: Boundaries which cause a change of equilibria in the other
state’s average reward game in the 2-state PD.

5.2.3 Sampling Cell Dynamics

In Figure 5.3 we show how the average reward games for both states change
as a function of the current action probabilities. Since we have only 2 states,
the average reward game in state 1 is completely determined by the strate-
gies in state 2, and vice versa. Figures 5.3 (a) and (b) show the regions cor-
responding to different equilibria for state 1 and 2, respectively. For both
states we get 4 possible regions that correspond to different dynamics. The
regions here indicate the equilibria present in the average reward game of
a state, when action probabilities in the other state are in that region.

To analyse the full dynamics we now need to associate dynamics with
the different regions identified in the previous section. We proceed as fol-
lows. When we initialise the learning algorithm with action probabilities,
these probabilities define an average reward state game and corresponding
replicator dynamic for each state. We then assume that the system follows
this dynamic, until the action probabilities cross one of the cell boundaries.
When this happens the attractors in the corresponding state change and we
get new equilibria in the state game with a new replicator dynamic. This
dynamic then drives the dynamics in that state until another boundary is
crossed. Here we obtain the representative dynamics for each of the differ-
ent regions by sampling the average reward game at a single point of the
interior of regions. Other approaches are possible, for example, one could
sample multiple points inside a region and average the games before cal-
culating the dynamic. In the experiments section we will see however, that



5.3. EXPERIMENTS 95

Common Interest Game

State 1 State 2

bl b2 bl b2

Rewards al 05 0.6 al o0 1
a2 0.6 0.7 a2 05 0
(al,b1)—(0.1,0.9) (al,b1)—(0.1,0.9)
. (al1,b2)—(0.1,0.9) (al1,b2)—(0.1,0.9)
Transitions | > 11)5(0.1,0.9) | (a2.b1)—(0.1,0.9)
(a2,b2)—(0.9,0.1) (a2,b2)—(0.9,0.1)

Table 5.4: Common Interest Markov game with 2 states and 2 agents with
2 actions in each state.

even with a single point sample, the predicted dynamics give a very good
indication of the evolution of the action probabilities.

Figures 5.4 and 5.5 give direction fields for both states and all regions.
So once we know the action probabilities in each state, we can determine
the regions for both states and identify the corresponding dynamics. For
example suppose we initialise LA in both state so that agent 1 plays its first
action with probability 0.2 and agent 2 plays the first action with proba-
bility 0.8. This means the dynamics start in cell (ILIII), i.e. state 1 starts
with the dynamics corresponding to region I in Figure 5.4, while state 2
starts in region /11 of Figure 5.5. This dynamic will then drive the action
probabilities until one of the boundaries in encountered, causing a switch
of equilibria in the other state. In this way we can follow the trajectory in all
states through multiple cells and dynamics until an equilibrium is reached.
In the Experiments section we show results for this approach on 2 example
Markov games.

5.3 Experiments

We now demonstrate our approach on 2 sample Markov games. We start by
demonstrating the dynamics for the 2-state PD shown in Figures 5.4 and
5.5. We will do this by following a single sample path through multiple
cells, until it reaches an equilibrium. Agents 1 and 2 are initialised to play
their first action with probabilities 0.2 for agent 1 and 0.7 for agent 2 in state
1 and probabilities 0.3, 0.8 in state 2, respectively. Both agents use the MG-
ILA algorithm described in Chapter 4, where the automata are updated



CHAPTER 5. DYNAMICS OF LEARNING

96

ICS

tor Dynam

ICa

Repl

lecewise

P

[ —— SR — ie] -
R i [ — = ST
LA LA RS ———— c w8 Er®n e
- o < c C o LV AN S
s 259 0 .= 9 I N R St
= O
5 (0] > & o £ ..nla. [ NN
E 5 DE © = AL ANAR SRR S
a- O = = |m cw S S Y
H m > VAL ANANNNNN YN {8
29 o © VAAMAANAN AN L E
3 VALY LB
28 VAV LY 3
VqEE
3 I3 i
s e
N 5550
s coes .
/umw \\\\\\ 5
S vommems
H
) L " 3 3
- O %
—
o £ - - L2
2 = § o £
© 5 g
© 5 sZ = @
— C 4 S ©
n > 5 k- = O
o H 4 n >
A
& 3
g
&
R, ° r H o -
N s e
VAAVAAN AN S R R
AAANANANN S S s H VAN
AVANAY NSNS . - @ < . - o R N &
° < S S LSS Y

obabity C Agont 1

o

210y 2 eSO Aigeaoid

State 2
action
probabilities

AN TS
AN
AN S
AN
ANANANNA N TS
\

\

\

Probatiity G Agent 1

AANANN N
NANANY ANV S
AANAAN Y

NN

1S-

ise Replicator dynamics for state 1 of the 2-state Pri

iecew
oner’s dilemma example.

P

Figure 5.4



97

5.3. EXPERIMENTS

~

ICS

tor Dynam

ICa

ise Repli

iecewise

P

-~

e e P c
N - < “
,///////)/r¢i\~\\\\H“ ) c m lm m % 2 x
LA NS s nr.v S50 X n
O a8 =

; 25l ER .

P8 ]
s o225 ¢g M

i

.8 w ko) :
H g .
. 5988 )
s /mm&m .

‘ =

Pure Equiliria State 2

Pronabity  Agen

2085 Anceoia

Zweby | lEis O AlaRdold

State 1

action
probabilities

VAUANNNANNANNY

\
\
\
\
N
\
\
\
\
\
\

[ERSNNNNSNNNNNNN
[ENNNSNNNSNNNSNNN
[EENRRRN N RNSSSN SR
B NN

State 2
Dynamics

2ady 3 ey

Prossbity G Agon 1

Prosabity G Agon 1

Figure 5.5: Piecewise Replicator dynamics for state 2 of the 2-state Pris-

oner’s dilemma example.



CHAPTER 5. DYNAMICS OF LEARNING

98

g oy s m e e e
\
RN N N

\
E R T NN

07

N N

06

05
Probabilty C Agent 1
06

I T NN

N N NN

05

[N

Vv

Probabilty C Agent 1

04
04

Zwaby 5 Aueqoid Zwaby 5 Aueqoid Zwaby 5 Aueqoid

'
|
!
!
|
!
|
|
l
|
|
|
!
|
|
1

TN e ke TSN . TR

/
/
'
I
1
1
!
'
[
[
\
'

T N S I -3

LAVANN NN S SN e

° T T N T N

,////////Cm xxxxx

s .

NANN NN S N

NN ST
s

NNNN S A

R
NN K

06 07
P
07
-
-
I’
s

06

05
05

RN

NN

Probabilty C Agent 1
Probabilty C Agent 1

04
04

g

NN s

PP
Fa e

P

AP

ety
st oo

286y 5 Anaegosd 28y 5 Anaegosg 286y 5 Anaegosg

06 07

05

(b)

Sample paths for both states of the 2-state PD, generated by

automata using the Lr_; scheme with learning rate 0.0001. (a) State 1. (b)

Probabilty C Agent 1

04

1CS.

06 07

05
Probabilty C Agent 1

04

03

il one of the region boundaries (black) is crossed. Blue arrows

the vectorfield for the replicator dynam

Each row shows the evolution of action probabilities (red) in both

states unt
give

Figure 5.6
State 2.



5.3. EXPERIMENTS

AR SN
AR N NN

AT W N U N SENEN

AR S S SO REN
AR SN
AR S S SN
AR S SN NNEEN
NN

Probability action b1 Agent 2

\
\
\
\
\
\
\

P g

AR S AN SN SO CREN

\
\
\
\
\
\
\
\
\
\
\
\

N s
AN NN, N, NC G N N
AN s

\
\
A\
§
\
\
\
\
\
\
\

0. 5 06 07 08
Probability action a1 Agent 1

(a)

Probability action b1 Agent 2

99

NN N e

NN N e < 27

N S il

05 06 07
Probability action a1 Agent 1

(b)

Figure 5.7: Two direction fields for state 1 of the common interest Markov

game.

Sample Paths State 1

IR

0 02 04 06 08
Probability action a1 Agent 1

(a)

1

Probabily action b1 Agent 2

Sample Paths State 2

04 06
Probability action a1 Agent 1

(b)

Figure 5.8: Sample paths for both states of the common interest Markov
game, generated by automata using the MG-ILA with learning rate 0.0001.

(a) State 1. (b) State 2.



100 CHAPTER 5. DYNAMICS OF LEARNING

using the average reward during the last episode.

Figure 5.6 shows the sample paths generated by the MG-ILA algorithm.
The blue arrows show the predicted dynamics, black dotted lines give the
region boundaries for each state, and red lines are the sample path gener-
ated by LA using the MG-ILA algorithm. The first row gives the predicted
dynamics for the initial probabilities, and shows that both states will evolve
towards the (C, D) joint action. It can be seen that sample paths in both
states closely follow the predicted dynamics until the action probabilities of
state 1 reach a region boundary. This event causes a switch in the dynamics
of state 2, which now move towards joint action (D, C'). In the second row
of Figure 5.6 it can be seen that the sample paths in state 2 indeed change
directions. The final row shows the convergence to the equilibrium which
plays (C, D) in state 1 and (D, C) in state 2. The state 1 probabilities cross
another boundary which causes the (C, D) equilibrium in state 2 to disap-
pear completely, but does not affect the sample paths’ convergence towards
(D, C). The action probabilities in state 2 stay in the same region the whole
experiment, so no switch is encountered in state 1.

In a final experiment we show results for another Markov game, shown
in Table 5.4. This game is a common interest game, with both agents receiv-
ing identical payoffs. In both states, both agents have a choice between 2
actions: a; and as for agent 1, b; and b, for agent 2. Two pure equilibria ex-
ist in this game. In the first the agents play joint action (a2,b1) in state 1 and
(al,b2) in state 2, while in the second they play (al,b2) in state 1 and again
(al,b2) in state 2. For the experiment we completed multiple runs with dif-
ferent initial probabilities in state 1, and using the same starting point in
state 2. From this point the dynamics in state 2 always drive the probabili-
ties to the joint action (al,b2). As the trajectories come closer to this point,
they cross the boundary indicated in Figure 5.8(b). When this happens the
dynamics in state 1 switch. In Figure 5.8(b) we see that the trajectories in
state 1 change direction as this boundary is crossed. From following the
dynamic shown in Figure 5.7(a) towards (a2,b2), the trajectories switch to
following the dynamic in Figure 5.7(b) which takes the probabilities in very
different directions towards (al,b2) or (a2,b1).

5.4 Discussion and Related Work

As was mentioned in Section 5.1.3, the first use of EGT to study reinforce-
ment learning was proposed in [BS97]. Here a link was shown between the
replicator dynamics and Cross’ learning. This connection later extended to



5.4. DISCUSSION AND RELATED WORK 101

Boltzmann Q-learning [TtHV06] and learning automata [Tuy04]. More re-
cently, several extensions have been developed based on these early appli-
cations. In [RGK09] the dynamics op e-greedy Q-learning were considered,
while [TWO09] considered an extension to continuous strategy spaces. EGT
has also been used to study the dynamics of learning in application such
as poker [PTRDO08] and auctions [KTTP08]. Other non-EGT approaches to
study dynamics also exist. In [SPT94] the dynamics of LA were studied
using ordinary differential equations and the theory of Markov processes.
Another non-EGT based approach was used in [BV01la], where the authors
study the dynamics of gradient learning methods.

All of the studies mentioned above were performed on repeated games.
To the best of our knowledge the approach presented here, and originally
published in [VTWNO08], is the first attempt to study learning dynamics in
multi-state problems. In this chapter we demonstrated our approach on
2-state, 2-agent, 2-action games. The analysis we demonstrated here, goes
beyond the traditional EGT approaches. While an application to more com-
plex problems is possible, several issues need to be considered. As is the
case with repeated the repeated game analysis, increasing the number of
agents or the number of actions will make it difficult to visualise dynam-
ics as was done in this chapter. In such systems alternative visualisations
will need to be developed. In repeated games this was done for example in
[PTLO8] to allow more actions and in [tHT04] to allow more agents.

Since our approach maps dynamics onto individual states, adding addi-
tional states does not make the representation used here impossible. How-
ever, an increase in the number of states, could lead to an increase of the
number of cells. This can make the piecewise approach more difficult,
since with a large amount of cells,the dynamics would continually switch
between different replicator equations, negating the simplifying assump-
tion of a constant dynamic in each cell. Additionally, considering a large
number of state action probabilities will make explicit calculation of region
boundaries difficult. In order to both deal with these issues, the authors
in [HTR09] propose an extension of the approach described in this chapter.
They no longer calculate cells, but rather recalculate the dynamics in each
state. This avoids the problem of calculating boundaries or possible arte-
facts of a sudden switch in dynamics. However, as this approach needs to
be applied to an individual initialisation of probabilities it does not allow a
global overview of the dynamics as was done in Figures 5.4 and 5.5 for the
2-state PD.



102 CHAPTER 5. DYNAMICS OF LEARNING

5.5 Conclusions

In this chapter we introduced a new method for analysing the dynamics
of multi-agent learning in multi-state problems. By combining piecewise
linear dynamic systems with the replicator equations from evolutionary
game theory, we obtained a new modeling system which we call Piecewise
Replicator Dynamics. In this system the dynamics for each system state are
modelled as a set of independent replicator dynamics, between which the
system switches based on the current strategies in other states. This method
allows us to move from stateless to multi-state games, while retaining the
powerful methods EGT offers. More precisely, we are still able to predict
the learning system’s trajectories and attractors by studying the piecewise
replicator dynamics.

Even in rather abstract 2-state problems, our methodology goes beyond
the state-of-the-art, since thus far, MAL could only be studied in stateless
games using RD. Moreover, even these 2-state problems have shown to
be sufficiently complex to emphasise hard challenges for multi-agent rein-
forcement learning algorithms.



Chapter 6
Beyond Equilibrium

In the previous chapters we described an automata algorithm capable of
finding pure Nash equilibria in general Markov games. As was mentioned
in Chapter 2, however, the Nash equilibrium solution concept can have
several downsides. In common interest games an equilibrium guarantees
only local optimality and the global optimum may not be found. In general
sum games equilibrium play can result in large payoff differences between
agents, or even low payoffs for all agents collectively. Therefore, in this
chapter we look at methods to extend the automata algorithm of Chap-
ter 4. We introduce an extended algorithm to learn optimal joint policies
in MMDPs and show how this result can be used to achieve fair reward
divisions among agents in general sum games.

A large part of the multi-agent learning literature focuses on finding
a Nash equilibrium between agents policies [HW98, VVNO08a]. However,
while a Nash equilibrium represents a local optimum, it does not neces-
sarily represent a desirable solution of the problem at hand. For instance,
as we demonstrated in the Chapter 4, in MMDPs where a clear optimum
always exist, suboptimal equilibria can still occur. This means that ap-
proaches which focus on equilibria, such as MG-ILA may fail to find the
optimal solution and offer only local optimality.

In the case of general sum games the notion of an optimal solution is
no longer clearly defined. While most learning methods again focus on the
Nash equilibrium concept, this may not yield satisfactory outcomes. This
is clearly demonstrated by the famous prisoner’s dilemma game described
in Example 1, for instance. Here the single Nash equilibrium does not rep-
resent a desirable outcome, since both agents can simultaneously do better.
In some cases this issue can be tackled by considering Pareto optimality.

103



104 CHAPTER 6. BEYOND EQUILIBRIUM

Pareto optimality assures that it is not possible for all agents to do better
simultaneously, however it does not consider the distribution of payoffs
among agents. For instance in a constant sum game 1 any outcome where
one agent receives the entire reward and others get nothing is Pareto opti-
mal, since the best agent will do worse in all other outcomes. Moreover, in
general, multiple Pareto optimal solutions exist (the so called Pareto front )
and a selection problem is still present.

Therefore, in this chapter we present a new multi-agent coordination
approach for learning patterns of desirable joint agent policies. To do so, we
depart from the idea of jointly learning an equilibrium in the full Markov
game. Instead, our main idea is to tackle a Markov game by decomposing
it into a set of multi-agent common interest problems; each reflecting the
preferences of one agent in the system. ILA agents using Parameterised
Learning Automata are able to solve this set of MMDPs in parallel. The
set of solutions to these MMDPs can then be used as a basis for compos-
ing more advanced solution concepts. Here, we use the basic solutions to
obtain a fair outcome for the Markov game. More precisely, we consider
the problem of agents equalising the reward division, while still giving
each agent a chance to realise its preferred outcome. The main idea of our
approach is to let agents learn a periodic policy in general sum Markov
Games. In a periodic policy the agents play different optima alternatively
in periods. The agents alternate between each agent’s preferred solution,
so that on average the payoffs of all agents are equalised.

Periodic policies were introduced in [NPV01, VNPTO07] for learning fair
reward divisions in repeated games. The main idea used to let independent
agents learn a periodical policy in a repeated game, is to first let agents indi-
vidually converge to an equilibrium and then exchange information about
their payoffs. Better performing agents can then exclude actions, in or-
der to allow other agents to catch up. The motivation for this work came
from a simple principle present in a homo egualis society from sociology
[FS99, Gin00], i.e. agents combat inequity. They are displeased when they
receive a lower payoff than the other group members, but they are also
willing to share some of their own payoff when they are winning. A de-
tailed overview of this principle and fairness in general can be found in
[FS99, dJTV08].

This chapter is organised as follows: in the next section we consider
the Exploring Selfish Reinforcement learning algorithm. The Learning Au-
tomata algorithm for optimal equilibria in Multi Agent MDPs is given in

!i.e. games where the sum of payoffs is a constant over all possible plays.



6.1. EXPLORING SELFISH REINFORCEMENT LEARNING 105

section 6.2. In Section 6.3 our approach for learning a periodic policy in
Markov Games is described. We demonstrate this approach on a sim-
ple 2-state Markov game and a larger grid world problem in section 6.4.
We end with a discussion in Section 6.5. References for this chapter are:
[VNPTO07, VVNO07d]

6.1 Exploring Selfish Reinforcement Learning

In this section we describe the Exploring Selfish Reinforcement Learning
(ESRL) algorithm. This technique was introduced in [Ver04] and can be
used in repeated normal form games to find the Pareto optimal Nash equi-
librium in common interest games or to learn fair solutions in general sum
games. In the following sections we will look at possible extensions of this
technique to MMDPs and Markov Games.

The main idea behind ESRL is to divide learning into 2 alternating
phases: an exploration phase and a synchronisation phase. During the ex-
ploration phase agents learn individually to optimise their own reward.
When agents have converged, a synchronisation phase is triggered in or-
der to allow agents to coordinate their exploration of the joint action space
and possibly to communicate their performance to the other agents.

In the common interest case agents coordinate their search for the opti-
mal equilibrium. Each agent in the game is represented by a single learning
automaton. In the exploration phase agents learn action probabilities using
the reward-inaction update, as in any automata game. The convergence
results detailed in Theorem 3 of Chapter 2 assure that the agents converge
to a (possibly suboptimal) Nash equilibrium. During the synchronisation
phase each agent then excludes the action to which it has converged in the
exploration phase. The next exploration phase is then started with each
agent using the reduced action set. In diagonal games, i.e. games where
each agent action is used in at most one pure Nash equilibrium, this system
guarantees convergence to the optimal Nash equilibrium. In non-diagonal
games random restarts can be used to ensure that the agents explore the
joint action space. Provided that the sufficient restarts are used, the agents
are again certain to find the Pareto optimal Nash equilibrium.

In general sum games ESRL can be used to play joint strategies that
ensure an optimally fair reward division among agents. By this we mean
that the algorithm attempts to equalise the average reward over time for
the participating agents, but prefers the fair solutions that give the highest
payoffs for the agents. In this setting, the algorithm is based on the homo



106 CHAPTER 6. BEYOND EQUILIBRIUM

egualis assumption. This means that agents are inequity averse and are will-
ing to sacrifice some payoff in order to reduce inequity in the population of
agents. In the ESRL approach agents do this by playing periodical policies.

Again the algorithm proceeds in an exploration phase and a coordina-
tion phase. During the exploration phase each agent learns individually
and selfishly tries to optimize its own reward. Provided all agents use
Lr_1 automata to learn their actions, the agents will converge to a pure
equilibrium of the game?. When all agents have converged, the coordi-
nation phase takes place. During this phase agents are allowed limited
communication. Each agent exchanges its average reward during the last
exploration phase as well as its total reward over all phases. Based on this
information the agents can determine the best performing agent in the sys-
tem. This agent excludes the action it has converged to. This allows conver-
gence to another joint action during the next exploration phase and gives
other agents a chance to improve their reward. If after the next coordina-
tion phase another agent becomes the best agent, the previously best agent
restore its action set. Pseudo code for both phases is given in Tables 4 and
5.

It should be noted that agents using the periodical policies approach
can no longer be classified as fully independent agents, since they require
communication to coordinate their actions. However, they could be imple-
mented without communication in a joint action learner scenario, which
assumes full observability of all agents’ reward signals. The periodical poli-
cies approach actually has a lower information requirement than most joint
action learners, since it does not need information on the opponents” action
selections and only periodic updates on their received rewards.

Example 9 We demonstrate the typical behaviour of the ESRL algorithm in the
common interest and conflicting interest case. The algorithm is applied to the
‘climbing game’ and the 'Bach-Stravinsky game’. The first is an identical payoff
game where the optimal Nash equilibrium is surrounded by heavy penalties. The
second game is a coordination game where agents have different preferences. Both
agents need to coordinate on the same activity (i.e. ‘go to a Bach concert’ or ‘o to
a Stravinsky concert’), but the agents have different preferences. Agent 1 would
prefer Bach, while Agent 2 prefers Stravinsky. However, if they fail to coordinate,
neither agent gets a payoff. Both games are listed in Table 6.1.

