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Wireless Sensor Networks (WSNs) are composed of small wireless nodes equipped with sensors, a processor, and a radio
communication unit, all normally powered by batteries. For most WSN applications, the network is expected to function for
several months or years. In the common monitoring application scenario, adjacent nodes in a WSN often sense spatially correlated
data. Suppressing this correlation can significantly improve the lifetime of the network. The maximum possible network data
compression can be achieved using distributed source coding (DSC) techniques when nodes encode at Slepian-Wolf rates. This
paper presents contributions to the lifetime optimization problem of WSNs in the form of two algorithms: the Updated-CMAX
(UCMAX) power-aware routing algorithm to optimize the routing tree and the Rate Optimization (RO) algorithm to optimize
the encoding rates of the nodes. The two algorithms combined offer a solution that maximizes the lifetime of a WSN measuring
spatially correlated data. Simulations show that our proposed approach may significantly extend the lifetime of multihop WSNs
with nodes that are observing correlated data.

1. Introduction

Wireless Sensor Networks have a wide range of possible
applications like environmental monitoring, home automa-
tion, military, industrial, and medical applications [1].
Network designers must consider factors such as the envi-
ronment, cost, and hardware, while engineering a par-
ticular WSN. Different applications will prompt different
architectural constraints and requirements [2]. For some
applications, network designers will need to focus on
bounded delivery time of sensed events to the Base Station
(BS), for example, Tsunami warning systems. Other appli-
cations require the WSN to function for several months or
years before being replaced, and designers are thus more
concerned about the lifetime of the network, such as in
environmental monitoring systems [3]. Since the network
lifetime has been the main challenge in the design of
many WSN applications [4], we address the problem of
maximizing the network lifetime in this paper.

The nodes in WSNs are mostly powered by batteries.
The energy of the batteries is utilized by the main building

blocks of a node: the sensors, the processor, and the radio
unit. The radio is known to be the most energy consuming
component of the node [5, 6]. For most WSNs, the radio
unit has four functional modes: sleep, active, transmit and
receive. The transmit, and receive modes have the highest
power consumption while the sleep mode has the lowest
power consumption. To improve the lifetime of the network
(the lifetime of a WSN has many definitions [7]: some
consider it to be the timespan from network startup to
the death of a certain percentage of the nodes, others
define it as the timespan from startup to the loss of
coverage of a certain percentage of the monitored area),
the node’s radio has to be switched to sleep mode as much
as possible. In this paper, we accomplish this by reducing
the size of the packets through the application of lossless
compression techniques which remove the redundancy in
the spatially correlated sensed data. Lossless compression
can be achieved by Source Coding techniques. Two lossless
Source Coding methodologies for WSNs are described in
the literature: Explicit Communications (EC) [8–10] and
distributed source coding (DSC) [11–14].
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The EC coding technique eliminates the redundancy
in the spatially correlated sensed data while routing all
data to the Base Station. Each node compresses its own
sensed data according to the data flow passing through
it from other nodes in the routing tree. The problem of
finding the optimum routing path that achieves maximum
compression with minimum network power consumption
using EC is proven to be NP-hard [9]. The EC encoding
process requires intensive processing at each sensor node
to compress its sensed data, especially when the node has
to forward compressed data from other nodes: the routing
node needs to uncompress the data flow before being able to
encode its own data in order to remove the redundancy due
to spatial correlation.

The other methodology used for applying lossless source
coding in WSNs is DSC. The concept of DSC was introduced
by Slepian and Wolf in [15]. They derived the admissible rate
region of two correlated sources and proved that two source
encoders can compress their input data to a total rate which
equals their joint entropy, without communication between
the encoders, on condition that they are jointly decoded.
Since, many authors have proposed source encoding systems
that almost achieve the Slepian-Wolf theoretical limit. In
[16], the authors used Coset Coding for compressing one of
the two sources, while using the second source’s data at the
decoder to predict the data of the first source. In [17, 18],
the authors used turbo codes and reached near the Slepian-
Wolf theoretical limit. Their coding techniques are based
on sending the data of the first node to the base station
without coding, while encoding the second node’s output
with a turbo encoder and then send some parity bits of
the encoder’s output to the Base Station. The decoder at
the BS uses the parity bits together with the data from the
first node to estimate the second node’s data. In [19–21],
the authors implemented DSC using Low-Density Parity-
Check (LDPC) codes. Turbo codes and LDPC codes enable
DSC implementations which almost reach the Slepian-Wolf
theoretical limit [17, 21]. Using the DSC theory, Cristescu et
al. [22] studied how optimizing the rates of the nodes can
minimize the network’s total power consumption, but they
did not address optimizing the lifetime of the network.

