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Abstract

Reinforcement learning (RL) has been used as an alternative to model based tech-

niques for learning optimal controllers. The central theme in reinforcement learn-

ing research is the design of algorithms that learn control policies solely from the

knowledge of transition samples or trajectories, which are collected by online in-

teraction with the system. Such controllers have become part of our daily life by

been present at from almost every home appliance to really complex machines in

industry. This extension to the frontiers of applications of RL has also demanded

from the learning techniques to face more and more complex learning problems.

This dissertation is centered in the changes necessary to an existing simple RL

algorithm, the continuous action reinforcement learning automaton (CARLA) to

control production machines. For a better introduction of the results we first

present some background information about the general framework for bandit ap-

plications, Markov decision process (MDP), and RL for solving problems with

discrete and continuous state-action spaces. The changes to the algorithm aim

to optimize the computational and sampling cost as well as to improve local and

global convergence. The standard CARLA method is not able to deal with state in-

formation. In this dissertation we also propose a method to take state information

into account in order to solve more complex problems.

After introducing these theoretical results, we present a number of problems re-

lated to production machines and the appropriate way to use the described method

to solve them. The applications vary in complexity in terms of stationarity, cen-

tralization and state information.
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Chapter 1

Introduction

Control systems have an immense impact in our daily life. Nearly all devices, from basic home

appliances to complex plants and aircrafts, operate under the command of such systems. The

ultimate goal of control is to influence or modify the behavior of dynamic systems to attain

pre-specified goals. A common approach to achieve this, is to assign a numerical performance

index to each state in the trajectory of the system and then to search for the policy that drives

the system along trajectories corresponding to the best value of the performance index.

Dynamic programming (DP) (Bellman, 2003) originated in the early research of optimal

control and it is still used nowadays in applications where a system model is available. Rein-

forcement learning (RL) (Sutton & Barto, 1998) has emerged as an alternative to this model

based approach, for finding the solution in absence of a model. The central theme in RL re-

search is the design of algorithms that learn control policies solely from the knowledge of

transition samples or trajectories, which are collected by online interaction with the system.

RL is an algorithmic method for solving problems in which actions (decisions) are applied

to a system over an extended period of time, in order to achieve a desired goal. The time vari-

able is usually discrete and actions are taken at every discrete time step, leading to a sequential

decision-making problem. The actions are taken in closed loop, which means that the outcome

of earlier actions is monitored and taken into account when choosing new actions. Rewards

are provided that evaluate the one-step decision-making performance, and the goal is to opti-

mize the long-term performance, measured by the total reward accumulated over the course of

interaction.

RL research is not limited to automatic control applications. This decision making tech-

nique has been successfully used in a variety of fields such as operations research, economics,

1



1. INTRODUCTION

controller process

state,performance

action

Figure 1.1: Automatic control - A suited application for RL.

and games. In automatic control, a process is to be controlled by a controller which is deciding

on the best action to achieve a given goal, the general architecture is shown in figure 1.1. This

controller based the decision on the output feeded back from the process. RL is a very suited

technique for solving this problem if we use it for learning the control action based on the in-

teractions with the process when a model of the system cannot be obtained at all, e.g., because

the system is not fully known beforehand, is insufficiently understood, or it is just too costly to

derive such a model.

1.1 Problem statement

This dissertation is centered around the framework stated above: using RL for learning optimal

controllers. More specifically, we focuss our approach on learning automatons (LAs). LA are

reinforcement learners that keep a probability distribution over the action space for selecting

these actions. The probability distribution is updated over time based on the reward received at

every time step. This technique has shown good convergence results in discrete settings. Dif-

ferent implementations of LAs exist for continuous action spaces. Some methods such as the

continuous action learning automaton (CALA) use a parametric representation (Thathachar &

Sastry, 2004) making the update of such a distribution less expensive, computationally speak-

ing, but also restricting the search over the action space. Furthermore, these methods normally

are subjected to some constrains to the reward function such as smoothness and are really

affected by noise. Other methods such as the continuous action reinforcement learning au-

tomaton (CARLA) use a nonparametric representation of the probability distribution (Howell

et al., 1997) allowing for a richer exploration of the action space but at the same time turning

the method much more demanding from the computational point of view. We present in this

dissertation an improvement of the CARLA method in terms of computation effort and local

convergence properties. The improved automaton performs very well in single agent problems.
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1.1 Problem statement

Conventional controller design problems assume that all the controllers present in the sys-

tem have access to the global information. However since systems tend to become more and

more complex, distributed control enters the picture. A distributed control application assumes

that there exist several subsystems, each one being controlled by an independent controller

preferably sensing only local information. We may refer to formation stabilization, supply

chains, wind farms or irrigation channels as application examples. While each application has

its own specificities, the general idea is that the subsystems with their basic controllers should

be brought together in a kind of plug and play manner and still operate successfully. Since

these subsystems might have complex interactions this is not trivial.

The CARLA algorithm has successfully been used as conventional controllers (Howell &

Best, 2000; Howell et al., 1997). Even in a distributed approach, we may expect this algorithm

to converge to the unique optimum when the system exhibits linear dynamics and a linear cost

function is considered. If the system dynamics or its cost function are not linear, multiple op-

tima may exist. If we use the standard CARLA algorithm for controlling each subsystem in

a nonlinear interacting system while ignoring the presence of the other controllers, the system

will successfully converge, however convergence to the global optimum cannot be guaran-

teed. In this dissertation we also propose a better exploration of the continuous action space

inspired on the exploring selfish reinforcement learning (ESRL) approach for discrete action

spaces (Verbeeck, 2004).

CARLA is a bandit solver (see chapter 2 for the explanation of bandits) limited to stateless

problems. It has been applied to learn the optimal parameters of linear controllers in contin-

uous state spaces though. The application was limited to systems with linear dynamics. It is

common in conventional control to build a model which is a linearized abstraction of the real

plant, calculate the optimal controller and use it in the real plant. Although this approach has

successfully been applied in practice, there are plenty of applications where a linearized model

is not reliable enough. There already exist approaches of RL for control tasks using function

approximators to enable discrete RL techniques to large and continuous spaces (Buşoniu et al.,

2010). Using the natural capabilities of this method for dealing with continuous optimization

over the action space, we combine it with function approximators over the state space in order

to obtain an RL technique for continuous action-state spaces.
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1.2 Contributions

My contributions are presented in chapters 5, 6, and 7. The former chapter introduces the

theoretical changes to the CARLA method. Every section of the chapter corresponds to one

individual improvement.

If we want to control real production machines we can only rely on simple processors

attached to these machines. This last restriction, in addition to the limited time that the learners

have for responding with the appropriate control action, lead us to the first contribution being a

significant reduction of the computational cost of the method. This reduction is carried out by

analytical derivations of the learning rule to avoid numerical integration.

Since collecting data from a real machine is very costly in time (and most probably in effort

as well) it is also necessary to use a method that can learn as fast as possible using an optimal

exploration of the action space. My second contribution is an analysis of the convergence of

the method and a procedure to adjust the spreading rate of the method (which is a parameter

controlling the exploration ratio) that, in combination with the reward standardization, leads to

a faster convergence to the optimal solution in terms of sampling.

My third contribution aims to distributed control applications. Inspired in the ESRL method

for coordinating discrete LAs, with limited communication, in order to guarantee convergence

to the global optimum (escaping local optima) we introduce exploring selfish continuous action

reinforcement learning automaton (ESCARLA) which is a version of ESRL but for continuous

action spaces. This change improve the global convergence (in terms of ratio of convergence

to the global maximum) of the method in distributed control set-ups.

The last theoretical result presented in this dissertation is the combination of CARLA

method with function approximators in order to deal with multi-state applications. Such a

combination allows the learning method to deal with more complex production machines.

The practical applications are separated into state-less and multi-state applications. The

former group is explained in chapter 6 while the latter in 7. Both chapters use a set of toy

problems to support the theoretical achievements and afterwards explain the results achieved

by the method in the diverse set of applications in the scope of this research.

1.3 Outline of the dissertation

The research presented in this dissertation is divided in eight chapters.
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1.3 Outline of the dissertation

Chapter 2 introduces the general framework for bandit applications. In such a setting, a

learner is posed the task to maximize the long-run pay-off with no information of the state of

the system. The chapter is divided in discrete and continuous armed bandits. The framework is

described for both settings and the strategies for solving them are also presented. The chapter

finishes with a section describing discrete action games where two or more learners interact in

order to minimize their regret while learning as well. ESRL is presented in the latter section as

an exploration method for a set of independent LAs playing a repeated discrete action game.

After discussing bandit applications, the standard reinforcement learning is introduced in

chapter 3. In this chapter, we formally give the definition of the Markov decision process

(MDP) in order to make easier the understanding of reinforcement learning. We first present

the general framework for the deterministic case. Afterwards, the stochastic case is considered.

We also discuss optimality for both cases. Once the MDP definition is formalized, we proceed

to describe the standard reinforcement learning. This formalization is limited to discrete action-

state spaces. The three well-known classes of reinforcement learning are presented: value

iteration, policy iteration and direct policy search. For each class, the most popular algorithms

in the literature are also explained.

Chapter 4 describes the state of the art of reinforcement learning for large and continuous

action-state spaces. This extension of the standard discrete RL techniques is performed by

means of function approximators to represent the value functions over the infinite action-state

space. Two classes of approximators are described: parametric and non-parametric. The for-

mer class defines a fix set of parameters in advance while in the latter class the set of parameters

of the approximator is build with the available data at every instant during learning. After for-

mally introducing the function approximators, the three RL architectures, (approximate value

iteration, approximate policy iteration, and approximate policy search) are redefined and well-

known algorithms are provided.

The above listed chapters introduce the necessary background of this dissertation. Chap-

ter 5 formalizes the extensions we made to the CARLA algorithm in order to make it feasible

for the applications tackled in this research. The first change in the original method is per-

formed by pushing further the mathematical analysis of the method and avoiding the numerical

integration. This enables the method to run faster on simple processors attached to the engines

that are to be controlled. After obtaining this result, the analysis of the convergence of the

method is performed in bandit applications where only one learner is present. This analysis

makes possible to derive a simple way of tuning the spreading rate parameter of the method
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which in addition with the reward transformation, also introduced in this chapter, improves its

performance from the sampling point of view. The convergence analysis is then performed in

games where multiple learners are interacting. As a consequence of this analysis, the necessity

of a better exploration protocol is demonstrated and the extension of ESRL to continuous action

spaces is introduced. Finally, in order to enable the CARLA method for optimizing the con-

trol action in nonlinear dynamical systems the learning technique is combined with function

approximators over the state space.

Having introduced the method developed for coping with the different applications we

face in this dissertation, we separate the applications in two groups, state-less applications and

multi-state applications. Chapter 6 shows the state-less applications. First, some test problems

are shown in order to demonstrate the performance of the learning methods derived in this

dissertation. Afterwards, the real world applications are presented and tested. Chapter 7 shows

the multi-state applications. Again, some toy environments are first introduced before showing

the results in the real world applications. All real world applications are in the field of optimal

control and distributed control where some engines are to be automatically controlled in order

to achieve a target performance. The applications come from the LoCoPro project (grant nr.

80032) of the Institute for the Promotion of Innovation through Science and Technology in

Flanders (IWT-Vlaanderen).

Chapter 8 summarizes the dissertation with the conclusions.

Figure 1.2 graphically sums up the outline of the dissertation.
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1.3 Outline of the dissertation

Introduction 1

Bandit problems 2
Reinforcement learning 3

Continuous RL 4

CARLA extensions 5

Speeding up calculations 5.1

Analysis of convergence. Dynamically tuning the spreading rate 5.2

Standardization of rewards 5.3

Analysis of convergence in games 5.4

ESCARLA 5.5

MSCARLA 5.6

State-less applications 6 Multi-state applications 7

Conclusions 8

Background

Contributions

Figure 1.2: Outline of the dissertation - Readers interested in state-less applications can directly
read chapter 5 after chapter 2 (skipping chapters 3 and 4) and skip section 5.6 and chapter 7
afterwards. Readers interested in applications that involve information about the state of the system
can only skip chapter 6
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Chapter 2

Bandit problems

The multi-armed bandit problem is associated to the decision on the lever to pull at a row of slot

machines. Each lever gives a random reward when pulled. The objective of the decision maker

is to maximize the average reward obtained by pulling the levers. This problem was originally

described by Robbins (1952) as a statistical decision model and it has attracted the attention of

many researchers ever since for it poses an interesting dilemma on deciding to what extend to

explore (trying out each arm to find the best one) and when to exploit the acquired knowledge

(playing the arm we feel to give the best payoff). This dilemma is know as the exploration-

exploitation dilemma. Each choice of a lever results in an immediate random reward, but the

processes determining these rewards might evolve over time.

Formally, in a bandit problem, a decision maker chooses an action uk ∈ {1, · · · , L} in

discrete time with indexes k = 0, 1, · · · . The state of the process generating the rewards is

denoted by xk and it is unknown to the decision maker. With every decision there is a random

payoff rk observed and we denote the function describing such values by ρ (uk, xk). A feasible

Markov policy π = {uk}
∞
k=0 selects an available alternative over time.

Several control applications can be seen as bandit problems. Situations where there are

parameters to be controlled in order to have the machine operating at a target performance and

such a performance may change depending on the use of the machine given some unknown

function.

The value function V (x0) can be written in terms of ρ (u, xk). The problem of finding an
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2. BANDIT PROBLEMS

optimal policy is the solution of the problem posed in equation (2.1).

V (x0) = max
u

E
∞∑

k=0

γkρ (uk, xk)

 (2.1)

Several methods for optimally solving bandit problems have emerged. Next, in section 2.1,

some general techniques for solving the many-armed bandit (or just bandit for short) problem

are shown. Afterwards, in section 2.3, the extension to infinitely many-arms is shown as well

as the techniques to solve it.

2.1 Discrete bandit solvers

First we list some exploration strategies that are commonly used in RL because of their sim-

plicity but yet good performance. Then we also provide the more theoretically supported ex-

ploration strategies for discrete n-armed bandits.

Semi-uniform strategies are probably the earliest and simplest. These strategies normally

behave greedy except when exploring a random action. As a first example consider the ε-greedy

strategy. In an ε-greedy strategy, the decision maker behaves greedy in a proportion 1− ε of the

trials. In the remaining proportion ε of the trials the decision maker uniformly selects an action.

The parameter ε is normally selected very low, e.g., 0.1, but this can vary widely depending

on circumstances and predilections. Algorithm 2.1 shows this strategy. Later upgrades of the

algorithm use a dynamic ε value, such as in the case of the ε-decreasing strategy, in order to

reduce exploration over time. As a second example consider the ε-first strategy in which two

delimited phases are separated: a pure exploration phase and a pure exploitation phase. If the

decision maker is to perform N trials in total then the exploration phase lasts for εN trials while

the exploitation phase takes place during the next (1 − ε) N trials. During the exploration phase,

the decision maker uniformly selects the actions while during the exploitation phase the action

is selected greedily. Algorithm 2.2 shows this strategy.

Regret minimization strategies minimize the regret over time. The regret is defined as the

loss in the reward in terms of the difference between the observed reward and the maximum

possible reward. As an example of regret minimization strategies consider the Upper Con-

fidence Bound (UCB) algorithm (Auer et al., 2002). In this algorithm the key feature is to

estimate an upper confidence bound for the regret. For this goal, the algorithm keeps a counter

10



2.1 Discrete bandit solvers

Algorithm 2.1 ε-greedy strategy
Input: exploration-exploitation trade-off ε

1: for all action u ∈ U do
2: initialize expected reward µu for lever u {e.g., maximum possible reward}
3: end for
4: for k = 1, 2, · · · do

5: uk =

a uniformly random action in U with probability ε

u ∈ arg maxu {µu} with probability 1 − ε
6: apply uk

7: measure reward rk

8: update µuk {the mean reward of the selected action}
9: end for

Algorithm 2.2 ε-first strategy
Input: exploration-exploitation trade-off ε

horizon length N
1: for all action u ∈ U do
2: initialize expected reward µu for lever u {ex. minimum possible reward}
3: end for
4: for k = 1 to εN do
5: uk = a uniformly random action in U
6: apply uk

7: measure reward rk

8: update µuk

9: end for
10: for k = εN + 1 to N do
11: uk = arg maxu {µu}

12: apply uk

13: measure reward rk

14: update µuk

15: end for

11
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of the times that each action has been selected. Let us call this counter as nu for each action

u ∈ U. Auer et al. (2002) propose to select the action to play at time step k greedily as:

uk = arg max
u

µu +

√
2 ln k

nu


this results in a regret bounded by:

8
∑
∀u,u∗

ln k
µu∗ − µu

+

(
1 +

π2

3

)∑
u

µu∗ − µu

where u∗ corresponds to the optimal action. Notice that the action is selected based on the

current average payoff plus an exploration term. This exploration term is the square root of the

division of the logarithm of the current time step by the times the action has been played. The

division of the current time by the times that the action is been played increases as the action is

less often visited so it is an exploration bonus for the actions that has not been explored recently.

This exploration bonus asymptotically converges to zero over time due to the logarithm and

the square root providing the algorithm with much exploration at the beginning and reducing

exploration over time.

Probability matching strategies reflect the idea that the number of pulls for a given lever

should match its actual probability of being the optimal. As an example of probability matching

strategies we will discuss Learning Automata in section 2.1.1.

2.1.1 Learning Automata

A learning automaton (LA) is a simple model for adaptive decision making in unknown ran-

dom environments. Engineering research on reinforcement learning (RL) started in the early

1960’s (Tsetlin, 1962). The RL model is well presented by the following example introduced

by Thathachar & Sastry (2004). Consider a student and a teacher. The student is posed a

question and is given several alternative answers. The student can pick one of the alternatives,

following which the teacher responds yes or no. This response is probabilistic – the teacher

may say yes for wrong alternatives and vice versa. The student is expected to learn the correct

alternative via such repeated interactions. While the problem is ill-posed with this generality,

it becomes solvable with an added condition. It is assumed that the probability of the teacher

saying “yes” is maximum for the correct alternative.
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2.1 Discrete bandit solvers

LA are useful in applications that involve optimization of a function which is not com-

pletely known in the sense that only noisy values of the function are observable for any specific

values of arguments Thathachar & Sastry (2004).

A finite action learning automaton (FALA) keeps a probability distribution over the actions

for selecting them over time. Let us call pk : U → [0, 1] the function representing the prob-

ability of selecting each action u ∈ U at time k. The learning algorithm for updating pk (·) is

generally of the form shown in (2.2).

pk+1 (·) = T (pk (·) , uk, rk) (2.2)

A very well known scheme for updating the probability distribution is by reinforcing the

probabilities of the actions that result in a favorable response or decreasing such probabilities

otherwise. The general form is given by equation (2.3) where L is the number of possible

actions, and parameters α and β are known as the learning rate and penalty respectively.

pk+1 (uk) = pk (uk) + αrk
(
1 − pk (uk)

)
− β (1 − rk) pk (uk)

∀u,uk : pk+1 (u) = pk (u) − αrk pk (u) + β (1 − rk)
(

1
L − 1

− pk (u)
)

(2.3)

Three common update schemes are defined in literature (Hilgard & Bower, 1966):

• Linear Reward-Inaction (LR−I) if β = 0

• Linear Reward-Penalty (LR−P) if α = β

• Linear Reward-ε Penalty (LR−εP) if β is very small compared to α

Convergence to local optima is guaranteed with this method (Thathachar & Sastry, 2004).

By using the LR−I scheme the RL will converge to a pure strategy, meaning that one action

will accumulate the total probability of one leaving the others with zero. The probability of

converging to the action with the highest mean reward depends on the initial distribution p0 (·),

the parameter α and the reward distribution for each action.

Most learning techniques control the exploration by some parameter like the ε in ε-greedy

strategies. This make difficult to use this methods in some environments. The LA method build-

in the exploration in the probability distribution kept for selecting the actions, so its exploration

is not controlled by a given parameter but by the learning process itself. This is a key feature

for selecting these decision makers among others.
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In some applications there are several inputs that are to be handled independently from each

other and communication is either not allowed or comes at a high price. Consider robotics,

telecommunications and distributed control as examples. For example, a distributed control

application assumes there exist several subsystems, each one being controlled by an indepen-

dent controller preferably sensing only local information. As examples of applications we may

refer to formation stabilization, supply chains, wind farms or irrigation channels. While each

application has its own specificities, the general idea is that the subsystems with their basic

controllers should be brought together in a kind of plug and play manner and still operate suc-

cessfully. Since these subsystems might have complex interactions this is not trivial. The next

section introduces the framework of games where multiple learners interact to achieve their

individual goals.

2.2 Discrete games

When we have more than one learner influencing the environment and they all interact for

achieving their individual goals we can describe the problem as a repeated normal form game

from classical Game Theory. In this section we formally introduce some necessary concepts of

game theory and in section 2.2.1 we describe an existing RL approach to coordinate exploration

with limited communication in discrete action games.

We first discuss a formalism for presenting a game: the normal form (Gintis, 2009, Chapter

3).

The strategic form or normal form game consists of a number of players, a set of strategies

for each of the players, and a payoff function that associates a payoff to each player with a

choice of strategies by each player. More formally, an n-player normal form game consists of:

• A set of players l = 1, · · · , n.

• A set S l of strategy spaces for players l = 1, · · · , n. We call π = (π1, · · · , πn), where

∀l : πl ∈ S l, a strategy profile for the game.

• A function ρl : S → R for each player l = 1, · · · , n, where S is the space of strategy

profiles so ρl (π) is player l’s pay-off when strategy profile π is chosen.

If all agents share the same pay-off function (i.e., ∀i, j : ρi (·) = ρ j (·)) then we refer to the

game as a common interest game and we can simply represent the pay-off by a simple function

14



2.2 Discrete games

u2,1 u2,2

u1,1 ρ
(
u1,1, u2,1

)
ρ
(
u1,1, u2,2

)
u1,2 ρ

(
u1,2, u2,1

)
ρ
(
u1,2, u2,2

)
Figure 2.1: A common interest 2-players 2-actions example game - The first index of the actions
represents the player index. The second index of the actions represents the action corresponding to
the current player. Since both players can choose one out of two actions, four possible joint actions
exist and then the pay-off function is defined for each combination.

ρ : S → R. A common way of representing the pay-off function is by means of a matrix.

Consider a common interest game of players 1 and 2, with two possible actions each. There

are four possible joint actions. Figure 2.1 illustrates this example. The rows correspond to the

first player’s actions while the columns to the second’s. Each slot in the matrix represents the

pay-off received by the players when choosing the corresponding combination.

The Nash equilibrium (named after John Forbes Nash) is a solution concept of a game, in

which no player has anything to gain by changing only his own strategy unilaterally. If each

player has chosen a strategy and no player can benefit by changing his strategy while the other

players keep theirs unchanged, then the current set of strategies and the corresponding pay-offs

constitute a Nash equilibrium. More formally, a strategy profile π∗ is a Nash equilibrium (NE)

if no unilateral deviation in strategy by any single player is profitable for that player, that is

∀l,πl∈S l : ρl
(
π∗

)
≥ ρl

((
π∗1, · · · , πl, · · · , π

∗
n

))
Finally, a solution is Pareto optimal if no agent can be made better off without making at

least one other agent worse off. The set of all Pareto optimal equilibria are referred as a Pareto

front. Notice that in a common interest game, the Pareto front only contains Nash equilibria.

RL was originally developed for Markov decision processs (MDPs) (See section 3.1 for an

explanation of MDP). It guarantees convergence to the optimal policy, provided that the agent

can sufficiently experiment and the environment is which it is operating is Markovian. However

when multiple agents apply RL in a shared environment, this might be beyond the MDP model.

In such systems, the optimal policy of an agent depends not only on the environment, but on

the policies of the other agents as well (Nowé et al.).

In common interest games at least one Pareto optimal Nash equilibrium exists. As ex-

plained above, despite the existence of an optimal solution, there is no guarantee that inde-

pendent learners converge to such an equilibrium. Only convergence to (possibly suboptimal)
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u21 u22 u23

u11 11 -30 0
u12 -30 7 6
u13 0 0 5

Figure 2.2: The climbing game, a common interest game - The Pareto optimal Nash equilibrium
(u11, u21) is surrounded by heavy penalties (Kapetanakis et al., 2003a).

Nash equilibria can be guaranteed (Claus & Boutilier, 1998). Games such as the climbing

game (Kapetanakis et al., 2003a), shown in Figure 2.2 are generally accepted as hard coordi-

nation problems for independent learners. In this game, independent learners may get stuck in

the suboptimal Nash equilibrium (u12,u22) with payoff 7. Whether the agents reach the Pareto

optimal Nash equilibrium with payoff 11 mainly depends on the initialization of the action

probabilities when learning starts and the size of the penalties surrounding the optimum. In-

dependent learning agents will have difficulties reaching the optimal solution because of the

heavy penalties surrounding it.

The problem of avoiding local maxima and converging to the Pareto Optimal solution in

games has been faced by diverse techniques.

Lenient learners (Panait et al., 2006) perform an optimistic update to delete the effect of

the big penalty surrounding the Pareto Optimal joint action. Independent learners update the

probabilities of selecting the actions based on the average reward collected by each action.