The results of the ESRL algorithm on both games are shown in Figure 6.1.
In the common interest game the agents explore the different Nash equilibria in

2The case of games only having mixed equilibria is treated in [Ver04]. Here it is shown
that the agents will converge to a pure joint strategy, and the algorithm can still be applied.



6.1. EXPLORING SELFISH REINFORCEMENT LEARNING 107

Algorithm 4 Exploration phase for ESRL agent j in conflicting interest
games.

Initialize
timestept < 0,
for all actions ¢ that are not excluded :
initialize action values v;(t) and action probabilities p;(t)
(assume ! = |A;| and k£ < [ is the number of not excluded actions)
repeat
ti=1t+1
choose action a; from A; probabilistically using p(t — 1) = (p1(t —
D....;i(t— 1))
take action a;, observe real immediate reward r in [0, 1]
with a given learning rate «, update the action value as follows:

vi(t) < 1—aw(t—1)+ar
for action q;
vi(t) < vp(t—1)—avy(t —1)
for all actions ay in A; with: ay # q;
normalize the action values v;(t) in probabilities p;(t)

set the global average: average < “Laverage + =
untilt = N

Algorithm 5 Synchronization phase for ESRL agent j in conflicting interest
games

T'<T+1
get action a; in A; for which the action probability p;((T'— 1)N) =~ 1
broadcast action value v/ = v;((T — 1)N) and global average’ = average
to all other agents
receive action value v’ and global average average® for all agents b
if v > v® and average’ > average® for all b then
temporarily exclude action a; : A; <= A;\{a;}
else
restore the original action set: A; <= {a1,...,a;} with | = |A;]
end if




108 CHAPTER 6. BEYOND EQUILIBRIUM

ESRL: Climbing game ESRL: Bach - Stravinsky

1 T T T T y T T 1 T T T T T T T T
r rew —— agent1 ——
a

Osﬁf 1 o8 \/\/\/\

werage rewar

L L L L L L 0 L L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
iteration iteration

(a) (b)

Figure 6.1: Example runs of ESRL for repeated games (a) The Climbing
game. (b) Bach-Stravinsky game.

‘ al a2 a3 ‘

al | 1.0 00 073
a2| 00 09 088 g’ 0.51.00  (0,0)

a3 | 073 073 0.85 0,0)  (1.0,0.5)
@ (b)

B S

Table 6.1: (a) The climbing game. (b) The Bach-Stravinsky game. Both
games have stochastic rewards, normalised to be between 0 and 1. Nash
Equilibria are indicated in bold.

subsequent exploration phases, this allows them to always play optimally when
they finish exploring, without performing an exhaustive search of the joint strategy
space. In the Bach-Stravinsky game, agents alternate between both pure equilibria.
This allows both agents to achieve their preferred outcome some of the time, and
assures both of them a payoff which is higher than the smallest Nash payoff.

6.2 Optimal Learning in MMDPs

We now consider the problem of learning the Pareto optimal Nash equi-
librium in an MMDP. One method would be to apply the common interest
ESRL method of the previous section in the automata view, discussed in the
Chapter 4. The advantage of approximating the ILA algorithm’s behaviour
by an limiting game, is that we can immediately apply algorithms such



6.2. OPTIMAL LEARNING IN MMDPS 109

as ESRL to the Markov game case. Unfortunately, this approach does not
scale well to larger problems. In MMDDPs, the large joint action space may
require a lot of exploration phases before the optimal point is found. In
this case the time needed for the automata team to converge several times
may be prohibitively large. Furthermore, as the underlying model of the
MMDP is generally unknown, there is no way of knowing how many ex-
ploration phases will be needed, or even if the optimum has already been
found. Therefore, we propose below an alternative method, which has the
advantage that convergence to the optimum can be guaranteed.

6.2.1 Parameterised Learning Automata

As an alternative to the coordinated exploration technique above, we also
give an alternative ILA learning update capable of converging to the global
maximum. For this we rely on the parameterised learning automata (PLA)
update.

Recall from Section 2.1.4 that PLA keep an internal parameter vector «,
of real numbers which is not necessarily a probability vector. After select-
ing an action a; and receiving feedback b(t), with learning rate ), this state
vector is updated as follows:

dlng

T (T a(0) + M (i) +VAsi0) 61

wi(t+ 1) = u;(t) + \b(t)

h is a specially shaped function which keeps the vector @ bounded, and
s(t) is a random noise term, inspired by the simulated annealing algorithm,
which allows the PLA to escape from local optima.

The parameter vector « is used in combination with a function g, that
normalises the parameters to action probabilities. For this purpose we use
the Boltzmann action selection rule:

Us

e
= 7zj =

To tackle the MMDP case, we propose to replace the reward-inaction
automata in MG-ILA with PLA. To distinguish this adapted algorithm from
the general Markov game version we refer to it as MMDP-ILA. Conver-
gence results for this algorithm can be deduced from the results provided
in previous chapters. When we combine the Theorem 4, which guarantees
that a team of PLA will converge to the global optimum in a common in-
terest game, with Theorem 7 which shows that the Nash equilibria for the

Pr{a(t) = a; | u} = g(ai, @) (6.2)



110 CHAPTER 6. BEYOND EQUILIBRIUM

ILA automata game are exactly those of the MMDP, we immediately get
following result:

Corollary 2 The MMDP-ILA model, using the update scheme given in Equa-
tion 6.1 converges to an optimal equilibrium in pure strategies in an ergodic MMDP.

To apply the theorem above in practice, however, some considerations
need to be made. Firstly, we must take into account that PLA are guaran-
teed only to find the best strategy given their state vector @. There is no
guarantee that the global optimal strategy can be expressed by # and the
function g. In fact, when using the Boltzmann function above, the PLA can-
not express pure strategies, since these require values in @ to go to infinity.
This means that the limits (—L, L) for the state vector @ must be taken large
enough to approximate a pure policy sufficiently close.

Additionally, while the algorithm continues updating, random noise
s(t) is added to @ at every time step. This prevents the algorithm from fully
converging, as action probabilities tend to keep moving in the neighbour-
hood of the maximum value. This issue can be addressed by switching
to a greedy policy, once we are satisfied that the algorithm has found the
maximum equilibrium.

In Section 6.4 we provide some experimental results for MMDP-ILA.
In the next section we will show how the technique can still be applied in
general sum Markov games in order to learn fair joint policies.

6.3 Periodic policies for Markov games

We now consider the issue of learning fair reward divisions in general sum
Markov games. In this section we explain how agents can equalise their av-
erage rewards by switching between a set of deterministic stationary poli-
cies. Naturally, we do not wish to only equalise the rewards agents obtain,
but also optimise these rewards. Therefore we develop a system in which
agents take turns to play their preferred joint policies.

The idea is similar to the Exploring Selfish Reinforcement Learning and
Periodical Policies concept described in Section 6.1. There however, the
agents excluded actions in order to allow other agents to improve their
payoff. Unfortunately this approach does not scale well to the large num-
ber of automata typically needed for solving Markov games. Several is-
sues arise, such as a large number of exploration phases being needed
to equalise rewards which, together with the slower convergence in large



6.3. PERIODIC POLICIES FOR MARKOV GAMES 111

Markov games, makes the algorithm very slow. Additionally, since all au-
tomata belonging to the same agent have the same expected rewards, more
complex exclusion schemes are needed to prevent multiple automata of the
same agent alternating to become the best player. These issues make a di-
rect application of ESRL and periodical policies to Markov games difficult.

Therefore, instead of directly implementing ESRL for Markov games.
we propose an adapted version for Markov Games. We proceed by using
properties of both the original ESRL algorithm (alternating exploration and
coordination) and MMDP-ILA (optimality in common interest problems).
In the next section we first discuss some issues , which arise when allowing
agents to switch between policies. We then introduce our periodic policies
approach for Markov games.

6.3.1 Playing a mixture of policies

Following the ESRL approach, we will attempt to develop a system in
which agents alternate between plays in order to assure fair payoffs for
all agents. In Markov games this implies that instead of switching between
different joint actions, we let agents alternate between different joint poli-
cies. For this to work we need a system to allow agents to play a mixture
of stationary policies. As was noted in Chapter 4, mixing stationary poli-
cies is not the same as playing a mixed, stationary policy. The result of
mixing stationary policies can be non-stationary, meaning that it cannot be
implemented by simple state-based action probabilities.

The approach we use to implement these policy mixtures is similar
to the policy time-sharing (PTS) system used in constrained MDP literature
[AS93]. A similar idea has also been applied to multi-objective reinforce-
ment learning in [MS02]. In a policy time sharing system the game play is
divided into a series of episodes. An episode is defined as the time between
two subsequent visits to a selected recurrent system state’. During an
episode agents play a fixed stationary policy. Different stationary policies
are calculated in order to satisfy several constraints on the average reward
received in the MDP. When the agent returns to the selected recurrent state,
a fixed rule is used to select the policy during the next episode of play. Poli-
cies in this system are specified by a vector of stationary policies (71, ..., )
and a corresponding vector @ = (a,..., o) such that }°, a; = 1. APTS
policy is then any policy which iterates over policies 7;, using a selection

®A recurrent state is a non-transient state. In the ergodic system under study here all
states are recurrent.



112 CHAPTER 6. BEYOND EQUILIBRIUM

rule such that for each 7; the limiting proportion of episodes in which it is
used tends to «;.

It should be noted that the expected average reward for a mixture is
not simply the sum of their rewards weighted by proportions «;, but also
depends on the expected episode length under each policy. Altman and
Schartz [AS93] show that the expected average reward of a PTS policy
(a,7) is given by:

l
JET = "w; g™ (6.3)
j=1

Where the weight w; of policy ; is determined by:

Q;Tj
]
D=1 QT
Here 7; is the expected length of a episode under policy 7, or equiva-
lently the expected time between 2 subsequent visits to the episode switch-

ing state. In an ergodic MDP, with s being the recurrent state which deter-
mines episodes, we can calculate this quantity as:

w; =

_ 1
T (s)

In Example 10 we show how this system can be applied to play (possi-
bly non-stationary) mixed strategies in the agent view of a Markov game.

(6.4)

7j

Example 10 Consider again the 2 robot recycling problem from Chapter 4. The
rewards obtained for deterministic stationary policies are listed in the agent game
view of Table 4.6. We now demonstrate how we can let agents play mixed strategies
in the agent game. We choose state 1 as the recurrent state which determines
episodes. Let agent 1 randomise over deterministic policies [search, search| and
[wait, wait] with probabilities 1/3 and 2/3, respectively. Agent 2 plays policies
[aid, wait] and [wait, aid] with equal probability. This means the system switches
between following joint policies:

([search, search], [aid, wait])
([wait, wait], [aid, wait))

T ([search, search), [wait, aid])
(I

wait, wait), [wait, aid))



6.3. PERIODIC POLICIES FOR MARKOV GAMES 113

05

agent 1
agent 2

0.4

average reward

03 L L L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

iteration

Figure 6.2: Rewards for 2 agents playing mixed agent game policies de-
scribed in Example 10

Rewards for both agents under these joint policies can be looked up in Table 4.6
and are respectively: (0.85,0.72), (0.15,0.15), (0.49,0.54) and (0.66,0.46). The
proportions & with which policies are played are (1/6,2/6,1/6,2/6). Calculating
the stationary distribution we can use Equation 6.4 to obtain 7 = (1.3,2.8,1.1,6.0).
Finally, inputting above data in Equation 6.3 allows us to calculate expected re-
wards for the agents: (0.4925,0.4185). Figure 6.2 gives the rewards obtained by
both agents in an experiment implementing PTS play with the above specifications.

Below we introduce periodic policies for Markov games. This mecha-
nism uses the policy mixing method described above, but does not limit
agents to individually mixed policies. By using a coordination mechanism
such as ESRL, agents not only mix their policies, but can also correlate their
action choice. This means that agents are not limited to the product distri-
butions, given by individually mixing policies. Instead, agents using the
system below to coordinate their policy switches, can play only desired
joint policies, rather than the entire cross product of their individual policy
sets.

As an example consider the simple Bach-Stravinsky in Example 9. If
both agents play mixed strategies in this game, they will always attach
some probability to the plays (B, S) and (.5, B), which result in 0 payoffs.
This is unavoidable as agents action selections are not correlated and using
mixed strategies, they will sometimes miscoordinate. When agents corre-
late their action switches using ESRL coordination, however, they are able



114 CHAPTER 6. BEYOND EQUILIBRIUM

n-player
Markov
Game

Figure 6.3: Idea behind the egualis learning algorithm.

to play only the Nash equilibrium joint actions and avoid the 0 payoffs. In
the next section we implement a similar system in the Markov game set-
ting.

6.3.2 Periodic Play in a Markov Game

The idea behind this algorithm is to split the Markov game into a num-
ber of common interest problems, one for each agent. These problems are
then solved in parallel, allowing agents to switch between different joint
policies, in order to satisfy different agents” preferences. The agents learn
preferred outcome for each participant in the game. A fair reward division
is then assured by continuously switching between playing each agent’s
preferred joint policy. This system improves over the ESRL approach in
2 ways. First, rather than randomly exploring the joint action space, we
perform a directed search for each agent’s desired outcome. Secondly, in-
stead of running long exploration phases before coordinating, play is now
divided in relatively short episodes and agents can switch between policies
at the start of each episode. The more frequent coordination allows agents
to equalise rewards from the start, rather than having to perform multiple
exploration phases before equal average payoffs are achieved. The down-
side to this is that the algorithm requires more frequent communication
than the original ESRL. It should be noted, however, that in a joint action
setting where all rewards are available, it can still be implemented without
the need for communication.

We apply this system as follows. At the start of each episode, agents



6.3. PERIODIC POLICIES FOR MARKOV GAMES 115

period n:
exchange rewards

I

worst agent = i

I

- Play using PLAs i
- update PLAs
period n-1

I

return to start
state:
period n+1

'

Figure 6.4: Outline of the egualis learning algorithm.

exchange their total reward up to the current time step. The agents then
select the agent who is worst off, and choose the policy which maximises
that agent’s reward. Thus agents do not only learn their own policy, they
also learn the preferences of the other agents. Agents do this by associat-
ing multiple LA with each state, one for each agent in the system. The first
automaton is used to learn their own policy, while the others are used to
learn the preferences of the other agents. When the agents agree to aid an-
other agent, they use and update the automata corresponding to that agent
in each state until the episode ends. Since the expected average reward
under a given policy in an ergodic Markov game is the same for all states,
the average rewards exchanged each episode contain sufficient information
for each agent to estimate the average payoff received by the other agents
during the last episode. This information can then be used to update the
automata in visited states, in exactly the same manner as was described in
the algorithm of Section 6.2.

This system effectively transforms the Markov game into a set of MMDPs.
Each MMDP represents the problem of finding the joint policy that max-
imises the reward for a single agent in the system. By switching between
different automata to learn different agents’ preferences, the agents are ac-



116 CHAPTER 6. BEYOND EQUILIBRIUM

State 1 State 2
bl b2 bl b2
R| al 02/0.1 0/0 al 1.0/05 0/0
a2 0/0 0.2/0.1 a2 0/0 0.6/0.9
(al,b1)—(0.5,0.5) (al,b1)—(0.5,0.5)
T (a1,b2)—(0.5,0.5) (al,b2)—(0.5,0.5)
(a2,b1)—(0.5,0.5) (a2,b1)—(0.5,0.5)
(a2,b2)—(0.5,0.5) (a2,b2)—(0.5,0.5)

Table 6.2: Markov game with 2 states and 2 agents. Each agent has 2 ac-
tions in each state: actions al and a2 for agent 1 and b1 and b2 for agent 2.
Rewards for joint actions in each state are given in the first row as matrix
games. The second row specifies the transition probabilities to both states
under each joint action.

tually solving each of the MMDDPs in parallel using the algorithm described
in the previous section.

Provided all LA in the system use the PLA update system the agents
will find the optimal joint policy in each MMDP, which corresponds to
the joint policy maximising the reward for the corresponding agent. Thus
when the automata have converged, the agents continuously alternate be-
tween the stationary joint policies that are optimal for the different agents
in the system. In the next section we will demonstrate how this system can
be naturally applied in an example grid world setting.

6.4 Experiments

In this section we demonstrate the behaviour of our approach on 2 Markov
games and show that it does achieve a fair payoff division between agents.
As a first problem setting we use that Markov game of Table 6.2. From
the limiting game in Table 6.3 we observe that the game has 4 pure equilib-
rium points. All of these equilibria have asymmetric payoffs with 2 equilib-
ria favouring agent 1 and giving payoffs (0.6, 0.3), and the other equilibria
favouring agent 2 with payoffs (0.4,0.5).

Figure 6.5 gives a typical run of the algorithm, which shows that agents
equalise their average reward, while still obtaining a payoff between both
equilibrium payoffs. All PLA used a Boltzmann exploration function with
update parameters: A = 0.05, 0 = 0.001, L = 3.0, K = n = 1.0. Over
20 runs of 100000 iterations the agents achieved an average payoff 0.42891



6.4. EXPERIMENTS 117

Agent 2
[b1,b1] [b1,b] [b2,b1] [b2,b2]
[al,al] | 0.6/0.3 0.1/0.05 0.5/0.25 0/0
[al,a2] | 0.1/0.05 0.4/0.5 0/0 0.3/0.45
[a2,a1] | 0.5/0.25 0/0 0.6/0.3 0.1/0.05
[a2,a2] 0/0 0.3/0.45 0.1/0.05 0.4/0.5

Agent1

Table 6.3: Approximating limiting game at the agent level for the Markov
game in Table 6.2. Equilibria are indicated in bold.

(std. dev: 0.00199), with an average payoff difference at the finish of 0.00001.

In a second experiment we apply the algorithm to a somewhat larger
Markov game given by the grid world shown in Figure 6.6(a). This prob-
lem is based on the experiments described in [GHS03]. Two agents start
from the lower corners from the grid and try to reach the goal location (top
row center). When the agents try to enter the same non-goal location they
stay in their original place and receive a penalty —1. The agents receive a
reward when they both enter the goal location. The reward they receive de-
pends on how they enter the goal location,however. If an agent enters from
the bottom he receives a reward of 100. If he enters from the sides he re-
ceives a reward of 75. A state in this problem is given by the joint location of
both agents, resulting in a total of 81 states for this 3 x 3 grid. Agents have
four actions corresponding to moves in the 4 compass directions. Moves
in the grid are stochastic and have a chance of 0.01 of failing*. The game
continues until both agents arrive in the goal location together, then agents
receive their reward and are put back in their starting positions. As de-
scribed in [GHS03], this problem has pure equilibria corresponding to the
joint policies where one agent prefers a path entering the goal from the side
and the other one enters from the bottom. These equilibria are asymmetric
and result in one agent always receiving the maximum reward, while the
other always receives the lower reward.

In order to apply the LA algorithms all rewards described above were
scaled to lie in [0, 1]. The periodic Markov game algorithm was applied as
follows. Each time the agents enter the start state (both agents in their start-
ing position), they communicate and exchange their average reward up to
that point. Using this information the agents can then calculate the average

“when a move fails the agent either stays put or arrives in a random neighboring loca-
tion.



118 CHAPTER 6. BEYOND EQUILIBRIUM

Agent 1 Reward Agent 2 Reward

0.45 T T T 045 T T T

agent T agent 2

E E
s s
H H
-3 -3
3 3
g g
§ o2 § o2
< <

015 015

o1 o1
005 005
0 . . . . 0 . . . .
0 100000 200000 300000 400000 500000 0 100000 200000 300000 400000 500000
teration teration

Figure 6.5: Typical run of the periodic policy algorithm on the Markov
game in Table 6.2.(a) Average reward over time for agent 1. (b)Average
reward over time for agent 2.

" Agent 1’

Agent2 -

coaL

o
]
H
e
°
s
g
$ 015 g
&
0.1 g
0.05 g
0 . . . . . . . . .
0 20+06 4e+06 6e+06 8e+06 le+07 1.2e+07 Llde+07 1.6e+07 1.8e+07 2e+07
iteration

Figure 6.6: (a) Deterministic equilibrium solution for the grid world prob-
lem. (b) Average reward over time for 2 agents converging to equilibrium.



6.5. DISCUSSION AND RELATED WORK 119

reward the other agent received during the last episode. The automata are
updated using the average reward for that episode (i.e. from start to goal).
When the PLA have converged this system results in agents taking turns
to use the optimal route. Results for a typical run are shown in Figure 6.7,
with the same settings as described above. From this figure it is clear that
agents equalize their reward, both receiving an average reward that is be-
tween the average rewards for the 2 paths played in an equilibrium. For
comparison purposes we also show the rewards obtained by 2 agents us-
ing the original Markov game algorithm of Chapter 4 to converge to one of
the deterministic equilibria.

6.5 Discussion and Related Work

In the periodic policy system presented here, we assume that all agents
are cooperative and are willing to sacrifice some reward in order to help
other agents. In systems where agents cannot be trusted or are not will-
ing to cooperate, methods from computational mechanism design could be
used to ensure that agents’ selfish interests are aligned with the global sys-
tem utility. Another possible approach is considered in [dJT08], where the
other agents can choose to punish uncooperative agents, leading to lower
rewards for those agents.

The system presented here relies on agents communicating periodically
to share information about their rewards. It should be noted that we as-
sume that agents have limited communication abilities, meaning that this
approach can be implemented using fully independent agents, provided
that agents can observe the rewards of all agents in the system at the start
of each new episode. Settings used by traditional multi-agent algorithms
based on the Q-learning algorithm such as NashQ [HW98] or the Corre-
lated Q-learning [GHS03] algorithm do not only assume full knowledge of
rewards at each simulation step but also assume knowledge of the action
choice as well.

