
Faculty of Science and
Bio-Engineering Sciences
Department of Computer Science
Theoretical Computer Science

Reinforcement Learning with Heuristic Information
Dissertation submitted in fulfilment of the requirements for the degree of Doctor of Science: Computer Science

Tim Brys

Promotors: Prof. Dr. Ann Nowé (Vrije Universiteit Brussel)
Prof. Dr. Matthew E. Taylor (Washington State University)

c© 2016 Tim Brys

Print: Silhouet, Maldegem

2016 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Keizerslaan 34
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5718 448 2
NUR 958
Legal deposit D/2016/11.161/049

All rights reserved. No parts of this book may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the author.

Soli Deo gloria

3

Abstract

Reinforcement learning is becoming increasingly popular in machine learning communities
in academia and industry alike. Experimental successes in the past few years have hinted
at the potential of reinforcement learning at tackling complex tasks, but the learning
algorithms used typically still require impractically large amounts of training data. The
main cause for this is a sparsity of rewards in a large state space. Because exploration of
the environment is commonly driven by previously experienced rewards, initial exploration
is usually too random to be practical. Two approaches to alleviating this problem are
taken in the literature: creating more sample efficient algorithms, or introducing heuristic
knowledge that aids the agent.
This thesis falls into the second category. Our first contribution is a non-exhaustive

overview of the types of heuristic information sources commonly used in reinforcement
learning, of the ways such information can be encoded and of the techniques that can
be implemented to reuse this knowledge. The majority of our subsequent contributions
concern the validation of various implementations of this blueprint.
The first is the investigation of the four knowledge injection techniques we identified in

a variety of policy transfer settings. Policy transfer considers the case where behaviour
learned in a previous task can be reused in the current task to be learned. We show the
effects of high and low quality transferred policies on performance, the effect of policy
transfer on multi-agent systems, and the way each of the techniques introduces bias in the
learning process and how this relates to deterministic and stochastic transferred policies.
In the second such contribution, we investigate these knowledge injection techniques

in the context of learning from demonstration, where examples of (expert) behaviour

5

Abstract

are available to the learning agent. First we introduce a value-based encoding of such
demonstrations which we then compare with an existing policy-based encoding. We analyse
the effect that demonstration dataset size, quality, and demonstrator type has on the
performance of learning agents using either encoding.
Our final and biggest contribution provides an answer to the question: what to do when

multiple sources of heuristic knowledge are available. We developed a theoretically sound
ensemble framework that allows for the inclusion of various pieces of heuristic knowledge
through the learning in parallel of value functions, each initialized or shaped by one of
the provided biases.

6

Acknowledgments

First of all, I am very grateful to my supervisor Ann Nowé, who made everything I did these
past years possible (not actually everything of course...) by offering me a PhD position in
her lab, and then funding1 five years of travelling around the world in exchange for some
research in between. My co-supervisor Matthew Taylor ranks second in thank-worthiness
only because he has invested less money in me than Ann. Our scientific relationship was
marked by two short intense bursts of productivity on opposite coasts of the States, from
which most of the research described in this thesis flows. Thanks for those times Matt,
and also for all the laughs!
Of course, I have to rank my supervisors first in my ranking-people-according-to-my-

gratefulness charts. If they wouldn’t notice though, I would of course put my sweet wife
Naomi on top! I won’t thank her for ‘supporting me in the difficult times of my PhD’
(I must have slept through those) or for ‘carefully proofreading my thesis’ (I would never
do that to her!). While she did indeed do many things for me, I am simply grateful for
who she is.
The next group of people I would like to express my gratefulness to would never figure

on any charts drawn up by sensible humans. At the risk of losing my reputation, I thank
Kristof, Maarten and Maurice. Kristof for the slapstick, the endless ping-pong matches
and for being a frequent travel companion. Maarten not in the least for being my favourite
bass-player, and Maurice for counter-balancing Kristof with some cynicism.
The chasing peloton in the race for my gratefulness contains many people who will

remain unnamed (although not unthanked), including the vast majority of the AI lab’s
1This research was financially supported by the Research Foundation Flanders (FWO).

7

Acknowledgments

members over the course of these five years. A special mention goes to Anna, Kyriakos,
Mihail and The Anh.
Furthermore, I can’t thank my parents enough for the massive amounts of sacrificial love

they poured into my life. Their reward is not of this world.
And last, but certainly not least, I thank God for everything.

8

Contents

Abstract 5

Acknowledgments 7

Contents 9

1 Introduction 13
1.1 Reinforcement Learning . 14
1.2 Research Question and Contributions . 16

2 Reinforcement Learning 17
2.1 The Reinforcement Learning Problem . 17
2.2 Reinforcement Learning Algorithms . 20

2.2.1 Function Approximation and Eligibility Traces 22
2.2.2 Q(λ)-Learning with Tile-Coding 24

2.3 Sample Efficiency . 24
2.4 Benchmark Problems . 25

2.4.1 Cart Pole . 25
2.4.2 Pursuit Domain . 26
2.4.3 Super Mario . 27

2.5 Summary . 30

9

CONTENTS

3 Incorporating Prior or External Knowledge 31
3.1 Type of Knowledge . 32

3.1.1 Transfer Learning . 32
3.1.2 Demonstrations . 33
3.1.3 Off-line Advice . 33
3.1.4 On-line Advice/Feedback . 34

3.2 Encoding Knowledge . 34
3.3 Injecting Knowledge . 35

3.3.1 Q-function Initialization . 36
3.3.2 Reward Shaping . 36
3.3.3 Probabilistic Policy Reuse . 38
3.3.4 Extra Action . 38
3.3.5 Convergence and Optimality . 39

3.4 A Sampling from the Literature . 39
3.5 A Brief Detour: How to Measure Improvement 41
3.6 Summary . 42

4 Policy Transfer 45
4.1 Transfer Learning . 45
4.2 Policy Transfer . 47

4.2.1 Reusing a Policy using Mappings 48
4.3 Experiments . 48

4.3.1 Early and Late Policy Transfer in Cart Pole 49
4.3.2 Multi-Agent Policy Transfer in the Pursuit Domain 52
4.3.3 Small and Large Bias in Mario 58

4.4 On Bias . 61
4.5 Summary . 62

5 Reinforcement Learning from Demonstration 65
5.1 Learning from Demonstration . 66
5.2 Reinforcement Learning from Demonstration 67
5.3 Constructing a Value Function from Demonstrations 68
5.4 Experiments . 69

5.4.1 Initialization, Dynamic Shaping, PPR and Extra Action 70
5.4.2 The Effect of Small/Large Amounts of Data 72
5.4.3 The Effect of Demonstration Quality 75

10

CONTENTS

5.4.4 The Effect of Demonstrator Type 77
5.4.5 Policy Transfer vs Reinforcement Learning from Demonstration . . 80

5.5 Summary . 83

6 Ensembles of Shapings in Reinforcement Learning 85
6.1 Introduction . 86
6.2 Ensemble Techniques . 87
6.3 Multi-Objectivization . 88
6.4 Multi-Objective Reinforcement Learning 89
6.5 Multi-Objectivization in Reinforcement Learning 91

6.5.1 CMOMDP . 91
6.5.2 Multi-objectivization . 92

6.6 Ensemble Techniques in Reinforcement Learning 95
6.6.1 Linear . 97
6.6.2 Majority Voting . 98
6.6.3 Rank Voting . 98
6.6.4 Confidence-based . 99

6.7 Empirical Validation . 100
6.7.1 Cart Pole . 101
6.7.2 Pursuit Domain . 103
6.7.3 Mario . 106
6.7.4 Diversity of shapings . 108

6.8 Summary . 108

7 Conclusions 111
7.1 Contributions . 111
7.2 Future outlook . 113

List of Publications 117

Bibliography 121

11

1 | Introduction

In the beginning...
Moses, Genesis 1:1

From the dawn of time, mankind has been ingeniously trying to make its life easier. We
have always been building tools to simplify and automate the tasks we undertake, to offload
as much work as possible: harnessing oxen and working metal ore to till more farmland
than could ever be done with our bare hands, building intricate wheelwork mechanisms that
harness the power of water and wind to grind more grain than we could eat, steam engines
that accomplish the work of thousands of men, and now computers that think for us.
Artificial intelligence is the natural outflow of this age-old process of automation. Whereas

until quite recently the work that was offloaded to machines has been of the sometimes
refined, but usually dumb, physical form, in the past decades, automation has been breach-
ing into what we perceive as the ‘intelligent’, automating not just ‘work’, but also decision
making.
Whether people realize it or not, artificial intelligence (AI) is becoming more and more

prevalent in our society. Perhaps not in the better known (or rather notorious) apocalyptic
forms of Skynet or HAL 9000, but rather hidden behind the Google webpage that helps
you with your questions, on the Amazon store that serves you relevant recommendations
on books and movies, on your iPhone, making conversation under the name of Siri, or
maybe even in your fancy car, assisting you with your below par parking skills.
And AI is quickly developing. Every year, the boundaries of what is possible are being

pushed further and further. Since 2015, computers can play our video games from the

13

CHAPTER 1. INTRODUCTION

80’s at a level comparable to that of an experienced gamer [Mnih et al., 2015]. In 2016,
they first beat the world champion of Go, the holy grail of board games, pulling moves
that are inhuman, but “so beautiful” (dixit Fan Hui, reigning European champion). Fully
self-driving cars have been around for at least a couple of years [Google, 2016], and in a
few more years Amazon drones will be whizzing around delivering packages to anybody
and everybody [Amazon, 2016].
One of the strengths of many of these systems is their ability to learn from data. The

rules they follow, the behaviour they exhibit, is not exclusively programmed by some
smart engineer. Rather, the engineer implements a learning algorithm, which is then
fed data relevant for the task at hand. The learning algorithm then finds patterns in
the data, discovers what are ‘good’ decisions for which situations, and an ‘intelligent’
system emerges.
This is Machine Learning.

1.1 Reinforcement Learning
Some of the examples cited above use a specific Machine Learning approach called re-
inforcement learning. This approach to learning is inspired by behaviourist psychology,
where human and animal behaviour is studied from a reward and punishment perspective.
A small illustrative example conveys the main principle of this learning theory:

Example 1.1

Say you want to train your dog to sit.
You take your dog outside and shout ‘sit’.
The dog realizes it needs to do something (you shouting and pointing to the ground
is a definite clue), but it doesn’t know what to do.
It barks, but nothing happens...
It gives a paw (something it learned before), but nothing happens...
It sits on the ground, and lo and behold, a dog cookie appears!

If you repeat this process many times, your dog will probably learn to associate the
situation (you shouting ‘sit’) and its own action (sitting down), with the positive stimulus
(a tasty cookie) and will repeat this behaviour on future occasions. In Thorndike’s words:

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being equal,
be more firmly connected with the situation, so that, when it recurs, they will

14

1.1. REINFORCEMENT LEARNING

be more likely to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be less likely to
occur. The greater the satisfaction or discomfort, the greater the strengthening
or weakening of the bond. [Thorndike, 1911]

He called this principle the law of effect.
In essence, the learner is considered to crave ‘something’ that it receives depending on

its behaviour; it receives more of it when it exhibits desirable behaviour, and less (or
even something opposite) when it does not. Whether this ‘something’ be cookies for a
dog, or dopamine in the human brain, or a simple numerical value, an increase of it tells
the learner that it has done something right, and an intelligent learner will repeat that
behaviour when it encounters a similar situation in the future.
This same principle was successfully used in the examples cited above to train AIs to

play video games and play Go.1 The former using the score in the game as reward, the
latter the win or loss as reward or punishment. One of the big downsides of this approach
to learning is the often large number of experiences required to learn good behaviour,
due to only sparsely given reward and a lack of prior knowledge. In Go for example, the
learner only gets feedback at the very end of the game, with professional games taking on
average about 200 moves. Therefore it is difficult for the learner to evaluate which moves
were key factors in achieving the win or loss [Minsky, 1961]. In the video game setting,
the generally successful AI we referred to completely fails on the specific game called
‘Montezuma’s revenge’, which requires long sequences of quite specific actions before a
score can be obtained (imagine giving your dog a cookie only after it has done the full
sequence of sitting, a backflip, barking, sitting again, another bark, and a roll). A learner
without prior knowledge has no chance2 of stumbling on these sequences of actions.
A common way to overcome this problem is to not start learning from scratch, but to

introduce some prior knowledge that guides the learner. For example, in the Go research
we discussed above, before any reinforcement learning took place, the learning system was
seeded with a huge database of human expert moves, an excellent example on how to use
demonstration data to improve learning. Others have shown that using expert knowledge
expressed as simple rules can be used to make a helicopter learn to fly a number of complex
manoeuvres [Kim et al., 2004], or that using knowledge learned in previous tasks can help

1Do not dismiss these results as only academically interesting due to the ‘game’ nature of the problems:
the complexity of these problems approaches and surpasses that of many more useful applications [Silver
et al., 2016]. Furthermore, the past has shown that breakthrough advances in games have lead to break-
throughs in other fields. Monte Carlo Tree Search, initially developed for Go, is one example [Browne
et al., 2012].

2To be fair, there is an infinitesimal probability, yet it is negligible for all practical purposes.

15

CHAPTER 1. INTRODUCTION

the current learning process [Taylor and Stone, 2009]. Many more examples like this exist,
differing in where the prior information comes from, and how it is used.

1.2 Research Question and Contributions
The research question we investigate in this thesis is:

Definition 1.1: Research Question

How can one incorporate prior or external knowledge in a temporal difference rein-
forcement learning process, aiming to increase the sample efficiency of this process?

The contributions described in this thesis answer this question in several ways. Our first
contribution is a unified view of the different ways of including prior knowledge encoded
as a value function or policy in a temporal difference process (Chapter 3). Our next
contribution is the evaluation of these different ways in the problem of policy transfer, i.e.
reusing behaviour learned in a previous, similar task (Chapter 4). Our third contribution
is a novel Learning from Demonstration technique, which is then also evaluated using the
different ways of incorporating the demonstration knowledge, and extensively compared
with the state-of-the-art in a variety of settings (Chapter 5). The last major contribution we
describe in this thesis is the introduction of heuristic ensembles in reinforcement learning,
i.e. the semi-automatic combination of various pieces of prior knowledge (Chapter 6).
But before we describe these contributions in detail, we give a more formal definition

of reinforcement learning and its related concepts and notation required for the reading
of this thesis.

16

2 | Reinforcement Learning

There is a reward for your work.
God, Jeremiah 31:16

In this chapter, we provide some background on reinforcement learning, the learning theory
within which we make our contributions in subsequent chapters. We only elaborate on the
concepts and notation used in this thesis. For a broader treatment of the reinforcement
learning framework, we refer the reader to Sutton and Barto’s seminal book [Sutton and
Barto, 1998], and a more recent overview of the state-of-the-art [Wiering and Van Ot-
terlo, 2012].

2.1 The Reinforcement Learning Problem
We set the stage with the classic reinforcement learning (RL) diagram, displayed in Fig-
ure 2.1. It shows how an RL agent interacts with its environment. First, to say what an
agent exactly is, is surprisingly difficult; definitions abound in AI literature. In this thesis,
we adopt the following simple definition [Russell and Norvig, 1995]:

Definition 2.1: An agent

An agent is just something that perceives and acts.

What the agent perceives and acts upon, we call the environment. This environment
typically changes due to the agent’s actions and possibly other factors outside the agent’s

17

CHAPTER 2. REINFORCEMENT LEARNING

Agent

Environment

action astate s
reward r

Figure 2.1: The reinforcement learning agent-environment interaction loop.

influence. The agent perceives the state (s) of the environment (a potentially incomplete
observation), and must decide which action (a) to take based on that information, such
that the accumulation of rewards (r) it receives from the environment is maximized. These
interactions occur at discrete subsequent time steps.
This agent-environment interaction process is most commonly formulated as a Markov

Decision Process (MDP):

Definition 2.2: Markov Decision Process

A Markov Decision Process is a tuple 〈S,A, T, γ,R〉.

