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Abstract

Scheduling is a decision making process that is used on a regular basis in many
real life situations. It takes care of the allocation of resources to tasks over time,
and its goal is to optimize one or more objectives. Depending on the problem
being solved, tasks and resources can take many forms, and the objectives can also
vary. In this dissertation we are interested in manufacturing scheduling, which is
an optimization process that allocates limited manufacturing resources over time
among parallel and sequential manufacturing activities. Customer orders have to
be executed, and each order is composed by a number of operations that have to
be processed on the resources or machines available. Each order can have release
and due dates associated, and typical objectives functions involve minimizing the
tardiness or the makespan.

In real world scheduling problems the environment is so dynamic that all this
information is usually not known beforehand. For example, manufacturing schedul-
ing is subject to constant uncertainty, machines break down, orders take longer than
expected, and these unexpected events make the original schedule fail. That is the
reason why companies prefer to have robust schedules rather than optimal ones. A
key issue is to find a proper balance between these two performance measures.

Scheduling problems can be interpreted as a distributed sequential decision-
making task, which makes the use of multi-agent reinforcement learning algorithms
possible. These algorithms are of high relevance to various real-world problems, as
they allow the agents to learn good overall solutions through repeated interactions
with the environment.

Our main contribution is a generic multi-agent reinforcement learning approach
that can easily be adapted to different scheduling settings, such as the job shop
scheduling with parallel machines, online problems or the hybrid flow shop schedul-
ing. It is possible to increase the robustness of the solutions and to look at different
objective functions, like the tardiness or the makespan. Furthermore, the proposed
approach allows the user to define certain parameters involved in the solution con-
struction process, in order to define the balance between robustness and optimality.
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Chapter 1

Introduction

A schedule is commonly defined as ‘a plan for performing work or achieving an
objective, specifying the order and allotted time for each part’. With this definition
in mind, if we think about scheduling, which is the action of making a schedule,
it is easy to notice that it is a type of task that we have all performed at some
point, maybe without noticing it. Let us start with a simple example: how many
times have you decided beforehand the tasks you want to do in one day? and even
the order in which you want to accomplish them? Yes, that is scheduling. And of
course, you prepare your schedule with one objective in mind, maybe you have to
finish a report by 4pm, which means that you have a deadline to meet, or maybe
you just want to go home early, meaning that you want to finish with everything as
soon as possible.

But even this simple scenario can get a bit more complicated. For example, when
some types of tasks start to repeat, because there are specific things you have to
perform every day, then you start to evaluate how good the schedule you made the
previous day was (again, maybe without noticing it). You might change the order
in which you perform the tasks, because you think there is a slight chance of finish-
ing earlier if you make some changes in your daily actions, which means that you
adjust your decisions depending on the outcome you were able to obtain, then we
can say that you are learning from experience. Now imagine a system composed by
several persons like you, performing tasks in specific orders, but now you have to use
common resources to accomplish the tasks. As you can notice, a good coordination
is needed in order to make sure that all the tasks are executed and the objective of
the whole system is optimized.

1
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Scheduling is a decision making process that is used on a regular basis in ev-
ery situation where a specific set of tasks has to be performed on a specific set of
resources. Some examples are: airport gate scheduling, crew scheduling, processor
scheduling and manufacturing scheduling. In this dissertation we will focus on man-
ufacturing scheduling, where the schedule construction process plays an important
role, as it can have a major impact on the productivity of the company. In the
current competitive environment, effective scheduling has become a necessity for
survival in the market place, as companies have to meet the due dates and use the
resources in an efficient manner [Pinedo (2008)].

1.1 Manufacturing Scheduling
Manufacturing scheduling is defined as an optimization process that allocates lim-
ited manufacturing resources over time among parallel and sequential manufacturing
activities. This allocation must obey a set of constraints that reflect the temporal
relationships between activities and the capacity limitations of a set of shared re-
sources [Wang & Shen (2007)].

In other words, the problem can be defined as a set of jobs that has to be
processed on a set of machines, with the objective of finding the best schedule, that
is, an allocation of the jobs to time intervals on the machines that minimizes the
chosen objective. Each job consists of a set of operations that have to be scheduled
in a predetermined order, and each of these operations needs a certain amount of
time (processing time) to be executed. This time depends on the machine where
the operation will be processed. The jobs can have release and due dates associated,
which means that they are expected to be finished in a specific amount of time.

If we are solving a deterministic scheduling problem, then all the information
is assumed to be known beforehand: the number of jobs, the number of machines,
the number of operations per job, the processing times of the operations, the prece-
dence constraints and problem constraints (which can change depending on the type
of scheduling problem being solved). If, on the other hand, the scheduling problem
being solved is stochastic, then the information is not complete, because the process-
ing times of the operations belonging to the different jobs are modeled as random
variables. This means that the processing time of an entire job is not known until
it is fully executed.
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The problems can be classified according to different characteristics, for example,
the number of machines (one machine, parallel machines), the job characteristics
(preemption allowed or not, equal processing times) and so on. In this dissertation
we will assume the classification scheme proposed in [Graham et al. (1979)], where
the scheduling problems are specified using a classification in terms of three fields
α|β|γ, where α specifies the machine environment, β the operation characteristics,
and γ the criteria to optimize.

The combination of all these features makes the scheduling problem a challeng-
ing task, that is why it has captured the interest of many researchers from different
research communities, for example, Operations Research (OR) and Artificial Intel-
ligence (AI).

1.2 Operations Research and Artificial Intelligence
Manufacturing scheduling problems have been addressed using combinatorial op-
timization techniques, both approximate methods and exact methods. According
to [Billaut et al. (2008)], solving a particular problem may require the use of mod-
eling tools for complex systems (simulation, Petri nets, etc.), thus leading to the
definition of matchings between these methods.

Different OR techniques (Linear Programming, Mixed-Integer Programming,
etc) have been applied to scheduling problems. These approaches usually involve
the definition of a model, which contains an objective function, a set of variables and
a set of constraints. OR based techniques have demonstrated the ability to obtain
optimal solutions for well-defined problems, but OR solutions are restricted to static
models. AI approaches, on the other hand, provide more flexible representations of
real-world problems, allowing human expertise to be present in the loop [Gomes
(2000)].

The vast majority of the research in scheduling has focused on the development of
exact and suboptimal procedures for the generation of a baseline schedule assuming
complete information and a deterministic environment [Herroelen & Leus (2005)].
However, the real world is not so stable, projects may be subject to unexpected
events during execution, which may lead to numerous schedule disruptions, for ex-
ample, resources can become unavailable (breakdowns or scheduled maintenances),
new orders can arrive, operations could take longer than expected, etc.
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One approach to deal with such disruptions is to generate robust schedules,
where robustness refers to the performance of an algorithm under uncertainties
[Davenport et al. (2001)]. The objective is to generate schedules that are able
to absorb some level of uncertainty without having to reschedule. There are some
techniques that can deal with such problems, in this dissertation we will consider
slack-based techniques, where the main idea is to provide each activity with some
extra execution time (slack time) in such a way that part of the uncertainty can be
absorbed. The slack time that will be added to each activity or task is proportional
to its duration and the resource where it will be processed.

A very important issue is to focus the slack time on areas where it will be really
needed. For example, let us assume that a new machine arrives in the system, which
can work for long periods before breaking, then it is not wise to make the schedule
more robust at the beginning of the scheduling period. The key point is then to
identify these areas that are more likely to need slack time in order to deal with a
machine breakdown or other unexpected events.

In order to summarize all the features that have been described, Figure 1.1 shows
a perspective of integration between AI and OR techniques.

Figure 1.1: Integration of Artificial Intelligence and Operations Research
techniques, taken from [Gomes (2000)].

This idea was presented in [Gomes (2000)], where the author explains how OR
methods have focused on tractable representations, which have demonstrated the
ability to identify optimal and locally optimal solutions, but they are restricted to



Chapter 1. Introduction 5

rigid models with limited expressive power. AI methods, on the other hand, provide
richer and more flexible representations, which can lead to intractable problems.
The challenge is to achieve some sort of unification between the approaches in order
to come up with good representations of the problem and at the same time deal
with uncertainty, scalability issues and increase the robustness.

1.3 Our Approach
Many scheduling problems suggest a natural formulation as distributed decision-
making tasks. Hence, the employment of multi-agent systems represents an evident
approach. Furthermore, given the well-known inherent intricacy of solving schedul-
ing problems, decentralized approaches for solving them may yield a promising op-
tion [Gabel (2009)]. The research presented in this dissertation is based on this idea.
We propose a generic multi-agent reinforcement learning approach for scheduling
problems, which attempts to solve some of the issues mentioned in the previous sec-
tion by focusing on finding robust solutions to different scheduling problems using
a combination of different techniques, mainly reinforcement learning, optimization,
and slack-based approaches.

Reinforcement Learning (RL) is learning what to do (how to map situations
to actions) so as to maximize a numerical reward signal [Sutton & Barto (1998)].
It allows an agent to learn optimal behavior through trial-and-error interactions
with its environment. By repeatedly trying actions in different situations the agent
can discover the consequences of its actions and identify the best action for each
situation. For example, when dealing with unexpected events, learning methods
can play an important role, as they could ‘learn’ from previous results and change
specific parameters for the next iterations, allowing not only to find good solutions,
but more robust ones.

A common approach to solve scheduling problems is to use dispatching priority
rules, which work by assigning priorities to the tasks that can be executed on a
resource depending on a specific criteria. The learning algorithms could benefit
from this idea, by associating the priorities with the feedback signal the agents
receive when executing the actions, and this is something that will be studied in
this dissertation.
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Another problem that has been identified in the scheduling community is the
fact that most of the research concentrates on optimization problems that are a
simplified version of reality. As the author points out in [Urlings (2010)]: “this allows
for the use of sophisticated approaches and guarantees in many cases that optimal
solutions are obtained. However, the exclusion of real-world restrictions harms the
applicability of those methods. What the industry needs are systems for optimized
production scheduling that adjust exactly to the conditions in the production plant
and that generate good solutions in very little time”.

It is well known that companies prefer to have robust schedules, even though
robustness implies extra time in the schedule. The inclusion of extra time means
that you lose in optimality, but the real world is so dynamic that you have to expect
the unexpected.

In this thesis we help to close the gap between literature and practice. The
generic multi-agent reinforcement learning approach being proposed allows to sim-
ulate, for example, what will happen if a resource is not available during a specific
amount of time, or to estimate the probable end time of an extra order that arrives
to the system after some hours of work, having a very high priority. This helps to
identify the ‘critical’ parts of the schedule and based on that incorporate different
levels of robustness to the solution in those places where it will be needed.

In the next section we give an overview of the structure of this dissertation.

1.4 Outline of the Dissertation
The research presented in this dissertation is divided in seven chapters.

In Chapter 2 we present an overview of the different scheduling problems that
will be addressed in this dissertation. We start explaining the Job Shop Scheduling
Problem, then we gradually move towards more challenging problems, like the Par-
allel Machines Job Shop Scheduling, where identical parallel machines can execute
the same type of tasks, and the Flexible Job Shop Scheduling Problem, where there
are also multiple machines that can execute the same type of tasks, but in this case
the machines are not identical, for example, they can differ in speed, and this gives
an extra level of complexity to the sequencing process.

Then we switch to more stochastic scenarios. We introduce a version of the
Flexible Job Shop Scheduling Problem where release dates and due dates are added
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to the jobs. Some perturbations are also introduced in the system, mainly repre-
sented by machine breakdowns, which gives the possibility of looking at different
objective functions, as there is more information involved. We also present an online
scheduling problem, which is based on a chemical production plant with two decision
levels. Each level has four machines which differ in speed and jobs enter the system
according to specific stochastic distributions.

Finally, we describe a scheduling scenario that is based on a real-world case,
which according to its specifications belong to the category of the hybrid flow-shop
scheduling problems (jobs have to be processed following the same production flow
in a series of stages). It is an enzyme production process with four different stages:
1) seed fermentation, 2) main fermentation, 3) broth preparation and 4) recovery.
Each of these stages has multiple machines, except the recovery line. The orders
from the customers can involve the production of different types of enzymes, and all
of them have to follow the production path in the same order (stages 1 to 4). To
conclude the chapter, some related work is presented.

Chapter 3 provides the main ideas behind Reinforcement Learning and the the-
ory on Multi-Agent Reinforcement Learning. The concepts of agent and multi-agent
systems are introduced, as well as different representations of agents systems. We
explain how the agents interact with the environment in order to learn how to solve
a specific task, and how multiple agents can act in a cooperative or competitive way.
Different solution methods are introduced, together with three possible action selec-
tion strategies. The last section of the chapter defines the main concepts that have
to be taken into account when solving a scheduling problem using a Multi-Agent
Reinforcement Learning Approach.

In Chapter 4 we summarize the main results of the application of Reinforcement
Learning in the solution of the different scheduling problems introduced in Chapter
2. We start by introducing a basic approach, which is modeled for the JSSP, and
then we explain how to adapt this model in order to deal with the extra constraints
that gradually appear in the other scheduling scenarios. Each section of the chapter
presents the approach corresponding to one of the scheduling problems and some
of the results obtained by experimenting and comparing with other approaches re-
ported in literature.
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As discussed before, there are several unexpected events that can affect the
scheduling process. In the real-world things are constantly changing and this is
something inevitable, machines can break down, customers can show up with new
orders, jobs can take longer than expected, and these events can occur at any time,
making the original schedule fail. In Chapter 5 we give some details about the dif-
ferent sources of uncertainty that can affect the scheduling process. We introduce
the concept of robustness and how to incorporate it in the solutions. We present
some existing techniques in this area and discuss how each of them introduces the
slack time (extra time assigned to the activities) that can be used for the algorithm
to deal with unexpected events.

As was mentioned before, it is important to take unexpected events into account.
This is the sole focus of the research presented in Chapter 6: how to schedule un-
der uncertainty. This chapter is divided in two parts. First, we present the results
obtained when solving a stochastic scheduling problem. This study was developed
in collaboration with Elsy Kaddoum, from the Systèmes Multi-Agents Coopératifs
(SMAC) lab - IRIT, Université Paul Sabatier, Toulouse, France, and Tony Wauters,
from the Combinatorial Optimisation and Decision Support (CODeS) Research
Group, KAHO Sint-Lieven, Gent. The results of this collaboration were presented
in [Kaddoum et al. (2010)]. In the second part of the chapter, a new slack-based ap-
proach which aims at incorporating robustness in the solution construction process
is introduced. Our idea is based on the methods introduced in the previous chapter,
but it changes the way the slack time is added. The term ‘criticality’ is introduced
and its influence in the way of providing the activities with extra time is explained.
It is important to mention that this approach allows the user to define the level of
robustness that will be included in the solution. Of course this is more useful when
the user has domain knowledge, and it could be achieved by letting him tune the pa-
rameters that define when a specific part of the schedule can be considered as critical.

Finally, we conclude in Chapter 7 with a summary of the presented research, to-
gether with some ideas for future work, including a potential real-world application
in the Cuban industry.

Figure 1.2 provides a graphical representation of this outline. The arrows repre-
sent the dependency between the different chapters.
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Figure 1.2: Graphical representation of the outline of this dissertation.





Chapter 2

Scheduling Problems

Scheduling concerns the allocation of limited resources to tasks over time.
It is a decision-making process that has as a goal the optimization of one

or more objectives
- [Pinedo (2008)] -

Scheduling problems are present in every situation where a given set of tasks has
to be performed and these tasks require the allocation of resources to time slots.
This is a common procedure that we usually perform in our daily life, but when
the constraints that have to be met increase and the number of tasks and resources
grow, then we realize that constructing a schedule that satisfies all the requirements
is not so straightforward. This chapter starts by giving an introduction to scheduling
and some of the factors that can influence this kind of problem. The different types
of schedules that can be obtained are defined, as well as the different scheduling
problems that will be addressed by the research presented in this dissertation.

2.1 Introduction to Scheduling

Scheduling is a decision making process that is used on a regular basis in many
real life situations. It deals with the allocation of resources to tasks over time,
and its goal is to optimize one or more objectives [Pinedo (2008)]. For example,

11
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scheduling problems occur routinely in publishing houses, universities, hospitals,
airports, transportation companies, manufacturing and services industries, and so
on. The resources and tasks can take many forms, depending on the problem being
solved, and the objectives can also vary, for example, one of the most common goals
is to minimize the makespan, which is the completion time of the last task.

The problem of scheduling has captured the interest of many researchers from
a number of research communities: management science, industrial engineering,
operations research (OR) and artificial intelligence (AI). The growing complexity of
manufacturing processes and fierce competition in the market place drive enterprises
to optimize their operations as much as possible. In particular, optimal scheduling
of production orders on limited resources is an important issue and this type of
optimization problem has fascinated researchers for years [Grossmann (2005)].

Manufacturing scheduling, in short, is an optimization process that allocates lim-
ited manufacturing resources over time among parallel and sequential manufacturing
activities. This allocation must obey a set of constraints that reflect the temporal
relationships between activities and the capacity limitations of a set of shared re-
sources. The allocation also affects the optimality of a schedule with respect to
different criteria.

Figure 2.1 shows a typical diagram of the information flow in a manufactur-
ing/production system.

In general, in a manufacturing system, the scheduling function has to interact
with other decision making functions. It is affected by the middle-range planning,
which examines the stock levels, the demand forecasting and the requirements plan,
in order to achieve the optimization of the combination ‘Production-Allocation of
Resources’. In this context, the construction of a feasible, optimized production
schedule, without the support of an advanced decision support tool, is a very difficult
and time consuming procedure that requires not only deep knowledge of all the
data and parameters of the production system, but also specific knowledge in the
particular field [Metaxiotis et al. (2005)].

These type of problems are typically NP-hard [Garey et al. (1976), Brucker
(2007)] and the computational time increases exponentially with the problem size,
being manufacturing scheduling one of the most difficult scheduling problems [Shen
(2002)].
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Figure 2.1: Information flow diagram in a manufacturing system, taken
from [Pinedo (2008)].

Research in this field has made an impressive progress, from simple models that
are only useful from an academic point of view to approaches that can be used in
complex realistic settings like batch production, where groups of items (batches)
move through the production process together, a stage at a time, and the next stage
can not start until the previous one is completed1. Batch processes are widely used
in the pharmaceutical, chemical, food, paint, and agrichemical industries, because
they provide the flexibility to produce various products using the same processing
facility [Charnprasitphon (2007)].

Figure 2.2 shows several factors that can influence a scheduling problem, of course
these factors do not necessarily appear at the same time.

Every real-life production process has its own specific characteristics and con-
straints which are hard to generalize into a one-size-fits-all mathematical problem

1 the order of the stages is fixed
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Figure 2.2: Several factors that can influence a scheduling problem.

formulation, so effective optimization approaches remain in high demand.
The classical approach to solve scheduling problems consists of setting up a math-

ematical model, often based on a Mixed Integer Linear Programming formulation,
and then applying a search algorithm like Branch and Bound to calculate the (guar-
anteed) optimal solution [Méndez et al. (2006)]. However, as the problem grows in
the number of available resources, operations to be scheduled, and other constraints
to be taken into account, this approach will no longer yield an optimal solution in
a reasonable time span. In this situation, researchers often relax constraints that
actually exist in the real-life problem. This makes the problem solvable, but it is no
longer of practical use. As a consequence, only a fraction of published scheduling
research deals with actual real-world problems [Ruiz et al. (2008)].

Figure 2.3 summarizes the different types of scheduling problems that will be
addressed in this dissertation. The left side of the picture shows the deterministic
problems and the right side groups the stochastic ones and a real-world case. It is
worth to mention that the online scheduling problem addressed in this dissertation
is based on a real scenario, although it is a simplified version of the original problem.
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Figure 2.3: Different types of Scheduling Problems

All these scheduling problems will be explained in detail in the next sections of
the chapter (from section 2.4 to 2.9). But first we introduce some basic notation
and properties (sections 2.2 and 2.3) that will be used in the rest of the dissertation.
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2.2 Notation
The definition of a scheduling problem includes several variables and properties, in
this section we provide a list of the ones that will be used in this dissertation:

m Number of machines

n Number of jobs

Mi Machine i, where i = {1, ...,m}

Jj Job j, where j = {i, ..., n}

Cj The completion time of job j

Pj Processing time of job j

oij The ith operation of job j

sij Start time of the operation i, job j

cij Completion time of the operation i, job j

pij Processing time of operation i, job j

rj Release date of job j

dj The due date of job j

Cmax The makespan, maximum Cj over all jobs, max(C1, ..., Cn)

Lj Lateness of job j

Ej Earliness of job j

Tj Tardiness of job j

wj The weight associated with job j

Figure 2.4 shows an example of a timing diagram for operation oij, where some
of the properties mentioned before are summarized. The rest of the properties will
be described in the next section.
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Figure 2.4: Timing diagram of one operation.

2.3 Classification of Scheduling Problems

Scheduling problems are commonly classified according to the machine environment,
the job characteristics and the objective function [Herrmann et al. (1993)]. This
classification is commonly referred to as the triplet α|β|γ, proposed in [Graham et al.
(1979)], where:

• α describes the machine environment (single machine, multiple machines), see
subection 2.3.1.

• β denotes the constraints that have to be met (subsection 2.3.2).

• γ refers to the objective function, for example, the makespan, which is the more
commonly used in literature, for more explanation about possible objectives
functions see subsection 2.3.3.

2.3.1 Machine Environment

The first element of the problem description is the machine environment. The case
of a single machine is the simplest of all possible machine environments, as jobs
have only one operation to be performed and there is only one machine that can
execute it. But when there are multiple machines that can process the operations,
the environments get more complicated, as parallel machines could be identical,
but they could also differ in speed. The possible environments are summarized as
follows:
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• Identical Parallel Machines: process jobs with the same speed.

• Non-Identical Machines: have machine-dependent speeds.

• Unrelated Parallel Machines: have machine and job dependent speeds.

When each job has a fixed number of operations requiring different machines we
are dealing with a shop problem, and depending on the constraints it presents, can
be included in one of the following categories:

• Open Shop: There are m machines and each job has to be processed on each
of them. There are no ordering constraints between the operations of each job,
which means that jobs can follow different routes.

• Job Shop: In a job shop with m machines, jobs have to visit each machine
once, but in this case the operations of a job are totally ordered. This order
is not the same for all the jobs.

• Flow Shop: In a Flow Shop with m machines, all jobs go through all the
machines in the same order.

• Flexible Job Shop: A generalization of the job shop and the unrelated parallel
machines environment. Each operation can be processed by any among a set
of possible machines, and these machines differ in speed.

2.3.2 Job Characteristics

Each problem has a set of job characteristics, which may occur in any combination.
A list of the more commonly used is given below:

• Preemption: refers to environments where the processing of a job may be
interrupted and resumed later (possibly on another machine).

• Precedence Constraints: The jobs can have precedence constraints, that is,
some jobs can not start until others are completed.

• Release Dates: A job can not start to be processed before its release date.

• Due Dates: Time by which a job is expected to be finished.

• Setup Times: There might be a setup time involved between the execution of
two different jobs on the same machine, which means that the machine needs
some time to get ready for the execution of the next job.
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2.3.3 Objective Functions

The objective function to be minimized or maximized is the third element of a
problem description. This may be a sum of variables or the maximum or mini-
mum of some variable function. Typical objective functions include the following
performance measures:

• Flowtime: sum of the completion times of the jobs, ∑j Cj.