Note also that in the system presented here agents learn to correlate on
the joint actions they play. In [GHSO03] an approach was presented to learn
correlated equilibria. A deeper study on the relation between periodic poli-
cies and correlated equilibrium still needs to be done. The main difference
we put forward here is that a periodic policy was proposed as a vehicle to
reach fair reward divisions among the agents.

In [ZGL06] the concept of cyclic equilibria in Markov Games was pro-
posed. These cyclic equilibria refer to a sequence of policies that reach a



120

average reward

average reward

0.35

0.3

0.35

0.3

0.05

CHAPTER 6. BEYOND EQUILIBRIUM

‘ Agentl‘—

0 2e+06

4e+06

6e+06

8e+06 1le+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07
iteration

2e+07

‘ Agent 2 s

4e+06

6e+06

8e+06 le+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

iteration

Figure 6.7: Results of the homo egualis learning in the grid world problem.
The coloured lines give the average reward over time for both agents. Grey
lines give the rewards for agents playing one of the deterministic equilibria.



6.5. DISCUSSION AND RELATED WORK 121

limit cycle in the game. However again, no link was made with individual
agent preferences and how they compare to each other.



122 CHAPTER 6. BEYOND EQUILIBRIUM



Chapter 7

Partial Observability in
Markov games

One of the key assumptions made in the preceding chapters, is that agents
face a problem that is described by a Markov game, and consequently that
the underlying state transitions have the Markov property. When agents
can observe the actual system states, this assumption might be unrealistic,
as in a multi-agent system Markovian transitions often require the state
to contain detailed information on the local situations of all agents in the
system. Thus, by assuming agents know the system state, we are implicitly
assuming that they have knowledge about the other agents.

In this chapter we still consider Markov games, but we no longer as-
sume that agents have perfect knowledge of the system state. These prob-
lems are known as partially observable systems or problems with hidden state.
In a partially observable Markov game the system state contains one or
more state variables which cannot be observed by an agent learning in the
system. This means that while the underlying system still has the Markov
property, the problem may appear non-Markovian to the agents, since they
cannot observe all relevant state information. We will focus on the case
where the hidden variables are related to the local states of other agents
present in the system.

As a testbed for our approach we focus on grid world and mobile robot
problems. These problems are a popular benchmark tool for learning sys-
tems and are ubiquitous in RL literature. While in a single agent problem,
the system state can be described simply by the location of the agent in the
world, this is no longer the case in a multi-agent setting. When describing
a grid world problem as a Markov game, the result is a state space which

123



124 CHAPTER 7. PARTIAL OBSERVABILITY

consists of the joint location of all agents in the system and as such, is expo-
nential in the number of agents. This also means that by letting the agents
learn in the Markov game state space, we are implicitly assuming that the
agents have full knowledge of the position of all other agents in the world,
at all times. Not only is this assumption unrealistic for many problems,
often it is also unnecessary.

In this chapter we study the case where the agents only have informa-
tion on the state variables pertaining to their own situation. Contrary to
other approaches in partially observable environments (e.g [LCK95]), we
do not let agents attempt to estimate the global system state by making in-
ferences based on their observations. Agents in our system learn directly
in their observation space. By this we mean that they directly apply their
learning algorithm to the non-Markovian problem. We will show that un-
der some simplifying assumptions, agents using the MG-ILA algorithm can
still converge to an equilibrium between the policies they can learn.

This chapter will proceed as follows. In the next section we define our
learning setting and specify our assumptions. In Section 7.2 we apply our
limiting game analysis to this setting and draw a comparison with the fully
observable case. We then provide some theoretical results on the appli-
cation of the MG-ILA algorithm to this setting in Section 7.3, and exper-
imentally demonstrate these results in Section 7.4 Finally, we provide an
overview of related approaches and possible extensions. References for
this chapter are: [VVNO08b, VVN07a, VVNO07c]

7.1 Partially Observable Markov Games

We start out by defining our partially observable problem setting. We as-
sume that the problem with full information is still a Markov game, but
that agents receive incomplete information on the system state:

Definition 25 A partially observable Markov game (POMG) is a tuple
(n,01,.n,8,A1,..n,R1,..n,T) such that:

e the tuple (n,S, A1 . n,R1,. n,T) is a Markov game as defined in Defini-
tion 15

e the state space S can be factored S = x;X;, so that the states s(t) can be
represented by a finite set of values {X1(t), ..., X (t)}. Here each X; isa
discrete variable with a finite domain dom(X;).



7.1. PARTIALLY OBSERVABLE MARKOV GAMES 125

o op € P{Xy,...,Xn}), where P(A) denotes the power set of A, is the set
of state variables that can be observed by agent k.

The definition above describes a factored state space representation. The
states are described by a set of variables (e.g. agents’ x and y coordi-
nates) and each different assignment of values to these variables {X; =
x1,..., XM = T} Where z; € dom(Xj), corresponds to a new state s. Ad-
ditionally, we assume that agents can observe only the values assumed by
a subset of all state variables. Note that the set o; of observable variables is
individual to each agent k.

The setting defined here corresponds to the problems detailed in [MV09].
It should be noted that it departs from other partially observable problems
literature, for example see [LCK95], where we have a set of observations O
and a probability Pr{o | s} to make observation o € O when the system
is in state s € S. Here we do not consider such stochastic observations,
thus for a state s* = {z%,...,2%,}, agent k will always make the same ob-
servation Uy Xjeok}{mé»}. This means that agents always make the same
observation in the same state, but different states might lead to the same
observation, if these states differ only in the values of state variables that
cannot be observed. In such cases the agent will not be able to distinguish
between these system states.

In order to distinguish between the different notions of states, we shall
refer to the full system state of the Markov game as the joint state s(t). The
individual agent observations will be called local states, or in the case of
our grid world examples, locations. We will focus on the case where we
have a state variable X} (t) corresponding to the local state of each agent
k, which can be observed only by that agent. In addition to the ergod-
icity assumption (Assumption 2 in Chapter 4) also made in the previous
chapters, we make following simplifying assumption for our partially ob-
servable Markov games:

Assumption 3 X (t + 1), the kth component of s(t+1), depends only on X (t)
and ay(t).

This assumption implies that the transition dynamics of our full Markov
game can be decoupled in terms of the local states and actions of the agents.
So given joint states s = (x1,...,zn), s = (#],...,2,) and a joint action
d=(ay,...,a,) we can write the transition probabilities as:



126 CHAPTER 7. PARTIAL OBSERVABILITY

T(s(t+1)=45"]s(t)=s,d(t)=a) = (7.1)

[T Pri{Xe(t+1) =2 | a(t) = ag, Xp(t) = 21}
k

In our grid world setting it means that an agent’s next location is deter-
mined only by it’s current location and the action it chooses, i.e. it is not
possible for another, unseen agent to move agent £ around the grid. While
we require that transitions are independent of the actions of other agents,
this does not mean that we only allow deterministic transitions. Local state
transitions are in general still stochastic, but he transition probabilities do
not depend on actions of other agents or values of other state variables.

It should also be noted that while we assume that the state transitions
can be decoupled in terms of the local agent states, this need not be true for
the rewards. We still consider rewards which are influenced by the other
agents, i.e. which depend on the transitions of the joint state s(¢), not just
the local state Xj(t). If the rewards can also be decoupled, the agents do
not influence each other in any way, and are effectively solving n MDPs in
parallel. In this case we can simply rely on the traditional RL approaches
from Chapter 3 to find the optimal solution for each agent.

7.2 Grid problems

We will demonstrate our approach to POMGs, using grid world problems.
This simple learning setting, abstracts the problem that a group of mo-
bile robots faces when moving around in a shared environment in order
to complete individual objectives. In Chapter 6 we described this setting as
a Markov game to test our ILA approach. We will now examine the issues
that arise when agents can no longer observe the full Markov game joint
state.

First we examine the grid world problems using the Markov game frame-
work, as used in the Chapter 6. In the next section we will show how the
partial observability restriction influences our ability to learn in this setting.
Below we introduce a small grid world problem which we will use as a first
example.

Example 11 As an example we consider the 2-agent coordination problem de-
picted in Figure 7.1. The game consists of only two grid locations 11 and 2. Two
agents A and B try to coordinate their behaviour. Each time step both agents can



7.2. GRID PROBLEMS 127

state ‘ R1 state ‘ R2
st ={11,11} | (0.01,0.01) st ={11,11} | (0.5,0.5)
52 ={I2,11} | (0.5,0.5) 52 ={12,11} | (1.0,0.0)
s3 ={11,12} | (1.0,1.0) s3 ={11,12} | (0.0,1.0)
s ={12,12} | (0.01,0.01) st ={12,12} | (0.1,0.1)
(a) (b)

Table 7.1: Reward functions for 2 different Markov Games. Each function
gives a reward (r1,r2) for agent 1 and 2 respectively. Rewards are based
on the joint locations of both agents after moving. (a) Function R1 results
in a Team Game with identical payoffs for both agents. (b) Function R2
specifies a conflicting interest Markov game.

take one of 2 possible actions. If an agent chooses action 'Stay’ (S) it stays in the
same location, if it chooses action "Move’ (M) it moves to the other grid location.
The transitions in the grid are stochastic, with action M having a probability of
0.9 to change location and a probability of 0.1 to stay in the same location and visa
versa for action S. The agents receive a reward that depends on their joint location
after moving. Table 7.1 gives 2 reward functions R1 and R2 for 2 different learn-
ing problems in the grid of Figure 7.1. For both problems, column 1 specifies the
joint state, while column 2 gives the reward the agents receive for reaching these
states, under reward functions R1 or R2. Reward function R1 defines a common
interest problem, where agents need to coordinate their location in order to max-
imise their reward. Reward function R2 on the other hand, defines a conflicting
interest problem. Here both agents attempt to reach a state in which they are in
different locations, but agent 1 prefers configuration {I1,12}, i.e. agent 1 is in lo-
cation 11 and agent 2 in location 12, while agent 2 gets its highest reward if the
situation is reversed.

7.2.1 Full Markov game view

The problem in Example 11 can be represented as a Markov game by con-
sidering the product space of the locations and actions. The state variables
here consist of the locations of each agent, i.e. with 2 locations /1 and /2 and
2 agents we get 2 state variables X; and Xj, both having the same domain
{i1,12}. A state in the Markov game then consists consists of the locations
of both agents, e.g. s = {I1,11} when both agents are in grid location 1.
The result is a 4 state Markov game.

The actions that can be taken to move between the states are the joint



128 CHAPTER 7. PARTIAL OBSERVABILITY

A y

Tt

Agent A Agent B

Figure 7.1: Small grid world problem described in Example 11.

(8.8)

{11,11} {1,12} (S,5)

Figure 7.2: Markov game representation of the grid world problem of Ex-
ample 11.

actions resulting from the individual actions selected by both agents. The
transition probabilities for the joint states of the grid world problems are
simply products of the local agent state transition probabilities. For in-
stance, in joint state {/1,/1} with joint action {S, S} chosen, the probability
to stay in state {/1,11} is 0.9 x 0.9 = 0.81. The probabilities corresponding
to move to states {I1,12}, {I2,11} and {2, 12} are 0.09,0.09 and 0.01 respec-
tively. The transition probabilities for all states and joint action pairs can be
calculated this way. With the transition function and the rewards known,
we can use Equation 4.3 of Chapter 4 to calculate the expected average re-
wards. The full Markov game representation of Example 11 can be seen in
Figure 7.2.



7.2. GRID PROBLEMS 129

Using the representation above, we can apply the MG-ILA algorithm
to the grid world Markov game and assure convergence to a Nash equi-
librium between agent policies. However, this representation is feasible
only for small problems as both the number of states and the number of
agent policies grow exponentially with the number of agents in the system.
Even for the very small example considered here, we have a 4-state Markov
game with 24 =16 policies for each agent. Moreover, the assumption that
an agent always exactly knows where all other agents are is often not re-
alistic. Therefore, we will now consider a more feasible learning setting in
which each agent only knows its own position in the grid. We will see that
despite this limitation, agents can still coordinate their behaviour using the
MG-ILA algorithm.

7.2.2 Partial Observability

In this section we no longer assume that agents observe the joint state of
the Markov game. Instead we assume that each agent learns using an indi-
vidual local state space, i.e. its location in the grid. It should be noted that
while the agents cannot observe the locations and movements of the other
agents, these factors can still have an impact on their rewards.

The main difference with the application of the MG-ILA algorithm is
that we do not assume that agents can observe the complete system state.
Instead, each agent learns directly in its own observation space, by asso-
ciating a learning automaton with each distinct local state it can observe.
Since an agent does not necessarily observe all state variables, it is possible
that it associates the same LA with multiple states, as it cannot distinguish
between them. For example, in the 2-location grid world problem of Ex-
ample 11, an agent associates a LA with both locations it can occupy, while
the full system state consists of the joint locations of all agents. As a con-
sequence, this local state representation does not allow the agents to learn
all policies that are possible in the full Markov game. Consider for exam-
ple the automaton associated by agent A with location /1. This automaton
is used in state s' = {i1,/1} as well as in state s®> = {i1,/2}. Therefore
it is not possible for agent A to learn a different action in state s* and s®.
This corresponds to the agent associating actions with locations, without
modelling the other agents. Contrary to the full Markov game case, agents
cannot condition their action on the locations of other agents. Furthermore,
since both agents have different observation spaces, they observe different
local states. In our example, agent 2 is able differentiate between states
st = {I1,11} and s = {I1,12}, since they differ in its own position, which



130 CHAPTER 7. PARTIAL OBSERVABILITY

Agent 2

Figure 7.3: Observation spaces for both agents have in the Markov game of
Example 11. Coloured circles indicate states which are indistinguishable to
the corresponding agent.

is the only state variable it can observe. It is not able however, to tell states
st = {i1,11} and s? = {i2,11} apart, while these do appear as separate
(local) states to agent 1. Figure 7.3 shows the observation spaces for both
agents with respect to the Markov game representation of Example 11.
The definition of the update mechanism works in the same way as in the
MG-ILA model, the difference is that here agents update their local states
instead of the global system state. This will give the following: LA(k,1),
active for agent k in location /; is not informed of the one-step reward
R(s(t),a, s(t + 1)) resulting from choosing joint action @ = (at,...,a’)
with ai € Ag(s') in s(t) and leading to state s(¢ + 1). Instead, automa-
ton LA(k, i) updates its probabilities when location /; is visited again. This
update can now take place in a state which differs from the original s(t),
since location /; might also be observed by the agent in other joint states.
Automaton LA(k,i) receives the same two pieces of data as in the full
Markov model: the cumulative reward for agent k£ up to the current time
step and the current global time. From these, automaton LA(k, i) computes
the incremental reward generated since this last visit and the correspond-
ing elapsed global time The environment response or the input to LA(k, i)

is then taken to be: 3, = f? ’f((llz Zf“)) where pi (I, a) is the cumulative total
"k

reward generated for action a!, in location I; and n'(I%, a}) the cumulative
total time elapsed. Contrary to the original MG-ILA algorithm, different



7.3. THEORETICAL ANALYSIS 131

agents may now update automata in different states due to the fact that
they have different observations. Additionally, a single probability update
may now affect an agent’s policy in multiple joint states. In the following,
we will show that even when the agents have only knowledge of their own
location, in some situations it is still possible to find an equilibrium point
of the underlying limiting game. Provided that Assumption 2 still holds,
we can still look at the behaviour of MG-ILA as an automata game. The
main difference is that we no longer have a play corresponding to each de-
terministic joint policy in the Markov game. Since the agents now map ac-
tions to observations, they will assign the same action to all states in which
they make the same observation. As such, the agents can not learn a pol-
icy which requires them to play a different action in those states. Since the
agents cannot express all joint policies, we cannot be sure that they con-
verge to a Nash equilibrium of the underlying Markov game, as they may
not be able to learn the required policies. We will show however, that they
still converge to a Nash equilibrium of the limiting agent game, which con-
stitutes an equilibrium between the policies the agents can actually express.

In Table 7.2 we give the limiting games for the agent view of Exam-
ple 11 for both reward functions R1 and R2. Reward function R1 results
in a common interest game with a suboptimal equilibrium giving a pay-
off of 0.4168 and the optimal equilibrium resulting in a payoff of 0.8168.
Reward function R2 results in a conflicting interest limiting game with a
single equilibrium giving a reward of 0.176 to both players. In this game
several plays exist that give both players a higher payoff than the equilib-
rium play. Note that the underlying limiting game in case of full observ-
ability would be different. In that case, an agent policy is described based
on joint state-information rather than single agent locations. This means
an agents’ policy is described by a 4-tuple, i.e. for each joint state of the
corresponding Markov game an action is given. This would result in an
underlying limiting game of size 2* x 2%. The corresponding automata lim-
iting games can be seen in Table 7.3. From these tables it is clear that in the
grid world problem of Example 11 the equilibria of both views agree. In
the next section we will show that this must always be the case.

7.3 Theoretical Analysis

We will now show that the MG-ILA model applied directly to the observa-
tion space of the agents, converges to an equilibrium between agent poli-
cies. This theorem is the analogue of Theorem 7 of Chapter 4. It should be



132 CHAPTER 7. PARTIAL OBSERVABILITY

agent 2
policy [SS] [SM]  [M)SS] [MM]
[S,S] | 0.38 0.28 0.48 0.38
[SSM] | 048 0.1432 0.8168 0.48
[M,)S] | 0.28 0.4168 0.1432 0248
[MM] | 0.38 0.28 0.48 0.38

agent 1

agent 2
policy [S,S] [SM] [M,S] M,M]
[S,S] (0.4,0.4) (0.68,0.28) (0.12,0.52) (0.4,0.4)
[SM] | (0.28,0.68) (0.496,0.496) (0.064,0.864) (0.28,0.68)
[M,S] | (0.52,0.12) (0.864,0.064) (0.176,0.176) (0.52,0.12)
MM] | (0.4,0.4) (0.68,0.28) (0.12,0.52) (0.4,0.4)

agent 1

Table 7.2: Limiting games for the reward functions given in Table 7.1.
(Top)Common interest game with both an optimal and a suboptimal equi-
librium. (Bottom) Conflicting interest game with a dominated equilibrium.
Equilibria are indicated in bold.

noted that although we find an equilibrium in the limiting agent game, we
cannot guarantee convergence to a Nash equilibrium of the underlying full
Markov game. This is due to the fact that the agents can only express a sub-
set of possible policies, and as such may not be able to learn the equilibrium
policies.

Theorem 10 Consider a Partially Observable Markov Game

I'=(o1,..n,n S, A1, n, R1,.nT), satisfying the ergodicity requirement of As-
sumption 2. If Assumption 3 also holds, any deterministic joint policy 7 that is a
Nash equilibrium in the multi-agent view, is also a pure equilibrium policy for the
LA-view and vice versa.

Proof Outline:

As was the case in the full Markov game model, a joint action either in
the agent view or in the automata view corresponds to a (here observation
based) deterministic joint policy for the agents. The idea is to prove that this
LA game has the same equilibrium points as the limiting game the agents
are playing. It is easy to see that an equilibrium in the agent view limiting
game is also an equilibrium of the LA-game, since in any situation where it



7.3. THEORETICAL ANALYSIS 133

-

7t J* 7t JF J5
(S,S,5,9) 0.38 (S,S,5,9) 04 04
(SSSM) | 0.28 (SSSM) | 0.68 0.28
(SSMS) | 048 (SSMS) | 012 052
(SSMM) | 038 SSMM) | 04 04
(SMSS) | 048 (SMSS) | 028 0.68
(SM,S,M) | 0.1432 (SM,SM) | 0.496 0.496
(SM,M,S) | 0.8168 (SMM,S) | 0.064 0.864
SMMM) | 0.48 SMMM) | 028 0.68
M,SSS) | 0.28 M,SSS) | 052 0.12
(M,S,S,M) | 0.4168 (M,S,SM) | 0.864 0.064
(M,S,M,S) | 0.1432 M,SM,S) | 0.176 0.176
M,SMM) | 0.28 MSMM) | 052 0.12
MMS,S) | 038 MMSS) | 04 04
MM,SM) | 0.28 MMSM) | 0.68 0.28
MMM,S) | 0.48 MMM,S) | 0.12  0.52
MMMM) | 0.38 MMMM) | 04 04
(a) (b)

Table 7.3: Limiting automata games for the reward functions given in Table
7.1. (a) Common interest game with both an optimal and a suboptimal

equilibrium. (b) Conflicting interest game with a dominated equilibrium.
Equilibria are indicated in bold.



134 CHAPTER 7. PARTIAL OBSERVABILITY

is impossible for a single agent to improve its reward, it is also impossible
for a single automaton to improve its reward.

Now assume that we can find an equilibrium joint policy 7@ = (71, ..., m,)
in the LA-game that is not an equilibrium point of the agent view. In this
case an agent k and a new policy 7} can be found that produces more re-
ward for agent k than policy 7, and differs from 7, in the actions of at least
2 states or LA, belonging to k, while all other agents keep their policies
fixed.

As was the case for the full Markov game, we can now formulate an
MDP describing the situation agent k faces. Consider the MDP
(dom(X}), Ak, R, Tr,). Here X, is the state variable observable by agent k.
This means dom(X}) is the set of all possible observations the agent can
make in the Markov Game, i.e. the states of the MDP are exactly the lo-
cal states of the agent in the Markov game. The action set A;, is kept the
same as in the Markov game. The transition function Tj(z, a,2’) gives the
probabilities Pr{X(t + 1) = 2’ | X;(t) = z,a,(t) = a}. Under Assump-
tion 3 this probability depends only on the previous state of the MDP and
the action of agent k. Since the policies of all other agents are kept fixed,
we can obtain the reward function Ry, for the MDP by taking expectations
with regard to the other state variables and agents. Provided that all other
agents are playing a fixed policy, this gives a stationary reward function for
the MDP.