• S = {s1, s2, . . .} is the possibly infinite set of states the environment can be
in.

• A = {a1, a2, . . .} is the possibly infinite set of actions the agent can take.
• T (s′|s, a) defines the probability of ending up in environment state s′ after
taking action a in state s.

• γ ∈ [0, 1] is the discount factor, which defines how important future rewards
are.

• R(s, a, s′) is the possibly stochastic reward given for a state transition from s

to s′ through taking action a. It defines the goal of an agent interacting with
the MDP, as it indicates the immediate quality of what the agent is doing.

It is called a Markov Decision Process, because the state signal is assumed to have the
Markov property:

18

2.1. THE REINFORCEMENT LEARNING PROBLEM

Definition 2.3: Markov Property

A stochastic process has the Markov property if the conditional probability distri-
bution of future states of the process (conditional on both past and present states)
depends only upon the present state, not on the sequence of events that preceded
it. [Bhattacharya and Waymire, 2007]

In other words, the state signal should contain enough information to reliably predict
future states.
The way an agent acts based on its perceptions, i.e., its behaviour, is commonly referred

to as a policy, denoted as π : S×A→ [0, 1]. It formally describes how likely an agent is to
do something (action) in a given situation (state), by mapping state-action pairs to action
selection probabilities. In this thesis, we use this notation for policies interchangeably
with the following notation π : S → A, which is a reformulation where not the action
selection probabilities are output for a given state-action pair, but given a state and these
probabilities, π(s) outputs a probabilistically selected action.
The goal of an agent interacting with an MDP is to learn behaviour, a policy, that

maximizes the discounted accumulation of rewards collected during its lifetime in the
environment. This accumulation of reward up to a given time horizon or into infinity is
called the return:

Rt = R(st, at, st+1) + γR(st+1, at+1, st+2) + γ2R(st+2, at+2, st+3) + . . .

=
∞∑
k=0

γkR(st+k, at+k, st+k+1)

The discount factor γ determines the current value of future rewards. As γ → 1, the
agent becomes more farsighted, and will prefer large future rewards over smaller short-
term rewards.
Given a state s and a policy π, we can express the return an agent can expect when

starting from that state and following that policy as follows:

V π(s) = E

{ ∞∑
k=0

γkR(st+k, at+k, st+k+1)|st = s

}

This value function expresses the quality of being in state s when following policy π,
given the MDP to-be-solved that generates state transitions and rewards for these trans-
itions. The expectation E {} accounts for the stochasticity in these transition and reward
functions, as well as in the policy that generates the action sequence.

19

CHAPTER 2. REINFORCEMENT LEARNING

Similarly, we can define the quality of being in state s, taking action a, and subsequently
following policy π. This is called the action-value function:

Qπ(s, a) = E

{ ∞∑
k=0

γkR(st+k, at+k, st+k+1)|st = s, at = a

}

The expected returns encoded in these value functions yield a way to evaluate the quality
of policies. A policy π is better than another policy π′ if it has higher expected returns. A
reinforcement learning agent needs to learn a policy that maximizes the expected return:

∀s ∈ S, ∀a ∈ A : π∗ = arg max
π

Qπ(s, a)

π∗ is called an optimal policy,1 as it represents the behaviour that gets the highest return
in expectation for all states, thus solving the task encoded in the reward function.

2.2 Reinforcement Learning Algorithms
If the MDP’s transition and reward functions are known, Dynamic Programming tech-
niques can be used to optimally solve the problem [Bertsekas, 1995]. Yet, it is uncommon
to have a full specification of a system’s dynamics or the reward function, and thus the use
of techniques that can work with only knowledge of state and action spaces is necessary.
These techniques must generate policies that maximize the expected return in environ-
ments with unknown dynamics and goals through trial-and-error. Learning a model of the
environment may be part of this process, but it is not necessary and many techniques are
successful without this component.
The learning algorithms used in this paper are of this ‘model-free’ type. More specifically,

we focus on temporal difference (TD) learning algorithms, because they are still one of
the most popular and successful classes of RL algorithms, notwithstanding the success
of for example policy gradient algorithms [Sutton et al., 1999; Degris et al., 2012; Silver
et al., 2016].

Definition 2.4: TD learning

Temporal difference learning is an approach to reinforcement learning that keeps
estimates of expected return and updates these estimates based on experiences and
differences in estimates over successive time-steps.

1There is at least one [Puterman, 2014], but there may be many (deterministic or stochastic). Still,
all their (action-)value functions will be the same.

20

2.2. REINFORCEMENT LEARNING ALGORITHMS

In other words, in TD learning, the agent incrementally updates estimates of a value
function, using observed rewards and the previous estimates of that value function. One of
the best known and simplest temporal difference learning algorithms isQ-learning [Watkins,
1989]. It estimates the optimal Q-function Q∗ by iteratively updating its estimates Q̂ after
each (s, a, r, s′) interaction with the environment:

Q̂(s, a)← Q̂(s, a) + αδ

0 ≤ α ≤ 1 is the step size, controlling how much the value function is updated in
the direction of the temporal difference error δ. The temporal difference error δ is the
difference between the previous estimate and the observed sample:

δ = r + γmax
a′

Q̂(s′, a′)− Q̂(s, a)

Q-learning performs off-policy learning. This means that it learns about a different
policy than the one generating the interactions with the environment, which is called
the behaviour policy. In the case of Q-learning, the policy being learned about is the
optimal policy.
The on-policy variant of Q-learning is called SARSA. It modifies the temporal difference

error in such a way that the algorithm learns about the behaviour policy, using the action
a′ actually executed in next state s′, instead of using the action with the highest estimate
in that state:

δ = r + γQ̂(s′, a′)− Q̂(s, a)

If all state-action pairs are visited infinitely often, given some boundary conditions, Q-
learning and SARSA are guaranteed to converge to the true Q-values [Tsitsiklis, 1994;
Singh et al., 2000]. In practice, a finite number of experiences is usually sufficient to
generate near-optimal behaviour.
From an estimated Q-function, an agent can easily derive a greedy deterministic policy π:

π(s) = arg max
a

Q̂(s, a)

If the estimates have converged to the optimal Q-values Q∗, then this formula generates
an optimal policy.
Since an agent typically needs to sufficiently explore the state-action space in order to

find optimal behaviour (infinitely often in the case of Q-learning and SARSA), it is in most
cases insufficient during learning to just execute the greedy policy derived from the agent’s
estimates to generate interactions with the environment. That is because with the greedy
policy, actions that are initially underestimated will likely never be executed again, nor will

21

CHAPTER 2. REINFORCEMENT LEARNING

their estimates be updated again, because the greedy policy always executes the action with
the highest estimated return. This results in the agent ceasing exploration prematurely,
and the value function converging to a suboptimal solution. Instead of always using the
greedy policy with respect to the estimates to select actions, it is therefore often advisable
to inject stochasticity into the policy to generate the necessary exploration.
One way is to take a random action at every time-step with probability ε. This ensures

that every reachable state-action pair has a non-zero visitation probability, irrespective of
the estimated Q-values at that time. Let ξ ∈ [0, 1] be a randomly drawn real number,
an ε-greedy exploration policy is given by:

π(s) =
{

a random action if ξ < ε

arg maxa Q̂(s, a) otherwise

Another popular approach is softmax action selection, which determines the probability
of every action based on the relative magnitude of the actions’ estimates:

π(s, a) = e
Q(s,a)
τ∑

a′ e
Q(s,a′)

τ

The ‘temperature’ parameter τ determines how random (high τ) or greedy (low τ) action
selection is. Actions with higher estimated Q-values will have relatively higher probabilities
of being selected, and actions with lower estimated Q-values will have proportionally lower
probabilities.

2.2.1 Function Approximation and Eligibility Traces
The basic versions of the algorithms described above are defined for discrete state-action
spaces. They use a simple table to store the Q estimates: one entry for every possible state-
action pair. Since many practical reinforcement learning problems have very large and/or
continuous state spaces,2 basic tabular learning methods are impractical, due to the sheer
size of storage required, or even unusable, due to a table’s inherent inability to faithfully
represent continuous spaces. Therefore, function approximation techniques are required
to render the learning problem tractable. Many different approximators exist, with deep
neural networks being currently very much in vogue [Mnih et al., 2015; Silver et al., 2016].
We have found a simpler and more traditional approach to be sufficient in the experiments
performed for this thesis. We consider tile-coding function approximation [Albus, 1981],
a linear approximator which overlays the state space with multiple randomly-offset, axis-
parallel tilings. See Figure 2.2 for an illustration. This allows for a discretization of the

2Not to speak of continuous action spaces. That is not considered in this thesis.

22

2.2. REINFORCEMENT LEARNING ALGORITHMS

Dimension #1

D
im

en
si

on
 #

2

Tiling #1

Tiling #2

2D CMAC with 2 Tilings

Figure 2.2: A CMAC’s value is computed by summing the weights, wi, from mul-
tiple activated tiles (outlined above with thicker lines). State variables are used to
determine which tile is activated in each of the different tilings.

function approximation is trained by changing how much each tile contributes to

the output of the function approximator (see Figure 2.3). Thus, the output from

the CMAC is the computed sum:

f(x) =
∑

i

wifi(x) (2.1)

but only tiles which are activated by the current state features contribute to the

sum:

fi(x) =

⎧
⎨
⎩

1, if tile i is activated

0, otherwise

Unless otherwise specified, in this dissertation all weights in a CMAC are

initialized to zero. However, if information about the task is known in advance,

a more informed initial weight selection could be used. Note that although the

majority of experiments in this dissertation will use one-dimensional tilings (one

per state variable), the principles above apply in the n-dimensional case.

16

Figure 2.2: An illustration of tile-coding function approximation on a two-dimensional
state space, with two tilings. The indicated cells indicate the active tiles. Figure taken

from [Taylor, 2008].

state-space, while the overlapping tilings guarantee a certain degree of generalization. The
Q-function can be approximated by learning weights that map the tiles activated by the
current state s and action a to an estimated Q-value:

Q̂(s, a) = θTφ(s, a)

φ(s, a) is the feature vector representing state-action pair (s, a), i.e., a binary vector
indicating the tiles activated by this state and the action, and θ is the weight vector that
needs to be learned to approximate the actual Q-function. This weight vector is updated
using an update-rule similar to the one used in the tabular case:3

θ ← θ + αδ

Besides function approximation, a last mechanism we use to construct a reinforcement
learning agent to conduct experiments with in this thesis is called eligibility traces. Eli-
gibility traces [Klopf, 1972] are records of past occurrences of state-action pairs. These
give a sense of how ‘long ago’ a given action was taken in a given state. They can be
used to propagate reward further into the past (n-step) than the algorithms discussed
until now do (one step). Using eligibility traces, not only the Q-value of the currently
observed state-action pair is updated, but also those of past state-action pairs, inversely

3Note that with function approximation, Q-learning is no longer guaranteed to converge and may even
diverge because the Markov property is violated [Baird, 1995]. In practice, this is not typically problematic.

23

CHAPTER 2. REINFORCEMENT LEARNING

proportional to the time since they were experienced. Concretely, a (replacing) eligibility
trace e(s, a) for state s and action a is updated as follows [Singh and Sutton, 1996]:

e(s, a)←
{

1 s = st, a = at

γλe(s, a) otherwise

It is set to 1 if (s, a) is currently observed, and otherwise it is decayed by γλ, with
0 ≤ λ ≤ 1 the eligibility trace decay parameter. Higher λ results in rewards being
propagated further into the past. This eligibility trace update is performed at every step,
thus making traces decay over time. The eligibility traces are included as a vector e in
the Q update rule as follows:

θ ← θ + αeδ

2.2.2 Q(λ)-Learning with Tile-Coding
All of the literature described above amounts to the reinforcement learning algorithm we
will be using throughout this thesis: Q(λ)-learning with tile-coding function approximation.
It performs off-policy learning, which is necessary for the ensemble learning in Chapter 6.
It uses function approximation to generalize experiences and deal with continuous state-
spaces, which is necessary for most of the benchmark problems we consider (in Mario we
use tabular learning – we argue why when discussing that benchmark problem below).
And it uses eligibility traces to speed up the propagation of rewards through the agent’s
representation of the value function and thus to speed up convergence.

2.3 Sample Efficiency
As in general machine learning, sample efficiency is important in reinforcement learning.
Sample efficiency represents the number of environment (s, a, r, s′) samples an agent re-
quires to perform a task well. Obtaining samples usually carries a cost, often greater than
just the computational cost associated with processing the sample. Making a robot spend
hours, days and weeks to learn a task is very costly. It takes a lot of electricity, several
engineers to attend to the robot, and physical space for the robot to execute the task,
none of which are cheap to obtain.
Therefore, one of the primary goals of reinforcement learning algorithms, besides conver-

gence and (near-) optimality, is an efficient use of samples. The fewer samples an algorithm
requires to achieve some desirable level of behaviour, the better. Broadly speaking, re-
searchers take either one of two approaches to reduce the number of samples an agent

24

2.4. BENCHMARK PROBLEMS

Figure 2.3: An illustration of the Cart Pole problem.

requires. They either build algorithms and techniques that inherently require fewer samples,
or they use some prior/external knowledge to bias the agent.4 Some argue that the former
is superior to the latter, as it is the more general approach [Sutton, 2016]. Yet, we believe
that both will always be intertwined. One can see this for example in the great success of
AlphaGo, which definitely is a great example of new algorithms using the provided samples
in a better way, yet still it required a great deal of human demonstrations to work well.
This thesis falls into the second category, and investigates the inclusion of prior and ex-

ternal knowledge to reduce the number of samples an agent requires to achieve good
behaviour.

2.4 Benchmark Problems
In order to experimentally compare reinforcement learning algorithms, a number of bench-
mark problems have been created and have seen extensive use in the literature. Below, we
describe the problems we consider in this thesis. These represent a diverse set of problems,
with very different environment dynamics, state and action spaces.5

2.4.1 Cart Pole
Cart Pole [Michie and Chambers, 1968] is a task in which the learning agent controls a
cart with a pole on top, see Figure 2.3. The goal is to keep the pole balanced for as long

4Throughout this thesis, when we talk about biasing exploration, biasing an agent, etc., we use the
word in the sense that guidance is introduced, that the agent is made to prefer some actions over others
when acting in the environment. Not that the learner can not learn the target policy any more.

5It is hard to exactly quantify how different tasks are. Recent work on similarity metrics between MDPs
makes some steps towards answering that question [Ammar et al., 2014; Song et al., 2016], although limited
to MDPs of the same domain (e.g., different versions of Cart Pole), and fully known MDPs respectively.

25

CHAPTER 2. REINFORCEMENT LEARNING

as possible by moving the cart left and right within a given interval in a single dimension.
The state space consists of the position of the cart, its velocity, the angle of the pole and
its angular velocity (x, ẋ, θ, θ̇). The agent receives step rewards of 0, and a final reward
of −1 when the pole falls. In the experiments, performance is measured as the number of
steps the pole is balanced, and a learning episode is limited to 1000 steps.

Definition 2.5: Cart Pole Agent

State space 4 variables:

1 x position of the cart, ((−2.4, 2.4))
2 ẋ velocity of the cart ((−6.0, 6.0))
3 θ angle of the pole ((−0.21, 0.21))
4 θ̇ angular velocity of the pole ((−6.0, 6.0))

Action space {left, right}

Reward Step reward of 0, −1 when the pole falls

Learning parameters α = 0.25
16 ,a γ = 1, ε = 0.05, λ = 0.25,

16 randomly offset tilings of 10× 10× 10× 10
aHere, as in the Pursuit Domain, we divide the learning rate by the number of tilings to ensure

an effective α < 1.