• Makespan: maximum completion time, which is equivalent to the time when
the last job leaves the system (also known as Cmax).

• Lateness: difference between the due date and the completion time. This
measure can be positive (tardiness) or negative (earliness), Lj = Cj − dj.
Tardiness measures the difference if the job is late, otherwise it takes value
zero. Similarly, earliness measures the difference if the job is finished early,
otherwise it is zero.

– Earliness: ∑n
j=1 Ej, where Ej = max(dj − Cj, 0)

– Tardiness: ∑n
j=1 Tj, where Tj = max(Cj − dj, 0) = max(Lj, 0)

• Earliness-Tardiness: This measure has been the focus of some studies where
it is desirable that jobs finish close to their due dates, ∑n

j=1 Ej + ∑n
j=1 Tj,

penalties could also be associated when jobs are either too early or too late.

• Total weighted tardiness: Similar to the tardiness but this time the weight of
the jobs is taken into account: ∑j wjTj.

2.3.4 Other Criteria

Another distinction to be made is between deterministic and stochastic scheduling
problems. In the deterministic class, all parameters are known without uncertainty,
whereas this is not the case in the latter. Stochastic scheduling is concerned with
scheduling problems in which the processing times of tasks are modeled as random
variables.

Finally, scheduling methodologies can also be classified according to the way
the schedule is obtained. The methods can obtain the solutions in a constructive
way or by iteratively repairing a complete schedule. The constructive methods
incrementally extend a partial schedule until every task has been scheduled. The
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repair methods iteratively modify a complete schedule to remove conflicts or to
further optimize the solution. Most optimization methods and constraint-directed
search methods follow the constructive approach.

2.3.5 Types of Schedules

According to the schedule properties, any feasible schedule (i.e. a solution to the
scheduling problem) can be categorized into three major kinds: non-delay, semi-
active and active. The definitions of these categories are adapted from [Conway et al.
(1967)] and [Pinedo (2008)]. We first present the three definitions and afterwards
summarize the main differences between them with one general example.

Definition 1 (Non-Delay Schedule). A feasible schedule is called non-delay, if no
resource is kept idle, while there is at least one operation waiting for further pro-
cessing on that resource.

The non-delay category is probably one of the most used in literature when
solving a scheduling problem where the objective is to minimize the makespan.
However, at the end of the section we will show that keeping the resources working
does not always lead to optimal solutions.

Definition 2 (Semi-Active Schedule). A feasible schedule is called semi-active, if an
earlier completion of any operation could only be achieved by changing the processing
order on at least one resource.

This means that the operations start to be executed as early as possible, which
implies that the only way to execute them earlier is by changing the processing order
on the resources. A semi-active schedule can be obtained from any arbitrary schedule
by moving each operation to the left, until it gets blocked either by the preceding
operation on that machine or the preceding operation of that job (procedure called
‘limited-left-shift’). The ordering of the operations cannot be altered.

Definition 3 (Active Schedule). A feasible schedule is called active if it is not
possible to construct another schedule, through changes in the order of processing on
the resources, with at least one operation finishing earlier and no operation finishing
later.

In other words, a feasible schedule is said to be active if no operation can be
moved into an empty time slot earlier in the schedule without violating the ordering
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constraints. Active schedules can be obtained by performing what is called a ‘left-
shift’ operation, which is any decrease in the time at which the operation starts that
does not require an increase in the starting time of any other operation [Conway
et al. (1967)]. In this case an operation is allowed to ‘jump over’ another operation
into an interval of idle time, if that interval is large enough to accommodate the
shifted operation.

The following example helps to understand the differences between the three
definitions. It shows three possible solutions to the same scheduling instance, and
we will analyze to which of the categories defined above they belong.

Example 1: Let us assume that we are solving a scheduling problem with two jobs
and two resources. Each job has two operations and the information about which
machine can execute them is given in the following table:

Table 2.1: Scheduling instance with 2 resources and 2 jobs.

Job Op1 Op2

1 M2,2 M1,1
2 M1,2 M2,1

Figure 2.5: Three different feasible solutions to the instance presented
in Table 2.1.

Analyzing the schedules presented in Figure 2.5, it is possible to see that schedule
1 (left hand side) is a feasible schedule, because the ordering constraints of the
problem are satisfied, but it does not belong to any of the categories described
before. If we look at machine M2 we will see that it remains idle while there are
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operations it can execute (for example from time 3 to 4), which means it is not a
non-delay schedule.

It is not a semi-active schedule either, as a limited-left-shift can be performed on
the first operation of J1. This operation is being executed on M2 at time 4, when it
could start its processing at time 3. If we perform limited-left shifts on schedule 1,
then we will obtain schedule 2 (middle), which means that schedule 2 is semi-active.

But neither schedule 1 or schedule 2 are active, because a left-shift can be per-
formed on both of them on the first operation of J1. This operation can be moved
into the initial idle time on M2 without modifying the start of the second operation
of job 2 (jumping over it), as the idle time of the machine is exactly the amount of
time it needs to be executed.

If we perform this, then the second operation of J1 could be subject of a limited-
left shift, resulting in schedule 3 (right hand side), which is an active schedule and
coincidentally, the only non-delay schedule in the example.

If we look again at Figure 2.5, we will see that the non-delay schedule results in
better makespan, which makes sense as there is a higher utilization of the resources.
But if we also analyze Figure 2.6, which shows the hierarchy of the different types
of schedules, we will see that the optimal schedules can be found in the set of active
schedules, but not necessarily in the non-delay class, which will be demonstrated
through the next example:

Figure 2.6: Different types of schedules. The optimal solutions can be
found within the active schedules, but not necessarily in the non-delay
class.
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Example 2: Given an instance with three machines and two jobs (data for the
operations is given in table 2.2), where the goal is to minimize the makespan, figure
2.7 illustrates that looking at non-delay schedules is not sufficient for finding the
optimum. The operations of the jobs need to be processed in numerical order.
Machines and processing times are specified for each operation. From the table
below we can infer that Job1 should be processed in M1 first for one time step, then
go to M2 for three time steps and finally go to M3 for being successfully processed
after five time steps (the same for Job2).

Table 2.2: Instance with 3 resources and 2 jobs. Job 1 consists of 3
operations, operation 1 (Op1) has to be executed on machine M1 during
1 time step, Op2 on machine M2 for 3 times steps and so on.

Job Op1 Op2 Op3

1 M1,1 M2,3 M3,5
2 M2,3 M1,2 M3,1

Figure 2.7 shows the optimal schedule together with the best (and in fact the
only) non-delay one. Job1 is represented in white and Job2 in black.

Figure 2.7: Left: Optimal schedule. Right: Non-delay schedule

In this case the optimal schedule, with Cmax = 10, is not a non-delay one. If
we look for a non-delay schedule, that is, a schedule with no idle times between
operations, then our best result would be Cmax =11.

If we decide to obtain the non-delay solution, it means that machines keep work-
ing if there are operations to execute. That is the reason why in the first time
step M1 immediately starts with the first operation of Job1 and M2 with the first
operation of Job2 (right hand side schedule).
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But if we analyze the optimal solution (left hand side schedule) it is possible to
notice that it is better if M2 waits instead of immediately start executing the first
operation of Job2. This introduces idle times in the schedule, but in the long term
leads to a better solution. This illustrates that looking at non-delay schedules is not
sufficient for finding the optimum.

After introducing the terminology and the different properties that must be taken
into account when solving a scheduling problem, the next sections will describe the
different scheduling scenarios that will be addressed in this dissertation.

2.4 Job Shop Scheduling Problem

A well-known manufacturing scheduling problem is the classical job shop scheduling
(JSSP), which involves a set of jobs and a set of machines with the purpose of finding
the best schedule, that is, an allocation of the operations to time intervals on the
machines that has the minimum duration required to complete all jobs (in this case
the objective is to minimize the makespan). The total number of possible solutions
for a problem with n jobs and m machines is m(n!). In this case, exact optimization
methods fail to provide timely solutions. Therefore, we must turn our attention to
find methods that can efficiently produce satisfactory (but not necessarily optimal)
solutions.

The general job shop problem is an interesting challenge. In many cases it is
easy to visualize what is required, but even for small problem instances it could
be extremely difficult to make progress towards a solution. Classical approaches to
solve job shop scheduling problems are, for example, branch-and-bound algorithms.
Besides, there are also several local search procedures that have been applied in this
field, for instance, simulated annealing and tabu search.

2.4.1 Problem Definition

The terminology of job-shop scheduling arose in the manufacturing industries. In
the fundamental theory of scheduling (for example [Baker (1974)] and [Garey &
Johnson (1979)]) job-shop scheduling defines a set of scheduling problems in the
following mathematical formulation. Given a set M of m machines that can pro-
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cess only one job at a time, and given a set J of n jobs that must be processed on
each of these machines in a prescribed, job-dependent order, find a feasible schedule
that minimizes the total processing time. Each job Jj consists of m chained oper-
ations {o1j, o2j, ..., omj} that have to be scheduled in a predetermined given order
(precedence constraints) [Zhang (1996)].

There is a total of N = n ∗m operations where oij is the ith operation of job Jj
and has to be executed during an uninterrupted processing time pij. The workflow
of each job throughout the machines is independent of the other jobs’. At any
given time, each machine is able to carry out a single job and each job can only be
processed by a single machine.

The objective is to determine the starting time (sij ≥ 0) for each operation so as
to entail a minimization of the makespan in such a way that all of the constraints
are met:

C∗max = min(Cmax) = minfeasible−schedules(Cj,∀Jj ∈ J) (2.1)

Some of the restrictions inherent in the definition of the JSSP are the following:

• Only one operation from each job can be processed simultaneously.

• No preemption (i.e. process interruption) of operations is allowed.

• No job is processed twice on the same machine.

• Each job must be processed to completion.

• Jobs may be started at any time, i.e., no release times exist.

• Jobs may be finished at any time, i.e., no due dates exist.

• Machines can not process more than one operation at a time.

• There is only one machine of each type.

• Machines may be idle within the schedule period.

• Jobs must wait for the next machine in the processing order to become avail-
able.

• The machine processing order of each job is known in advance and it is im-
mutable.
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The JSSP is widely accepted as one of the most difficult NP-hard problems
[Garey et al. (1976)] and consequently, as noted in [Garrido et al. (2000)], presents
a constant intellectual challenge: despite over 40 years of effort, resulting in hundreds
of published journal articles and dozens of dissertations, even state-of-the-art algo-
rithms often fail to consistently locate optimal solutions to relatively small problem
instances.

2.4.2 JSSP Instances

There are multiple benchmark problems for the JSSP available in the OR-Library
[Beasley (1990)], which is a library of operations research problems available on the
internet. Some of these well-known instances will be used in this work to measure
the performance of the algorithms we will introduce in this dissertation. Figure 2.8
shows an example of a JSSP instance from this library.

Figure 2.8: Example of a JSSP instance (ft06) from the OR-Library.

As it can be seen in Figure 2.8, the data is given in a specific format, which can
be summarized in the following way:

Each instance consists of a line of description, which contains the number of jobs
and the number of machines, and then one line for each job, listing the machine
number and processing time for each operation of the job. The machines are num-
bered starting with 0.
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In this case, the first line stands for 6 jobs and 6 machines, and then, for example,
job 1 (third line) must be processed in resource 1 for 8 time units, then go to resource
2 for 5 time units, and so on. What is important here is to remember (from the
restrictions of the problem mentioned above) that the processing order (the order
in which each job has to be processed by the machines) cannot be violated. For
example, from the data shown in Figure 2.8 we can infer that Job 5 has to be
processed in the following order: {M1, M3, M5, M0, M4, M2} for {3, 3, 9, 10, 4, 1}
time units respectively.

Each line of the instance can be summarized as depicted in Figure 2.9.

Figure 2.9: Job description in the JSSP environment.

The Gantt Chart representation in Figure 2.10 shows an optimal solution for the
previously shown 6x6 instance ft06.

Figure 2.10: Optimal schedule for the instance ft06. Each color repre-
sents a different job.

In this solution the makespan is 55 time units (Cmax=55). It is important to
notice that the optimal solution is actually a delayed schedule: After 6 time steps,
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resource 3 (M3) remains idle and waits until it can process the second operation of
job 2 (green) at t = 8, although it could have immediately continued to process the
first operation of job 5 (yellow), which had been waiting at resource M3 since the
beginning of the scheduling process.

In the next section we will increase the complexity of the scheduling problem,
by incorporating parallel machines that can execute the same type of operations.

2.5 Parallel Machines Job Shop Scheduling

The job-shop scheduling problem with parallel machines (JSSP-PM) represents an
important problem encountered in current practice of manufacturing scheduling sys-
tems. It consists of assigning any operation for each job to a resource of a candidate
set of identical parallel machines, in addition to the classic job shop scheduling prob-
lem (JSSP) where the operations must be arranged on each (assigned) resource in
order to minimize a certain objective [Rossi & Boschi (2009)].

Different terms are used to name the candidate set of identical parallel machines,
it can be termed a machine type, a workcenter or also a flexible manufacturing
cell. The difference with the classical Job Shop is that instead of having a single
resource for each machine type, in flexible manufacturing systems a number of par-
allel machines are available in order to both increase the throughput rate and avoid
production stop when, for example, machines fail or maintenance occurs.

2.5.1 Problem Description

In the JSSP-PM, operations of n jobs have to be scheduled on m pools of machines
Gj(j = 1, ...,m), each including certain number of identical parallel machines. Each
job has a total number of O operations. These operations should be processed in a
given order and each of them has to be executed by a specific machine. The problem
with equal-size pools, i.e. k machines for each pool Gj, is also referred to as the
JSSP-kPM problem. Job-shop scheduling is a particular case of JSSP-kPM where
the number of machines in each pool is one (k=1). The assignment of operations to
a machine of a pool gives a sort of further flexibility, as there are multiple machines
that can execute the same type of tasks, but this also increases the complexity of
the problem [Rossi & Boschi (2009)]. The objective function in this case is the
minimization of the makespan.
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Basically the restrictions for the JSP-kPM are the following:

• No two operations of one job may be processed simultaneously.

• No job is processed twice on the same machine or workcenter.

• Each job must be processed to completion.

• Jobs must wait for the next machine in the processing order to become avail-
able.

• No machine may process more than one operation at a time.

• Machines may be idle within the schedule period.

• Preemption is not allowed.

• The machine processing orders of each job is known in advance and is im-
mutable.

2.5.2 Problem Instances

Figure 2.11 shows an example of an instance in the JSSP-PM environment.

Figure 2.11: Example of a JSSP-PM instance with k=2.

In this case the instances are generated by taking a basic JSSP instance and
replicating the jobs based on the number k. For example, let us assume that we
have the 6x6 instance shown before, if k=2 it means that the new instance will have
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12 jobs, 6 types of machines, and each of these 6 groups will have 2 identical parallel
machines.

2.6 Flexible Job Shop Scheduling

The flexible job shop scheduling problem (FJSSP) consists of performing a set of n
jobs J = (J1, J2, ..., Jn) on a set of m machines M = (M1,M2, ...,Mm). A job Jj

has an ordered set of oj operations oj = (o1j, o2j, ..., oojj). Each operation oi,j can
be performed on any among a subset of available machines (Mij ⊆ M). The main
difference between this problem and the version with parallel machines described
in the previous subsection is that in this case the machines are not identical, they
might differ in speed and this gives an extra level of complexity to the sequencing.
Executing operation oi,j on machine Mk takes pi,j,k processing time. Operations of
the same job have to respect the finish-start precedence constraints given by the
operation sequence. A machine can only execute one operation at a time. An
operation can only be executed on one machine and can not leave it before the
treatment is finished.

2.6.1 Flexible Job Shop Instances

There is also a set of instances available for tests for the case of the Flexible Job
Shop, in this case in the FJSPLIB (http://www.idsia.ch/~monaldo/fjsp.html).

Figure 2.12 shows the structure of the FJSSP instances. In the first line there
are (at least) 2 numbers: the first is the number of jobs and the second the number
of machines. The third number is not necessary, which means that it is not always
present, and it represents the average number of machines per operation.

Every row represents one job: the first number is the number of operations of
that job, the second number (for example k ≥ 1) is the number of machines that
can process the first operation; then according to k, there are k pairs of numbers
(machine, processing time) that specify which are the machines and the processing
times; then the data for the second operation and so on.

For example, the second line in Figure 2.12 indicates that job 1 has 3 operations.
The first operation can be executed in 2 machines, M1 for 20 time units or M3 for
25 time units, and so on. Figure 2.13 shows how each line (representing a job) can
be read.
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Figure 2.12: Flexible Job Shop Scheduling Instance

Figure 2.13: Job description in the Flexible Job Shop environment

Different heuristic procedures have been developed in the last years for the
FJSSP, for example, tabu search, dispatching rules, simulated annealing and ge-
netic algorithms. All these methods can be classified into two main categories:
hierarchical approaches and integrated approaches.

The hierarchical approaches are based on the idea of decomposing the original
problem in order to reduce its complexity. A typical decomposition is ‘assign then
sequence’, meaning that the assignment of operations to machines and the sequenc-
ing of the operations on the resources are treated separately. Once the assignment is
done (each operation has a machine assigned to execute it), the resulting sequencing
problem is a classical JSSP.

Integrated approaches consider assignment and sequencing at the same time.
The methods following this type of approach usually give better results but they are
also more difficult to implement.
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2.7 Stochastic Flexible Job Shop Scheduling

The stochastic flexible job shop scheduling problem addressed in this work is an
extension of the previously described FJSSP. It consists of performing a set of n
jobs J = {J1, J2, ..., Jn} on a set of m machines M = {M1,M2, ...,Mm}. A job Jj
has an ordered set of oj operations oj = {o1j, o2j, ..., oojj}. Each operation oi,j can be
performed on any among a subset of available of machines (Mi,j ⊆ M). Executing
operation oi,j on machine Mk takes pi,j,k processing time. Operations of the same
job have to respect the finish-start precedence constraints given by the operation
sequence. A machine can only execute one operation at a time. An operation
can only be executed on one machine and can not leave it before the treatment is
finished.

A job Jj is released at time rj and is due at time dj. A machine Mk can have
perturbations (e.g. breakdowns) which cause already started operations to suspend
their execution. The interrupted operation can continue when the perturbation is
finished. Once an operation has started on a machine it can not move to another
machine.

We denote the scheduled start and completion time of an operation oi,j as si,j
and ci,j. The completion time of a job Cj is equal to the completion time of its last
operation cojj. The tardiness of a job Jj is Tj = max(Cj − dj, 0). If a job Jj has
a tardiness larger than zero (Tj > 0), then we say that it is tardy and Uj = 1 else
Uj = 0. The following objectives are used:

• Cmax = max{Cj|1 ≤ j ≤ n}: makespan or completion time of the last job
that leaves the system,

• Tmax = max{Tj|1 ≤ j ≤ n}: maximum tardiness,

• T = (1/n)∑n
j=1 Tj: mean tardiness, and

• Tn = ∑n
j=1 Uj: the number of tardy jobs.

In this case besides the makespan, we will also take into account the tardiness
as objective function, measuring the total tardiness, the mean tardiness and the
number of tardy jobs.



Chapter 2. Scheduling Problems 33

2.8 Online Scheduling

In an online scheduling problem the decision-maker does not know in advance how
many jobs have to be processed and what the processing times are. The decision-
maker becomes aware of the existence of a job only when the job is released and
the processing time of a job becomes known only when the job has been completed
[Pinedo (2008)]. In this section we introduce a scheduling problem which is inspired
by a real world scenario, and which is an example of an online scheduling problem.

Batch chemical plants usually consist of a series of one or more processing stages
with parallel processing units at each stage. A new trend in production processes is
to operate flexible, adaptive multi-purpose plants. We look at an application based
on the chemical production plant of Castillo and Roberts [Castillo & Roberts (2001),
Peeters (2008)]. It is a two-stage process with four times two parallel machines, see
Figure 2.14 for a graphical representation.

Figure 2.14: A two-stage chemical production plant. For both product
types P1 and P2, there are two parallel machines at the first stage. At the
second stage of the process, there are also two parallel machines.

Each order (created at P1 and P2) must be handled first by a ‘stage-1’ machine
M1− and afterwards by a ‘stage-2’ machine M2−. At each stage, a scheduler must
choose between two parallel machines. Parallel machines can handle the same type
of tasks, but may differ in speed. The possible choice in parallel machines is depicted
by the arrows in the figure. All machines have a FIFO-queue and execute jobs non-
preemptively.

The length of the jobs varies according to an exponential distribution. Only the
average joblength is known by the schedulers. Also, the speeds of the machines are
unknown. Even the expected processing time of the jobs is unknown. However,
when a job is finished, the scheduler has access to its exact processing time.
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Moreover, it is not known in advance when a new order will arrive, i.e. we have
an online scheduling problem. In an offline problem, all product orders are known
in advance. An optimal algorithm will find the best feasible schedule if time and
memory restrictions allow it to be computed. In an online scheduling problem, an
algorithm has to make decisions based on the history (i.e. information of already
released or finished jobs) and the current product request. It is obvious this makes
for a more challenging problem.

This problem is particularly hard since it is stochastic, online and multi-stage at
the same time. There exist heuristics for online stochastic scheduling in the single-
stage scenario. But these cannot be easily mapped to a multi-stage problem, in this
case we do not only need the information about the immediate available machines,
but also the information about the machines of the coming stages and this, of course,
increases the complexity. In Chapter 4 we propose a solution for such a problem.

2.9 Hybrid Flow Shop Scheduling

The Hybrid Flow Shop problem studied in this section is based on the scheduling
of a chemical batch process. The production process is also analyzed in [Gicquel
et al. (2012)] and [Borodin et al. (2011)] and it arises from a bio-process industry
(real-world case).

Compared to the previous scheduling problems, this case presents several addi-
tional constraints and assumptions to be taken into account, in particular:

• it is a batch production process, meaning that a job may be processed by more
than one machine and a machine can process more than one job at a time.

• it belongs to the flow shop category, which means that all the jobs move
through the system following the same order (see Figure 2.15).

• machines have setup times

The optimization problem consists in scheduling production for a bio-process in
which fermentation techniques are used. Bio-processes are processes that use liv-
ing cells or microorganisms (bacteria, yeasts, fungi etc.) to obtain products such
as antibiotics, antibodies or enzymes. Bio-processes often involve a processing step
called fermentation. Fermentation consists in placing the living organisms together
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Figure 2.15: Hybrid Flow Shop Scheduling environment

with nutrients in an appropriate environment where temperature, pressure and oxy-
gen content are controlled so that their metabolism produces the expected material.
Once the fermentation is completed, the mixture of cells, nutrients and enzymes,
called the broth, is transferred into a buffer tank where it is prepared for the recov-
ery operations. This is an important phase because the biochemical reactions result
in the formation of many undesired by-products. Therefore, after the fermentation
is completed, it is necessary to carry out recovery operations to separate the desired
end product from the other residues and isolate it in its pure form [Gicquel et al.
(2012)]. The enzyme production process being addressed can be summarized in four
main steps:

• seed fermentation;

• main fermentation;

• broth preparation;

• recovery.