Under Assumptions 2 and 3, the MDP described above corresponds to
an ergodic MDP. Since the states of this MDP are exactly the observable
local states of the Markov game, the agent assigns a learning automaton
to each state of the MDP and the problem faced by agent k£ reduces to the
MDP-ILA case described in Chapter 3. In [WJN86] it is shown that a better
policy can be constructed by changing the action in only one state of the
MDP. This means that a single automaton of agent k can change its action
to receive a higher reward than is obtained using 7. However, this con-
tradicts the original assumption of 7 being an equilibrium point of the LA
game. This leads to a contradiction and shows that an equilibrium point
from the LA game is also be an equilibrium point in the agent limiting
game.

O

Corollary 3 When the MG-ILA algorithm of Chapter 4 is applied to the local
states of a partially observable Markov game satisfying Assumptions 2 and 3, local
convergence towards pure equilibria between possible agent policies is established.



7.4. EXPERIMENTS 135

This result is a direct consequence of Theorem 10 above, which shows
that equilibria between the LA are equilibria between agent policies and
Theorem 3 of Chapter 2 which establishes the local convergence of LA us-
ing Lr_1 to a pure equilibrium point.

Corollary 4 When the MMDP-ILA algorithm of Chapter 6 is applied to the local
states of a partially observable Markov game with identical payoffs to all agents and
satisfying Assumptions 2 and 3, convergence towards the optimal pure equilibrium
between expressible agent policies is established.

This is again a direct consequence of Theorem 10 above, this time com-
bined with the convergence properties of PLA noted in Theorem 4 of Chap-
ter 2. It should again be noted that the optimality of this algorithm holds
only over those policies that can be expressed by the agents, and does not neces-
sarily correspond to global optimality in the full underlying MMDP.

7.4 Experiments

We now experimentally demonstrate the results that can be obtained by ap-
plying the MG-ILA and MMDP-ILA algorithms directly in the observation
spaces of the agents. We start out by giving results on the small grid games
described above. We then move to some benchmark robot navigation prob-
lems. Finally, we give results for an agent coordination problem inspired
by the mobile ad-hoc networking domain.

7.4.1 Small grid world

Figure 7.4(a) and (b) show the results obtained with the Lr_r update scheme
in the Markov games using reward function R1 and R2 respectively. Since
we are interested in the value the agents converge to, we again show a
single typical run, rather than an average over multiple runs. To show con-
vergence to the different equilibria we restart the agents every 2 million
time steps, with action probabilities initialised randomly.

We can observe that in the game with reward function R1 agents move
to either the optimal or the suboptimal equilibrium of the underlying lim-
iting game given in Table 7.2(Top), depending on their initialization. Us-
ing R2 the agents always converge to the same, single equilibrium of the
limiting game of Table 7.2(Bottom). Even when the agents start out using
policies that give a higher payoff, over time they move to the equilibrium.



136 CHAPTER 7. PARTIAL OBSERVABILITY

Small Grid World Small Grid World

T X T T T T T T T T T
LAs — Agentl ——

Agent2 --—----
08 ﬁ ﬁ f—‘ 1 (243

Avg Reward
Avg Reward
=

I I I I I I I I I I
0 let06 2e+06 3e+06 4e+06 Se+06 6e+06 7e+06 8e+06 9e+06 le+07 0 1e+06 2e+06 3e+06 4e+06 Se+06 Ge+06 7e+06 8e+06 9e+06  le+07
Time Step Time Step

(a) (b)

Figure 7.4: Results for the grid world problem of Figure 7.1. (a) Average reward
over time for both agents using identical rewards of R1 (b) Average reward over
time for both agents, using reward function R2. Both experiments used A\ = 0.05

Eq. Exp. Rew | Avg (/20) | Total (/12500) Avg Time
T [T e T | e
arLj 0.01 E{gllvslﬂi/ll\g}; 082 10§?1241((33.33043) 1961 11858.85(5376.29)
LA E{gllvslﬂi/ll\g}; 8:?5 10§98§51((()d.3539)) 1253080 21155.24(8431.28)

Table 7.4: Results of Lr_; and PLAs on the small grid world problem with
reward function R1. Table shows the average convergence to each equi-
librium, total convergence over all trials and average time steps needed
for convergence. Standard deviations are given between parentheses. PLA
settingswereb =0.1,0 =02, K =L=n=1



7.4. EXPERIMENTS 137

Next, we demonstrate the ability of the MMDP-ILA algorithm to learn
the optimal joint agent policy. Table 7.4 shows a comparison of PLA with
Lg_1 on the grid world problem with reward function R1. For these exper-
iments, each automaton was initialised to play action S with a probability
of 0.18,0.35,0.5,0.65, or 0.82. This gives a total of 625 initial configurations
for the 4 automata in the grid world problem. For each configuration, 20
runs were performed, resulting in a total of 12500 runs for each algorithm.
Table 7.4 gives the average number of times the algorithms converged to
each of the equilibria, the total equilibrium convergence over all runs and
the average amount of time steps needed for all LA to converge. A learn-
ing automaton was considered to have converged if it played a single ac-
tion with a probability of 0.98 or more. Each run was given a maximum
of 250000 time steps to allow the automata to converge. It is immediately
clear from Table 7.4 that the PLA converge to the optimal equilibrium far
more often, but on average take more time to converge.

0.9 T T T T T T T

T T

0.5

Avg Reward

04

03

02

0.1

0

0 5e+06  1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07
Time Step
Figure 7.5: Comparison of PLA with Lr_; on the grid world problem of Fig-
ure 7.1, using reward function R1. The automata were initialized to play their
suboptimal equilibrium action with probability 0.82. Settings were o, = 0.01 for
Lr_randb=0.1,0 =0.2, K = L =n =1 for the PLA.

Figure 7.5 shows results on an initial configuration for which the Lr_;
automata always converge to the suboptimal equilibrium. The PLA, how-
ever, are able to escape the local optimum and converge to the globally



138 CHAPTER 7. PARTIAL OBSERVABILITY

st s2
G2 G1

(a) (b)

Figure 7.6: Environments for the robot navigation problems. Si and Gi
labels mark starting and goal locations for agent i. (a) The MIT environment
(2 agents) (b) The ISR environment (4 agents)

optimal equilibrium point. Due to the random noise added to the update
scheme, the PLA do receive a slightly lower pay-off than is predicted in
Table 7.2(top).

7.4.2 Robot Navigation

We also show some results on 2 robot navigation problems inspired by
benchmark problems from partially observable MDP literature. The en-
vironments for both problems are given in Figure 7.6(a) and (b). The MIT
environment has a total of 49 locations, giving 2401 joint states when used
with 2 agents, as we do here. The ISR environment has 43 locations, which
results in over 3 million possible joint states for the 4 agents we use. In both
problem settings the agents” objective is to get from their starting position
to an individual goal location, without colliding with the other agents. The
agents only observe their own location and can move in the 4 compass
directions N, E, S, W (except when such a move leads outside the grid).
Agent rewards are normalised to lie in the interval [0, 1]. Agents get a re-
ward of 1 for reaching their goal, a 0 reward when they move into the same
location as another agent (i.e. collide) and a reward 0.02 for any move
which does not result in a collision. Transitions in the grid are stochastic
with agents having a 0.9 probability of moving in the desired direction and
a 0.1 probability of going to another, random neighbouring location. When
the agent arrives in its goal location, it is automatically transferred back to
its starting position.



7.4. EXPERIMENTS 139

ISR: de length
MIT: average episode length ISR: average episode leng

steps needed
steps needed
a
8
8
I

.
0 16406 26406 3e+06 4e+06 5e+06 6406 7e+06 8e+06 9e+06 1e+07 0 16406 20406 30406 4e+06 5406 6406 7e+06 8e+06 9e+06  1e+07
time step time step

(a) (b)

Figure 7.7: Average number of steps an agent needs to get from its starting
location to the goal. Results averaged over 20 runs.(a) The MIT environ-
ment (2 agents) (b) The ISR environment (4 agents)

MIT: average number of colisions per episode ISR: average number of collisions per episode
T T T 120
100
80
5 5
B B
5 5 60
H H
H H
40
20
0 . ; r T . T T T T o ¢
0 1e%06 20406 3e+06 4e+06 5e+06 6e+06  7e+06  8e+06 9e+06  le+07 0 1et06 20406 3e+06 4e+06 5e+06 Ge+06 7e+05 Be+05 9e+06  1e+07
time step time step

(a) (b)

Figure 7.8: Average number of collisions per start to goal episode. Results
averaged over 20 runs. (a) The MIT environment (2 agents) (b) The ISR
environment (4 agents)



140 CHAPTER 7. PARTIAL OBSERVABILITY

The results for both environments are summarised in Figures 7.7 and
7.8. Figure 7.7 shows the average number of time steps an agent needs
to get from the starting position to its goal. Figure 7.8 gives the average
amount of collisions agents have per episode, where we define an episode
as the steps needed to get from the start to the goal. The plots give a mov-
ing average over the last 5000 time steps. All results are averaged over 20
runs. These results were generated by applying the MG-ILA algorithm di-
rectly to the local state space of the agents. Learning rates were 0.02 for
the MIT environment and 0.01 for the ISR environment. Example solutions
found by the agents are shown in Figures 7.9 and 7.10. These figures show
the preferred paths the agents take from their starting location to their goal,
these are. the paths the agents would follow if no moves fail. From these
results it is clear that the agents are able to find a path to their goal, while
minimising the number of collisions, despite the fact that they are not even
aware of the presence of other agents. In the ISR environment agents learn
to move around the square environment, taking the shortest paths to their
goals. In the MIT environment 2 solutions frequently arise. In the first so-
lution, both agents prefer the shortest possible path to the goal, with one
agent choosing the upper hallway and the other one using the lower hall-
way. In the second solution agents” paths cross in the centre and change
from using the upper hallway to the lower one (or the other way around).
While in this second solution the agents do not follow the shortest path to
the goal, neither agent can improve on this solution by unilaterally chang-
ing its policy. When a single agent switches to a shorter path to the goal,
half the path overlaps with that of the other agent and the risk of collisions
increases. Both agents need to switch policies together to arrive at the better
solution in Figure 7.10(a). This agrees with our expectation that the agents
find an equilibrium between their policies, but not necessarily an optimal
solution.

7.4.3 Ad-Hoc Networking

Finally, we present an agent coordination problem based on experiments in
[CHKO4a, CHKO04b]. In this setting the agents function as mobile network
nodes. The agents must attempt to connect a stationary source and sink
node. Each agent has a transmission range of 1 grid cell in any direction
(north, south, east, west or diagonally). Agents automatically establish a
network link when they are in transmission range of each other. Two nodes
in the network (i.e. either agents, sink or source) are connected when there
exist a path of linked network nodes between them. The agents receive a



7.4. EXPERIMENTS 141

$1/G3 P S2/G1

S3/G4 | S4/G2

Figure 7.9: Example solution found by the MG-ILA algorithm in the ISR
environment with 4 agents.

2g

— L

N

(a) (b)

Figure 7.10: Examples of typical solutions found by the MG-ILA algorithm
applied to the MIT environment with 2 agents. (a) Both agents take the
shortest path to their respective goal (b) Agents’ paths intersect in the centre
of the environment.



142 CHAPTER 7. PARTIAL OBSERVABILITY

| |

l @ @

(a) (b)

Figure 7.11: Mobile ad-hoc networking domain. (a) Setup: 3 mobile net-
work nodes must connect a stationary source and sink node. (b) Solution
network.

common reward of 1 when a connection between source and sink is made
and 0 otherwise. In the example presented here, the connection can only
be established when the agents stand on the grid’s diagonal. The problem
setting and solution are visualised in Figure 7.11.

Agents are again limited to observing only their own location. They
have no knowledge of other agents’ locations or even of other agents that
are in transmission range. In each location an agent can move in the 4 com-
pass directions or can choose to stay in the current location. No penalty is
given when agents move into the same location. Transitions are stochastic,
with each move having a 0.01 chance of ending up in a random neigh-
bouring location. Figure 7.12 gives the average reward over time the agent
receives when applying the MG-ILA algorithm with learning rate 0.02. Re-
sults are averaged over 20 runs. Despite the stochastic environment and
lack of information agents manage to keep the connection established over
90% of the time.



7.5. RELATED WORK 143

Ad Hoc Networking

0.8

0.6 -

average reward

0.4

0.2

0

0 1e‘+06 2e‘+06 3e‘+06 4e‘+06 5e‘+06 Ge‘+06 7e‘+06 8e‘+06 9e‘+06 le+07
time step

Figure 7.12: Average reward over time in the ad hoc networking domain.

Result averaged over 20 runs.

7.5 Related Work

Most approaches concerned with partially observable work within the par-
tially observable MDP (POMDP) or decentralised POMDP frameworks.
These approaches often rely on a form of (history based) state estimation
in combination with a reinforcement learning or dynamic programming al-
gorithm. A few systems, however attempt to directly apply learning in the
observation space of the agents, as is done in this chapter.

In [S]]94] a (single agent) learning approach is considered which also
works directly with observation rather than states. Similarly, in [PM97] the
single agent MDP-ILA algorithm described in Chapter 3 is applied directly
in a POMDP setting in which rewards and transitions can depend on the
process history. It is shown that MDP-ILA is still optimal with regard to ex-
pressible policies, provided that the entire history contains sufficient infor-
mation to make the problem Markovian again. Based on these observations
the authors extend their work in [PM98] to use limiting game analysis in
order to study the limitations of direct (single agent) reinforcement learn-
ing in history dependent problems. In [CHK04a, CHKO04b] multi-agent par-
tially observable problems are studied. The agents are not assumed to have
a full view of the world. All agents contribute to a collective global reward
function, but since domain knowledge is missing, independent agents use
filtering methods in order to try to recover the underlying true reward sig-



144 CHAPTER 7. PARTIAL OBSERVABILITY

nal from the noisy one that is observed. This approach is shown to outper-
form single agent Q-learning in a number of demonstration mobile robot
settings.

In this dissertation we only look at 2 extreme possibilities for learning
in Markov games. Agents either have access to the full model, or as was
the case in this chapter, they have no information on the other agents what-
soever. In reality the best approach will likely be somewhere in between,
balancing the growth of the state space with the need for information nec-
essary for the agents to achieve good solutions. Recently, such hybrid ap-
proaches have gained attention in the multi-agent community [DVN10]. In
[MV09] an extended Q-learning is introduced. This algorithm learns by de-
fault in the single agent, local state perspective. The action set of the agents
is extended with an additional, coordinate action, which allows to agent to
expand its state space to the joint state view. The idea is that the agents will
learn for themselves in which situations an expanded state space allowing
coordination with other agents is beneficial.

7.6 Conclusion

In this chapter we study the behaviour of individual agents learning in
a shared environment, when the agents cannot observe the other agents.
We show that this situation can again be analysed by considering a lim-
iting game, obtained by considering agent policies as single actions. We
demonstrate that when agents are fully ignorant about the other agents in
the environment and only know their own local state, a network of learn-
ing automata can still find an equilibrium point of the underlying limiting
game, provided that the Markov game is ergodic and that the agents do
not interfere each others transition probabilities. We have shown that local
optimum points of the underlying limiting games are found using MG-ILA
algorithm with the Lr_; update scheme. The parameterised learning au-
tomata used in MMDP-ILA enables us to find global optimum points in
case of team Markov Games.



Chapter 8

Modelling Stigmergy

The concept of stigmergy was first introduced by entomologist Paul Grassé
[Gra59] to describe indirect interactions between termites building a nest.
Generally stigmergy is defined as a class of mechanisms that mediate ani-
mal to animal interaction through the environment. The idea behind stig-
mergy is that individuals coordinate their actions by locally modifying the
environment rather than by direct interaction. The changed environmental
situation caused by one animal, will stimulate others to perform certain ac-
tions. This concept has been used to explain the coordinated behaviour of
termites, ants, bees and other social insects [TB99].

Recently the notion of stigmergy has gained interest in the domains
of multi-agent systems and agent based computing [BDT99, PL04, VK01,
VNO02, HM99, MMS88]. Algorithms such as Ant Colony Optimisation (ACO)
[DS04] model aspects of social insect behaviour to coordinate agent be-
haviour and cooperation. The concept of stigmergy is promising in this
context, as it provides a relatively simple framework for agent communi-
cation and coordination. One of the main problems that arises, however,
is the difficulty of determining the global system behaviour that will arise
from local stigmergetic interactions.

In this chapter we analyse the dynamics of stigmergetic interactions us-
ing the limiting game techniques, developed in preceding chapters. We
directly translate the results on MDPs and Markov games obtained for
(multi-)agent learning to convergence proofs for ant like algorithms in clas-
sical optimisation problems. The analysis is done from the viewpoint of
ant agents and colonies who communicate indirectly via stigmergetic in-
teractions. More specifically we examine the case where a colony of agents
coordinates its actions by sharing local pheromone information in the envi-

145



146 CHAPTER 8. MODELLING STIGMERGY

ronment. We show that the pheromone information in one location can be
seen as a strategy of that location in an limiting game played between all
locations of the environment. The global system performance is then de-
termined by the payoff achieved in this game. The long term behaviour of
the system can be predicted by analysing the dynamics of the pheromone
update in the limiting pheromone game.

In a second stage we extend the model to a situation where multiple
pheromone signals and multiple colonies of agents are present in the same
environment. In this case agents not only need to optimise their own re-
ward function, but also need to coordinate with other colonies. The result-
ing problem can be approached at two different levels: one can still look at
the pheromone strategies in the approximating game, but it is also possible
to look at interactions on the colony level. We will examine the relations
between both levels.

The remainder of this chapter is organised as follows. The next section
describes some background material on stigmergy and pheromone based
agent interactions. Section 8.2 describes the model we use to describe stig-
mergetic interactions. Results for the single colony setup and multi colony
setup are derived. These theoretical results are experimentally demon-
strated in Section 8.4.1 on a simple biologically inspired optimisation prob-
lem and on a small routing instance, a successful ACO application. We
conclude the chapter with a final discussion. References for this chapter
are: [VNO02, VVNO07b, VVNar]

8.1 Stigmergetic Algorithms

Several different approaches have been proposed to apply stigmergy to
multi-agent systems. A commonly used method is to let agents commu-
nicate by using artificial pheromones. Agents can observe and alter local
pheromone values which guide action selection. This system has been used
in optimisation [DBT00] and manufacturing control [VK01, Bru99], among
others. An example of this type of algorithm is given in the next subsection.

Other algorithms are based on termite and wasp nest building behaviour
[TB95] or ant brood sorting [BHD94, HM99]. In these systems an individ-
ual’s actions (e.g. building, depositing dirt, picking up brood) modify the
local environment and cause reactions of other workers (i.e building more,
moving brood, etc.).

In most of the algorithms based on the systems mentioned above a set
of common elements can be isolated:



8.1. STIGMERGETIC ALGORITHMS 147

e The agent environment is subdivided in a number of discrete loca-
tions, which agents can visit.

e Each location contains local information that can be accessed and up-
dated by agents visiting that location.

e Agents can perform actions in the location they visit. The probability
of an action is determined by the agent, based on the local informa-
tion available at the time of the visit.

e An interconnection scheme between locations is defined, allowing
agents to travel between locations.

We will try to accommodate these recurring elements using our learn-
ing automata framework. We will see that 2 possible settings emerge. First
we can consider the simplest class of pheromone based algorithms. In these
algorithms a colony of agents all cooperate to optimise a common objective.
Agents share information and coordinate through the use of pheromones.
In [VNO2] this setting was modelled using the MDP-ILA framework de-
scribed in Chapter 3. It was demonstrated that we can view this setting
as a single agent MDP in which the cooperating agents provide a form of
parallel exploration. Below we will demonstrate how this mapping allows
us to apply the limiting game analysis to pheromone based algorithms.

In the more complex non-cooperative setting, ant agents can have dif-
ferent and possibly conflicting goals. This can be viewed as ant agents
that belong to different colonies. The ant agents cooperate with mem-
bers of their own colony, but compete against agents belonging to different
colonies. We will propose an extension of the original model to incorpo-
rate this possibility, and show that this situation now maps to the MG-ILA
framework.

8.1.1 Cooperative Stigmergetic Algorithms

We start out by considering the basic cooperative single colony setting. In
this section we describe an algorithm called S-ACO (Simple Ant Colony
Optimisation). The algorithm was proposed in [DS04] to study the basic
properties of ant colony optimisation algorithms. It contains all the basic
mechanisms used in algorithms that employ artificial pheromones.

The goal of the S-ACO algorithm is to find the minimum cost path
between 2 nodes in a weighted graph. The algorithm uses a colony of
very simple ant-like agents. These agents travel through the graph starting



148 CHAPTER 8. MODELLING STIGMERGY

from the source node, until they reach the destination node. In all nodes
a pheromone value is associated with each outgoing edge. When an agent
arrives in the node it reads these values and uses them to assign a probabil-
ity to each edge. This probability is used to select an edge in order to travel
to the next node. When all agents have reached the goal state they return
to the source node and the pheromone value 7;; on each edge i;j is updated
using the following formula:

Tij < PTij + ATZ‘J' (8.1)

The pheromone update described above consists of two parts. First the
pheromones on the edges are multiplied by a factor p € [0,1] . This simu-
lates pheromone evaporation and prevents the pheromones from increas-
ing without bound. After evaporation a new amount of pheromone AT is
added. Typically A7 contains a small pheromone contribution from each
ant that used the corresponding edge. The amount of new pheromones
is determined by the paths found by the ant agents. Edges that are used
in lower cost paths receive more pheromones than those used in high cost
paths. By using this system the ant agents are able to coordinate their be-
haviour until all agents follow the same shortest path.

8.1.2 Non-cooperative Stigmergetic algorithms

The algorithm described in the previous section is one of the simplest stig-
mergetic algorithms possible. All agents have the same goal and they alter
their environment (by leaving pheromones) to share information and co-
ordinate their actions. The agents do not influence each other’s reward,
however. Each agent builds it own path, and the feedback it gets is based
solely on the cost of this path. The paths followed by other agents do not
influence this feedback.