2.4.2 Pursuit Domain
The Pursuit domain, or Predator/Prey, was proposed by Benda et al. [1986] to investigate
coordination mechanisms in a multi-agent system. The basic idea of pursuit is that a
number of predators must capture a (number of) prey(s) by moving through a simple
gridworld, see Figure 2.4. Stone and Veloso [2000] identify many variants of the problem
and our implementation is as follows. There are two predators and one prey, and these
can move in the four cardinal directions in a non-toroidal grid of 20 × 20 cells, as well
as choose to stay in place. The prey is caught when a predator moves onto the same
gridworld cell as the prey, and predators are not allowed to share the same cell. The prey
takes a random action 20% of the time, with the rest of the time devoted to moving away
from the predators. To do that, it takes the action that maximizes the summed distance
from both predators, making the problem harder than with a fully random prey. The two
predators are learning agents, and both receive a reward of 1 when the prey is caught by

26

2.4. BENCHMARK PROBLEMS

Figure 2.4: An illustration of the Pursuit domain.

either one of them, and a reward of 0 the rest of the time; performance is measured in
our experiments as the number of steps needed to catch the prey. The predators observe
the relative x and y coordinates of the other predator and the prey.

Definition 2.6: Pursuit Agents

State space 4 variables:

1-2 relative x and y position of the other predator ((−19, 19))
3-4 relative x and y position of the prey ((−19, 19))

Action space {north, east, south,west, no move}

Reward function step reward of 0, 1 for both predators when either catches the
prey

Learning parameters α = 1
10×32 , γ = 0.9, ε = 0.1, λ = 0.9, 32 tilings with

tile-width 10.a
aTile-width is measured in whatever units each of the state variables is measured.

2.4.3 Super Mario
The Mario benchmark problem [Karakovskiy and Togelius, 2012] is based on Infinite Mario
Bros, which is a public reimplementation of the original 80’s game Super Mario Bros R©.

27

CHAPTER 2. REINFORCEMENT LEARNING

Figure 2.5: A screenshot of Mario in a random level.

See Figure 2.5 for a screenshot of the Mario game. In this task, Mario needs to collect
as many points as possible, which are attributed for killing an enemy (10), devouring a
mushroom (58) or a fireflower (64), grabbing a coin (16), finding a hidden block (24),
finishing the level (1024), getting hurt by a creature (−42) or dying (−512). The actions
available to Mario correspond to the buttons on the NES controller, which are (left, right,
no direction), (jump, don’t jump), and (run/fire, don’t run/fire). One action from each
of these groups can be taken simultaneously, resulting in 12 distinct combined or ‘super’
actions. The state space in Mario is quite complex, as Mario observes the exact locations
of all enemies on the screen and their type, he observes all information pertaining to
himself, such as what mode he is in (small, big, fire), and furthermore he is surrounded
by a gridlike receptive field in which each cell indicates what type of object is in it (such
as a brick, a coin, a mushroom, a goomba (enemy), etc.).
Our reinforcement learning agent for Mario is inspired by Liao et al. [2012]. The state

space of the agent consists of 27 discrete variables (see below) that make for 3.65× 1010

different states, and 3.65× 1010× 12 = 4.38× 1011 Q-values. Even though this is a huge
state-space, it does not pose a problem computationally, because the visitation pattern of
states follows an exponentially decaying curve: a small set of states receives the majority
of visits [Liao et al., 2012]. This is illustrated in Figure 2.6. Therefore, we opt for a
simple tabular representation of the value function like Liao et al. [2012], even though it
is possible that introducing generalization between states would be beneficial.
In the experiments, every learning episode is run on a procedurally generated level based

on a random seed ∈ [0, 106], with difficulty 0. The mode Mario starts in (small, large,
fire) is randomly selected for each episode. Making an agent learn to play Mario this way
helps avoid overfitting on a specific level, and makes for a more generally applicable Mario

28

2.4. BENCHMARK PROBLEMS

100 101 102 103

visits

100

101

102

103

104

105

#
 s

ta
te

s

State visitation in Mario

Figure 2.6: The state visitation pattern in Mario for Q(λ)-learning during the first 1000
episodes, learning from scratch. Log-scale. A large number of states has a small number

of visits and vice versa.

agent. This fits the ‘generalized environment’ concept of Whiteson et al. [2011], indeed
intended to avoid environment overfitting (in this case, that means level-overfitting).

Definition 2.7: Mario Agent

State space 27 variables:

1 is Mario able to jump? (boolean)
2 is Mario on the ground? (boolean)
3 is Mario able to shoot fireballs? (boolean)
4-5 Mario’s direction in the horizontal and vertical planes ({−1, 0, 1})
6-9 is there an obstacle in one of the four vertical grid cells in front of Mario?

(boolean)
10-17 is there an enemy within one grid cell removed from Mario in one of

eight different directions (left, up-left, up, up-right, etc.) (boolean)
18-25 as the previous, but for enemies within two to three grid cells. (boolean)
26-27 the relative horizontal and vertical positions of the closest enemy

((−10, 10), measured in grid cells, plus one value indicating an absence
of enemies)

29

CHAPTER 2. REINFORCEMENT LEARNING

Action space 12 actions, taking one element from each of these sets:
{left, right, no direction}, {jump, don’t jump}, and {run/fire, don’t run/fire}

Reward function points collected in the Super Mario game are attributed as reward

Learning parameters α = 0.001, γ = 0.9, ε = 0.05 and λ = 0.5, with tabular
learning

2.5 Summary
The paradigm of reinforcement learning frames learning as the adaptation of behaviour
in order to achieve goals defined by means of a feedback signal. This signal rewards and
punishes the learner for the behaviour it exhibits, and a learning agent seeks to accumulate
as much of these rewards as possible. The agent achieves this by observing the effect its
behaviour has on the situation it is in and the rewards associated with it (short and long-
term), and adjusting its behaviour accordingly.
We described these concepts in the conventional mathematical frameworks and discussed

reinforcement learning algorithms and their components only to the extent necessary for
understanding this thesis. The same applies to the reinforcement learning benchmark
problems described.
In the following chapter, we discuss ways of incorporating prior or external knowledge

into a reinforcement learning process. Our first contribution can be found in that chapter,
in a unified view of the different existing ways of injecting knowledge encoded as policies
or value functions.

30

3 | Incorporating Prior or
External Knowledge

The way of a fool is right in his own eyes, but a wise man
listens to advice.

King Solomon, Proverbs 12:15
“I have the right to do anything,” you say – but not
everything is beneficial. “I have the right to do anything”
– but not everything is constructive.

St. Paul, 1 Corinthians 10:23

We reiterate that the focus of this thesis lies on the incorporation of prior or external
knowledge in a reinforcement learning process, aiming to increase the sample efficiency
of this process. Or, in basic terms: how can we make an agent learn faster using some
information that is available? This raises a number of questions:

1. Where does the information come from?

2. What type of information is considered?

3. How do we encode this information?

4. Given the encoding, how do we inject it into the RL process?

31

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGE

We will address these four questions in three separate sections in this chapter. In the
first section we discuss the types of knowledge that we and others have considered to aid
a learning agent and where they may come from. In the second section, we look at two
general ways of encoding such knowledge in a way that is usable by an RL agent. And
finally we identify different approaches that can be used to inject such encoded knowledge
into the RL process.

3.1 Type of Knowledge
The source of knowledge (in the sense of who/what provides the knowledge to the learning
agent) will always be an agent. Whether it be the same agent as is currently trying to
learn a task by using some previously learned information, a human providing some expert
knowledge he has distilled from a description of the task to be learned, or another AI agent
that demonstrates how he would solve the task – an agent it is.
A more important factor to consider is the type of information, i.e., what the information

describes. Below we will discuss various popular such types of information that have been
proposed as useful to increase an RL agent’s sample efficiency.

3.1.1 Transfer Learning
The type of knowledge considered in transfer learning is knowledge previously learned in
a different task, by the agent in question or a different agent [Taylor and Stone, 2009].
The idea is that knowledge learned about a previous task could provide a useful prior in
the current task, given some similarities between the tasks. Where tasks differ, inter-task
mappings may need to be defined for the transferred information to be useful [Taylor et al.,
2007], although these mappings may also be learnable [Bou Ammar et al., 2013]. Since
its introduction in RL, transfer learning has known great successes, and a wide range of
techniques now exists, the techniques differing in what exactly is transferred to the new
task. A few examples:

• low-level knowledge, such as the Q-function [Selfridge et al., 1985]
• a black-box policy, queryable by the agent [Fernández and Veloso, 2006]
• a model of the task [Atkeson and Santamaria, 1997]
• (s, a, r, s′) samples for batch RL [Lazaric, 2008]

In one sense, all the techniques that we describe in this chapter are transfer learning
techniques, because they are all about transferring knowledge between two agents. In this
thesis, we use the stricter definition that transfer learning is about transferring knowledge

32

3.1. TYPE OF KNOWLEDGE

specifically obtained in a previous, related task. Chapter 4 is specifically dedicated to the
investigation of the case where an agent’s policy is transferred as a black-box.

3.1.2 Demonstrations
Demonstrations are examples of behaviour generated by some other agent, usually in
the form of sequences of state-action pairs ((s1, a1), . . . , (sn, an)). Compared to transfer
learning, this is a more generally applicable type of knowledge exchange, as it relies less
on the internals of the source agent being available and compatible. For example, a
human can not copy the value function it has in its brain for flipping a pancake, if any,
to the housekeeping robot it wants to perform that task. Demonstrating samples of
the desired behaviour can then be a useful way to still get a significant portion of this
information across.
The demonstrated samples can be used for initial passive learning, making the learner

process these samples as if it were really generating these experiences itself [Schaal, 1997;
Smart and Kaelbling, 2002], or by processing them first using a Learning from Demonstra-
tion technique [Taylor et al., 2011b; Brys et al., 2015a] and subsequently ‘transferring’ the
obtained value function or policy. Another possible avenue is inferring a reward function
that explains the demonstrations, and using that to learn [Russell, 1998]. Such a learned
reward function can then even be combined with the environment’s reward signal [Suay
et al., 2016] to increase sample efficiency.
In Chapter 5, we perform an in-depth investigation of two techniques that integrate

demonstrations with an RL process.

3.1.3 Off-line Advice
Commonly, there exist some (human) expert agents with useful exact or heuristic know-
ledge pertaining to the task the learning agent attempts to solve. This information could
be given to the agent during learning, as we will see in the next section, but it can be
even more useful to hand the agent this knowledge before learning starts, i.e., off-line. The
agent can then use this information from the start. Many examples exist of rules-of-thumb,
general guidelines or advice for specific situations being useful biases for an RL process:

• encouraging player role diversification in RoboCup Soccer [Devlin et al., 2011]
• advising the use of human strategies in StarCraft [Efthymiadis and Kudenko, 2013]
• indicating the general direction to move in to super Mario [Brys et al., 2014a]

In Chapter 6 we investigate how several such heuristics can be combined to maximize
the increase in sample efficiency.

33

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGE

3.1.4 On-line Advice/Feedback
Knowledge from related tasks and demonstrations is usually obtained off-line, before
learning in the task under consideration is initiated. But, the agent can also be fed
useful information during learning, information that was not available beforehand, through
qualitative feedback on its behaviour, or actual advice from another agent. With the
TAMER+RL framework, Knox and Stone show that an RL agent can greatly benefit from
the positive and negative feedback of a human trainer given during learning, by learning a
model of the human’s hypothetical internal value function and learning from that or com-
bining it with the environment’s rewards [Knox and Stone, 2010]. Loftin et al. [2016] show
that taking into account the feedback strategy of the trainer can yield even better results.
A trainer agent can also more directly influence the learning agent by providing actual

action advice during learning. A ‘good’ trainer attempts to intelligently advise the agent
about good actions by concentrating advice on critical situations or situations where he
predicts the student will make mistakes [Taylor et al., 2014].

3.2 Encoding Knowledge
The agent providing the knowledge already has this knowledge encoded in some form of
representation. For successful knowledge transfer, this knowledge must be encoded in such
a form that the RL agent on the receiving end understands it and can use it. Here we list
some concepts an RL agent understands that can be used to transfer knowledge:

• state-action(-reward-state) samples
• a value function
• a policy
• a reward function
• a transition function

In this thesis, we are concerned with only two types of encoding: a value function and a
policy. We choose these because they allow for a straightforward encoding of full behaviour
that is immediately usable by a temporal-difference learning agent. The other concepts
mentioned above require processing or extra information before they could be used as such.
In Chapter 4, we consider policy transfer, in Chapter 5, we consider two Learning from
Demonstration techniques that respectively output a policy and a value function, and in the
final contribution chapter, we consider value functions defined by a human domain expert.
It is important to note that a policy can be derived from a state-action value function

(Q), and that a pseudo state-action value function can be constructed from a policy. For

34

3.3. INJECTING KNOWLEDGE

example, a greedy deterministic policy can be derived from a Q-function:

π(s) = arg max
a

Q(s, a)

In the reverse direction, a pseudo value function can be generated from a policy by
using the policy’s action selection probabilities to give an indication of the quality of
state-action pairs [Brys et al., 2015b]:

Q(s, a) = π(s, a)

Of course, this is not a true value function for the given MDP (hence the pseudo),
as it does not depend on the MDP’s reward and transition functions. Since these are
usually (partially) unknown at the time of encoding this knowledge, we simply can not
construct the true value function for the given policy a priori. Therefore, we consider this
straightforward encoding of a policy as a ‘value-function’ in the absence of known reward
and transition functions. In reward shaping literature, such a value function would be
called a potential function [Ng et al., 1999; Wiewiora et al., 2003].
Furthermore, note that in the case of function approximation, we consider the value

function defined over state-action features φ(s, a) and not over the raw (s, a). This is a
requirement to maintain convergence guarantees in reward shaping and initialization.1

3.3 Injecting Knowledge
Given information contained in a policy or value function, we must consider how to include
this in the learning process. We discuss four common ways that we find in the literature
and that we will use in this thesis:

• Q-value initialization
• Reward shaping
• Probabilistic Policy Reuse
• Extra action

We briefly review the relevant theory and discuss the benefits and drawbacks of each ap-
proach. Note that we do not provide an exhaustive list of all possible ways of incorporating
a value function or policy, we simply describe a diverse and representative subset.

1Personal communication with Anna Harutyunyan.

35

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGE

3.3.1 Q-function Initialization
Input: V or Q
With Q-function initialization, the RL agent’s estimate of the Q-function is seeded with

the given input values Qinput: Q̂ = Qinput. When no prior information is available, Qinput
is typically set to random values or uniformly to 0. It can also be optimistically set to the
highest possible reward in the environment to encourage uniform exploration of the state-
action space [Kaelbling et al., 1996]. On the other hand, when a prior quality-assessment
on state-action pairs is available, this can be used to provide the agent with a useful initial
value function. The principle is simple: attribute higher values to a state-action pair if
that action is deemed desirable in that state, and lower values if the reverse is true. If the
agent derives its behaviour policy from its estimated values, it will then start out following
a policy that largely follows the given advice.
Q-function initialization is straightforward in the basic case of a tabular representation,

as one can actually enumerate every (s, a)-pair in the Q̂-table and store the correspond-
ing Qinput(s, a)-value. In the case of function approximation, even for the simplest forms
such as linear tile coding, it is usually unclear how to directly initialize the weights θ.
This problem is avoided by using techniques such as Q-value reuse [Taylor et al., 2007]
or potential-based reward shaping, given the proven equivalence with Q-value initializa-
tion, see below.