In order to perform these operations, the following resources are available:

• two identical seed fermenters, S = 2;

• five identical main fermenters, M = 5;

• four buffer tanks: three identical small, Bs = 3, and one large, Bl = 1(Bs +
Bl = 4);
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• one recovery line, R = 1.

Figure 2.16 provides a graphical overview of these production stages.

Figure 2.16: Production process stages

Several enzyme types are produced, denoted z ∈ {1...Z}. αz is the number of
batches per enzyme type that have to be produced, the size is given by qz. Each
batch is indexed by (z, j) consequently, where z ∈ {1...Z} and j ∈ {1...αz}.

Both seed and main fermentation phases include three operations: 1) the setup
or preparation of the fermenters; 2) the fermentation itself (duration is denoted as
πSz and πMz respectively); 3) the tear down or cleaning of the fermenters. Thus, the
total time required for a batch to be processed either in a seed or in a main fermenter
is given by the sums of the times necessary to perform these three operations. The
operational constraints are:

• a batch should be transferred without any delay to a main fermenter (which
must be already setup or prepared) once the seed fermentation is finished (i.e.
before starting the tear down or cleaning operations on the seed fermenter);

• a batch should be transferred to the buffer tanks without any delay, once the
main fermentation is finished (i.e. before starting the tear down or cleaning
operations on the main fermenter);

• the setup of a main fermenter requires a number of difficult manual operations,
and because of the manpower restrictions at most one batch can be setup in
main fermentation within a production shift.
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Once a big or a small batch has been transferred into a buffer tank, it has to be
processed in δRz amount of time. The duration of the recovery phase is denoted δRz .
During the recovery phase, a batch is progressively transferred from a buffer tank(s)
to the filtration unit. That is why the buffer tank(s) in which the batch is stored
remains occupied until the filtration of the entire batch is finished.

This is the last of the problems that will be addressed in this dissertation. To
conclude the chapter, some related work in scheduling will be presented.

2.10 Solution Methods for Scheduling Problems

Operations Research offers different mathematical approaches in order to solve
scheduling problems, for example Linear Programming (LP) , Dynamic Program-
ming (DP) and Branch and Bound (BB) methods. When the size of the problem is
not too big, these methods can provide optimal solutions in a reasonable amount of
time.

Most real world scheduling problems are NP-hard, and the size is usually not
small, that is why optimization methods fail to provide optimal solutions in a reason-
able time span. This is where heuristic methods become the focus of attention, these
methods can obtain good solutions in an efficient way. Artificial Intelligence became
an important tool to solve real world scheduling problems in the early 80s [Zhang
(1996)]. Some of the methods that have been used are Simulated Annealing (SA),
Tabu Search (TS), Genetic Algorithms (GA), etc.

In the next subsections we will describe some of the related work that inspired
the approach we are proposing in this dissertation.

2.10.1 Dispatching Rules

As discussed before, the complexity of scheduling problems gives raise to the search
of heuristic algorithms able to provide good solutions. Dispatching rules are among
the more frequently applied heuristics due to their ease of implementation and low
time complexity.

A dispatching rule is a sequencing strategy by which a priority is assigned to each
job waiting to be executed on a specific machine. Whenever a machine is available,
a priority-based dispatching rule inspects the waiting jobs and the one with the
highest priority is selected to be processed next [Nhu Binh HO (2005)].
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Some of the most used dispatching rules are:

• Shortest Processing Time (SPT): The highest priority is given to the waiting
operation with the shortest processing time.

• First In First Out (FIFO): The operation that arrived to the queue first re-
ceives the highest priority.

• Most Work Remaining (MWKR): Highest priority is given to the operation
belonging to the job with the most total processing time remaining to be done.

• Earliest Due Date (EDD): The job due out first is processed first.

There are also some composite dispatching rules (CDR), which combine single
dispatching rules and results have shown that a careful combination can perform
better in terms of quality.

2.10.2 Reinforcement Learning approaches

One of the existing works on the application of reinforcement learning to solve the
job shop scheduling problem was presented in 1995 [Zhang & Dietterich (1995)] and
then extended one year later [Zhang (1996)]. This work focused on the application
domain of space shuttle payload processing (SSPP) for NASA. The problem is to
schedule the various tasks that must be performed to install and test the payloads
that are placed in the cargo bay of the space shuttle. This study concerns a typical
specification of the task, which takes the form of a job shop scheduling problem.
Each shuttle mission is a job which is tied to a fixed launch date. Each job consists
of a partially-ordered set of tasks with resource requirements. The goal is to sched-
ule the set of tasks to satisfy a set of temporal and resource constraints while also
seeking to minimize the makespan of the schedule.

In [Gabel & Riedmiller (2007)] and [Gabel (2009)], the authors suggested and an-
alyzed the application of reinforcement learning techniques to solve job shop schedul-
ing problems. They demonstrated that interpreting and solving this kind of scenarios
as a multi-agent learning problem is beneficial for obtaining near-optimal solutions
and can very well compete with alternative solution approaches.
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Our objective is to take into account these ideas and based on that propose a
generic multi-agent reinforcement learning approach that can be adapted to solve
different scheduling scenarios, obtaining near-optimal solutions, but also giving the
possibility to deal with unexpected events, without loosing too much in optimality.

2.11 Summary
In this chapter we presented the different scheduling problems that will be addressed
in this dissertation using the approach that will be introduced in Chapter 4. We
started by giving an explanation about the Job Shop Scheduling Problem and then
gradually increased the number of constraints present in the problem, first by intro-
ducing the concept of Parallel Machines, then the Flexible Job Shop, and then more
stochastic versions, like the online and the real-world scenarios. The different types
of schedules that can be obtained were defined, and we demonstrated that looking
at non-delay schedules does not always lead to optimal solutions.
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Multi-Agent Reinforcement Learning

Learning is any process by which a system improves performance from
experience

-Herbert Simon-

Learning denotes changes in a system that enable it to do the same task or
tasks drawn from the same population more efficiently and more effectively the next
time [Simon & Lea (1973)]. In this chapter we start by introducing Reinforcement
Learning (RL), a popular framework for designing agents that interact with their
environment by executing actions and receiving feedback signals indicating how
good the actions are, learning how to solve a specific task through these repeated
interactions. Different solution methods are described, as well as different action
selection strategies which can be used by the agents during the learning process.
The last sections explain how to model a scheduling problem in order to solve it
using RL methods.

3.1 Intelligent Agents

Even though agents are being used in a wide variety of applications nowadays, there
is still no agreement on the definition of the term agent. For example, one general
definition is given by Russell and Norvig in [Russell & Norvig (2003)], they define an
agent as ‘anything that can be viewed as perceiving its environment through sensors

41
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and acting upon that environment through actuators’.
Among several other definitions reported in the literature over the years, we can

distinguish the one proposed in [Jennings et al. (1998)], this is a very open definition
but it still summarizes the requirements that an agent needs to satisfy in the context
of our work, therefore this is the one that is adopted in this dissertation.

Definition 4 (Agent). An agent is a computer system, situated in some environ-
ment, that is capable of flexible autonomous action in this environment in order to
meet its design objectives [Jennings et al. (1998)].

From this definition it is possible to notice that no specific environment is defined,
and neither are the design objectives or how the agents can achieve them. Intelligent
agents are defined in [Wooldridge (1999)] as agents that must operate robustly in
rapidly changing, unpredictable, or open environments, where there is a significant
possibility that actions can fail. According to [Wooldridge & Jennings (1995)], there
are three characteristics that an intelligent agent needs to posses in order to meet
its design objectives:

• reactivity: intelligent agents are able to perceive their environment, and re-
spond in a timely fashion to changes that occur in it;

• pro-activeness: intelligent agents are able to exhibit goal-directed behaviour
by taking the initiative;

• social ability: intelligent agents are capable of interacting with other agents
(and possibly humans).

If it is possible to guarantee that a specific environment is fixed, then it is
relatively easy to design a goal-directed agent to operate in it. But the real world is
not static, things are constantly changing, information is usually not complete, that
is why the possibility of failure must be taken into account. A reactive system is
one that keeps a constant interaction with its environment, and responds to changes
that occur in it (in time for the response to be useful).

We want our agents to be reactive, but also to work towards long-term goals,
therefore, it is important to have a good balance between reactivity and proactivity.
However, some goals can only be achieved with the cooperation of other agents, and
here social ability comes into play. Agents should be able to interact with other
agents situated in the same environment in order to meet their design objectives.
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In order to learn from experience, agents could be trained, for example, through
supervised learning. In supervised learning, the agent is presented with examples
of state-action pairs, along with an indication that the action was either correct or
incorrect. The goal in supervised learning is to induce a general policy from the
training examples, which is sufficiently general to deal with unseen examples. Thus,
supervised learning requires a ‘teacher’ that can supply correctly labeled examples.
In contrast, reinforcement learning can be applied to problems for which domain
knowledge is either unavailable or costly to obtain [Moriarty et al. (1999)]. It does
not require prior knowledge of correct and incorrect decisions, consequently, an agent
must actively explore its environment in order to observe the effects of its actions,
where for each taken action it receives a numerical signal indicating how good it
was. This trial-and-error interaction with the environment is more suitable for the
kind of problem we are solving in this dissertation, the next section gives a more
detailed explanation about Reinforcement Learning.

3.2 Reinforcement Learning
Reinforcement learning (RL), as noted in [Kaelbling et al. (1996)], dates back to
the early days of cybernetics and work in statistics, psychology, neuroscience and
computer science. During the last decades it also attracted increasing interest from
the machine learning and artificial intelligence communities.

RL is learning what to do (how to map situations to actions) so as to maximize
a numerical reward signal. The learner is not told which actions to take, as in
most forms of machine learning, but instead must discover which actions yield the
highest reward by trying them. In the most interesting and challenging cases, actions
may affect not only the immediate reward but also the next situation and, through
that, all subsequent rewards. These two characteristics, trial-and-error search and
delayed reward, are the two most important distinguishing features of Reinforcement
Learning [Sutton & Barto (1998)].

In the standard RL model, an agent is connected to its environment via per-
ception and action, as depicted in Figure 3.1. In each interaction step, the agent
perceives the current state s of its environment, and then selects an action a to
change this state. This transition generates a reinforcement signal r, which is re-
ceived by the agent. The task of the agent is to learn a policy for choosing actions
in each state to receive the maximal long-run cumulative reward. Reinforcement
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Learning methods explore the environment over time to come up with a desired
policy [Zhang (1996)].

Figure 3.1: The standard reinforcement learning model.

Formally, the basic reinforcement learning model consists of:

• a set of environment states S;

• a set of actions A;

• a set of scalar ‘rewards’ in R;

• a transition function T .

At each time t, the agent perceives its state st ∈ S and the set of possible actions
A(st). It chooses an action a ∈ A(st) and receives from the environment the new
state st+1 and a reward rt+1, this means that the agent implements a mapping from
states to probabilities of selecting each possible action. This mapping is called the
agent’s policy and is denoted πt, where πt(s, a) is the probability that at = a if
st = s. In words, it is the probability of selecting action a in state s at time t.

The reward function defines the goal in a reinforcement learning problem. It
maps each perceived state (or state-action pair) of the environment to a single
numerical value, a reward, indicating the intrinsic desirability of that action in that
state. The objective of a reinforcement learning agent is to maximize the total
reward it receives in the long run. The reward function defines what the good and
bad events are for the agent.

In the same way that the reward function indicates what is ‘immediately’ good,
a value function specifies what is good in the long run. In other words, the value of
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a state is the total amount of discounted reward an agent can expect to accumulate
over the future, starting from that state. For example, a state could always yield
low immediate rewards, but still have a high value because it is regularly followed
by other states that yield high rewards.

In order to give more details about how this works, Table 3.1 shows an example
of the interaction between one agent and its environment, taken from [Kaelbling
et al. (1996)].

Table 3.1: Interaction between one agent and its environment

Environment: You are in state 65. You have 4 possible actions.
Agent: I’ll take action 2.
Environment: You received a reinforcement of 7 units. You are now in state 15.

You have 2 possible actions.
Agent: I’ll take action 1.
Environment: You received a reinforcement of -4 units. You are now in state 65.

You have 4 possible actions.
Agent: I’ll take action 2.
Environment: You received a reinforcement of 5 units. You are now in state 44.

You have 5 possible actions.
...

This process of sequential decision making can be formalized by a Markov Deci-
sion Process (MDP) [Puterman (1994)]. MDPs provide a mathematical framework
for modeling decision-making in situations where outcomes are partly random and
partly under the control of a decision maker. This framework is described in detail
in Section 3.3.

In summary, RL provides a flexible approach to the design of intelligent agents
in situations for which, for example, supervised learning is impractical. RL can be
applied to problems for which significant domain knowledge is either unavailable
or costly to obtain. For example, a common RL task is robot control. Designers
of autonomous robots often lack sufficient knowledge of the intended operational
environment to use either the planning or the supervised learning regime to design
a control policy for the robot. In this case, the goal of RL would be to enable the
robot to generate effective decision policies as it explores its environment [Moriarty
et al. (1999)].
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3.3 Markov Decision Processes

A Markov Decision Process (MDP) is a model for sequential decision making when
outcomes are uncertain. Emerging from operations research roots in the 1950s, MDP
models have gained recognition in diverse fields like learning theory, economics and
communications engineering [Goldsmith et al. (1996)]. A Markov Decision Process
can be formally defined as follows:

Definition 5 (Markov Decission Process). A Markov Decision Process (MDP) is a
4-tuple [S, A, T, R] where:

• S = s1, ..., sn denotes a finite set of states;

• A = ∪s∈SA(s), where A(s) is the finite set of available actions in state s ∈ S;

• T : S × A × S → [0, 1] is the transition function, T (s, a, s′) specifies the
probability of ending up in state s′ when performing action a in state s;

• R : S × A × S → R is the reward function, R(s, a, s′) denotes the expected
reward for the transition from state s to state s′ after taking action a.

For MDPs, the Markov property assures that the transition from s to s′ and the
corresponding reward R(s, a, s′) depend only on the state s and the action a, and
not on the history of previous states and actions.

Example 3: Let us assume we have a robot in an environment as depicted in Figure
3.2.

Figure 3.2: Robot navigation example.
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This robot needs to get to the goal (yellow star) avoiding the stairwell (circular
red sign). The possible actions are: go forward, turn left, turn right. The states
are given by the specific location of the robot and its heading, it means there are
65 possible states. The rewards could be defined as follows: 1 if it reaches the goal,
-1 if it ends up in the stairwell, and 0 everywhere else. The transitions are specified
using probabilistic rules.

In the real world, an agent may not be able to accurately observe the current state
of its environment. This may be caused by faulty or noisy sensors that disturb the
true observation according to some probability distribution. Another reason may be
that the observation capabilities of the agent are restricted to certain features of the
world. In order to deal with such problems (uncertain observations), the model of
partially observable Markov decision processes was introduced. It can be seen as an
extension of the MDP model (Section 3.3), in this case observations are considered
along with their probabilities of occurrence depending on the current state. This
model can be formally defined as follows:

Definition 6 (Partially Observable Markov Decision Process). A Partially Observ-
able Markov Decision Process (POMDP) is a tuple (S,A,O, T,Ω, R), where:

• S,A, T,R are the same as in the definition of MDP (Definition 5);

• Ω is a finite set of observations;

• O is a table of observation probabilities. O(s, a, s′, o) represents the probability
of observing o when taking action a in state s and transitioning to state s′ as
a result. Here s, s′ ∈ S, a ∈ A, and o ∈ Ω.

POMDPs offer a challenging problem for RL, because the environment the agent
experiences is not longer obeying the Markov property. Some more in depth study
about POMDPs can be found in [Littman et al. (1995)] and in [Cassandra (1998)].

3.4 Solution Methods
In this section we will present some of the solution methods that can be used when
dealing with a RL problem. The existing techniques can be classified in two main
categories:
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- Model based approaches: use an explicit model of the environment to derive the
optimal policy.

- Model free approaches: derive the optimal policy without explicitly having the
model.

In the next section we will introduce Dynamic Programming, which requires a
complete and accurate model of the environment, and therefore belongs to the class
of model-based approaches. Then we will present two model-free RL-algorithms,
Q-Learning and Learning Automata. It is important to mention that these two
model-free methods belong to different categories. Q-Learning works by learning
the estimates for the values of the actions and then derives a policy, which means
that it is value iteration, while Learning Automata is policy iteration, meaning that
it updates the policy directly.

3.4.1 Dynamic Programming

The term Dynamic Programming (DP) refers to a collection of algorithms that
can be used to compute optimal policies given a perfect model of the environment
as a Markov Decision Process [Sutton & Barto (1998)]. DP techniques are based
on the principle of optimality, name due to Richard Bellman, who contributed to
the popularization of this kind of techniques [Bertsekas (1995)]. The principle of
optimality states that:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. [Bellman (1957)].

The main idea behind DP is to search for optimal policies making use of the
value functions of the states. As it was mentioned before, the value of a state s,
given a policy π, is the total amount of reward an agent can expect to accumulate
over the future, starting from that state and following the given policy.

V π(s) = Eπ{Rt|st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s
} (3.1)

Where Eπ denotes the expectation with regard to the policy π. Similarly, the
value of taking action a in state s can be defined as follows:
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Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a
} (3.2)

Once the optimal value functions have been found, it is easy to obtain optimal
policies which satisfy the Bellman optimality equations:

Bellman optimality equation for V ∗:

V ∗(s) = max
a

Eπ{rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a

∑
s′
T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

(3.3)

Bellman optimality equation for Q∗:

Q∗(s, a) =
∑
s′
T (s, a, s′)[R(s, a, s′) + γmax

a′
Q∗(s′, a′)] (3.4)

for all s, s′ ∈ S, a ∈ A(s), and given the transition function T and the reward
function R. γ is the discount factor which determines the present value of future
rewards. It is possible to see that DP algorithms are obtained by turning Bell-
man equations into update rules for iteratively improving the approximations of the
optimal value functions.

The two most used dynamic programming algorithms are value iteration and
policy iteration. The policy iteration approach has two main steps, policy evaluation
and policy improvement. During policy evaluation, the algorithm uses the state-
value function in order to evaluate the policy by calculating the value of all the
states. While in the policy improvement step, the objective is to find those states
in which the policy can be improved. For a more detailed explanation we refer
to [Puterman (1994)].

The value iteration approach does not need a policy evaluation step, which makes
it a less computationally expensive approach. It works by using a simple backup
operation to iteratively calculate the optimal value function, which has been shown
to converge in [Bellman (1957)].

Dynamic Programming algorithms are known for their assumption of a perfect
model of the environment and also because of their computational cost, but it is
important to say that they provide an essential foundation for the understanding of
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the RL-methods that will be explained in the next subsections. These methods can
be seen as attempts to achieve the same effect as DP, but with less computation
and without assuming a perfect model of the environment [Sutton & Barto (1998)].

3.4.2 Q-Learning

A well-known reinforcement learning algorithm is Q-Learning (QL), which is based
on learning an action-value function that gives the expected utility of taking a given
action in a given state. The core of the algorithm is a simple value iteration update,
each pair (s, a) has a Q-value associated. When the action a is selected by the agent
located in state s, the Q-value for that state-action pair is updated based on the
immediate reward received when selecting that action, and the best Q-value for the
subsequent state s′. The update rule for the state action pair (s, a) is the following:

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)] (3.5)

3.4.2.1 Learning rate and discount factor

In this expression, α ∈]0, 1] is the learning rate and r the reward or penalty resulting
from taking action a in state s. The learning rate α determines ‘the degree’ by which
the old value is updated. For example if the learning rate α = 0, then nothing is
updated at all. If, on the other hand, α = 1, then the old value is replaced by
the new estimate. Usually a small value is used for the learning rate, for example,
α = 0.1. The discount factor (parameter γ) has range value of 0 to 1 (0 ≤ γ ≤ 1).
If γ is closer to zero, the agent will tend to consider only immediate reward. If it is
closer to one, the agent will consider future reward to be more important.

Q-Learning has the advantage that it is proven to converge to the optimal policy
in MDPs under some restrictions [Tsitsiklis (1994)]. The QL algorithm can be
summarized as follows:

Algorithm 1 is used by the agents to learn from experience or training. Each
episode is equivalent to one training session. In each training session, the agent
explores the environment and gets the rewards until it reaches the goal state. The
purpose of the training is to enhance the knowledge of the agent represented by the
Q-values. More training will give better values that can be used by the agent to
move in a more optimal way.
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Algorithm 1 Q-Learning
Initialize Q-values arbitrarily
for each episode do
Initialize s
for each episode step do
Choose a from s

Take action a, observe state s′ and r
Update Q-value, Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
s← s′

end for
end for

3.4.3 Learning Automata

Learning Automata (LA) represent a policy iteration approach that was introduced
in the 1950s in the mathematical psychology domain [Bush & Mosteller (1955)].
Some years later, in the 1960s, it started to be used in engineering research [Tsetlin
(1962)].

A Learning Automaton is an adaptive decision maker that keeps track of a prob-
ability distribution over its actions [Narendra & Thathachar (1974)]. Formally, it
can be described as a quadruple (A,B, p, U), where A = {a1, ..., ar} is the set of
possible actions the automaton can perform, p is the probability distribution over
these actions, B is the response set of the environment (values between 0 and 1),
and U is the learning scheme used to update p.

Figure 3.3 shows a Learning Automaton in its environment. At each timestep it
selects one of its actions according to its probability distribution. After taking the
chosen action i, its probability pi is updated based on the reward r ∈ {0, 1}, see
Equation 3.6. The other probabilities pj (for all actions j 6= i) are adjusted in a way
that keeps the sum of all probabilities equal to 1 (∑i pi = 1), see Equation 3.7. This
algorithm is based on the simple idea that whenever the selected action results in a
favorable response, the action probability is increased; otherwise it is decreased.

pi ← pi + αr(1− pi)− β(1− r)pi (3.6)

pj ← pj − αrpj + β(1− r)
(

1
n−1 − pj

)
, ∀j 6= i. (3.7)
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Figure 3.3: Learning Automaton in its environment.

The parameters α and β (α, β ∈ [0, 1]) are the reward and penalty learning rate.
In literature, three common update schemes are defined based on the values of α
and β:

• Linear Reward-Inaction (LR−I) for β = 0,

• Linear Reward-Penalty (LR−P ) for α = β,

• Linear Reward-ε-Penalty (LR−εP ) for β � α.

3.5 Action Selection Mechanisms

One of the challenges that arises in reinforcement learning is the trade-off between
exploration and exploitation. To obtain a high reward, a reinforcement learning
agent must prefer actions that it has tried in the past and found to be effective in
producing reward. But to discover such actions, it has to try actions that it has not
selected before. The agent has to exploit what it already knows in order to obtain
reward, but it also has to explore in order to make better action selections in the
future. The dilemma is that neither exploration nor exploitation can be pursued
exclusively without failing at the task [Sutton & Barto (1998)]. The agent must try
a variety of actions and progressively favor those that appear to be best. Proper
control of the tradeoff between exploration and exploitation is important in order
to construct an efficient learning method. We will briefly explain three commonly
used action selection methods, greedy, ε-greedy and softmax.
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If the agent decides to choose the best among the possible actions, then we can
say that it is following a greedy action selection strategy. However, always choosing
the best action may lead to suboptimal performance, depending on the variance of
the action rewards.