We propose contributions to the lifetime maximization
problem of WSNs through the formulation of the problem’s
optimization equations and the development of algorithms
which assign data rates and routing paths to the network
nodes. The paper is organized as follows: we review the prior
work on DSC for WSN in Section 2. We derive a system
of equations for the optimal DSC rates and introduce the
routing and rate assignment algorithms in Section 3. In
Section 4, simulations results of the optimization algorithms
are shown and discussed. We conclude the paper in Section 5.

2. Prior Work on DSC for WSNs

For a random source X , a rate R ≥ H(X) is sufficient
to transmit X over a reliable channel to the BS. If we
have two independent and identically distributed (i.i.d.)
sources (X1,X2), as shown in Figure 1, and they are encoded
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Figure 1: Slepian-Wolf coding for two correlated sources.
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Figure 2: Rate region for Slepian-Wolf encoding.

separately, a total rate R = RX1 + RX2 ≥ H(X1) + H(X2) is
required. However, as Slepian and Wolf have shown in their
seminal paper [15], when both sources are correlated, a total
rate R = RX1 + RX2 ≥ H(X1,X2) is sufficient, even when
the two sources are encoded separately, as long as they are
decoded jointly.

The achievable rate region according to the Slepian-Wolf
coding theory is determined by the following equations:

RX1 ≥ H
(
X1

X2

)
,

RX2 ≥ H
(
X2

X1

)
,

RX1 + RX2 ≥ H(X1,X2).

(1)

The solution of this system of equations is shown
in Figure 2. The minimum theoretical rate for the two
correlated sources scenario is shown in Figure 2 with a red
line. The two black dots at the corners of the optimum rate
region correspond to the following rates:

RX1 = H
(
X1

X2

)
, RX2 = H(X2), or

RX1 = H(X1), RX2 = H
(
X2

X1

)
.

(2)
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The Slepian-Wolf theory can be generalized to many
sources [23]. If X1,X2, . . . ,Xn are i.i.d., but spatially corre-
lated sources, then the set of rate vectors achievable using
distributed source coding with separate encoders and joint
decoder is defined by

R(S) ≥ H
(
X(S)
X(SC)

)
(3)

for all S ⊆ {1, 2, 3, . . . ,n}, where

R(S) =
∑
i∈S

Ri. (4)

Cristescu et al. [22] used the generalized Slepian-Wolf
theory of multiple sources to optimize the encoding rates of
WSN nodes. They set out to find an optimal transmission
structure, that is, routing tree, and rate allocation for the
nodes of a multihop WSN with multiple sensors Xi, {i =
1, 2, 3, . . . ,n} and one BS that minimizes a certain cost func-
tion which reflects the network’s total power consumption:

{Ri,di}Ni=1 = arg min
{Ri,di}Ni=1

N∑
i= 1

F(Ri) · di, (5)

under the constraint of Slepian-Wolf encoding rates

∑
i∈S

Ri ≥ H
(
X(S)
X(SC)

)
, (6)

where Ri and di are the transmission rate of node Xi and the
total weight (cost) associated to the routing links from node
Xi to the Base Station (BS), respectively. They showed that for
this specific type of cost function, the optimization problem
can be decomposed into two separate problems: routing and
rate optimization. Substituting the Shortest Path Tree (SPT)
as the optimum routing tree, the optimization problem of
(5) is reduced to

Ri = arg min
Ri

N∑
i=1

RidSPT. (7)

When numbering nodes in increasing order by weight of
the routing paths from each node to the BS, so that nodes
X1,X2, . . . ,Xn have SPT weights dSPT(X1) ≤ dSPT(X2) ≤
· · · ≤ dSPT(XN ), the solution to (7) under the constraint of
Slepian-Wolf encoding is [22]

R1 ≥ H(X1),

R2 ≥ H
(
X2

X1

)
,

R3 ≥ H
(
X3

X1
,X2

)

...

RN ≥ H
(

XN

XN−1
,XN−2, . . . ,X

)
.

(8)
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Figure 3: Two nodes WSN.