This, in addition with the explorative behavior of both agents playing the game, prevent the

learners to converge to the joint action (u11, u21) for the average reward collected is severely

affected by the surrounding penalties. Still, each learner is capable of observing the really

high reward 11 for the joint action when they both play coordinated. Lenient learners perform

an optimistic update in the sense that the learners collect a number of rewards (the amount of

rewards is the leniency level) before they perform an update. For such an update the learners use

the maximum reward instead of the average. This way, the effect of the penalties is attenuated

allowing the learners to converge to the Pareto Optimal solution. The bigger the leniency level,

the highest the chance to converge to the optimal solution, but also the slower the learning

process.

The problem with lenient learners is that they are severely affected by noise in presence of

non-deterministic rewards. To attenuate the effect of this noise, Frequency Maximum Q-Value

(FMQ) (Kapetanakis & Kudenko, 2002) keeps track of the frequency that the maximum reward
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value has been observed for every action. Then instead of using the Q-values (The Q-values

is a look-up table for keeping track of the quality of the actions, i.e., the expected reward for

a given action. For more details see Section 3.1.1) directly for selecting the action, FMQ uses

the summation of the Q-value and the maximum reward, times its frequency multiply by the

weight controlling the importance of the FMQ heuristic. Notice that the Q-values are updated

with a regular procedure but the effect of the big penalties surrounding the optimal joint-action

is attenuated without being fully optimistic. This approach still fails in fully stochastic envi-

ronments as shown by Kapetanakis et al. (2003b).

As a sequel of FMQ, the commitment frequencies protocol is presented by Kapetanakis

et al. (2003b). A commitment sequence is a list of time slots in which the agents are committed

to play the same action. This idea definitely makes the agents to coordinate on their actions

avoiding helping them to avoid the big penalties surrounding the optimal solution. Even when

the rewards are fully stochastic, the method performs well. The problem that still remains is that

the agents are to learn coordinated. This constrain can be hard to met in a control application

where different subsystems are performing independently from each other and cannot afford

coordinating all the time but only at rarely specific times.

Next subsection introduces a coordination protocol for a set of LAs playing a game to

ensure convergence to the Pareto Optimal solution. This coordination protocol is able to deal

with stochastic rewards and do not ask for explicit coordination during learning. It only asks

for very limited communication at very specific times.

2.2.1 Exploring Selfish RL

In this subsection we briefly explain exploring selfish reinforcement learning (ESRL) which

was introduced for efficient exploration in discrete action spaces (Verbeeck, 2004). The main

characteristic of ESRL is the way the agents coordinate their exploration. Phases in which

agents act independently and behave as selfish optimizers (exploration phase) are alternated by

phases in which agents are social and act so as to optimize the group objective (synchronization

phase). During every exploration phase the agents each applying an RL technique will converge

to a pure Nash equilibrium. In the synchronization phase the solution converged to at the end

of the exploration phase is evaluated and removed from the joint-action space. In this way,

new attractors can be explored. The removal is achieved by letting at least two agents exclude

its private action that is part of the joint solution. Agents alternate between exploration and
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u21 u23

u11 11 0
u13 0 5

Figure 2.3: The climbing game after shrinking the joint-action space - The Pareto optimal
Nash equilibrium (u11, u21) is still not the only one Nash equilibrium but it is now the most likely
to find

synchronization phases to efficiently search the shrinking joint-action space in order to find the

Pareto optimal Nash equilibrium.

If the Pareto optimal Nash equilibrium is reached, there is no room for improvement. How-

ever if this Pareto optimal Nash equilibrium is not reached, all agents will benefit from search-

ing for it in the long run. Suppose for example that the agents of Figure 2.2 converged to

joint action (u12,u22) corresponding to a payoff of 7 for both agents. Independent learners will

not have the tendency to explore further to reach the better Nash equilibrium, with payoff 11

for both agents, because of the high punishment of -30 that surrounds this interesting Nash

equilibrium.

In order not to get too much punishment before discovering the best joint action (u11,u21),

the agents should coordinate their exploration. This means that the agents should decide to-

gether to search for a better Nash equilibrium. In ESRL this is achieved by making the agents

exclude the action they converged to and then restarting learning in the remaining action sub-

space. In the case of the climbing game presented above, the joint-action space shrinks from 9

to 4 joint actions as shown in Figure 2.3. Again the learning itself can be performed in an inde-

pendent manner, and this will drive the agents toward another Nash equilibrium. The average

payoff received during this second period of learning can be compared with the average payoff

received during the first period of learning, and as such the two Nash equilibria found can be

compared against each other. This alternation between independent learning and excluding

actions can be repeated until one agent has only one action left. This approach has been vali-

dated in much bigger games with more agents and more actions, as well as stochastic payoffs.

Moreover the approach has also shown to beneficial in cases where agents take actions asyn-

chronously and delayed rewards, such as for example in job scheduling settings, where agents

take actions when a job is generated and jobs first enter a queue before being processed .
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2.3 Continuous bandit problems

2.3 Continuous bandit problems

Although the first papers studied bandits with a finite number of arms, the research was soon

extended into bandits with infinitely many for its significance in practical applications. Exam-

ples are learning the gain in a control system, pricing a new product with uncertain demand in

order to maximize revenue, controlling the transmission power of a wireless communication

system in a noisy channel to maximize the number of bits transmitted per unit of power, and

calibrating the temperature or levels of other inputs to a reaction so as to maximize the yield

of a chemical process (Cope, 2009). Several strategies for solving these problems also exist.

In this section we briefly explain two well-known strategies and then show in more details, in

section 2.3.3, an extension of RL to continuous action spaces.

2.3.1 Continuous Action Learning Automaton

We will first refer to the continuous action learning automaton (CALA) method introduced

by Thathachar & Sastry (2004). Thathachar & Sastry (2004) formulated the objective of learn-

ing as an optimization of the mathematical performance index (2.4), where R (u,Λ) is the

(possibly stochastic) reward function for a given model Λ, p is a parametric representation of

the distribution over actions u, and U is the set of possible actions, assumed to be compact. The

performance index J is the expectation of R with respect to the distribution p, and it therefore

includes randomness in u and randomness in R. The problem of maximizing J is analogous

to the well-known multi-armed bandit problem, with a discrete or continuous arm set (see

section 2.3).

J (Λ) =

∫
U
R (u,Λ) dp (2.4)

Now the set of actions is a compact subset of R. The learner keeps a probability distribution

for selecting the actions which is a normal distribution with mean µk and standard deviation

σk. We denote this normal distribution by N (µk, σk). The CALA updates the parameters

µk and σk at each instant k based on the reinforcement received from the environment. The

final objective of the learning method is to make N (µk, σk) converge to N (µ∗, 0) where µ∗ is

the action maximizing the expected reward. In order to keep numerical stability, the standard

deviation σk cannot converge to zero. Instead, this parameter will be lower bounded by σL.
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2. BANDIT PROBLEMS

The learning rule of CALA for the two parameters of the probability distribution are given in

equations (2.5) and (2.6) respectively.

µk+1 = µk + α
r uk

k − r µk
k

max (σL, σk)
uk − µk

max (σL, σk)
(2.5)

σk+1 = σk + α
r uk

k − r µk
k

max (σL, σk)

( uk − µk

max (σL, σk)

)2

− 1

 − αK+ (σk − σL) (2.6)

where α is the learning rate controlling the step size, K+ is a large positive constant, σL is a

positive lower bound of σ, r uk
k represents the reward obtained by applying the action uk and r µk

k

represents the reward obtained by applying the action µk.

The idea behind the update scheme is as follows. If uk gets better response from the en-

vironment than µk, then, µk is moved towards uk; otherwise it is moved away. Division by

max (σL, σk) is to standardize quantities. For updating the standard deviation, whenever an ac-

tion that is away from the mean by more than one standard deviation results in better response

from the environment or when an action choice within one standard deviation from the mean is

worse, we increase the variance; otherwise we decrease it. The last term on the right hand side

is a penalizing term for σk so as to push it towards σL. Algorithm 2.3 formalizes this learning

technique.

Algorithm 2.3 CALA methods (Thathachar & Sastry, 2004, Section 1.6).
Input: learning rate α

standard deviation lower bound σL

a large positive constant K+

a very low positive constant ε
1: initialize µ0 and σ0

2: repeat
3: choose uk ∼ N (µk, σk)
4: apply uk

5: measure rewards ruk
k and rµk

k

6: µk+1 = µk + α
r

uk
k −r

µk
k

max(σL,σk)
uk−µk

max(σL,σk)

7: σk+1 = σk + α
r

uk
k −r

µk
k

max(σL,σk)

[(
uk−µk

max(σL,σk)

)2
− 1

]
− αK+ (σk − σL)

8: until |µk−1 − µk| < ε and σk ≤ σL

While this method is very efficient in terms of calculations it turns out to be unfeasible from

the sampling point of view. The CALA method needs to evaluate two actions at every instant,
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2.3 Continuous bandit problems

namely, r uk
k and r µk

k . Gradient based methods (see section 4.3.2) have emerged based on the

same idea that remove this problem but still they need smooth reward functions and are very

sensitive to initialization in order to find the global maxima.

2.3.2 Hierarchical Optimistic Optimization

The second strategy that we introduce is the hierarchical optimistic optimization (HOO) (Bubeck

et al., 2011). The HOO strategy builds an estimate of the reward function by constructing a bi-

nary tree over the action space U. The nodes of the tree are associated with regions of the action

space such that the regions associated with the nodes deeper in the tree represent increasingly

smaller subset of U. The method stores some statistics at each node of the tree. In particular,

it keeps track of the number of times a node has been traversed and the corresponding average

of the rewards received so far. Based on these, HOO assigns an optimistic estimate (denoted

by B) to the maximum mean-payoff associated with each node. The action is always selected

greedily on the optimistic estimate of the payoff. Algorithm 2.4 describes this technique. The

nodes are indexed by the depth h ≥ 0 and its position within the level 1 ≤ i ≤ 2h.

This method assumes a smooth reward function and in addition it uses uses an expectation

of how fast the mean pay-off changes around the maximum described by the parameters v1

and %. This information may not be fully available in practical applications. Furthermore,

this method is really demanding from the memory point of view for storing new branches

of the tree at every time that a new level is created. This means that as we explore more,

much more memory is necessary for storing the binary tree containing the approximation of

the reward function. This requirement is unfeasible for production machines with low memory

capabilities. In addition, this representation of the reward function and its way to update it

makes the method to adapt slowly to changes in non-stationary environments.

2.3.3 Continuous Action Reinforcement Learning Automata

In this section we explain the extended version of the LA technique for continuous action

spaces. In the CALA model, explained above, the authors have chosen a specific parameter-

ized density function, namely the Gaussian distribution. This made the calculations for updat-

ing the two parameters of the distribution simple but not every possible distribution over the

action space can be represented, restricting the exploration of the action space of the learner.

Furthermore, the CALA method relies on the gradient of the reward function for updating the
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Algorithm 2.4 HOO method (Bubeck et al., 2011).
Input: two real numbers v1 > 0 and % ∈ (0, 1) describing how fast the reward is changing

around the maximum
1: tree = {(0, 1)}
2: B1,2 = B2,2 = +∞

3: for k = 1, 2, · · · do
4: (i, h)← (0, 1) {Start at the root}
5: path← (0, 1) {path stores the path traverse in the tree}
6: while (h, i) ∈ tree do
7: if Bh+1,2i−1 > Bh+1,2i then
8: (h, i)← (h + 1, 2i − 1) {Select the more promising child}
9: else if Bh+1,2i−1 < Bh+1,2i then

10: (h, i)← (h + 1, 2i)
11: else
12: Z ∼ Ber (0.5) {Tie-breaking rule}
13: (h, i)← (h + 1, 2i + Z) {e.g., choose a child at random}
14: end if
15: path← path

⋃
{(h, i)}

16: end while
17: (H, I)← (h, i) {The selected node}
18: Choose an action uk in the region associated to (U, I)
19: measure reward rk

20: tree← tree
⋃
{(H, I)} {Extend the tree}

21: for all (h, i) ∈ path do
22: ch,i ← ch,i + 1 {Increment the counter of node}
23: µ̂h,i ←

(
1 − 1

ch,i

)
µ̂h,i +

rk
ch,i
{Update the mean of node}

24: end for
25: for all (h, i) ∈ path do
26: Uh,i ← µ̂h,i +

√
2 ln k
ch,i

+ v1%
h {Update the U value of node}

27: end for
28: BH+1,2I−1 ← +∞ {B-values of the children of the new leaf}
29: BH+1,2I ← +∞

30: tree′ ← tree {Local copy of the current tree}
31: while tree′ , {(0, 1)} do
32: (h, i)← lea f (tree′) {Take any remaining leaf}
33: Bh,i ← min

{
Uh,i,max

{
Bh+1,2i−1, Bh+1,2i

}}
{Backward computation}

34: tree′ ← tree′\ {(h, i)} {Drop updated leaf}
35: end while
36: end for
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probability distribution making the method unappropriate for problems with non-differentiable

reward functions.

Continuous action reinforcement learning automaton (CARLA) (Howell et al., 1997) is an

RL technique widely applicable to real-world problems (Rodrı́guez et al., 2011) because it does

not make any assumptions about the reward function. The sole assumption of the technique is

that the action space is a compact subset of R. Howell et al. (1997) represented the probability

density function (PDF) f as a nonparametric function. Starting with the uniform distribution

over the whole action space U and after exploring action uk ∈ U attime step k the PDF is

updated as shown in (2.7). Parameters α and λ are referred to as learning and spreading rate

respectively. The first one, α, determines the importance of new observations, the higher the

rate the larger the change in the PDF from one time-step to another. The second parameter,

λ, determines how much to spread the information of a given observation to the neighboring

actions. Finally, η is a normalization factor so that
∫ +∞

−∞
f k+1 (u) du = 1.

f k+1 (u) =

ηk

(
f k (u) + rk+1 (uk)αe−

1
2

( u−uk
λ

)2)
u ∈ U

0 u < U
(2.7)

Figure 2.4 shows a sketch of the CARLA action space exploration. At time-step k = 0

(Figure 2.4.a) the learner’s strategy f is the uniform PDF and action u0 is drawn at random.

Then f is updated by adding a Gaussian bell around u0 (red curve on top of the PDF in Figure

2.4.b). The amplitude is determined by the reward r1 and the width by the spreading parameter

λ. Then the PDF is normalized again as indicated in Figure 2.4.c by the bold line. From the

new strategy f the action u1 is drawn and the strategy is again updated by adding a Gaussian

around the action as shown in 2.4.d and normalized as shown in 2.4.e. Again the resulting

PDF is shown in bold. In this example both actions (u0 and u1 received positive rewards so

the probabilities of the neighboring actions were positively reinforced). Notice that the idea

remains the same as in the FALA method. We keep a probability distribution over the action

space. According to this distribution, an action is selected and applied resulting in a reward of

the environment. This reward is used to reinforce the selected action. The difference now is

that since we are working with continuous actions we do not reinforce the selected action but

but its whole neighborhood. The higher the reward the stronger the reinforcement leading to

eventual convergence.

Algorithm 2.5 formalizes this method. Every time the agent selects an action, this action

will be drawn stochastically according to the PDF. Therefore the cumulative density function
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Figure 2.4: Sketch of CARLA action space exploration - The solid line represents the current
PDF while the gray line represents the previous PDF. The red curve represents the PDF plus the
reinforcement.

(CDF) is required (Parzen, 1960). Since the PDF used in the CARLA method is nonparametric,

it is computationally very expensive to generate the CDF every time the function changes since

a lot of numerical integration is needed. Additionally, the normalization factor η has to be

calculated at every iteration also by numerical integration. This complexity makes this method

unfeasible in applications where the response time is short and we cannot afford specialized

hardware for the computations. On the positive side, the method has no limitations on the

reward function though.

Algorithm 2.5 CARLA method (Howell et al., 1997).
Input: learning rate α

spreading rate λ

1: initialize f 0, e.g., f 0 (u)←


1

max U−min U u ∈ U

0 u < U
2: for all iteration k = 0, 1, 2, · · · do
3: choose uk randomly drawn from f k (·)
4: apply uk

5: measure reward rk+1

6: calculate normalization factor ηk ←
1∫

U

 f k(u)+rk+1αe
− 1

2

( u−uk
λ

)2 du

7: f k+1 (u)←


ηk

(
f k (u) + rk+1αe−

1
2

( u−uk
λ

)2)
u ∈ U

0 u < U
8: end for

This dissertation’s contributions are centered on the CARLA method explained in this sec-

tion. As a first feature, we do not have to care about the exploration-exploitation trade-off with

this method since it is an LA technique and the exploration is built in the probability distribu-
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tion for selecting the actions allowing for an easier usage. Secondly, independent learners may

fail to find the global optimum in a game setting. Some techniques exists for a set of discrete

action decision makers to converge to the optimal policy. Most of them have restrictions such

as not being able to deal with stochastic pay-offs or constant coordination that are not possible

in most distributed control applications. ESRL is a simple, but effective, coordination protocol

based on discrete LAs for converging to optimal policies. Finally, among other LA techniques,

CARLA is a gradient free algorithm that does not make any assumption on the reward function

so it can be used in a wide range of applications.

2.4 Summary

In this chapter, we formalize the bandit problems in discrete and continuous action spaces.

We describe a set of strategies for solving bandit applications with a discrete set of actions.

Many applications, such as automatic control, are defined over a continuous action set. Three

general techniques when facing continuous action sets are explained in this chapter. The first

technique, CALA, is a gradient based method that is very efficient in terms of computation but

it is unfeasible from the sampling point of view. Furthermore, it assumes smoothness on the

reward landscape and it is very sensitive to noise. The second technique, HOO, is a gradient

free method that explores the action space by building a binary tree and keeping an estimate of

the average pay-off over this action space. In this case, there is no sampling drawback but still

smoothness is required. Additionally, information about the shape of the reward is necessary

which is most often not available in control applications. The third technique, CARLA, has

no issues with the sampling or the assumptions on the reward but it is very costly from the

calculation point of view for it keeps a nonparametric density function over the action space

for selecting the actions so a lot of numerical integration is necessary. This is a real issue in

practical applications where a response is required in a relatively short period of time and we

may not add extra hardware due to the complexity of engines. In chapter 5 we show how this

cost is significantly reduced by avoiding numerical integration making the method feasible for

practical applications.

Additionally, the game setting was discussed. In a game setting the independent learners

might converge to sub-optimal solutions. In this setting the exploration-exploitation dilemma

becomes critic. Independent learners tend to learn as fast as possible, significantly reducing ex-

ploration over time. When two or more agents interact in the same environment for achieving a

25



2. BANDIT PROBLEMS

common or conflicting goal, they have to be more careful with their exploration for the received

reward does not only depend on their individual action but on the other agent’s policy as well.

Section 2.2.1 explains a simple coordination protocol that helps totally independent learners to

coordinate their exploration in a shared environment with very limited communication.
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Chapter 3

Reinforcement learning

Learning from interactions with our environment is a straightforward idea to try when we think

about learning. This is how a young child learns to catch a ball, just by trying it. Reinforcement

learning (RL) is learning what to do (how to map situations to actions) so as to maximize a

numerical reward signal. The learner is not told what to do in any situation as in most forms

of machine learning (supervised learning), but instead has to discover which actions yield the

most reward by trying them (Sutton & Barto, 1998, Chapter 1).

3.1 Markov decision processes

RL problems can be easily described using Markov decision process (MDP) (Puterman, 1994).

We first introduce a simpler case of MDP, the deterministic case in section 3.1.1. Afterwards,

we refer to a more general case, the stochastic case in section 3.1.2 (Buşoniu et al., 2010, Chap-

ter 2). Finally, we consider the RL problem and the most popular algorithms in the literature.

3.1.1 Deterministic settings

We describe an MDP as follows: We have a set of states X of a process and the set of actions

U of the controller. Although in this chapter we refer to discrete X and U sets for RL methods,

in general they can be a compact subset of R so we consider in this section the general case for

the MDP. The process starts in the initial state of these states and moves, given the action of

the controller, successively from one state to another. Each move is called a step or transition.

If the process is at state xk at time-step k and the controller picks the action uk then the process
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3. REINFORCEMENT LEARNING

transits to state xk+1 on time-step k + 1. The state transitions are governed by the transition

function t : X × U → X:

xk+1 = t (xk, uk)

At the same time, a scalar reward rk+1 is received by the controller. The scalar reward is

determined by the reward function ρ : X × U → R:

rk+1 = ρ (xk, uk)

The reward function evaluates the immediate performance of the controller but in general

does not say anything about its long-term effect.

The actions of the controllers are selected following its policy π : X → U:

uk = π (xk)

The Markov property in this framework is that given the fact that the process is at state xk,

and the controller selects the action uk is enough to determine the transition to the new state xk.

Some MDPs have terminal states that, once reached, can no longer be left. In such an state

all the rewards received are 0. The RL literature often uses “trials” or “episodes” to refer to

trajectories starting from some initial state and ending in a terminal state.

The goal when using RL is to maximize the long-run rewards collected from any initial

state x0. The aggregation of the rewards from the initial state is normally used. Several ways

of aggregation are reported in the literature (Bertsekas & Tsitsiklis, 1996; Kaelbling et al.,

1996). The infinite-horizon discounted return is given by equation (3.1) where γ ∈ [0, 1) is the

discount factor and xk+1 = t (xk, π (xk)) for k ≥ 0.

Rπ (x0) =

∞∑
k=0

γkrk+1 =

∞∑
k=0

γkρ (xk, π (xk)) (3.1)

The discount factor is a measure of how “far-sighted” the controller is in considering its

rewards, or a way of taking into account increasing uncertainty about future rewards. From a

mathematical point of view, discounting ensures that the return will always be bounded if the

rewards are bounded.

In this framework, the challenge is to maximize the long-term performance or return, while

only using feedback about the immediate performance or reward. This leads to the so-called
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3.1 Markov decision processes

challenge of delayed rewards (Sutton & Barto, 1998). The actions taken in the present affects

the future performance so the future feedback is also affected, the immediate reward gives the

controller no direct information about these long-term effects though.

Other types of return can be defined. The finite-horizon discounted returns can be obtained

by accumulating rewards along trajectories of a fixed, finite length Ku (the horizon). Equa-

tion (3.2) formalizes the finite-horizon discounted return.

Ku∑
k=0

γkρ (xk, π (xk)) (3.2)

When γ = 1 the finite-horizon discounted return is transformed into the finite-horizon

undiscounted return.

The policy of a controller is usually described by two functions: state-action value functions

(Q-functions) and state value functions (V-functions).

The Q-function Qπ : X ×U → R of a policy π gives the return obtained when starting from

a given state, applying a given action, and following π thereafter (3.3).

Qπ (x, u) = ρ (x, u) + γRπ (t (x, u)) (3.3)

Equation (3.3) can be rewritten as a discounted sum (3.4) where x0 = x and u0 = u.

Qπ (x, u) =

∞∑
k=0

γkρ (xk, uk) (3.4)

Notice that equation (3.3) and (3.4) are related as shown in (3.5) where x0 = x and u0 = u.

Qπ (x, u) =

∞∑
k=0

γkρ (xk, uk)

= ρ (x, u) +

∞∑
k=1

γkρ (xk, uk)

= ρ (x, u) + γ

∞∑
k=1

γk−1ρ (xk, π (xk))

= ρ (x, u) + γRπ (t (x, u))

(3.5)

The optimal Q-function is defined as the best Q-value in every state that can be obtained

over all policies.

∀x∈X : Q∗ (x, u) = max
π

Qπ (x, u) (3.6)
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Similarly, the optimal policy π∗ is defined as the policy that, when played, maximizes the

Q-function (3.7) for all states.

∀x∈X : π∗ (x) = arg max
u

Q∗ (x, u) (3.7)

The Bellman equation may be obtained from the second step at (3.5) as shown in (3.8).

Qπ (x, u) = ρ (x, u) + γ

∞∑
k=1

γk−1ρ (xk, uk)

= ρ (x, u) + γ

ρ (t (x, u) , π (t (x, u))) +

∞∑
k=2

γk−2ρ (xk, π (xk))


= ρ (x, u) + γQπ (t (x, u) , π (t (x, u)))

(3.8)

The Bellman optimality equation characterizes Q∗, and states that the optimal value of

action u taken in state x equals the sum of the immediate reward and the discounted optimal

value obtained by the best action in the next state.

Q∗ (x, u) = ρ (x, u) + γmax
u′

Q∗
(
t (x, u) , u′

)
(3.9)

The V-function Vπ : X → R of a policy π is the return obtained by starting from a particular

state and following π. This V-function can be computed from the Q-function of policy π as

equation (3.10) shows.

Vπ (x) = Rπ (x) = Qπ (x, π (x)) (3.10)

The optimal V-function is the best V-function that can be obtained by any policy, and can

be computed from the optimal Q-function (3.11).

V∗ (x) = max
π

Vπ (x) = max
u

Q∗ (x, u) (3.11)

The optimal policy π∗ can be calculated from V∗ given equation (3.12).

π∗ (x) ∈ arg max
u

[
ρ (x, u) + γV∗ (t (x, u))

]
(3.12)
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3.1 Markov decision processes

3.1.2 Stochastic settings

We now consider stochastic MDPs. The main difference with the deterministic MDPs is that

the transition function over the states does not occur deterministically. More specifically, the

deterministic transition function t is replaced by the transition probability density function

t̃ : X × U × X → [0,∞). Let the process be at state xk and the controller pick the action uk,

the probability that the state of the process at next step xk+1 belongs to a region Xk+1 ⊆ X is

determined as equation (3.13) shows. Notice that t̃ (x, u, ·) must be a valid density function of

argument “·” ,where the dot stands for the random variable xk+1. The Markov property now

is that the current state xk and action uk fully determine the probability density of the next

state. We should not confuse the stochastic nature of an MDP with the stochastic nature of the

controller. The policy of the controller can be stochastic in the sense that π generates actions

with a given distribution.