An alternative to this greedy behavior is to follow the ε-greedy selection strategy.
This action selection method instructs the agent to choose its best action most of
the time, but sometimes, to choose an action at random (with equal probability for
each possible action a in the current state s). The ε value determines the probability
of choosing a random action. Although ε-greedy is an effective and popular strategy
for balancing exploration and exploitation in reinforcement learning, one drawback
is that when it explores it chooses equally among all actions [Sutton & Barto (1998)].
Meaning that it could choose between the worst appearing action and the next-to-
best one with the same probability.

One alternative is to vary the action probabilities as a graded function of their
estimated values, which is what the softmax action selection strategy does. The
greedy action will still have the highest probability, but the other ones are ranked
according to their value estimates. It means that the probability of selecting action
a out of m possible actions is given by the Boltzmann distribution (see Equation
3.8), which is the most commonly used distribution when using this action selection
mechanism.

Pr(a) = eQt(a)/τ∑m
b=1 e

Qt(b)/τ (3.8)

In this Equation τ is a positive parameter called temperature, which controls how
greedily the agent will behave, m represents the number of available actions, and
Qt(a) the estimate of action a at timestep t. High temperatures cause the actions
to be all (nearly) equi-probable. Low temperatures cause a greater difference in
selection probability for actions that differ in their value estimates, in other words,
lower values of temperature will make the agent act more greedily.

It is possible to notice the similarities between the softmax action selection and
the ε-greedy action selection, both methods have only one parameter to be set, but
it is unclear which one could be better, as this may depend on the task being solved.
It is also possible for both methods to decrease the value of their parameters over
time (ε and τ), this means that the agents will explore more at the beginning of the
learning phase, and will act more greedily (exploiting their knowledge) at the end.
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Several experiments have been developed in order to determine which action
selection strategy is better [Auer et al. (2002)]. The experiments have shown that
different parameters for the exploration strategies result in very varying outcomes.
Too little exploration leads to suboptimal results at the end of the learning process,
whereas too much exploration leads to bad performance during the learning process
and long learning times. The best choice is then problem dependent and there is no
known way to automatically select the value of ε in ε-greedy methods.

3.6 Multi-Agent Systems
A Multi-Agent System (MAS) is a system in which several agents act in the same
environment in order to accomplish a specific task. The increasing interest in using
MAS for real world problems is because of their ability to solve problems that are too
large for a centralized agent to solve, and also the ability to provide solutions where
the expertise is distributed, like for instance, health care and manufacturing [Sycara
(1998)].

The field of multi-agent systems is concerned with decentralized processes (dis-
tributed systems), as each individual agent in the system has its own perception
(they can be in different locations or responsible for different parts of the system),
control (different expertise), and actuation (different potential actions) [Kaminka
(2004)]. All these characteristics can be summarized in the following definition:

Definition 7 (Multi-Agent System). A Multi-Agent System is a loosely coupled
network of agents that work together to solve problems that are beyond the individual
capabilities or knowledge of each agent [Jennings et al. (1998)].

The main characteristics of Multi-Agent Systems are:

• each agent has incomplete information, or capabilities for solving the problem,
thus each agent has a limited viewpoint;

• there is no global system control;

• data can be decentralized; and

• computation can be asynchronous.

There are two possible scenarios when dealing with multiple agents, they can
either work together, trying to achieve the same common goal, or they can have



Chapter 3. Multi-Agent Reinforcement Learning 55

their own goals and conflicting interests, which means that we could have either
joint or independent learners. When using joint learners there is the assumption
that actions taken by the other agents can be observed. Independent learners do
not need to observe the actions taken by other agents.

Despite the extra level of complexity that comes with the use of several agents,
we can identify the following benefits [Sycara (1998)]:

• computational efficiency: because concurrency of computation is exploited (as
long as communication is kept minimal, for example, by transmitting high-
level information and results rather than low-level data);

• extensibility: the number and the capabilities of the agents working on a prob-
lem can be altered;

• robustness: the system‘s ability to tolerate uncertainty, because suitable infor-
mation is exchanged among agents; besides, as there are several agents acting
in the same environment, if one of these agents fails, the entire system will not
fail;

• maintainability: a system composed of multiple components-agents is easier
to maintain because of its modularity;

• responsiveness: modularity can handle anomalies in a local way, avoiding their
propagation to the whole system;

• flexibility: agents with different abilities can adaptively organize to solve the
current problem;

• reuse: specific agents can be reused in different agent teams to solve different
problems.

Some examples of fields where Multi-Agent Systems have been successfully ap-
plied are:

• autonomous robots

• elevator control

• wireless collaboration and communications

• supply-chain management

• aircraft maintenance
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• transportation logistics

Figure 3.4, taken from [Nowé et al. (2012)], depicts a typical model of Multi-
Agent Reinforcement Learning (MARL). Multiple agents are connected to the same
environment, where the next state is given by the result of the combination of the
actions taken by all the agents.

Agent 1

Agent 2

Agent n
...

E
N
V
I
R
O
N
M
E
N
T

joint state s(t+1)
reward r(t+1)

r1(t+1)
a1

a2

an

joint action a(t)

s(t+1)

s(t+1)

s(t+1)

r2(t+1)

rn(t+1)

Figure 3.4: Multiple agents acting in the same environment.

An extension of the single agent MDP framework (Definition 5) to the multi-
agent case can be defined as a Markov Game [Shapley (1953)]. In this case actions
and states are the joint result of multiple agents choosing an action independently.
While they were originally introduced in game theory and called stochastic games,
Markov Games were more recently proposed as a standard framework for multi-agent
reinforcement learning [Littman (1994)].

Definition 8 (Markov Game). A Markov Game is a tuple (m,S,A1,...,m, T, R1,...,m),
where:

• m is the number of agents

• S = {s1, ..., sN} is a finite set of system states

• Ak is the action set of agent k

• T : S × A1 × ...× Am × S → [0, 1] is the transition function

• Rk : S × A1 × ...× Am × S → R is the reward function of agent k
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Note that Ak(si) is now the action set available in state si for agent k, with k :
1, ...,m and i : 1, ..., N . Transition probabilities T (si, ~ai, sj) and rewards Rk(si, ~ai, sj)
now depend on a starting state si, ending state sj and a joint action from state si,
i.e. ~ai = (ai1, ..., aim) with aik ∈ Ak(si). The reward function is now individual to each
agent k. Different agents can receive different rewards for the same state transition.
Transitions in the game are again assumed to obey the Markov property.

An extension of this multi-agent framework when all the agents share the same
reward function is called Multi-Agent Markov Decision Process (MMDP).

Definition 9 (Multi-Agent Markov Decision Process, MMDP). A multi-agent Markov
decision process (MMDP) is a cooperative Markov Game (m,S,A1,...,m, R, T ) in
which all agents share the same reward function R.

Until now we have assumed that each agent has full knowledge about the global
system state, meaning that it is aware of the state of the other agents and the
actions they are taking. However, with these assumptions we are losing an important
characteristic of the MASs, the decentralized control.

There are cases where a group of agents is working together trying to maximize
the utility of the team as a whole, but these agents only have a partial view of the
system state and none of them is able to influence the whole system state with its
actions. In order to study decentralized decision-making under the mentioned con-
ditions, [Bernstein et al. (2002)] proposed the framework of Decentralized Partially
Observable Markov Decision Processes.

Definition 10 (Decentralized Partially Observable Markov Decision Process). A
Decentralized Partially Observable Markov Decision Process (DEC-POMDP) is de-
fined as a 7-tuple M = [Ag, S,A, T,R,Ω, O] with:

• Ag = {1, ...,m} as the set of m agents;

• S as the finite set of states;

• A = A1 × ... × Am as the set of joint actions to be performed by the agents,
where Ai is the set of actions available to agent i. Every time step, the agents
take one joint action ~a = (a1, ..., am), but agents do not observe each other’s
actions;

• T as the transition function, T (s,~a, s′) denotes the probability that the system
will arrive at state s′ after the execution of the joint action ~a in state s;
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• R as the reward function, R(s,~a, s′) denotes the reward for executing ~a in s

and transitioning to s′;

• Ω = Ω1× ...×Ωm as the set of observations of all the agents. o = (o1, ..., om) ∈
Ω denotes a joint observation, with oi ∈ Ωi as the observation of agent i (it
only observes its own component oi);

• O as the observation function. O(o|s,~a, s′) is the probability of observing o
when taking the joint action a in state s and entering the new state s′.

In a DEC-POMDP, the process is controlled by multiple distributed agents, each
with possibly different information about the state. There is also another multi-
agent extension of an MDP, called a decentralized Markov Decision Process (DEC-
MDP). A DEC-MDP is a DEC-POMDP with the restriction that at each time step
the agents’ observations together uniquely determine the state. The MDP, POMDP,
and DEC-MDP can all be viewed as special cases of the DEC-POMDP [Bernstein
et al. (2002)]. The relationships among the models can be seen in Figure 3.5.

Figure 3.5: Relationship between the different MDP models.

The literature on DEC-POMDPs typically assumes that the world state can
be factored into components relating to individual agents. This means that it is
possible to separate features of the world state belonging to one agent from those
that belong to others. Such a factorization is strict in the sense that a single feature
of the global state can correspond to one agent only.

Definition 11 (Factored DEC-POMDP). A factored, m-agent DEC-POMDP is
defined such that the set S of states can be factored into m agent-specific components:
S = S1 × ...× Sm.
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In [Gabel & Riedmiller (2008)], the authors identify a subclass of general DEC-
MDPs that features regularities in the way the agents interact with each other. In
the application domain of scheduling, more specifically job-shop scheduling (which
is one of the problems being addressed in this dissertation), jobs are composed
of a number of operations that have to be processed in a specific order on different
machines. Here, it is natural to think of these operations as the actions and, logically,
their availability depends on whether all predecessor operations have already been
processed or not. Generalizing this idea, in [Gabel & Riedmiller (2008)] the authors
define what it means for an agent (a machine) to dispose of changing action sets by
proposing the following definition:

Definition 12 (Decentralized MDP with Changing Action Sets, DEC-MDP-CAS).
An m-factored DEC-MDP with factored state space S = S1 × ... × Sm is said to
feature changing action sets if the local state of the agent i is fully described by the
set of actions currently selectable by that agent: si = Ai\{a0}.
The set of all potentially executable actions of agent i is denoted by Ai = {a0, ai1...aik},
such that it holds Ai ⊂ Ai, and a0 represents a null action that does not change the
state and is always in Ai. Subsequently, we abbreviate Ari = Ai\{a0}, where r

represents the resource to which the agent is associated.

This definition is useful for the learning methods that will be introduced in the
next chapter. During the scheduling process the machines have queues associated,
meaning that its corresponding agent will have to choose one operation to execute
among several ones waiting to be processed, and these queued operations are the
ones that will define the state of the agent.

Table 3.2 shows a comparison among all the MDP models described in this
chapter, in terms of the number of agents, the knowledge they have, the number of
states and the payoff received.

Figure 3.6 shows an example of two agents with their corresponding set of actions,
which define their states at that specific moment. It means that, for example, for
the agent associated to machine one (M1, left hand side), its current state is:
s1 = {Job2 − Op1, Job4 − Op1, Job6 − Op1}. Similarly, the status of the agent
associated to machine two (M2, right hand side) is defined as:
s2 = {Job1 − Op1, Job3 − Op1, Job5 − Op1}, plus the ‘remain idle’ action, which is
available at every time step for every agent.

Let us say that the agent associated to M1 decides to choose Job4 −Op1, which
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Figure 3.6: Two agents with their corresponding set of actions, which
constitute their current state.

will take 5 time units, this means that after finishing this operation, it can be
removed from its current set of actions, changing its state. But this also means that
the next operation of the job to which that operation belongs (Job4 − Op2) can be
released for execution, affecting the state of another agent. This is what is named
transition dependencies [Gabel (2009)], the fact that one agent can affect the state
of other agents with its actions.

Definition 13 (Transition Dependencies). A factored m-agent DEC-MDP with
changing action sets is said to have partially ordered transition dependencies if there
exist functions σi for each agent i such that:

• σi : Ari → Ag ∪ {∅}

Ag is the set of agents and Ari is the set of all the possible actions the agent in
resource i can execute, with i ∈ {1, ...m} (see Definition 12).
σi(a) = j means that agent i takes action a, and this action affects the state of agent
j, action a is then added to Aj(Aj = Aj ∪ a) and it is removed from Ai(Ai = Ai\a).

In short, the dependency functions σi will indicate which other agent’s state will
be affected when taking a specific action. These dependency functions are said to
be partially ordered because it is known in which order the operations of one job
have to be executed, but the order in which the agents will choose these operations
is up to the policy being followed.

Using again the example shown in Figure 3.6, let us assume that the second
operation of Job 4 (Job4 − Op2) has to be executed on machine two, it means that
the corresponding dependency function will be σ1(Job4 − Op1) = 2, and after the
execution of the action, the new state of the agent associated to M2 will be:
s2 = {Job1 −Op1, Job3 −Op1, Job5 −Op1, Job4 −Op2}.
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If we quickly think about the fact that even in simple scheduling scenarios it
is possible to have more than 10 jobs and/or 10 machines, then we will see why
optimal solution methods can hardly be applied. Even the case where only two
agents are present has been identified as NP-hard [Garey et al. (1976)]. In this
dissertation our objective is to maintain the same basic idea for solving different
types of scheduling problems. By basic idea we mean the fact of having one agent
per resource, each agent having a partial view of the system state and taking actions
based on this information. This will then be adjusted according to specific features
of the problem at hand, with the objective of finding high quality solutions, which
can be in the vicinity of the optimal ones, depending on the degree of robustness
wanted by the user.

3.7 Reinforcement Learning for Scheduling

After presenting the basic idea of Reinforcement Learning, the definition of the
different MDP models and the relationship between them, this section will present
the main concepts that have to be taken into account when solving a scheduling
problem using RL.

Figure 3.7 shows an initial idea of the learning environment. Following the
standard RL model presented in Figure 3.1, this is how we map agents and actions
in the environment when solving a scheduling problem.

Figure 3.7: Agents in a scheduling environment.

The scheduling environment defines the number of agents in the system and
the relations among them. Agents may not know the global state of the system.
To achieve better performance of agents or the system, agents communicate with
each other to determine their actions based on the limited information. Clearly,
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the centralized approach is applicable to problems in which global information is
available and agents are cooperative. Problems in which some agents want to keep
their information private for competitive or other reasons call for distributed meth-
ods ranging from coordination among cooperative agents to negotiation between
competitive agents [Wu et al. (2005)]. For a graphical representation see Figure 3.8.

Figure 3.8: Approaches relating to the problem space, taken from [Wu
et al. (2005)]

From all the different scheduling problems we will tackle in this dissertation,
the job shop scheduling problem (section 2.4) will be used as the basic problem,
as all the other types are mainly variants or extensions of it. Job shop scheduling
problems are well suited to be modeled using factored m-agent DEC-MDPs with
changing action sets and partially ordered transition dependencies, as the following
information is always available at the beginning of the scheduling process:

• Number of machines

• Number of jobs

• Processing order of the operations belonging to the different jobs (ordering
constraints)

• Processing time of each operation

The main characteristics that have to be considered when modeling the problem
are adapted from [Gabel (2009)] and can be summarized as follows:
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• Factored World State: The world state of a job-shop scheduling problem J

can be factored: We assume that each resource has one agent i associated that
observes the local state at its resource and controls its behavior. Consequently,
there are as many agents as resources in the JSSP (|Ag| = |R| = m).

• Local Full Observability: The local state si of agent i, hence the situation of
resource ri, is fully observable. Additionally, the composition of all resources
fully determines the global state of the scheduling problem. Therefore, the
system is jointly observable, i.e. it is a DEC-MDP.

• Factored Actions: Actions correspond to the starting of jobs’ operations
(job dispatching). So, a local action of agent i reflects the decision to further
process one particular job (more precisely, the next operation of that job) out
of the set Ai of operations currently waiting at ri.

• Changing Action Sets: If actions denote the dispatching of waiting opera-
tions for further processing, then the set of actions available to an agent varies
over time, since the set of operations waiting at a resource changes.

Ari corresponds to the set of operations oj,k which must be processed on re-
source ri, i.e. %(oj,k) = i, where j is the job to which the operation belongs
and k is the operation id. Furthermore, the local state si of agent i is fully
described by the changing set of operations currently waiting at resource ri
for further processing, thus, si = Ai.

• Dependency Functions: As mentioned before, the order and the resources
on which the operations belonging to a job must be processed in a job shop
scheduling problem is known. These orders imply that, after one agent ex-
ecutes an action (processes one operation), the local state of maximally one
further agent is influenced. Let a ∈ Ai be an operation from job k, which is
currently being processed by resource ri. Once this operation is finished, the
action set Ai of agent i is adapted according to Ai = Ai\{a}, whereas the
action set of agent i′ = %(ok,a+1) is extended (Ai′ = Ai′ ∪ {a}).

Therefore, we can define the dependency functions σ : Ari → Ag ∪ {∅} for all
the agents i (and resource ri, respectively) as follows:

σi(a) =
 %(ok,a+1) if ∃a ∈ {1, ...om − 1} : %(ok,a) = i

∅ else
(3.9)
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where a corresponds to the operation id within job k, which has to be processed
on resource ri, i.e. k such that %(ok,a) = i, and om is the number of operations
job k has.

There are two particular cases for which the function will return the empty
set, one when the selected action is to remain idle and another one when the
selected action is the last operation of the corresponding job.

1. σi(a) = ∅ : Ai = {Ai\a}: If the selected action differs from ‘stay idle’ (a0),
the operation is removed from the set of actions of agent i (Ai = {Ai\a}),
and as the action does not affect the state of any further agent, this is
the only modification being performed.

2. σi(a0) = ∅ : Ai = {Ai}: If the agent decides to stay idle, then its set of
actions will remain the same. This could also be read as σi(a0) = i.

These are the basic definitions that are common for all the scheduling problems
described in Chapter 2. This basic model will then be adjusted depending on the
additional constraints from each particular case. All these adaptations will be ex-
plained in detail in the next chapter.

3.8 Summary
In this chapter we presented an overview of Reinforcement Learning. We first in-
troduced the concept of agent, together with the main characteristics that an agent
needs to posses in order to meet its design objectives. Then we explained how the
agent interacts with its environment in order to learn how to solve a specific task.
The underlying framework of RL, the Markov Decision Process, was also described.
Different solution methods were introduced, as well as different methods for selecting
actions to overcome the exploration - exploitation dilemma. In the last part of the
chapter we moved from a single agent to multiple agents, the concept of multi-agent
system was defined, as well as extensions of the single agent MDP to the multi-agent
case. Section 3.7 presented the main concepts that have to be taken into account
when modeling a scheduling problem as a Decentralized Markov Decision Process.

The next chapter will describe how the basic model can be adjusted in order
to solve more challenging scheduling problems, in which additional constraints are
present.





Chapter 4

A Generic MARL Approach for
Scheduling Problems

Scheduling is a very active research field with a high practical relevance. For a
long time, manufacturing environments have been known for requiring distributed
solution approaches in order to find high-quality solutions, because of their intrinsic
complexity and, possibly, due to an inherent distribution of the tasks that are in-
volved [Wu et al. (2005)]. Accordingly, the naturally distributed character of multi-
agent systems may be exploited in a purposive manner when addressing scheduling
problems [Gabel (2009)].

In this chapter we introduce our learning approach in detail, which is initially
defined for the JSSP. After this we will gradually move to more challenging schedul-
ing problems, showing how the approach can easily be adapted in order to satisfy
the extra constraints of different scheduling scenarios.

In this chapter we start by implementing a Q-Learning algorithm (introduced in
Subsection 3.4.2), which is one of the most widely used RL-algorithms and which
does not require an explicit model of the environment. In the first section we will
define the different components of the algorithm, and its first steps will be explained
through an example.

4.1 Applying QL to solve the JSSP

In the previous chapter we already defined the basic concepts to take into account
when modeling a scheduling problem as a DEC-MDP, where an agent k is associated

67
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to each of the m resources (machines). It is important to remember that an agent
cannot take an action at each discrete time step t, but only after its resource has
finished the execution of the current operation, because each resource can only
process one operation at a time and, besides, each job can only be processed by a
single machine at any given time, meaning that only one of its operations can be in
execution at time t.

The problem instances (introduced in subsection 2.4.2) are defined in such a
way that after an operation is completely processed on one resource, we already
know to which resource the next operation of the corresponding job should be sent,
what should be decided is the order in which each of the resources will execute the
operations that it has assigned. Maybe an operation that arrives later in the queue
of the machine should be selected first.

Using as example the instance ft06 (Figure 4.1), and looking at the first column
(first operation of each job), it can be seen that initially there are only two machines
which are able to execute an operation: M2, which can select between the first
operation of J0, J2 or J4, and M1, which is able to execute J1, J3 or J5. The rest
of the machines will remain idle waiting for these operations to be finished on their
corresponding machines.

Figure 4.1: JSSP Instance ft06, composed by 6 jobs and 6 machines.

At each time step, the possible actions an agent can select take the problem
constraints into account, such that only operations that can be processed at that
time can be chosen. Basically, we are keeping two sets; one containing the resources
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which are able to process an operation (agents able to select an action); and another
one containing the operations that each agent can select as its next action, which is
also what defines its current state.

These sets are continuously updated, because once an operation is finished on
one resource, the status of the system changes. More specifically, the queue assigned
to the resource where the next operation of the corresponding job will be executed
is affected. Hence the set of operations that the agent can select is modified. This
is given by the concept of transition dependencies introduced in Definition 13.

In this basic case jobs do not have release and/or due dates, that is why the
objective of the agents is to minimize the makespan (Cmax), which is the completion
time or, in other words, the time it takes to complete all the operations.

When choosing the QL algorithm as solution method, there are important ele-
ments to be decided, which are summarized as follows:

• States and actions: As mentioned in previous sections, there is an agent
associated to each resource, and this agent will make decisions about future
actions. For an agent taking an action means deciding which operation to
process next from the set of currently available ones (the set of currently
waiting operations at the corresponding resource). Each agent has a local
view, meaning that it only has information about its associated resource and
the operations waiting there.

• Action Selection Strategy: In this thesis the action selection mechanism
that will be used is the ε-greedy strategy (described in Section 3.5) as it
has been successfully used in multi-agent environments [Rodrigues Gomes &
Kowalczyk (2009)].

• Q-Values: Let us once again take the instance ft06 as example (Figure 4.1), in
this case there are 6 agents (one per resource) and 6 jobs involved, according to
the constraints of the JSSP, each agent will execute 6 actions (one operation
from each of the 6 jobs). According to [Gabel (2009)], the set of states for
agent i is defined as: Si = P (Ari )1, this gives raise to |Si| = 26 = 64 local
states for every agent i, which results in an upper limit of |S| ≤ (26)6 = 236

possible system states.

Due to the ordering constraints of the problem, many of those states can

1 P(x) denotes the power set of x
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actually never be reached. Therefore, our algorithm only stores those states
that are needed, by this we mean the combinations of operations that can be at
the same time in the queues of the system. These combinations are stored as
they appear. For example, if the algorithm is executed only for one iteration,
then only 6 states will be stored, which are the states where the agent was
located in when the actions were chosen. Other executions might lead to the
creation of other states.