The node nearest to the BS has to encode at the rate
of its entropy, while the second nearest node has to encode
at the rate of the conditional entropy of itself given that
the first source X1 is available at the BS, and so on. Let us
call the solution of (8) the Minimum Total Power (MTP)
optimization. This optimization does however not maximize
the network lifetime. To illustrate this, consider the example
depicted in Figure 3, with two correlated sources placed at
an equal distance from the BS. The MTP solution will assign
encoding rates according to (2). While this rate assignment
minimizes the network’s total power consumption, the
network lifetime is not maximized since the nodes are
encoding at different rates. In [24, 25], the authors searched
to optimize the lifetime of the WSN using distributed
source coding on cluster level with one-hop communication
between cluster nodes and the cluster head. They consider
the decoder to run at the cluster head.

3. Lifetime Optimization of WSN with
Correlated Sensors

The above-mentioned code design, where side information
is assumed available at the decoder, is called asymmetric
Slepian-Wolf coding. For the network in Figure 3, the
maximum network lifetime can be achieved by encoding at
the symmetric Slepian-Wolf coding point, which is the green
point shown in Figure 2. Most DSC designs can reach almost
the theoretical limit by implementing asymmetric Slepian-
Wolf coding [17–19, 26]. When using asymmetric Slepian-
Wolf coding, the lifetime of the network shown in Figure 3
can be maximized by periodically switching coding rates
between nodes every time interval T . If T is fixed, the lifetime
of the network can be considered as the maximum multiple
of this interval, mT , m = {1, 2, . . . ,M}, until the network is
unable to perform its functionality successfully. Our goal is
to maximize the lifetime of the network, which we can do by
maximizing the value of M.
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We model the WSN as a directed graphG = (X ,E), where
the set X = {X1,X2, . . . ,XN} is the wireless nodes and t is the
BS that collects and decodes the network data. E is the set
of links connecting the nodes of set X . The edge (Xi,Xj) is
an element of E if Xj is in the transmission range of Xi. The
total number of links, that is, the size of E, is K . We further
denote the initial energy and the current energy of node Xi

by IE(Xi) and CE(Xi), respectively. We allow the channel
quality between nodes to change over time, so that for a
link (Xi,Xj) ∈ E, Xi requires em(Xi,Xj) energy to transmit
one bit to node Xj at time index m. All nodes require a
constant energy erx to receive one bit from any node. Node
Xi is encoding its data using DSC at rate rmi . Since nodes
also function as routers, we denote the rate of the data flow
originally generated at node Xk forwarded from Xi to Xj in

time slot m as rm,k
i, j . Our goal is to maximize the number of

time slots until the network is unable to deliver all nodes’
data by optimizing the rate assignments:

max
rmi ,rm,k

i, j

M, (9)

under the constraint of Slepian-Wolf encoding

∑
Xi∈Xs

rmi ≥ H
(
Xs

Xss

)
, ∀Xs ⊆ X , m = 1, 2, . . . ,M. (10)

The total flow at each node can be formulated as the
difference between the output and the input data flows. If a
node is a routing node, then the difference between its output
and its input flows is zero. If the node is a source node, the
difference between output and input flows is the rate of the
node’s encoded data:

∑
j∈X\{i}

rm,k
i, j −

∑
j∈X\{i}

rm,k
j,i =

⎧⎨
⎩

0 Xi /=Xk,

rki Xi = Xk,

∀Xi ∈ X , Xk ∈ X , ∀m = {1, 2, . . . ,M}.
(11)

The relation between the data rate rki and the transmis-
sion energy em(Xi,Xj) has to be found in order to formulate
the energy consumption as a function to be optimized. Start-
ing from Shannon’s point-to-point wireless communication
theorem [27], which states that the maximum transmission
rate at which a transmitter can communicate its data to
a receiver through an AWGN channel is bounded by the
capacity of that channel, we have

R ≤ B log(1 + SNR), (12)

where B is the channel bandwidth and SNR is the signal
power to the noise power ratio at the receiver antenna.
Without loss of generality, we ignored any interference
effects from concurrent communications as well as other
channel characteristics like fading and shadowing. (12) can
be reformulated into

eR/B − 1 ≤ SNR. (13)

Since WSN nodes have low data rates, the left-hand part of
(13) can be approximated into

eR/B
(

1− e−R/B
)
≈ eR/B

(
R

B

)
≈ R

B
. (14)