P (xk + 1 ∈ Xk+1|xk, uk) =

∫
Xk+1

t̃
(
xk, uk, x′

)
dx′ (3.13)

Since the next state is stochastic now, the reward function must depend not only on the

current state and action but also in the next state as well. Let ρ̃ : X ×U × X → R be the reward

function in the stochastic case as shown in equation (3.14). Notice that we are assuming that

the reward is deterministic given the transition (xk, uk, xk+1). If the reward is stochastic given a

particular transition, we refer by ρ̃ to the expected reward.

rk+1 = ρ̃ (xk, uk, xk+1) (3.14)

The expected infinite-horizon discounted return of an initial state x0 under a (determinis-

tic) policy π is denoted by (3.15). The operator E denotes the expected value and the nota-

tion xk+1 ∼ t̃ (xk, π (xk) , ·) means that the random variable xk+1 is drawn from the distribution

t̃ (xk, π (xk) , ·).

Rπ (x0) = lim
Ku→∞

Exk+1∼t̃(xk ,π(xk),·)

 Ku∑
k=0

γkrk+1


= lim

Ku→∞
Exk+1∼t̃(xk ,π(xk),·)

 Ku∑
k=0

γkρ̃ (xk, π (xk) , xk+1)


(3.15)

Similarly, the Q-function and V-function can be obtained for the stochastic case. The Q-

function is the expected return under the stochastic transitions when starting at a particular
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3. REINFORCEMENT LEARNING

state, taking a particular action, and following the policy π thereafter. Equation (3.16) shows

the Q-function. The optimal Q-function and the optimal policy from optimal Q-function remain

unchanged.

Qπ (x, u) = Ex′∼t̃(x,u,·)
{
ρ̃
(
x, u, x′

)
+ γRπ

(
x′
)}

(3.16)

The Bellman equations for Qπ (3.17) and Q∗ (3.18) are given in terms of expectations over

the one-step stochastic transitions.

Qπ (x, u) = Ex′∼t̃(x,u,·)
{
ρ̃
(
x, u, x′

)
+ γQπ (

x′, π
(
x′
))}

(3.17)

Q∗ (x, u) = Ex′∼t̃(x,u,·)

{
ρ̃
(
x, u, x′

)
+ γmax

u′
Q∗

(
x′, u′

)}
(3.18)

The definitions of the V-function Vπ of a policy π, as well as of the optimal V-function V∗,

are the same as for the deterministic case (3.10) and (3.11). Obtaining the optimal policy from

V∗ now involves expectation (3.19).

π∗ (x) ∈ arg max
u

Ex′∼t̃(x,u,·)
{
ρ̃
(
x, u, x′

)
+ γV∗

(
x′
)}

(3.19)

The Bellman equations for Vπ (3.20) and V∗ (3.21) are obtained by considering the expec-

tation over the one-step stochastic transition as well.

Vπ (x) = Ex′∼t̃(x,π(x),·)
{
ρ̃
(
x, π (x) , x′

)
+ γVπ (

x′
)}

(3.20)

V∗ (x) = max
u

Ex′∼t̃(x,u,·)
{
ρ̃
(
x, u, x′

)
+ γV∗

(
x′
)}

(3.21)

Most RL methods focuss around solving the Bellman optimality equations without having

information about the model, i.e., without knowing the transition function, nor the reward

function. The next section will introduce these methods.

3.2 Reinforcement learning

In RL a controller interacts with the process by means of three signals: a state signal describing

the process, the action signal allowing the controller to influence the process, and the reward

signal providing the controller with a feedback on its immediate performance. Figure 3.1
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3.2 Reinforcement learning

Controller

Process

uk

rk+1

xk+1

rk

xk

Figure 3.1: The controller-environment interaction in RL - The state xk is sensed by the con-
troller. It takes the action uk so the process transits from xk to xk+1 and feeds the controller back
with the reward rk+1. The state xk+1 turns into the next xk for the controller at next time step (Sutton
& Barto, 1998, Chapter 3).

shows the flow of interaction in RL. The controller senses the state xk of the process and takes

the action uk making the process to transit from xk to xk+1. In response, the process feeds the

controller back with the signal rk+1 (Buşoniu et al., 2010, Chapter 2).

The behavior of the controller is dictated by its policy, a function from states into actions.

It maps states of the environment into actions to be taken when in those states. It corresponds

to what in psychology would be called a set of stimulus-response rules or associations.

The feedback function defines the goal in an RL problem. It represents a mapping from

each perceived state of the environment to a single number, a reward, indicating the desirability

of that state. The goal of the controller is to maximize the return in the long run. Rewards

might be interpreted as pleasure or pain in a biological system. The controller cannot alter this

function but it is the basis for finding its policy (Sutton & Barto, 1998, Chapter 1).

The RL framework has been used in problems from a variety of fields, including, automatic

control, operations research, economics, and games. Automatic control is one of the most

important fields of origin for RL. In automatic control, RL can alternatively be seen as adaptive

optimal control (Sutton et al., 1992; Vrabie et al., 2009).

RL algorithms are broken down in two main categories: value and policy iteration. Value

iteration methods calculate the value function associated to the current or optimal policy. This

value function is updated with every new observation while iterating with the process. Within

value iteration, some methods use an explorative policy for collecting samples but use the opti-

mal value function for updating. These methods are known as off-policy methods. In contrast,
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3. REINFORCEMENT LEARNING

on-policy methods update their value function with the same policy they use for exploring the

environment (Sutton & Barto, 1998). Storing the value function and then using some greedy

strategy is not always efficient, specially if the action space is significantly large (see next

chapter for examples). In such cases, some methods do not store the value function but a repre-

sentation of the policy directly. These methods are referred to as policy iteration methods and

work by iteratively evaluating and improving the current policy.

Within each of the two classes of RL algorithms, we can also differentiate offline and online

algorithms. Offline RL algorithms use data collected in advance, whereas online RL algorithms

learn a solution by directly interacting with the process. In this dissertation we focus in online

learning.

3.3 Value iteration RL

Value iteration techniques iteratively compute an optimal value function using the Bellman

optimality equation in order to derive an optimal policy. The most widely used algorithm

of value iteration RL is Q-learning. Q-learning starts from an arbitrary initial Q-function

Q0 and updates using observed state transitions and rewards, i.e., data tuples of the form

(xk, uk, xk+1, rk+1) (Watkins & Dayan, 1992; Watkins, 1989). After each transition, the Q-

function is updated using such a data tuple, as shown in equation (3.22) where αk ∈ (0, 1]

is the learning rate. The term between square brackets is the temporal difference, i.e., the dif-

ference between the updated estimate rk+1 + γmaxu′ Qk (xk+1, u′) of the optimal Q-value of

(xk, uk) and the current estimate Qk (xk, uk).

Qk+1 (xk, uk) = Qk (xk, uk) + αk

[
rk+1 + γmax

u′
Qk

(
xk+1, u′

)
− Qk (xk, uk)

]
(3.22)

As the number of transitions k approaches infinity, Q-learning asymptotically converges to

Q∗ if the state and action spaces are discrete and finite, and the following conditions (Jaakkola

et al., 1994; Tsitsiklis, 1994; Watkins & Dayan, 1992) hold:

• The sum
∑∞

k=0 α
2
k produces a finite value, whereas the sum

∑∞
k=0 αk produces an infinite

value.

• All the state-action pairs are (asymptotically) visited infinitely often.
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3.3 Value iteration RL

The first condition is normally satisfied by setting αk = 1
k . The second condition can

equally be met by properly controlling the exploration-exploitation rate of the controller. It is

enough if all actions are eligible by the controller in every state, i.e. the actions have a nonzero

probability of being selected in every encountered state. The controller also has to exploit its

current knowledge in order to obtain good performance, e.g., by selecting greedy actions in

the current Q-function. This is a typical illustration of the exploration-exploitation (see chap-

ter 2) trade-off in online RL. We consider two well-known strategies in RL for controlling the

exploration: the ε-greedy exploration (Sutton & Barto, 1998, Section 2.2), and the Boltzmann

exploration (Sutton & Barto, 1998, Section 2.3).

A classical way to balance exploration and exploitation in Q-learning is ε-greedy explo-

ration which selects actions according to the equation (3.23) where εk ∈ (0, 1) is the exploration

probability at step k.

uk =

u ∈ arg maxu Qk (xk, u) with probability 1 − εk

a uniformly random action in U with probability εk
(3.23)

A second option is to use Boltzmann exploration, which at step k selects an action u with

the probability expressed by expression (3.24) where the temperature τk ≥ 0 controls the ran-

domness of the exploration. As τk goes to infinity the exploration is more uniform and as τk

goes down to zero the method is greedier. Usually the algorithms start with a high temperature,

i.e., a more explorative behavior, and lower this temperature over time, so that the policy used

asymptotically becomes greedy.

P (u|xk) =
eQk(xk ,u)/τk∑
u eQk(xk ,u)/τk

(3.24)

Algorithm 3.1 describes the general Q-learning procedure.

A popular variation of Q-learning is SARSA (), an on-policy algorithm proposed by Rum-

mery & Niranjan (1994). The name SARSA is obtained by joining together the initials of every

element in the data tuples employed by the algorithm, namely: state, action, reward, (next)

state, (next) action (xk, uk, rk+1, xk+1, uk+1). SARSA starts with an arbitrary Q-function Q0 and

updates it at each step as shown in equation (3.25) where α ∈ (0, 1] is the learning rate. The

term between square brackets is the temporal difference, obtained as the difference between the

updated estimate rk+1 + γQk (xk+1, uk+1) of the Q-value for (xk, uk), and the current estimate of

Qk (xk, uk). This is not the same as the temporal difference used in Q-learning (3.22). Notice

that while Q-learning uses the maximum of Q-value of the next state, SARSA uses the Q-value
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3. REINFORCEMENT LEARNING

Algorithm 3.1 Q-learning (Buşoniu et al., 2010, Section 2.3).
Input: discount factor γ

exploration schedule {εk}
∞
k=0

learning rate schedule {αk}
∞
k=0

1: initialize Q-functions, e.g., Q0 ← 0
2: measure initial state x0

3: for all time step k = 0, 1, 2, · · · do
4: choose uk from xk using policy derived from Q
5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: Qk+1 (xk, uk)← Qk (xk, uk) + αk
[
rk+1 + γmaxu′ Qk (xk+1, u′) − Qk (xk, uk)

]
9: end for

of the action taken in the next sate. This means that while Q-learning performs off-policy,

SARSA performs on-policy.

Qk+1 (xk, uk) = Qk (xk, uk) + αk
[
rk+1 + γQk (xk+1, uk+1) − Qk (xk, uk)

]
(3.25)

Algorithm 3.2 formalizes SARSA learning procedure.

Algorithm 3.2 SARSA-learning (Buşoniu et al., 2010, Section 2.4).
Input: discount factor γ

exploration schedule {εk}
∞
k=0

learning rate schedule {αk}
∞
k=0

1: initialize Q-functions, e.g., Q0 ← 0
2: measure initial state x0

3: choose u0 from xk using policy derived from Q
4: for all time step k = 0, 1, 2, · · · do
5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: choose uk from xk using policy derived from Q
9: Qk+1 (xk, uk)← Qk (xk, uk) + αk

[
rk+1 + γQk (xk+1, uk+1) − Qk (xk, uk)

]
10: end for
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3.4 Policy iteration RL

3.4 Policy iteration RL

After discussing value iteration RL we now consider the policy iteration case. Policy iteration

algorithms evaluate policies by constructing their value functions, and use these value functions

to find new, improved policies (Bertsekas, 2007, Section 1.3). Algorithm 3.3 shows the general

procedure in policy iteration.

Algorithm 3.3 Policy iteration.
1: initialize policy π0

2: measure initial state x0

3: for all time step k = 0, 1, 2, · · · do
4: choose uk from xk using policy πk

5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: evaluate policy πk based on xk, uk, rk+1, xk+1

9: improve policy based on its evaluation
10: end for

We next discuss actor-critic methods as policy iterators. Actor-critic algorithms are on-

policy methods that were introduced by Witten (1977) and have been investigated often since

then (Barto et al., 1983; Berenji & Khedkar, 1992; Berenji & Vengerov, 2003; Borkar, 2005;

Konda & Tsitsiklis, 2003; Nakamura et al., 2007; Sutton et al., 2000). In an actor critic ap-

proach, a critic keeps track of the state value function while the actor represents the policy. The

critic is responsible for evaluating the policy while the critic for improving it. Both rely on the

temporal difference shown in equation (3.26). This temporal difference is analogous to the one

for Q-learning but using the V-function instead of the Q-function.

δT D,k = rk+1 + γV (xk+1) − V (xk) (3.26)

As an example of actor-critic algorithms consider the Interconnected Learning Automata

(ILA) algorithm introduced by Wheeler Jr. & Narendra (1986) for the average return and

by Witten (1977) for the discounted return. A study of the method and the convergence for

multi-agent case is given by Vrancx (2010). The method uses a network of learning automaton

(LA) for the actor. Each automaton is responsible for learning the best action at each state. As

the process evolve from one state to the other, the control passes from the automaton associated
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to the current state to the one related to the next state. The automaton is not provided with the

immediate reward. Instead, the critic is responsible for calculating the discounted return which

is then feeded back to the decision makers.

3.5 Summary

In this chapter, two classes of RL techniques were introduced: value iteration, and policy itera-

tion. The central challenge with these methods is that they are not possible to be implemented

for problems with continuous action-state spaces. The main reason is that they need an exact

representation of the value function of policies which is only possible for a finite set of actions

and states. Most problems in automatic control have continuous state and actions. Even when

the states and actions are finite, these sets are too large making the representation of the value

functions or policies too expensive. Versions of the classical algorithms that approximately

represent value functions and policies must be used for deleting this problem.

Asymptotically converging the optimal policy is not enough in practice. In online RL,

the controller interacts with the process to improve its policy. It is important though, that the

controller guarantee that it will never destabilize the process in an industrial application. In

such a case, the exploration has to take care of this additional issue.

RL was created as a model-free technique. Still, it can also be significantly helped by

domain knowledge if available. Encoding prior knowledge in the reward function should be

done with care, because doing so incorrectly can lead to unexpected and possibly undesirable

behavior (see e.g., Ng et al., 1999).
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Chapter 4

Reinforcement Learning in continuous
action-state spaces

The Q-learning algorithm 3.1 and SARSA () algorithm 3.2 presented in Chapter 3 were orig-

inally designed for efficiently finding optimal control policies in Markov decision processs

(MDPs) with finite, discrete state-action spaces. These discrete reinforcement learning (RL)

formulations are not able to represent exact solutions of problems with large discrete or contin-

uous action-state spaces, however. This has led to the development of function approximation-

based RL methods, which enable RL algorithms to scale up to realistic continuous problem

settings. Function approximation techniques have been widely applied in RL to represent poli-

cies and value functions in continuous action-state spaces. In online settings, RL methods are

often combined with coarse coding approximations such as tile coding, radial basis functions

or instance based learning (Degris et al., 2012).

Representation is not the only problem in approximation in RL. Two additional types of

approximation are needed. First, sample-based approximation is necessary in any RL algo-

rithm. When the state-action space contains an infinite number of elements, it is impossible, in

finite time, for any value iteration algorithm to sufficiently explore all the state-action pairs to

estimate the Q-function or for any policy iteration method to evaluate the policy at every state.

Second, value iteration and policy iteration must repeatedly solve maximization problems over

the action variables, whereas policy search must find optimal policy parameters. In general,

these optimization problems can only be solved approximately (Buşoniu et al., 2010, Section

3.2).

In this Chapter we first explain parametric and non-parametric approximators in sections 4.1
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and 4.2 respectively. Finally, we present some RL architectures for continuous spaces in sec-

tion 4.3. The overview is based on the work presented by Buşoniu et al. (2010).

4.1 Parametric approximators

A parametric approximator used in an RL approach can be denoted by an approximation map-

ping H : Rn → Q where Rn is the parameter space and Q is the set of possible Q-functions. A

compact representation of the Q-function is then obtained for every parameter vector θ (4.1).

With this approximation is not sufficient a Q-value for every possible combination, only n

parameters are.

Q̂ (x, u) = [H (θ)] (x, u) (4.1)

Let us refer to one example of a linearly parameterized approximator introduced by Bert-

sekas & Tsitsiklis (1996). The approximator employs n basis functions (BFs) φ : X × U → R

and an n-dimensional parameter vector θ. A basis function is an element of a particular basis

for a function space. Every continuous function in the function space can be represented as a

linear combination of basis functions. The parameter vector θ refers intuitively to the Q-value

associated with a each basis function. In this example the Q-values are computed as shown in

equation (4.2).

[H (θ)] (x, u) = φT (x, u) θ (4.2)

A complete example based on expression (4.2) is given by Buşoniu et al. (2010, Section

3.3). First, the action space is discretized into a small number of values Ud = {u1, · · · , uM} ∈ U.

Second, we need to define N state-dependent BFs φ̄1, · · · , φ̄N : X → R and replicate them for

each discrete action in Ud. Approximate Q-values can be computed for every state-action pair

in X × Ud with (4.3) where, in the state-action BF vector φT
(
x, u j

)
, all the BFs that do not

correspond to the current discrete action are taken to be equal to 0 as (4.4).

[H (θ)]
(
x, u j

)
= φT

(
x, u j

)
θ (4.3)

φ
(
x, u j

)
= [0, · · · , 0︸   ︷︷   ︸

u1

, · · · , φ̄1 (x) , · · · , φ̄N (x)︸                 ︷︷                 ︸
u j

, · · · , 0, · · · , 0︸   ︷︷   ︸
uM

]T ∈ RNM (4.4)
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A second example of an approximator based on a set of BFs is the normalized Gaussian

radial basis functions (RBFs). An RBF is a real-valued function whose value depends only

on the distance from the origin, or alternatively on the distance from some other point called

a center. The Gaussian type of RBF is defined in (4.5) where µi refers to the center of each

Gaussian.

φ̄i (x) =
φ′i (x)∑N

j=1 φ
′
j (x)

where φ′i (x) = exp
(
−

1
2

[
x − µi

]T B−1
i

[
x − µi

])
(4.5)

We next refer to tile coding (Watkins, 1989). In this method, the action-state space is

divided in a set of N tilings, each covering the whole space. The tilings overlap, so that each

point in the space will then be in exactly N tiles, one tile from each tiling. Tilings are displaced

relative to each other so that no two tilings have their tile boundaries in the same place. This

way, the space is finely partitioned into small regions. Each region corresponds to a set of

active tiles, one for every tiling. We can think of the parameters as memory slots containing

a scalar value and there is a given memory attached to every tile. Evaluating the Q-function

in a given action-state pair is equivalent to calculating the arithmetic sum of the memory slots

activated by the tilings. Figure 4.1 illustrate the method.

More formally, let ψ : X × U → {0, 1}N be a set of functions representing the tilings

so ψi (x, u) returns a binary vector with zeros in all positions but the one assigned to the tile

activated by the pair (x, u) in the i-th tiling. The function approximator is then defined by the

expression (4.6).

[H (θ)] (x, u) =

N∑
i=1

ψi (x, u)T θ (4.6)

To conclude our description of parametric approximators, we stress that parametric approx-

imators are not limited to linear approximators. Neural networks are probably the most popular

non-linear approximators used in RL algorithms, e.g., T D(γ) (Sutton, 1988).

4.2 Non-parametric approximators

Nonparametric approximators, despite their name, still have parameters. However, unlike the

parametric case, the number of parameters, as well as the form of the nonparametric approxi-

mator, are derived from the available data.
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Figure 4.1: Tile coding approximator in 2D - Every state-action pair, represented by the dot,
activates one tile in each tiling. The sum of the weights of all the activated tiles represents the vale
associated with that state-action pair (Santamaria et al., 1998).

42



4.2 Non-parametric approximators

Kernel-based approximators are typical representatives of the nonparametric class (Buşoniu

et al., 2010, Section 3.3). The kernel function is a function defined over two state-action pairs

κ : X × U × X × U → R that must also satisfy certain additional conditions (Hofmann et al.,

2008).

A widely used type of kernel is the Gaussian kernel given by (4.7) where the kernel width

matrix Σ ∈ R(D+C)×(D+C) must be symmetric and positive definite. Here, D denotes the number

of state variables and C denotes the number of action variables. For instance, a diagonal matrix

Σ = diag (b1, · · · , bD+C) can be used. Note that the Gaussian kernel has the same shape as a

Gaussian state-action RBF centered on (x′, u′).

κ
(
(x, u) ,

(
x′, u′

))
= exp

−1
2

[
x − x′

u − u′

]T

Σ−1
[

x − x′

u − u′

] (4.7)

Assume that a set of state-action samples
{(

xks , uks

)
|ks = 1, · · · , ns

}
is available. For this set

of samples, the kernel-based approximator takes the form (4.8). Notice that the sole difference

between a kernel based approximator and the above linearly parameterized approximators is

that in the later the BFs are predefined in advance, while in the former the function is based

on the data collected. Using a set of predefined BFs we may construct a perfectly square mesh

while by collecting data it will not be perfectly square. No real differences are expected from

the interpolation point of view though.

[H (θ)] (x, u) =

ns∑
ks=1

κ
(
(x, u) ,

(
xks , uks

))
θks (4.8)

Many types of nonparametric approximators have been designed. Important classes include

kernel-based methods (Shawe-Taylor & Cristianini, 2004), among which support vector ma-

chines are probably the most popular (Cristianini & Shawe-Taylor, 2000; Schölkopf & Smola,

1999; Smola & Scholkopf, 2004), Gaussian processes, which also employ kernels (Rasmussen

& Williams, 2006), and regression trees (Breiman, 2001; Breiman et al., 1984). Most of them

have also been used in RL. For instance, kernel-based and related approximators have been

applied to value iteration (Deisenroth et al., 2009; Farahmand et al., 2009a; Ormoneit & Sen,

2002) and to policy evaluation and policy iteration (Bethke et al., 2008; Engel et al., 2003,

2005; Jung & Polani, 2007; Lagoudakis & Parr, 2003; Xu et al., 2007). Ensembles of regres-

sion trees have been used with value iteration by Ernst (2005); Ernst et al. (2006a) and with

policy iteration by Jodogne et al. (2006).
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4.3 RL architectures

Having introduced the function approximators above, we now present some popular architec-

tures of RL. We first refer to approximate value iteration in section 4.3.1, then to approximate

policy iteration 4.3.2.

4.3.1 Approximate value iteration

Online algorithms have been studied since the beginning of the nineties, e.g., by Horiuchi

et al. (1996); Jouffe (1998); Lin (1992); Melo et al. (2008); Murphy (2005); Nowé (1992);

Sherstov & Stone (2005); Singh et al. (1995); Szepesvári & Smart (2004); Tesauro (1992);

Tuyls et al. (2002). A strong research thread in offline model-free value iteration emerged

later (Antos et al., 2008; Ernst, 2005; Ernst et al., 2006b; Farahmand et al., 2009b; Munos &

Szepesvári, 2008; Ormoneit & Sen, 2002; Riedmiller, 2005; Szepesvári & Munos, 2005). In

this dissertation we will focuss on online learning.

Approximate value iteration methods are extensions to the discrete value iteration methods.

Let us center the analysis in the approximate Q-learning case. In the discrete case, the Q-value

is updated using a temporal difference update (3.22) repeated here for an easier reading:

Qk+1 (xk, uk) = Qk (xk, uk) + αk

[
rk+1 + γmax

u′
Qk

(
xk+1, u′

)
− Qk (xk, uk)

]
In continuous spaces Qk cannot be represented exactly so a compact representation is used

by means of a parameter vector θk ∈ R
n, using a suitable approximation mapping H : Rn → Q

as shown in equation (4.9). Notice that the dependence on the θ parameter is implicit.

Q̂k = H (θk) (4.9)

So the update (3.22) can be written as:

Qk+1 (xk, uk) = Q̂k (xk, uk) + αk

[
rk+1 + γmax

u′
Q̂k

(
xk+1, u′

)
− Q̂k (xk, uk)

]
(4.10)

In (4.10), the term between square brackets gives the difference between the current Q-

value and the currently observation, i.e., the current reward plus the the discount factor times

the discounted optimal return from the next state on. Since there is no explicit representation

of the Q-function, we lack the optimal Q-value as well. Instead, we provide the algorithm with

an estimation. Let us call this estimation a Q-iteration mapping of the form:

[T (Q)] (xk, uk) = rk+1 + γmax
u′

Q̂k
(
xk+1, u′

)
(4.11)
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θ0 θ1 = (P ◦ T ◦ H) (θ0) · · · θ∗

H

H (θ0)

H

H (θ∗)
T (T ◦ H) (θ0)

T

P
P

Figure 4.2: A conceptual illustration of approximate value iteration - The approximate Q-
function is obtained by applying the approximation mapping H to the current parameter vector at
every iteration, which is then passed through the iteration mapping T . Finally, the result of T is
projected back by the projection mapping P. The algorithm will asymptotically converge to the
optimal θ∗. The Q-function is obtained with H (θ∗) (Buşoniu et al., 2010, Chapter 3).