• Feedback Signal: There are different possible feedback signals that can be
used when solving a scheduling problem. For example, in [Gabel & Riedmiller
(2007)] the authors use a cost function as feedback to the agent, this cost
is defined as the number of operations present, at that point in time, in the
queues of the whole system. This means that high costs are incurred when
there are many operations waiting for further processing in the system and,
hence, the overall utilization of the resources is poor. Note that we are using
costs as reward signal, meaning that the lower the cost the better the action.
In the next subsection (4.1.1) we will study different cost or reward functions
that can be used in the update rule of the QL algorithm.

4.1.1 Feedback Signals

As a starting point, we use as feedback signal the cost proposed in [Gabel & Ried-
miller (2007)], which is based on the idea that a makespan of a schedule is minimized
if as few as possible resources with queued jobs are in the system. The cost function
which is used in the Q-Learning update rule is defined as the number of jobs that
are in the queues of the system. The update rule of the QL algorithm is then:

Q(s, a) = (1− α)Q(s, a) + α[c(s, a, s′) + γ min
b∈A(s′)

Q(s′, b)] (4.1)

where α is the learning rate, γ is the discount factor, and the function c is defined
as follows:

c(s, a, s′) =
m∑
k=1
{j|j queued at k} (4.2)

The successor state s′ is given by the current state of the agent (s), the action
it takes (a) and the transition dependencies (based on the ordering constraints). It
is important to remember that we are using costs instead of rewards, then, small
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Q-Values correspond to ‘good’ state actions pairs, therefore we use the minimum
operator in Equation 4.1.

We propose two other cost functions: the first one uses the processing times of
the operations as feedback signal. In this case, the immediate reward (cost in this
case) is the processing time of the operation that is selected to be processed next
(based on the idea of the SPT dispatching rule, defined in Section 2.10.1). The
second one is based on the cost function proposed in [Gabel & Riedmiller (2007)],
but instead of using the number of operations in the queues of the whole system, we
use the sum of the expected processing times of these queued operations. At some
point during the scheduling process the length of the queues can be the same, but
the sum of the processing times of the operations can be very different. Hence, this
function better represents the overall state of the system.

One main advantage of our approach is that it is also possible to use other
dispatching rules and even composite dispatching rules as feedback signal for the
agents.

Besides the idea of using cost functions as feedback signals, we also propose
another point of view. In this case we give a common reward to the agents based
on the quality of the solution they are able to obtain. Once a solution has been
found we compare it to the previous best solution, if the makespan is lower then the
agents receive a reward of 1 for those state-action pairs that were involved.

r =


0 if Cmax > Cbest,

1 otherwise,
(4.3)

where Cmax is the makespan, as defined in Chapter 2, and Cbest is a variable
keeping the best solution found so far.

4.1.2 Example

As mentioned before, according to the data in the instance ft06 (Figure 4.1), only
machines M1 and M2 can perform an action during the initial step, then, the set of
possible agents to select an action and the sets with the possible operations will be
as follows:

Possible_Agents = {M1,M2}
M1_possible_operations = {J1O0, J3O0, J5O0}
M2_possible_operations = {J0O0, J2O0, J4O0}
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Figure 4.2: Agents choosing from their corresponding sets of currently
selectable operations.

Let us say that the agent located in machine M2 decides to select action J0O0, and
the agent associated to machine M1 selects J3O0, then, once these operations are
processed, the previous sets will change according to the problem constraints. The
next operations of the jobs involved in the previous process (J3O1 and J0O1) can
be sent to the resources where they need to be executed. This means that current
states of the agents in action will be updated as follows:

Possible_Agents = {M1,M2,M0}
M1_possible_operations = {J1O0, J5O0} - J3O0 is removed from the state.
M2_possible_operations = {J2O0, J4O0} - J0O0 is removed from the state.
M0_possible_operations = {J0O1, J3O1} - Agent M0 is able to start processing.

Figure 4.3: Updating the states of the agents after one action selection
step.

Until this point we have been only constructing non-delay schedules, which means
that machines were never kept idle if there was an action to execute. Going back to
one important issue mentioned in Chapter 2, it is possible that the optimal schedule
is not a non-delay one, see Figure 4.4 for example.

In that case, we will never obtain the optimal solution by only looking at non-
delay schedules. That is why we include a ‘stay idle’ action, which will not have any
effect on the state of the agent, giving the possibility to introduce some idle time
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Figure 4.4: Left: Optimal schedule. Right: Non-delay schedule

and as a consequence, delay schedules will be obtained. Assuming that we have the
instance shown in Table 4.1, Figures 4.5 and 4.6 show the process of constructing a
non-delay and a delayed schedule, respectively.

Table 4.1: Instance with 3 resources and 2 jobs.

Job Op1 Op2 Op3

1 M1,1 M2,3 M3,5
2 M2,3 M1,2 M3,1

Figure 4.5: Agents acting in an environment where only non-delay sched-
ules are obtained.
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Figure 4.6: Agents acting in an environment where delay schedules can
be obtained.

4.1.3 Experimental Results QL-JSSP

In order to measure the performance of the different versions of the algorithm and
to compare it with the results reported by other approaches, several benchmark
problems from the OR-Library [Beasley (1990)] were used. The OR-Library is a
library of problem instances covering various Operations Research problems (See
subsection 2.4.2). Table 4.2 summarizes the different instances that will be used as
well as the best known solutions that have been reported in literature.

Some initial experiments were performed in order to analyze the learning process
under the effect of different parameter values. Typical combinations for the QL
algorithm are the following:

• alpha = 0.1, gamma = 0.8, epsilon = 0.2

• alpha = 0.1, gamma = 0.9, epsilon = 0.1

• alpha = 0.1, gamma = 0.8, epsilon = 0.1

After executing different experiments we decided to keep the third combination,
alpha = 0.1, gamma = 0.8, epsilon = 0.1, as it was able to yield better results.
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Table 4.2: Job Shop Scheduling instances and their optimal solutions, in
terms of makespan.

6x6 (6 jobs and 6 machines) ft06 - Optimum 55

10x5 (10 jobs and 5 machines)
la01 - Optimum 666
la02 - Optimum 660
la03 - Optimum 597
la04 - Optimum 590
la05 - Optimum 593

15x5 (15 jobs and 5 machines)
la06 - Optimum 926
la07 - Optimum 890
la08 - Optimum 863
la09 - Optimum 951
la10 - Optimum 958

20x5 (20 jobs and 5 machines)
la11 - Optimum 1222
la12 - Optimum 1039
la13 - Optimum 1150
la14 - Optimum 1292
la15 - Optimum 1207

10x10 (10 jobs and 10 machines)
la16 - Optimum 945
la17 - Optimum 784
la18 - Optimum 848
la19 - Optimum 842
la20 - Optimum 902

For example, Figure 4.7 shows the learning process when solving the instance
ft06 (6 jobs and 6 machines). Similarly, Figure 4.8 shows the learning process when
solving the instance la01 (10 jobs and 5 machines). The optimal solutions for these
instances are Cmax = 55 and Cmax = 666 respectively.

In the example shown in Figure 4.8 it is possible to see that the algorithm needed
more than 700 iterations in order to reach the optimal solution.

Table 4.3 shows the results obtained by our algorithm under the different settings
mentioned before. The first column shows the instances, grouped by number of
jobs and number of machines, the column ‘Optimum’ presents the optimal solutions
reported in the OR-Library. ‘SPT’, ‘Queued jobs’ and ‘Sum proc. times’ are columns
corresponding to the use of the different cost functions described at the beginning
of the section. Common Reward is the second point of view that was introduced,
where agents receive the same payoff. Numbers in bold indicate that the optimal
solution was reached, while underlined numbers indicate the best found solution.
Part of these results were reported in [Martínez Jiménez (2008)].
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Figure 4.7: Learning - Instance ft06 - optimal solution Cmax = 55

Figure 4.8: Learning process instance la01 - optimal solution Cmax = 666

After these experiments we decided to select our best overall result, in order to
compare with the results reported by other approaches in literature. Even though
the differences were not big for the selected group of instances, in this case the best
overall results were obtained by the common reward approach, as it succeeds in
finding the best solutions for almost all the instances, except for the case of instance
la04. Based on the experiments we can make the following observations:

When using the processing time as feedback signal, the agents are basing their
decision on the time it takes to process the possible actions (operations) it can
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Table 4.3: Comparison between the different variants of the algorithm.

Instance Optimum SPT Queued
jobs

Sum proc.
times

Common
Reward

10x5

la01 666 666 666 666 666
la02 655 673 673 667 667
la03 597 627 610 613 610
la04 590 611 613 611 613
la05 593 593 593 593 593

15x5

la06 926 926 926 926 926
la07 890 890 890 890 890
la08 863 865 863 863 863
la09 951 951 951 951 951
la10 958 958 958 958 958

20x5

la11 1222 1222 1222 1222 1222
la12 1039 1039 1039 1039 1039
la13 1150 1150 1150 1150 1150
la14 1292 1292 1292 1292 1292
la15 1207 1271 1269 1262 1259

execute.
If the agent has multiple actions and several of them always end up in the same

amount of queued jobs, the agent can not identify which one could lead to a better
solution quality, as this number is not very informative.

The sum of the processing times of the queued operations makes a differentiation
by telling the agent not the amount of queued jobs, but how long they will take,
which better represents the real state of the system.

The last variant makes use of a common reward, which enforces cooperation. In
this case the agents receive a common reward based on the solution quality, making
more clear for the agent which action was leading to better solutions.

Table 4.4 shows the comparative study between our algorithm and three other
approaches. The column ‘TS-ACO’ refers to the use of a Two Stage Ant Colony Op-
timization approach, which was proposed in [Puris et al. (2007)], ‘GA’ corresponds
to a Genetic Algorithm proposed in [Hasan et al. (2007)], and ‘ACO’ to a classical
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Ant Colony Optimization Approach, introduced in [Ventresca & Ombuki (2004)].
Instances are again grouped per number of jobs and machines and the Mean

Relative Error is shown at the bottom of the results. The relative error (RE) is
defined as RE =[(MK -LB)/LB * 100], where MK is the best makespan obtained
by the reported algorithm and LB is the best-known lower bound. The MRE takes
into account the average of the results for the whole group of instances.

Table 4.4: Comparative study for the JSSP.

Instance Optimum TS-ACO GA ACO QL

10x5

la01 666 666 666 666 666
la02 655 673 655 666 667
la03 597 627 617 617 610
la04 590 611 607 607 613
la05 593 593 593 593 593
MRE - 2.2 1.19 1.54 1.54

15x5

la06 926 926 926 926 926
la07 890 890 890 894 890
la08 863 865 863 863 863
la09 951 951 951 951 951
la10 958 958 958 958 958
MRE - 0.04 0.0 0.087 0.0

20x5

la11 1222 1222 1222 1222 1222
la12 1039 1039 1039 1039 1039
la13 1150 1150 1150 1150 1150
la14 1292 1292 1292 1292 1292
la15 1207 1251 1207 1286 1259
MRE - 0.98 0.0 1.57 1.19

From Table 4.4 we can see that the proposed algorithm is able to obtain good
results compared to those reported by the selected approaches. We selected these
approaches to compare mainly because they were using the same instances, and
reporting results for all of them. Which is not the case of the approach proposed
in [Gabel & Riedmiller (2007)], it was not possible to compare instance per instance,
as they only present their results grouped by number of jobs and machines, and for
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each group only the MRE is reported. In order to have an idea of how we compare
to it, Table 4.5 shows a comparative study between the MREs of both approaches.

Table 4.5: MRE per group of instances

Instances
m x n

Number of
instances

Theoretical
Optimum

Previous
RL alg.

QL JSSP

10 x 5 5 620.2 1.9 1.54
15 x 5 5 917.6 0.0 0.0
20 x 5 5 1179.2 1.5 1.19

Table 4.5 shows both algorithms are able to obtain the optimal solutions for all
the instances in the second group. In the first group, which are instances with 10
jobs and 5 machines, the proposed algorithm was outperformed by the previous RL
approach, while in the last group the QL method was able to yield better solutions.
From the experiments we can see that our approach was able to obtain compet-
itive results, which was the first part of our study, to analyze whether we could
obtain near-optimal solutions. In the following, we will study the extension of our
approach to other types of scheduling problems to later on analyze how to increase
the robustness in the proposed solutions.

4.2 Reinforcement Learning for the JSSP-PM
The approach presented in the previous section can easily be extended to the case
when there are parallel machines that can execute the same type of task (See Section
2.5). We analyzed two possibilities in order to adapt the algorithm:

• queues associated to individual machines, which means that there is one
agent per resource, as was the case in the basic approach, and each of these
agents will have a queue associated (see Figure 4.9). The difference is given
by the fact that when one operation is fully executed on a machine, the next
operation of the corresponding job has to be released for execution, i.e. it
should be assigned to a specific agent, meaning that there is an extra decision
to take, which was not the case in the previous approach.

• having m groups of k machines, the queues can be considered to be as-
sociated to groups of similar resources instead of being associated to a single
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Figure 4.9: Queue per agent, and one agent per resource

resource. For example, if an operation needs to be processed by a machine of
type 3, then it is placed on the queue of the group ‘type 3’ (machines within a
group are identical). There is one agent per resource as in the basic approach,
but in this case the queue is common (see Figure 4.10).

After analyzing both points of view, we decided to keep the second one, having
a queue per type of resource, as it fits better in the idea of the basic approach
introduced in the previous section. Nevertheless, in order to test the other point of
view, we added an extra step in the algorithm where an operation is assigned to any
queue at random within a group.

4.2.1 Experimental Results JSSP-PM

In order to test the algorithm we will use the benchmark instances presented in [Rossi
& Boschi (2009)]. In this case the authors used the first 15 Lawrence instances
from the job-shop scheduling literature. These instances can also be found in the
previously mentioned OR-Library.

From these classical JSSP instances, duplicated (k=2, la01’-la15’) and triplicated
(k=3, la01”-la15”) instances are generated. This means that we just add an extra
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Figure 4.10: Queue per type of resource, agent per resource.

copy of all jobs once (k=2) or twice (k=3). The description line of the instance (see
subsection 2.5.2) gives us the number of jobs and the number of groups of machines.
The number of machines per group will be equal to k.

In Tables 4.6 and 4.7 we show a comparison of the two alternatives to solve the
problem, for the experiments we only used the first 10 instances, both duplicated
and triplicated.

As expected, the alternative of having a queue per type of resource was able to
yield better results. This is the approach we choose to run the experiments under
different setting in order to compare with other approaches.

In Table 4.8 we compare the solutions obtained by our approach to the hybrid
heuristic [Rossi & Boschi (2009)] from the literature, to an ACO algorithm also
proposed in the same paper, and to the results obtained by the implementation of a
Learning Automaton [Wauters et al. (2010),Martínez et al. (2010)b]. The table also
shows the average makespan, mean relative error in % (MRE%) and the number of
optimal values found, over all 30 benchmark instances. We tested each method with
2 parameter settings. The methods and their parameters are as follows:

• LA1; alpha = 0.3, Rewardeq = 0.05, Linear Reward-Inaction
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Table 4.6: Comparison of both points of view for duplicated instances

Instance Optimal Queue per
resource type

Queue per
resource

la01’ 666 666 666
la02’ 655 664 748
la03’ 597 613 684
la04’ 590 610 692
la05’ 593 593 593
la06’ 926 926 934
la07’ 890 890 907
la08’ 863 863 898
la09’ 951 951 1020
la10’ 958 958 989

Table 4.7: Comparison of both points of view for triplicated instances.

Instance Optimal Queue per
resource type

Queue per
resource

la01” 666 668 691
la02” 655 656 774
la03” 597 620 705
la04” 590 610 694
la05” 593 593 593
la06” 926 926 945
la07” 890 892 916
la08” 863 863 896
la09” 951 951 1017
la10” 958 958 989
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• LA2; alpha = 0.4, Rewardeq = 0.05, Linear Reward-Inaction

• QL1; alpha = 0.1, gamma = 0.8, epsilon = 0.2

• QL2; alpha = 0.1, gamma = 0.9, epsilon = 0.1

With QLx we refer to our method under the settings mentioned before, and with LAx
to the method presented in [Wauters et al. (2010)] also with the two configurations
mentioned above.

From the table we can notice that both learning methods perform slightly better
than the hybrid-heuristic. On average the mean relative errors are more than 1%
better. Further more, the methods are capable of finding more frequently the optimal
solutions, especially for the triplicated (k=3) instances, where the learning methods
succeed in finding the optimal solutions for 9 to 10 instances. In total, the learning
methods succeeded in finding the optimal solution for 20 instances. The first part
of the table shows the experiments for k=2 (rows la01’ to la15’) and the second half
the experiments for k=3 (rows la01” to la15”).

4.3 Reinforcement Learning for the FJSSP

After dealing with the case where multiple identical machines can execute the same
type of task, we move to a more challenging kind of problem, the Flexible Job Shop.
In this case, as explained in Section 2.6, there are also multiple machines available
to execute the same type of tasks, but in this case, the machines are not identical,
i.e. they have different speeds so more coordination is needed in order to distribute
the workload.

4.3.1 The Proposed Approach: Learning / Optimization

As mentioned in Section 2.6, there are two possible ways to address the FJSSP, using
hierarchical or integrated approaches. The former divides the problem in routing
(assign a machine to each operation) and sequencing, while the latter considers
both steps at the same time. In our case, as we already have an algorithm that can
take care of the sequencing of the operations on the machines, the idea of using a
hierarchical approach is more straightforward, as only the routing part needs to be
incorporated.
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Table 4.8: Comparative study for the JSSP-PM.

Instance Optimal LA1 LA2 QL1 QL2 ACO Hybrid heuristic
la01’ 666 666 666 666 666 669 666
la02’ 655 657 657 674 664 693 688
la03’ 597 612 614 613 624 642 626
la04’ 590 593 594 610 610 625 611
la05’ 593 593 593 593 593 593 593
la06’ 926 926 926 926 926 926 926
la07’ 890 890 892 890 890 908 894
la08’ 863 863 863 863 863 865 863
la09’ 951 951 951 951 951 951 951
la10’ 958 958 958 958 958 958 958
la11’ 1222 1222 1222 1222 1222 1222 1222
la12’ 1039 1039 1039 1039 1039 1041 1039
la13’ 1150 1150 1150 1150 1150 1150 1150
la14’ 1292 1292 1292 1292 1292 1292 1292
la15’ 1207 1208 1209 1215 1245 1249 1246

la01” 666 667 667 668 671 689 677
la02” 655 662 659 656 656 707 712
la03” 597 613 614 620 624 659 673
la04” 590 591 590 608 598 635 629
la05” 593 593 593 593 593 594 593
la06” 926 926 926 926 932 932 936
la07” 890 892 892 892 892 908 922
la08” 863 863 863 863 863 872 871
la09” 951 951 951 951 951 958 952
la10” 958 958 958 958 958 961 958
la11” 1222 1222 1222 1222 1222 1224 1239
la12” 1039 1039 1039 1039 1039 1069 1049
la13” 1150 1150 1150 1150 1150 1156 1163
la14” 1292 1292 1292 1292 1292 1293 1292
la15” 1207 1208 1218 1251 1245 1269 1283

Average 906.6 908.2 908.6 911.7 912.6 938.6 922.5
MRE% 0 0.26 0.29 0.70 0.77 2.29 2.04

# Optimal 30 20 20 20 19 7 13
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Therefore, the learning/optimization method proposed in this section is an offline
scheduling approach divided in two steps. First, a two-stage learning method is
applied to obtain feasible schedules, which can then be used as initial data for an
optimization procedure [Van Peteghem & Vanhoucke (2008)] during the second step.

The implemented learning method decomposes the problem following the assign-
then-sequence approach. Therefore, we have two learning phases. During the first
phase operations learn what is the most suitable machine and during the second
phase machines learn in which order to execute the operations in order to minimize
the makespan. For this, each phase has a Q-Learning algorithm associated. As the
process is being divided in two, we take into account the goal of each phase in order
to define the states and the possible actions.

In the first phase, where the learning takes care of the routing, we have an
agent per operation being responsible for choosing a proper machine to execute its
corresponding operation. This machine has to be selected from the given set of
available ones, that is, the set of resources that can execute it.

This is not the case for the second phase, where the learning algorithm takes care
of the sequencing and each operation already knows where it has to be executed, the
main idea is to decide the order in which they will be processed on the machines.
As it can be seen, this is what our basic approach (proposed in section 4.1) does,
which means that in the second phase we will have an agent per resource, selecting
operations based on the quality of the solution.

What still needs to be defined is how to choose a proper machine for each oper-
ation.

4.3.2 Example

Assuming that we have a small instance with 2 jobs and 3 machines, where J1 has
2 operations and J2 has 3 operations, and these operations can be executed by the
following sets of machines, where each pair represents a possible machine and the
corresponding processing time:

J1O1


M1, 10

M2, 15
J1O2


M2, 12

M3, 18
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J2O1


M1, 20

M3, 25
J2O2


M1, 25

M2, 18
J2O3


M2, 15

M3, 25

As mentioned in the description of the algorithm, the first learning phase takes
care of the routing, meaning that the first step is to choose an appropriate machine
for each operation.

Let us assume that each operation can select the machine that will take care
of its processing, the obvious decision will be to choose the fastest machine, which
means that J1O1 will select M1, because it only needs 10 times steps, while M2 will
take 15. If we repeat this process for each of the operations then the selection will
be as follows:

J1O1


M1, 10 X

M2, 15
J1O2


M2, 12 X

M3, 18

J2O1


M1, 20 X

M3, 25
J2O2


M1, 25

M2, 18 X
J2O3


M2, 15 X

M3, 25

From these operation-machine assignments it is possible to see that if all the
operations go for the fastest machine, then M1 will have to execute 2 operations,
and machine M2 the remaining three operations, while M3 stays idle during the
whole process.

After performing the sequencing, a possible solution for the operation-machine
assignment is shown in Figure 4.11, which results in a makespan Cmax = 63:

The optimal solution for this instance is shown in Figure 4.12, with a makespan
Cmax = 53.

This optimal solution responds to the following operation-machine assignment:

J1O1


M1, 10

M2, 15 X
J1O2


M2, 12

M3, 18 X

J2O1


M1, 20 X

M3, 25
J2O2


M1, 25

M2, 18 X
J2O3


M2, 15 X

M3, 25



Chapter 4. A Generic MARL Approach for Scheduling Problems 87

Figure 4.11: Schedule for the operation - machine assignments using the
fastest machine.

Figure 4.12: Optimal schedule for the example.

As can be seen, always taking the machine that will process the operations the
fastest is not a good choice, as there are other important criteria that should be
considered, for example, the workload of the machine.

That is why we use the end time of its corresponding operation on the selected
machine as feedback signal for the agents. Of course its objective is to minimize the
end time of the operation, that is, the time when the machine finishes executing the
operation.

Once a feasible schedule has been found, the mode optimization procedure can
be executed. This procedure will be described in the next subsection.

4.3.3 Mode Optimization Procedure

The mode optimization procedure [Van Peteghem & Vanhoucke (2008)] is a forward-
backward procedure which tries to shift a schedule to the left (as much as possible) in
order to minimize the makespan. It is executed once a feasible schedule is obtained,
and we refer to it as the second step of the approach.
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The forward-backward procedure can be summarized as follows:

• Order the operations according to their end times (the time when they end in
the schedule received as input).