From (14) and (13), we derive that the data rate rki
and the transmission power of Xi have a linear relation
if the bandwidth B and the noise power at the receiving
node are constant. From this linear relation, we deduce that
the power consumed by a sensor node for transmission
on a particular link is the unit power consumption for
transmission on that link multiplied by the data rate of the
link. Likewise, the power consumption for reception on a
link is the product of the unit reception power consumption
and the rate of incoming data on that link. Thus, the total
energy consumption of the radio units of all nodes in the
network is expressed by the following relation:

M∑
m=1

∑
Xj∈X\{Xi}

∑
Xk∈X\{Xi}

(
emTx
(
Xi,Xj

)
rm,k
i, j + eRxr

m,k
j,i

)
≤ IE(Xi),

∀Xi ∈ X.
(15)

From (9), (10), (11), and (15), we can see that life-
time optimization using DSC comprises two optimization
problems: the rate optimization problem and the route
optimization problem. This optimization problem is NP-
hard since the routing optimization problem itself is NP-
hard [28]. It is generally difficult to construct a routing tree
that maximizes the network lifetime due to the involvement
of two optimization objectives: maximizing the residual
energy of each node and minimizing the network’s total
energy consumption. These two objectives are not necessarily
complementary and might even conflict: a routing tree
could, for example, minimize the network’s total energy
consumption by placing a high burden on a particular
node. However, a routing algorithm, which uses link weights
based on an exponential function of the network’s resource
utilization, has been shown to cope very efficiently with
this optimization problem [29]. The authors of [29] assign
to each edge a cost that is exponential in the currently
occupied link capacity in order to optimize the throughput
of the network. Furthermore, they derived bounds on the
competitive ratio of their routing algorithm and proved
that no other online routing algorithm can achieve a better
competitive ratio. In [30], this routing algorithm was adapted
to optimize the lifetime of Wireless Sensor Networks by
updating the links’ weights with the energy utilization of the
nodes.

The authors of [31] use the same optimization criteria
as in [30], and links are assigned cost functions which are
exponential in the transmitter’s energy utilization. In [32],
algorithms based on the same exponential penalization are
proposed to optimize the routing tree of heterogeneous
networks, in which nodes differ in energy capacity. In all
aforementioned related work, the energy consumed for the
reception of data is neglected.
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We developed two algorithms for optimizing the routes
and the rates used in a WSN. The routing algorithm, which
is an improvement of the CMAX algorithm described in
[30], penalizes the network links according to an exponential
function of the energy consumption for transmission and
reception. Regarding the Slepian-Wolf rates optimization
problem, it is known that for an optimal symmetric rate
assignment in a network with more than 3 nodes the com-
plexity of the decoder is difficult to implement practically
[21]. The realization of the decoder becomes feasible if we
allow the nodes to encode at asymmetric rates, that is, one
node is decoded separately and its output is used as side
information to decode the second node, then these two
outputs are used as side information to decode the third
node and so on. We developed the Rate Optimization (RO)
algorithm which assigns asymmetric rates to the nodes. The
algorithm first assigns the rates using MTP to minimize
the network’s total energy consumption, after which it
performs a tradeoff between minimizing network energy and
maximizing nodes’ residual energy by swapping the rates of
the nodes. The RO algorithm requires global knowledge of all
nodes’ rates and residual energies. Thus, the RO algorithm
is centralized and is running at the BS, which broadcasts
the updated rate assignment every periodic interval T . The
routing algorithm is also executed at the BS every T seconds,
and the new routes are broadcast together with the rates
assignment.

3.1. Routing and Rates Optimization Algorithms. In order to
explain our route optimization algorithm, we first describe
how CMAX [30] works, on which our extension UCMAX is
built. After the BS collected the nodes’ residual energies, the
CMAX algorithm runs the following three steps.

Step 1. If all nodes have full energy (i.e., CE(Xi) = IE(Xi)),
jump to Step 2 without modifying the graph G. Else,
eliminate from G every edge e(Xi,Xj) for which CE(Xi) <
em(Xi,Xj), then change the weight of every remaining edge
em(Xi,Xj) to em(Xi,Xj) × (λα(Xi) − 1), where α(Xi) is the
energy utilization ratio of node Xi:

α(Xi) = IE(Xi)− CE(Xi)
IE(Xi)

= 1− CE(Xi)
IE(Xi)

, (16)

where λ is a constant that quantifies the penalty of using a
link.

Step 2. Find the shortest path between each node and the BS
using Dijkstra’s algorithm in the modified graph.