In general, the newly found Q-function cannot be explicitly stored, either. Instead, it must

also be represented approximately, using a new parameter vector θk+1. This parameter vector is

obtained by a projection mapping P : Q → Rn which ensures that Q̂k+1 = H (θk+1) is as close

as possible to Qk+1

To summarize, approximate value iteration methods start with an arbitrary (e.g., identically

0) parameter vector θ0, and updates this vector at every iteration k using the composition of

mappings P, T , and H as shows equation (4.12). Figure 4.2 illustrates this process.

θk+1 = (P ◦ T ◦ H) (θk) (4.12)

A straightforward way to obtain a good projection mapping is by using gradient descent.

Next we explain how gradient-based Q-learning is obtained (Sutton & Barto, 1998, Chapter 8).

The algorithm aims to minimize the squared error between the optimal value Q∗ (xk, uk) and

the current Q-value as shows equation (4.13).

θk+1 = θk −
1
2
αk

∂

∂θk

[
Q∗ (xk, uk) − Q̂k (xk, uk)

]2

= θk + αk
[
Q∗ (xk, uk) − Q̂k (xk, uk)

] ∂

∂θk
Q̂k (xk, uk)

(4.13)

Substituting the optimal Q-value Q∗ (xk, uk) by the Q-iteration mapping (4.11) we obtain:

θk+1 = θk + αk

[
rk+1 + γmax

u′
Q̂k

(
xk+1, u′

)
− Q̂k (xk, uk)

]
∂

∂θk
Q̂k (xk, uk) (4.14)
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Note that the term between brackets is an approximation of the temporal difference. Using

the linearly parameterized approximator (4.2) we end up with the simplified approximate Q-

learning update shown in expression (4.15). Algorithm 4.1 formalizes approximate Q-learning.

θk+1 = θk + αk

[
rk+1 + γmax

u′

(
φT (

xk+1, u′
)
θk

)
− φT (xk, uk) θk

]
φ (xk, uk) (4.15)

Algorithm 4.1 Approximate Q-learning with a linear parametrization (Buşoniu et al., 2010,
Chapter 3).
Input: discount factor γ

BFs φ1, · · · , φn : X × U → R
exploration schedule {εk}

∞
k=0

learning rate schedule{αk}
∞
k=0

1: initialize parameter vector, e.g., θ0 ← 0
2: measure initial state x0

3: for all iteration k = 0, 1, 2, · · · do
4: choose uk from xk using policy derived from Q̂k

5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: θk+1 ← θk + αk
[
rk+1 + γmaxu′

(
φT (xk+1, u′) θk

)
− φT (xk, uk) θk

]
φ (xk, uk)

9: end for

We finish this section discussing a version of approximate SARSA 3.2. Algorithm 4.2

presents the approximate SARSA procedure. Approximate SARSA has been studied, e.g.,

by Gordon (2001); Melo et al. (2008); Santamaria et al. (1998); Sutton (1996). Notice that we

are using a generic approximation mapping H. If we are to use a set of BFs we just have to use

expression 4.2 so line 9 will finally be written as:

θk+1 ← θk + αk
[
rk+1 + γφT (xk+1, uk+1) θk − φ

T (xk, uk) θk
]
φ (xk, uk)

4.3.2 Approximate policy iteration

Approximate policy search techniques represent the policy approximately, most often using

a parametric approximation. Two major categories of approximate policy search might be

identify: gradient-based and gradient-free policy search.
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Algorithm 4.2 SARSA with a generic approximation mapping (Buşoniu et al., 2010, Chapter
3).
Input: discount factor γ

Approximation mapping H : Rn → Q

exploration schedule {εk}
∞
k=0

learning rate schedule {αk}
∞
k=0

1: initialize parameter vector, e.g., θ0 ← 0
2: measure initial state x0

3: choose uk from x0 using policy derived from [H (θ0)]
4: for all time step k = 0, 1, 2, · · · do
5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: choose uk from x0 using policy derived from [H (θk)]
9: θk+1 ← θk + αk

[
rk+1 + γ [H (θk)] (xk+1, uk+1) − [H (θk)] (xk, uk)

] ∂
∂θk

[H (θk)] (xk, uk)
10: end for

The idea of policy gradient algorithms is to update the policy with gradient ascent on the

cumulative expected value Vπ (Baxter & Bartlett, 2001; Peters et al., 2003; Rückstieß et al.,

2010; Sutton et al., 2000; Williams, 1992). The policy is usually represented by a differentiable

parametrization and gradient updates are performed to find parameters that lead to maximal

returns. The estimate of the gradient can be performed without explicitly using a value function

(Marbach & Tsitsiklis, 2003; Munos, 2006; Riedmiller et al., 2007) or approximating this value

function.

In an actor critic approach, a critic V̂ : Rn → V is a parameterized approximation mapping

of the V-function where Rn is the parameter space and V is the set of all possible V-functions.

So a compact representation of the V-function is obtained for every parameter vector θ. The

actor π̂ : Rm → U outputs actions for each state where Rm is the parameter space. A compact

representation of the policy is also obtained for every parameter vector ϑ. During the learning,

the algorithm assumes exploration and uses the gradient of the V-function and the policy for

updating the critic and actor parameters respectively. For such an update, an approximate

temporal difference is used as shown in equation (4.16). This temporal difference is analogous
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to the one for Q-functions, used, e.g., in approximate SARSA 4.2.

δT D,k = rk+1 + γV̂ (xk+1; θk) − V̂ (xk; θk) (4.16)

The actor and critic parameters are updated with the gradient formulas (4.17) and (4.18)

respectively where αA,k and αC,k are the (possibly time-varying) step sizes for the actor and the

critic, respectively.

ϑk+1 = ϑk + αA,k
∂̂π (xk;ϑ)

∂ϑ

[
uk − π̂ (xk;ϑ)

]
δT D,k (4.17)

θk+1 = θk + αC,k
∂V̂ (xk; θ)

∂θ
δT D,k (4.18)

The algorithm assumes exploration, meaning that the action predicted by the actor may

differ from the current action uk applied to the system. The temporal difference is interpreted

by the actor as a correction in its prediction of the performance meaning that positive values

of the temporal difference indicate a better predicted performance than the current one. That is

the reason why, in the learning rule (4.17), when the exploratory action uk leads to a positive

temporal difference, the policy is adjusted towards this action or away from it otherwise. Sim-

ilarly, the critic interprets the temporal difference as a prediction error leading to the update

rule (4.18).

Algorithm 4.3 formalizes the actor-critic method using Gaussian exploration.

As a special case of an actor-critic method we consider the continuous actor-critic learn-

ing automaton (CACLA) algorithm (van Hasselt & Wiering, 2007, 2009). In contrast with

most other actor-critic methods, CACLA uses an error in action space rather than in parameter

of policy space and it uses the sign of the temporal-difference error rather than its size (van

Hasselt, 2012).

In the CACLA algorithm, an update to the actor only occurs when the temporal-difference

error is positive. Most other actor-critic methods use the size of the temporal-difference error

and also update in the opposite direction when its sign is negative. However, in the CACLA

algorithm that would mean updating towards an action that has not been selected and for which

it is not known whether it is better than the current output of the actor. Algorithm 4.4 formalizes

the method.

Recently, Vrabie et al. (2009) introduced the integral reinforcement learning (IRL), an

actor critic algorithm for linear processes with a negative quadratic cost function. Using the
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Algorithm 4.3 Actor-critic with Gaussian exploration (Buşoniu et al., 2010, Chapter 3).
Input: discount factor γ

policy parametrization π̂
V-function parametrization V̂
exploration schedule {σk}

∞
k=0

step size schedules
{
αA,k

}∞
k=0 ,

{
αC,k

}∞
k=0

1: initialize parameter vector, e.g., ϑ0 ← 0, θ0 ← 0
2: measure initial state x0

3: for all time step k = 0, 1, 2, · · · do
4: uk ← π̂ (xk;ϑk) + ū, ū ∼ N (0, σk)
5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: δT D,k ← rk+1 + γV̂ (xk+1; θk) − V̂ (xk; θk)
9: ϑk+1 ← ϑk + αA,k

∂̂π(xk;ϑ)
∂ϑ

[
uk − π̂ (xk;ϑ)

]
δT D,k

10: θk+1 ← θk + αC,k
∂V̂(xk;θ)

∂θ δT D,k

11: end for

assumption of linearity, the controller converges fast to a good policy but such an assumption

also restricts the application of the method. The algorithm uses an n × m gain matrix K to

define the actor where n is the the dimension of the action space and m is the dimension of

the state space. This gain matrix maps states into actions as follows: uk = Kxk. The critic

collects enough observations of actions and rewards to optimize the gain matrix by solving a

least-square problem. Figure 4.3 shows the structure of the IRL method. The process is defined

as a system with linear dynamics and the reward function as a negative quadratic cost. In the

figure, T represents the sampling time of the critic and the dashed line the update of the actor.

Properly selecting these frequencies is crucial for the performance since the algorithm needs

enough data before solving the least-square problem.

The optimal gain matrix K is determined using the Bellman’s optimality principle (Lewis

& Syrmos, 1995):

K = −R−1BT P

where P is the solution of the Algebraic Riccati Equation (ARE):

AT P + PA − PBR−1BT P + Q = 0
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Algorithm 4.4 CACLA algorithm (van Hasselt, 2012).
Input: discount factor γ

policy parametrization π̂
V-function parametrization V̂
exploration schedule {σk}

∞
k=0

step size schedules
{
αA,k

}∞
k=0 ,

{
αC,k

}∞
k=0

1: initialize parameter vector, e.g., ϑ0 ← 0, θ0 ← 0
2: measure initial state x0

3: for all time step k = 0, 1, 2, · · · do
4: uk ← π̂ (xk;ϑk) + ū, ū ∼ N (0, σk)
5: apply uk

6: measure next state xk+1

7: measure reward rk+1

8: δT D,k ← rk+1 + γV̂ (xk+1; θk) − V̂ (xk; θk)
9: if δT D,k > 0 then

10: ϑk+1 ← ϑk + αA,k
∂̂π(xk;ϑ)
∂ϑ

[
uk − π̂ (xk;ϑ)

]
11: end if
12: θk+1 ← θk + αC,k

∂V̂(xk;θ)
∂θ δT D,k

13: end for

Figure 4.3: Integral Reinforcement Learning - Adaptive critic structure with IRL (Vrabie et al.,
2009).
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P cannot be obtained without full information of the system. Instead, it is approximated

using the critic outputs. Vrabie et al. (2009) introduced the algebraic derivations to update P

based on two vectors: x and p. Both vectors are calculated from the states and rewards collected

over a trajectory. Vector x is the Kronecker product quadratic polynomial basis vector with

elements
{
xk,ixk, j

}
i=1,n; j=i,n

, where n is the state dimension. The vector p is a representation of

the matrix P, calculated by stacking the elements of the diagonal and upper triangular part of

P in a column vector. Algorithm 4.5 shows the general procedure of the IRL method. Function

kron returns x from the state transitions while function vec returns p from P. Function vec−1

represents the inverse procedure of vec (outputs P from p).

Algorithm 4.5 IRL algorithm (Vrabie et al., 2009).
Input: approximated solution of the ARE P

partial information of the model B
cost matrices Q and R
actor update frequency T
target minimum error ε

1: initialize p = vec (P)
2: initialize x0 = kron (x0)
3: initialize gain matrix K = −R−1BT P
4: measure initial state x0

5: for all time step k = 0, 1, 2, · · · do
6: for all i = 1, · · · ,T do
7: uk = Kxk

8: apply uk

9: measure next state xk+1

10: measure reward rk+1

11: xi = kronpoly (xk)
12: store at the i-th column of X the difference xi − xi−1

13: store at the i-th element of Y the difference rk+1 − rk

14: end for
15: p =

(
X XT

)−1
X YT

16: if change(p) > ε then
17: P = vec−1 (p)
18: K = −R−1BT P
19: end if
20: end for
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The original implementation of IRL was introduced for single agent environments. A gen-

eralization to game settings was presented by Vrabie & Lewis (2010). The main idea remains

the same but the least square problem involves now two controllers. Figure 4.4 shows the struc-

ture of this games settings. Notice that although the controllers may decide on their actions

independently from each other, still they rely on global information. The critic correspond-

ing to the first controller is able of observing the first controller actions as well as full state

information and a similar situation holds for the second critic. Both actors selects the actions

relying on full state information as well. Furthermore, although this method is presented as an

alternative to game settings, the interactions between the controller are constrained to be linear

restricting the applicability of the method. We will come back to these limitations in section

7.2.1 and also introduce the results obtained with the method presented in this dissertation.

Figure 4.4: Multi-agent Integral Reinforcement Learning - Notice that the structure is similar
to the one used in the single-agent IRL but now a second controller has been added (Vrabie &
Lewis, 2010).

Both policy iteration techniques (CACLA and IRL) discussed in this section are gradient-

based techniques. The main restriction of gradient-based policy search is that we have to be

careful about the initialization of the parameters if we are to find the global optimum. To

accomplish this goal, either prior knowledge about the optimal policy or about the form of the

approximator is required. If multiple optima exist and the actor starts exploring far from the
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global optimum it can get trapped in some local maximum. Furthermore, if the approximator

used is not adequate, the policy may be non-differentiable.

Gradient-free policy search avoids the above mentioned problems. The idea behind this

type of algorithms is to find the optimal parameter vector ϑ such that the return Rπ̂(·;ϑ) (x)

is maximized for all x ∈ X. A regular procedure to deal with continuous state spaces is to

predefine a finite set X0 of representative initial states and to estimate the returns only for the

states in X0. Then the score function is the weighted average return over these states (4.19)

where w : X0 → (0, 1] is the weight function (Buşoniu et al., 2010, Chapter 3).

s (ϑ) =
∑

x0∈X0

w (x0) Rπ̂(·;ϑ) (x0) (4.19)

4.4 Summary

In this chapter, we have introduced approximate RL for large or continuous-space problems.

After explaining the need for approximation in such problems, parametric and nonparamet-

ric approximation architectures have been presented. Then, approximate versions for the two

major categories of algorithms have been described: value iteration, and policy iteration.

Policy iteration methods were presented making the difference between gradient-based and

gradient-free methods. The formers are normally faster but rely on knowledge regarding the

optimal policy. The latter do not demand special requirements.

In all cases, the solutions expected from the methods are severely affected by the approxi-

mator used. In some cases finding a good policy approximation using prior knowledge may be

easier than deriving a good approximation for value functions. In such a case, policy iteration

methods may be preferred. Gradient-based algorithms have moderate computational demands

and are often guaranteed to converge but only to local maxima depending on the approximator

and may also converge slow. If no prior knowledge of the process is available, gradient-free

policy iteration algorithms may be a better option.

Although approximate RL is active and rapidly expanding we might a face difficult task

when considering high-dimensional problems with too few prior knowledge. In such cases it

is really difficult to design a good parametrization that does not lead to excessive cost.
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Chapter 5

CARLA extensions

Continuous action reinforcement learning automaton (CARLA) was introduced in section 2.3.3.

This chapter describes an analysis of CARLA’s performance. Based on this analysis, some

changes are proposed for speeding up calculations and avoiding numerical integration in sec-

tion 5.1, speeding up convergence by dynamically tuning the spreading rate in section 5.2 and

the standardization of rewards in section 5.3 (Rodrı́guez et al., 2011; Rodriguez et al., 2011).

Later on, the analysis of convergence is extended to games 5.4 and the extension of the explor-

ing selfish reinforcement learning (ESRL) method, introduced in section 2.2.1, is explained

in section 5.5 (Rodrı́guez et al., 2012; Rodriguez et al., 2012). Finally, in order to deal with

Markov decision processs (MDPs), function approximators are used to extend the bandit solver

CARLA into an reinforcement learning (RL) technique capable of deciding what action to take

when sensing state information. This last update of the method is explained in section 5.6.

5.1 Speeding up calculations

We would like to recall the CARLA method. The authors implemented the policy π as a

nonparametric probability density function (PDF) f : U → [0,+∞). At every time step k

the action uk is drawn stochastically from the distribution f k so uk ∼ f k (·). Starting with the

uniform distribution over the whole action space U and after exploring action uk ∈ U in time

step k the PDF is updated as (5.1) shows. Remember that α is the learning rate determining the

importance of newly observed rewards, λ is the spreading rate determining how much to spread
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the reward from one action into the neighboring actions, and η is a standardization factor.

f k+1 (u) =

ηk

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
u ∈ U

0 u < U
(5.1)

This formulation (5.1) controls the strategy for the action selection of the automaton with

a nonparametric PDF so it becomes computationally very expensive. The solution is to numer-

ically approximate the function but still, some heavy numerical calculations are necessary for

ηk. No convergence proof is given either. We next decrease the computational cost in terms of

numerical calculations and provide a convergence proof in single agent environments in order

to improve the method.

Let us start the analysis on expression (5.1) in order to look for possible reductions on the

computational cost. Let min U and max U be the minimum and maximum possible actions.

Since f is a PDF the restriction (5.2) has to be met at every time-step.∫ +∞

−∞
f k (u) du = 1∫ max U

min U f k (u) du = 1∫ max U
min U ηk

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
du = 1

(5.2)

Hence, the normalization factor ηk can be computed by expression (5.3).

∫ max U

min U
ηk

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
du = 1

ηk

∫ max U

min U

(
f k (u) + αρ (uk) e−

1
2

( u−uk
λ

)2)
du = 1

ηk =
1∫ max U

min U

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
du

(5.3)

The original formulation is for the bounded continuous action space U which makes the

analytical calculation of the normalization factor ηk unlikely. Let us relax this constraint and

work over the unbounded continuous action space R. Then the PDF update rule introduced

in (5.1) should be redefined as (5.4) where f N (uk ,λ) : R → [0,+∞) is the normal PDF with

mean uk and standard deviation λ. Analogously, (5.3) is transformed into (5.5). Notice that

numerical integration is no longer needed for calculating ηk.

f k+1 (u) = ηk

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
= ηt

(
f k (u) + ρ (uk)αλ

√
2π f N (uk ,λ) (u)

) (5.4)
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ηk =
1∫ +∞

−∞

(
f k (u) + ρ (uk)αλ

√
2π f N (uk ,λ)

)
du

=
1

1 + ρ (uk)αλ
√

2π

(5.5)

Let δk, introduced in (5.6), be the extra area added to the PDF by stretching the curve

beyond the interval [min U,max U] then (5.5), can be written as (5.7) and (5.4) as (5.8).

δk = ρ (uk)αλ
√

2π (5.6)

ηk =
1

1 + δk
(5.7)

f k+1 (u) = ηk

(
f k (u) + δk f N (uk ,λ) (u)

)
(5.8)

In order to generate the actions following the policy f k the cumulative density function

(CDF) is needed Parzen (1960) which is introduced in (5.9).

Fk+1 (u) =

∫ u

−∞

f k+1 (z) dz

=

∫ u

−∞

ηk

(
f k (z) + δk f N (uk ,λ) (z)

)
dz

= ηk
(
Fk (u) + δkFN (uk ,λ) (u)

)
= ηt

(
Fk (u) + δkFN (0,1)

(u − uk

λ

))
(5.9)

Although there is no analytical definition for the normal CDF FN (µ,σ) it can be approxi-

mated by means of numerical integration. So still numerical integration is needed however one

single CDF is required, being FN (0,1) which can be calculated at the beginning of learning –

only once – and there is no more need for integration during the learning process.

Finally, the original constraint has to be met for practical solutions, that is ∀k : uk ∈ U –

see (5.1). So ηk and Fk+1 defined in (5.7) and (5.9) should be transformed as shown in (5.10)

and (5.11) where Fdi f f
k (y0, y1) = FN (0,1)

(
y1−uk
λ

)
− FN (0,1)

(
y0−uk
λ

)
.

ηk =
1

1 + δkFdi f f
k (min U,max U)

(5.10)
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Fk+1 (u) =


0 u < min U
ηk

(
Fk (u) + δkFdi f f

k (min U, uk)
)

u ∈ U
1 u > max U

(5.11)

For a practical implementation of this method, equations (5.6), (5.10) and (5.11) are suffi-

cient to avoid numerical integration saving a lot of calculation time during the learning process.

We would like to stress that without this reformulation the method was really computationally

too heavy to be applied in processes where the controller only has a short period of time to

respond, but with this change it turns to be computationally feasible. We perform an analysis

of λ used in expression (5.6) in next section which will result in better convergence properties.

Algorithm 5.1 formalizes the method explained above. Notice the main idea of the al-

gorithm remains the same as in algorithm 2.5 but the unnecessary numerical integration is

avoided.

Algorithm 5.1 CARLA method with no unnecessary numerical integration.
Input: learning rate α

spreading rate λ

1: initialize F0, e.g., F0 (u)←


u−min U

max U−min U u ∈ U

0 u < U
2: for all iteration k = 0, 1, 2, · · · do
3: choose uk ∼ Fk (·)
4: apply uk

5: measure reward rk+1

6: δk ← rk+1αλ
√

2π {equation (5.6)}
7: ηk ←

1
1+δkFdi f f

k (min U,max U)
{equation (5.10)}

8: Fk+1 (u)←


0 u < min U
ηk

(
Fk (u) + δkFdi f f

k (min U, uk)
)

u ∈ U

1 u > max U

{equation (5.11)}

9: end for

5.2 Analysis of convergence. Dynamically tuning the spreading
rate

The analysis will be performed for normalized reward signals ρ : U → [0, 1] – no generality

is lost because any closed interval can mapped to this interval by a linear transformation. The

58



5.2 Analysis of convergence. Dynamically tuning the spreading rate

final goal of this analysis is to find the necessary restrictions to guarantee convergence to local

optima.

The sequence of PDF updates is a Markovian process, where for each time-step k an action

uk ∈ U is selected and a new f k+1 is returned. At each time-step k, f k will be updated as shown

in expression (5.8). The expected value f̄ k+1 (5.12) of f k+1 is computed given the current

distribution of the actions.

f̄ k+1 (u) =

+∞∫
−∞

f k (z) f k+1 (u | uk = z) dz (5.12)

Let ηkz
= ηk|uk = z be the value for ηk if uk = z and η̄k the expected value of ηk then (5.12)

could be rewritten as (5.13).

f̄ k+1 (u) =

+∞∫
−∞

f k (z) ηkz

(
f k (u) + αρ (z) e−

1
2 ( u−z

λ )2
)

dz

= f k (u)

∞∫
−∞

f k (z) ηkz
dz + α

+∞∫
−∞

f k (z) ηkz
ρ (z) e−

1
2 ( u−z

λ )2
dz

= f k (u) η̄k + α

+∞∫
−∞

f k (z) ηkz
ρ (z) e−

1
2 ( u−z

λ )2
dz

(5.13)

Let us have a look at the right member of the integral. f k (z) is multiplied by the factor

composed by the normalization factor given that uk = z, the feedback signal ρ (z) and the

distance measure e−
1
2 ( u−z

λ )2
which can be interpreted as the strength of the relation of actions

u and z, the higher the value of this product, the bigger the relation of these actions. Let us

call this composed factor Gk (u, z) and Ḡk (u) its expected value at time-step k with respect to z.

Then equation (5.13) could be finally formulated as (5.14).

f̄ k+1 (u) = f k (u) η̄k + αḠk (u)

= f k (u)
(
η̄k +

αḠk (u)
f k (u)

) (5.14)

The sign of the first derivative of f k depends on the factor η̄k +
αḠk(u)

f k(u) of expression (5.14)
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5. CARLA EXTENSIONS

so it behaves as shown in (5.15).

∂ f k

∂k


< 0

(
η̄k +

αḠk(u)
f k(u)

)
< 1

= 0
(
η̄k +

αḠk(u)
f k(u)

)
= 1

> 0
(
η̄k +

αḠk(u)
f k(u)

)
> 1

(5.15)

Notice η̄k is a constant for all u ∈ U and
∫ +∞

−∞
f k (z) dz = 1 so:

∃b1,b2∈U : Ḡk(b1)
f k(b1) ,

Ḡk(b2)
f k(b2) =⇒ ∃U+,U−⊂U,U+∩U−=∅,∀u+∈U+,u−∈U− :

(
∂ f k(u+)

∂k > 0
)
∧

(
∂ f k(u−)

∂k < 0
)

(5.16)

From logical implication (5.16) it can be assured that the sign of ∂ f k(u)
∂k will be determined

by the ratio Ḡk(u)
f k(u) . Notice subsets U+ and U− are composed by the elements of U that have not

reached their value for the probability density function in equilibrium with Ḡk (u). That is, the

U+ subset is composed by all u ∈ U having a value of probability density function which is too

small with respect to Ḡk (u) and vice versa for U−.

Let u∗ ∈ U be the action that yields the highest value for
∫ +∞

−∞
ρ (z) e−

1
2 ( u−z

λ )2
dz for all time-

steps as shown in (5.17). It is important to stress that u∗ is not the optimum of ρ but the point

yielding the optimal vicinity around it and defined by e−
1
2

(
u∗−z
λ

)2

which depends on λ.