In this chapter we also examine more complex problems where agents
can have different goals and directly influence each other’s reward. Ex-
amples of these algorithms can be found in multi-pheromone algorithms.
These systems use not one, but several pheromone gradients to guide agents.
One such system was proposed in [NVV04] to let different colonies of agents
find disjoint paths in a network. Another multi-pheromone system was
proposed in [PL04]. Here the different pheromones guide agents to dif-
ferent locations. We will introduce a model which incorporates multiple
colonies, with goals that can conflict. This model was inspired by the
AntNet routing algorithm [DCD98]. In this algorithm ant agents in the



8.2. COOPERATIVE MODEL 149

system have different goals, as they need to find routes to multiple desti-
nations. Therefore, AntNet uses different pheromones, corresponding to
the possible destination nodes. Ants finding routes to the same destina-
tion can be seen as a separate colony, sharing pheromone information with
each other, but not with ants that have a different destination. However,
the colonies in AntNet cannot simply be treated as several single colonies
learning in parallel. Since all colonies use the same network links, the per-
formance of a colony is influenced by the strategies of other colonies. Net-
work routes that are heavily used by other colonies will become less attrac-
tive, since they can suffer higher delays. This means that the situation in-
corporates 2 different dynamics: on the one hand we have the indirect com-
munication and cooperation between agents belonging to the same colony,
on the other hand we have a competition for resources (in this case the use
of the network links) between agents belonging to different colonies. As
such, to analyse these types of multi-colony systems we also need to model
interactions between colonies. In Section 8.3 we will show how we can ex-
tend the original model and map this situation to the Markov game setting
considered in earlier chapters.

8.2 Model of Cooperative Stigmergetic Algorithms

In this section we describe the basic model, which was originally intro-
duced by Verbeeck and Nowé [VNO02]. The purpose of this model is to
capture the essence of the pheromone dynamics in systems similar to Ant
Colony Optimisation algorithms. To this end we include only the basic ele-
ments of stigmergetic coordination. The model abstracts pheromone com-
munication as a set of location based strategies which are shared among
multiple agents. Currently, the model is limited to pure pheromone inter-
actions and additional optimisation tools such as heuristic information and
local search improvements are not modeled. The description given here is
based on the Markov Decision Process model, described in Chapter 3.

We consider an environment consisting of a set of discrete locations L =
{1*,...,IV}. Bach location [ has a set of possible outgoing links that can be
followed, which we alternatively call actions A(l) = {a},...,al} that can be
performed in that location. Further we have a transition function 7'(1, a, ),
which gives the probability to move from location [ to I’ when taking action
a € A(l) and a reward function R(l, a,!") which gives the reward for this
transition. In this environment a set or colony of ant agents learns a policy
7 which maps each location [ € L to an action a! € A(l) . The goal of the



150 CHAPTER 8. MODELLING STIGMERGY

colony is to learn a policy which maximises the average reward over time:

: (8.2)

T—1
> RT(U(1),1(t + 1))
t=0

. 1
JT = lzmTHOOTE

The description above essentially describes an average reward MDP
(L,A,R,T). The only difference with the standard model is the presence
of multiple agents. However, in the stigmergy model these are not inde-
pendent agents. The actual policy learning is stored in the environment,
external to the agents and is shared by all agents.

Ant agents belonging to a colony collaboratively learn a single pol-
icy. To do this, they base their action selection in location ! on a shared
pheromone signal 7! that associates a value 7} with each action a} € Al. A
pheromone learning system then consists of 2 components: an update rule
which governs changes in pheromones based on received reinforcements
and an action selection function, which is used to generate action proba-
bilities from the pheromones. For a location [ these probabilities are deter-
mined from the local pheromone signal 7t by applying the normalization
function g, so that Pr{a(t) = a} = g(a,7). Asis common in pheromone
based systems, we update local pheromones using a reward signal over
an entire episode, rather than using the immediate reward R(l, a,l"). More
precisely, when an ant returns to a previously visited location, it updates
the local pheromones using the following estimate 3 of the global average
reward:

Ar

b= (8.3)

Here Ar is the reward gathered since the last visit, and At is the number
of time steps since this last visit.

We focus on a system were 7! is a probability vector and g(al, 7!) = 7/.
This means that ant agents directly update the action probabilities and we
have for all locations I: ) y T]l» =land 0 < le- < 1Vj. To update the values
we use the linear reward-inaction (L g—r) scheme, which is repeated below:

l

Ti TZ'—{—)\ﬁ(l—TZ') (84)
if a; is the action taken
T & T — )\ﬁTj (85)

ifaj 750,@'



8.2. COOPERATIVE MODEL 151

We assume that the reinforcement /5 has been normalised to lie in [0, 1].
The constant A € [0, 1] is called the learning rate and determines the influ-
ence of pheromone deposit 3. It is similar to the evaporation rate often
used in pheromone based systems. The reward-inaction update system
conforms to the traditional idea behind pheromone updates that the prob-
ability of an action is increased relative to the quality of solutions in which
it was used. The update corresponds to the S-ACO update with an evapo-
ration p = (1 — A\$) and a feedback A7 = AS. The main difference is that
we keep pheromones normalised to probabilities. The similarities between
Lr_1 and the S-ACO update, (which was also used in the first ACO algo-
rithm Ant System [DMC96]) are discussed in [VN02, NV99]. One advantage
of using this scheme is that convergence results from LA theory, detailed in
Chapter 2 can be transferred to pheromone based systems.

The model described here was used in [VNO02] to show optimality for
the pheromone system with Lr_; update, using the convergence results
for the MDP-ILA algorithm [WJN86], also described in Chapter 3. In the
next subsection we will show how this model can be used more gener-
ally, to analyse a pheromone update scheme in terms of their behaviour
on a strategic game which approximates the optimisation problem under
study. We will then continue by extending the model to allow for multiple
colonies of agents, and demonstrating the game theoretic analysis that is
possible in this extended case.

8.2.1 Analysis of the Cooperative Model

We now demonstrate how the use of the model above allows us to approx-
imate the behaviour of the pheromone system by a limiting game. The
stigmergy model described in the previous section allows us to apply the
analysis that was used in previous chapters to pheromone systems.

Asbefore, a critical assumption we need to make here is that the Markov
chain of locations generated by a single ant agent is ergodic under all pos-
sible policies, i.e. Assumption 1 from Chapter 3. This means the process
converges to a stationary distribution over the locations and for each pol-
icy m we have a probability distribution d™ over the locations:

d" ={d"(),...,d"(ln)} with Y "d"(1) =1, and d" (1) > 0,VI
leL

where d” () represents the probability of the ant agent being in location
l. This probability is independent of the time-step and starting location.



152 CHAPTER 8. MODELLING STIGMERGY

Under this ergodicity assumption, it is possible to approximate the sin-
gle colony model by a game as follows. Consider all locations | € L of
the environment as a players. The action set for each player is exactly the
action set A! of the corresponding location. The pheromone vector 7 (to-
gether with function g) represents the current strategy for this player. Since
we have one player for each location, a play in this game maps every lo-
cation to an action and represents a pure policy 7 over all locations. The
payoff that players receive for this play in the game is the expected average
reward J™ for the corresponding policy 7. Using the stationary distribution
over the locations d™ this reward can be written as follows:

JT=>"d" ()Y T, 1R, (8.6)
l

l'elL

Where 7™ and R™ are the expected transition probabilities and rewards
under policy 7. As each play (or policy) gives the same reward for all play-
ers, the game is called an identical payoff game or a team game. Since our
model is essentially an MDP, we have the optimal equilibrium guarantee
from Theorem 6.

Since the Lr_; update scheme was proven to converge to pure Nash
equilibria in repeated games the above theorem guarantees that the ants
will converge to the optimal policy, i.e. the policy that maximises J. In
[VNO02] Verbeeck and Nowé showed that these results still hold in the case
of multiple cooperative ant agents updating the same action probability
vectors. In this setting ant agents are responsible only for sampling the re-
ward and triggering updates. The actual learning and intelligence is stored
in the pheromone vector update in each location ! € L.

Of course the above model can be used with other pheromone update
systems. The limiting games described above, depend only on the prob-
lem and not on the pheromone update used. Any combination of a local
pheromone update with a normalisation to action probabilities could be
treated as a learning strategy in this approximating limiting game. In or-
der to predict the outcome such a system will obtain, we need to study
its dynamics on the approximating game. As an example, we examine the
pheromone update in Equation 8.7, which is used in Ant Colony System
[DS04]:

if a; is the action taken



8.2. COOPERATIVE MODEL 153

We shall examine the dynamics of this system when used with a Boltz-
mann normalisation:

eTiL/T

= (8.8)
Tt/
Zalj U

This distribution function assigns each action a probability based on
the associated pheromone value and a parameter 7', called the tempera-
ture. This parameter determines the amount of influence a difference in
pheromones has on the action probabilities. Higher values cause actions
to become to equiprobable and lower values result in greater differences in
probabilities. The repeated game dynamics of the update in Equation 8.7
when used with a Boltzmann normalization are studied in [Tuy04]. In Sec-
tion 8.4.1 we give an example of the behaviour of this system, as an alter-
native to the Lr_1 update.

Example 12 As an example consider the very simple, biologically inspired optimi-
sation problem depicted in Figure 8.1. A colony of ant agents is trying to optimise
the rate at which they collect food. Starting from their nest at location 1y they can
collect food from 2 sources with source 1 having an expected payoff of 1.0 units and
source 2 giving an average of 0.55 units of food. From location 1y they can choose
either to proceed to location ly (action 1) or to go directly to source 2 (action 2).
From location ly they can go to either source 1 (action 1) or source 2 (action 2) di-
rectly. Transitions are assumed to be stochastic with ants having a 0.9 probability
of arriving at the chosen location and a 0.1 probability to make the transition as-
sociated with the other action. When an ant agent reaches a food source it receives
a payoff depending on the food source and returns to the nest at location 1. The
agents have to decide whether to exploit the closer food source or to concentrate on
the richer but also further source.

The game approximating the problem in Example 12 is shown in Ta-
ble 8.1. Since we have 2 locations with 2 possible actions each, the game is
a 2 player, 2 action game. The row and column actions here are the possible
actions in location /1, Iy, respectively. The game has 1 pure Nash equilib-
rium corresponding to the policy which plays action 1 in both locations
and thus prefers food source 1. This equilibrium indeed corresponds to
the optimal policy. Experimental results on this problem are provided in
Section 8.4.1.



154 CHAPTER 8. MODELLING STIGMERGY

Source 1: 1.0 Source 2: 0.55

Figure 8.1: Example problem

12
al a2
1 al | 0.32 0.20
a2 | 0.28 0.26

Table 8.1: Approximating game for the problem shown in Figure 8.1. Play-
ers correspond to problem locations. The game payoffs are the expected
averages over time of the amount of food collected under the correspond-
ing policies. The unique equilibrium is shown in bold.



8.3. NON-COOPERATIVE MODEL 155

8.3 A Model of Non-cooperative Stigmergetic Algo-
rithms

In this section we extend the previous model by adding ant agents belong-
ing to different colonies. In a multi-colony system, each colony uses its own
pheromone signal, where pheromones are now only shared by ants belong-
ing to the same colony. Different colonies correspond to different objec-
tives, represented by different reward functions. Therefore they are suited
to solve multi-objective optimisation problems. It should be noted that the
model we consider here is mainly based on routing and load-balancing
applications such as AntNet, rather than the combinatorial multi-objective
problems treated for example in [AW09]. We now give a description of
this extended model, which is based on the framework of Markov games,

introduced in Chapter 4.
Consider m objectives and thus m colonies present in the problem. The
environment still consists of a set of discrete locations L = {l1,...,[,} with

a set of outgoing links or actions A(l) = {a!,...al} that can be followed.
However, in each location /, m different pheromone vectors e ci1...m
are now present, representing the action probabilities for an ant agent of
colony c in location {. Transitions to new locations can still be defined by
T(l,a,l") as being the probability of one ant going to location !’ by taking ac-
tion a in location [ independent of colony type c. As before, the pheromone
probability vectors 7 are updated by ant agents walking around in the
environment using the reward gathered over the entire episode as spec-
ified by Equation 8.3. However, each colony ¢ now has a different re-
ward function, the value of which can be influenced by the behavior of
another colony. The expected average reward for a single colony now de-
pends on the joint policies © = (my,...,my) of all colonies. Denote 7_.
for the joint policy 7 for all colonies minus the policy of colony ¢, then
R(l,a,7_c,l"),c : 1...m specifies the reward for an ant agent of colony c,
taking action a in location [, moving to location !’ with 7_, representing the
interference of ant agents not in colony c. The goal of each colony c is to
learn a policy 7. which maximises the average reward over time:

T—1
T . 1 T,C —
T = limp oo ;O R™C(I(8),1(t + 1), 7_c) (8.9)

Since the problem is multi-objective, optimising for one colony might

!For ease of notation we assume that each colony has the same action set in every loca-
tion.



156 CHAPTER 8. MODELLING STIGMERGY

lead to lower rewards for other colonies. In the next subsection we explain
that this setting can now be analysed in terms of the colonies” behaviour on
two different strategic games.

8.3.1 Analysis of the Non-cooperative Model

Again we make the ergodicity assumption. Consider one ant-agent from
colony ¢ moving in the environment with other ant agents from all other
colonies excluding colony c. We assume that the Markov chain generated
by this ant agent is ergodic, meaning that again a stationary distribution
over the locations exist and the average reward over time for colony c can
be calculated as follows:

Jre= dme) Y T LR (L1, 7 ) (8.10)

l l'eL

with d™¢(l) the stationary distribution of one ant agent of colony ¢ over
the locations under policy 7. The resulting problem can now be viewed
at two levels. Instead of making the locations the players of the game, we
can look at the game between the different pheromone strategies, i.e. the
pheromone vectors. Since m vectors are present in each location, there are
m players for each location. A play in this game results in an action for
each colony in every location and thus represents a pure joint policy. The
game will no longer be a identical payoff game since players belonging
to different colonies follow different reward functions. Players within one
colony ¢ do receive the same payoff J™¢ (given by Equation 8.10) for a play
7. In total we will have a game consisting of n x m players, with n the
number of locations and m the different number of colonies, each having
r actions. We refer to this game as the pheromone game, since each player
represents a pheromone strategy in a single location. This game can be seen
to correspond to the automata view we have considered in Markov games.

At another level we look at the expected rewards resulting from the
interaction between colonies. We do this by considering all the possible
pure policies for the colonies as actions in a single large game. In this game
the players are the colonies and the payoff is the expected reward a colony
obtains for a certain combination of policies from all colonies. In total we
have now a game of m players each having r x n actions. We refer to this
game as the colony game. This view corresponds to the agent view of earlier
chapters.



8.3. NON-COOPERATIVE MODEL 157

From the description above it is clear that each play in both the phe-
romone and the colony game maps an action to each location for every
colony. Thus a play in either game represents a pure joint policy over all
locations. Furthermore for every play in the colony game we have a corre-
sponding play in the pheromone game and vice versa. We can now show
the following relation between both games:

Theorem 11 Let I'y denote the colony game where each player (or colony) ¢ has
action set Al x.. .. x A" and receives payoff J™¢ for play @ € (Al x...x A")™ . Let
'y denote the pheromone game, where every player (or pheromone vector) in loca-
tion ' has action set A(1") and receives payoff J™ for aplay 7 € [[,., ,.(A(I}))™.
Then a joint policy 7 is a pure Nash equilibrium of I'y if and only if the correspond-
ing joint policy 7 is a pure Nash equilibrium of I's.

Proof:

if: In a Nash equilibrium no player can improve his payoff by unilateral
deviation of the current strategy profile. So in a Nash equilibrium of
the colony game, no player has a policy which gives a higher pay-
off provided that the other players stick to their current policy. A
player (or pheromone vector) of colony ¢ switching its action in the
pheromone game corresponds to a single player (here colony c) in the
colony game switching to a policy which differs in just 1 location. As
the players representing pheromone vectors belonging to colony c in
the pheromone game receive the same payoff as the corresponding
colony c in the colony game, the pheromone player cannot improve
its payoff.

only if: Suppose a play 7 exists which is a Nash equilibrium in the pheromone
game, but the corresponding play is not a Nash equilibrium in the
colony game. This means that in the colony game we can find at least
one player or colony ¢ which can switch from its current policy .
to a better policy 7. while other players keep their policy constant.
But the situation where other colonies keep their policies fixed cor-
responds to a 1 colony problem without any external influences for
the reward function. So for colony c where the other colonies play
their fixed strategy 7_., the reward function is given by taking the
expectation of reward R with respect to the fixed 7_. and the result-
ing expected average payoff is given by J™ = J(F-eme)€ According
to Theorem 6 this situation can be represented by a game I' with a



158 CHAPTER 8. MODELLING STIGMERGY

unique, optimal equilibrium. Since .J (T-eme)ie < J(@-em)C 7 cannot
be this equilibrium and a policy must exist which achieves a higher
payoff but differs in only 1 location?. But since this policy would also
receive a higher payoff then 7. in the pheromone game, 7@ = (7_., 7.)
cannot be a Nash equilibrium of this game which leads to a contra-
diction.

The relation between both games allows us to predict colony behav-
ior based on the convergence properties of the local pheromone update in
the pheromone game. For instance, from the theorem above and the pure
equilibrium convergence of Lr_; we immediately get following result:

Corollary 5 Consider an optimisation problem with location set L and C' colonies
optimizing individual reward functions. If all colonies use the Lr_; update with
a sufficiently small learning rate, the system will converge to a pure Nash equilib-
rium between the policies of the colonies.

Example 13 We demonstrate these results on an extended version of the example
in Figure 8.1. Instead of a single colony optimizing its food collection, we now
consider 2 colonies gathering food in the same environment. Each colony needs to
optimise its own foraging, but also has to coordinate with the other colony. When
both colonies select the same food source, they have to share and thus will receive a
lower payoff. So instead of a fixed average payoff for each source, an ant reaching
a food source now receives a payoff which is also based on the number of ants from
other colonies at that source. More specifically when arriving at a food source we
give the ant a reward of

(L0 — =) « p, where q, is the number of ants from other colonies at the food

source, it 15 the total number of ants from other colonies in the system and pg is
the average payoff for the source (i.e. 1.0 and 0.55 for source 1 and 2, respectively).

In Table 8.2 we show the colony game for the 2 colony problem de-
scribed in Example 13. Since we have 2 colonies this game has 2 players.
The actions for these players are the possible pure policies for the corre-
sponding colony. Since both colonies have 2 locations with 2 possible ac-
tions, they have 4 pure policies or actions in the game. The payoffs for
the game are the expected average payoffs for the resulting joint policy, as
defined in Equation 8.10. Since these payoffs differ for the colonies the ap-
proximating game is not a team game, as was the case in the single colony

%if such a policy did not exist 7. would be an equilibrium of I'.



8.4. EXPERIMENTS

159

Colony 2
[al,al] [al,a2] [a2,a1] [a2,a2]
— [al,al] | 0.235,0.235 0.295,0.184 0.288,0.254 0.297, 0.246
? [al,a2] | 0.184,0.295 0.149,0.149 0.128,0.205 0.122,0.183
% [a2,al1] | 0.254,0.288 0.205,0.128 0.176,0.176  0.169, 0.152
S [a2,a2] | 0.246,0.297 0.183,0.122 0.152,0.169 0.142, 0.142

Table 8.2: Colony game approximating the multi-colony version of Fig-
ure 8.1. Equilibria are indicated in bold.

problem. Payoffs in the table are determined by calculating the stationary
distribution of locations corresponding to the different policies and using
these values in Equation 8.10.

The 2 pure Nash equilibria are indicated in bold. These equilibria corre-
spond to a situation where 1 colony exploits source 1, but the other one se-
lects source 2 in location 1. It should be noted that these equilibria give dif-
ferent payoffs for the colonies, with one colony receiving an average payoff
of 0.288 and the other one receiving only 0.254. This results in different
preferences of the colonies for both equilibria. Furthermore, the equilibria
do not give the maximum possible reward for either colony, but they are
Pareto optimal.

The pheromone game corresponding to this problem is shown in Ta-
ble 8.3. This game consists of 4 players p!¢, corresponding to the pheromone
vectors 7. Since two actions are present in each location, all players have
two possible actions. Players corresponding to the same colony receive
the same payoff for a play. These payoffs also correspond to the values
achieved by the colonies in the game of Table 8.2. Equilibria of the game are
indicated in bold. It can easily be verified that these equilibria correspond
to the same joint policies as those of the colony game. Of course, while
these games provide an interesting point of view for these small examples,
calculating them for more realistic scale problems would is typically not
feasible. Fortunately, the theoretical results above assure the equilibrium
convergence of our model, without the need to explicitly calculate these games.



160

CHAPTER 8. MODELLING STIGMERGY

(p"',p"2 p>t p*?)