Step 3. Let β be the length of the shortest path found in
Step 2 (β = ∞ if no path was found). If β ≤ σ , route the
data along the shortest path, otherwise reject it.

The computational complexity of the CMAX algorithm is
dominated by the shortest path computation (Step 2) and is
O(K +N logN). The authors of [30] derived the competitive
ratio of CMAX by comparing it to an optimal off-line routing
algorithm. The competitive ratio of CMAX is found to be
O(logNρ), where ρ is the ratio of the edge with maximum

transmission energy to the edge with minimum transmission
energy

ρ =
maxi, j∈Xe

(
Xi,Xj

)

mini, j∈Xe
(
Xi,Xj

) . (17)

To find the competitive ratio, λ and σ are set to λ = 2(Nρ+1)
and σ = N · maxi, j∈Xe(Xi,Xj), respectively. Setting σ < ∞
implies that packets may be rejected even if there is sufficient
energy available to route the packet. Since our objective is to
maximize the total number of packets delivered to the Base
Station, we omit Step 3 in our modified routing algorithm, so
that the route is not to be rejected if there is enough energy
to deliver a packet over it.

Most WSN nodes, that are available on the market
today, consume more energy while in receive mode rather
than in transmit mode, even when the node is transmitting
at the maximum power. The widely used transceiver chip
CC2420 [33] consumes 18.8 mA in the receive mode, while
it consumes 17.4 mA in the transmit mode at maximum
transmission power. The authors of [30–32] do not take
into account the energy spent in the receive mode while
optimizing the routing tree. We updated CMAX to include
the reception costs by modifying the weights of the graph’s
edges. The Updated-CMAX (UCMAX) runs the following
steps.

Step 1. If all nodes have full energy (i.e., CE(Xi) = IE(Xi)),
jump to Step 2 without modifying the graph G. Else,
eliminate from G every edge e(Xi,Xj) for which CE(Xi) <
em(Xi,Xj), then change the weight of every remaining edge
to

e
(
Xi,Xj

)
−→ e

(
Xi,Xj

)
×
(
λα(Xi) − 1

)
+ eRx ×

(
γα(Xj ) − 1

)
,

(18)

where λ and γ are constant parameters that quantify the
penalty of using the link e(Xi,Xj) based on the energy
utilization of the transmitting node Xi and the receiving node
Xj .

Step 2. Find the shortest path between each sensor node and
the BS using Dijkstra’s algorithm in the modified graph.

UCMAX avoids to route network data through nodes
with low residual energy. The Rate Optimization algorithm
(RO) runs on top of the optimized routing tree found by
UCMAX as follows.

Step 1. Assign the rates to the nodes according to MTP using
the routing tree found by UCMAX.

Step 2. Calculate the total energy consumption of the
network

PL =
N∑
i=1

wm
i r

m
i , (19)

where wm
i is the total energy required to route one bit from

node Xi to the BS, and rmi is the rate of node Xi during time
slot m.
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Step 3. Find the node with the minimum residual energy, let
it be X(min).

Step 4. Search for another node with lower data rate and
higher residual energy and name it X(tmp). The two nodes
should not be on the same routing path to the BS.

Step 5. Swap the rates between X(min) and X(tmp), so that
if X(min) is encoding at rate H(X1) and X(tmp) at rate
H(X2/X1), X(min)’s rate should become H(X1/X2) while
X(tmp)’s rate should become H(X2).

Step 6. Calculate the total network power with (19) and store
it in a vector P. Go back to Step 4 and repeat for all possible
rate switches. Choose the rate swap with the minimum total
power in P and let us name the new total power Pnew

L .

Step 7. If Pnew
L is less than zPL, where z is a constant

parameter, accept the new rates. Else, do not switch the rates.

Step 8. Go back to Step 3 and repeat until all possible rate
switches are tested for all nodes.

Parameter z allows our optimization to balance between
minimum total network energy and maximum per node
energy. At z = 1, the network retains the minimum total
network energy achieved by MTP while trying to maximize
per node energy. For z < 1, the RO algorithm is simply the
MTP algorithm.