∀u∈U,k :

+∞∫
−∞

ρ (z) e−
1
2

(
u∗−z
λ

)2

dz ≥

+∞∫
−∞

ρ (z) e−
1
2 ( u−z

λ )2
dz (5.17)

It is a fact that ∀u∈U : Ḡk (u) ≤ Ḡk (u∗) and since the first derivative depends on Ḡk(u)
f k(u) , the

value of f k (u∗) necessary for keeping ∂ f k(u∗)
∂k = 0 is also higher than any other f k (u):

∀u∈U : f k (u) ≥ f k
(
u∗

)
⇒

∂ f k (u)
∂k

<
∂ f k (u∗)
∂k

(5.18)

Notice that the maximum update that f k (u∗) may receive is obtained when uk = u∗ –

centering the bell at u∗ –, then if f k (u∗) reaches the value 1
λ
√

2π
, its first derivative will not be
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5.2 Analysis of convergence. Dynamically tuning the spreading rate

higher than 0 as shows (5.19) since ρ : U → [0, 1].

f k+1
(
u∗

)
= ηk

(
f k (u) + ρ (uk)αe−

1
2

( u−uk
λ

)2)
≤

1

1 + αλ
√

2π

(
1

λ
√

2π
+ α

)
≤

1

1 + αλ
√

2π

1 + αλ
√

2π

λ
√

2π


≤

1

λ
√

2π

(5.19)

Then the equilibrium point of f k (u∗) has the higher bound 1
λ
√

2π
. Notice that the closer the

ρ (u∗) to 1, the closer the equilibrium point of f k (u∗) to its higher bound.

∂ f k (u∗)
∂k


< 0 f k (u∗) > 1

λ
√

2π

= 0 f k (u∗) = 1
λ
√

2π

> 0 f k (u∗) < 1
λ
√

2π

(5.20)

We can conclude from (5.18) and (5.37) that the highest value for f will be achieved at u∗

as shown in (5.21) which has the higher bound 1
λ
√

2π
.

∀u∈U\{u∗} :limk→∞ f k (u) < f k
(
u∗

)
limk→∞ f k

(
u∗

)
≤

1

λ
√

2π

(5.21)

Finally

limλ↓0limk→∞ f k
(
u∗

)
= ∞

∀u,u∗ : limλ↓0limk→∞ f k (u) = 0
(5.22)

This analysis has been developed under really restrictive assumptions, such as k → ∞,

λ ↓ 0, α is small enough – the larger α, the larger the change of the probability law through time

allowing a fast convergence but also the bigger the difference between the actual probability

law and its expected value – and the reward function is noiseless enough to assure (5.17).

The best solution for the problem stated above about the constrains of λ is to start with

a wide enough bell – allowing enough exploration – and make it thinner as it approaches the

optimum – to meet (5.39). A good measure of convergence could be the standard deviation of

the actions selected lately. When the standard deviation of actions is close to the λ that is been

used to update the probability density function then the maximum value for f k (u∗) has been

reached as stated in (5.21).
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Since f 0 is the Uniform Density Function, the standard deviation of actions should start

at σ0 =
max(U)−min(U)

√
12

. We are proposing to use expression (5.23) for the convergence (convk)

value of the method given the standard deviation of actions σk. Then, (5.24) could be used

as λ necessary in equation (5.6) for each time-step k improving the learning process of the

automaton.

convk = 1 −

√
12σk

max(U) −min(U)
(5.23)

λk = λ (1 − convk) (5.24)

Algorithm 5.2 formalizes the method explained above. Notice the main idea of the algo-

rithm remains the same as in algorithm 5.1 but the parameter λ is automatically tuned over

time.

Algorithm 5.2 CARLA method with automatic tuning of the spreading rate.
Input: learning rate α

initial spreading rate λ

1: initialize F0, e.g., F0 (u)←


u−min U

max U−min U u ∈ U

0 u < U
2: for all iteration k = 0, 1, 2, · · · do
3: choose uk ∼ Fk (·)
4: apply uk

5: measure reward rk+1

6: convk = 1 −
√

12σk
max(U)−min(U)

7: λk ← λ (1 − convk)
8: δk ← rk+1αλk

√
2π

9: ηk ←
1

1+δkFdi f f
k (min U,max U)

10: Fk+1 (u)←


0 u < min U
ηk

(
Fk (u) + δkFdi f f

k (min U, uk)
)

u ∈ U

1 u > max U
11: end for
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5.3 Standardization of rewards

Figure 5.1: Standardization of rewards - Both charts plots the reward functions. X axis rep-
resents the action and Y axis the value of the function. We can see the original, untransformed
reward function on the left. The black curve shows the reward function. On the right we plot both
the original and transformed reward function in gray and black, respectively.
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1

0 1

0.78
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0 1

5.3 Standardization of rewards

In this section we introduce another modification of the CARLA algorithm. The basic idea is to

improve the algorithm’s convergence, by re-scaling the reward signal to amplify differences in

the feedbacks. From the analysis introduced in section 5.2, it can be seen that larger differences

in the feedbacks for different actions, lead to faster convergence to the optimum. If the reward

function varies very little around the optimum, many time-steps may be required to detect the

difference in feedback, and converge to the optimum.

If a learner memorizes the last few rewards, it can analyze their range, in order to linearly

transform newly received rewards, viewing them as high or low signals relative to recently ob-

served rewards. Since exploration is still possible, z-score standardization is very useful to deal

with this re-scaling, avoiding sensitivity to outlier observations. Let µrwd and σrwd be the mean

and standard deviation of the rewards collected, then every reward can be transformed as shown

in expression (5.25). We stress that µrwd and σrwd should be calculated from untransformed

rewards.

ρ′ (uk) = max
(
0, 0.5 +

ρ (uk) − µrwd

2σrwd

)
(5.25)

Note that negative values are not allowed, in order to prevent the probability density func-

tion from becoming negative. Using this transformation, it is easier for the learner to differ-

entiate rewards, no matter how close to the optimum it is exploring. Also observe that this is

not a way to introduce extra information, it just modifies the reward function increasing the

amplitude of the difference between the extreme values of this function. Scaling this amplitude

does not imply changing the location of the maximum (or minimum) values.
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5. CARLA EXTENSIONS

Figure 5.1 shows an illustrative example of our method. On the left, we show the untrans-

formed reward function, defined in equation 5.26. The PDF and the reward function are plotted

in gray and black, respectively. These functions are introduced in (5.27) and (5.26) respec-

tively. Note that it is very unlikely that the PDF reaches such a shape but for easy calculations

for this example the triangular function was selected as a rough approximation of a Gaussian

bell. For those values, the mean µ and standard deviation σ of the reward can be calculated as

follows:

µ = Eu∼ f (·) {ρ (u)} =

∫ +∞

−∞

ρ (u) f (u) du

σ =

√
Eu∼ f (·)

{
(ρ (u))2

}
−

(
Eu∼ f (·) {ρ (u)}

)2
=

√∫ +∞

−∞

(ρ (u))2 f (u) du −
(∫ +∞

−∞

ρ (u) f (u) du
)2

ρ (u) =



2u u ∈ [0, 0.25]
0.5 u ∈ (0.25, 0.4]
0.5 − 2 (u − 0.4) u ∈ (0.4, 0.6]
0.1 + 4.5 (u − 0.6) u ∈ (0.6, 0.8]
1 − 4.5 (u − 0.8) u ∈ (0.8, 1]

(5.26)

f (u) =


0 u ∈ [0, 0.2]
25 (u − 0.2) u ∈ (0.2, 0.4]
25 (0.6 − u) u ∈ (0.4, 0.6]
0 u ∈ (0.6, 1]

(5.27)

A learner exploring around the local maximum on the left will have difficulty detecting the

slightly better action to the right. For this example, we take µrwd = 0.43 and σrwd = 0.24 so

ρ′ (u) = max
(
0, 0.5 +

ρ(u)−0.43
0.24

)
. The figure on the right shows the effect of our transformation.

The black curve represents ρ′ while the gray curve corresponds to the original function. Note

that the only change is in the amplitude of the function, the maxima are still located at the same

points. Since the exploration was concentrated on the local maximum to the left, this is the

zone that has been “zoomed in”. Nonetheless, the other maximum situated to the right has also

been amplified. Any exploratory actions to the right will now clearly detect the better feedback.

Of course, in a real learning setting we could not simply transform the entire reward function

off-line, and we would instead need to calculate the transformation online, based on the current

sample mean and standard deviation.

Algorithm 5.3 formalizes the process explained above.
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5.3 Standardization of rewards

Algorithm 5.3 CARLA method with reward transformation.
Input: learning rate α

initial spreading rate λ
reward’s horizon length Kr

1: initialize F0, e.g., F0 (u)←


u−min U

max U−min U u ∈ U

0 u < U
2: for all iteration k = 0, 1, 2, · · · ,Kr − 1 do
3: choose uk ∼ Fk (·)
4: apply uk

5: measure reward rk+1

6: rstore ← rstore ⋃
rk+1

7: end for
8: µrwd ← mean

(
rstore)

9: σrwd ← std dev
(
rstore)

10: for all iteration k = Kr,Kr + 1,Kr + 2, · · · do
11: choose uk ∼ Fk (·)
12: apply uk

13: measure reward rk+1

14: rstore ← rstore
[2··Kr]

⋃
rk+1

15: update µrwd and σrwd

16: rk+1 ← max
(
0, 0.5 +

rk+1−µrwd
2σrwd

)
17: convk ← 1 −

√
12σk

max(U)−min(U)

18: λk ← λ (1 − convk)
19: δk ← rk+1αλ

√
2π

20: ηk ←
1

1+δkFdi f f
k (min U,max U)

21: Fk+1 (u)←


0 u < min U
ηk

(
Fk (u) + δkFdi f f

k (min U, uk)
)

u ∈ U

1 u > max U
22: end for
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5.4 Analysis of convergence in games

The convergence proof for a single agent CARLA was introduced in 5.2. We now analyze the

performance of the CARLA method in games. The analysis will be performed for normalized

reward signals ρ : U → [0, 1] – no generality is lost because any closed interval can mapped to

this interval by a linear transformation. The final goal of this analysis is to find the necessary

restrictions to guarantee convergence to local optima.

Again, the sequence of PDF updates is analyze as a Markovian process, where for each

time-step k an action u(l)
k ∈ U(l) is selected and a new f (l)

k is returned for every learner l. The

expected value f̄ (l)
k+1 of f (l)

k+1 can be computed following equation (5.28).

f̄ (l)
k+1 (u) =

+∞∫
−∞

f (l)
k (z) f (l)

k+1

(
u | u(l)

k = z
)

dz (5.28)

Let η̄(l)
k (z) = η̄(l)

k |uk = z be the expected value for η(l)
k if u(l)

k = z taking into account the

other agent policies, ¯̄η(l)
k its expected value and ρ̄(l)

k (z) the expected value for ρ(l)
k (z) as shown

in (5.29). Then (5.28) could be rewritten as (5.30).

η̄(l)
k (z) =

+∞∫
−∞

· · ·

+∞∫
−∞

f (0)
k

(
z(0)

)
· · · f (l−1)

k

(
z(l−1)

)
f (l+1)

k

(
z(l+1)

)
· · · f (n)

k

(
z(n)

)
(
η(l)

k |u
(l)
k = z, u(0)

k = z(0), · · · u(n)
k = z(n)

)
dz(n)

· · · dz(0)

ρ̄(l)
k (z) =

+∞∫
−∞

· · ·

+∞∫
−∞

f (0)
k

(
z(0)

)
· · · f (l−1)

k

(
z(l−1)

)
f (l+1)

t

(
z(l+1)

)
· · · f (n)

k

(
z(n)

)
ρ(l)

k

(
z(0), · · · , z(l−1), z, z(l+1), · · · , z(n)

)
dz(n)

· · · dz(0)

¯̄η(l)
k =

+∞∫
−∞

f (l)
k (z) η̄(l)

k (z) dz

(5.29)
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5.4 Analysis of convergence in games

f̄ (l)
k+1 (a) =

+∞∫
−∞

f (l)
k (z) η̄(l)

k (z)

 f (l)
k (u) + α(l)ρ̄(l)

k (z) e
− 1

2

 u−z

λ
(l)
k

2 dz

= f (l)
k (u) ¯̄η(l)

k +

α(l)

+∞∫
−∞

f (l)
k (z) η̄(l)

k (z) ρ̄(l)
k (z) e

− 1
2

 u−z

λ
(l)
k

2

dz

(5.30)

Let us have a look at the right member of the integral. f (l)
k (z) is multiplied by the factor

composed by the normalization factor given that u(l)
k = z, the feedback signal ρ̄(l)

k (z) and the

distance measure e
− 1

2

 u−z

λ
(l)
k

2

which can be interpreted as the strength of the relation of actions u

and z, the higher the value of this product, the bigger the relation of these actions. Let us call

this composed factor G(l)
k (u, z) and Ḡ(l)

k (u) its expected value at time-step k with respect to z.

Then equation (5.30) could be finally formulated as (5.31).

f̄ (l)
k+1 (u) = f (l)

k (u) ¯̄η(l)
k + α(l)Ḡ(l)

k (u)

= f (l)
k (u)

 ¯̄η(l)
k +

α(l)Ḡ(l)
k (u)

f (l)
k (u)

 (5.31)

The sign of the first derivative of f (l)
k depends on the factor ¯̄η(l)

k +
α(l)Ḡ(l)

k (u)

f (l)
k (u)

of expression

(5.31) so it behaves as shown in (5.32).

∂ f (l)
k

∂k


< 0 ¯̄η(l)

k +
α(l)Ḡ(l)

k (u)

f (l)
k (u)

< 1

= 0 ¯̄η(l)
k +

α(l)Ḡ(l)
k (u)

f (l)
k (u)

= 1

> 0 ¯̄η(l)
k +

α(l)Ḡ(l)
k (u)

f (l)
k (u)

> 1

(5.32)

Notice ¯̄η(l)
k is a constant for all u ∈ U(l) and

∫ +∞

−∞
f (l)

k (z) dz = 1 so:

∃b(l)
1 ,b

(l)
2 ∈U

(l) :
Ḡ(l)

k

(
b(l)

1

)
f (l)

k

(
b(l)

1

) , Ḡ(l)
k

(
b(l)

2

)
f (l)

k

(
b(l)

2

) =⇒

∃U(l)
+ ,U

(l)
− ⊂U(l),U(l)

+ ∩U(l)
− =∅

,∀u(l)
+ ∈U

(l)
+ ,u

(l)
− ∈U

(l)
−

:(
∂ f (l)

k

(
u(l)

+

)
∂k > 0

)
∧

(
∂ f (l)

k

(
u(l)
−

)
∂k < 0

) (5.33)
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From logical implication (5.33) it can be assured that the sign of
∂ f (l)

k (u)
∂k will be determined

by the ratio
Ḡ(l)

k (u)

f (l)
k (u)

. Notice subsets U(l)
+ and U(l)

− are composed by the elements of U(l) that have

not reached their value for the probability density function in equilibrium with Ḡ(l)
k (u). That is,

the U(l)
+ subset is composed by all u ∈ U(l) having a value of probability density function which

is too small with respect to Ḡ(l)
k (u) and vice versa for U(l)

− .

Let u(l)
∗ ∈ U(l) be the actions yielding the highest value for every agent l at expression∫ +∞

−∞
ρ̄(l)

k (z) e
− 1

2

 u−z

λ
(l)
k

2

dz as shown in (5.34). It is important to stress that u(l)
∗ are not the optimum

of ρ̄(l)
k given the set f ( j)

k but the points yielding the optimal vicinity around it and defined by

e
− 1

2

 u(l)
∗ −z

λ
(l)
k

2

which depends on λ(l)
k .

∀u∈U(l) :

+∞∫
−∞

ρ̄(l)
k (z) e

− 1
2

 u(l)
∗ −z

λ
(l)
k

2

dz ≥

+∞∫
−∞

ρ̄(l)
k (z) e

− 1
2

 u−z

λ
(l)
k

2

dz (5.34)

For common interest games (∀l, j : ρ(l)
k = ρ

( j)
k ), all u(l)

∗ will correspond initially to the same

maximum in the joint-action space, if all learner start with the same parameters and an uniform

PDF each one. Then (5.35) holds.

∀k : f (l)
k

(
u(l)
∗

)
≥ f (l)

k

(
u(l)

)
⇒ f (l)

k+1

(
u(l)
∗

)
≥ f (l)

k+1

(
u(l)

)
∀k : ρ̄(l)

k

(
u(l)
∗

)
≥ ρ̄(l)

k

(
u(l)

)
⇒ ρ̄(l)

k+1

(
u(l)
∗

)
≥ ρ̄(l)

k+1

(
u(l)

)
∀k : Ḡ(l)

k

(
u(l)
∗

)
≥ Ḡ(l)

k

(
u(l)

)
⇒ Ḡ(l)

k+1

(
u(l)
∗

)
≥ Ḡ(l)

k+1

(
u(l)

) (5.35)

Since the first derivative of the PDF depends on
Ḡ(l)

k (u)

f (l)
k (u)

the value necessary for keeping

∂ f (l)
k (u)
∂k = 0 is also the highest for every u(l)

∗ .

Notice that the maximum update that f (l)
k

(
u(l)
∗

)
may receive is obtained when u(l)

k = u(l)
∗ –

centering the bell at u(l)
∗ –, then if f (l)

k

(
u(l)
∗

)
reaches the value 1

λ(l)
t

√
2π

, its first derivative will not
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be higher than 0 as shows (5.36) since ρ : U → [0, 1].

f (l)
k+1

(
u(l)
∗

)
= η̄(l)

k

(
u(l)

k

)
 f (l)
∗

(
u(l)

k

)
+ ρ(l)

k

(
u(l)

k

)
α(l)e

− 1
2

 u(l)
∗ −u(l)

k
λ

(l)
k

2
≤

1

1 + α(l)λ(l)
k

√
2π

 1

λ(l)
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Then the equilibrium point of f (l)
k

(
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∗

)
has the higher bound 1
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√
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. Notice that the closer

the ρ(l)
k
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We can conclude from (5.37) that the highest value for f (l) will be achieved at u(l)
∗ as shown

in (5.38) which has the higher bound 1
λ(l)

k

√
2π

.

∀u∈U(l)\{u(l)
∗ }

:limk→∞ f (l)
k (u) < f (l)

k

(
u(l)
∗

)
limk→∞ f (l)

k

(
u(l)
∗

)
≤

1

λ(l)
k

√
2π

(5.38)

Finally

limλ(l)↓0limk→∞ f (l)
k

(
u(l)
∗

)
= ∞

∀u,u(l)
∗

: limλ(l)↓0limk→∞ f (l)
k (u) = 0

(5.39)

We can safety conclude that the set of CARLA will converge to an equilibrium in the

joint-action space as long as the parameter α is low enough for the learners to match their

expected policies through time. Which of the multiple equilibria is selected will depend on the

initialization of the parameter λ.
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Let us analyze the following example to better illustrate the above described procedure.

The analytical expression of the reward signal is shown in (5.40) and its contour representation

in figure 5.2. There are three attractors in this example. The two local maxima located in the

top left and bottom right corners have larger basins of attraction while the global maximum at

the center has a narrower basin of attraction.

ρ
(
u(1), u(2)

)
= Bell

(
u(1), u(2), 0.5, 0.5, 0.084

)⋃
0.63 Bell

(
u(1), u(2), 0.1, 0.9, 0.187

)⋃
0.63 Bell

(
u(1), u(2), 0.9, 0.1, 0.187

) (5.40)

Figure 5.2: A two players game with three local optima - The contours represents combination
of actions with the same reward. Notice that the global optimum is located in a narrower region,
this region does not overlap with the other maxima from both agents point of view.

If both learners start with the uniform distribution we expect them to converge to the at-

tractor that fits expression (5.34) the best.
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5.5 ESCARLA

Since we are only interested in the effect of λ we will use a fixed value over all time-steps.

Two λ values will be explored: 0.04 and 0.007. The learners are expected to converge to either

one of the attractors to the corners (either (0.1,0.9) or (0.9,0.1)) when using λ = 0.04 and to

the global maximum (0.5,0.5) when λ = 0.007. In order to prevent the learners from deviating

too much from their expected strategies, a very low α is used in this case 0.005. In a real setup

we will never use such a low value. Because of the low learning rate we run 100 experiments

for 30000 time-steps. When using λ = 0.04, half of the times the learners converged to the

attractor (0.1,0.9) while the other half they converged to (0.9,0.1). In the second case, when

using λ = 0.007, both agents converged to the global maximum.

We can conclude that in order to make the learners converge to the best attractor we either

need information about the reward function or a better exploration of the joint-action space, as

we will introduce in the next section.

5.5 ESCARLA

In order to introduce exploring selfish continuous action reinforcement learning automaton

(ESCARLA) let us first recall ESRL, introduced for improving global performance in discrete

action games (section 2.2.1). ESRL is an exploration method for a set of independent learning

automatons (LAs), playing a repeated discrete action game. The basic idea of this method is

that the set of independent LAs will converge to one of the Nash equilibriums (NEs) of the

game, but not necessarily one from the Pareto front. ESRL proposes that once the agents con-

verge to a NE, at least 2 agents should delete the action which is involved in the selected NE

from their individual action spaces and restart learning. Since the agents are now using a re-

duced action set, they will converge to a different equilibrium point. Repeating this procedure

allows the agents to find all dominant equilibria and agree on the best one, using only limited

communication. The learning process is independent, each agent applies the LA learning algo-

rithm, more precisely the reward in action update rule for discrete actions, using its individual

reward and without knowing which action have been selected by the other agents. This allows

to perform the learning in the individual actions spaces. Only after convergence, a communi-

cation protocol takes care of the exclusion of the appropriate actions. As the more interesting

NEs are often also stronger attractors, the agents can quite efficiently reach Pareto optimal

Nash equilibria, without the need to exhaustively explore all NE. The problem with applying

this approach in continuous action games, is that it makes no sense for the agents to delete the
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5. CARLA EXTENSIONS

action to which they converged. Rather, a vicinity around the action should be identified and

excluded.

Figure 5.3: Relation between covariance and exploration - The row on top represents the joint
action of the agents. The second row represents the reward collected for each action by the first
agent. The left-most column collects samples from time-step 0 to 1000. The column in the center
collects samples from time-step 2000 to 3000. The right-most column collects samples from time-
step 9000 to 10000. The last row shows the absolute value of the covariance between actions and
rewards for the first agent through the 10000 time-steps. The intervals corresponding to 0 to 1000,
2000 to 3000 and 9000 to 10000 are shaded

In order to identify the basin of attraction, we propose to use the absolute value of the co-

variance between the actions and rewards as a metric. Figure 5.3 shows the relation between

the exploration and the covariance between actions and rewards from a single agent point of

view. The parameter setting used for this example is the same as the one selected in section 5.4.

The first row shows a global view of the exploration. Three time intervals are shown. The first

interval is the beginning of learning (time-steps from 0 to 1000). The second interval is when

the learners are leaving global exploration (time-steps from 2000 to 3000). The last interval

selected is when agents have converged to the local attractor (time-steps from 9000 to 10000).
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5.5 ESCARLA

In the middle top figure, one can notice that the learners are converging to a locally superior

strategy and are trapped within its basin of attraction. The dark left top cluster shows that the

actions near to the locally superior strategy (0.1,0.9) are now sampled more frequently. The

challenge now is to identify this using only information local to the agents. The second row

shows the local information the agents have at their disposal. The same time intervals are rep-

resented in each respective column. The plots depict the selected actions on the horizontal axis

with the corresponding reward on the vertical axis. The bottom row shows the absolute value

of the covariance between actions and rewards over the whole learning process. Additionally,

in order to have a better idea of how this covariance is evolving, the solid curve represents its

average. The three intervals considered above are shaded in gray. This covariance has a low

value at the beginning of learning since a lot of exploration is performed by both agents. When

the agents start to be influenced by the basin of attraction of a local attractor then the noise in

the rewards significantly drops, so the covariance reaches its maximum. As agents converge

to a locally superior strategy, less exploration is performed and therefore the covariance value

drops down to zero. The appropriate region to exclude after the agent’s actions have converged

to the local optimum, can therefore be estimated at the moment when the absolute value of the

covariance reaches its maximum value.

A good way of estimating this region is by using the percentiles of the probability density

function of the actions. For a given confidence value c we can define a region as shown in

expression (5.41) where percentile (p, f ) represents the value where the probability density

function f accumulates the probability p. Notice that the lower c, the wider the region defined

by expression (5.41), but also the lower the probability for the actions in the region to have

been properly explored.

[
percentile

(
1 − c

2
, f

)
, percentile

(
1 −

1 − c
2

, f
)]

(5.41)

Our proposal is to let the agents learn until they all reach a threshold value of convergence

convstp. Then each agent should delete the region defined by (5.41) from its action space –

examples in the experimental results section will use convstp = 0.95 and c = 0.9. Deleting the

action range implies modifying the action space so we need to map the remaining action space

onto a compact set again as shown in Figure 5.4. In the example given, the region to exclude is

(0.4, 0.7). The new action space will be composed by the two remaining intervals [0, 0.4] and

[0.7, 1]. This new action space will be linearly mapped into [0, 1]. Both of them have a subset
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5. CARLA EXTENSIONS

Figure 5.4: Mapping process - The new action space will stay as the previous one but actions
will be mapped in order to avoid the deleted range (0.4,0.7). Initially, U l runs continuously in
[0, 1]. The region to exclude is [0.4, 0.7]. Then the remaining intervals been [0, 0.4] and [0.7, 1]
are expanded to [0, 0.57] and [0.57, 1] respectively to cover the initial action space U.

excluded
range

0

1

0.4

0.7

0

0.4

0.7

1

0

1

0.57

initial

U(l)

exclusion

U(l)

mapping

U(l)

on it proportional to their extension so the remaining actions are equally eligible as they were

before the mapping.