Jﬁ’17Jﬁ’27Jﬁ’l7Jﬁ’2

(al,al,al,al)
(al,a2,al,al)
(al,al,a2,al)
(al,a2,a2,al)
(a2,al,al,al)
(a2,a2,al,al)
(a2,al,a2,al)
(a2,a2,a2,al)
(al,al,al,a2)
(al,a2,al,a2)
(al,al,a2,a2)
(al,a2,a2,a2)
(a2,al,al,a2)
(a2,a2,al,a2)
(a2,al,a2,a2)
(a2,a2,a2,a2)

0.235,0.235,0.235,0.235
0.288,0.254,0.288,0.254
0.184,0.295,0.184,0.295
0.128,0.205,0.128,0.205
0.254,0.288,0.254,0.288
0.176,0.176,0.176,0.176
0.246,0.297,0.246,0.297
0.152,0.169,0.152,0.169
0.295,0.184,0.295,0.184
0.297,0.246,0.297,0.246
0.149,0.149,0.149,0.149
0.122,0.183,0.122,0.183
0.205,0.128, 0.205,0.128
0.169,0.152,0.169,0.152
0.183,0.122,0.183,0.122
0.142,0.142,0.142,0.142

Table 8.3: Pheromone game approximating the multi-colony version of Fig-
ure 8.1. Column 1 lists possible plays, with column 2 giving the expected
payoff for each player resulting from a play. Equilibrium plays are indi-
cated in bold.

average payoff

o
N
3

Single Colony Experiment

Two Colony Experiment

Colony T——
Colony 2

T T T 0.32
[\mﬂ“ ’(,«/V(% N
= I
4 o i
2 0.28
®©
o2
% . o
R
© o024
[
>
® o2
02
018
0.16
. . . . . . 1
0 20000 40000 60000 80000 100000 120000 0 20000 40000
iterations
(a)

L
60000

L
80000

iterations

(b)

100000

L
120000

Figure 8.2: Results for Lr_; update on the example of Figure 8.1. (a) Single
Colony Experiment (b) Two colony experiment. Settings where A = 0.001
and 100 ants per colony.



8.4. EXPERIMENTS 161
8.4 Experiments

8.4.1 A Simple Example

We first demonstrate the single colony case. Figure 8.2(a) shows the aver-
age reward over time obtained by a single colony using the Lr_; update.
To demonstrate the convergence we do not show an average over multiple
runs, but rather a single typical run where we allow the average reward to
converge and then randomly reinitialise the pheromone vectors. The figure
shows the average reward over time obtained by a single ant of the colony
at each time step, for a total of 25000 time steps for each initialisation. A
single time step here corresponds to the selection of 1 action by all ants in
the system, i.e each ant makes 1 transition between locations. In each case
the system converged to the predicted equilibrium (1,1) and after 25000
time steps the average reward approached the predicted value to within
0.005.

Results for the two colony problem described in Section 8.3 can be seen
in Figure 8.2(b). Here the system converged to either one of the equilibria
in Table 8.3, with one colony receiving an average payoff of 0.254 and the
other one receiving 0.288. Again the obtained values after 25000 iterations
can be seen to closely approximate the predicted values. The eventual equi-
librium reached depends on the initialisation of the pheromone vectors.

Additionally, we give an example of how this analysis can be used with
another pheromone update system. Again we apply this update on the
problem in Figure 8.1. Since this is the same problem as studied above,
the approximating limiting game is still the game given in Table 8.1. How-
ever, we will demonstrate that a different pheromone update can give very
different outcomes. We give results for the pheromone update in Equa-
tion 8.7, together with a Boltzmann normalisation. As was also described
in Chapter 5, the learning dynamics for this scheme can be studied by deter-
mining a continuous time approximation using ordinary differential equa-
tions (ODEs) [Tuy04]. This continuous time limit of the dynamics gives an
adapted version of the continuous time replicator dynamics. Using these
ODEs, we can predict the outcome of the update on a strategic game by
determining the stationary points of the system and investigating their sta-
bility. A similar approach was used in [SPT94] to show the equilibrium
convergence of the Lr_; update in strategic games.

Rather than explicitly calculating the stationary points for the system,
we visualise the dynamics using a direction plot. Figure 8.3(a) shows a
plot of the predicted evolution of the action probabilities for both locations



162 CHAPTER 8. MODELLING STIGMERGY

action 1 (12)

Il
/
/
/

N
N
N
N

NS ~— v e <
NN RO NN H
R R Y H
NN NN
ATA TR TR TR AN
NN
NONNNNNN
NN N
AN A \

v
/7

04 05 6 04 05 06
Probability action 1 (11) Probability action 1 (11)

(a) (b)

Figure 8.3: (a) Predicted dynamics on the game in Table 8.1. (b) Experimen-
tal results on the problem in Figure 8.1.

when using a Boltzmann normalization with 7" = 0.2. This plot was ob-
tained by analysing the dynamics of the replicator equations on the ap-
proximating game in Table 8.1. The visualisation immediately shows that
for these settings the update scheme will not reach the optimal pure equi-
librium, but rather will go to a mixed outcome. Figure 8.3(b) shows the
results for multiple runs with different pheromone initialisations on the
single colony version of the problem in Figure 8.1. The ants used a Boltz-
mann function with 7' = 5 for action selection and the pheromone update
in Equation 8.7 with A = 0.001, with the colony consisting of 100 ants. The
observed evolution of action probabilities on the single colony foraging ex-
periment closely follow these predicted dynamics.

8.4.2 Ant Routing Model

As a final demonstration we give some results for our model on a larger
problem. For this experiment we model a system inspired by the AntNet
routing algorithm [DCD98], also described above. The algorithm uses ant
inspired behaviour to route packets in communication networks. The sys-
tem builds routing tables by periodically sending out ants to explore the
network. These ant packets are sent by nodes to random destinations and
use the same queues as network traffic. Ants select edges in the network
probabilistically based on pheromone tables which associate a pheromone
value with each edge for each destination node. After arriving at a destina-
tion ants are sent backwards to update pheromone tables in visited nodes,
based on the total delay for the path they followed. Data packets in the net-



8.4. EXPERIMENTS 163

work are then routed by using a greedy policy with the pheromone tables
built by ants.

We model this system using the multi-colony approach described in
Section 8.3. Since pheromone values in AntNet depend on the destination
nodes, this problem maps to a system with one colony for each destina-
tion in the network. Ants belonging to different colonies start from ran-
dom nodes and travel through the network until they reach the destina-
tion node associated with their colony. We demonstrate this approach on
the NSENET network shown in Figure 8.4(a). This former North Amer-
ican backbone network was one of the first networks on which AntNet
was demonstrated. We limit our experiments to 2 colonies which build
routing tables to route packets towards destination nodes 12 and 14. Ants
from both colonies start from all other network nodes and travel to the net-
work until they reach their destination where they receive a reward +1.
When ants traverse a network edge they suffer a delay as indicated in Fig-
ure 8.4(a). So in order to maximise the average reward over time, ants need
to minimise the delay from each node to the destination. To simulate the
influence of heavy network load slowing down the network, ants receive
a penalty when both colonies use the same edge. If an ant uses an edge
which more than 50% of ants from the other colony also prefer, they suffer
a delay of 100 for that edge instead of the normal delay.

Explicitly calculating the approximating games in this case becomes im-
practical as it would result in a game with 2 x 14 players, resulting in a large
number of plays to evaluate. When we use an update like Lr_;, however,
we can still give guarantees based on the convergence properties of the up-
date scheme in games. We know that the update converges to a Nash equi-
librium between colony policies. This means that each colony will prefer
the minimum delay routes to their destination, with respect to the current
policy of the other colony. A colony will thus prefer lower delay routes
and avoid sharing edges since this results in high delays. Note that these
results represent equilibria (i.e. local optima) but not necessarily (Pareto)
optimal results for this problem. In the next section we discuss some possi-
bilities which could be used to improve the outcome based on this equilib-
rium convergence behavior. A typical solution found by the Lr_; system is
shown in Figure 8.4(b). Average results over 20 runs are given in Table 8.4.
For comparison purposes the table also lists the results obtained when both
colonies use Dijkstra shortest path routing to find the minimum cost path to
their destination, but do not take into account which edges are used by the
other colony. From Table 8.4 it is clear that the pheromone based routing
achieves relatively low delay routes. The antnet routing model shares an



164 CHAPTER 8. MODELLING STIGMERGY

(a) (b)

Figure 8.4: (a) NFSNet former backbone (after [DCD98]). Each link rep-
resents 2 directed edges, numbers indicate delay of an edge. (b) Example
solution found by AntNet routing model using Lr_; update (A = 0.001)
with 2 colonies routing paths to nodes 12, 14.

average of 0.3 edges over 20 trials, compared to 6 edges shared in shortest
path routing scheme.

8.5 Discussion

In this chapter we have shown how the behavior of pheromone based stig-
mergetic systems can be analysed in terms of the dynamics of the pheromone
update in an approximating game. While the explicit calculation of these
games becomes cumbersome or even impossible in large problems, this
analysis can still be applied by studying the dynamics of the pheromone
update. For instance, as we have shown for the case of the Lr_; update
scheme, convergence to a pure Nash equilibrium is a sufficient condition
to assure optimal convergence in the single colony case and convergence
to a Nash equilibrium between colony policies in the multiple colony case.
These properties do not depend on the underlying game, and can therefore
be assured in other problems without the need to calculate the approximat-
ing game.

In the multi-colony case one could argue that while Nash Equilibrium
convergence is an interesting property, it is not necessarily the desired re-
sult for an optimisation approach. In a Nash equilibrium agents play mu-



8.5. DISCUSSION

start node | colony 1 colony 2 | Dijkstra 1 | Dijkstra 2
1 41.2 (21.3) | 41.6 (20.0) 116 33
2 44.0 (22.5) | 49.7 (27.15) 208 205
3 30.8 (5.0) | 27.8(6.12) 27 24
4 38.6 (20.2) | 47.3 (28.3) 109 214
5 28.1(11.1) | 31 (2.1) 20 212
6 40.1 (33.6) | 34.7 (20.3) 208 205
7 43.5 (35.6) | 45.6 (35.4) 108 105
8 19.3 (3.9) 9.1(2.7) 113 8
9 153 (5.6) | 11.3(1.0) 108 105
10 8.0 (0.0) 5.0 (0.0) 8 5
11 114 (7.2) | 18.4(1.2) 9 114
12 0(0.0) 13.0 (0.0) 0 13
13 21.8 (1.8) 4.7 (2.9) 113 100
14 13.7 (3.1) 0(0.0) 13 0

165

Table 8.4: Results obtained by AntNet model in NFSNET experiment.
Columns 2 and 3 give the average delay (standard deviation) to destination
nodes 12 and 14, respectively (results averaged over 20 runs). For compa-
rison purposes columns 4 and 5 give the delays that result from shortest
paths based routing to both destinations, without taking into account de-
lays caused by sharing edges.



166 CHAPTER 8. MODELLING STIGMERGY

tual best replies, and as such it represents a local optimum. Nash equilibria
do not guarantee equal payoffs for the players, however, and can result in
unfair solutions. Moreover, multiple equilibria can exist, with players hav-
ing different preferences for these equilibria, resulting in a selection prob-
lem. Furthermore equilibria can be Pareto dominated. This means that
solutions exist where all players receive at least the same reward and one
or more players do strictly better (this is for instance the case in the well-
known prisoner’s dilemma game). Especially in the case of multi-objective
optimisation problems the goal is often to find a Pareto optimal (i.e. non-
dominated) solution.

The (pure) Nash equilibrium convergence of a learning rule, however,
can be used as a basis for designing more complex systems which exhibit
the desired properties. In team games, where all players receive the same
payoffs and a globally optimal equilibrium always exists, MMDP-ILA us-
ing the parameterised LA update could be employed to obtain optimality.
In conflicting interest games the turn-taking techniques of Chapter 6 can
find periodic solutions which equalise the average payoff over time.

8.6 Conclusion

The analysis developed in this chapter offers a new framework in which the
outcomes of pheromone based agent coordination can be studied. Unfor-
tunately, it is difficult to use this model with existing ACO type optimisa-
tion algorithms, since these systems typically incorporate additional tech-
niques, such as heuristic information and local search. Further research
is needed to determine how these methods influence the game structure
obtained for the pheromone dynamics. While it may not be possible to
give explicit convergence guarantees for these extended systems, we be-
lieve that our framework can aid in the design of these algorithms, as it
allows to better understand the dynamics of the pheromone interactions,
and ensure that these interactions lead to desirable outcomes.



Chapter 9

Conclusion

Reinforcement learning is a powerful tool, which allows a single agent to
learn optimal behaviour in a previously unknown and possibly stochas-
tic environment. These results are obtained solely through experimenta-
tion using trial-and-error interactions with the environment. Convergence
guarantees are available under some relatively straightforward assump-
tions on the environment and the amount of experimentation allowed to
the agent. These properties make RL an interesting focus for unsupervised
learning systems.

However, when we moving to a decentralised, multi-agent learning set-
ting, the preconditions for convergence of RL algorithms are generally no
longer satisfied. In this setting both agent rewards and the global system
state depend on the actions taken by all agents. As such, the learning agents
not only have to deal with the stochastic environment, but also have to take
interactions with other agents into account.

In this dissertation we introduced a new framework for reinforcement
learning in multi-agent settings. We have also provided convergence re-
sults for these algorithms for a wide range of settings. These results are
obtained using a repeated normal form game approximation of the learn-
ing dynamics. This analysis also provides a new framework for analysing
learning in the Markov game framework using classic game theory. In the
following, we give a detailed overview of the contributions presented in
this work as well as some possible future research directions.

167



168 CHAPTER 9. CONCLUSION

9.1 Contributions

Below we give an overview of our main contributions to the current state
of multi-agent learning research:

o Demonstrate the importance of LA in MARL: Throughout this disserta-
tion we show that LA are valuable tools for the design of multi-agent
learning algorithms. In this we go beyond previously considered re-
peated game [Ver04] and tree-structured game [Pee(8] settings.

e MDP game view: we promote a unified view of single and multi-
agent reinforcement learning, by approximating both settings with
the problem of finding an equilibrium in a normal form game. Both
these settings can then be analysed in a game theoretic framework. In
the single agent setting we obtain a common interest game in which
equilibria represent optimal policies. In the multi-agent setting we
get a possibly conflicting interest game in which equilibria represent
equilibrium points between agent policies.

o MG-ILA algorithm: We introduce a new algorithm for learning in gen-
eral sum Markov games. This algorithm is among the most flexible
current approaches in terms of information requirements, but still of-
fers broad convergence guarantees in self-play.

o Multi-level Markov game analysis: We introduced a novel framework
for analysing learning in Markov games using approximating normal
form game representations. We showed that this analysis can be ap-
plied at different levels, highlighting different complexities that arise
in learning.

e MMDP-ILA: We introduced an algorithm capable of finding optimal
joint policies in common interest Markov games. Currently the only
algorithm matching these results [WS03] has significantly greater in-
formation requirements.

o Correlated policies: We introduced a flexible system using minimal
communication, which allows agents to correlate their policy play in
order to alternate between playing different agents’ preferences. This
system provides a simple method to compose complex non-stationary
solutions. It also allows a departure from the traditional focus on
equilibrium points in conflicting interest problems. Using this ap-
proach agents can also reach a fair solution which avoids possible
low equilibrium payoffs.



9.2. FUTURE WORK 169

o Analysis of multi-state learning dynamics: we introduced the first ap-
proach for analysing and visualising learning dynamics in multi-state
problems. Our approach extends current research that uses evolu-
tionary game theory to study reinforcement learning in repeated games
and allows the same methods to be applied to multi-state problems.

o Convergence in hidden state problems: We demonstrated that the algo-
rithms introduced in this work can be applied in settings with even
more limited information available to the agents. Even in these set-
tings we obtain convergence to an equilibrium between agent poli-
cies. These results are achieved using the basic algorithms, without
relying on complex state estimation techniques.

o Modelling stigmergy: We provide a multi-colony model of pheromone
communication based on shared updating of learning automata. This
allows a more formal treatment of stigmergy based algorithms using
the tools offered by classical game theory. It also aids in the design of
these algorithms, as the methods developed in this dissertation can
be used to analyse the global consequences of low-level stigmergetic
interactions.

9.2 Future work

In closing we list some points that warrant further attention. We start with
the items we believe offer the most opportunity for expanding our frame-
work: scaling MG-ILA to large-scale and possibly continuous problems.
The key to achieving this, is to further develop the techniques used in
Chapter 6 and Chapter 7 in order to create general state and policy ab-
straction for MG-ILA:

o Adaptive resolution for state representations: The 2 approaches with re-
gard to the visibility of state variables that are used in this disserta-
tion, represent extremes. On the one hand we consider full visibility,
on the other hand in Chapter 7 we give agents access only to those
variables also present in a single agent setting. Current MARL re-
search focuses on intermediate approaches [MV09, DHVNO09, DVN10].
These approaches start with a minimal state space, but expand when
needed for achieving better results. Since we have shown that LA are
able to converge to equilibrium in both extreme cases, they offer an
interesting approach for use in these adaptive state space algorithms.



170 CHAPTER 9. CONCLUSION

This would entail first using an algorithm to learn the best state space
resolution to use (either by splitting large states or aggregating simple
states). This could then be followed by assigning a learning automa-
ton to each of the resulting states and applying MG-ILA as before.

o Alternative objectives for correlated policies: Equalising agent rewards
is but one of many possible objectives that can be considered in the
correlated policies framework of Chapter 6. The policies learned by
the parameterised LA can serve as a set of basic solutions that can
be composed into more advanced solution concepts. In [GHSO03] the
equalising approach is considered (under the name egalitarian objec-
tive) and compared with several alternatives such as maximise the
sum of agent rewards (utilitarian objective) or maximise the maxi-
mum of agent rewards (republican objective). These different objec-
tives could also be used in our framework to determine joint policy
switches, but their properties need to be investigated in more detail.
Another possible route is to allow the agents to individually learn a
strategy over the set of basic policies. This would result in a setting
similar to the options framework used in single agent RL [SPS99].

o Generalise partial state observations: In Chapter 7, we considered the
case in which the set of state variables could be perfectly decomposed
in one local state for every agent. On could of course consider more
general factored systems, in which agents view different, possibly
non-disjoint sets of state variables. The applicability and convergence
of MG-ILA in this case remains to be investigated.

In addition to the points above, some smaller adaptations could be
made to the framework, in order to increase its applicability:

o MG-ILA for discounted Markov games: The algorithms in this work all
extend the MDP-ILA algorithm [WJN86], which was shown to be op-
timal in average reward MDPs. However, as mentioned in Chapter 3,
similar results exist for discounted MDPs [Wit77]. These results could
serve as the basis for a discounted version of MG-ILA

o Relax ergodicity assumption: Throughout this dissertation we required
the Markov chain of system states to be ergodic under all (joint) poli-
cies. This assumption could be relaxed in order to allow a wider
range of problems. First, one could consider the general recurrent
case, in which all states are still recurrent, but we no longer require



9.2. FUTURE WORK 171

them to be aperiodic. The difficulty in this setting is that the limits
used for the average expected reward, may not exist in the case of
periodic chains. This can be dealt with, however by considering the
corresponding Cesaro limits [Put94]. Secondly, we could consider the
unichain case. Here we still have a unique stationary distribution for
each policy, but we allow some states to have stationary probability
of 0. These transient states are only visited during the initial learning
phases and accordingly they do not contribute to the long term aver-
age reward. While we cannot guarantee the convergence of automata
in transient states, most other results are expected to carry over to this
case. Extensions to both these settings should be possible, as both re-
main close to the ergodic case. On the other hand, the full multi-chain
problem remains an open problem. Several issues make learning in
this setting difficult. Chief among these are the non-constant expected
rewards for stationary policies and the failure of stationary equilibria
to exist. To the best of our knowledge no learning approaches exist to
deal with these issues.

Finally, we note some more theoretical aspects that could be investi-
gated further:

o Investigate ILA relationship to discounted Replicator Dynamics: A recent
and intriguing result from MARL literature [Akc09], shows that the
continuous time replicator dynamics can be used as the basis for an
algorithm capable of finding Nash equilibria in discounted general
sum Markov games. Unfortunately, the current approach requires
knowledge of the exact dynamical system, which then needs to be
numerically simulated. One possible avenue of research for MG-ILA
in discounted Markov games, is to investigate whether the relation
between the RD and LA can be exploited to implement a similar al-
gorithm, without the need for knowing the exact dynamics. If a suit-
able automata feedback scheme could be devised, this could lead to
general Nash convergence in discounted Markov games, without the
limits inherent to the current approach.

o Alternative LA update schemes: The ILA algorithms in this disserta-
tion all relied on either the Lr_; or the PLA update system. How-
ever, a large body of work on LA updates and their properties exists
[TS04]. Especially interesting are e-optimal schemes such as pursuit
automata which offer behaviour similar to reward-inaction but may
exhibit faster convergence.



172

CHAPTER 9. CONCLUSION

o Mixed equilibria: The MG-ILA algorithm is able to converge to pure

equilibria. However, there is no guarantee that such equilibria exist.
As such it should be investigated if it is possible to achieve conver-
gence to mixed equilibrium points. An interesting possibility here is
the Reward-ePenalty update scheme, described in Chapter 2. This
scheme is known to be able to approximate mixed equilibria in 2
player zero-sum automata games. Currently it is not clear, however,
if these properties extend to multi-automata systems.

Regret based learning: Recently, the notion of regret based learning has
received interest in the multi-agent learning community. Regret is
defined as for not playing the best strategy in hindsight. In repeated
games, regret based algorithms have been shown to be able to con-
verge to either the set of correlated equilibria [HMCO1] or general
Nash equilibria [FY06, GL07]. Both these learning rules are applica-
ble in situations similar to those of LA and could possibly be used
as update rules in MG-ILA. An interesting research topic would be
to see if a regret based ILA algorithm could achieve similar results in
Markov games.

Multi-state dynamics: In Chapter 5 we visualised the dynamics of sim-
ple 2-state, 2-agent problems. While the link with the replicator dy-
namic can still be used in larger problems, the visualisation of the
dynamics becomes difficult. As such the possibility of extending state
based visualisations remains an important question. Alternative meth-
ods for investigating the basins of attraction of different equilibria,
such as used in [PTL08] could be employed in these cases.



Appendix A

Dynamical Systems

In this appendix we introduce some basic notions of dynamical systems.
We only consider differential systems, i.e. systems that can be described
by a set of ordinary differential equations (ODE). These systems play an
important role in Machine learning as they are often used to study the dy-
namics of learning algorithms. Examples are the ODE approach used to
demonstrate the convergence of learning automata [SPT94] and the replica-
tor dynamics from evolutionary game theory which are also used to study
reinforcement learning in repeated games[Tuy04].
This appendix is based on [Str01], [HSD04] and [Man88].