• Taking into account the previous ordering, for each operation, choose the ma-
chine that will finish it first (shortest end time, not shortest processing time).
The result is a backward schedule.

• Repeat steps 1 and 2 to obtain a forward schedule.

Once the mode optimization is executed, the quality of the solution is taken into
account to give feedback to the agents of the learning phases.

Example 4: Let us say that after executing the learning step we obtain the schedule
shown in Figure 4.13.

Figure 4.13: Feasible schedule obtained by the learning step.

Applying the Mode Optimization Procedure to this schedule, the first step is to
order the operations according to their end times, that will give us the following
ordering: {J2O3, J2O2, J2O1, J1O2 and J1O1}. Taking into account this ordering,
the operations will choose a machine to execute it, basing the decision on the possible
end time (according to the data given in subsection 4.3.2).

For example, J2O3 can start choosing because it was the first operation in the
ordering, according to the data of the example the machines that can execute it
are M2 for 15 time steps or M3 for 25 time steps, obviously the best choice is M2,
meaning that M2 will be busy between time 0 and 15.

J2O3


M2, 15 (0− 15) X

M3, 25
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Then, the next operation on the ordered list makes a choice, in this case J2O2

can choose between M1 for 25 time steps and M2 for 18. As this is the second
operation of J2 being scheduled, it can not start until the previous operation of the
same job is finished, which means that its earliest starting time will be 15 (which is
the time when J2O3 is finished), the possible end times are then 40 on M1 (15+25)
and 33 on M2 (15+18), being the best choice M2, which will be occupied from 15
to 33.

J2O2


M1, 25 (15− 40)

M2, 18 (15− 33) X

When an operation from another job chooses a machine, it has to respect this
busy times but it can search for an available slot of the size of the time it requires.
Once all the operations are scheduled, a backward schedule is obtained, which will
look as shown in Figure 4.14.

Figure 4.14: Backward schedule.

This process is repeated once again, in order to find a forward schedule, an-
alyzing the backward schedule it will give us the following operation ordering:
{J2O1, J2O2, J1O1, J1O2, J2O3}. After repeating the choosing procedure, a forward
schedule like the one shown in Figure 4.15 is obtained.

It is possible to see that we obtain a makespan Cmax = 53, and initially we
started with a schedule where Cmax = 80.
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Figure 4.15: Forward schedule.

The Learning / Optimization approach can be summarized as follows:

Algorithm 2 Learning/Optimization algorithm for the FJSSP
Step 1 - Learning
for each operation do
choose a machine

end for
while there are operations to execute do
for each machine with queued operations do
choose operation to execute
update queues of the system

end for
end while
Step 2 - Execute the Mode Optimization Procedure

4.3.4 Experimental Results FJSSP

Several experiments were performed using benchmark problems proposed in [Brandi-
marte (1993)] (see subsection 2.6.1). The results of this approach were reported
in [Martínez et al. (2011)].

The combination of parameters used for the experiments was γ = 0.8 and ε = 0.1,
together with a discount factor α = 0.1. The algorithm was executed for 10,000
iterations.
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4.3.5 Comparative Study

Table 4.9 shows a comparative study between the proposed approach and some
results reported in the literature. LB is the Lower Bound for each instance, taken
from the original Brandimarte data [Brandimarte (1993)]. The algorithms used to
compare our method (QL) are:

• GA: Genetic Algorithm [Pezzella et al. (2008)], algorithm integrating different
strategies for generating the initial population, selecting the individuals for
reproduction and reproducing new individuals.

• ACO: Ant Colony Optimization [Lining & Chen (2010)], it provides an effec-
tive integration between the Ant Colony Optimization model and knowledge
model.

• GEN: Abbreviation of GENACE, an architecture proposed in [Ho et al. (2007)]
where an effective integration between evolution and learning within a random
search process is proposed.

• Brand: Tabu Search [Brandimarte (1993)], a hierarchical algorithm for the
flexible job shop scheduling based on the tabu search metaheuristic.

Table 4.9: Experimental Results FJSSP.

Inst. LB GA ACO GEN Brand QL
Mk01 36 40 39 40 42 40
Mk02 24 26 29 29 32 26
Mk03 204 204 204 204 211 204
Mk04 48 60 65 67 81 66
Mk05 168 173 173 176 186 173
Mk06 33 63 67 67 86 62
Mk07 133 139 144 147 157 146
Mk08 523 523 523 523 523 523
Mk09 299 311 311 320 369 308
Mk10 165 212 229 229 296 225

Table 4.10 shows the mean relative errors in % (MRE) of the different approaches
used to compare our method with respect to the best-known lower bounds.
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Table 4.10: MRE: Mean relative errors

GA ACO GEN Brand QL
MRE 17,53 22,16 23,56 41,43 19,69

From the tables (4.9 and 4.10) we see that the proposed approach is able to find
the best reported value for several instances (Mk01-Mk03, Mk05, Mk08). For the
instances Mk04, Mk07 and Mk10 the genetic algorithm is better. For the instances
Mk06 and Mk09 the proposed algorithm is able to yield better results.

The cases in which our algorithm did not find the best solutions where instances
for which a proper machine assignment was not found, probably caused by the
fact that multiple machines with similar processing times can perform the same
operation.

4.4 Reinforcement Learning for Online Scheduling

After dealing with three different scheduling problems where all the information was
known beforehand, we switch to a completely different scenario, an online scheduling
problem which is depicted in Figure 4.16 (see Section 2.8). In this case the solution
method will be Learning Automata, described in subsection 3.4.3.

Figure 4.16: A two-stage chemical production plant. For both product
types P1 and P2, there are two parallel machines at the first stage. At the
second stage of the process, there are also two parallel machines.

4.4.1 Learning Automata for Stochastic Online Scheduling

In order to apply LA to a scheduling problem we need to define the actions of the
agents and the rewards. We define an action of the LA as submitting a job to
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one of the parallel machines. Therefore, for the problem described we will have 6
agents, one in each decision point, which means that two agents receive product
orders P1 and P2 and decide which ‘stage-1’ machine will be used. The other four
agents receive partially processed jobs from a ‘stage-1’ machine M1− and send them
to a ‘stage-2’ machine M2−. Note that the agent cannot wait to submit a job and
cannot stop a job preemptively. In other settings these could be added as extra
actions [Martínez et al. (2010)a].

When a job j is completely finished, the two agents that decided the path of
that job are notified. Based on the completion time Cj and the release times rj for
both stages a reward r ∈ {0, 1} is created, see Equation 4.4. Note, (i) completion
time is the time at which the job has finished both stage 1 and stage 2, and (ii)
release times are the times at which the job starts stage 1 or stage 2 depending on
the agent.

r =


0 if F > Favg,

1 otherwise,
(4.4)

where the flowtime F = Cj−rj and Favg is the average flowtime over the last n jobs.
The larger n, the more accurate the LA’s belief of the average flowtime of the jobs.
The smaller n the faster the LA will adapt its belief of the average flowtime when
for example a machine breaks down or the performance of a machine increases.

4.4.2 WSEPT Heuristic for Stochastic Online Scheduling

To the best of our knowledge, there is no good approximation algorithm for schedul-
ing problems that are online, stochastic and multi-stage at the same time. For the
single-stage case, there exists a very good heuristic: Weighted Shortest Expected
Processing Time (WSEPT) [Megow et al. (2006)].

This heuristic works as follows: orders are arriving over time and must be pro-
cessed by one out of several parallel machines. The objective is to reduce the total
weighted completion time (∑j wjCj, for all jobs j). Each time an order arrives, the
WSEPT rule submits the job to the machine that is expected to finish it first. To
this end it polls each machine for its current expected makespan (including the new
job). If, for example, all jobs have equal expected processing time, and each machine
the same average speed, then the expected makespan is the queuelength (including
the currently processed job if any). In [Megow et al. (2006)] lower bounds on the
total weighted completion time (∑j wjCj) are given for the WSEPT heuristic.
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In the next section we will compare the WSEPT and the Learning Automata in
a simple single-stage scheduling task.

4.4.3 Experimental Results

4.4.3.1 WSEPT Heuristic versus Learning Automata

We ran some experiments on single-stage scheduling with N = 4, 5 or 6 identical
machines. One scheduler receives a sequence of jobs. The joblengths are generated
by an exponential distribution with average µ = 100. The identical machines have
unit processing speed si = 1, for i = 1, . . . , N . I.e. a machine needs 100 timesteps
to process an average job.

To make sure the system can actually handle the load, we set the probability of
creating a job at any timestep to 95% of the total processing speed divided by the
average job length: 0.95∑i si/µ. In this setting, all jobs have unit weight wj = 1.

We tested the following agents on the same sequence of orders:

RND: uniformly distributes the jobs over all machines,

WSEPT: uses the WSEPT heuristic as described in Section 4.4.2,

LA: a Learning Automaton as described in Section 4.4.1 with α = β = 0.02.

Results: The experiments showed that the LA clearly performs better than the
RND scheduler, and WSEPT outperforms LA [Martínez et al. (2010)a]. Note that
the heuristic approach uses a lot more information which LA cannot access. The
length of the queues over time show that WSEPT balances the load better: queues
are 4 to 5 times shorter. On the other hand, the total weighted completion time
(∑j wjCj) does not show huge differences between WSEPT and LA (in the order of
0.001 to 0.01 time units).

Although the WSEPT heuristic outperforms the Reinforcement Learning ap-
proach, it requires access to more information and only works in single-stage load-
balancing problems. This is why in the next section, we test LA in the multi-stage
setting described at the beginning of Section 4.4.1.

4.4.3.2 Multi-Stage Scheduling

In this case we look at two slightly different settings, which are summarized in Ta-
ble 4.11. Setting 1 is adopted from [Peeters (2008)]. In both cases, the average
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joblength is 100 and the jobrate is 1/45 for both product types P1 and P2. The per-
formance is measured by the total flowtime of the jobs through the entire processing
chain.

Table 4.11: Processing speeds of all machines for two different settings.

Machine M11 M12 M13 M14 M21 M22 M23 M24

Speed setting 1 3.33 2 1 1 3.33 1 1 1
Speed setting 2 3.33 2 10 10 3.33 1 1 1

In order to compare the results, a random strategy for dispatching the jobs was
also implemented under these settings. Figure 4.17 shows how the queues of the
machines grow when following this strategy, where each color represents a machine
(8 in total).

Figure 4.17: Queues of the machines when following the random strategy.

The first type of LA we tested was Linear Reward-Inaction LA (LR−I). After
some time, the queues started growing indefinitely. This was caused by some au-
tomata converging prematurely to a pure strategy, i.e. they end up selecting the
same action forever. This is due to the fact that LR−I never penalizes bad actions
(β = 0). Although this may be favorable for many RL problems, it will almost never
be for load-balancing. The only obvious exception is when one machine is able to
process all jobs before any new order arrives.
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Figure 4.18 shows the queues of the machines when using Linear Reward-Inaction
Learning Automata.

Figure 4.18: Queues of the machines when using Linear Reward-
Inaction.

The LR−εP generated better and better results when ε was increased. Finally,
when ε = 1 we have LR−P , where penalty and reward have an equally large influence
on the probabilities. This gives the best results. Figure 4.19 shows the queues of
the machines when using learning automata under the reward penalty strategy.

Figure 4.19: Queues of the machines when using LR−εP .

Figure 4.20 shows the results in terms of the amount of queued jobs at the end
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of the process (25000 iterations), while Figure 4.21 shows the amount of jobs that
were executed also after the total number of iterations.

Figure 4.20: Queued jobs at the end of the process.

Figure 4.21: Total number of jobs executed at the end of the 25000
iterations.

Different combinations of values for the parameters α and β were studied. These
parameters determine the learning speed, and the best combination for this problem
was 0.01. Table 4.12 shows the average policy for each of the six agents. For example,
the fourth agent receives jobs partially finished by machineM13 and distributes them
over M23 and M24.
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The second setting shows that the agents take into account the time needed for
a job to go through all stages. Machines M13 and M14 are 10 times faster as in the
first setting. This does not increase the total system capacity, since the machines in
the second stage would create a bottleneck. The result is that the first two agents
still favor M11 and M12, but slightly less. For example, the first agent in Table 4.12
distributes 71% of the load on M11 in the second setting, as opposed to 74% in the
first setting.

Table 4.12 shows the average probabilities of all agents through an entire simu-
lation.
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4.4.4 Discussion

The following advantages of LA make them very applicable in difficult scheduling
scenarios:

• They can cope with unknown joblengths, unknown future jobs and unknown
machine speeds.

• The decisions based on the probability distribution and the updates of those
distribution are straightforward. They can be performed in a minimum of time
and require only very limited resources.

• No heuristics or additional information is needed.

The performed experiments show that LA can learn processing capacities of
entire downstream chains. Note however that the rewards are delayed. While
waiting for a submitted job to be finished, other jobs must already be scheduled.
In our scheduling problem, this is not a problem for the LA. When more stages
would be added to the system, the LA could be equipped with so-called eligibility
traces [Castillo & Roberts (2001)].

Since LA are very adaptive, and will not converge to pure strategies with LR−P ,
they are able to adapt to changes in processing speed, such as machine break downs.

Finally, when applying any randomization technique (such as LA) to balance a
load, one is always better off with many short jobs than very few long ones (cf. the
law of large numbers).

4.5 Summary
In this chapter we first introduced what we call the basic learning algorithm, which
was initially defined for the job shop scheduling problem and later on adapted in
order to solve the version with parallel machines and the flexible job shop scheduling.
The learning method implemented was a Q-Learning algorithm, for which different
feedback signals were studied. This QL algorithm was easily adapted and combined
with other techniques in order to satisfy the extra constraints of the more challenging
scenarios. In all the cases the results were compared with those reported in the
literature by other approaches. For the online scheduling problem we used Learning
Automata in order to learn how to distribute the incoming orders of two types of
products among parallel machines. Experiments were developed using the three



Chapter 4. A Generic MARL Approach for Scheduling Problems 101

possible update schemes. The results of the experiments showed that the LR−P
scheme was able to yield better results. In the following chapter we will present
some of the more common sources of uncertainty in scheduling and introduce the
concept of robustness.





Chapter 5

Uncertainty and Robustness in
Scheduling

In real-world applications of Linear Programming, one cannot ignore the
possibility that a small uncertainty in the data can make the usual

optimal solution completely meaningless from a practical viewpoint.
- [Ben-Tal & Nemirovski (2000)]-

In real world environments scheduling can not be seen as a problem where all the
information is known beforehand. For example, manufacturing scheduling is subject
to constant uncertainty in its environment, where the probability of a schedule
being executed exactly as it was planned is usually very low. In this chapter we
summarize the more common sources of uncertainty in scheduling, and different
types of approaches to deal with these uncertainties are studied. These approaches
can be classified as proactive or reactive. We will go into more detail in the proactive
techniques, as the approach we propose in the next chapter is based on this idea.
The concept of robustness is defined and different metrics to measure how robust a
schedule is are described.
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5.1 Uncertainty in Scheduling
During the scheduling process machines can break down, operations can take longer
than expected, new orders can arrive, the priority of some orders might change, and
all these disruptions will eventually make the original schedule fail, causing delays
in the delivery of the products (due dates might be violated), increasing the idle
times of the machines and the staff, among many other consequences.

Therefore, in real environments it may not be useful to spend significant efforts
to produce optimal solutions, since the optimality is achieved only if the solution
can be executed as planned. On the contrary, as noted in [Policella (2005)], “a sub-
optimal schedule that contains some built-in flexibility for dealing with unforeseen
events, might provide useful characteristics for the execution. Hence, the efficiency
of the scheduling techniques employed will depend on the degree of uncertainty of the
scheduling information provided at the beginning”.

Figure 5.1 shows another graphical representation (more detailed than Figure
2.1) of the supply chain environment where scheduling operates.

Figure 5.1: Scheduling Environment, taken from [Gao (1996)].

The input of this chain is composed of a set of demands or orders from internal
and/or external customers, these demands are given to the scheduler, who provides
a schedule to the shop floor for execution. The shop floor uses internally produced
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materials, and also receives part of them from outside suppliers, producing the final
products that are stored in a warehouse until they are delivered to the customers
who ordered them [Gao (1996)].

As it can be seen, scheduling works at a very low level inside production man-
agement, but it is in this level where the shop floor strategy is planned, that is why
it is very important to come up with schedules that will allow to accomplish the
desired objective and satisfy the customers.

One of the major existing problems in scheduling is that plans or schedules that
are good on paper often do not perform well in practice, due to the previously men-
tioned uncertainty in the environment. In the search of optimal solutions machines
are constantly working and the operations are executed as soon as possible in order
to meet the due dates and minimize objectives like the makespan or the tardiness.
That is why most of the time we are faced with non-delay schedules, which are good
in practice as long as unexpected events do not occur.

It is important to say that even though the presence of idle times is usually
considered as bad when scheduling, it is good in performance, because it is what
keeps delays from propagating [Cohn (2007)].

Some of the more common sources of uncertainty at the operational level are:

• Machine breakdowns;

• Uncertainty in the processing times of the activities;

• Unexpected arrival of new orders, some of them with high priority;

• Cancellation or modification of existing orders;

• Modification of release and/or due dates.

In this dissertation we will focus on the first two, Machine breakdowns and
Varying activity duration. One way to deal with such disruptions is by generat-
ing robust schedules [Davenport et al. (2001)], that is, schedules with the ability to
satisfy performance requirements predictably in an uncertain environment [Le Pape
(1991)]. In the next section we will introduce the concept of robustness and we will
answer some important questions, such as how to measure how robust a schedule is,
and how to incorporate robustness in our solutions.
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5.2 Robustness
In many decision processes it is common that solutions with a certain level of robust-
ness are required in order to maintain their feasibility in settings with incomplete
or imprecise data. Solutions should tolerate a certain degree of uncertainty during
execution, in other words, they should be able to absorb dynamic variations in the
problem.

We often talk about robust schedules, but there are several questions that have
to be answered in order to truly capture the meaning of robustness, for example:

• how is robustness defined?

• how can we measure how robust a schedule is?

• how to incorporate robustness in the schedules?

The robustness of a schedule is a way to characterize its performance. In [Billaut
et al. (2008)], a schedule is classified as robust if its performance is rather insensitive
to data uncertainties. Another definition of robust schedule is given in [Leon et al.
(1994)], in this case it is defined as a schedule that is insensitive to unforeseen
shop floor disturbances given an assumed control policy. In other words, robust
scheduling tries to protect the schedules from stochastic events.

The development of robust optimization was initiated by Soyster in 1973 [Soys-
ter (1973)]. This approach has been extensively studied and extended, as it was
considered too conservative, in the sense that it produces solutions that give up too
much of optimality for the nominal problem in order to ensure robustness [Bertsimas
& Sim (2004)].

After this initial work some other models were proposed, see for example [Ben-
Tal & Nemirovski (2000)], [Bertsimas & Sim (2004)] and [Lui Cheng (2008)]. In all
of them the main concern is how to make the schedules more robust without loosing
too much in optimality.

5.2.1 Measuring Robustness

A property such as robustness is easy to define, but difficult to measure in a quanti-
tative manner. In [Sabuncuoglu & Goren (2009)] the authors present a deep study
that shows how different approaches focus on different objectives and as a conse-
quence, the way of measuring robustness is not always the same.
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In the literature, the following metrics are commonly used to measure the ro-
bustness of a schedule:

1. deviation from the original schedule;

2. the real cost incurred by the implementation of the schedule;

3. stability - relatively to a performance criterion;

4. number of changes required to ‘fix’ the solution.

The first two measures were proposed in [Gao (1996)], according to the author,
the deviation from the original schedule can be computed by analyzing the difference
between the planned makespan and the actual makespan. In the second case costs
can be associated, for example, to tardiness, meaning that there is a penalty per
time unit scheduled over the due date. Or costs could be associated to resource
idleness, which means that there is a penalty for each time unit that the resource
was kept idle.

In the case of the stability (third metric), we can say that it is quite similar to
the first metric. According to its definition in [Billaut et al. (2008)], stability is a
measure of the sequence difference between the two schedules, which in other words
is how deviated is the actual schedule from the original one.

For the last metric, which was introduced in [Gomes (2000)], the intuition behind
robustness is the following: given a set C of changes to the initial formulation of the
problem instance, a solution A is more robust than a solution B with regard to the
set C if the number of changes required to fix solution A is less than the number of
changes required to fix solution B.

There are different approaches that can be used in order to deal with uncertainty
and robustness in scheduling, either finding solutions which adapt dynamically to
changes or incorporating available knowledge about possible changes to the solution
[Herroelen & Leus (2005)]. These approaches will be explained in detail in the next
section.

5.3 Proactive vs. Reactive Approaches
According to the literature, there are two ways to deal with uncertainty in schedul-
ing environments, using proactive approaches (also called predictive) or reactive ap-
proaches.
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The goal of proactive scheduling is to take into account possible disruptions
while constructing the original predictive schedule. This allows to make the pre-
dictive schedule more robust, because it has some statistical knowledge of uncer-
tainty [Davenport & Beck (2000)].

Proactive scheduling has also been defined as techniques that seek to produce an
off-line schedule that is robust to execution time events [Beck & Wilson (2007)]. The
utility of this type of approach depends on whether the uncertainty can be quantified
in some way (like knowing the mean time between failure for the machines etc). If
the information is available, it can be used by proactive techniques. If however, the
degree of uncertainty is very high, a more reactive approach is needed.

Reactive scheduling involves revising or reoptimizing a schedule when an un-
expected event occurs. Completely reactive approaches are based on up-to-date
information regarding the state of the system [Davenport & Beck (2000)]. Decisions
are made in real time, based on priority dispatching rules, as no predictive schedule
is given to the shop floor. These approaches are used when the level of disturbances
is always significant or when the data are known very late, making the computation
of predictive schedules impossible [Aloulou & Portmann (2005)].

Figure 5.2 shows a graphical representation of the properties of both types of
approaches.

Figure 5.2: Predictive vs. Reactive Scheduling

Sometimes both points of view are combined and the combination is called
predictive-reactive approaches. In this case a predictive schedule is generated with-
out considering possible perturbations. Then, a reactive algorithm is used to main-
tain the feasibility of the schedule and/or improve its performances, see for exam-
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ple [Church & Uzsoy (1992)], [Vieira et al. (2003)] and [Aloulou & Portmann (2005)].
For further reading and a thorough overview on these types of approaches we refer
to [Sabuncuoglu & Goren (2009)].

5.3.1 Reactive Approaches

Based on the description provided in the previous section, we can conclude that
reactive scheduling aims at finding approaches to (ideally) optimally react to dis-
ruptions after they occur. According to the literature, the reaction generally takes
the form of either modifying the existing initial schedule (repairing), or generating
a completely new schedule from scratch [Sabuncuoglu & Goren (2009)].

When the unexpected event is a breakdown, the simplest way to solve a reschedul-
ing problem is to keep the processing order of the preschedule, but delay the pro-
cessing when it becomes necessary. This kind of rescheduling is usually called ‘sim-
ple rescheduling’ [Jensen (2001)], and it has been used for example in [Leon et al.
(1994)].

Another type of approach is the one presented in [Wu et al. (1999)]. In this work
the author developed a decomposition method that partitions job operations into
an ordered sequence of subsets. This decomposition identifies and resolves a ‘crucial
subset’ of scheduling decisions through the use of a branch-and-bound algorithm.
The computational experiments were conducted under a wide range of processing
time perturbations.