4. Simulations and Results

4.1. Experimental Setup. MatLab simulations are used to
evaluate the performance of the optimization algorithm. We
simulate an environment area of 100 × 100 m2 and consider
two network configurations: in the first one nine nodes are
located on a 3 × 3 grid, while in the second one the set
of nodes is extended to twenty-five nodes arranged in a
5 × 5 grid. The BS is located at the center in both grids.
The two grids allow us to compare the performance of the
optimization algorithms with different node densities. The
energy consumption of the nodes is approximated by the
energy consumed by the radio transceiver. The energy for
reception, eRx, is considered the same for all nodes. Without
loss of generality, the energy for transmission emTx(Xi,Xj) is
assumed to depend on the distance between the nodes Xi and
Xj . We use the following model:

eTx
(
Xi,Xj

)
=
[
βd
(
Xi,Xj

)κ
+ ρ
]
× TTx, (20)

where β, κ, and ρ are constants and their values depend
on the radio chip’s characteristics and the environmental
conditions. TTx is the packet transmission time. The channel
parameters used in our simulations are shown in Table 1 and
are calculated according to the work of [34]. The correlation
between the sensed data at the nodes is represented by a
Gaussian model [22]

f (x) = 1√
2π det (K)1/2 e

−((1/2)(X−μ)K−1(X−μ)), (21)

Table 1: Experiment parameters.

β = 5.219 × 10−4 σ = 1

κ = 3.5 c = 0.001

ρ = 1.2 × 10−5 Bit rate = 250 kb/s

Transmission range = 100 m Maximum packet size = 128 bytes

IE(Xi) = 10 Joule Maximum TTx = 4.1 ms

eRx = 59.1 × 10−3 × TTx Joule

where K is the covariance matrix which represents the
spatial correlation between the measurements. K is created
by assuming that these correlations are changing according
to the distance between the nodes. More precisely, the
following model Ki, j = σ2 exp(−c|d(Xi,Xj)|2) is used to
define this relationship, where Ki, j and d(Xi,Xj) represent
the correlation and the distance between the nodes Xi and
Xj , respectively. σ2 is the variance of the nodes’ sensed data
(we consider all nodes to have the same variance) and c is the
attenuation factor of the correlation between the nodes.

4.2. Simulation Results. The role of λ in the CMAX algorithm
is studied in [30], where it acts as a penalty factor for using
the links between nodes with low residual energy in the WSN.
For λ = 1, the routing structure is the same as the Shortest
Path Tree. Increasing λ improves the per node residual energy
at the expense of a higher total network energy consumption.
It is shown in [30] through experiments that at σ = ∞ and
for large values of λ, the number of total delivered messages
is maximized and becomes insensitive to increasing values
of λ. In our simulation, we set σ = ∞ and λ = 10, 000 for
all experiments to analyze the effect of other factors on the
lifetime of the network.

4.2.1. UCMAX versus CMAX. For both the 3 × 3 and 5 × 5
grids, we execute several runs of the routing algorithm while
changing the value of γ at each run. The rates of the nodes
are assigned with MTP. The update period (the total number
of measurement collection cycles to the Base Station before
the algorithm calculates a new routing tree) T is set to
1000. Figure 5 presents the network lifetime (total number
of route updates until there is no possible route to deliver
all network data) on the y-axis and γ on the x-axis. The
network lifetime of CMAX is constant since λ is constant
and the CMAX algorithm is not affected by changes in γ. In
the simulations, we include the reception energy utilization
in the calculations of the edges’ new weights. As shown in
Figure 5, the 3 × 3 network has a longer lifetime than the
5 × 5 network with the CMAX routing optimization, even
though the 5 × 5 network is denser. The 5 × 5 network has a
shorter lifetime because the CMAX algorithm does not take
into account energy consumed during receive mode, which
can be much higher than the energy used in transmit mode
in a dense network. As we pointed out before, for most WSN
nodes’ transceivers, the power consumption in receive mode
is higher than the transmission energy utilization, even at the
maximum transmission power. In the 3 × 3 network, the
nodes consume more energy in the transmit mode compared
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Figure 4: A two-node network with a Base Station.

to the nodes in the 5 × 5 network which results in a better
optimization of the routing tree for the 3 × 3 network
compared to the 5 × 5 network when using CMAX. The
large gap between the estimated power consumption of
CMAX and the calculated power consumption using (20)
leads to a shorter lifetime for the 5 × 5 network.

The lifetime of the network varies with γ in the UCMAX
algorithm. At γ = 1, UCMAX performs the same as
CMAX. However by increasing γ, the lifetime of the network
improves and reaches a maximum at γ = 10 for both the
3 × 3 and the 5 × 5 networks. The optimum value of γ
depends on the parameters used in the energy consumption
model of (20).