A.1 Terminology

A dynamical system consists of a state space or phase space S and a vector-
field F' on this space. The state space S is the set of points describing all
possible configurations of the system. Each point in this space gives a com-
plete characterisation of the system. The vectorfield F' associates with each
point € S a vector, describing the evolution of the system in time. In
an n-dimensional state space, the system can be described by n ordinary
differential equations:

dz
d—tl = fi(z1,...,2n)
(A1)
dx,
ﬁ = fn(l'l,...7.%'n)

173



174 APPENDIX A. DYNAMICAL SYSTEMS

which can also be written as:
z' = F(Z) (A.2)

where ¥ = (z1 ... z,)7 and F is the vector valued function F(Z) =

Definition 26 (trajectory) The solution for a system @' = F(Z) with initial
condition Ty is a function X (t) describing the succession of states through time,
starting at Zo. This function is also called the trajectory starting at ¥

Under some general conditions on the function F' it can be shown that
there exists a unique trajectory X (¢) starting at state # € S.

Definition 27 (fixed point) A fixed point (also called critical, stationary or equi-
librium point) of the system A.2 is a point &* € S for which F(&*) = 0.

Fixed points correspond to constant solutions of the system, i.e. X (t) =
T, vt

Definition 28 (stability) A fixed point ¥* € S is called stable (or Lyapunov
stable) if all trajectories X (t) that start at a point X (0) sufficiently close to z*,
remain close to it for all time t > 0. If 2* is stable and all trajectories starting near
Z* approach T* as time goes to infinity, i.e. X (t) — * ast — oo,then Z* is called
asymptotically stable. A fixed point that is not stable is called unstable.

A.2 Linear Systems

Linear systems are an important part of dynamical systems theory, since
these systems are well understood and can be solved analytically. Further-
more, linear systems can be used to locally approximate nonlinear systems
in the neighbourhood of a given point. This provides an important tool for
the analysis of nonlinear systems, which in general cannot be solved. The
general form for a linear system is:

dwl
E = a111y...,01nTp
(A.3)
dz,
An1T1y -+ s Apndn

dt



A.2. LINEAR SYSTEMS 175

which can also be written as:
7' = A7 (A4)

where A is the matrix (a;;),s = 1...n,j5 = 1...n. Note that the origin is
always a fixed point of these systems.

A special set of solutions for linear systems are given by the eigenvec-
tors of the matrix A. Let ¥ be a non-zero vector such that A¥; = A\, i.e.
U1 is an eigenvector of A with eigenvalue A;. Then

X(t) = Mty (A.5)

is a solution of the system in Equation A.4. For each ¢ this solution corre-
sponds to a scalar multiple of the vector ¢ and all points X (¢) lie on the
line from the origin through ;. Therefore, the solution eMty,, is also called
a straight line solution of the system. Below we will show how this result
can be used to determine the general solution of the system. We start out
by considering planar systems.

A.21 Planar systems

In a planar system (i.e. a 2-dimensional system), we can determine the 2
straight line solutions of the system by finding both eigenvalues and cor-
responding eigenvectors of the matrix A. Suppose the matrix A is given

by:
A O
0 M

Then the eigenvalues of A are A\; and Ay with corresponding eigenvectors
v = (1 0)T and v = (0 1)T. This results in the straight line solutions
eMty) and €2y, The general solution of the planar linear system can then
be found by combining both solutions:

Theorem 12 (Hirsch et al.) Suppose matrix A has a pair of real eigenvalues \y #
Ao with associated eigenvectors vi and vy. Then the general solution of the system
¥ = AZ is given by:

X(t) = 1M 4 e, (A.6)
Given the general solution, we can now find the trajectory with initial con-

dition X (0) = <zo> by solving:
0

— - xo
C1U] + C2U2 =
Yo



176 APPENDIX A. DYNAMICAL SYSTEMS

to determine the values for ¢; and cs.
The special cases where eigenvalues are equal or complex can be treated

similarly. For a matrix
_( « B
a= (5 0)

which has complex eigenvalues o £ i3 the general solution is given by:

x(0) = enett (050 ) eaent (S000) (A7)

(03

both eigenvalues are equal to A and we have a single linearly independent
eigenvector (1 0). In this case the general solution is given by:

X(t) = creM (é) + cpe <§> (A.8)

In general when given a linear system, where the matrix A is invertible,
one can first find a transformation 7":

When A has the form

7' = (TAT Yy (A.9)

such that the matrix (AT ') has one of the following forms:

)\1 0 o ﬂ Al

0 X )7 B a )’ 0 A
This is also called the canonical form of A. To find this form we need to
calculate 7', which is the matrix whose columns are the the eigenvectors
of A. The transformed system can then easily be solved using the meth-

ods above. If Y (¢) is a solution for the of the system in Equation A.9, the
solution for the original system is given by 7Y (t).

A.2.2 Classification of Planar Systems

Using the methods in the previous section we can make a complete classi-
fication of the possibilities that can occur in a planar, linear dynamical sys-
tem. This classification relies on 2 factors: whether the eigenvalues are real



A.2. LINEAR SYSTEMS 177

or complex and the sign of the (real parts of the) eigenvalues. The eigen-
values of the matrix A can be found by solving the characteristic equation
det(A — AI) = 0. For a 2-dimensional matrix

()

this results in the equation:

N —TA+A=0
where
T = trace(A)=a+d
A = det(A) =ad—bc (A.10)

This results in the solutions:

T—V1Z —4A T — V12 +4A
>\1: ,>‘2: 2

Thus the eigenvalues are determined by the trace 7 and determinant A
of the matrix A. We can distinguish the following cases:

e 72— 4A > 0 : 2 distinct, real eigenvalues \; and \o. We can further
refine this case by examining the signs of both eigenvalues. From the
straight line solution in Equation A.5 we can see that the solutions
either tend to the origin when A < 0 or away from it when A > 0.This
gives 3 possible cases for the 2 eigenvalues:

1. M1 <A <0
2. <0< A
3.0 < A < A

In the first case all solutions tend to the origin as t — co. The origin
is therefore called a sink. In Figure A.1 (a) we give an example phase
portrait for this situation. If instead the eigenvalues have opposite
sign (case 2), the solutions along the line corresponding to the nega-
tive eigenvalue (the stable line) tend to the origin, while those along
the line corresponding to the positive eigenvalue (the unstable line)
tend away from it. All other solutions come from oo in the direction
of the stable line and tend to oo in the direction of the unstable line.



TARRRRRK |

yyyyy
AAAPPD]

=
—
> >
=

FRRRRK

2
IAAANT
y
A

a2 M T NN )

1A AT IR NN NN

- 2.2 m », 4, K fof -
i KRR €

Sink

APPENDIX A. DYNAMICAL SYSTEMS

178

—~~ ~
) = : ¢ Ceeeee | Qo m
o N CE e a
VI ¢ N\WﬂAMMw
' DPIDIININNN |\ e eElc 7
S22 1 P TIMAN R RO R R T - s
DI NN N A VW&«
22228 7 TN KRR N 4 ) -, , N
22207 AR RE AR || R N N A A O N ,
] . INSNNNN YV e e v ed vy NN
AN
g . SNNNNAN VWL e ], gy Ll NN
, NNNNNNW v eeee | vl NN
; NN W e A4S 77NN AR
! ‘,wxg/innfpﬁk AT ! , AN R NN

()

Figure A.1: Phase plots for systems with 2 distinct real eigenvalues.



179

A.2. LINEAR SYSTEMS

Spiral Sink

(b)

Spiral Source

(©)

Figure A.2: Phase plots for systems with imaginary eigenvalues.



180 APPENDIX A. DYNAMICAL SYSTEMS

The result is a saddle, shown in Figure A.1(b). In the final case, both
eigenvalues are strictly positive, giving the opposite of the first case.
All solutions now tend away from the origin, which is called a source.
The corresponding phase portrait is given in Figure A.1(c).

e 72 — 4A = 0 : a single real, repeated eigenvalue ). This corresponds
to the boundary cases, which signify the transition from real to com-
plex eigenvalues.

e 72 — 4A < 0 : complex eigenvalues with nonzero imaginary part.
We can again subdivide this case, now based on the sign of the real
part of the eigenvalues. The real part for both eigenvalues is given by
7/2. We can now consider the following cases:

1. 7<0
2.7=0
3. 7>0

In the first case, solutions again tend to the origin, now resulting in
a spiral sink, visualised in Figure A.2(a). In the second case solutions
neither tend to or away from the origin. Instead they circle around
it, resulting in periodic solutions. The result is called a center and is
shown in Figure A.2(b). In the last case trajectories again tend away
from the origin which is now called a spiral source. This is shown in
Figure A.2(c).

The entire classification above can be summarised in a single figure by
plotting the parabola 72> = 4A in the TA—plane. This is shown in Fig-
ure A.3. The regions are labelled with the resulting type of system for cor-
responding values of 7 and A.

Example 14 (Linear system) (based on Example 5.21 in [Str01])
As an example of a planar linear system we will consider the system:
/

r = T4y
Yy = 4x—2y

with initial condition (xo,y0) = (2,—3). The corresponding matrix A for this

system is:
1 1
4 -2



A.2. LINEAR SYSTEMS 181

?X4n A
spiral spiral
sink source
center
sink source

Figure A.3: Classification of planar linear dynamic systems.

which has characteristic equation \* + X\ — 6 = 0. This results in 2 distinct real
eigenvalues \y = 2 and o = —3. Since the eigenvalues have different signs the
origin is a saddle. The corresponding eigenvectors are:

o= (=)

This gives straight line solutions X (t) = e G) and X (t) = e3¢ <_14>, with

X(t) =cre* G) + cqe 3t (_14>

To determine c; and co we solve:

(Ba) = () r= )

which results in ¢; = 1 and co = 1 and finally gives the solution:

general solution:

Figure A.4 visualises this system and the solution above.



182 APPENDIX A. DYNAMICAL SYSTEMS

Figure A.4: Vector field and solution for the system described in Exam-
ple 14

A.2.3 Higher dimensions

The results for linear systems, described in the previous sections, can be ex-
tended to higher dimensions. Again we put matrix A in its canonical form
and solve the resulting system. In an n-dimensional system, the general
solution for the linear system then is described in the following theorem:

Theorem 13 (Hirsh et al.) Consider the system &' = AZ, where A has distinct
eigenvalues Ay, ..., A\ € Rand a; +ip1, ..., a, +if,,. Let T be the transforma-
tion to put A in its canonical form:

A1

-1 _
TAT " = B,




A.3. NONLINEAR SYSTEMS 183

where

Then the general solution of the system is TY (t), with:

CleAlt

Cke)\kt

are™tcosPit + bre® i sinBit
Y(t) = | —are™tsinfit + bie*tcosBit

are®tcosB,t + b.e*tsinB,t
—a,e®tsinB,t + bre*teosp,t

We can now again look at the eigenvalues to determine the stability of
the origin. The subspace spanned by the eigenvalues with negative real
part is called the stable subspace. Within this subspace the solutions tend
to the origin. the eigenvalues with positive real part span the unstable sub-
space, where solutions tend away from the origin.

Alternatively, we can write the general solution for A.4 with initial con-
dition X (0) = %, as the matrix exponential !4, where

et i (tA) (A11)

i!
i=0

A.3 Nonlinear Systems

Contrary to their linear counterparts, most nonlinear systems of ODEs can-
not be solved analytically. Instead of solving these systems explicitly, we
typically try to characterise their behaviour in terms of attractors. Attractors
are subsets of S, such that all neighbouring trajectories tend to this set as
t — o0o. An asymptotically stable fixed point is one example of an attractor.

An important tool for this investigation is the linear stability analysis of
equilibrium points. Consider a general nonlinear system #’ = F(Z). We



184 APPENDIX A. DYNAMICAL SYSTEMS

denote by DFy, the Jacobian of F, evaluated at ). We can then write the
linear system:

j' = DFy,j (A.12)

This system is called the linearised system near ¥y. An important result
from dynamical systems theory states that if Z is a hyperbolic equilibrium
point! of the system &’ = F(Z), then the flow of the system near %, resem-
bles that of the linearised system in Equation A.12. This result allows us to
investigate the stability of nonlinear equilibrium points, by analysing the
corresponding linearised system.

Example 15 (Linearisation) (Based on example 6.3.1 from [Str01])
Consider following nonlinear system:

¥ = x'—x
y = -2

A straightforward calculation shows that this system has 3 fixed points: (-1,0),
(0,0) and (1,0). We will now investigate the stability of these points by considering
the linearised system. The general Jacobian for this system is:

ofi Of 2
S A 3zc—1 0
0 5]
DF = <8_f2 %iz) - ( 0 —2)
Y

ox

Evaluated at the 3 fixed points this gives:

2 0 -1 0 2 0
o= (5 5)on=( 5)on=(5 5

From this we immediately see that the points at (+1,0) are saddles and thus un-
stable, while the origin is a sink and stable. This can be confirmed by inspecting
the phase plot of the system in Figure A.5.

It can be shown that in 2 dimensions the only possible attractors are
tixed points (point attractors) or closed orbits which correspond to periodic
attractors. In higher dimensions other possibilities may arise. Examples
are a torus (quasi-periodic attractor) and fractal sets (strange or chaotic attrac-
tors). Figure A.6 shows the Lorenz attractor which is an example of chaotic
attractor.

'an equilibrium Y is called hyperbolic if all eigenvalues of the corresponding DFz,
have nonzero real parts.



A.3. NONLINEAR SYSTEMS 185

Figure A.5: Phase plot for the system described in Example 15

Figure A.6: The Lorenz attractor.



186 APPENDIX A. DYNAMICAL SYSTEMS



Bibliography

[Akc09]

[AS93]

[Aum74]

[AW09]

[Ban68]

[BBDS08]

[BDT99]

[Bel57]

N. Akchurina. Multiagent reinforcement learning: algorithm
converging to Nash equilibrium in general-sum discounted
stochastic games. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume 2
(AAMAS2009), pages 725-732. IFAAMAS, 2009.

E. Altman and A. Shwartz. Time-Sharing Policies for Con-
trolled Markov Chains. Operations Research, 41(6):1116-1124,
1993.

RJ. Aumann. Subjectivity and correlation in randomized
strategies. Journal of Mathematical Economics, 1(1):67-96, 1974.

D. Angus and C. Woodward. Multiple objective ant colony
optimisation. Swarm Intelligence, 3(1):69-85, 2009.

A. Banos. On pseudo-games. The Annals of Mathematical Statis-
tics, pages 1932-1945, 1968.

L. Busoniu, R. Babuska, and B. De Schutter. A Comprehensive
Survey of Multiagent Reinforcement Learning. Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transac-
tions on, 38(2):156-172, March 2008.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intel-
ligence:From Natural to Artificial Systems. Oxford University
Press, New York, 1999.

R. Bellman. Dynamic Programming. Princeton University Press,
1957.

187



188

[BHD94]

[BM55]

[Bou96]

[Bow05]

[BPO3]

[Bru99]

[BS97]

[BS98]

[BVO1a]

[BVO1b]

[CB9S]

BIBLIOGRAPHY

R. Beckers, O. Holland, and J.L. Deneubourg. From local ac-
tions to global tasks: Stigmergy and collective robotics. Artifi-
cial Life IV, 181:189, 1994.

R.R. Bush and F. Mosteller. Stochastic models for learning. Wiley
New York, 1955.

C. Boutilier. Planning, Learning and Coordination in Multia-
gent Decision Processes. In Proceedings of the 6th Conference on
Theoretical Aspects of Rationality and Knowledge, pages 195-210,
Renesse, The Netherlands, 1996.

M. Bowling. Convergence and No-Regret in Multiagent Learn-
ing. In Advances in Neural Information Processing Systems 17
(NIPS), pages 209-216, 2005.

B. Banerjee and J. Peng. Adaptive policy gradient in multiagent
learning. In Proceedings of the second international joint conference
on Autonomous agents and multiagent systems (AAMAS), pages
686692, New York, NY, USA, 2003. ACM.

S. Brueckner. Return from the Ant: Synthetic Ecosystems for Man-
ufacturing Control. PhD thesis, PhD Dissertation, Humboldt-
Universitat Berlin, Germany (2000), 1999.

T. Borgers and R. Sarin. Learning through reinforcement and
Replicator Dynamics. Journal of Economic Theory, 77:1-14, 1997.

A.G. Barto and R.S. Sutton. Reinforcement Learning: an introduc-
tion. MIT Press, Cambridge, MA, 1998.

M. Bowling and M. Veloso. Convergence of Gradient Dy-
namics with a Variable Learning Rate. In Proceedings of the
Eighteenth International Conference on Machine Learning (ICML),
pages 27-34, 2001.

M. Bowling and M. Veloso. Rational and Convergent Learn-
ing in Stochastic Games. In Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages
1021-1026, 2001.

C. Claus and C. Boutilier. The Dynamics of Reinforcement
Learning in Cooperative Multiagent Systems. In Proceedings



BIBLIOGRAPHY 189

[CHKO04a]

[CHKO04b]

[Cro73]

[DBT00]

[DCD98]

[DHVNO9]

[dJGHT04]

[dJTO8]

[dJTV08]

[DMC96]

[DS04]

of the Fifteenth National Conference on Artificial Intelligence, pages
746-752. AAAI Press, 1998.

Y.H. Chang, T. Ho, and L.P. Kaelbling. All learning is local:
Multi-agent learning in global reward games. Advances in neu-
ral information processing systems, 16, 2004.

Y.H. Chang, T. Ho, and L.P. Kaelbling. Mobilized ad-hoc net-
works: A reinforcement learning approach. In Proceedings of
the 1st International Conference on Autonomic Computing, 2004.

J.G. Cross. A stochastic learning model of economic behavior.
The Quarterly Journal of Economics, pages 239-266, 1973.

M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and
stigmergy. Future Gener Comput Syst, 16(8):851-871, 2000.

G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergetic
Control for Communications Networks. Journal of Artificial In-
telligence Research, 9(2):317 — 365, 1998.

Y-M. De Hauwere, P. Vrancx, and A. Nowé. Learning what to
observe in multi-agent systems. In The 21st Benelux Conference
on Artificial Intelligence, Eindhoven, The Netherlands, 2009.

H. de Jong, ]J.C. Gouze, C. Hernandez, M. Page, T. Sar, and
J. Geiselmann. Qualitative simulation of genetic regulatory
networks using piecewise-linear models.  Bull Math Biol.,
66(2):301-340, 2004.

S. de Jong and K. Tuyls. Learning to cooperate in public-
goods interactions. In Proceedings of the 6th European workshop
on Multi-Agent Systems (EUMAS 2008), Bath, UK, 2008.

S. de Jong, K. Tuyls, and K. Verbeeck. Fairness in multi-agent
systems. Knowledge Engineering Review, 23(2):153-180, 2008.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: opti-
mization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 26(1):29-41, 1996.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. Bradford
Books, 2004.



190

[DVN10]

[EGWO06]

[FS99]

[FVV97]

[FY06]

[GHS03]

[Gil57]

[Gin00]

[GK73]

[GLO7]

[GLP02]

BIBLIOGRAPHY

Y-M. De Hauwere, P. Vrancx, and A. Nowé. Learning Multi-
Agent State Space Representations. In Proceedings of the 9th
International Conference on Autonomous Agents and Multi-Agent
Systems, pages 715-722, Toronto, Canada, 2010.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research,
6(1):503, 2006.

Ernst Fehr and Klaus M Schmidt. A theory of fairness, com-
petition, and cooperation. Quarterly journal of Economics, pages
817-868, 1999.

J.A. Filar, K. Vrieze, and OJ Vrieze. Competitive Markov decision
processes. Springer Verlag, 1997.

D.P. Foster and H.P. Young. Regret testing: learning to play
Nash equilibrium without knowing you have an opponent.
Theoretical Economics, 1(3):341-367, 2006.

A. Greenwald, K. Hall, and R. Serrano. Correlated Q-learning.
In Proceedings of the Twentieth International Conference on Ma-
chine Learning, pages 242-249, 2003.

D. Gillette. Stochastic Games with Zero Stop Probabilities.
Ann. Math. Stud, 39:178-187, 1957.

H. Gintis. Game theory evolving. Princeton University Press,
2000.

L. Glass and S.A. Kauffman. The logical analysis of contin-
uous non-linear biochemical control networks,. [.Theor.Biol.,
39(1):103-129, 1973.

F. Germano and G. Lugosi. Global Nash convergence of Fos-
ter and Young’s regret testing. Games and Economic Behavior,
60(1):135-154, 2007.

C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated rein-
forcement learning. In Proceedings of the ICML-2002 The Nine-
teenth International Conference on Machine Learning, pages 227—
234, 2002.



BIBLIOGRAPHY 191

[Gra59]

[HK66]

[HM99]

[HMCO1]

[How60]

[HSDO04]

[HSS79]

[HTRO9]

[HWOS]

[HWO03]

P.P. Grassé. La reconstruction du nid et les coordinations in-
terindividuelles chez Bellicositermes natalensis et Cubitermes
sp. la théorie de la stigmergie: Essai d’interprétation du com-
portement des termites constructeurs. Insectes Sociaux, 6(1):41-
80, 1959.

A.]. Hoffman and R. M. Karp. On Nonterminating Stochastic
Games. Management Science, 12(5):359-370, 1966.

O. Holland and C. Melhuish. Stigmergy, self-organization, and
sorting in collective robotics. Artificial Life, 5(2):173-202, 1999.

S. Hart and A. Mas-Colell. A reinforcement procedure lead-
ing to correlated equilibrium. Economic Essays: A Festschrift for
Werner Hildenbrand, pages 181-200, 2001.