Another reactive strategy is list scheduling, which is applied in [Lambrechts
et al. (2010)]. In this type of approach a random precedence feasible priority list
is used as starting point, or also a scheduled order list that allows to reschedule
the activities in the order dictated by the schedule, while taking into account the
new, reduced resource availabilities. More specifically, when a disruption occurs at
time t a priority list L is created including the activities that are not yet completed,
ordered in a non-decreasing order of their baseline starting times. The priority list is
decoded into a feasible schedule using a modified serial schedule generation scheme
and taking into account the known resource availabilities up to the current time
period. This idea is also applied for example in [Wauters et al. (2010)].

The approaches presented in [Wauters et al. (2010)] and [Kaddoum (2011)] will
be briefly explained at the beginning of next chapter, as they will be used to compare
the results of our approach.
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5.3.2 Proactive Approaches

In order to obtain robust schedules, an intuitive approach consists in adding some
form of redundancy to the solution during the scheduling process. Figure 5.3 shows
an example of two different solutions for the same scheduling problem. Schedule a) is
the classical example of a non-delay schedule, where the objective is to optimize the
resource utilization, that is why each activity starts as soon as its predecessor ends.
On the other hand, schedule b) presents some idle intervals between the execution
of the different activities. For example, activity ‘b’ does not start immediately after
activity ‘a’ is finished. This approach allows to tolerate some changes in the original
problem like delay in the activity processing and machine breakdowns. At the same
time, by introducing redundancy the resource utilization is reduced, which means
that objective functions like minimizing the makespan or the tardiness will also be
affected. Therefore, the main goal of the redundancy-based approaches is to find
out how much redundancy is needed and how this redundancy has to be distributed
over the whole solution.
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Figure 5.3: Increasing robustness by adding redundancy. Schedule b) is
considered more robust than schedule a).

In this dissertation we focus on proactive approaches, more specifically on tech-
niques that deal with uncertainty by inserting some form of redundancy (typically
extra time) in the schedule. These techniques will be referred to as slack-based
techniques and are explained in detail in the next section.
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5.4 Slack Based Techniques

According to the literature, the main idea behind slack-based techniques is to provide
each activity with some extra execution time so that some level of uncertainty can
be absorbed without rescheduling. In order to do that, these techniques base their
behavior on existing knowledge about failures of the machines, for example: the
mean time between failures, or the mean down time of a resource. In this section
we will describe three slack-based techniques: Temporal Protection, Time Windows
Slack and Focused Time Windows Slack.

5.4.1 Temporal Protection

Temporal Protection, first proposed by Chiang and Fox [Chiang & Fox (1990)], is
a technique that is based on the idea of predictively building a schedule taking into
account previous knowledge of uncertainty.

Resources that have a non-zero probability of breakdown are identified as break-
able resources. The duration of all the activities requiring breakable resources is
extended in order to provide extra time to cope with the breakdowns and the
scheduling problem with protected durations is then solved with standard scheduling
techniques [Gao (1996)].

Let us show an example based on the one presented in [Davenport et al. (2001)].
Figure 5.4 depicts two activities, A and B, which are sequenced on a breakable
resource. The white part of the boxes represents the original processing time of
the activities, and the gray part represents the extra time added by the temporal
protection technique. If the resource breaks down while activity A is being executed,
the extra time can be used to absorb the breakdown, or part of it. If it does not
take longer than the available protection then the rest of the schedule will remain
as planned. If it lasts longer, then some adjustment is needed in order to keep
executing the rest of the activities (rescheduling, right shifting, etc). If there are no
breakdowns while activity A is executed then activity B can start earlier, meaning
that the slack provided by the temporal protection to activity A can be used by
activity B.

One important point when using the temporal protection, or any other slack-
based technique is to decide the amount of extra time that will be added to each
activity. Too much protection will end up with a poor quality schedule, but a highly
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Figure 5.4: Example of two consecutive operations which are executed
on a breakable resource. The white part of each box represents the original
processing time of the operation and the gray part represents the extra
time added by the temporal protection technique.

robust one. Too little protection will result in a poor quality schedule execution if
a breakdown occurs. The approach presented in [Gao (1996)] extends the duration
of each activity requiring a breakable resource in the following way:

pijext = pij + pij
F
×D (5.1)

Where pij is the original processing time of the activity, F represents the ex-
pected time between machine failures and D is the duration of the breakdown or
interruption.

pijext is the extended processing time, by adding the total expected down time to
the uninterrupted processing duration. pij

F
gives the expected number of breakdowns

during the processing of an activity. pij

F
×D represents the duration extension caused

by the machine breakdowns.

Figure 5.5 shows two schedules, on top we have a non-delay schedule, where
all the operations are executed as soon as the resources become available. In this
case, the resource responsible for executing operations a, b and d is considered as
breakable, which means that these three operations will be ‘protected’ by receiving
some extra execution time.

It is important to remember that if breakdowns do not occur, or if they do occur,
but take less time than the slack time added, operations that are scheduled after a
‘protected’ operation can start their processing earlier.
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Figure 5.5: Example of schedule where a breakable resource has three
operations scheduled.

5.4.2 Time Window Slack

If we analyze the way the Temporal Protection technique uses to add the slack times,
we will notice that there are situations where it will not be possible to ‘share’ slack
between activities, even if there are no breakdowns. For example, the environment
shown in Figure 5.4 is extended in Figure 5.6 by adding a third operation C, which
is being executed on a non-breakable resource, meaning that it does not have extra
time associated. According to the ordering constraints activity B must be executed
after activity C is finished, which means that the earliest start time for B is the end
time of C.

In order to avoid such situations, where the slack time added can not be used
by upcoming operations, the Time Window Slack (TWS) approach was proposed
in [Davenport et al. (2001)]. In this approach the authors change the way of adding
slack to the operations so that they make sure that the schedule has sufficient slack
time for each activity.

It is important to mention that the required slack for an activity under TWS
is considerably longer than the duration extension in temporal protection. More
specifically, the amount of slack on each activity is equal to the sum of the durations
of all the expected breakdowns of resource R, and this is mainly due to the fact that
authors expect the slack of all the activities on each resource to be shared [Davenport
et al. (2001)].

Equation 5.2 shows how the slack is calculated in this approach. In this equation
pij represents the duration of the activity, µtbf (R) is the mean time between failures
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Figure 5.6: Example where the slack time added by the temporal pro-
tection method can not be used by the next activity on the same machine
due to ordering constraints.

on resource R and µdt(R) represents its mean down time (breakdown duration). The
set of activities that can be executed on resource R is given by actsR.

slackA ≥
∑
B∈actsR

pij
µtbf (R) × µdt(R) (5.2)

Figure 5.7 shows how the TWS method adds extra execution time on every
operation, assuming that the slack of all the activities on each resource will be
shared.

Figure 5.7: Adding slack time under the Time Windows Slack method.

In short, when using temporal protection, the expected down time of each re-
source is divided into the different operations and the slack times are added based
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on this value. When using TWS, the slack time is equal to the sum of the durations
of all the expected breakdowns on resource R, because the slack is expected to be
shared.

5.4.3 Focused Time Window Slack

The Focused Time Window Slack (FTWS) approach was also proposed in [Daven-
port et al. (2001)]. In this approach, the placement of activities in the scheduling
horizon is taken into account in order to decide if some slack time will be needed.
The authors use uncertainty statistics in order to focus the slack in parts of the
schedule that are more likely to need it in order to deal with an unexpected event.

For example, they consider the scenario where a new machine can arrive to the
system, in this case it will not make sense to make the schedule more robust at the
beginning, as this machine is new and it could take some time before it can break
down.

The slack for the activities is calculated as a function of the probability that a
breakdown will occur before or during its execution. Which means that the decision
on whether to add slack or not is based on known distributions.

Figure 5.8 extends the example shown in Figure 5.5 by considering the use of
a newly bought machine. In this case slack is added to the operations that are
scheduled on this machine after a specific amount of time, for example, operation c
does not receive extra execution time, as it is the first operation being executed by
the new machine, and it is not supposed to fail so fast.

Figure 5.8: Adding slack time using the Focused Time Windows Slack
approach.
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5.4.4 Discussion about the slack-based techniques

In general, all these slack-based methods base their behavior on the data they re-
ceive about the uncertainty, but what if something happens on a machine where
breakdowns are not expected? Consider again the example of the newly bought
machine, a very fast one which is not considered as breakable, therefore, several op-
erations are scheduled there, because it is a more reliable resource. If that machine
fails, the schedule is not prepared to deal with the disruption, as it was a breakdown
impossible to forecast. This leads us to the following question:

Is it possible to construct more robust schedules without looking at the proba-
bility distributions of the unexpected events as the only source of information?

In the next chapter we propose a new slack-based approach which does not
rely on the probability distributions as the only source of information. It works
by analyzing something we call ‘criticality’ of the machines and/or the jobs and
the main objective is to add slack times in those parts of the schedule which are
considered to be critical, or more likely to need extra execution time.

5.5 Summary
In this chapter we presented some of the more common sources of uncertainty in
scheduling, as well as the concept of robustness and different methods that can
be used in order to construct more robust schedules. We focused on proactive
approaches, mainly slack-based techniques, as the approach we will propose in the
next chapter is based on this idea. These slack-based techniques work by adding
extra execution time to the operations in order to absorb some level of uncertainty
without having to reschedule. The next chapter will also introduce we will explain
how some new instances of the flexible job shop scheduling were generated in order
to introduce some levels of uncertainty.



Chapter 6

Scheduling under Uncertainty

Robust approaches aim at building solutions able to absorb some level of
uncertainty without rescheduling

- [Davenport & Beck (2000)] -

In order to address the uncertainty problems described in the previous chapter,
the research described in this chapter will be divided in two parts. First, we will
present a stochastic version of the flexible job shop scheduling, for which we already
showed the results in the deterministic scenario. We describe the process of creating
new instances and the results obtained are compared with the ones reported by other
state of the art methods in terms of tardiness and makespan. In the new instances,
release and due dates are added to the jobs, and perturbations are added to the
machines.

In the second part we introduce a new proactive approach based on the idea
of the slack-based techniques presented in Chapter 5. This approach focuses on
adding slack times in the critical parts of the schedule by taking into account the
criticality of the machines and the jobs, yet trying not to increase the makespan
too much. It also allows the user to decide on the level of robustness to include
in the schedule construction process. Some examples demonstrate how this works,
together with graphical representations (gantt charts) of the solutions. The last
part of the chapter is concerned with the application of the approach to a real world
case.

117
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6.1 Deterministic Case with Known Disruptions
There are cases when it is known beforehand that a specific machine will be subject
to maintenance during some amount of time, and this will interrupt the execution
of the production process. In this case there are two possibilities, if the environment
is like the job shop scheduling, and the affected machine is the only one that can
perform specific operations, then the only choice is to wait until it becomes available
again. If parallel machines are available, meaning that operations can be executed
by different machines, another resource can take over. It will be up to the algorithm
to decide whether it is better to wait for the machine to become available or to send
some operations to a parallel resource and possibly affect the schedule. Sometimes it
will be better just to wait for the machine to come back from maintenance, because
the other possible machines have too many jobs in the queue.

This is a particular case that can be taken into account in our approach. If there
is some extra information about maintenances on the machines (which are also
considered as perturbations), the user can add it to the problem instance, and the
algorithm will take it into account when constructing the solution. This information
can be added to the instance in the following way:

• one line with the string #Perturbations, which indicates that from that point
on different perturbations will be listed.

• the second line has only one number, which represents the total amount of
perturbations that will be included.

• one line per perturbation indicating:

1. id of the perturbed machine

2. start time of the perturbation

3. duration of the perturbation

Figure 6.1 shows how the information will look like after being added to the
scheduling instance. In this case two perturbations are included, the first one will
be on machine M1 and will happen at time step 23, with a duration of 4 time steps.
The second one will occur on machine M2 at time step 45 and will last for 8 time
steps.

Once this information has been included in the problem instance, the agents will
take it into account when choosing their actions. In the case where the operations do
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Figure 6.1: Adding scheduled maintenances to the instances.

not have execution alternatives the duration of the perturbation will just be added
to the processing time of the operation being processed on the resource when the
perturbation (maintenance) starts.

In the case where multiple machines can execute one particular operation, this
time will be considered when choosing the machine that will execute the operation.

6.2 Stochastic Flexible Job Shop Scheduling
The Stochastic Flexible Job Shop Scheduling addressed in this section is similar to
the already described Flexible Job Shop Scheduling, but in this setting the environ-
ment is subject to perturbations (see Section 2.6). In the next section we explain
how the instances for the experiments are created and then we compare our Learning
/ Optimization approach, introduced in section 4.3, to two other approaches. The
first one, called Online Forward Optimization (OFO) is a rolling time scheduling
technique. The second one, SaFlexS, is a self-adaptive multi-agent system where
agents interact cooperatively. Both methods will be described in Sections 6.2.2 and
6.2.3 respectively.

6.2.1 Stochastic Flexible Job Shop Instances

In order to evaluate different approaches in case of unexpected events in the envi-
ronment, we generated new flexible job shop scheduling instances with release-dates,
due-dates and perturbations, using classical FJSSP instances as a base problem. The
selected problems were those included in the set of frequently used Brandimarte in-
stances [Brandimarte (1993)]. This set consist of 10 problem instances, which were
uniformly generated between given bounds. The number of jobs ranges from 10 to
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20, and the number of machines ranges from 4 to 15. The number of operations for
each job ranges from 5 to 15.

Two categories of instances were generated, 1) instances without perturbations,
and 2) instances with perturbations. For each category we created 5 instances per
base problem. Due-dates are uniformly generated between a lower bound LBr and
an upper bound UBr. The lower bound is the best lower bound found in literature
for the base problem [Pezzella et al. (2008)].

For the upper bound we use the makespan value of the schedule found by a greedy
first available machine heuristic. This heuristic assigns operations one by one to the
first available machine. Release-dates are also uniformly generated between 0 and
max(0, dj − Pmax

j ). Where Pmax
j is the maximum total processing time of a job.

For the perturbations, two different distributions were used, Poisson and Er-
lang [Winston (2003)]. The interarrival time between perturbations was generated
using a Poisson distribution with mean UBr

θ
. Higher values of θ result in a lower

mean interarrival time, and thus in more perturbations. For the duration of the
perturbations we used an Erlang distribution with rate parameter R and shape pa-
rameter k, which gives us a mean perturbation duration of k

R
. For the instances with

perturbations we used θ = 5, R = 2, and k = 6, so we have a mean perturbation
time of 3 time units.

Figure 6.2 shows an example of a stochastic instance with two jobs, three re-
sources and two perturbations.

6.2.2 Online Forward Optimization

The online forward optimization method (OFO) is an online scheduling approach
which optimizes the schedule in the future, given the information known at time t.
Only released operations which have not started yet at time t can be (re-)scheduled.
For scheduling these operations a serial schedule generation method with a machine
choice optimization procedure is used [Van Peteghem & Vanhoucke (2008)].

The procedure is started at time t = 0 with an empty schedule S. If at time t a
job is released or a machine is perturbed, then an optimization step is applied. The
optimization step will search for a good partial schedule for X iterations. At each
optimization iteration, a random but feasible operation list is constructed. This
operation list contains all the new operations, and all already scheduled operations
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Figure 6.2: Stochastic Flexible Job Shop instance.

from the previous best partial schedule that have not been started yet at time t.
Then this operation list is used in a serial schedule generation method [Hartmann
(1999)], that will take into account the machine perturbations to generate a new
partial schedule. The best partial schedule is kept during the X optimization itera-
tions.

To determine if a partial schedule is better than another one some given objec-
tives are used (e.g. partial makespan). After the optimization step, the scheduled
operations are added to the schedule S. If the schedule S already contained some
operation, it will use the new values. This procedure continues while there are still
unhandled events left, otherwise it stops and returns the found schedule S.

6.2.3 SaFlexS

SAFlexS, which is the abbreviation of Self-Adaptive Flexible Scheduling, is a self-
adaptive multi-agent system where the agents interact cooperatively. It can be
considered as a real-time scheduling technique that bases its behavior on the con-
stant communication between the agents. At each iteration, the affectations of the
available operations on the available machines emerge from the local interactions of
the agents respecting the problem specification and constraints. SAFlexS is based
on the AMAS (Adaptive Multi-Agent System) Theory [Kaddoum (2011)].

In SAFlexS, two types of cooperative agents are present: Jobs and Machines.
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The Job agent has to explore the factory searching for qualified machines for its
operations. The behavior of the Machine agent consists in selecting which operation
to treat among the different Job agents usage requests.

6.2.4 Learning / Optimization

The Learning/Optimization method used in this scenario is the same that was pro-
posed for the classical FJSSP in the previous chapter, more specifically in Section
4.3. In the presence of a perturbation, a ‘right shift’ occurs, meaning that the pro-
cessing time of the operation currently scheduled on the affected machine will be
increased. Recalling the dynamics of the approach, agents will receive a feedback
signal depending on the quality of the obtained solution.

6.2.5 Experimental Results

The main results obtained by the three approaches are represented using a radar
view with five directions, one for the computational time (Calc. time) needed to
obtain a schedule, and one for each of the four objectives introduced in Subsection
2.7. These four objectives are:

• makespan, Cmax

• maximum tardiness, Tmax

• mean tardiness, T

• number of tardy jobs, Tn

Each colored line represents one of the approaches. The closer this line lies to
the center of the radar the better the result.

We selected some random instances from the created set of problems in order to
visualize the results. From the subset of instances without perturbations, but with
release and due dates we selected the instances Mk01 (10 jobs, 6 machines) and
Mk10 (20 jobs, 15 machines). From the subset of instances with perturbations the
selected problems were Mk04 (15 jobs, 8 machines) and Mk06 (10 jobs, 15 machines).

The OFO approach used X = 50 as number of iterations, each iteration involves
the creation of a feasible schedule and the reoptimization procedure. On the other
hand, SAFlexS needs a parameter N (agent life cycle) which is fixed to 26, according
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to [Kaddoum (2011)]. In the case of our approach, we keep the QL settings used
when solving the traditional FJSSP: α = 0.1, γ = 0.8 and ε = 0.1.

Figure 6.3 shows the results for the instances without perturbations, Mk01 and
Mk10. This figure shows that our approach, represented by the green line, is out-
performed in terms of tardiness, which is expected, because the objective the agents
were pursuing was to minimize the makespan.

Figure 6.3: Instances Mk01 and Mk10 - No Perturbations

Figure 6.4 shows the results for the instances where some perturbations were
involved (Mk04 and Mk06).

As can be seen in Figures 6.3 and 6.4, the results of the different approaches
differ from one objective to another. For example, for the Learning/Optimization
approach, we stressed on the makespan as objective function, which results in low
values for the makespan, but higher values for the other objectives. For the OFO
approach the objective was also the makespan, but the global point of view helps
improving tardiness objectives. For SAFlexS, no global measure can be performed.
The schedule is obtained from the local interaction and decisions of the cooper-
ative agents that concentrate on finishing their work respecting their due dates.
This results in very low values for the tardiness objectives but higher values for the
makespan.
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Figure 6.4: Instances Mk04 and Mk06 - With Perturbations

We also performed a last experiment in order to analyze the behavior of our
algorithm when the objective is to minimize the tardiness. In this case we change
the way to measure the quality of the solutions, which is the feedback sent to the
agents. The reward signal is defined as follows:

r =


0 if Tmax > Tbest,

1 otherwise,
(6.1)

where Tmax is the tardiness as defined in Section 2.3.3 and Tbest is the tardiness
of the best solution so far. Figure 6.5 shows the results for the instances Mk01 and
Mk04 with perturbations.

It is possible to see that our approach gets closer to the center of the radar when
having as objective function the minimization of the tardiness. In general, we can
say that depending on the environment, and the objective(s) the user is seeking for,
different approaches can be used, with possible different feedback signals. We can
also conclude that with our method we are able to cover the whole range by simply
adapting the feedback signal according to the objective function being specified by
the user.
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Figure 6.5: Instances Mk01 and Mk04 - With Perturbations and using
tardiness as objective function.

6.3 The Proposed Slack-based Approach

In the previous chapter we discussed the importance of adding slack times in those
parts of the schedule that are more likely to need them. In this section we propose a
new way to incorporate slack into the schedule, the objective is to gain in robustness
without loosing too much in terms of optimality. In order to do this we need to define
an important concept, which is the ‘criticality’ of the machines.

6.3.1 ‘Criticality’

In this section we will use the instance ft06 as an example, this instance was already
used for several experiments in previous chapters. Figure 6.6 shows the optimal
solution (gantt chart) in terms of makespan for this instance, which is Cmax = 55.
In this figure, every job is represented by a color, each block is an operation and the
number inside the block is the id of the operation within the corresponding job.

Analyzing this optimal solution, we see that there are two machines that remain
busy during the initial part of the scheduling process, these are M2 and M3, while
there are other machines, like M5 and M6 with a higher workload at the end.

The occurrence of an unexpected event, for example, a temporary breakdown
on machine M1 or on M2 at the beginning of the scheduling period will not have
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the same impact as a breakdown on M3. This is due to the fact that M3 has some
idle time in between the different operations, which will allow to absorb part of the
breakdown. In other words, is not a critical machine. This analysis leads us to the
following definition:

Definition 14 (Critical Machine). A machine Mi is said to be critical between time
tx and time ty, if the number of consecutive operations scheduled on that interval is
higher than a threshold Z.

Of course this threshold is a sensitive parameter that will depend on the problem
being solved, and which needs to be carefully selected. The user can define when a
machine is considered as critical through this threshold and as such, decide on the
level of robustness of the schedules generated by the algorithm. In case it is not
defined by the user, the approach calculates this threshold depending on the total
number of operations that have to be executed by the machine.

6.4 The Proposed Approach
Let us assume that the system for which the optimal schedule was proposed in figure
6.6 will be under the perturbations shown in Table 6.1:

Table 6.1: Set of perturbations

Machine id Start time Duration
0 43 4
1 9 3
1 43 5
2 45 1
3 48 3
4 39 4
5 40 3
5 77 4

Under normal circumstances, without having any previous knowledge about the
problem at hand, not having any proactive or reactive technique, parallel machines
or other solution method, the only choice is to wait for the perturbations to finish
in order to resume the execution of the operations on the affected machines.
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If we do that for the optimal solution presented in Figure 6.6, then we will
obtain the schedule shown in Figure 6.7, for which the makespan is Cmax = 64. In
this case we performed a simple ‘right shift’ every time a perturbation occurred.
Perturbations are represented by a block with yellow and red horizontal lines.

Let us assume that the makespan refers to the number of days that it will take
to finish the execution of the whole schedule, which is the completion time of an
order from an important client. If we compare the two previously shown solutions,
we will see that the user will have to wait for 9 extra days in order to get his order.

If we use one of the approaches described in the previous chapter, for example,
temporal protection, we could construct a more robust schedule by adding slack
times to those operations that are scheduled on breakable resources, which in this
case, according to Table 6.1, will be in all the operations, as all the machines will be
affected. This will result in a very robust schedule, but with a very low quality. It is
important to remember that in these existing slack-based approaches it is assumed
that the information concerning the breakdowns, such as the mean down times of
the machines, etc, is known.