This method can introduce some noise in the reward function, however since CARLA

learners do not require continuity in the reward function, this does not cause problems. After

the exclusion of the appropriate action range, all agents must restart the learning process in or-

der to converge to another attractor. After sufficient exploration the agents should compare the

reward obtained for the different joint actions to which they converged and agree on the strategy

that yielded the highest reward. It is important to remember that we are assuming a common

interest game, so therefore the agents have no problem to agree on the best combination of

actions. The general algorithm is given next.

Algorithm 5.4 shows the main process of the ESCARLA method. It iterates between

phases of exploration and synchronization. When sufficient exploration has occurred, the

agents agreed on the best strategy. The exploration and synchronization phases are detailed

in algorithms 5.5 and 5.6 respectively.

Algorithm 5.4 Exploring Selfish CARLA
1: repeat
2: explore
3: synchronize
4: until enough exploration
5: select best strategy
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5.6 MSCARLA

Algorithm 5.5 Exploration phase (ESCARLA)
1: initialize parameters
2: repeat
3: sample action
4: update strategy
5: if maximum covariance then
6: interval←

[
percentile

(
1−c

2 , f
)
, percentile

(
1 − 1−c

2 , f
)]

7: end if
8: until convergence

Algorithm 5.6 Synchronization phase (ESCARLA)
1: exclude marked interval

5.6 MSCARLA

By combining discrete RL techniques and function approximators we allow RL to deal with

large or continuous action-state spaces. Chapter 4 described some techniques. In the case of

value iteration methods, the actions selected by the methods are still discrete however. If the

optimal action to be selected has a smooth continuous dependence on the state, there is no

way a discrete value iteration RL with a function approximator will find it. The quality of

the approximation of the optimal actions depends on the approximation resolution, but finer

resolutions will make the learning process longer and heavier. The CARLA method is able to

deal with continuous action problems but does not incorporate state information since it is a

bandit solver. We next present an approximate gradient-free policy iteration method based on a

set of CARLAs taking advantage of the fact that this bandit problem can find optimal solutions

on continuous action sets.

5.6.1 Policy representation

As introduced in section 2.3.3, CARLA is a continuous action bandit solver. This means that

the algorithm does not incorporate state information in the learning process. Our proposal is

to combine CARLA with function approximators to extend it to a multi-state method. Notice

that this is a similar idea of what Wheeler Jr. & Narendra (1986) and Witten (1977) did by

associating discrete LAs with the finite set of states in MDPs. Multi-state continuous action

reinforcement learning automaton (MSCARLA) will use the function approximators for the
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policy representation, only as an approximation mapping over the state space as the original

CARLA method can already deal with continuous actions. A set of CARLA learners will

be used to represent the policy parameters. Every single CARLA will keep its own stateless

policy and then the state-informed policy will be obtained from them by means of the function

approximator. The ϑ parameter will refer now to the set of independent policies πi of the

stateless CARLAs. For optimality reasons we do not use, as the parameter vector, the PDF

themselves but the set of actions ui ∈ U chosen by the policies corresponding to every stateless

CARLA. In an actor-critic approach, this module of the algorithm would be the actor. The

MSCARLA policy can be calculated as shown in expression (5.42).

π̂ (x;ϑ) = H (x;ϑ) (5.42)

In order to use a normalized aggregation of the policies of the base learners, let us define a

function W : X → Rn representing the weight of every CARLA in the decision of the action for

a given state x ∈ X where n is the size of the state space X. We may now redefine H in terms of

W as (5.43). Notice that the function is now normalized so each stateless CARLA may select

an action ui ∈ U and the final aggregation of all actions will still be in the action space U.

H (x;ϑ) =
W (x)T ϑ∑

j W j (x)
(5.43)

Two examples are given below to clarify this procedure.

The first example is using tile coding as the function approximator for the state. Expres-

sion (4.6) referred to the original tile coding, repeated here for easier reading:

[H (θ)] (x, u) =

N∑
i=1

ψi (x, u)T
ϑ

Notice that the original formulation takes as parameter the state x and the control action

u as well. Now we are only interested in approximating over the state space so we use the

method as shown in 5.44. Notice that here ϑ stands for a vector with the actions generated by

all stateless CARLAs in the system. For optimality issues when coding the method, we will

not ask every base learner for its action. Instead, we may only take into account the CARLAs

where ψi (x) is not zero.

H (x;ϑ) =

N∑
i=1

ψi (x)T
ϑ (5.44)
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In this case W would be written as shown in equation (5.45).

W (x) =

N∑
i=1

ψi (x) (5.45)

The normalized approximator (5.43) would finally be written as (5.46).

H (x;ϑ) =
W (x)T ϑ∑

j W j (x)

=

∑N
i=1 ψi (x)T ϑ∑
j
∑N

i=1 ψi, j (x)

(5.46)

The second example is the kernel based version. Kernel based function approximators were

introduced in (4.8) also repeated here for easier reading:

[H (θ)] (x, u) =

ns∑
ks=1

κ
(
(x, u) ,

(
xks , uks

))
ϑks

Expression (5.47) introduces the MSCARLA version. Again, ϑ stands for a vector with

the actions generated by all stateless CARLAs in the system and xks their positions in the state

space. Now this vector’s size varies with time as this is a nonparametric approximator.

H (x;ϑ) =

ns∑
ks=1

κ
(
x, xks

)
ϑks (5.47)

Equation (5.48) shows the same formulation but in vectorial form where xk is the vector of

positions of the base learners at time-step k.

H (x;ϑ) = κ (x, xk)T
ϑ (5.48)

From the previous formulation we define W as follows:

W (x) = κ (x, xk) (5.49)

Notice that this function produces a vector of variable size over time. Finally, the normal-

ized approximator is defined in equation (5.50).

H (x;ϑ) =
W (x)T ϑ∑

j W j (x)

=
κ (x, xk)T ϑ∑

j κ j (x, xk)

(5.50)
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k = 0 · · · k = t · · · k = Ku − 1 · · · k = Ku + t − 1

R1 =
∑Ku−1

i=0 γiρ (xi, ui) Rt+1 =
∑Ku+t−1

i=t γi−tρ (xi, ui)

Figure 5.5: Discounted sum over the trajectory - For calculating the reward signal at time step 0,
the learner needs to collect Ku samples first and then aggregate them, e.g., with a discounted sum.

5.6.2 Policy evaluation

In order to complete the procedure, we still need to formalize the policy evaluation. We refer

now to the critic in an actor-critic approach. Two important steps are necessary: evaluating the

policy of the global learner and evaluating the policy of each base learner. The first step could

be performed with any sample-based policy evaluation method reported in the literature. We

use the truncated discounted return Rπ̂(·;ϑ). Figure 5.5 summarizes this procedure for a horizon

length Ku. For the second step, we need to measure the extension of the influence of every base

learner in the final decision and estimate the feedback of each base learner as explained next.

The reward received by every stateless CARLA has to be proportional to its contribution

to the decision over the action. We propose to decompose the return Rk so the ith CARLA

observes the reward ri,k defined by expression (5.51).

ri,k =
Rk W i (x)∑

j W j (x)
(5.51)

The rewards for each base learner in both examples introduced above are given next. The

first example used tile coding (5.46) to approximate over the state space. The reward that every

CARLA learner i will receive is calculated as equation (5.52).

ri,k =
Rk W i (x)∑

j W j (x)

=
Rk

∑N
k=1 ψk,i (x)∑

j
∑N

k=1 ψk, j (x)

(5.52)

Similarly, the reward that every CARLA learner i will receive in the second example, the

kernel based approximator, is calculated as equation (5.53).

ri,k =
Rk W i (x)∑

j W j (x)

=
Rk κi (x, xk)∑

j κ j (x, xk)

(5.53)
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The policy update is a process that is naturally done by the stateless CARLAs. The function

approximator will only modify the feedback signal that is perceived by them. Algorithm 5.7

formalizes the MSCARLA procedure.

Algorithm 5.7 represents the general procedure. The two examples described above can be

obtained by setting W to (5.45) and (5.49) respectively.

5.7 Summary

The CARLA method is an LA based technique which is well suited for practical applications.

It belongs to the category of policy iteration and it performs a global search of the action space.

While other LA techniques search locally around the policy used at every time-step, CARLA

may search the whole action space at a time if starts using the proper policy. Unfortunately,

the method is not practical from a computational point of view, due to the excessive numerical

calculations. In this chapter, an analysis of its performance was carried out, aimed at reducing

this computational cost. The new derivations obtained, allow us to avoid the numerical integra-

tion. Section 5.1 introduced algorithm 5.1 which is capable of exactly the same performance

in terms of exploration of the action space, but at a much lower computational cost.

The same algorithm was analyzed in section 5.2, now aiming to reduce the cost in terms

of exploration. The convergence analysis showed, that by using a fixed spreading rate λ over

time, the policy of the method will be limited so it cannot approach its local maximum more

than this limit imposed by the latter parameter. In order to avoid this problem, the spreading

rate was tuned during learning based on the distribution of the last actions taken. The technique

is introduced in algorithm 5.2.

A final proposed optimization to the single agent CARLA, is a reshape of the reward func-

tion, introduced in section 5.3. The reshaped feedback signal enables the learner to keep learn-

ing at a high rate when approaching the maxima. The technique is introduced in algorithm 5.3.

Section 5.4 demonstrated the need of a better exploration technique of the joint-action

space in games. Based on this hypothesis, section 5.5 introduced the extension of ESRL (see

section 2.2.1) to continuous action spaces in algorithm 5.4.

Finally, in order to deal with learning in MDP settings we assemble a set of stateless

CARLA learners with a function approximation over the state space and develop the MSCARLA

algorithm 5.7.

All these theoretical results are practically tested in next chapters.
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Algorithm 5.7 MSCARLA’s general procedure.
Input: discount factor γ

a function W : X → Rn defining the function approximator
discounted horizon length Ku

base learner’s parameters: learning rate α, initial spreading rate λ and reward’s horizon
length Kr

1: initialize base learners with parameters α, λ and Kr

2: for time step k = 0 to Ku − 1 do
3: for all learner in base learners do
4: if W i (xk) , 0 then
5: let learner chooses action ϑk,learner from its policy
6: else
7: ϑk,learner ← 0
8: end if
9: end for

10: uk ←
W(xk)Tϑk∑

j W j(xk) {function approximator (5.43)}
11: measure next state xk+1

12: measure reward rk+1

13: end for
14: for all time step k = Ku,Ku + 1,Ku + 2, · · · do
15: for all learner in base learners do
16: rew←

∑k−1
i=k−Ku

γi−k+Kuri+1 {discounted sum, see figure 5.5}
17: if W i

(
xk−Ku

)
, 0 then

18: let learner updates its policy with reward rew W learner(xk−Ku)∑
j W j(xk−Ku) at action ϑk,learner

19: end if
20: if W i (xk) , 0 then
21: let learner chooses action ϑk,learner from its policy
22: else
23: ϑk,learner ← 0
24: end if
25: end for
26: uk ←

W(xk)Tϑk∑
i W i(xk)

27: measure next state xk+1

28: measure reward rk+1

29: end for
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Chapter 6

State-less applications

This chapter demonstrate the use the continuous action reinforcement learning automaton

(CARLA) method in different real world applications. First, we show a comparison of the

different implementations of CARLA and other bandit solvers. After, some experiments in real

production machines show that it is quite simple to use the method without excessive param-

eters tuning. No strong restrictions exist on the reward function and, unlike the hierarchical

optimistic optimization (HOO) method, for example, that has large memory requirements, the

CARLA learner can solve problems without high computational nor memory requirements.

First, in section 6.1, we show the advantages of the improved methods when tested in some

test cases. After this comparison, four real world control applications are tackled: controlling a

linear motor in section 6.2.1, learning the parameters of a linear controller for the autonomous

driving of a tractor in section 6.2.2, controlling a wire winding machine in section 6.2.3, and

learning the set points in a hydrologic system in section 6.2.4.

6.1 Test cases

We perform the comparison in two scenarios: single agent settings in section 6.1.1, and in a

game setting in section 6.1.2.

6.1.1 Single agent

The first set of test cases concerns single agent problems. Different scenarios are introduced

below.
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Six example cases are first tested. Their analytical expressions are given next in equa-

tions (6.1), (6.2), (6.3), (6.4), (6.5) and (6.6).

ρ1 (u) = B0.5,0.04 (u) (6.1)

ρ2 (u) = 0.9B0.2,1 (u) (6.2)

ρ3 (u) =
(
0.9B0.2,0.16 (u)

)⋃
B0.9,0.09 (u) (6.3)

ρ4 (u) = 0.9ρ1 (u) + rand (0.1) (6.4)

ρ5 (u) = 0.8ρ2 (u) + rand (0.1) (6.5)

ρ6 (u) = 0.9ρ3 (u) + rand (0.1) (6.6)

The test cases are described by the use of the binary operator
⋃

where x
⋃

y = x+y−xy, the

function rand : R→ R that produces a random number normally distributed around 0 and with

standard deviation specify by the one parameter of the function, and the function Bµ,Σ : U → R

been a Gaussian bell centered at µ and with covariance matrix Σ as shown in equation (6.7).

Bµ,Σ−1 (u) = e−
1
2 (u−µ)TΣ−1(u−µ) (6.7)

Their graphical representations are shown in figure 6.1.

Functions ρ1, ρ2, and ρ3 are deterministic functions Function ρ1 represents an easy learning

problem as it has an unique well defined maximum. Function ρ2 also has only one maximum

but the difference in the reward around it is very low. Finally, function ρ3 represents the more

challenging problem with two maxima. Functions ρ4, ρ5, and ρ6 are their stochastic versions

adding the additional difficulty of noisy observations.

Using these functions, we compare the performance of the original CARLA method with

the performance obtained with the different transformations obtained in the previous chapter.

We will also compare the methods reported in this dissertation with the other bandit solvers

introduced in section 2.3. For these experiments, we use a low value for the learning rate of the

CARLA method in order to achieve a more stable behavior. In this case we use α = 0.1. The
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Figure 6.1: Graphic representation of the reward functions - The first row represents the deter-
ministic functions (6.1), (6.2), and (6.3). The second row shows the stochastic functions (6.4), (6.5),
and (6.6)

spreading rate parameter is set to 0.2. In the case of the continuous action learning automaton

(CALA) method, we are use a low value for the step size, in this case α = 0.01. The lower

bound for the standard deviation is set to σL = 0.03 and the constant K+ = 5. The initial dis-

tribution’s parameters are set to µ0 = 0 and σ0 = 1. These values were experimentally verified

to exhibit stable convergence behavior. Two parameters have to be tuned for the HOO method

been % and v1. These two parameters characterize the reward function and determine how

much to explore suboptimal actions. The explanation on how to set these parameters is given

by Bubeck et al. (2011). Notice that when no information about the reward function is available

we would need to use generic values which will lower the convergence rate of the method. The

parameter values for each function are given in table 6.1.Figure 6.2 reports the average reward.

The red and green curves represents the CALA and HOO results respectively while the gray

curves the results when using CARLA. The dotted gray curve reports the original (unchanged)

CARLA method, the solid light gray reports the method including the automatically tuning of

the spreading rate and the solid dark gray curve reports the method including the automatically

tuning of the spreading rate and the standardization of the rewards as well. As it may be seen in

the figure, the CALA or HOO learning technique always obtain a better performance than the

original CARLA technique. Still, these methods have some drawbacks. The CALA method re-

lies on the assumption that the reward function is smooth. If we have more noise in the reward

function the lower bound for the σ parameter needs to increase affecting its performance. The

HOO method also presents drawbacks regarding the initial knowledge of the reward function.

Notice that at the beginning it starts learning very fast and then the performance dramatically
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drops. This happens because the % and v1 parameters controlling the exploration are very suited

for the overall function but for a smaller region these parameters allow to much exploration.

This problem could be avoided by constantly updating these parameters but this will require

the availability of sufficient information about the reward function which is unlikely. Further-

more, if we have that much information about the reward function, why to use an reinforcement

learning (RL) technique? By providing the CARLA technique with the automatic tuning of the

spreading rate, we increase its performance. Moreover, when combining this upgrade of the

method with the standardization of rewards we obtain better results than with the CALA and

HOO methods. Notice that we could think of including standardization of rewards to the latter

methods as well. In such a case, we would be constantly changing the reward. For the CARLA

method this is not a problem but we cannot expect the same from the other techniques. HOO

bases its performance in learning the reward function. If we constantly change it, then the

convergence will be seriously affected. CALA does not estimate the reward function but it is

a gradient based method that uses the size of the difference between observations to update its

parameters. If we constantly change the reward, which implies changing its gradient, then the

method will also be severely affected.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

% 0.5359 0.2872 0.4061 0.5359 0.2872 0.4061
v1 3.9187 1.0447 2.4623 3.9187 1.0447 2.4623

Table 6.1: Parameter setting of HOO for continuous action functions - Every row shows the
values of the % and v1 parameters for each of the functions (represented by every column) consid-
ered.

The six examples given above are stationary (i.e., the reward does not change over time).

We consider next a non-stationary problem. The reward function is similar to ρ1 but the mean

of the Gaussian is shifted starting at time-step 800. The size of the shifts increases over time

until it stops changing at time-step 3200. Equation (6.8) shows the expression for the reward

where k is the time-step.

ρ′1 (u) = B0.5+∆,0.04 (u) (6.8)

84



6.1 Test cases

0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ1
0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ2
0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ3

0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ4
0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ5
0.5

0.6

0.7

0.8

0.9

1

0 6000

ρ6

Figure 6.2: Comparison on continuous action bandit problems - The horizontal axis represent
the time-step while the vertical axis represent the average reward. The six functions are tested
and reported. The top row shows the deterministic functions ρ1, ρ2, and ρ3 while the stochastic
functions ρ4, ρ5, and ρ6 are shown in the second row. The red curve represents the CALA results,
the green the results when using the HOO method and the gray curves the results when using
CARLA. The dotted gray curve reports the original (unchanged) CARLA method, the solid light
gray reports the method including the automatically tuning of the spreading rate and the solid dark
gray curve reports the method including the automatically tuning of the spreading rate and the
standardization of the rewards as well.
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Figure 6.3: Comparison on a non-stationary bandit problem - The horizontal axis represent
the time-step while the vertical axis represent the average reward. The non-stationary function is
tested and reported. The red curve represents the CALA results, the green the results when using
the HOO method and the black curve the results when using CARLA.

where

∆ =


0 k < 800(

k−800
3600

)2
800 ≤ k < 3200

4
9 k ≥ 3200

Notice that CARLA needs now to constantly explore for changes in the reward function.

To this end, we lower bound the spreading rate so that the method can detect the changes in the

environment. The lower bound for the spreading rate is 0.02. Figure 6.3 reports the results in

the non-stationary function. Observe that while the CALA and the CARLA methods are able

to adapt to the changes of the function over time, the HOO method needs a longer period for

such an adaptation, lowering the average reward considerably.

6.1.2 Games

Some games are presented next. These two games are introduced as complex examples where

the basins of attractions are overlapping from both agent point of views. The analytical func-

tions are shown in equations (6.9) and (6.10) where I is the identity matrix. Figure 6.4 shows

the contour representation of both functions.

ρ7 (u) = 0.3125 (1 + sin (9u1u2))2 u1 + u2

2
(6.9)
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ρ8 (u) = B(0.5,0.5)T ,0.002I

((
u2

1
u2

))⋃
0.7B(0.1,0.1)T ,0.2I

((
u2

1
u2

))⋃
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(6.10)

Figure 6.4: Reward functions of Two 2-player games - Notice in the first game to the left that
the global optimum is located in a very narrow region, but this region overlaps with the other
maximum in both axis (first and second agents axis). The second game to the right is even more
complex since it also has a very narrow optimum region but it does not even overlap with the other
maxima.

Figure 6.5 shows the learning performance of the agents. More specifically the average

rewards collected over time are given in the figure on top and the actions selected (only for ex-

ploring selfish continuous action reinforcement learning automaton (ESCARLA)) every time-

step are shown in the picture at the bottom. The parameters setting is the same for the CARLA

learner (with spreading rate tuning and standardization of rewards) shown by the black curve.
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Figure 6.5: Comparison on continuous action games - Average rewards for ρ7 and ρ8. For
the first game, CARLA converges to the global optimum, sousing ESCARLA just delayed the
convergence, but still the learners converged to the global optimum. On the other hand, for the
second game, the improvement clearly led the agents to the global optimum in the third exploration
restart. Average reward is shown on top while the actions are shown on bottom.
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Notice that in the first game (left chart), the CARLAs are able to converge to the global opti-

mum. In the second game (right chart) the learners get stuck in local optima.

The blue curve shows the results when using the ESCARLA. Notice that every peak in

the rewards for ESCARLA implies a restart in the learning. Although a bit slower, the ES-

CARLA obtains more accurate convergence to the global optimum and does not get stuck in a

suboptimal solution as CARLA on this second game. Observe in the second game (right chart)

that after a first phase, further exploration is performed allowing the learners to scape the local

optima.

Figure 6.6 shows the regions elimination process for the second game. In the phase one the

agents converged to the joint action (0.32, 0.10) and deleted the region ([0.04, 0.52], [0.01, 0.44])

which is shown in black. In the second phase they converged to (0.95, 0.9) and deleted the re-

gion ([0.82, 0.99],[0.74, 0.99]). Finally – phase three –, they easily converged to (0.71, 0.5).

We would like to stress that the basins of attraction of the local attractor are not symmetri-

cal, in other words the roles of agents are not interchangeable. This can be seen by inspecting

equation (6.10), the function is not symmetrical due to taking the square of the action of the

first agent. As a consequence the range of actions excluded by each agent has not the same

size.
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Figure 6.6: Region elimination process - Notice it is very unlikely to find the global optimum
because it is a very narrow region. After ending the first exploration phase and restarting the
learning, it is not that unlikely anymore. After the second restart, it is inevitable to find it.
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The learners performed well in the above games but, to know whether the conclusion can

be generalized we evaluate the new approach on randomly generated games. Random functions

are generated for the reward function of the games. The functions are generated by the union

of Gaussian bells. We consider both, single agent bandit problems, as well as 2-players games.

Single agent functions use 1 or 2 bells while multi-agent functions will use between 1 and 6 of

these bells. The number of bells is generated at random. The parameters of the bells µ ∈ [0, 1]

and σ ∈ [0.01, 1] are generated randomly too, as well as the factor f ∈ [0.5, 1] multiplying the

factor for the bells to make them different in amplitude. An extra parameter r ∈ [0.75, 0.95]

is generated for introducing noise in single agent settings. Two ways for introducing noise in

single agent setting are explored with these functions, adding noisy bells or randomly selecting

between them. The analytical expressions are introduced in (6.11). Notice that ρ9, ρ10 and ρ11

are single agent problems while ρ12 is the only one representing a game of two players.

ρ9 (u) =
⋃n

i=1 fi Bµi,σiI (u)
ρ10 (u) =

⋃n
i=1

(
ri fi Bµi,σiI (u) + rand (1 − ri)

)
ρ11 (u) = pick

{
ri∑n
1 ri
, fi Bµi,σiI (u)

}
ρ12 (u) =

⋃n
i=1 fiBµi,σiI (u)

(6.11)

50 games are generated from each type of function. The average difference between the

global maximum of the function and the final average reward collected by agents over 10000

time-steps are shown in table 6.2. The same parameter settings reported for the previous tests

are used. A Wilcoxon rank test shows that in single-agent scenarios the automatic tuning of the

spreading rate and the standardization of the rewards causes the CARLA method to perform

better while in games the ESCARLA outperforms them both. The results of this statistical test

can be seen in the last two columns of the table 6.2.

6.2 Real world applications

The cases discussed in this section are cases which have been selected within the Lecopro

project (ref) (except from the “reservoir” case). Most cases have been tested on real setups,

for the autonomous driving of the tractor we rely of realistic simulations which have been

developed by the Lecopro members and are sufficiently realistic to be able to draw conclusions

for the performance we can expect on the real setups.
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CARLA CARLA+ ESCARLA CARLA Vs CARLA+ CARLA+ Vs ESCARLA
ρ9 0.0876 0.0049 0.0146 0.000 0.352
ρ10 0.0885 0.0092 0.0100 0.000 0.746
ρ11 0.0786 0.0178 0.0171 0.000 0.515
ρ12 0.0943 0.0851 0.0365 0.347 0.001

Table 6.2: Comparison between the different implementations of CARLA - Every row shows
the average difference between the long-run reward and the current maximum reward. First col-
umn for the standard CARLA (labeled as CARLA), second using the automatically tuning of the
spreading rate and the standardization of the rewards with CARLA (labeled as CARLA+), and third
column represents the ESCARLA method. The automatic tuning of the spreading rate in addition
with the standardization of the rewards considerably reduces this difference in single-agent scenar-
ios and the ESCARLA considerably reduces this difference for multi-agent games while it makes
no harm in single-agent scenarios. Last two column shows the Wilcoxon rank test significance of
the comparison of the CARLA algorithms.