R.A. Howard. Dynamic Programming and Markov Processes.
Technology Press of Massachusetts Institute of Technology,
1960.

M.W. Hirsch, S. Smale, and R.L. Devaney. Differential equations,
dynamical systems, and an introduction to chaos. Academic Press,
2004.

J. Hofbauer, P. Schuster, and K. Sigmund. A note on evolution-
ary stable strategies and game dynamics. Journal of Theoretical
Biology, 81(3):609, 1979.

D. Hennes, K. Tuyls, and M. Rauterberg. State-coupled repli-
cator dynamics. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume
2, pages 789-796. International Foundation for Autonomous
Agents and Multiagent Systems, 2009.

J. Hu and M.P. Wellman. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of the
Fifteenth International Conference on Machine Learning, volume
242, page 250, 1998.

J. Hu and M.P. Wellman. Nash Q-learning for general-sum
stochastic games. The Journal of Machine Learning Research,
4:1039-1069, 2003.



192

[JSW9S]

[Kon03a]

[Kon03b]

BIBLIOGRAPHY

Nicholas R Jennings, Katia Sycara, and Michael Wooldridge.
A roadmap of agent research and development. Autonomous
agents and multi-agent systems, 1(1):7-38, 1998.

V. Kononen. Asymmetric multiagent reinforcement learning.
In IEEE/WIC International Conference on Intelligent Agent Tech-
nology, 2003. (IAT2003), pages 336-342, 2003.

V. Kononen. Gradient based method for symmetric and asym-
metric multiagent reinforcement learning. Lecture notes in com-
puter science, pages 6875, 2003.

[KtHBVO05] J.R. Kok, PJ. 't Hoen, B. Bakker, and N. Vlassis. Utile coordina-

[KTTPO8]

[KV04]

[LCK95]

[Li03]

[Lit94]

[LitO1a]

tion: Learning interdependencies among cooperative agents.
In Proceedings of the IEEE Symposium on Computational Intelli-
gence and Games, pages 29-36, 2005.

M. Kaisers, K. Tuyls, F. Thuijsman, and S. Parsons. Auction
analysis by normal form game approximation. In Proceedings
IEEE conference on Intelligent Agent Technology (IAT2008), Syd-
ney, Australia, 2008.

J.R. Kok and N. Vlassis. Sparse Cooperative Q-learning. In
Proceedings of the International Conference on Machine Learning,
pages 481-488. ACM, 2004.

M. Littman, A. Cassandra, and L.P. Kaelbling. Learning poli-
cies for partially observable environments: Scaling up. In
Proceedings International Conference on Machine Learning, pages
362-370, 1995.

J. Li. Learning average reward irreducible stochastic games: analysis
and applications. PhD thesis, University of South Florida, 2003.

M. Littman. Markov games as a framework for multi-agent re-
inforcement learning. In Proceedings of the Eleventh International
Conference on Machine Learning, pages 157-163. Morgan Kauf-
mann, 1994.

M. Littman. Friend-or-foe Q-learning in general-sum games. In
Proceedings of the Eighteenth International Conference on Machine
Learning, pages 322-328. Morgan Kaufmann, 2001.



BIBLIOGRAPHY 193

[Lit01b]

[LROO]

[LRDO7]

[Mah6]

[Man88]

[MMS8]

[MS02]

[MV09]

[Nas50]

[Nor98]

M. Littman. Value-function reinforcement learning in Markov
games. Cognitive Systems Research, 2(1):55-66, 2001.

M. Lauer and M. Riedmiller. An algorithm for distributed re-
inforcement learning in cooperative multi-agent systems. In In
Proc. 17th International Conf. on Machine Learning, 2000.

J. Li, K. Ramachandran, and T.K. Das. A Reinforcement
Learning (Nash-R) Algorithm for Average Reward Irreducible
Stochastic Games. Under Review, Journal of Machine Learning
Research, 2007.

S. Mahadevan. Average reward reinforcement learning: Foun-
dations, algorithms, and empirical results. Machine Learning,
22(1):159-195, 1996.

B. Manderick. Basic notions in and applications of the theory of
differential dynamical systems. Technical Report AIMEMOS 8-
4, Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels,
Belgium, 1988.

F. Moyson and B. Manderick. The Collective Behaviour of
Ants: an Example of Self-Organisation in Massive Parallelism.
In Proceedings of the AAAI Spring Symposium on Parallel Models
of Intelligence, Stanford, California, 1988. AAAL

S. Mannor and N. Shimkin. The Steering Approach for Multi-
Criteria Reinforcement Learning. Advances in Neural Informa-
tion Processing Systems, 2:1563-1570, 2002.

ES. Melo and M. Veloso. Learning of Coordination: Exploit-
ing Sparse Interactions in Multiagent Systems. In Proceedings
of the Eighth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2009.

J.F. Nash. Equilibrium points in n-person games. Proceedings
of the National Academy of Sciences of the United States of America,
pages 4849, 1950.

J Noris. Markov Chains. Cambridge series in statistical and proba-
bilistic mathematics. Cambridge University Press, 1998.



194

[NPVO01]

[NT89]

[NV99]

[NVVO04]

[OR99]

[Pee08]

[PKKMO0]

[PLO4]

[PM97]

[PM98]

BIBLIOGRAPHY

A Nowé, J. Parent, and K. Verbeeck. Social Agents Playing
a Periodical Policy. In Proceedings of the 12th European Confer-
ence on Machine Learning, volume LNAI 2168, pages 382 — 393,
Freiburg, Germany, 2001. Springer-Verlag.

K.S. Narendra and M.A.L. Thathachar. Learning automata: an
introduction. Prentice-Hall, NJ, USA, 1989.

A Nowé and K. Verbeeck. Formalizing the Ant Algorithms in
term of Reinforcement Learning. In LNAI: Proceedings of the 5th
European Conference on Artificial life, volume 1674, pages 616 —
620, Lausanne, Switserland, 1999. Springer-Verlag.

A Nowé, K. Verbeeck, and P. Vrancx. Multi-type Ant Colony:
The Edge Disjoint Paths Problem. Lecture Notes in Computer
Science: ANTS 2004, 3172:202 — 213, 2004.

M.]. Osborne and A. Rubinstein. A course in game theory. MIT
press, 1999.

M. Peeters. Solving Multi-Agent Sequential Decision Problems Us-
ing Learning Automata. PhD thesis, Computational Modeling
Lab, Vrije Universiteit Brussel, Belgium, 2008.

L. Peshkin, K. Kim, L.P. Kaelbling, and N. Meuleau. Learning
to cooperate via policy search. In Uncertainty in Artificial Intel-
ligence, pages 489-496. Morgan Kaufmann, 2000.

L. Panait and S. Luke. A pheromone-based utility model for
collaborative foraging. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems.
(AAMAS 2004), pages 36—43, New York, NY, USA, 2004. ACM.

M.D. Pendrith and M.]. McGarity. An analysis of non-Markov
automata games: Implications for reinforcement learning.
Technical Report UNSW-CSE-TR-9702, School of Computer
Science and Engineering, University of New South Wales, Syd-
ney, Australia, 1997.

M.D. Pendrith and M.]. McGarity. An analysis of direct rein-
forcement learning in non-Markovian domains. In Proc. 15th
International Conf. on Machine Learning, pages 421-429, 1998.



BIBLIOGRAPHY 195

[PTLOS]

[PTRDOS]

[Put94]

[RGKO09]

[Sam98]

[Sch93]

[Sha53]

[S]794]

[SKMOO0]

[Smi82]

[Sob71]

L. Panait, K. Tuyls, and S. Luke. Theoretical advantages of
lenient learners: An evolutionary game theoretic perspective.
The Journal of Machine Learning Research, 9:423-457, 2008.

M. Ponsen, K. Tuyls, J]. Ramon, and K. Driessens. The Evolu-
tionary Dynamics of Poker. In Proceedings European Conference
on Complex Systems, ECCS’08, 2008.

M.L. Puterman. Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, Inc., New York, NY,
USA, 1994.

E. Rodrigues Gomes and R. Kowalczyk. Dynamic analysis
of multiagent Q-learning with epsilon-greedy exploration. In
ICML '09: Proceedings of the 26th Annual International Conference
on Machine Learning, pages 369-376, New York, NY, USA, 2009.
ACM.

L. Samuelson. Evolutionary games and equilibrium selection. The
MIT Press, 1998.

A.Schwartz. A reinforcement learning method for maximizing
undiscounted rewards. In Proceedings of the Tenth International
Conference on Machine Learning, volume 298305, 1993.

L.S. Shapley. Stochastic games. Proceedings of the National
Academy of Sciences, 39(10):1095-1100, 1953.

S.P.Singh, T. Jaakkola, and M.I. Jordan. Learning without state-
estimation in partially observable Markovian decision pro-
cesses. In Proceedings of the Eleventh International Conference on
Machine Learning, 1994.

S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gra-
dient dynamics in general-sum games. In Proceedings of the Six-
teenth Conference on Uncertainty in Artificial Intelligence, pages
541-548, 2000.

J.M. Smith. Evolution and the Theory of Games. Cambridge Uni-
versity Press, 1982.

M.]. Sobel. Noncooperative Stochastic Games. The Annals of
Mathematical Statistics, 42(6):1930-1935, 1971.



196

[SPG07]

[SPS99]

[SPT94]

[SSH94]

[Str01]

[TB95]

[TB99]

[Tes04]

[tHTO04]

[TP95]

[TS04]

BIBLIOGRAPHY

Y. Shoham, R. Powers, and T. Grenager. If Multi-Agent learn-
ing is the answer, what is the question? Artificial Intelligence,
171(7):365-377, 2007.

Richard S Sutton, Doina Precup, and Satinder Singh. Between
mdps and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 112(1):181-211,
1999.

PS. Sastry, V.V. Phansalkar, and M.A.L. Thathachar. Decen-
tralized learning of Nash equilibria in multi-person stochastic
games with incomplete information. IEEE Transactions on Sys-
tems, Man and Cybernetics, 24(5):769-777, 1994.

S.Sen, M. Sekaran, and J. Hale. Learning to coordinate without
sharing information. In Proceedings of the National Conference on
Artificial Intelligence, pages 426-426. Wiley & Sons, 1994.

S.H. Strogatz. Nonlinear dynamics and chaos: With applications to
physics, biology, chemistry, and engineering. Perseus Books, 2001.

G. Theraulaz and E. Bonabeau. Modelling the collective
building of complex architectures in social insects with lattice
swarms. Journal of Theoretical Biology, 177(4):381-400, 1995.

G. Theraulaz and E. Bonabeau. A brief history of stigmergy.
Artificial Life, 5(2):97-116, 1999.

G. Tesauro. Extending Q-learning to general adaptive multi-
agent systems. Advances in neural information processing systems,
16, 2004.

PJ. 't Hoen and K. Tuyls. Analyzing Multi-agent Reinforce-
ment Learning Using Evolutionary Dynamics. In 15th European
Conference on Machine Learning (ECML04), LNAI Volume 3201,
pages 168-179, Pisa,Italy, 2004. Springer.

M.A.L. Thathachar and V.V. Phansalkar. Learning the global
maximum with parameterized learning automata. IEEE Trans-
actions on Neural Networks, 6(2):398-406, 1995.

M.A.L. Thathachar and P.S. Sastry. Networks of learning au-
tomata: Techniques for online stochastic optimization. Kluwer Aca-
demic Publishers, 2004.



BIBLIOGRAPHY 197

[Tse61]

[Tsi94]

[TtHV06]

[Tuy04]

[TVLO03]

[TW09]

[Ver04]

[VKO1]

[VNO2]

[VNP04]

ML Tsetlin. On the behavior of finite automata in random me-
dia. Automation and Remote Control, 22(10):1210-1219, 1961.

J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-
learning. Machine Learning, 16(3):185-202, 1994.

K. Tuyls, PJ. 't Hoen, and B. Vanschoenwinkel. An evolu-
tionary dynamical analysis of multi-agent learning in iterated
games. Autonomous Agents and Multi-Agent Systems, 12:115-
153, 2006.

K. Tuyls. Learning in multi-agent systems: An evolutionary game
theoretic approach. PhD thesis, Vrije Universiteit Brussel, Brus-
sels, Belgium, 2004.

K. Tuyls, K. Verbeeck, and T. Lenaerts. A selection-mutation
model for g-learning in multi-agent systems. In Proceedings of
the second international joint conference on Autonomous agents and
multiagent systems, pages 693-700. ACM New York, NY, USA,
2003.

K. Tuyls and R. Westra. Replicator Dynamics in Discrete and
Continuous Strategy Spaces . In Multi-Agent Systems: Simula-
tion and Applications, pages 215-240. CRC Press, 2009.

K. Verbeeck. Coordinated Exploration in Multi-Agent Reinforce-
ment Learning. PhD thesis, Computational Modeling Lab, Vrije
Universiteit Brussel, Belgium, 2004.

P. Valckenears and M. Kollingbaum. Multi-agent coordination
and control using stigmergy applied to manufacturing control.
Mutli-agents systems and applications, pages 317-334, 2001.

K. Verbeeck and A. Nowé. Colonies of learning automata. [IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernet-
ics, 32 (6):772 — 780, 2002.

K. Verbeeck, A. Nowé, and M. Peeters. Multi-agent coordina-
tion in tree structured multi-stage games. In Proc. 4th Sympo-
sium on Adaptive Agents and Multi-agent Systems (AISB 2004),
volume 2, pages 63-74, Leeds, UK, 2004.



198

[VNPT07]

[VNVP08]

[vS34]

[VTWNOS]

[VVNO07a]

[VVNO7b]

[VVNO7c]

[VVNO07d]

[VVNOSa]

BIBLIOGRAPHY

K. Verbeeck, A. Nowé, ]. Parent, and K. Tuyls. Exploring selfish
reinforcement learning in repeated games with stochastic re-
wards. Autonomous Agents and Multi-Agent Systems, 14(3):239-
269, 2007.

K. Verbeeck, A. Nowé, P. Vrancx, and M. Peeters. Multi-
automata learning. In C. Weber, M. Elshaw, and N.M. Mayer,
editors, Reinforcement Learning: Theory and Applications, pages
167-185. I-Tech Education and Publishing, 2008.

H. von Stackelberg. Marktform und Gleichgewicht.  Julius
Springer, Vienna, 1934.

P. Vrancx, K. Tuyls, R. Westra, and A. Nowé. Switching dynam-
ics of multi-agent learning. In International joint conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’08), 2008.

K. Verbeeck, P. Vrancx, and A. Nowé. Networks of learning au-
tomata and limiting games. In K. Tuyls, S. de Jong, M. Ponsen,
and K. Verbeeck, editors, Adaptive Learning Agents and Multi-
Agent Systems Workshop 2007, pages 171-183, Maastricht, The
Netherlands, 2007. MICC /IKAT. ISSN 0922-8721, number 07-
04.

P. Vrancx, K. Verbeeck, and A. Nowé. Analyzing stigmergetic
algorithms through automata games. Lecture Notes in Biolnfor-
matics: Knowledge Discovery and Emergent Complexity in Bioinfor-
matics, 4366:145-156, 2007.

P. Vrancx, K. Verbeeck, and A. Nowé. Limiting games of multi-
agent multi-state problems. In K. Turner, S. Sen, and L Panait,
editors, Workshop on Adaptive and Learning Agents 2007, 6th In-
ternational Conference on Autonomous Agents and Multi-Agents
Systems (AAMAS 2007), Hawaii, USA, 2007.

P. Vrancx, K. Verbeeck, and A. Nowe. Optimal Convergence
in Multi-Agent MDPs. Lecture Notes in Computer Science: KES
2007, 4694:107-114, 2007.

P. Vrancx, K. Verbeeck, and A. Nowe. Decentralized learning
in Markov games. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B, 38(4):976-981, 2008.



BIBLIOGRAPHY 199

[VVNO8b] P. Vrancx, K. Verbeeck, and A. Nowé. Networks of learning

[VVNar]

[WD92]

[Wei97]
[Wei99]

[Wil92]

[Wit77]

[WINS6]

[Woo009]

[WRO04]

[WS03]

[ZGLO06]

automata and limiting games. Lecture Notes in Artificial Intelli-
gence, ALAMAS 111, 4865:224-238, 2008.

P. Vrancx, K. Verbeeck, and A. Nowé. Analyzing the dynamics
of stigmergetic interactions through pheromone games. Theo-
retical Computer Science. Special Issue on Swarm Intelligence: The-
ory, To Appear.

C.J.C.H. Watkins and P. Dayan. Q-learning. Machine learning,
8(3):279-292, 1992.

J.W. Weibull. Evolutionary game theory. The MIT press, 1997.

Gerhard Weiss. Multiagent systems: A modern approach to
distributed artificial intelligence. artificial intelligence, 1999.

R.J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning,
8(3):229-256, 1992.

L.H. Witten. An adaptive optimal controller for discrete-time
Markov environments. Information and Control, 34(4):286-295,
1977.

R. Wheeler Jr and K.S. Narendra. Decentralized learning in
finite Markov chains. IEEE Transactions on Automatic Control,
31(6):519-526, 1986.

Michael Wooldridge. An introduction to multiagent systems. John
Wiley & Sons, 2009.

M. Weinberg and J.S. Rosenschein. Best-response multiagent
learning in non-stationary environments. In Proceedings of the
Third International Joint Conference on Autonomous Agents and
Multiagent Systems, volume 2, pages 506-513, Washington, DC,
USA, 2004. IEEE Computer Society.

X.F. Wang and T. Sandholm. Reinforcement learning to play an
optimal Nash equilibrium in team Markov games. Advances in
neural information processing systems, 15:1571-1578, 2003.

M. Zinkevich, A. Greenwald, and M. Littman. Cyclic equilib-
ria in Markov games. Advances in Neural Information Processing
Systems, 18:1641, 2006.



200 BIBLIOGRAPHY

[Zin03] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In Machine Learning International
Conference-, volume 20(2), page 928, 2003.



Index

e-optimality, 21-23, 29

absolute expediency, 22
action profile, see joint action
actor-critic, 45, 46
ant colony optimisation, 145, 147,
151
automata game, 25, 27, 30, 56
convergence, 29, 49, 52

Bellman equation, 34
Boltzmann, 24, 162

correlated equilibrium, 76
cross learning, 86, 100

discount factor, 36, 170
dynamic programming, 42, 45

environment, 6, 19, 33, 145
multi-state, 6,9, 12, 25, 53, 55,
82, 88, 169
non-stationary, 9, 75
reward probability, 19
state, 33
stateless, 12, 18, 19, 33, 81
stationary, 20
evolutionary game theory, 14, 82,
86, 169
evolutionary stable, 83, 86
exploration function, 43

game theory, 12, 17, 25, 55

201

hidden state, see partial observabil-

ity
homo egualis, 105

ILA, 10, 46, 56, 90, 124, 135, 168
Interconnected learning automata,
see ILA

joint action, 25, 55, 65, 75, 132

learning automaton, 10, 17, 18, 25,
46, 60, 68, 101
parameterised, 23, 30, 109, 135
pure chance, 21
pursuit, 23
limiting game, 11, 34, 49, 56, 61,
89, 146
agent view, 12, 65, 131, 132,
156
automata view, 11, 68, 131, 132,
156
state game, 88
superagent view, 12, 64
linear reward-¢ penalty, 19, 22, 29
linear reward-inaction, 19, 22, 23,
47,51, 87,106, 150, 171
linear reward-penalty, 19, 22, 29

Markov chain, 38, 39, 41
chain structure, 39
ergodic, 39, 47, 58
multi-chain, 39



202

stationary, 38
stationary distribution, 39
unichain, 39, 171
Markov decision process, see MDP
Markov game, 6, 12, 14, 55, 57, 60,
74,89, 124, 155, 168
definition, 57
Markov property, 6, 35, 57, 123
MDP, 5, 13, 33, 35, 55, 64, 149
ergodic, 51, 59
multi-chain, 41
recurrent, 41
unichain, 41
minimax, 75
MMDP, 63, 75, 103, 108, 135
multi-agent MDD, see MMDP
definition, 59

n-armed bandit, 12
Nash equilibrium, 26, 29, 58, 76,
83, 157
normal form game, 7, 17, 25-27,
55,78, 87,89, 168
common interest, 26, 105
general sum, 26, 56, 105
identical payoff, 56, 65
repeated, 12
unknown game, 28
zZero-sum, 26
norms of behaviour, 20
expediency, 21

off-policy, 43
on-policy, 43
optimality, 21

Pareto front, 27, 104

Pareto optimality, 27, 104

partial observability, 14, 123, 124,
129, 169

payoff matrix, 25, 87

INDEX

pheromone, 146, 148, 150, 153
policy, 35, 149
control, 44
deterministic, 36, 59, 67, 110
greedy, 44
joint, 57, 65, 71, 89, 92, 110,
114, 116
mixed, 67, 111
optimal, 13, 36, 59, 135, 168
periodic, 104, 119
periodical, 105
stationary, 35, 41, 58, 111
time-sharing, 111
policy iteration, 42, 45
prisoner’s dilemma, 26, 87, 89, 103

Q-learning, 42, 43, 76, 100
Q-values, 43

R-learning, 44
reinforcement learning, 1, 4, 34, 42,
45, 86
multi-agent, 1, 6, 56, 74, 124,
143, 168
relative values, 45
replicator dynamics, 82, 84, 86, 161,
171
multi-population, 85
piecewise, 90, 100

Stackelberg equilibrium, 76
state, 84, 124
aperiodic, 39, 171
joint, 125
local, 125
recurrent, 39, 111, 171
transient, 39, 41
state space, 82, 173
factored, 125
stationary distribution, 47



INDEX 203

stigmergy, 14, 145, 147, 149, 155,
169

strategy, 7, 26

strategy profile, 26

value function, 36, 45
value iteration, 42



204 INDEX



Author Index

205