3.3.2 Reward Shaping
Input: V or Q
The modern version of reward shaping, a technique with roots in behavioural psycho-

logy [Skinner, 1938], provides a learning agent with extra intermediate rewards, much like
a dog trainer would reward a dog for completing part of a task. This extra reward can
enrich a sparse base reward signal (for example a signal that only gives a non-zero feedback
when the agent reaches the goal), providing the agent with useful gradient information.
This shaping reward F is added to the environment’s reward R to create a new composite
reward signal that the agent uses for learning:

RF (s, a, s′) = R(s, a, s′) + F (s, a, s′)

Of course, since the reward function defines the task, modifying the reward function may
actually modify the task, changing the total order over policies, and making the agent
converge to suboptimal policies (with respect to the environment’s original reward).
If we define a potential function Φ : S → R over the state space, and take F as the

difference between the new and old states’ potential, Ng et al. [1999] proved that the total

36

3.3. INJECTING KNOWLEDGE

order over policies remains unchanged, and convergence guarantees are preserved:

F (s, a, s′) = γΦ(s′)− Φ(s) (3.1)

Prior knowledge can be incorporated by defining the potential function Φ accordingly.
The definition of F and Φ was extended by others ([Wiewiora et al., 2003; Devlin and

Kudenko, 2012; Harutyunyan et al., 2015b]) to include actions and timesteps, allowing for
the incorporation of behavioural knowledge that reflects the quality of actions as well as
states, and allowing the shaping to change over time:

F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′)− Φ(s, a, t)

This extension also preserves the total order over policies and therefore does not change
the task, given Ng’s original assumptions.
Harutyunyan et al. [2015b] use this result to show how any reward function R† can be

transformed into a potential-based shaping function, by learning a secondary Q-function
Φ† in parallel on the negation of R†, and using that to perform dynamic shaping on
the main reward R. The secondary value function Φ† must be learned on-policy, with a
technique such as SARSA [Rummery and Niranjan, 1994]:

Φ†(s, a)← Φ†(s, a) + βδΦ†

where
δΦ† = −R† + γΦ†(s′, a′)− Φ†(s, a)

When Φ† converges, F (s, a, s′, a′) = R†(s, a) in expectation. In other words, when the
secondary value function has converged, the main value function will be supplied with a
potential-based reward shaping that is equivalent to the reward function R†. Of course,
even before convergence, Φ† will reflect some useful information pertaining to R†, just
as the main Q-function will reflect useful information towards good policies before con-
vergence to the optimal policy.
Note that the non-dynamic variants of reward shaping Φ(s) and Φ(s, a) have been shown

to be equivalent to Q-function initialization [Wiewiora, 2003; Wiewiora et al., 2003], and
thus will not be treated as a separate case from Q-function initialization. The dynamic
version has been shown to overcome some problems with static Φ(s, a) shaping (and thus
problems with initialization as well) [Harutyunyan et al., 2015b]. We therefore consider
the dynamic variant, and specifically, as defined by Harutyunyan et al. [2015b], as learned
Q-values from a reward function R†(s, a). Since, in this thesis, we consider heuristic
information to be encoded in value functions (and policies), we will always set R†(s, a) =
Vinput(s) or R†(s, a) = Qinput(s, a), with Vinput(s) or Qinput(s, a) encoding the provided
information.

37

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGE

3.3.3 Probabilistic Policy Reuse
Input: π

Fernández and Veloso [2006] propose Probabilistic Policy Reuse (PPR) as a way to
transfer a policy learned in a previous task to speed up learning in a new task, by actually
reusing the policy in the new task. Whereas a typical reinforcement learning agent will
probabilistically choose to either exploit the knowledge it has learned, or explore a random
action (the exploration-exploitation trade-off), PPR adds a third option, which is the
exploitation of the input policy. With probability ψ, an action is selected according to
this reused policy; with probability 1− ψ, a standard action selection mechanism, such as
ε-greedy is used. ψ is decayed over time to allow the learner to emphasize new knowledge
more as it learns more in the new task.2 This adds a bias to the exploration of the agent,
intended to guide it towards good policies in the new task.
Although this technique was first introduced to transfer a policy learned in a previous task

to a new, similar task, the technique can also be used to transfer any policy, irrespective
of where it comes from. For example an existing human-defined policy for the current
task can be transferred to the learning agent using PPR, which can then start from a
state-of-the-art expert policy and refine it. Even human demonstrations can be taken as
an initial phase of PPR with ψ = 1.0, the RL agent passively learning, and then switching
to active learning, with ψ = 0.0 [Schaal, 1997; Smart and Kaelbling, 2002].

3.3.4 Extra Action
Input: π

The ‘extra action’ technique creates a bias by adding a new action to the reinforcement
learning agent’s action set A, that, when called, reuses the provided heuristic know-
ledge [Taylor and Stone, 2007]. In other words, at any time, the agent can decide to
either choose one of the regular actions itself, or to ‘call the help line,’ which then chooses
one of the regular actions for the agent to execute. More formally, denote the regular
action A, and the new action set A+, |A| + 1 = |A+|. When in state s, if the agent
chooses to use the extra action, i.e. the heuristic information, πinput : S → A is executed.
Assume for the sake of illustration that the input policy is an optimal policy in the current

task. Then, simply adding an extra action that will always make the agent execute the best
actual action increases this learner’s probability of selecting this best action (as there are

2In the original PPR algorithm, ψ is reset at the beginning of every episode and decays during the
episode, so that the agent relies more on the old policy in the beginning of an episode and less at the
end. This makes little sense in the domains considered here, as one would rather want ψ to decay over
episodes, so that the agent relies more on the old policy in early episodes and less in later episodes. PPR
was also interpreted this way in [Torrey and Taylor, 2012].

38

3.4. A SAMPLING FROM THE LITERATURE

now at least two options in its action set that achieve the optimal effect). Furthermore, if
the agent generalizes across the state space, as it learns in one state that the extra action
is ‘good,’ it will spread this information to nearby states, even though in those states, a
different actual action may be optimal.

3.3.5 Convergence and Optimality
From a theoretical perspective, all of these four techniques leave any convergence guar-
antees unaffected. That is, if used properly, the reinforcement learner that injects some
knowledge into its learning process using one of these techniques may learn faster or
slower, but it will still learn to solve the task, given guarantees provided by its learning
algorithm. Q-value initialization and reward shaping are guaranteed not to change the
task [Ng et al., 1999; Wiewiora, 2003]. If PPR’s ψ is properly decayed, it stops affecting
the learning process after a while. And the extra action method simply duplicates one of
the actions in each state, thus leaving the actual problem unchanged, as well as leaving
any convergence guarantees in place.

3.4 A Sampling from the Literature
To demonstrate that the categorisation we outlined above is relevant, we provide a brief
overview of how a representative selection of techniques from the literature falls into this
categorisation. We only consider papers that discuss injecting a TD-learner with prior
or external information and classify them regarding knowledge encoding and injection
technique, see Table 3.1.
For example in transfer learning, we see Selfridge et al. [1985] employing Q-function

initialization (injection) using Q-values (encoding) learned in a previous Cart Pole task
to learn in a differently parameterized Cart Pole task. Fernández and Veloso [2006] on
the other hand proposed probabilistic policy reuse (injection) to enable the transfer of a
previously learned policy (encoding).
In a demonstration setting, we see Taylor et al. [2011b] distilling the provided demon-

strations into a demonstrator policy (encoding) using a rule-based classifier, and using
this knowledge through Q-function initialization, probabilistic policy reuse and the extra
action method (injection). Schaal [1997] replays the human demonstrations in an ini-
tial passive learning phase for the agent, after which further active reinforcement learning
takes place. This can be seen as reusing the demonstrator’s policy (encoding) through
probabilistic policy reuse (injection) with a probability of 1.0 for policy reuse during the
initial passive learning phase.

39

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGE

Paper Encoding Injection
Transfer Learning
[Selfridge et al., 1985] Q Q
[Fernández and Veloso, 2006] π PPR
[Konidaris and Barto, 2006] V Q, Shaping
Demonstrations
[Schaal, 1997] π PPR
[Taylor et al., 2011b] π Q, PPR, EA
[Brys et al., 2015a] Q Q, Shaping
Off-line Advice
[Ng et al., 1999] V Shaping
[Smart and Kaelbling, 2000] π PPR
[Devlin et al., 2011] V,Q Shaping
On-line Advice
[Knox and Stone, 2010] Q Q, Shaping, PPR, EA
[Taylor et al., 2014] π PPR

Table 3.1: A non-exhaustive list of papers describing work where some heuristic
information is incorporated into a TD process using one or more of the ways we

enumerate in this chapter.

40

3.5. A BRIEF DETOUR: HOW TO MEASURE IMPROVEMENT

A lot of off-line advice work is found in shaping literature, with the knowledge encoded
as a value function called potential function (encoding), injected using Q-function ini-
tialization or reward shaping [Ng et al., 1999; Devlin et al., 2011]. Smart and Kaelbling
[2002] allow for an expert input policy (encoding) to be reused (injection) through passive
learning, as Schaal’s work referenced above.3
Finally, Knox and Stone use all four injection methods to provide a learning agent with

on-line advice provided in the form of a learned Q-function (encoding) [Knox and Stone,
2010]. And Taylor et al. [2014] their use of on-line teacher advice can be cast as reusing
the teacher’s policy (encoding) using probabilistic policy reuse (injection), where the reuse
probability is selected by the teacher who decides when to give advice.

3.5 A Brief Detour: How to Measure Improvement
As we investigate different techniques to improve an RL algorithm, the question arises of
how to measure this improvement. Is it reflected in the behaviour the agent ultimately
converges to? That is desirable if it is operating in conditions where convergence to the
optimal policy is not guaranteed. Is it reflected in the number of experience samples re-
quired to achieve this behaviour (or a given level of performance)? Preferably, since sample
efficiency is the major concern in reinforcement learning, much more than computational
complexity. Environment samples are usually assumed to be very costly to obtain (making
a robot flip a pancake 1000s of times is costly).
In principle, all the metrics outlined in the seminal RL transfer learning survey paper

by Taylor and Stone [2009] for measuring improvement when using transfer versus no
transfer are generally applicable to measure improvement of any RL algorithm over a
baseline. These metrics are:

• Jumpstart: the difference in initial performance
• Asymptotic performance: the final performance after training
• Total reward (or average reward): the (averaged) sum of performance over the whole
training time

• Reward ratio: the ratio between the total reward of the novel technique versus the
baseline

• Time to threshold: the amount of training (samples, episodes, ...) required to
achieve a given level of performance

A few of these are illustrated in Figure 3.1.
3Actually, both Schaal’s work and Smart and Kaelbling’s could be classified as learning from demon-

stration as well as off-line advice, as they allow for both expert demonstrations and predefined expert
policies as input.

41

CHAPTER 3. INCORPORATING PRIOR OR EXTERNAL KNOWLEDGETAYLOR AND STONE

Figure 3: Many different metrics for measuring TL are possible. This graph show benefits to the
jumpstart, asymptotic performance, time to threshold, and total reward (the area under
the learning curve).

The first proposed transfer measure considers the agent’s initial performance in a target task and
answers the question, “can transfer be used so that the initial performance is increased relative to
the performance of an initial (random) policy?” While such an initial jumpstart is appealing, such
a metric fails to capture the behavior of learning in the target task and instead only focuses on the
performance before learning occurs.

Asymptotic performance, the second proposed metric, compares the final performance of learn-
ers in the target task both with and without transfer. However, it may be difficult to tell when the
learner has indeed converged (particularly in tasks with infinite state spaces) or convergence may
take prohibitively long. In many settings the number of samples required to learn is most critical,
not the performance of a learner with an infinite number of samples. Further, it is possible for differ-
ent learning algorithms to converge to the same asymptotic performance but require very different
numbers of samples to reach the same performance.

A third possible measure is that of the total reward accumulated during training. Improving
initial performance and achieving a faster learning rate will help agents accumulate more on-line
reward. RL methods are often not guaranteed to converge with function approximation and even
when they do, learners may converge to different, sub-optimal performance levels. If enough sam-
ples are provided to agents (or, equivalently, learners are provided sufficient training time), a learn-
ing method which achieves a high performance relatively quickly will have less total reward than a
learning method which learns very slowly but eventually plateaus at a slightly higher performance
level. This metric is most appropriate for tasks that have a well-defined duration.

1638

Figure 3.1: An illustration of some of the possible metrics usable to compare the learning
curves of different RL learning techniques. Figure taken from [Taylor and Stone, 2009].

In this thesis we will mainly look at total/average reward as a summary statistic to
compare learning techniques, since it subsumes the other metrics (a higher jumpstart will
be reflected in a higher total reward, a lower asymptotic performance will be reflected in
a lower total reward, etc.).
In general, our experimental set-up is as such: We assume a given budget of episodes (6=

to experience samples), i.e. distinct attempts at the task. Then we measure the average
or total performance during these episodes of learning to compare the different techniques.

3.6 Summary
In this chapter, we gave an overview of the use of prior or external knowledge in temporal
difference learners in order to speed up their learning process. From existing literature,
we first characterized four important sources of such heuristic knowledge: previous tasks,
demonstrations, and off-line and on-line advice. We briefly discussed various ways of
encoding such knowledge and narrowed down this range to two options we will explore in
this thesis (policies and value functions) and showed how these can be interchangeable.
Then we went on to describe four distinct approaches to injecting this knowledge into
a TD-learner: Q-function initialization, reward shaping, probabilistic policy reuse and the
extra action method. We then briefly showed how a selection of representative papers from

42

3.6. SUMMARY

the literature fall into these distinct categories, and finally we described our methodology
for comparing the performance of different reinforcement learning techniques and variants.
Now it is time to experimentally investigate the knowledge injection techniques discussed

in this chapter. We do this in the context of policy transfer.

43

4 | Policy Transfer

What you have [previously] learned ... practice these
things.

St. Paul, Philippians 4:9

Transfer learning in general formulates the question of how to reuse knowledge learned
in a previous task in order to learn faster or better in the current task. Many transfer
learning techniques transfer low-level information to achieve successful transfer. A more
general transfer approach on the other hand would only assume access to the output of the
learning algorithm in the previous task, i.e. the learned policy. Such an approach enables
transfer irrespective of the internal workings of the learning algorithm used in the source
task – policy gradient, dynamic programming, Q-learning, etc. This setting is called policy
transfer. In this chapter, we evaluate Q-function initialization, dynamic reward shaping,
probabilistic policy reuse and the extra action method, the knowledge injection techniques
we identified in the previous chapter, in the case of policy transfer.
But before we do that, we give a slightly broader description of the field of transfer

learning in reinforcement learning than we did above.