6.2.1 Linear motor

In many industrial applications, it is either not possible or too expensive to install sensors which

measure the system’s output over the complete stroke: instead, the motion can only be detected

at certain discrete positions. The control objective in these systems is often not to track a

complete trajectory accurately, but rather to achieve a given state at the sensor locations (e.g.

to pass by the sensor at a given time, or with a given speed). Model-based control strategies

are not suited for the control of these systems, due to the lack of sensor data.

6.2.1.1 Description

In this section, we present experiments with a simple abstraction of such systems, an electro-

mechanical setup consisting of a linear (in the sense that the resultant force is in a linear di-

rection but it does not imply linear dynamics) motor and a moving mass mounted on a straight

horizontal guide (Figure 6.7). The position of the moving mass is monitored using a single

discrete sensor, set along the guide, which fires at the passage of a small (1 cm) element at-

tached to the mass. When the motor is activated, the mass is punched forward, and slides up

to a certain position, depending on the duration and speed of the motor’s stroke, and on the

unknown friction among the mass and its guide. Two tasks are defined on this setup, with

different objectives: a) let the mass pass the sensor at a predefined time (time task); b) let the
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Figure 6.7: Sketch of the linear motor set-up - A linear motor bumps a mass through a horizontal
guide. The position measurement can only be taken at one location with a discrete sensor.
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Figure 6.8: Reward functions for the linear motor set-up - Two control tasks are considered,
sampled for 500 randomly chosen actions on a subset of the unit interval, including the optimal
action. Left: time task. Right: position task.

mass stop exactly in front of the sensor (position task).

The motor is activated by a electric signal. We only consider constant amplitude signals,

with a length varying on a closed interval, such that an action consists of a single scalar, which

we normalize in [0, 1], every single action is followed by a scalar reward, and no state in-

formation is used. For each task, a corresponding reward function is implemented, favor-

ing the desired behavior. For the time task, given a target time t0, the reward is given as

rk = exp
(
−c (tk − t0)2

)
, where c is a constant (c = 1000), and tk is the time at which the sensor

starts firing at trial k, or ∞ if the mass does not reach it. For the position task, the reward

is given as the portion of time during which the sensor fires, over a fixed time interval (4s),

measured from the beginning of the motor’s movement. Figure 6.8 reports samples of the two

reward functions taken during different days. Note that the system is highly stochastic, and

repeating the same action may result in different rewards.
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6.2.1.2 Results

The results of the modified CARLA algorithm are shown in figure 6.9 on both tasks. We plot

single experiments with the actual setup, each lasting for 300 time-steps. CARLA was run

with a learning rate of 0.8, and a spreading rate 0.25. The lower bar plot reports the returns

observed at each time-step, while the upper plot reports the actions performed (+), along with

the evolution of statistics describing the policy: mean and standard deviation of the CARLA’s

nonparametric distribution. Observe how the learner is able in a few trials to find a good

policy. After 50 trials the decision maker is mainly receiving high rewards (bottom-left figure),

and after 100 trials the policy has already converge around the optimal action (top-left figure).

The position task turns out to be more difficult: this can easily be explained comparing the

reward samples (Fig. 6.8). The best action for the position task, around 0.4, is a needle in a

haystack compared to the time task, where the reward function changes more gradually around

the optimal action. Nonetheless, the CARLA algorithm is able to converge to a good action

for both tasks. Notice that in this case, after 100 trials the learner is mainly exploring around

the optimal action often receiving good rewards (bottom-right figure). Afterwards, it converges

gradually closer to the optimal strategy (top-right figure).

6.2.2 Learning PID parameters to control an autonomous vehicle

We next discuss how to use CARLA for learning unknown parameters of a model based con-

troller for autonomous driving. Our ultimate goal is to control a tractor to follow a reference

trajectory.

6.2.2.1 Description

For controlling the tractor we have an actuator controlling the direction. This actuator consists

of a hydraulic valve that makes the front wheels turn to target degree in both possible directions.

We are interested in learning to control the actuator with the appropriate degree value for any

state of the system so the tractor can match its reference trajectory. The tractor is provided with

a GPS so we can track its position. Since we are interested in the tractor tracking any target

trajectory the system state is not based on the absolute position of the tractor but on its relative

position with respect to the target trajectory. More specifically, the system state is defined as a

vector consisting of three components: the error y (i.e., the distance from the current position
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Figure 6.9: Results on the linear motor control task - The top row shows sampled actions
together with the mean and standard deviation of the action probabilities. Bottom row shows
obtained rewards. Left: time task. Right: position task.
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to the trajectory), the first derivative of the error ẏ (i.e., how fast the tractor is getting away from

the trajectory), and the integral of the error yint (i.e., the cumulative error).

The CARLA method has successfully been used for learning linear controllers (Howell &

Best, 2000; Howell et al., 1997). The easiest way of doing so is to learn a gain matrix K so the

control action u can be expressed depending on the state x as:

u = KT x

The goal of the learning is to find the value of K that maximizes the performance index (or

minimizes the cost) of the system. We may learn this gain matrix from scratch and the learning

procedure will eventually find the appropriate values. In a practical situation this is not feasible

as it would require too much exploration, so some model information can be used. Figure 6.10

depicts this problem. The reference trajectory is drawn in red. In the figure, the angle of the

tractor relative to the trajectory is called φ, the front wheels steering angle is θ ∈ [−35◦, 35◦],

and the distance from the rear wheels to the front wheels is LT .

When the tractor drives at a constant speed v the error (meaning the distance to the tra-

jectory) and the orientation (of the tractor relative to the trajectory) should change following

the expressions shown in (6.12) where kT is the slip factor between the tractor wheels and the

ground.

ẏ = v sin (φ)

φ̇ = −
kT
LT

v tan (θ)
(6.12)

For controlling this system we may use a combination of a feed-forward controller taking

care of the trajectory that the tractor is facing and a feed-back controller correcting the error

observed so far. Let Rt be the radius of the tangent circle to the trajectory at the current position.

The feed-forward controller uses the control rule shown in (6.13). Remember that in this case

the control action u is the steering angle θ. For the feed-back controller we use a PID controller

where the gain matrix K is composed by the proportional gain K p, the derivative gain Kd, and

the integral gain Ki as shown in equation (6.14).

u = atan
( LT
kTR

)
(6.13)

u = KT x =

 K p

Kd

Ki


T

×

 y
ẏ

yint

 = K py + Kdẏ + Kiyint (6.14)
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Figure 6.10: Controlling an autonomous vehicle - The tractor is expected to follow a reference
trajectory. In the figure an example trajectory is plotted in red. The state of the system is described
by the distance from the current position of the tractor to the trajectory namely the error, the first
derivative of this error, and its integral. The control action is the steering angle θ.
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where:

Kd =
Kdeq

v2

K p = kTv2 K2
d

3LT

Ki = kT 2v4 K3
d

27LT 2

and the parameter Kdeq is the derivative gain of the PID at a constant speed 1m/s (the higher

this parameter, the more aggressive the controller for reducing error).

Although this is a model based controller (the gain matrix is obtained based on the model),

still there are some parameters such as the slip factor kT or the aggressiveness Kdeq that cannot

be easily predefined in advance. Learning the optimal gain matrix from scratch with an RL

technique will take a very long time. However, if we use this model based controller and learn

the one parameter kT by means of an RL technique, the learning time will be considerably

lowered. Notice that unlike the aggressiveness, the slip factor is a parameter that depends on

the environmental conditions and cannot be set to a predefined value since it will change from

one field to the other or even from a day to the other in the same field. For the experiments we

use an eight shaped trajectory as shown in figure 6.11.

Figure 6.11: A reference trajectory for the tractor - This trajectory makes possible an infinitum
repetition of trials.
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The difficult part during driving is on the turns. Every learning time-step is defined by

starting in the x-axis origin, turning, and crossing the x-axis origin again. During a learning

time-step a CARLA learner selects an action, namely the slip factor. This slip factor is used

to calculate the gain matrix and then the tractor is controlled during the whole time-step. At

the ending of the time-step the learner is provided with a pay-off value and the process is

repeated again. Selecting a wrong slip factor produces the controller to drive the tractor in an

incorrect way. So the better the estimation of the slip factor, the lower the mean error during

the trajectory. The mean error during the trajectory is not enough to measure the quality of

the estimation of the slip factor as it does not only rely on the estimation itself but also in the

initial position of the tractor when starting the learning time-step since the tractor can be off

the reference trajectory. Notice that after a wrong estimation the tractor will most likely end

up really far from the reference trajectory so even if we perfectly estimate the slip factor in

the next time-step and the tractor drives rapidly approaching the reference trajectory, the mean

error will still be high due to the accumulated error during the correction at the beginning. For

this reason it is necessary to take into account in the pay-off function the initial position of the

tractor. Instead of using only the accumulated error during one learning time-step, we propose

to use the improvement made to the error during such a time-step. The pay-off function is

defined in equation (6.15) where tk0 and Tk are the current simulation time when the learning

time-step k begins and ends respectively, yk0 is the error at tk0 and ykt is the error at time t during

time-step k. Notice that this pay-off is not measuring how big or small is the accumulated error

but how much the error reduces over time. If at tk0, the tractor is perfectly situated on the

trajectory, then the best possible outcome will be not to deviate again from the trajectory, any

deviation will be punished in this case. If there was an initial error the best possible outcome

is to go as fast as possible to the reference trajectory and not deviate from it. The slower the

tractor goes to the trajectory, the lower the pay-off. If the tractor keeps deviating from the

trajectory, then the reward will be even lower.

ρk (uk) =

Tk∫
tk0

(
yk0 − |ykt|

TK − tk0

)
dt (6.15)

6.2.2.2 Results

Figure 6.12 shows the error observed while learning the correct slip factor. All results are ob-

tained in simulation. Notice that even with the correct slip factor the reference trajectory cannot
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be followed perfectly. This a normal behavior for a PID controller, the error is only corrected

after it occurs. The dashed lines represent the maximum and minimum errors observed when

using manually defined slip factors. The best results were obtained using a fixed slip factor of

0.6 (red dashed line). When using the extreme values of 0 or 1 the error range is wider (green

and black dashed lines respectively). The solid blue curve shows the error when learning the

slip factor with the CARLA procedure. Notice that some large errors exist during learning but

the method rapidly converges to a region where the errors are smaller and it actually manages

to keep the absolute value of the extreme error close to its minimum (about 0.3 meters).

Figure 6.12: Error during the learning process of the slip factor - The discontinuous lines
represent the maximum and minimum errors observed when using manually defined slip factors.
The optimal performance is achieved by using a slip factor of 0.6. The learner is able to explore
for this optimal value at a relatively low cost.

Figure 6.13 depicts how fast the controller corrects the error. In the figure we plot in the

figure the average over time of the accumulated error, i.e., the average from the first iteration to

the current one of the total accumulated area existing between the reference trajectory and the

current one per turn. Again the same nomenclature is used.
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Figure 6.13: Average accumulated error during the learning process of the slip factor - Aver-
age total area existing between the reference trajectory and the current one at every turn.
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Figure 6.14 shows how fast the learner corrects the controller in order to lower the error

faster. We plot in the figure the the accumulated error over each turn, i.e., the total area existing

between the reference trajectory and the current one at every turn. Again the same nomencla-

ture is used.

Figure 6.14: Accumulated error during the learning process of the slip factor - Total area
existing between the reference trajectory and the current one at every turn.

Figure 6.15 shows the same results as figure 6.14 but in this case we only show the error

obtained when using the learning procedure and the error obtained with the predefined slip

factor 0.6. As can be noticed, the learner converges to an even better solution than the one

found manually.

6.2.3 Wire winding machine

The wire winding problem is a very challenging case. In this application, a wire should be

wound on a bobbin automatically meaning that the turning point should be decided upon by

the control algorithm. This is highly non-deterministic problem and hard to model sufficiently

accurate. As a consequence, traditional model-based techniques fail to properly control this
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Figure 6.15: Accumulated error during the learning process of the slip factor - Same results
as figure 6.14 but in this case we only show the error obtained using the learning procedure and the
error obtained with the defined slip factor 0.6.
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Figure 6.16: Wire winding machine – The bobbin rotates by the effect of the winding motor
while the traversing system spreads the wire over the surface. The controller must decide on the
turning point of the traversing system for an adequate winding.

traversing system
wire

winding motor

process. Failing to determine the proper turning point during winding leads to accumulation or

tangle of thread, which leads in turn to problems when unwinding the bobbin afterwards. As an

additional challenge, in bobbins with bending flanges, the process will perform non-stationary,

i.e., the optimal action will change over time.

6.2.3.1 Description

Figure 6.16 shows an sketch of the general setup. The bobbin rotates by the effect of the

winding motor while the traversing system spreads the wire over the surface. The controller

must decide on the turning point of the traversing system for an adequate winding. This im-

plies learning the proper control of the turning points of the back-and-forth moving traversing

system, avoiding hills or valleys of the wire along the edges of the bobbin.

A sensor is attached to the traversing system for getting information about the winding

process. Collecting information with this sensor produces highly noisy observations. If the

traversing system turns too fast, problems close to the flange position will not be detected.

Turning too slow will produce accumulation of the wire at the edge of the bobbin. We use the

flatness of the surface ∆p of the bobbin to reward the controller as figure 6.17 shows.

The straightforward way to address this problem is by using a fixed turning point for the

traversing system. However due to uncertainty of the systems, this will not perform optimal.

Furthermore, in bobbins with a bending flange the fixed turning point for the traversing system

will absolutely fail since the action needs to adapt to the changing process.
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Figure 6.17: Flatness of the surface measured as ∆p – The black region corresponds to the wire.
A positive ∆p implies that the radius of the volume of wound wire close to the flange is larger than
in the center of the bobbin, meaning a hill. A negative ∆p implies that the radius of the volume of
wound wire close to the flange is shorter than in the center of the bobbin, indicating a valley. If ∆p
is zero, we have a good profile, which needs no correction.

valley

∆p < 0∆p = 0

goodhill

∆p > 0

6.2.3.2 Results

The problem is tackled by using two CARLA controllers. One learning the proper turning

point at the left flange and another at the right. The action is expressed as the distance from the

center of the bobbin to the turning point. The reward function is based on the observed ∆p:

rk = −∆p

At a first look at this reward it may seem like we are positively rewarding the creation of valleys,

but this is not correct. Let us analyze the different situations separately.

If a positive ∆p is sensed, it means that there is a hill. The current action is not responsible

for creating the hill, it already exists and the actions that generated it were rewarded already.

Still, if with this action we are detecting the hill, it means that such an action is reinforcing

even more this hill so it is a bad action and it has to be penalized. If a negative ∆p is sensed, it

means that there is a valley. Again, the valley was not created by the current action so we cannot

penalize it for such an observation. Detecting the valley implies that the action is correcting

the problem though. The controller has to be rewarded if it keeps detecting and correcting such

a problem. If a nearly zero ∆p is observed, maybe there is a valley or a hill but possibly it was

not detected because the action made the winder turn before the hill or valley could be detected,

but there is no evidence to categorize the action as a bad one.

The creation of hills is easily avoided with this reward function. The problem is how to cope

with not detecting valleys. To tackle this problem we need a proper exploration strategy. We

never want the controllers to explore for shorter actions since the problems are only detected

with larger actions. If a hill is detected the rewards will make the controllers to select a shorter
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action. In case no problem is sensed the controller needs to keep exploring for larger actions in

order to detect possible hills. We need to bias the exploration in the direction of larger actions if

the controller is settled. At the beginning, the controllers must act as regular CARLAs learners.

Once they converge to good actions, they have to keep slightly exploring around the optimal

action. For this reason, the spreading rate is lower bounded. The exploration has to be directed

in the positive direction. This is achieved by changing the action selection procedure. The

standard procedure is to generate a random number rand uniformly distributed in [0, 1] and

then generate the action as F−1(rand) where F is the cumulative density function. We still use

a random number rand in [0, 1] but not uniformly distributed now. Instead, we use a linear

density function with a positive slope.

It is important to stress that the exploration bias is only active when the controller is settled

and not if it detected any problem. During the learning (i.e., the spreading rate has not reached

its lower bound) the exploration bias is inactive. If the controller starts detecting a hill, the

exploration bias is also deactivated.

Figure 6.18 shows the results obtained in a the flat-flange bobbin. Left plots correspond to

the left controller and right plots to the right controller. Top down, the figure shows the turn

point, the observed ∆p, and the reward. Notice, in the top chart, how the action varies over

time adapting to the detected problems. the acceptable boundaries for good performance and

we see that the controller manages to keep the system within these boundaries.

Figure 6.18: Wire winding results in a flat bobbin - Left plots correspond to the left controller
and right plots to the right controller. Top down, the figure shows the turn point, the observed ∆p,
and the reward.
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Figure 6.19 shows the results obtained in a the round-flange bobbin. These bobbins bend

during the winding process resulting in a non-stationary problem. Left plots correspond to

the left controller and right plots to the right controller. Top down, the figure shows the turn

point, the observed ∆p, and the reward. This is a more challenging problem since now the

controllers face a non-stationary process. Notice, in the top chart, how the action adapts to the

bending flange over time. We also show a boundary for good performance in the error plot by

the hyphened line. The controllers keep the error within good boundaries.

Figure 6.19: Wire winding results in a round bobbin - Left plots correspond to the left controller
and right plots to the right controller. Top down, the figure shows the turn point, the observed ∆p,
and the reward.

6.2.4 A hydrologic problem

Below, we report a control problem which is a simplified yet representative problem of con-

trolling the water level of a network of connected reservoirs or locks. Typically such a network

is spread over different countries or authorities who want to decide independently on the level

of the reservoirs belonging to their territory, yet it is not allowed to get the other ones in situ-

ations that would lead to flooding or water scarcity. An example is the Belgian lock systems.

Water enters from France and Germany, and within Belgium the locks located in the South are

controlled by Wallonia and the locks in the North by Flanders. Controlling reservoirs by RL

is not entirely new. In Castelletti et al. (2012) an RL approach is described for controlling a

single reservoir. In this paper the setting is much more complicated as a network of locks is

considered.
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6.2.4.1 Description

Figure 6.20: Water reservoirs problem - Two water reservoirs are controlled in two different
provinces. They may flow water from one to the other or discharge it to the sea. The objective is to
find the optimal target levels to use in order to avoid both: flooding and water scarcity.

Consider two water reservoirs that belong to different provinces. Each reservoir covers

the demand of the region. The reservoirs are normally filled by rainfall. Both reservoirs may

discharge to the sea at a limited flow by means of a valve. The reservoirs are connected so they

can transport water from one to the other. This flow comes at a price that linearly depends on the

levels of water of each reservoir, flowing from a high level to a lower one is much cheaper than

the other way around. In case of emergency they may also use an external source for feeding

or discharging. This external resource can only be used when both reservoirs are full or empty

to avoid flooding or water scarcity. There is only one connection to the external source that

becomes more expensive when used by both reservoirs at the same time. Figure 6.20 illustrates

this problem.

A more detailed description of the system is given bellow. Rain fall is normally distributed

with mean 0.5 and standard deviation 0.1 in both provinces. The demand is fixed in both

provinces at 0.5. Valves controlling water to flow to the sea of both reservoirs allow a maximum

flow of 0.35 per time unit. The cost of transporting a unit of water from or to the external source

is 0.5 if it is used by only one province and 4 when used by the both of them. The cost for

transporting water from one province to the other depends on the difference of water levels as

shown in equation (6.16) where level1 is the level of the water in the reservoir of the province

which is giving the water and level2 is the level of the water of the reservoir of the province
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Figure 6.21: Reward function of the water reservoirs problem - To the left the contour repre-
sentation of the reward while to the right its landscape.

which is asking for the water. The objective of this problem is to find the adequate levels of

water that the reservoirs should keep to meet the demand at the lowest cost. If a reservoir’s level

is higher than the target level, it discharges the water to the other reservoir if the other needs it

to reach its target level or to the sea as fast as the valve allows it. The cost is calculated after 50

time units starting from random levels of water at each reservoir. Figure 6.21 shows a contour

representation of the average reward (calculated over a hundred simulations) that the learners

may expect when facing this problem (a contour representation to the left and the landscape

representation to the right). The expected cost is plotted over the z-axis and the actions runs

from completely empty (0) to completely full (1).

cost = 50 (level2 − level1 + 1) (6.16)

6.2.4.2 Results

Notice there are two Nash equilibria in this problem. The total amount of water in both

provinces has to be sufficient to avoid the need for feeding the reservoirs from the external

source but not too high in order to avoid discharging to the external source at a high cost. No-

tice this is necessary due to the stochasticity of the rainfall. Because it is much more expensive

to simultaneously use the external resource for both reservoirs and it is much cheaper to flow

water from one reservoir to the other if there is a big difference in their levels it is preferable to

store most of the water in one reservoir and keep the other level lower.

Table 6.3 shows the percentage of the times that each optimum was found with the ES-

CARLA method after every synchronization phase using the same settings as before. Each row
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Table 6.3: Results of ESCARLA on the water reservoirs problem - Convergence to each opti-
mum per exploration phase

1st phase 2nd phase total percent
(0, 1) 26 24 50
(1, 0) 24 26 50

50 50 100

represents the percentage of times that the top-left or bottom-right maximum was found. The

last row shows that ESCARLA was always successful in finding one of the Nash equilibria

in the first phase and the other one in the second phase. Notice they both found both Nash

equilibria with the same probability, which is to be expected as the problem is symmetric.

6.3 Summary

This chapter demonstrates how to use the CARLA learner for controlling state-less real life

control problems. First, some toy functions are used for showing a comparison of the different

existing techniques and how the changes proposed in this dissertation ensure a faster conver-

gence. The first application is a rather simple problem: controlling a linear motor. The term

linear comes from the direction of the force produced by the motor, not from its dynamics. This

stationary continuous action bandit example is representative of several production machines

where we need to control a motor with information obtained from limited sensors. A much

more complex task is demonstrated by using a linear controller for driving an autonomous

tractor. The RL technique is used here for learning the optimal parameters of the linear feed-

back controller. We also show how to control a wire winding machine as a non-stationary

example. The last state-less application is in a game setting. It relates to a distributed hy-

drologic system where local controllers exist and we want to decide on their set-point for an

optimal performance.
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Chapter 7

Multi-state applications

The previous chapter explains in detail the state-less applications covered by the research ex-

posed in this dissertation. Next we proceed with the explanation of problems represented by

a Markov decision process (MDP) from which we can obtain information about the state of

the system. First, we try some test cases in section 7.1. Afterwards, the autonomous tractor

problem is addressed in section 7.2.1 and a game setting example is provided in section 7.2.2.

7.1 Test cases

Two abstract problems are addressed in this section: the double integrator problem and con-

trolling a DC motor. The double integrator problem was presented by Santamaria et al. (1998)

as an example solved using SARSA () with tile coding and kernel based approximation. The

DC motor problem was introduced by Buşoniu et al. (2010) as an example solved using sev-

eral approximated reinforcement learning (RL) techniques involving different basis function

approximators.

7.1.1 Double integrator problem

The double integrator problem was presented by Santamaria et al. (1998). This is a challenging

problem where the action affects indirectly the state variable taken into account in the reward

function. As the goal state is approached by the process, the action has to be chosen more

carefully making really necessary to use a continuous state-action technique.
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7.1.1.1 Description

The double integrator is a system with linear dynamics and bidimensional state. A car of unit

mass moving moves in a flat terrain subject to the application of a force. The state is described

by the current position p and velocity v. In a vectorial representation we have xk =
[

v p
]T

.

The controller decides on the acceleration a applied to the car uk = [a]. The objective is to move

the car from the starting state x0 =
[

v0 p0
]T

to the goal state xg =
[

vg pg
]T

such that

the return is maximized. The reward function is defined as a negative quadratic function of the

difference between the current and desired position and the acceleration applied (7.2), where

Q =

[
0 0
0 1

]
and R = [1]. Negative quadratic functions are widely used in robotics which

specify an objective to drive. The tradeoff between time to reach the goal and effort is specified

by matrices Q and R. The acceleration is bounded to the range a ∈ [−1, 1]. Additionally, the

values of p and v must be kept in the same range as well. For this reason we use a penalty of

-50 any time their values go out-bounded and restart the simulation. The system’s dynamics

are defined as shown in expression (7.1).

xk+1 =

[
vk+1
pk+1

]
=

[
vk

pk

]
+

[
0 0
1 0

] [
vk

pk

]
∆t +

[
1
0

]
[a] ∆t = xk + Axk∆t + Buk∆t (7.1)

rk+1 = −

((
xk − xg

)T
Q

(
xk − xg

)
+ uT

k Ruk

)
(7.2)

Results are obtained in simulation using a time step of ∆t = 0.05s. The results are reported

over 35 trials. Every trial consists of starting the system at state xk =
[

0 1
]

and running it

for 200 time-steps (i.e., 10 simulated seconds), unless the state gets out of bounds (i.e., when

|p| > 1 or |v| > 1) or the goal state is reached (i.e.,
∣∣∣xk − xg

∣∣∣ < ε = 0.001) in which cases the

trial is finished.

This is a problem with linear dynamics and a quadratic cost function. In such a case,

the optimal solution is known as the Linear-Quadratic Regulator (LQR). The derivation fol-

lows from the solution to the Hamilton-Bellman-Jacobi partial differential equation (Bertsekas,

1995; Stengel, 1994). The optimal action at every time-step k will be defined in the form

u∗k = −K
(
xk − xg

)
where xk is the current state of the system and xg is the goal (or target) state.