Figure 6.8 shows the resulting schedule when using temporal protection for the
instance ft06 under the unexpected events summarized in Table 6.1. In this case
the processing of the order will be expected in 90 days, Cmax = 90. Slack times are
represented by a horizontal black line and are added after each block.

It is clear that it is important to properly manage the slack times in order to
obtain a solution that is robust enough to deal with unexpected events, but good
in terms of quality at the same time. There are two important elements to define:
in which part of the schedule to add the slack times, and how long should they be.
Here is where the criticality defined in the previous section plays an important role.
The approach we propose is based on this definition (Definition 14), as we do not
rely on the probability distributions and the information about the machines, but on
their workload. If a machine is considered as critical, then the operations scheduled
during the critical period will receive an extra amount of processing time.

The process goes as follows: We execute our QL algorithm in order to find
a near-optimal solution, the slack-based algorithm analyzes which are the critical
machines, and then adds slack times to those operations scheduled on the critical
intervals of the resources. As for the amount of extra time to add, we consider
that it is something problem dependent, therefore, we give the user the possibility
to define it. However, the approach can also compute a value for it based on the
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known information about the machines. More specifically, the slack time to add is
computed in the same way as the temporal protection method (see Section 5.4.1).
Our objective is to change the way of defining the places where the slack is added,
focusing more on critical parts of the solution. The amount of slack to add still
follows the classical way, if the user does not define it.

Figure 6.9 shows an example of a schedule constructed using the proposed ap-
proach, which means that slack times are only added to the operations scheduled
on critical resources. In this case a machine is considered as critical if the number
of consecutive operations is higher than three (machines M2, M5 and M6 in this
example, see Figure 6.6 to compare). The makespan obtained after this process is
Cmax = 68.

An advantage of the proposed approach is that it is possible to define a starting
point for the slack times to be added. For example, if the user considers that slack
will only be needed after half of the process has passed, this is a constraint that can
be easily satisfied.

We also implemented a second way to add slack to the operations scheduled on
critical resources. This second way is also based on the criticality of the machines,
but instead of taking an already constructed schedule and analyze which are the crit-
ical resources, it does the same analysis during the scheduling process. This means
that if a machine is identified as critical (following the already defined criteria), the
processing times of the operations scheduled on the machine will be extended, and
once this new processing time is calculated, it is used to allocate the operations
on the machines. This second alternative (i.e. adding slack during the scheduling
process) gives the possibility of allocating the operations in a better way once the
critical resources have been identified.

Figure 6.10 shows an example of a schedule constructed using this second al-
ternative. If we compare it with the schedule obtained by the previous alternative
(Figure 6.9, Cmax = 69), the one depicted in this figure shows how a better schedule
(in terms of makespan) can be obtained if the last two operations scheduled on M2

are swapped. In this case the makespan is Cmax = 66.
In the next section we will introduce the metric that will be used in order to

measure how robust these schedules are and how they compare to each other.
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6.4.1 Measuring Robustness

In Section 5.2.1 we introduced different metrics to measure how robust a schedule is.
In this chapter we will use the first of the proposed metrics, which takes into account
the deviation from the original schedule. Figure 6.11 shows a comparison between
a non-protected schedule and two schedules generated using our approach based on
criticality. The left hand side shows the comparison with a schedule where the slack
was added during the scheduling process and the one in the right hand side was
obtained by adding slack after generating the solution. A non-protected schedule is
a standard solution obtained by any method which does not take uncertainty into
account, it could even be an optimal solution. In this case we use a schedule that
is constructed by our basic algorithm, described in section 4.1. These schedules are
compared in terms of the deviation of its execution from the originally proposed
schedule.

Figure 6.11: Comparing the execution of non-protected schedules and
solutions constructed using our approach based on criticality, in terms of
the deviation from the original schedules.

From Figure 6.11 we can see that the non-protected schedule was expecting a
performance of Cmax = 55, while the real execution was Cmax = 64. The approach
based on criticality is able to propose schedules which are closer in time to their
real executions. The left hand side of the figure shows a schedule with a deviation
of four time units and the right hand side a schedule with a deviation of three
time units, while the deviation of the non-protected schedule was nine. We can
notice that the alternative of adding slack while constructing the schedule can, in
some occasions, obtain schedules with a better execution time compared to the non-
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protected solutions. Let us explain with one example how this could compare for
example to the temporal protection method described in the previous chapter.

Example 5: Let us assume that we want to solve a scheduling problem, for which
we know the number of machines and the number of jobs (with their correspond-
ing operations and processing times). The mean down time and mean time between
failures of the machines are also provided. In this setting all the machines are consid-
ered as breakable, meaning that they are expected to have at least one perturbation.
This is how the different algorithms will work:

• Without protection: Solves the problem with the objective of minimizing the
makespan, looking for the optimal solution.

• Temporal protection: Checks for the breakable machines and adds slack times
to all the operations scheduled on those resources.

• Based on criticality: Solves the problem and analyzes which are the critical
machines in the solution found, then adds slack times in three possible ways:

1. to all the operations scheduled on critical resources (option executed by
default);

2. to those operations scheduled on the critical period(s) of the resource;

3. to those operations that are scheduled after a specific moment in time.

This could lead us to an outcome like the one shown in Figure 6.12. The tem-
poral protection method is expecting several breakdowns, that is why its proposed
schedule has a very high makespan. If we search for a solution without protection,
then we are not expecting any disruption, therefore, the proposed schedule is the
lowest in makespan. If we go for the criticality-based approach, then we combine a
bit of these two behaviors. We add extra time but we do it based on the workload
of the machines, instead of using the breakdown probabilities like the temporal pro-
tection method, which results in a better balance between optimality and robustness.
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Figure 6.12: Measuring the deviation from the original schedules.

Several instances were generated with different levels of perturbations (1 to 6).
By level of perturbations we mean the number of unexpected events that can occur
during the scheduling period. This amount increases with the level, meaning that
an instance level 6 has more perturbations or breakdowns than an instance level 1.

Figure 6.13 shows a comparison between the approaches according to their de-
viation from their original schedule using these six levels of perturbations.

It is possible to see that the higher the uncertainty, the worse the performance
of the non-protected schedule. This is of course due to the fact that it was not
prepared to deal with unexpected events. In the case of the temporal protection
technique, it starts with a high deviation from the original schedule, but as the
level of perturbations increases, the better results it gets, because the amount of
slack time included in the solution when using this technique is usually high. Our
approach (criticality) showed a more ‘stable’ behavior, for the first two levels of
uncertainty it was able to keep the same result, but once the unexpected events
started to increase, it was also affected, although it was still able to keep the lowest
deviation from the original schedule.
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Figure 6.13: Comparison between the approaches according to their
deviation from their own original schedule using six levels of perturbations.

Finally, Figure 6.14 shows a comparison of the different approaches in terms of
both makespan and deviation from their originally proposed schedule. Two schedul-
ing instances were selected at random, one of them is represented in white and the
other one in gray. The numbers 1 and 6 represent the level of perturbations involved
in the scheduling process. The non-protected approach was used as a reference in
order to show how the slack-based techniques behave. When constructing a non-
protected schedule the sole objective is to minimize the makespan, therefore, the
approach obtains lower makespan values compared to the other techniques, but the
execution of the proposed schedules also presents some level of deviation.

The temporal protection technique shows high makespan values and also starts
with a high deviation, but once the level of perturbations increase, the deviation
starts to decrease. This is due to the level of protection included in the schedule,
which is typically high when using this technique.

Our approach (criticality) presents low values in terms of deviation, yet the
makespan remains close to the best solutions reported by the non-protected ap-
proach. This is because the objective of the approach is to find a good balance
between optimality and robustness.
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Figure 6.14: Comparison of the different approaches in terms of both
makespan and deviation from their originally proposed schedule.

As a conclusion we can say that our approach is able to focus the slack times in
parts of the schedule where they are more needed, by making use of the criticality of
the machines. The experiments showed that the deviation from the original schedule
is lower than for example a non-protected schedule, or a schedule generated using
the temporal protection method.

6.5 Hybrid Flow Shop Scheduling

The last problem that will be addressed in this dissertation is the Hybrid Flow
Shop Scheduling, which is based on the real-world case described in Section 2.9.
This process has four phases: Seed Fermentation (SF), Main Fermentation (MF),
Broth Preparation (BP) and Filtration, also called Recovery Line (RL). The pro-
posed learning approach is based on the Q-Learning algorithm. Each resource (i.e.
fermenters, tanks and recovery line) has an agent associated, which will be respon-
sible for deciding the next batch to process on its corresponding resource. This
means that the set of actions is equivalent to the set of batches that are ready to be
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processed on the phase to which the agent belongs.
At the beginning of the process there is a list of orders that have to be executed,

each of them with its corresponding due date. Batches start their processing on a
seed fermenter, and once they have been fully processed on that phase, they become
available for the next phase of the process, as described in Section 2.9.

Table 6.2 shows an example with 6 types of products (P1 to P6). For each of
them the processing times (in hours) corresponding to the four different phases of
the problem are given. Column Sum PTimes shows the sum of all the processing
times and Due Date is the time when the batch is expected to be finished.

Table 6.2: Processing times of the six types of products in the different
phases of the process.

Product ID SF MF BP RL Sum PTimes Due Date

P1 64 232 24 32 352 400
P2 65 183 16 16 280 310
P3 24 64 16 16 120 170
P4 40 160 16 16 232 270
P5 40 144 16 32 232 290
P6 40 160 16 16 232 290

According to the characteristics of the learning algorithm, to choose an action,
each agent takes into account the Q-values associated to the set of possible actions
it can execute. These Q-values are initialized arbitrarily, and they are updated
according to Equation 3.5.

The objective in this problem is to minimize the tardiness. We will use the same
approach as in the previous scenario, where the agents receive a reward according
to the solution quality, and this reward is given by Equation 6.2.

r =


0 if Tmax > Tbest,

1 otherwise,
(6.2)

Where Tmax is the tardiness of the current solution as defined in Section 2.3.3,
and Tbest is a variable that keeps the tardiness of the best solution so far.
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As there was no information about previous schedule executions, or about previ-
ous breakdowns on the machines, we executed the algorithm several times in order
to visualize the solutions and estimate which resources could be considered as crit-
ical. Figure 6.15 shows an example of a solution for this problem. In this case we
see 12 machines, which are grouped in the following way:

• Seed Fermentation: {M1,M2}

• Main Fermentation: {M3, ...,M6}

• Broth Preparation: {M7, ...,M11}

• Recovery Line: {M12}

It is important to remember that queues are not possible in this environment. If
the processing of a batch is finished and there is no resource available in the next
stage, the batch has to remain in the current resource until it can move forward.

When analyzing the problem, the attention could initially be focused on the
recovery line, because only one batch can be processed at a given time, and there
is only one resource in this stage of the process. But if we analyze the solution
presented in Figure 6.15, it is possible to see that the seed fermentation is actually
a red spot, as both fermenters are constantly working (five batches are scheduled
one after the other). We can also notice that batches take longer to process in the
main fermentation phase, and less during broth preparation, which somehow allows
to make the process in the recovery line more active.

From this analysis we conclude that the resources belonging to the seed fermen-
tation stage are the ones that can be considered as critical. Therefore, is in this part
of the schedule where slack time might be needed in order to make the schedule more
robust. In this case we incorporate the slack based approach proposed in Section
6.4.

6.5.1 Experimental Results

In this section, we present the results of the computational experiments for 11 prob-
lem instances involving 10, 15, 20 and 30 batches. The results are compared with
the optimal solutions (presented in [Gicquel et al. (2012)] and calculated using the
CPLEX solver), and with the results reported by a Genetic Algorithm proposed
in [Borodin et al. (2011)].
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Table 6.3 represents the overall comparison of the results. The CPLEX best
column contains the optimal solutions, GA best - the GA results, computed in GA
time. Columns QL best and QL time show the results corresponding to the Q-
Learning algorithm.

As the objective of both approaches is to minimize the tardiness, the columns
showing the best solutions are reporting the weighted tardiness for each of the in-
stances. The columns reporting the computational times show the time (in seconds)
it took the algorithm to find the corresponding solution.

There are some parameters that need to be defined for the execution of the
learning algorithm. The learning rate (α) used was 0.1, the discount factor (γ) 0.8
and the epsilon parameter for the action selection strategy was 0.1. The algorithm
was executed for 10000 iterations, as in the previous scenarios.

From Table 6.3 it is possible to see that the GA outperforms the QL in most
cases. It is important to notice that the solutions of the learning algorithm are
close in quality to the best found, but the computational time is always significantly
lower, also we have to remember that its main goal was to provide robust schedules
that could handle some level of uncertainty.

Table 6.3: Overall comparison table in terms of tardiness.

Instance CPLEX best GA best GA time QL best QL time

N10_1 90 93 5 98 0.7
N10_2 30 30 17 37 1.5
N10_3 42 44 6 54 0.9
N10_4 49 50 5 59 1.3
N10_5 43 45 12 58 1.5
N15_1 73 76 25 84 3.3
N15_2 43 45 34 56 3.6
N15_3 57 66 75 75 3.4
N20_1 52 54 180 61 5.4
N20_2 58 64 194 75 5.4
N30_1 - 186 1560 194 6.5
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6.5.2 Conclusions about the Hybrid Flow Shop Experiments

The main conclusion is that both the GA and RL approaches are able to efficiently
solve the considered batch scheduling problem. Each approach showed its own ben-
efits. According to [Borodin et al. (2011)], the GA represented a classical approach
which was based on a Mixed Integer Linear Programming (MILP) model. Solutions
of high quality were obtained but a drawback of this classical approach is its low
robustness - indeed, the schedule that corresponds to a high-quality solution is as
tight as possible and not ready to be adapted in case an unexpected event occurs.
In this case, a new schedule that takes into account the occurred events must be
computed, which means that the problem will be solved from scratch.

The Reinforcement Learning approach is capable of handling this issue. Its main
goal is to quickly compute a robust schedule. For instance, in real situations it often
happens that a planner needs a schedule in a few seconds to report to the customer
whether the new order can be processed by this or that due-date. In this approach it
is also possible to start from an initial use of the machines, i.e. non-empty resources.
This is useful for example in the case when orders are not finished during the day,
and a new schedule has to be constructed for the next day, but some machines still
have work to finish.

Computational results proved that the GA is able to obtain very good solutions
(comparing to the exact solutions), whereas the learning algorithm was able to
obtain robust solutions close to the optimal ones, and it reported significantly lower
computational time.

In overall, this case study demonstrated that a real-life complex hybrid flow-shop
scheduling problem, which is difficult to solve by exact methods in the standard
MILP formulation, can be efficiently solved by a meta-heuristic technique - on the
one hand; and formulated in a lighter way to be suitable for obtaining more robust
schedules faster and easier by an RL method - on the other.

6.6 Summary

In this chapter we presented the results of our approach when dealing with unex-
pected events. We started by introducing a particular case, which we call known
disruptions and then we explained the process of generating new FJSSP instances
in order to incorporate extra information to the problem, such as release dates, due
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dates and machine breakdowns. The concept of criticality is defined and a new
slack-based approach is proposed, in order to deal with uncertainty in a proactive
way. This approach uses some of the ideas behind the existing slack based tech-
niques, but presents a new way to add the extra execution times to the operations.
The main idea is to provide a solution that is robust enough to handle some level
of uncertainty, without loosing too much in optimality. Finally, we presentd some
results obtained from the application of a learning algorithm to the solution of a
hybrid flow shop scenario, which was based on a real-world case.
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Conclusions

Scheduling problems are present in every situation where a given set of tasks that
requires the allocation of resources to time slots has to be performed. Constructing a
schedule is a common procedure that we usually perform in our daily life, but when
the number of constraints that have to be met increase and the number of tasks
and resources grow, then constructing a schedule that satisfies all the requirements
is not so straightforward.

Scheduling is an active research field in which several important challenges arise.
For example, dealing with uncertainty is a research topic that is recently receiving
more attention. It is common to face unexpected events in scheduling environments,
specially in manufacturing, which is the kind of problem this dissertation focuses on.
In manufacturing environments machines can break down, orders can take longer
than expected and all these events will make the original schedule fail. That is why
it is preferable to have a solution that is robust enough to absorb some level of
uncertainty, instead of a possibly optimal one, which will fail in the presence of any
small disruption.

In this thesis we presented a generic multi-agent reinforcement learning approach
that can easily be adapted to different scheduling settings. It is possible to increase
the robustness of the solutions being constructed and also to look at different ob-
jective functions, like the tardiness or the makespan. Furthermore, the proposed
approach allows the user to set, in a transparent way, certain parameters involved
in the solution construction process, in order to define the balance between robust-
ness and optimality. In the next section we give an overview of the main research
results presented in this dissertation.
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7.1 Contributions
We started this dissertation by presenting an overview of the scheduling theory. A
classification of the different types of schedules that can be obtained was presented,
together with several scheduling scenarios, in which the complexity (given by the
constraints of the problem) was gradually increasing. These problems are listed
below and were all addressed in this dissertation.

• Job Shop Scheduling Problem (JSSP)

• Parallel Machines Job Shop Scheduling Problem (JSSP-PM)

• Flexible Job Shop Scheduling Problem (FJSSP)

• Stochastic Flexible Job Shop Scheduling Problem

• Online Scheduling (two phases, four machines each)

• Hybrid Flow Shop Scheduling (based on a real-world problem)

In Chapter 3, besides giving an overview of Reinforcement Learning and Multi-
Agent Reinforcement Learning, we introduced the main concepts that have to be
taken into account when solving a scheduling problem using Reinforcement Learning.
Important definitions like changing action sets and transition dependencies were
adapted from literature and introduced using examples.

Chapter 4 started by introducing in detail what we call the ‘basic’ learning ap-
proach, which is initially defined for the job shop scheduling problem and later on
adapted in order to solve the other scenarios described in Chapter 2. The learn-
ing method implemented was a Q-Learning algorithm, for which different feedback
signals were studied. This QL algorithm was adapted and combined with other
techniques in order to satisfy the extra constraints of the parallel machines job shop
scheduling and the flexible job shop scheduling. In the latter, an optimization tech-
nique was used in order to improve the quality of the solutions. In all the cases the
results were compared with state of the art techniques reported in literature and
our approach was able to obtain comparable results.

In the case of the online scheduling problem we used Learning Automata to
learn how to distribute the incoming orders of two types of products among parallel
machines. Experiments were developed using the three possible update schemes.
The results of the experiments showed that the LR−P scheme was able to yield
better results compared to the other two reward schemes (LR−I and LR−εP ).
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The more common sources of uncertainty in scheduling were summarized in
Chapter 5. Important questions were answered, such as: what is robustness? and
how to measure how robust a schedule is?. Furthermore, different types of ap-
proaches to deal with uncertainty were studied. These methods can be classified as
reactive or proactive. We explained in detail some existing proactive approaches,
mainly slack-based techniques, as this background was needed to understand the
new slack-based method we proposed, which was introduced later in Chapter 6. It
is also in this chapter that experiments concerning stochastic scheduling are per-
formed. In order to measure the performance of the approach under uncertainty,
several problem instances were generated. The process of generating the instances
was thoroughly explained such that these could be used as a benchmark for further
research.

The new slack-based method proposed in this chapter bases its behavior on
something we defined as the criticality of the machines. This concept is used in
order to define the parts of the schedule that are more likely to need extra execution
time. Experiments in this regard are also reported, in which the main idea was
to obtain solutions with a good balance between optimality and robustness. This
approach was applied when solving the hybrid flow shop scheduling scenario, which
is based on a real-world application. An important added value of our approach
is the fact that it allows the user to set some parameters involved in the solution
construction process, for example, the desired level of robustness, in a very intuitive
way. The contributions are graphically summarized in Figure 7.1.

In general, we receive a scheduling problem, and additionally there can be a set
of user specifications. These user specifications can be preferences, extra constraints
to the problem, or preferred values for specific parameters. All this information is
given to our MARL approach, which depending on the characteristics of the problem
and the user specifications, will solve it on its own, or in combination with the mode
optimization procedure and/or the slack-based approach. This will provide as output
a near-optimal schedule, which can have different levels of robustness. It is also
possible to identify which are the critical machines and provide a visualization of the
resulting schedule in the form of a gantt chart. This visualization helps the user to
carefully analyze the proposed solution, and maybe change some parameter settings
in order to analyze what will happen if the system is under different circunstances,
or just to get a better balance between robustness and optimality.
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Figure 7.1: Graphical representation of the contributions of this disser-
tation.

7.2 Future Work
In this section we list some ideas to extend the research presented in this dissertation.

• Integrated Approach: In Chapter 4 we proposed a hierarchical approach
for the Flexible Job Shop Scheduling Problem, which was also used to solve
the stochastic version of this problem. As explained before, hierarchical ap-
proaches divide the problem in two steps: routing and sequencing, following
the classical ‘assign-then-sequence’ rule, which means that a machine is as-
signed to each operation and once this machine-operation assignment has been
done, the operations are sequenced on the assigned resources. It will be inter-
esting to explore an integrated approach, which takes care of the routing and
the sequencing at the same time.

• Multiple objectives: When solving the stochastic flexible job shop schedul-
ing in Chapter 6, new instances were generated in order to measure the perfor-
mance of the algorithm under unexpected events. These instances had release
and due dates incorporated, which made it possible to report results either in
terms of makespan or in terms of tardiness. The possibility of dealing with
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multiple objectives at the same time would also be an interesting avenue for
future research. This would mean that the feedback signals and the objective
functions of the current approach should be re-defined.

• LA for unexpected events: In Chapter 4 we proposed a solution to an
online scheduling problem using LA. In this case the information about how
many jobs have to be processed and their corresponding processing times is not
known in advance. The experiments performed in this scenario showed that
LA can cope with unknown joblengths, unknown future jobs and unknown
machine speeds, without needing heuristics or additional information. We
could take advantage of this and incorporate LA in the slack-based approach
proposed in this dissertation. This will allow to learn about the criticality of
the machines and improve the way the robust solutions are constructed for a
specific type of problem.

• Highly constrained hybrid flow shop scheduling problem: In the
scheduling community it is common to work with benchmarks, which not
always represent all aspects of real life scheduling problems. It is well known
that industries need systems for optimized production scheduling that adjust
exactly to the conditions in the production plant. One case of such a prob-
lem is the highly constrained hybrid flow shop scheduling scenario described
in [Urlings (2010)]. This problem involves some extra constraints that were not
present in the scheduling scenarios addressed in this dissertation. The appli-
cation of our approach to such a complex environment is currently under study.

• Cuban real-world application: In the cuban context, more specifically in
companies responsible for the production of spare pieces for industrial ma-
chines, there is a lack of effective methods that can contribute to the schedul-
ing of the production process. The repair shop ‘Manual Fajardo’, located in
Granma, a province at the east of Cuba, is responsible for the manufacturing
(and repairing) of several pieces of equipments that are used by the different
machines involved in the sugar production process. The production chain is
structured in a way that all the tasks have to follow the same production path,
which means that they are executed by the machines in the same order. This
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fits the definition of flow shop scheduling.

The repair shop is experiencing delays, mainly due to the arrival of extra orders
which sometimes have high priorities due to the kind of pieces being requested.
This kind of requests are more common in the sugar harvesting season.

This is a potential real-world application that could benefit from the research
presented in this dissertation.
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