4.1 Transfer Learning
The field of transfer learning is much larger than just the reinforcement learning techniques
we will concern ourselves with. It is not hard to see that learning agents, including humans,

45

CHAPTER 4. POLICY TRANSFER

typically face sequences of tasks to solve, and that solving each task in isolation, as if it
has nothing to do with anything ever seen before, is quite limiting and generates much
overhead in the agent [Thrun and Pratt, 2012]. Humans have long been recognized as em-
ploying transfer learning [Thorndike and Woodworth, 1901; Skinner, 1951] and it has been
successfully applied in machine learning, well before it became popular in reinforcement
learning [Caruana, 1995; Thrun, 1996]. Transfer learning in reinforcement learning was
popularized by the successful and comprehensive work of Taylor and Stone [Taylor et al.,
2007; Taylor and Stone, 2009] and has seen a great growth in techniques and applications
since. We reiterate that the core of transfer learning is to re-use knowledge obtained in (a)
previous task(s), in order to better learn, or learn faster in the current task. Some similar-
ities between the tasks must be assumed for transfer to be beneficial. Such similarities are
usually to be found in the systems’ dynamics, reflected in their state transition functions,
coupled with their reward functions. An example is the ‘swinging’-dynamics present in
the Inverted Pendulum, Cart Pole and Mountain Car tasks, which can be leveraged to
successfully transfer between them [Bou Ammar et al., 2013].
Typically, in order to leverage these similarities in dynamics, transfer algorithms have to

be provided an inter-task mapping that defines a translation between the state and action
spaces of the source and target task. Such mappings can be seen as transforming one
task into another, and if this transformation is defined well, the tasks’ dynamics will be
‘correctly’ mapped onto each other and the knowledge transfer will prove to be useful.
Mappings χS and χA, for state and action spaces respectively, take a state or action from
the target task and map it onto a state or action in the source task:

χS : Starget → Ssource

and
χA : Atarget → Asource

A simple approach to transfer called Q-value reuse [Taylor et al., 2007] uses these mappings
and learned Q-values from the source task to initialize the Q estimates in the target task:
Q̂target(s, a) = Q̂source(χS(starget), χA(starget)). Of course, this approach presupposes the
availability of such Q-values learned in the source task.
In the same way that χ is defined to be a mapping from target to source task, ρ defines

a mapping from source to target task:

ρS : Ssource → Starget

and
ρA : Asource → Atarget

Note that χS(ρS(ssource)) = ssource need not always be true (and analogously for χA and
ρA), as both χ and ρ may be stochastic and non-injective, or even inconsistently defined.

46

4.2. POLICY TRANSFER

That is, a state or action from the source (or target) task may map to several states and
actions in the target (or source) task, and several states and actions from the source (or
target) task may map to a single state or action in the target (or source) task.
Defining these mappings requires domain expertise and insights into what may be the

similarities and differences between the dynamics of the source and target tasks under
consideration. Attempts have been made to overcome this requirement of expertise by
automating the design of these mappings using regression techniques [Bou Ammar et al.,
2012, 2013], or by learning on-line which are the best ones from a huge set of possible
mappings [Fachantidis et al., 2015]. These techniques were developed for other settings
than the temporal difference learning one considered in this thesis.

4.2 Policy Transfer
In this chapter, we focus on policy transfer [Fernández and Veloso, 2006], a more general
case with respect to the knowledge transferred compared to the more common value
transfer for example [Taylor et al., 2007]. It assumes the only available knowledge from
the source task is the output of the learning algorithm, i.e. the policy. Compare this with
the lower-level Q-value reuse approach referred to above. That approach assumes that
the learner in the source task has learned a Q-function, thereby excluding all direct policy
search algorithms (including the successful policy-gradient methods). Policy transfer on
the other hand can safely assume that a learned policy (if anything) will be available from
the source task, since it is every RL agent’s goal to learn a policy.1
Probabilistic policy reuse is, to the best of our knowledge, the only existing technique

that transfers a full policy to a TD-learner. Other techniques transfer options , which are
partial policies [Ravindran and Barto, 2003; Konidaris and Barto, 2007].

1Another difference between policy transfer and value transfer is that with value transfer, the reward
function in the target task may not differ too much from the one in the source task. Say that a learning
agent has learned to navigate a maze to the goal location (step-reward 0, goal-reward 100). Assume
furthermore that we then transfer this agent’s Q-values to a maze task with exactly the same layout, start
and goal locations, except that now the agent gets a step-reward of −1 and a goal-reward of 0. The
optimal policy in this new task is exactly the same as the policy in the first task (if 0 < γ < 1). Yet,
initializing the Q-function with the values learned in the first task will lead to a lot of random exploration,
since these Q-values will be initialized very optimistically due to the large difference in reward magnitude.
Policy transfer on the other hand is invariant to such syntactic changes without practical difference in a
reward function.

47

CHAPTER 4. POLICY TRANSFER

4.2.1 Reusing a Policy using Mappings
In the previous chapter, we identified two techniques that allow one to directly reuse a
given policy in a new task, and two techniques that require the construction of a pseudo-
value function based on the given policy to be able to reuse it. We will first deal with the
how-to’s for policy transfer of the former two, which are probabilistic policy reuse (PPR)
and extra action. Specifically, when the agent decides to reuse a previously learned policy
in a new task using PPR or the extra action method, it needs to

• map the new task’s state to the state space of the previous task,
• select an action according to the old policy given that state, and
• map that chosen action to the new task’s action space.

This is summarized in the following formula:

πreuse(starget) = ρA(πsource(χS(starget))

Even though both the χ and ρ mappings may stochastically map to several states and
actions, in the end only a single action can be executed.
In the case of reusing the policy through a value function (necessary for Q-function

initialization and reward shaping), the stochasticity of the mappings can be leveraged
more. But first let us look at the simplest case, where we assume that χS and χA are
injective functions, mapping every state or action from the target task to a single unique
state or action in the source task. In that case, a pseudo Q-function can be constructed
as discussed in the previous chapter, including the mappings in a straightforward way:

Qreuse(s, a) = πsource(χS(s), χA(a))

Now if χS and χA map to respectively n and m different states and actions in the source
task, we can incorporate these different mappings as follows:

Qreuse(s, a) =
∑n
i

∑m
j πsource(χS,i(s), χA,j(a))

nm

χS,i(s) indicates the ith distinct state in the source task χS maps target task state s to.
χA,j(a)’s notation carries the same semantics.

4.3 Experiments
We will now describe a set of experiments designed to test the efficacy of Q-function ini-
tialization, dynamic reward shaping, probabilistic policy reuse and the extra action method
in transferring a policy learned in a previous task related to the current one.
Our first experiments are conducted in the Cart Pole task.

48

4.3. EXPERIMENTS

4.3.1 Early and Late Policy Transfer in Cart Pole
Recall that the Cart Pole task involves the agent controlling a little cart, moving in a single
dimension, and requires the agent to balance a pole that is standing on top of the cart.
The transfer set-up is as follows: the agent first learns in a Cart Pole task with a pole of
weight 0.1, and is then allowed to transfer its learned policy to learn to balance a pole of
weight 1.0. The differences between the two tasks lie solely in the tasks’ dynamics. State
transitions will be different due to the differences in weight of the pole. No state or action
space mappings are required to translate between the tasks, as these are identical.
Performance of our standard Q(λ)-learning agent in the light Cart Pole task is shown in

Figure 4.1 (a). We will perform two sets of transfer experiments:

• one set where we transfer after learning for only 250 episodes in the light Cart Pole
task, transferring a very suboptimal policy,

• one set where we transfer after learning for 1000 episodes, transferring a much
improved policy.

The policy we transfer is deterministically greedy with respect to the Q-values learned
in the source task. All experiments in this thesis consist of 100 different trials to test
statistical significance. Statistical significance is tested using the Student’s t-test with
p = 0.05. PPR is parameterized with ψ = 0.99episode and dynamic shaping with β = 2α,
both decided based on a few preliminary experiments with different values.

Early Transfer

The performance of our baseline learning agent, learning without transfer, as well as that
of using one of the four injection techniques with our baseline learning agent is plotted
in Figure 4.1 (b). We furthermore plot the performance of Q-value reuse, the technique
that ‘cheats’ (at least in our policy transfer setting) and reuses the Q-values learned in the
source task, instead of the policy. This will give an indication of how close in performance
the more general policy transfer techniques get to a potentially more powerful technique
whose application is more constrained as it requires low-level information that may not
always be available.
The simple observation we draw from this experiment is that, indeed, all four knowledge

injection techniques we investigate can be used for successful policy transfer. Each of
the techniques leverages the quite suboptimal information provided and helps the learning
agent to learn balancing the heavy pole using fewer experiences. Probabilistic policy reuse
comes closest to matching the performance of Q-value reuse, which is quite likely an upper
bound on what is possible given the provided information.

49

CHAPTER 4. POLICY TRANSFER

0 200 400 600 800 1000

Episode

100

200

300

400

500

600

700

800

900

S
te

p
s

p
o
le

 u
p

Early transfer

Late transfer

Light Cart Pole task

Q-Learning

(a) Q(λ)-learning performance in the light Cart Pole task.

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Policy Transfer in Cart Pole

Q-Learning

Initialization

Dynamic shaping

PPR

Extra action

Q-value reuse

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Policy Transfer in Cart Pole

Q-Learning

Initialization

Dynamic shaping

PPR

Extra action

Q-value reuse

(b) Learning performance in the heavy Cart
Pole task after first learning for 250 episodes

in the light Cart Pole task.

(c) The same as (b), only after 1000
learning episodes in the light Cart Pole task.

Figure 4.1: Evaluating policy transfer from a Cart Pole task with a light pole to one with
a heavy pole.

50

4.3. EXPERIMENTS

Algorithm Cumulative (early) Cumulative (late)
Q-Learning 4.7 · 105 ± 3 · 104

Initialization 6.0 · 105 ± 3 · 104 8.4 · 105 ± 2 · 104

Dynamic shaping 6.4 · 105 ± 3 · 104 7.4 · 105 ± 1 · 104

PPR 6.6 · 105 ± 4 · 104 9.1 · 105 ± 2 · 104

Extra action 5.4 · 105 ± 4 · 104 8.0 · 105 ± 3 · 104

Q-value reuse 6.9 · 105 ± 3 · 104 9.5 · 105 ± 4 · 103

Table 4.1: Performance on the heavy Cart Pole task in the early and late transfer
settings. The learning agent’s performance improves with the quality of the transferred

policy. Every technique significantly outperforms the Q(λ)-learning baseline

Late Transfer

In the ‘late’ setting, the agent transfers a policy to the heavy Cart Pole task after learning
four times longer in the light version of the task. The quality of the transferred policy is
coincidentally also four times higher. Comparing the early and late experiments’ results
in Figures 4.1 (b) and (c), and Table 4.1, we observe the expected correlation between
the quality of transferred policies and the ‘speed’ of learning in the target task, reflected
in higher cumulative performance. Each of the transfer techniques benefits from this
effect, and especially probabilistic policy reuse and Q-value reuse manage to leverage the
transferred information really well. In the ‘late’ setting, these two techniques start out
performing already close to optimally.

Combining Techniques

Since the different injection techniques we investigate operate on different components
of the agent (Q-function initialization on the agent’s estimates, dynamic reward shap-
ing on the reward signal, PPR on the action selection mechanism and extra action on
the action set) these techniques can be used in conjunction. We test two combinations.
Figure 4.2 (a) demonstrates how Q-function initialization and dynamic shaping are com-
plementary in this setting, as together they yield a significant improvement in performance
over these techniques when used alone, despite the fact that they inject the same in-
formation. Figure 4.2 (b) shows how combining dynamic shaping and PPR results in
performance statistically indistinguishable from PPR alone.

51

CHAPTER 4. POLICY TRANSFER

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Policy Transfer in Cart Pole

Q-Learning

Initialization

Dynamic shaping

Init+DS

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Policy Transfer in Cart Pole

Q-Learning

Dynamic shaping

PPR

DS+PPR

(a) Q-function initialization + dynamic
shaping

(b) Dynamic shaping + PPR

Figure 4.2: Combining compatible techniques in the ‘early’ transfer setting.

4.3.2 Multi-Agent Policy Transfer in the Pursuit Domain
In the Cart Pole problem, we already found that the four injection techniques we are
considering are all potentially useful in the case of policy transfer. In this section we
continue our investigation by looking at the Pursuit domain, a multi-agent problem. Recall
that it involves two learning agents navigating a grid world, cooperating to catch a prey.
To obtain a source task to transfer from, we simplify the Pursuit problem by making

it a single-agent task in which the predator must learn to catch an immobile prey. This
task should allow the learning agent to learn the simple concept of moving towards a prey,
a behaviour that will then probably need to be refined in the multi-agent task with a
moving prey, where encircling and other cooperative strategies may be required to actually
efficiently capture the prey together with the other predator. Learning performance in the
simplified task and the point of transfer are shown in Figure 4.3 (a).
The state space in the simplified task consists of only two variables (relative x and y

distance to the prey), as opposed to four in the full task (relative x and y distances to the
prey and the other predator). Therefore, we need to define a mapping from the target to
the source task’s state space to leverage the learned information in the source task:

χS([xpred, ypred, xprey, yprey]) = [xprey, yprey]

The reverse mapping need not be defined since ρS is not used in the techniques we consider.
Furthermore, the action spaces in both tasks are the same (the cardinal directions to move
in plus an action for remaining in place) and thus χA and ρA are simply set to be the identity
function. PPR is parameterized with ψ = 0.99episode and dynamic shaping with β = α.

52

4.3. EXPERIMENTS

Algorithm Cumulative (single) Cumulative (multi)
Q-Learning 4.5 · 104 ± 3 · 103

Initialization 2.8 · 104 ± 2 · 103 2.2 · 104 ± 1 · 103

Dynamic shaping 1.1 · 105 ± 1 · 104 8.8 · 105 ± 7 · 104

PPR 4.4 · 104 ± 5 · 103 2.8 · 104 ± 4 · 103

Extra action 2.5 · 104 ± 2 · 103 2.0 · 104 ± 2 · 103

Q-value reuse 1.6 · 104 ± 1 · 103 1.1 · 104 ± 8 · 102

Table 4.2: Performance on the pursuit domain (measured in number of steps to catch
the prey) in the single-agent transfer and multi-agent transfer settings. Dynamic shaping
is significantly worse than the baseline in both settings, while PPR is indistinguishable

from the baseline in the former and better in the latter. The other techniques are in both
cases significantly better.

In this domain, we will not investigate the effect of source task policy quality on transfer.
Rather, besides simply looking at whether or not the four injection techniques are useful
in this domain, we will look at the effect of transferring a policy to only a single one of
the predators (letting the other learn from scratch) or to both.

Single-agent Transfer

Figure 4.3 (b) compares the performance of our baseline agent with transferring a high
quality policy from the simplified task to only one of the two predators using the trans-
fer techniques we consider. Notably, using dynamic shaping or PPR in this case yields
worse performance than the baseline agent, except at the initial phases of learning. Q-
function initialization and the extra action method on the other hand yield improvements,
approaching the level of Q-value reuse.

Multi-agent Transfer

Transferring the learned policy to both agents instead of only one improves performance
for all techniques except for dynamic reward shaping, which performs extremely bad, see
Figure 4.3 (c) and Table 4.3. Not considering dynamic reward shaping,2 this is expected
behaviour. Priming both learning agents with useful information results in faster learning
of good cooperative behaviour.

2Dynamic shaping can be unstable because two sets of Q-values which influence each other are learned
in parallel on different time scales. This could be resolved by tuning the two learning rates’ schedules.
Private communication with Anna Harutyunyan.

53

CHAPTER 4. POLICY TRANSFER

0 20 40 60 80 100

Episode

0

100

200

300

400

500

600

700

800

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Transfer

Simplified single-agent pursuit domain

Q-Learning

(a) Q(λ)-learning performance in the simplified single-agent pursuit domain.

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Initialization

Dynamic shaping

PPR

Extra action

Q-value reuse

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Initialization

Dynamic shaping

PPR

Extra action

Q-value reuse

(b) Learning performance in the pursuit
domain, with policy transfer to one of the

two predators.

(c) Policy transfer to both predators (the
same policy).

Figure 4.3: Evaluating policy transfer in the pursuit domain, transferring to either a
single or to both predators. In the latter case, dynamic shaping is not featured on the

figure, because it performs an order of magnitude worse.