In this case, K =
[ √

2 1
]

so the optimal policy is u∗ = −K
(
xk − xg

)
= −

[ √
2 1

]
xk.

Figure 7.1 shows the trajectory from x0 to xg using the optimal policy.
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Figure 7.1: Optimal solution for the double integrator problem - Trajectory when using optimal
policy. From left to right: control action, reward, velocity and position.

u

time (s)

-.5

0

.5

0 .48 .961.44

r

time (s)

-.1

-.05

0

0 .48 .961.44

v

time (s)

-.3

-.1

.1

0 .48 .961.44

p

time (s)

-.1

.2

.5

0 .48 .961.44

7.1.1.2 Results

The double integrator problem is tackled with the multi-state continuous action reinforcement

learning automaton (MSCARLA) algorithm. The state space is normalized. Two function

approximators are used as examples: tile coding and kernel based approximators. The state

space is composed by two components in both examples so the tiles are defined the same for

both applications. The parameter settings for the tile coding approximator is taken equal to

the one reported by Sutton & Barto (1998). The tile coding approximator has 24 tiles, 12

taking both components in consideration, 6 taking only first component and 6 taking only the

second component. All tiles are uniformly shifted over the state space. The same problem

is also solved using the continuous actor-critic learning automaton (CACLA) algorithm and

approximate SARSA with the same approximator’s parameters. Notice that since CACLA

is an actor-critic method, it uses exactly the same approximation mapping. Unlike CACLA,

approximate SARSA include the action in the approximation mapping as well so instead of 24

tiles, 36 are necessary (including 12 tiles for the action).

Figure 7.2 reports the results on the double integrator problem using a tile coding approx-

imator. The solid black curve represents the optimal solution. The red, green and blue lines

report the results when using approximate SARSA, CACLA, MSCARLA respectively. All

charts plot the performance using the policy learned after 200 episodes. In the case of CA-

CLA, we report the trajectory using the greedy policy (without the Gaussian exploration) after

learning. Top down, the charts represents the control action, the cost and both components of

the state space: velocity and position. Observe that all methods behave comparably good. The

higher reward is obtained by MSCARLA.
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Figure 7.2: Learned policies to control the double integrator problem a using tile coding -
Trajectory when using the policy learned by MSCARLA (blue line), approximate SARSA (red
line), and CACLA (green line) using tile coding approximator. The black curve represents the
optimal trajectory. Top down, the charts plots control action, cost, velocity and position.
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In the case of the kernel based approximator, it uses the parameter setting reported by Buşoniu

et al. (2010). The Gaussian kernel uses a width matrix B−1 =

[
0.041 0

0 0.041

]
. It adds a new

parameter to the approximation, i.e. a new stateless continuous action reinforcement learning

automaton (CARLA), if the new observation is in a point such that no other observation has

been taken before in a range of 1/35 times the range of the state. The learning rate is 0.5 and

the spreading rate 0.25. The horizon length is 50.

Figure 7.3 reports the results on the double integrator problem using a Gaussian kernel

based approximator. The solid black curve represents the optimal solution. The red, and blue

lines report the results when using approximate SARSA, and MSCARLA respectively. All

charts plot the performance using the policy learned after 200 episodes. Top down, the charts

represents the control action, the cost and both components of the state space: velocity and

position. In this case, the SARSA method converged closer to the optimal policy than the

MSCARLA learner.

Finally, figure 7.8 shows the accumulated cost (simple sum of all rewards from the initial

state to the end of the episode) over learning. The black line represents the optimal cost while

the red, green, and blue curves plot the accumulated cost when using approximate SARSA,

CACLA, and MSCARLA respectively. Top down the charts show the double integrator prob-

lem using a tile coding, and a Gaussian kernel based approximator. This figure gives us a better

idea of the learning process. Notice that when using a Gaussian kernel based approximator, the

MSCARLA method is still learning after the 200 episodes. Although in the previous figure we

observed a better performance from the SARSA learner than from the MSCARLA, eventually

the MSCARLA can still do better. At this point of learning their behaviors are comparable

at least. The learning is much faster using SARSA than using MSCARLA in both cases. A

possible cause for this difference is that the MSCARLA method uses a reward-inaction rule for

updating its policy so it is not as fast as value iteration methods when dealing with with high

penalties.

7.1.2 DC motor

As a second example we provide a problem involving a DC motor control. This is a challenging

problem as well with faster dynamics introduced by Buşoniu et al. (2010). In this case we can

also find the optimal policy with a LQR making possible to know how close the RL methods

behave to the optimal.
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Figure 7.3: Learned policies to control the double integrator problem using a Gaussian kernel
- Trajectory when using the policy learned by MSCARLA (blue line), approximate SARSA (red
line), and CACLA (green line) using tile coding approximator. The black curve represents the
optimal trajectory. Top down, the charts plots control action, cost, velocity and position.
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7.1 Test cases

Figure 7.4: Accumulated cost during learning process - The black line represents the optimal
cost while the red, and blue curves plot the accumulated cost when using approximate SARSA,
and MSCARLA respectively. Top down the charts show the double integrator problem using tile
coding, and Gaussian kernel based approximators.
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7.1.2.1 Description

The model is a discrete-time abstraction of the electrical direct current (DC) motor introduced

in (7.3). The discretization was performed using a sampling time of ∆t = 0.005s. The state of

the system is defined by the shaft angle and its angular velocity x =
[
α α̇

]T
. The shaft angle

is measured in rad and it is bounded to [0, 2π]. The angular velocity is measured in rad/s an

it is bounded to [−16π, 16π]. The controller must decide on the voltage feeded to the motor

in an interval [−10V, 10V]. The goal is to stabilize the system at xg =
[
π 0

]T
. Again, a

negative quadratic reward function (7.2) is chosen to express this goal. The selected matrices

are Q =

[
5 0
0 0.01

]
and R = [0.01].

xk+1 = Axk + Buk

A =

[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(7.3)

The simulation uses a time step of ∆t = 0.005s. Every trial consists of starting the system

at state xk =
[

0 0
]

and running the system until either 160 decision steps has elapsed (i.e.,

0.8 simulated seconds), or the goal state is reached (i.e.,
∣∣∣xk − xg

∣∣∣ < ε = 0.001).

Again, the optimal policy is represented by the LQR. In this case, K =
[

22.3607 1.1203
]
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Figure 7.5: Optimal solution for the DC motor problem - Trajectory when using optimal policy.
From left to right: control action, reward, shaft angle and angular velocity.
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so the optimal policy is u∗ = −K
(
xk − xg

)
= −

[
22.3607 1.1203

] (
xk −

[
π 0

])
. Fig-

ure 7.5 shows the trajectory from x0 to xg using the optimal policy.

7.1.2.2 Results

The same parameter setting (as in the case of the double integrator problem) is used for the

learners in this problem Figure 7.6 reports the results on the DC motor problem using a tile

coding approximator. The solid black curve represents the optimal solution. The red, green

and blue lines report the results when using approximate SARSA, CACLA, MSCARLA re-

spectively. All charts plot the performance using the policy learned after 200 episodes. The

trajectory sown for the CACLA is obtained with the greedy policy after learning. Top down,

the charts represents the control action, the cost and both components of the state space: shaft

angle and angular velocity. Observe that again the results are comparably good.

Figure 7.7 reports the results on the DC motor problem using a Gaussian kernel based ap-

proximator. The solid black curve represents the optimal solution. The red, and blue lines

report the results when using approximate SARSA, and MSCARLA respectively. All charts

plots the performance using the policy learned after 200 episodes. Top down, the charts rep-

resents the control action, the cost and both components of the state space: shaft angle and

angular velocity. Again, both methods achieved a comparable performance.

Finally, figure 7.8 shows the accumulated cost (simple sum of all rewards from the initial

state to the end of the episode) over learning. The black line represents the optimal cost while

the red, green, and blue curves plot the accumulated cost when using approximate SARSA,

CACLA, and MSCARLA respectively. Top down the charts show the DC motor problem
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Figure 7.6: Learned policies to control the DC motor problem using a tile coding - Trajectory
when using the policy learned by MSCARLA (blue line), approximate SARSA (red line), and CA-
CLA (green line) using tile coding approximator. The black curve represents the optimal trajectory.
Top down, the charts plots control action, cost, shaft angle and angular velocity.
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Figure 7.7: Learned policies to control the double integrator problem a using Gaussian kernel
- Trajectory when using the policy learned by MSCARLA (blue line), and approximate SARSA
(red line) using tile coding approximator. The black curve represents the optimal trajectory. Top
down, the charts plots control action, cost, shaft angle and angular velocity.
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7.2 Real world applications

Figure 7.8: Accumulated cost during learning process - The black line represents the optimal
cost while the red, green, and blue curves plot the accumulated cost when using approximate Q-
learning, CACLA, and MSCARLA respectively. Top down the charts show the DC motor problem
using tile coding, and Gaussian kernel based approximators.

Accumulated reward

iteration

-4285

-2857

-1428

0

0 20 40 60 80 100 120 140 160 180 200

Accumulated reward

iteration

-4285

-2857

-1428

0

0 20 40 60 80 100 120 140 160 180 200

using tile coding, and Gaussian kernel based approximators. Notice that the difference in the

learning time is smaller than in the previous problem since there are no penalties involved in

this process.

7.2 Real world applications

7.2.1 Autonomous tractor

The autonomous-tractor driving problem was introduced in section 6.2.2. In this section we

come back to the same application. This process has non-linear dynamics so an algorithm

such as the integral reinforcement learning (IRL) introduced in section 4.3.2 is not suited. The

algorithm can still work if the dynamics are nearly linear. We tried the IRL technique with

different parameter settings however the method was unfeasible. After the first update of the

policy the controller became unstable driving the tractor away from the trajectory. As written

before, this was not unexpected. The possible solution to this problem is to reduce the sampling

time. After reducing this sampling time significantly (from 0.2 to 0.005 seconds) in simulation,
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we started obtaining a stable performance of the controller. Unfortunately, this is a change we

cannot afford in the real set-up. The minimum possible sampling time that we can use is 0.2

seconds. Instead, we use a more flexible technique such as the MSCARLA.

Before, the state information was used to construct a linear controller by means of a gain

matrix. That was a first step in using CARLA for control in a MDP. The control action was

given as the sum of the actions predicted by the feed-forward and feed-back controllers. The

feedback controller that was designed for correcting the error over time is now substituted by

an MSCARLA learner. By doing so, we eliminate a long process of model identification in

order to create the model-based gain matrix. Still, we are keeping some model information

(the feed-forward controller) which is much simpler to obtain and that will shorten the learning

process significantly. We could have substituted both and let the learner to take over on its own

and it would also have converged to a good policy but the learning time for this approach would

have been unpractical.

7.2.1.1 Description

The state space of the learner is defined using most of the variables used before for the con-

trollers: error y, its first derivative ẏ, and the curvature of the trajectory Rt. The control action is

the correction to be added to the action selected by the feed-forward controller so the steering

angle θ = u f f + uMS CARLA where u f f is the action selected by the feed-forward controller and

uMS CARLA is the action selected by the learner. The learner takes an action at every time-step

during the driving process leading to a new state and a reward. The one-step reward function

is a negative quadratic function of the current state:

rk+1 = −
(
xT

k Qxk + uT
k Ruk

)
where:

Q =

 1 0 0
0 0 0
0 0 0

 R = [0]

Every time that the tractor deviates from the reference trajectory in more than 2 meters the

trajectory is restarted from the origin and the learner is punished with -20.
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7.2.1.2 Results

Again, all results are obtained in simulation. Figure 7.9 reports the error made while driving

along the trajectory. The dashed lines represents the maximum error when using the PID

controller with the optimal slip factor (0.6). The solid blue line shows the error when using the

MSCARLA technique. The results are obtained using tile coding as the function approximator

with the same parameter settings as in the previous section. Notice that the learner clearly

outperforms the PID. Also notice that although the learning method needs to drive for more

than one hour before it starts performing nearly optimal, all the time and effort to obtain a

model (for the PID) is completely unnecessary now. If we compare this approach with the one

used previously in section 6.2.2, we can see that the results obtained are more accurate and the

learning process is not considerably lengthened.

Figure 7.9: Error during the learning process using MSCARLA - The discontinuous lines
represent the maximum and minimum errors observed when using manually predefined slip factors
for the PID controller. The optimal performance is achieved by using a slip factor of 0.6. When
using MSCARLA, the tractor has a smaller deviation from the target trajectory.
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Figure 7.10 shows the accumulated error during every turn (half of the eight shaped trajec-

tory). Notice that during the learning process a higher error is accumulated since we are not

using any model information for learning the correction. Still, the accumulated error after 50

turns becomes lower than the one obtained by the best PID controller.

Figure 7.10: Accumulated error during the learning process using MSCARLA - The discon-
tinuous lines represent the maximum and minimum errors observed when using some manually
predefined slip factors for the PID controller. The optimal performance is achieved by using a slip
factor of 0.6. When using MSCARLA, a considerably lower accumulated error is obtained at every
turn after the learning process.

We close the discussion on this experiment by showing the learned policy. The idea of

RL is to finely estimate the policy around the optimal trajectory and more loosely as the state

gets farer from the optimum. For this reason you may expect the policy to be well defined

around the steady-state (at zero error and derivative of the error) and poorer defined as the

state is farer from this point. The state space has three dimensions. The curvature is fixed

during the straight paths, during the turn to the right and during the turn to the left though.
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Figures 7.11, 7.12, and 7.13 show a contour representation of the average action decided by

the MSCARLA controller after learning when turning right, going straight, and turning left

respectively.

Figure 7.11: Policy for driving the tractor when turning right - When there is a negative error
and a negative derivative of the error (meaning the error is becoming even greater in the negative
direction), a correction of −10◦ is necessary. As the error and its derivative grows positive the
correction grows up till 10◦. Notice that when both, the error and its derivative, are inverse in terms
of sign no correction is necessary since the absolute value of the error is decreasing already.

7.2.2 Autonomous tractor plus an implement

The final goal when controlling the tractor is to perform some agricultural task. For this, we

also add an implement that is supposed to perform the task, e.g., harvesting crops or plowing a

field. The trajectory followed by the implement is mostly governed by the tractor but it still has

some movement freedom. It has been provided with an actuator for controlling its positioning
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Figure 7.12: Policy for driving the tractor when going straight - When there is a negative error
and a negative derivative of the error (meaning the error is becoming even greater in the negative
direction), a correction of −10◦ is necessary. As the error and its derivative grows positive the
correction grows up. Notice that when both, the error and its derivative, are inverse in terms of sign
no correction is necessary since the absolute value of the error is decreasing already.
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Figure 7.13: Policy for driving the tractor when turning left - When there is a negative error
and a negative derivative of the error (meaning the error is becoming even greater in the negative
direction), a correction of −10◦ is necessary. As the error and its derivative grows positive the
correction grows up till 10◦. Notice that when both, the error and its derivative, are inverse in terms
of sign no correction is necessary since the absolute value of the error is decreasing already.
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Figure 7.14: Controlling an implement - The implement is attached to the tractor and by means
of the actuator it can control its positioning with respect to the tractor.

with respect to the tractor.

7.2.2.1 Description

Figure 7.14 shows an sketch of the set-up. The actuator can change the length of the side joint

making the implement to slide at a given angle with respect to the tractor.

In this new set-up, on the straight paths, it is perfectly possible for both, the tractor and the

implement, to follow the same trajectory. It is impossible for the implement to follow exactly

the same trajectory that the tractor is following during the turns though. For this reason, if we

are interested on the implement to track a reference trajectory we need to modify the one being

the reference for the tractor. Figure 7.15 shows the trajectories selected for the experiments.

7.2.2.2 Results

We now have two subsystems to control: the tractor and the implement. Each one has its own

state information based on its own position. We use two exploring selfish continuous action

reinforcement learning automatons (ESCARLAs) for controlling them. The reward function

and state description remains unchanged with respect to the previous setup (without the im-

plement). Keep in mind that the state of the tractor and the implement depend on their own

positions which will most of the time have a different relative position to the reference signal.

The action space for the tractor remains the same while the implement states range from the
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Figure 7.15: A reference trajectory for the tractor and the implement - The trajectory for the
tractor on the turns is wider than the one for the implement making possible the implement to track
it.

minimum to the maximum length of the side joint. The same parameter settings, that has been

used throughout the chapter, are used for both ESCARLAs. Figure 7.16 show the error of

both, the tractor and the implement, while using MSCARLA for learning the control policy.

Figure 7.17 shows the accumulated error during every turn. The implement’s performance is

affected by the tractor’s. Still, both controllers are able to learn in a shared process.

7.3 Summary

This chapter demonstrates how to use the MSCARLA learner for controlling multi-state prob-

lems. First, some benchmark problems from RL literature are used for showing a comparison

of the different existing techniques and how the changes proposed in this dissertation enables

the method to deal with state information. The application used as a demonstration is the au-

tonomous tractor introduced in section 6.2.2, but instead of using the CARLA technique for

optimizing a linear controller we directly learn the policy to map actions to the observed state

by using MSCARLA.
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Figure 7.16: Error during the learning process using MSCARLA - The red curve represents
the error of the tractor and the blue the implement’s.
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Figure 7.17: Accumulated error during the learning process using MSCARLA - The red curve
represents the error of the tractor and the blue the implement’s.

131



7. MULTI-STATE APPLICATIONS

132



Chapter 8

Summary

Reinforcement learning (RL) has been used as an alternative to model based techniques for

learning optimal controllers. The central theme in RL research is the design of algorithms that

learn control policies solely from the observation of transition samples or trajectories, which

are collected by interaction with the system. Such controllers have become part of our daily

life by being present in some home appliances or really complex machines in industry.

This dissertation introduces an RL algorithm to control production machines, which is

based on simple continuous action reinforcement learning automaton (CARLA). For better

understanding the results we first present some background information on the general frame-

work of bandit applications, Markov decision processs (MDPs), and RL for solving problems

in discrete and continuous state-action spaces.

In a bandit setting, the task presented to the learner is to maximize the long-run pay-off

for stateless systems. The framework is described for discrete and continuous settings and the

strategies for solving such problems are also presented. In addition, a description of discrete

games where two or more learners interact in order to maximize their long-run profit is given as

well. Exploring selfish reinforcement learning (ESRL) is presented as an exploration method

for a set of independent learners playing a repeated discrete action game.

MDPs are formally defined in order to facilitate introducing RL. We first present the de-

terministic case. Afterwards, the stochastic case is considered. We also discuss the notion of

optimality for both cases. Most RL algorithms focus on discrete action-state spaces. The two

well-known classes of RL are presented: value and policy iteration. For each class, the most

popular algorithms in the literature are explained. The standard discrete RL techniques are

provided with function approximators to represent the value functions over the infinite action-
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state space. Two classes of approximators are described: parametric and non-parametric. The

former class defines a fixed set of parameters in advance while in the latter class the set of pa-

rameters of the approximators is adapted to the available data at every instant during learning.

After formally introducing the function approximators, the three RL architectures (approximate

value iteration, approximate policy iteration, and approximate policy search) are extended and

well-known algorithms are provided.

After discussing the background information we present the extensions we propose to the

CARLA algorithm in order to make the learning feasible for the applications tackled in this

research. The first change to the original method extends the mathematical analysis of the

method and allows us to avoid the numerical integration. This enables the method to run faster

in simple processors attached to the machines that are to be controlled. After obtaining this

result, the analysis of the convergence of the method is performed in bandit applications where

only one learner is present. This analysis makes it possible to derive a simple way of tuning

the spreading rate parameter of the method, which in addition to the reward transformation we

propose, improves the performance from the sampling point of view. The convergence analysis

is also performed for game settings, where multiple learners interact. Based on this analysis,

we demonstrate the necessity of a better exploration protocol and the extension of ESRL to

continuous action spaces is introduced. Finally, in order to enable the CARLA method for

optimizing the control action in a Markovian process, we combine the learning technique with

function approximators over the state space.

After introducing our methods, we separate the applications in two groups, state-less appli-

cations and multi-state applications. First, some test cases are shown in order to demonstrate

the performance of the learning methods derived in this dissertation. Afterwards, we present

the real world applications and evaluate the algorithm’s performance on these realistic prob-

lems.

8.1 Contributions

The main contributions of the dissertation are the theoretical changes to the CARLA method

and the demonstration of how to use the method for controlling production machines. We first

enumerate the theoretical contributions:

1. If we want to control real production machines we can only rely on simple processors

attached to these machines. This restriction, in addition to the limited time that the
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learners have for responding with the appropriate control action, leads us to the first

contribution being a significant reduction of the computational cost of the method. This

reduction is carried out by analytical derivations of the learning rule to avoid numerical

integration.

2. Since collecting data from a real machine is very costly in time (and most probably in

effort as well) it is also necessary to use a method that can learn as fast as possible

using an optimal exploration of the action space. The second contribution is an analysis

of the convergence time of the method and a procedure to adjust the spreading rate of

the method (which is a parameter controlling the exploration ratio) that, in combination

with the reshaping of the reward signal, leads to an improvement of convergence to the

optimal solution in terms of sampling time.

3. The third contribution is aimed at distributed control applications. Inspired by the ESRL

method for coordinating discrete learning automata, with limited communication, in or-

der to guarantee convergence to the global optimum (escaping local optima) we intro-

duce exploring selfish continuous action reinforcement learning automaton (ESCARLA)

which is a version of ESRL but for continuous action spaces. This change improves the

global convergence (in terms of ratio of convergence to the global maximum) of the

method in distributed control set-ups.

4. Finally, a combination of the CARLA method with function approximators in order to

deal with multi-state applications is presented. This combination allows the learning

method to deal with more complex tasks with a state feedback signals.

We address a set of control problems, concerning production machines. The practical con-

tributions are enumerated bellow:

5. State-less applications

(a) The first application is a basic control problem: controlling a linear motor. The

term linear comes from the direction of the force produced by the motor, not from

its dynamics. This stationary continuous action bandit example is representative of

several production machines where we need to control a motor with information

obtained from limited sensors. Our method was able to control this setup relatively

fast.
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(b) A much more complex task is demonstrated by optimizing a linear controller for

driving an autonomous tractor. The RL technique is used here for learning the

optimal parameters of the linear controller. In this problem, our method is able

to tune the parameters to obtain a performance comparable with the best manual

tuning.

(c) We also show how to control a wire winding machine as a non-stationary example.

In this example, out method is capable to adapt to the changes in the process over

time.

(d) The last state-less application is in a game setting. It relates to a distributed hydro-

logic system where local controllers exist and we want to decide on their set-point

for an optimal performance.

6. Multi-state applications

(a) To finalize the applications we present a solution of the autonomous driving of

the tractor not by means of optimizing a linear controller but using the multi-state

learning scheme that we present in this dissertation. Our method performed much

better than the optimized linear controller.

8.2 Future work

This dissertation presents several methods that allow the application of a simple learner to

control problems. Still, some new research directions arise from the results obtained so far.

• Smarter initialization of the policy: In section 7.2.1 we use multi-state continuous

action reinforcement learning automaton (MSCARLA) to learn a near optimal policy

completely from the exploration of the state-action space. The learning ignored any any

prior knowledge. As a consequence, the learning process is not robust at all. During a

first phase, due to the explorative behavior of the learner, the tractor deviates too much

from the target trajectory making the learning process very long and unstable. This

problem could be avoided by allowing the learner to interact with a stable controller

(not necessarily optimal) to guide the exploration during learning. Different ideas can be

tried to pursuit this goal. The learner could most often select the action chosen by the

controller at the beginning of learning when it has a lot to learn from the controller. Over
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time, when it starts “feeling” more confident of its actions (meaning that the actions

does not make the driving unstable anymore) it can agree to select the action of the

controller less often, until it finally ignores it. Although this can shorten the learning

process significantly and may avoid undesired behavior of the learner it can also bias

the learner too much in the direction of the suboptimal controller. Still, it is an open

direction to explore. Another possible solution is to collect some data in advance and

then use a batch method to initialize the policy of the learner. The learner can then start

using such a policy on the real problem (driving the tractor in the field) and finish the

learning process.

• Taking penalties into account: The CARLA algorithm uses a reward-inaction scheme

for updating the policy. This means that the probability for the selected action over time

is increased no matter the nature of the outcome. Bad rewards lead to no change in the

policy or even a slight increase. Using a reward-penalty scheme means that bad rewards

actually lower the probability of selecting the action in the future. Including penalties in

the CARLA learning rule requires to carefully control the extension of the neighborhood

around the action that is going to be penalized to avoid overlapping between the bonus

obtained when selecting a good action and penalties when selecting an action close to

good ones. Further derivations have to be made in order to ensure, without a considerable

cost, that the probability function does not turn negative for any action.

• Further applications in Cuban industry: Optimal control is little used in Cuban indus-

try. There exist cheap means to integrate simple processors to machines. We also count

with the knowledge required to start projects in order to optimize production. Agricul-

ture is getting more and more attention in Cuba and there are plenty of applications that

can be assisted with optimal control. A clear example was the autonomous tractor driv-

ing but other applications are possible, e.g., some recognition drones could be used to

probe information from the air or to spray products. Other examples can be found in

repetitive production machines involving linear motors or DC motors.
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Szepesvári, C. & Munos, R. (2005). Finite time bounds
for sampling based fitted value iteration. In In Pro-
ceedings 22nd International Conference on Ma-
chine Learning (ICML-05). 44
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