To describe the advantage of UCMAX over CMAX,
let us consider the network in Figure 4. Using the CMAX
optimization algorithm, node X1 may choose to route its data
through X2 if the sum of the weights of the links (X1,X2)
and (X2,BS) is less than the weight of link (X1,BS). Recall
that CMAX neglects the energy consumption for reception
at X2. By including this reception energy utilization of X2 in
the weight of the edge (X1,X2), UCMAX can decide to avoid
routing through X2, since X2 pays a double price in terms of
energy, that is, for receiving and transmitting.

With UCMAX, the 5 × 5 network, which is denser than
the 3 × 3 network, has a longer lifetime, since in dense
networks the distance between nodes is shorter and thus the
nodes require less transmission power.

4.2.2. RO Algorithm Evaluation. To compare the RO algo-
rithm to MTP, we applied the RO algorithm on top of
UCMAX. λ and γ are set to λ = 10, 000 and γ = 10,
respectively. Figure 6 depicts the variations in the network
lifetime while changing the parameter z. For z < 1, there
is no improvement in the lifetime when compared to MTP.
For z ≥ 1, the RO algorithm shows large improvements in
network lifetime for both the 5 × 5 and 3 × 3 networks.
The improvement in the lifetime at z = 1 is due to the
the grid structure of the networks with the BS positioned
at the center. In a grid network, some nodes are at an equal
distance from the BS. When assigning different rates to these
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nodes, the total network power PL will remain the same. After
each update period T , the RO algorithm switches the rates
between the nodes with equal distance to the BS. Low rates
are assigned to nodes with minimum residual energy while
healthier nodes are penalized with higher rates. The network
lifetime is insensitive to high values of z because assigning
low rates to nodes with low residual energy close to the BS
and high rates to more distant nodes is not improving the
lifetime of the network, since the nodes close to the BS always
need to route the data from the farther nodes.

4.2.3. Update Period T . In Figure 7 we show the effect of
the update frequency of the routing tree and the encoding
rates on the lifetime of the network. Before each update, the
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nodes need to communicate their residual energy to the BS,
and the BS subsequently broadcasts the optimized routing
tree and rates back to the nodes. We assume that the BS can
encapsulate the routing tree and the rates of the nodes in
one broadcast packet. When the BS broadcasts the packet,
the nearest nodes receive the packet and then forward it to
the nodes further in the network and so on. We consider that
each node consumes energy equal to the reception and the
transmission of one packet during the broadcast process and
we neglect the energy spent in collecting the nodes’ residual
energies. By running the UCMAX and RO algorithms on the
5 × 5 network with different update periods T , we found
that at T = 3000 the network has the longest lifetime. At
fast updating rates, the communication overhead caused by
the broadcasts reduces the network lifetime, while at slow
updating rates, the algorithm does not track accurately the
depletion rate of the batteries of the nodes.

5. Conclusion

In this paper we considered Wireless Sensor Networks placed
in a specific geographical area, gathering correlated informa-
tion from multiple nodes that forward their data to a Base
Station. We addressed the maximization of network lifetime
through the application of distributed source coding for the
compression of the spatially correlated data. The motivation
for using DSC instead of Explicit Communication is the
possibility of decomposing the optimization problem in
two separate problems: optimizing the routes and the rates
independently. The paper presents two algorithms: the first
one is a routing optimization algorithm and the second one
is a rate optimization algorithm. The first algorithm, the
Updated-CMAX algorithm (UCMAX), improves the CMAX
algorithm, as presented in the literature, by taking into
account the energy utilization of nodes in receive mode.
The second algorithm, the Rate Optimization algorithm
(RO), balances between minimizing total network energy
consumption and the per node energy consumption while

assigning Slepian-Wolf encoding rates. The RO algorithm
assigns low rates to nodes with low residual energy and
higher rates to nodes with excessive energy.

Our experiments show that UCMAX provides a sig-
nificant improvement in terms of network lifetime in
comparison to CMAX. With respect to the minimum total
network Slepian-Wolf rates, our RO algorithm improved
lifetime by 17%. The two algorithms combined provide
a full-optimized solution that maximizes the lifetime of
networks collecting correlated data. The optimal update
period between successive rate and route optimizations is
also derived by taking into account the broadcasting energy
consumption needed to send the optimized rate and route
assignments from the Base Station.
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