54

4.3. EXPERIMENTS

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Initialization

Initialization (stochastic)

Q-value reuse

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Dynamic shaping

Dynamic shaping (stochastic)

Q-value reuse

(a) Q-function initialization (b) Dynamic reward shaping

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

PPR

PPR (stochastic)

Q-value reuse

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Extra action

Extra action (stochastic)

Q-value reuse

(c) PPR (d) Extra action

Figure 4.4: Transferring a deterministic vs a stochastic policy to a single of the predators.

Transferring a Stochastic Policy

Both in the Cart Pole task and in the Pursuit domain, we have been transferring determin-
istic policies. Such deterministic policies carry only information on which action in a given
state is deemed the best, and are indiscriminate about the other actions, even though some
of these actions may lead to returns almost as high as the best action (or even higher in
the case of suboptimal policies). When transferring such a policy, and the ‘best’ action in
a state (according to the reused policy) turns out not to be the best action, we are left
with a strong bias towards that action, and have no information on the other actions.
Stochastic policies may resolve this problem. Policies that generate action-selection

probabilities based on the relative expected returns of actions, such as soft-max action
selection, do carry such information. Like deterministic policies, they attribute the highest

55

CHAPTER 4. POLICY TRANSFER

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Initialization

Initialization (stochastic)

Q-value reuse

0 50 100 150 200 250

Episode

0

1000

2000

3000

4000

5000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Dynamic shaping

Dynamic shaping (stochastic)

Q-value reuse

(a) Q-function initialization (b) Dynamic reward shaping

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

PPR

PPR (stochastic)

Q-value reuse

0 50 100 150 200 250

Episode

0

200

400

600

800

1000

S
te

p
s

to
 c

a
tc

h
 t

h
e
 p

re
y

Policy Transfer in the Pursuit Domain

Q-Learning

Extra action

Extra action (stochastic)

Q-value reuse

(c) PPR (d) Extra action

Figure 4.5: Transferring a deterministic vs a stochastic policy to both predators. Notice
the larger y-scale on the dynamic reward shaping sub-figure.

56

4.3. EXPERIMENTS

Algorithm Deterministic Stochastic
Q-Learning 4.5 · 104 ± 3 · 103

Initialization 2.2 · 104 ± 1 · 103 1.4 · 104 ± 7 · 102

Dynamic shaping 8.8 · 105 ± 7 · 104 8.3 · 105 ± 5 · 104

PPR 2.8 · 104 ± 4 · 103 1.8 · 104 ± 2 · 103

Extra action 2.0 · 104 ± 2 · 103 2.5 · 104 ± 2 · 103

Q-value reuse 1.1 · 104 ± 8 · 102

Table 4.3: Performance on the pursuit domain in the two-agent-transfer setting,
transferring either deterministic or stochastic policies. Initialization and PPR perform
significantly better with stochastic transferred policies, extra action significantly worse

and dynamic shaping better, but not significantly.

action selection probability to the action deemed best, but the other actions are also
attributed non-zero probabilities relative to their expected quality. We hypothesize that
deterministic policies define a narrow bias, that, if wrong, can be harmful to the learning
process. Stochastic policies on the other hand have the potential to define a broader,
more nuanced bias, possibly ensuring better transfer.
In Figures 4.4 and 4.5, we demonstrate for the two transfer scenarios respectively that

transferring a stochastic policy3 instead of a deterministic one results in improved per-
formance for Q-function initialization, dynamic reward shaping and PPR.4 The agent
incorporating such a stochastic policy benefits from the broader bias provided.
Figure 4.6 shows the result of an experiment investigating the effect of the greediness

versus the randomness of transferred policies in the first pursuit transfer scenario, by
varying the τ parameter in the transferred soft-max policy. A good exploration-exploitation
trade-off (balancing between fully greedy and fully random) provides the best results in
transfer, as this yields a good balance between the too-broad uniform exploration and the
too-narrow deterministic policy transfer.

3A soft-max policy with temperature parameter τ = 0.1, selected from a brief parameter search.
4It results in slightly worse performance for the extra action method. The peculiarity of that method is

that it does not affect exploration heavily. Rather, it adds an extra action that executes what is believed
to be a good action. Besides that, the agent starts out with equal estimates for all actions, has no bias
in its reward signal towards some actions, and its action selection is not overruled by the transferred
policy. Thus, it appears that, at least in this setting, this already small bias should not be diluted using a
stochastic policy, favouring a deterministic policy as input. We elaborate on this in the next section.

57

CHAPTER 4. POLICY TRANSFER

10-5 10-4 10-3 10-2 10-1 100 101 102 103

Tau

20000

25000

30000

35000

40000

45000

50000

55000

60000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Greedy Uniform Random

The exploration-exploitation trade-off in policy transfer

Q-Learning

PPR

Figure 4.6: The effectiveness of policy transfer using PPR for various
exploration-exploitation trade-offs in the transferred stochastic policy. Lower values are

better.

4.3.3 Small and Large Bias in Mario
Our last experiments are executed in the super Mario environment, a more complex problem
than the Cart Pole task and the pursuit domain. Recall that it involves a state space of
27 different variables. Assuming that the presence of enemies makes completing a level
harder, we set-up a super Mario source task without enemies. Due to the absence of
enemies, the source task agent only considers 9 state variables, disregarding all those
pertaining to enemies, which leads to a vastly reduced state-space. In this source task,
the agent can learn to navigate super Mario levels efficiently, without the complications
that the presence of enemies introduce. Figure 4.7 (a) shows learning in the source task
and the transfer point.
The mapping from the target task’s state space to the source task’s state space is

straightforward, selecting all the variables that do not pertain to enemies (the first 9 out
of the 27):

χS(s1..27) = s1..9

Since also in this setting the action spaces in the source and target tasks are the same,
we do not need to define χA nor ρA. We transfer stochastic policies, generated using
τ = 5, selected from a brief parameter search. PPR is parameterized with ψ = 0.99episode
and dynamic shaping with β = α.
Figure 4.7 (b) and Table 4.4 show a comparison between the baseline Q-learning, the

four policy transfer injection techniques and Q-value reuse. Once more we see a different

58

4.3. EXPERIMENTS

0 200 400 600 800 1000

Episode

800

1000

1200

1400

1600

P
o
in

ts

Transfer

Mario without enemies

Q-Learning

(a) Q(λ)-learning performance in enemy-free super Mario.

0 10000 20000 30000 40000 50000

Episode

0

200

400

600

800

1000

1200

1400

1600

P
o
in

ts

Policy Transfer in Mario

Q-Learning

Initialization (stochastic)

Dynamic shaping (stochastic)

PPR (stochastic)

Extra action (stochastic)

Q-value reuse

0 1000 2000 3000 4000 5000

Episode

0

200

400

600

800

1000

1200

P
o
in

ts

Policy Transfer in Mario

Q-Learning

Initialization (stochastic)

Dynamic shaping (stochastic)

PPR (stochastic)

Extra action (stochastic)

Q-value reuse

(b) Learning performance in the hostile
super Mario environment, after transfer

from the enemy-free environment.

(c) Detail of the first 5000 episodes shown
in (b).

Figure 4.7: Evaluating policy transfer in super Mario.

59

CHAPTER 4. POLICY TRANSFER

Algorithm Cumulative
Q-Learning 6.5 · 107 ± 7 · 105

Initialization 5.5 · 107 ± 3 · 106

Dynamic shaping 7.0 · 107 ± 1 · 106

PPR 6.9 · 107 ± 1 · 106

Extra action 6.7 · 107 ± 1 · 106

Q-value reuse 4.5 · 107 ± 2 · 106

Table 4.4: Performance in super Mario. Initialization and Q-value reuse are significantly
worse than Q-learning, the other techniques are significantly better than Q-learning.

picture emerge. Dynamic shaping and PPR perform best (they are statistically indistin-
guishable), and the extra action method also manages to outperform the baseline. Q-value
initialization and Q-value reuse on the other hand perform much worse than the baseline,
except initially (the former until episode 5000, the latter until episode 2000).
The explanation for these results is to be found in a combination of the peculiar state

visitation distribution in Mario, the fact that the transferred information is quite likely not
that good in many states, and the ‘size’ of the bias each injection technique causes the
agent to have in unseen states.
First, recall that the state visitation pattern in super Mario is an exponential distribution

(Section 2.4.3). Many states are only visited once (approximately 30% of the state visits
in a 5000 episode run of baseline Q-learning are unique), and few are visited many times.
This means that the learning agent is constantly visiting states it has never seen before,
and thus has no internal information on the quality of actions in those states. Of course,
in our setting, the agent receives an external bias, provided by the transferred information.
Second, we believe that the transferred information in this case is useful only in the small

minority of states that is visited exponentially many times, and not so useful in many of
the states that are visited only very sparsely. That is because the transferred information
completely ignores enemies, because the source task does not contain enemies. This is
perfectly fine in the states where there are no enemies (exactly those states which are
visited mostly – only 72 states), but this can be problematic in states where there are
enemies (the states that are visited sparsely – 36, 540, 776, 376 states), making the agent
commit suicide by running into enemies. Now if the provided bias is too strong in those
risky, sparsely visited states, the agent will not have time to overcome this bias.
This leads us to the third and final point. Let us consider the biases provided by each

of the knowledge injection techniques in a previously unseen state, by looking at the
action selection probability they assign to the greedy action according to the transferred
information. These probabilities are shown in Figure 4.8 on a log-scale. With Q-value

60

4.4. ON BIAS

initialization, the greedy action according to the transferred information is taken with
probability 1−ε, simply because the agent’s policy is ε-greedy with respect to the Q-values.
In our setting, the probability is 0.95, because ε = 0.05. With PPR, there is a probability
ψ of taking this greedy action, which within 1000 episodes decays to uniformly random:
1
12 ≈ 0.083 for 12 actions in Mario. With the extra action method, we have probability
2
13 ≈ 0.154 that this action is taken (12 actions in Mario plus the extra action), slightly
higher than purely random action selection. With dynamic shaping, we have the uniformly
random probability 1

12 ≈ 0.083 that this action is taken, because in unseen states, the
potential function is still initialized to 0.
It is clear that initializing the Q-values always provides a very large bias towards the

heuristic information, while the others are near-random (after a while) for unseen states.
That is why the agent initially benefits a lot using initialization, because it provides a
strong bias in unseen states, and since a large number of visits is to states where this
information is useful, the agent performs well really quickly. But, because the information
is not useful in those states that are visited only sparsely, and many of such states are
visited, the agent has a bias that is too strong there, and therefore learning slows down.
Since the other techniques provide a smaller bias, the initial improvement compared to
the baseline is not as pronounced as for initialization, but their bias is small enough not
to cause problems in the large number of sparsely visited states where the information
is incorrect. PPR and dynamic shaping’s effect is largest on states that are visited more
regularly, while extra action’s effect is equal over all states, but small. Initialization’s effect
is also equal over all states, but also very large. That is why these three former techniques
work well, while initialization performs well initially, but slows down learning later on. This
is true for both policy transfer through Q-value initialization and for Q-value reuse.

4.4 On Bias
From the last section, we can find some simple intuitions on how each of the techniques
provides a bias for the learning process. We distinguish between a bias at the first state
visit, and after a number of visits.
Q-value initialization provides a strong bias at the first state visit (actually even at the first

state-action visit), but this bias gets increasingly replaced by the actual returns sampled,
until it eventually completely disappears in the limit.
Dynamic shaping provides no bias over uniform random at the first visit of a state. Its bias

on the other hand increases with each visit, as after each update, the dynamic potential
function gets updated, and the shaping bias gets applied to the learner’s Q-values. In the
limit, this bias again disappears, given the theoretical guarantees of reward shaping.

61

CHAPTER 4. POLICY TRANSFER

100 101 102 103 104

Episode

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
se

le
ct

in
g
 g

re
e
d
y
 b

ia
s

a
ct

io
n

Probabilistic bias in unseen states

Initialization

Dynamic Shaping

PPR

Extra Action

Figure 4.8: Assume an unseen state. This figure plots the probability that the learning
agent selects the greedy action according to the heuristic information in that state.
Plotted for each of the injection techniques. Initialization provides a very large and

lasting bias. When the bias is incorrect, this is very harmful when many state visits are
(near-) unique.

PPR is parametrizable to provide any possible bias at any given timestep. But, typically,
the initial bias is highest (in our case 1.0), and is set to decrease over time.
Extra action provides initially a bias slightly higher than uniformly random, since its

‘extra action’ is the shadow copy of one of the other actions. This bias also decreases
progressively as the agent updates the Q-values in a state.

4.5 Summary
We evaluated the usefulness of the four knowledge injection techniques we identified in
the previous chapter and in general found that indeed each of the techniques is plausible
and works, but that none of them performs consistently well across benchmarks. Different
interesting effects were observed by looking at the correlation between transferred policy
quality and performance in the target task, between single and multi-agent transfer and
performance, and the effect of a narrow or broad bias provided by respectively determ-
inistic and stochastic transferred policies. We also note the fact that policy transfer can
even unexpectedly outperform a more low-level technique in certain cases, which can be
explained by some simple intuitions on how each of the techniques provides their bias, how
strong this bias is, and how it evolves over time.

62

4.5. SUMMARY

In this chapter we have taken a first step towards making the case that the four knowledge
injection techniques we identified in the previous chapter are all valid options in general for
injecting a policy or value function into a TD process. Even though up to this point, we
have only demonstrated this in the case of policy transfer, we have provided evidence on
three different benchmark problems and in a number of different scenarios. Furthermore,
we provided evidence from the literature in Section 3.4, and further evidence will be
provided in the next chapter in the case of demonstrations. We notice that authors often
make a mistake in publishing work proposing a ‘new’ technique, which is largely the same
as other work, only replacing the knowledge injection technique used in that other work
with a different one. We are for example guilty of this in our policy transfer paper [Brys
et al., 2015b], where we propose a ‘novel’ policy transfer technique using shaping, as
opposed to PPR in older work. We suggest that the injection techniques considered here
are established to be interchangeable, although with different effects on performance (there
is no such a thing as a free lunch) and using a different one compared to other work does
not in itself constitute a contribution.
As stated before, we continue our investigation of the four knowledge injection techniques

in the next chapter, in the context of learning from demonstration.

63

5 | Reinforcement Learning
from Demonstration

Very truly I tell you, the Son can do nothing by himself; he
can do only what he sees his Father doing, because
whatever the Father does the Son also does.

Jesus Christ, John 5:19

Reinforcement learning and learning from demonstration are two common approaches ap-
plied to learning in control systems. As we have already seen, the former is typified by a
reward signal, which provides a (usually) objective evaluation of the exhibited behaviour.
The latter on the other hand relies on demonstrations provided by a different controller (ex-
pert or otherwise) to learn good behaviour. Of course, in absence of an objective evaluation
of the behaviour, such as a reward signal, ‘good’ is hard to define, especially considering
that potential demonstrators are often not that ‘good.’ Yet, learning from demonstration
techniques are typically much more successful at learning behaviour in complex systems
than reinforcement learning, simply because they are much more sample efficient. Rein-
forcement learning techniques typically require a prohibitively large number of behaviour
experiences to learn objectively good behaviour as task complexity increases.
In this chapter we investigate what Schaal [1997] called Reinforcement Learning from

Demonstration (RLfD), the natural intersection between these two fields. At this inter-
section, both a reward signal and demonstrations are assumed to be available for learning.
The former is used as an objective evaluation of behaviour, while the latter are used as

65

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

important heuristic knowledge. When combined, the downsides of each individual ap-
proach can be mitigated, while their strengths result in more powerful techniques. Recall
for example that AlphaGo, the reinforcement learning system that for the first time ever
beat a human professional player, supposedly one of the strongest players in the history
of Go, used both a reward signal and demonstrations to succeed.
As in the previous section, we investigate the four knowledge injection techniques. In

this case the heuristic knowledge comes in the form of demonstrations. Furthermore, we
develop a novel learning from demonstration technique based on Gaussian distributions that
encode the demonstrations as a value function to inject into reinforcement learning. We
compare this novel technique with the state-of-the-art in RLfD, investigating the properties
of different variants of each by experimenting with different demonstration datasets. But
we start out with a brief overview of Learning from Demonstration and Reinforcement
Learning from Demonstration.

5.1 Learning from Demonstration
As in RL, an agent operating in a Learning from Demonstration (LfD) setting looks for
a policy π that allows it to execute a task [Argall et al., 2009]. While LfD settings vary
greatly, there is typically no ground truth available, no reward signal that allows the agent to
evaluate its behaviour. Instead, the agent must rely on a number of teacher demonstrations
of the task to derive a policy that reproduces and generalizes these demonstrations. The
teacher providing these demonstrations can be a human expert, a suboptimal AI agent,
a simple hand-coded agent, etc.
In essence, the LfD problem is a supervised learning problem, with the agent being

provided labeled training data. This training data consists of the demonstrations in the
form of a set of state-action pairs {(s0, a0), . . . , (sn, an)}.1 The state features are the
input features, and the actions are the class labels or output. The learner should approx-
imate the function (the demonstrator’s policy) that generated these samples, mapping
states to actions, thus learning to replicate the demonstrator’s behaviour. A straightfor-
ward application of classification or regression algorithms to such data in order to get a
policy is entirely possible. Sammut et al. [2002] and Crick et al. [2011] for example have
demonstrated that decision trees can be very successful at mimicking and generalizing
demonstrator behaviour.
Alternatively, the agent can learn action plans by learning pre and post-conditions for

actions, which typically requires further annotations by the teacher beyond the state-action
1Some techniques require these to be chronological sequences, although none of the techniques we

consider have this requirement.

66

5.2. REINFORCEMENT LEARNING FROM DEMONSTRATION

demonstrations [Nicolescu and Mataric, 2003]. Or the agent can infer transition and reward
functions from the demonstration data and apply RL to the learned model [Abbeel et al.,
2007]. This latter approach falls under the intersection between RL and LfD, which we
discuss in the next section.
While LfD techniques can be very sample efficient, there are a number of factors that

can limit the quality of the policy derived from demonstrations by LfD techniques. One is
that demonstrations often do not cover the whole state space, and that generalizations to
unseen states may be far from correct [van Lent and Laird, 2001; Nicolescu and Mataric,
2003]. Also, the capabilities of the demonstrator can significantly affect the demonstration
quality and therefore the quality of the policies derived from these demonstrations [Atkeson
and Schaal, 1997]. These problems are recognized in the community, and one of the
proposed directions forward is to use demonstrations to guide an RL process [Argall et al.,
2009]. The following section describes such combinations of RL and LfD.

5.2 Reinforcement Learning from Demonstration
As noted before, the setting we investigate in this chapter is one where both the ground
truth (reward) and demonstrations are available. We refer to this intersection of RL and
LfD as Reinforcement Learning from Demonstration, or RLfD, after Schaal [1997].2
In his groundbreaking paper, Schaal proposed two approaches to using demonstrations

in a reinforcement learning setting that were later developed by other researchers. The
first is the generation of an initial value-function for temporal difference learning by using
the demonstrations as passive learning experiences for the RL agent. This was later de-
veloped by Smart and Kaelbling [2002] as described below. The second approach Schaal
proposed was to derive an initial policy from the demonstrations and to use that to kick-
start the RL agent. This approach was picked up and further developed by Taylor et al.
[2011b]. In this chapter, we experiment with both these approaches alongside our own
contribution, although the former approach’s results are not included because they proved
to be statistically indistinguishable from the baseline in the domains we investigate. The
latter approach is included as the Human-Agent Transfer algorithm, or HAT, as proposed
by [Taylor et al., 2011b].
HAT leverages transfer learning principles to combine demonstrations and RL. The al-

gorithm derives a policy from the demonstrated samples using a simple classifier, much
like some standard LfD techniques would do. This policy is then ‘transferred’ to the rein-
forcement learning process that learns on the environment’s reward. The authors achieved
this transfer by either initializing Q-values, probabilistically reusing the classifier’s policy,

2Not to be confused with Robot Learning from Demonstration.

67

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

or using the extra action method (three of the four knowledge injection techniques we
investigate in this thesis). AlphaGO [Silver et al., 2016] uses the same principle, although
not in TD-learning but with Policy Gradient.
Smart and Kaelbling [2002] have pursued the first approach to RLfD proposed by Schaal.

They propose to split learning into two phases. In the first phase, the demonstrator is in
control, choosing actions, and the RL agent passively learns from the demonstrations. In
the second phase, the RL agent is put in control of the system and continues learning.
The tele-operation phase can be seen as an instance of probabilistic policy reuse with the
reuse probability ψ = 1.0 during that whole phase.
Other research considering the intersection of LfD and RL focusses on learning a model of

the environment (and possibly a reward function), and using RL on simulated experiences
in that model to build a good policy [Abbeel and Ng, 2005; Argall et al., 2009]. Learning
a model is non-trivial, and the quality of the policy derived from this model of course
depends on the quality of the model itself. We are more interested in work that avoids
this model learning phase, and learns in the actual environment or a simulation.
As a sidenote: we argue that most LfD settings can be turned into an RLfD setting.

We recognize that in some domains, it can be challenging to define an informative reward
signal for a task, but we believe that one can usually construct a very sparse signal that
only gives non-zero feedback when the goal is reached or when the task can no longer
be completed.Of course, such sparse reward signals typically make learning slow because
it takes many experiences for the sparse information to propagate throughout the agent’s
representation of the state-space, but this is then alleviated by using the demonstrations as
a bias for exploration, helping the agent find and propagate the sparse rewards much faster.

5.3 Constructing a Value Function from Demonstrations
Whereas the HAT algorithm first approximates the demonstrator’s policy and then injects
this policy into an RL process using various injection techniques, we believe that creating
a value function to inject into the learning process may be equally valuable.
To create a value function based on demonstrations, we use the following intuition: we

want the value QD(s, a) of a state-action pair (s, a) to be high if action a was demon-
strated in a state sd similar to s, and we want the value to be low if this action was not
demonstrated in the neighbourhood of s. To achieve this, we need a similarity metric for
state-action pairs. In this work, we use a non-normalized multi-variate Gaussian to calcu-
late similarity between state-action pairs. More precisely, assuming discrete actions, if two

68

5.4. EXPERIMENTS

state-action pairs differ in the action, their similarity is zero.3 Otherwise, we calculate:

g(s, sd,Σ) = e(−
1
2 (s−sd)TΣ−1(s−sd))

Similarity is 1 when s = sd, and trails to zero as s and sd get further apart. The covariance
matrix Σ is crucial in defining the sphere of influence of demonstrated state-action pairs,
and needs to be tailored for each domain. This could be automated by including metric
learning techniques [Taylor et al., 2011a]. In this work, we always normalize the state
space (map state variables to [0, 1]), and use Σ of the form Σ = σI, i.e. the n-dimensional
identity matrix times a constant σ, with n the number of state variables.
To calculate the value of a given state-action pair, we look through the set of demon-

strations, and find the sample with the same action that yields the highest similarity [Brys
et al., 2015a]:

QD(s, a) = max
(sd,a)

g(s, sd,Σ)

In other words, the value function is piecewise Gaussian, a landscape with mountain ranges
along the demonstrated trajectories, and flat plains where no demonstrations were provided.

5.4 Experiments
This experimental section will serve to investigate the following questions:

• How do the four knowledge injection techniques perform in the context of demon-
strations?

• How do the policy-based HAT and the value function-based Gaussian technique
compare?

• What is the effect of having little/ample demonstration data?
• What is the effect of different types/quality of demonstrators?

Our first experiments are performed in the Cart Pole environment, and later on validated
in super Mario.4

3This metric can easily be extended to continuous actions by including the action as an extra dimension
in the multi-variate Gaussian.

4We set the σ parameter to 0.2 in Cart Pole and 0.5 in Mario, based on a few preliminary experiments
with various σ. Furthermore, probabilistic policy reuse (PPR) is parametrized with ψ = 0.99e, where e
is the episode number, in both Cart Pole and Mario, and dynamic shaping with respectively β = 2α and
β = 10α.

69

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

0 200 400 600 800 1000 1200 1400

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

RL and LfD in Cart Pole

RL

LfD Gaussian

LfD C4.5

Demonstrator

Figure 5.1: Comparing plain RL (Q(λ)-learning) and LfD (C4.5 and Gaussian) provided
with a single demonstration. The LfD techniques are more sample efficient, but RL has
the potential to eventually learn better policies than LfD techniques. Neither of the LfD

techniques matches the performance of the demonstrator, while RL manages to
outperform the demonstrator after about 800 episodes.

5.4.1 Initialization, Dynamic Shaping, PPR and Extra Action
In this first part, we validate our results with the four knowledge injection techniques
from the previous chapter, by switching the context from policy transfer to learning from
demonstration. We recorded 20 different demonstrations, each consisting of the state-
action sequence of a single episode, provided by a high-performing RL agent that 5% of
the time takes a random action instead of following its policy. The provided demonstrations
have an average length of 803.3± 267.6 steps of balancing the pole. Figure 5.1 shows the
comparison between only learning from rewards (RL – represented by our Q(λ)-learning
agent), and only learning from demonstrations (LfD – represented by the C4.5 decision
tree used in HAT and a policy derived from the Gaussian value function generated from
demonstrations). In each of the 100 independent runs, the learning from demonstration
techniques are provided only a single of the 20 demonstrations. Thus there are 5 runs
per individual demonstration. Notice that neither of the LfD techniques manages to
match the performance level of the demonstrator given only a single demonstration, while
the RL baseline eventually outperforms the demonstrator. On the other hand, the LfD
techniques are much more sample efficient than this RL agent: with only one episode
worth of samples, they achieve a level of performance that the RL baseline only achieves
after about 400 − 500 episodes of learning.
In the following experiment, we look at the various possible combinations between RL

and LfD, mediated through one of the four knowledge injection techniques we investigate.

70

5.4. EXPERIMENTS

0 200 400 600 800 1000 1200 1400

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Gaussian RLfD in Cart Pole

RL

RLfD-Gauss init

RLfD-Gauss dynamic

RLfD-Gauss PPR

RLfD-Gauss extra action

LfD Gaussian

Demonstrator

0 200 400 600 800 1000 1200 1400

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

C4.5 RLfD in Cart Pole

RL

RLfD-HAT init

RLfD-HAT dynamic

RLfD-HAT PPR

RLfD-HAT extra action

LfD C4.5

Demonstrator

(a) Gaussian (b) HAT

Figure 5.2: Comparing the performance of RL, LfD, and RLfD through the four
knowledge injection techniques we investigate. All four injection techniques improve
performance in both the HAT and Gaussian case, outperforming the plain RL and LfD

techniques.

Algorithm Cumulative
Q-Learning 1.0 · 106 ± 3 · 104

Gaussian HAT
Initialization 1.4 · 106 ± 1 · 104 1.2 · 106 ± 5 · 104

Dynamic shaping 1.1 · 106 ± 3 · 104 1.2 · 106 ± 3 · 104

PPR 1.3 · 106 ± 2 · 104 1.2 · 106 ± 4 · 104

Extra action 1.0 · 106 ± 4 · 104 1.2 · 106 ± 3 · 104

LfD 6.6 · 105 ± 7 · 104 8.7 · 105 ± 1 · 105

Table 5.1: Performance of RL, LfD and RLfD techniques in Cart Pole, using either HAT
(C4.5) or the Gaussian technique. All but the Gaussian extra action variant are

significantly better than the baseline Q-Learning. All differences between HAT and
Gaussian variants are also significant (e.g., Gaussian initialization is significantly better

than HAT initialization).

71

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

Figure 5.2 and Table 5.1 present this combination on the one hand for the Gaussian
technique, and on the other hand for HAT (using the C4.5 decision tree algorithm). This
experiment provides further confirmation that all four injection techniques are valid options
to provide heuristic knowledge to a temporal-difference reinforcement learning agent. All
four techniques yield improvements over only using the reward signal in both the HAT and
the Gaussian case. In the former case, the improvements are much larger with initialization
and probabilistic policy reuse (PPR), while in the latter case, all techniques perform well,
but not as good as with the Gaussian technique. This on the other hand also again shows
that none of these techniques are always better than the others, and all can be considered
valid options when designing a learning system.
Now given this basic conclusion that RLfD can work through the knowledge injection

techniques we consider, we go deeper and analyse what effects can be observed for different
demonstration datasets, differing in size, quality and demonstrator.

5.4.2 The Effect of Small/Large Amounts of Data
In the above experiments, the LfD and RLfD algorithms were fed only a single demonstra-
tion, consisting of 803.3 state-action samples on average. In this section, we investigate
what the effect is of the size of this dataset (number of samples) on the performance
of all techniques. To do that, we create new demonstration datasets of increasing sizes
by sampling state-action pairs from the 20 demonstration trajectories (16066 samples in
total) we had already generated for the previous experiment. For each size ∈ {1, 2, 5, 10,
20, 50, . . ., 10000, 15000}, we create 20 new datasets, sampled (with replacement) from
the combined 20 demonstration trajectories, i.e. from 16066 demonstrated samples.
In Figure 5.3, we plot the relationship between the demonstration dataset size and the

cumulative performance of the pure LfD techniques over 1500 episodes (the C4.5 decision
tree used by HAT and a policy derived from the Gaussian value function). The performance
of plain RL is provided for comparison. For both LfD techniques, we notice an expected
positive correlation between dataset size and performance. Larger datasets yield higher
performance. If we look more closely, we see both techniques following a similar trend
between dataset sizes 1 and 500. After that, the Gaussian technique plateaus, while
HAT continues its seemingly linear trend (appears exponential on the logarithmic x-axis),
indicating that the decision tree better leverages increasing amounts of data.
These results highlight an important difference between C4.5 and the Gaussian technique.

The C4.5 decision tree takes in all demonstration samples and explicitly creates an approx-
imation of the function that generated them. With more data, C4.5 can smooth out the
inconsistencies present in the demonstrations (5% random moves), thus improving per-
formance. This effect was observed by Sammut et al. [2002] when applying a C4.5 decision

72

5.4. EXPERIMENTS

100 101 102 103 104

Demonstration dataset size

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

LfD in Cart Pole

RL

LfD Gaussian

LfD C4.5

Figure 5.3: Comparing plain RL (Q(λ)-learning) and LfD (C4.5 and Gaussian) provided
with demonstration datasets of increasing sizes. There is a clear correlation between
dataset size and performance, which is better leveraged by the C4.5 decision tree than

the Gaussian value function.

tree to flight trajectories supplied by human pilots. The many inconsistent and correct-
ing actions taken by the pilots were “cleaned up” by the decision tree, resulting in much
smoother control than that exhibited by the human demonstrators. The Gaussian value
function on the other hand is similar to the 1-nearest neighbours classification algorithm, in
that it stores and uses each provided sample individually. This lack of generalization seems
to prevent the technique from better leveraging larger datasets that include noisy data.
Yet, while this is true for the pure LfD techniques, the conclusions are quite different when

considering the RLfD techniques, see Figure 5.4. We see that even though the Gaussian
technique by itself creates very ill-performing policies, the RL processes guided by the
Gaussian technique perform much better. They even make surprisingly efficient use of very
small datasets. When using Q-function initialization as injection technique for example,
employing the Gaussian LfD technique with only 20 demonstrated samples yields a level of
performance HAT only achieves with 2000 samples. A nearest neighbour style approach in
this case makes much more efficient use of a limited set of samples than a decision tree. It
provides the RL process with a few individual pointers as to what to do, which prove to be
enough to quickly learn near-optimal policies. The decision tree on the other hand cannot
learn a meaningful approximation of the demonstrator’s policy with only few samples, thus
not providing a useful bias. On the other hand, HAT is preferable for larger datasets as
those allow the decision tree to generate better approximations and generalizations, which
is reflected in all HAT variants performing very well with large datasets. In general, we
observe a positive correlation between dataset size and performance, for both HAT and

73

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

100 101 102 103 104

Demonstration dataset size

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Gaussian (R)LfD in Cart Pole

RL

RLfD-Gauss init

RLfD-Gauss dynamic

RLfD-Gauss PPR

RLfD-Gauss extra action

LfD Gaussian

(a) Gaussian

100 101 102 103 104

Demonstration dataset size

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

HAT (R)LfD in Cart Pole

RL

RLfD-HAT init

RLfD-HAT dynamic

RLfD-HAT PPR

RLfD-HAT extra action

LfD C4.5

(b) HAT

Figure 5.4: Experimenting with different demonstration dataset sizes, ranging from 1
demonstrated sample to 15000, provided by a demonstrator whose demonstration

performance is 803.3± 267.6. For both the Gaussian and the HAT variants, in general
we observe performance increasing with demonstration data set size (significant for every
technique except for the Gaussian dynamic shaping variant). The Gaussian variants are
more effective than the HAT variants with smaller dataset sizes, while HAT manages to
leverage large datasets better. Gaussian initialization achieves a speed of learning with 20
demonstration samples that HAT variants only achieve with 2000 samples. On the other

hand, the C4.5 decision tree seems to generalize better, as evidenced by the much
greater increase in performance it shows compared to the Gaussian technique.

74

5.4. EXPERIMENTS

the Gaussian technique, as well as for all injection techniques, except for dynamic shaping
with the Gaussian technique – this approach has a negative correlation with dataset size.

5.4.3 The Effect of Demonstration Quality
After investigating the robustness of algorithms against demonstration dataset size, we
investigate their robustness against varying demonstration quality. We generate new sets
of 20 demonstrations. As opposed to the previous demonstrations we worked with, this
time each set of 20 is generated by a different RL agent of different ability (demonstrator
performance ∈ {92.6, 123.2, 138.95, 144.5, 163.35, 391.2, 851.65, 968.2}). So for each
level of demonstrator performance, we have 20 demonstrations. To account for the ef-
fect that the demonstration dataset size has on performance, we populate every set with
exactly 1000 demonstrated samples. For every technique and demonstrator quality, we
run 100 independent runs (as in every experiment in this thesis). In each of these runs,
the techniques are provided only a single demonstration from the set of 20 for a given
demonstrator quality.
Figure 5.5 shows the relationship between demonstration quality and the cumulative

learning performance of each of the algorithmic variants we consider, for respectively the
Gaussian technique and HAT. In both cases we can observe that all (R)LfD techniques
benefit from increasing demonstration quality, an expected effect. Visually, this conclusion
may appear weak or tentative, but it is corroborated by the Pearson correlation coeffi-
cients calculated between the demonstration quality and techniques’ performance (average
of 0.848 ± 0.068 over all techniques) as well as by the slopes of lines fitted to the data
(average slope of 0.315 ± 0.143 for the demonstrator qualities normalized to [0, 1]). Al-
though the correlation between demonstration quality and performance visually appears
to be much less strong than the correlation between demonstration dataset size and per-
formance, it is actually stronger. The average Pearson correlation coefficient when looking
at demonstration dataset size is only 0.488 ± 0.221, compared to the 0.848 ± 0.068 for
demonstration quality, and the average slope is only 0.002±0.001 for the former compared
to 0.315 ± 0.143 for the latter. The apparent discrepancy between the numbers and the
figures is due to the log-scale on Figure 5.4 where we look at dataset size, and the linear
scale on Figure 5.5 where we look at demonstration quality.
Taking the experiments in this section and the previous one together, we can make the

simple conclusion that indeed more data by better demonstrators will quite likely yield
better (R)LfD performance.

75

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

100 200 300 400 500 600 700 800 900

Demonstrator quality

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Gaussian (R)LfD in Cart Pole

RL

RLfD-Gauss init

RLfD-Gauss dynamic

RLfD-Gauss PPR

RLfD-Gauss extra action

LfD Gaussian

(a) Gaussian

100 200 300 400 500 600 700 800 900

Demonstrator quality

0

200000

400000

600000

800000

1000000

1200000

1400000

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

HAT (R)LfD in Cart Pole

RL

RLfD-HAT init

RLfD-HAT dynamic

RLfD-HAT PPR

RLfD-HAT extra action

LfD C4.5

(b) HAT

Figure 5.5: Experimenting with different levels of demonstration quality. Every (R)LfD
technique improves its performance with increasing demonstration quality.

76

5.4. EXPERIMENTS

Algorithm Cumulative
Q-Learning 6.6 · 107 ± 3 · 105

Gaussian HAT
Initialization 6.0 · 107 ± 3 · 105 3.9 · 107 ± 2 · 105

Dynamic shaping 5.1 · 107 ± 4 · 105 7.2 · 107 ± 3 · 105

PPR 6.6 · 107 ± 3 · 105 5.6 · 107 ± 3 · 105

Extra action 6.9 · 107 ± 3 · 105 7.0 · 107 ± 3 · 105

LfD −7.1 · 106 ± 3 · 104 −2.6 · 107 ± 3 · 103

Table 5.2: Performance of RL, LfD and RLfD techniques in Mario, using either HAT
(C4.5) or the Gaussian technique to inject the human demonstration. Only the extra
action and the HAT dynamic shaping variants are significantly better than the RL

baseline.

5.4.4 The Effect of Demonstrator Type
Above, we have considered RLfD in the Cart Pole problem with demonstrations provided
by a reinforcement learning agent that has basically the same state representation as the
student agent that receives the demonstrations – they observe the world in the same
way. This commonality perhaps makes the student agent more likely to benefit from these
demonstrations, while demonstrations provided by an agent with a very different perception
of the world might be much less useful. To test this proposition, we turn to the super
Mario problem. First, we recorded 20 human demonstrations, provided by the author of this
thesis, who is reasonably well acquainted with the game. The demonstrations are recorded
from the student agent’s perspective (i.e., the student agent’s state features, its view of
the world, are registered when the human plays), even though the human demonstrator
potentially operates based on very different state features than the observing reinforcement
learning agent.
Then, we use these demonstrations in our RLfD setting to examine their effect on per-

formance. Figure 5.6 and Table 5.2 show the results of an experiment comparing RL,
LfD and RLfD using the human demonstrations. Plain RL outperforms the demonstrator
after approximately 8000 episodes. The LfD techniques perform very badly, a far cry from
the demonstrator’s performance, quite likely due to the high dimensionality of the state
space (27 dimensions) and the comparatively low number of samples covering that space
(13560). Yet, again, despite the LfD policies being quite bad at executing the task, when
combined with RL, they provide a good bias, in several cases allowing the RLfD agent to
outperform plain RL overall, and in most cases to at least speed up learning significantly
in the initial phase. The Gaussian technique outperforms plain RL overall when injected

77

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Human demonstrator (20 demonstrations)

RL

RLfD-Gauss init

RLfD-Gauss dynamic

RLfD-Gauss PPR

RLfD-Gauss extra action

LfD Gaussian

Demonstrator

(a) Gaussian

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Human demonstrator (20 demonstrations)

RL

RLfD-HAT init

RLfD-HAT dynamic

RLfD-HAT PPR

RLfD-HAT extra action

LfD C4.5

Demonstrator

(b) HAT

Figure 5.6: Comparing RL, LfD and RLfD provided with 20 demonstrations by a human.
Even though the LfD performance is very low, half of the RLfD manage to significantly

outperform plain RL.

78

5.4. EXPERIMENTS

Demonstrator Quality Dataset size Predictability (C4.5 accuracy)
Hand-coded 49.3 8019 32.0738
Human 1022.7 13560 60.7301
RL 1258.2 33983 34.037

Table 5.3: Different properties of the 20 demonstrations recorded for each of three
different demonstrators. The demonstrator’s level of performance, the demonstration
dataset size, and the predictability of the demonstrator’s actions, as measured by the
cross-validated classification accuracy of a C4.5 decision tree trained on the dataset.

through the extra action method and HAT outperforms plain RL when combined with
dynamic shaping or the extra action method. In light of these results and the above ones
in this and the previous chapter, we stress again the importance of considering all four
injection techniques when building a learning system that uses heuristic information. It
remains unclear which factors favour one of the injection techniques over another, and
each technique could potentially be beneficial or not.
Nonetheless, we see that even despite the obvious differences in demonstrator and student

agent perception, the demonstrations proved useful for speeding up learning when injected
through a suitable injection technique.
In the following experiment, we compare these demonstrations provided by a human, with

demonstrations provided by a simple hand-coded agent,5 and by a near-optimal RL agent
that considers the same state-features as the student agent. These demonstrations are all
very different, as can be seen in Table 5.3. Those provided by the hand-coded agent
have no relationship between the state-features and the actions except that the action set
is restricted to three of the twelve actions throughout the state space. This demonstrator
therefore performs very badly overall in super Mario, since it usually can not achieve the
high reward at the end of a level, although we believe that its behaviour can provide a useful
bias. Furthermore, since this demonstrator is essentially randomly picking between three
actions, its behaviour is no more predictable than random within that restricted set of three
actions (1

3 ≈ 33.3%). The demonstrations provided by the human are of much higher
quality, but are provided from a different perspective (state features) than the student
agent’s perspective. Surprisingly, the human’s demonstrations are very predictable, with
a C4.5 decision tree achieving over 60% accuracy (fully random would be 1

12 ≈ 8.3%).
Finally, the RL demonstrator is the best performing demonstrator, yet its demonstrations
are far less predictable. Partially due to its ε = 0.05 random actions, but more importantly,
as we have seen in the previous chapter, due to the significant number of first-time state

5At every step, it randomly chooses between three options: going right, going right and jumping, and
going right, jumping and pressing the speed/fire button.

79

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

visits, where even this good demonstrator can do no better than randomly selecting an
action. The human does not suffer from this problem since he generalizes to unseen states.
Based on these demonstration dataset properties and the conclusions drawn from the Cart

Pole experiments in Sections 5.4.2 and 5.4.3, our hypothesis is that since the datasets by
the hand-coded agent, the human and the RL agent in that order are of increasing size
and quality, we predict that performance will be ranked accordingly.
Figure 5.7 shows a comparison of the cumulative performance observed for each tech-

nique when provided 20 demonstrations by either the hand-coded agent, the human, or the
near-optimal RL agent. Plain RL’s performance and that of the different demonstrators
themselves is also provided for comparison. Indeed, as expected, the RL agent’s demon-
strations yield the best performance compared to the other two demonstrators’ in general.
Compared to the plain RL agent learning without demonstrations, using these demonstra-
tions by a near-optimal RL agent yields better performance in every RLfD case except the
Gaussian dynamic shaping one. When looking at each of the injection techniques across
the different demonstrators, initialization and PPR their performance appears to be more
affected by the properties of the different demonstration datasets (a larger difference in
performance between using the hand-coded agent’s or human’s demonstrations and the
RL agent’s demonstrations), while the extra action method appears very robust to the
differences in quality, size and demonstrator type, yielding approximately the same level
of performance for each set of demonstrations. Dynamic shaping yields counter-intuitive
results, appearing robust in the HAT case, but degrading performance with increasing
dataset size and quality in the Gaussian case. More research on this technique is necessary
to investigate its properties in practice.
Considering the LfD techniques alone, it is interesting to note that the C4.5 decision

tree achieved an impressive 60% classification accuracy on the human’s demonstration
data set while that decision tree yields the worst performance in terms of reward. A
high classification accuracy of an LfD technique on a demonstration data set does not
necessarily translate to good task performance with that dataset. Replicating a policy up
to 95% accuracy is useless if that missing 5% keeps the agent from completing the task,
or scoring high rewards. On the other hand, when combined with RL, this remaining 5%
could be learned from exploration and observed rewards.

5.4.5 Policy Transfer vs Reinforcement Learning from Demonstra-
tion

As we noted in Chapter 3, demonstrations are a far cleaner and more applicable form
of transfer of behaviour than explicit, full policy transfer. Indeed it is quite impossible
for a human to transfer a full description of their policy for any household task to their

80

5.4. EXPERIMENTS

Init Dynamic PPR Extra Action LfD Demonstrator

Technique

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

1e8 Gaussian (R)LfD

RL

Hand-coded demonstrator

Human demonstrator

RL demonstrator

(a) Gaussian

Init Dynamic PPR Extra Action LfD Demonstrator

Technique

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
u
m

u
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

1e8 C4.5 (R)LfD

RL

Hand-coded demonstrator

Human demonstrator

RL demonstrator

(b) HAT

Figure 5.7: Experimenting with different levels of demonstration quality. In general, the
RLfD agents benefit from higher quality demonstrations by an agent with the same

perspective on the world.

81

CHAPTER 5. REINFORCEMENT LEARNING FROM DEMONSTRATION

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Hand-coded Policy Transfer/Demonstration in Mario

RL

RLfD-HAT init

RLfD-Gauss init

Transfer init

Demonstrator/Transferred policy

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Hand-coded Policy Transfer/Demonstration in Mario

RL

RLfD-Gauss dynamic

RLfD-HAT dynamic

Transfer dynamic

Demonstrator/Transferred policy

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Hand-coded Policy Transfer/Demonstration in Mario

RL

RLfD-Gauss PPR

RLfD-HAT PPR

Transfer PPR

Demonstrator/Transferred policy

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Hand-coded Policy Transfer/Demonstration in Mario

RL

RLfD-Gauss extra action

RLfD-HAT extra action

Policy Transfer extra action

Demonstrator/Transferred policy

Figure 5.8: RLfD achieves performance similar to Transfer.

housekeeping robot, while they could easily give a few quick demonstrations of this policy.
Yet it would seem that transferring the full policy (if possible) would be more beneficial
than only transferring demonstrations, which are only samples from the policy. We put this
to the test in the following experiment, either transferring the hand-coded policy discussed
above, or using demonstrations provided by that policy. In Figure 5.8, we see that for each
knowledge injection technique, performance is very similar when comparing policy transfer
and demonstrations, despite the fact that in policy transfer the full policy is provided,
and in the RLfD setting, only samples are provided. Of course, the results from this
experiment should not be given too much weight, since the function (policy) generating
this behaviour is very simple, and thus easy to approximate based on samples. With more
complex policies, it is quite possible that policy transfer would indeed yield better results.

82

5.5. SUMMARY

5.5 Summary
The research described in this chapter served to investigate the idea of Reinforcement
Learning from Demonstration (RLfD). This involves the combination of the fields of
Learning from Demonstration (LfD), where an agent must derive its own behaviour from
demonstrations provided by another agent, and Reinforcement Learning (RL), where an
agent must derive behaviour from rewards and interactions with the ‘world’. Thus, in an
RLfD setting, both demonstrations and rewards are available to the agent for learning.
Using demonstrations as a heuristic bias for a process learning from rewards potentially
leverages the advantages of both approaches. Using RL on the true reward signal, allows
us to leverage the available theoretical guarantees for convergence and optimality, and
thus we will still be learning to solve the actual task. The potential sub-optimality of
demonstrations will furthermore not compromise this optimality, thanks to the theoretical
guarantees associated with the knowledge injection techniques. And the problem of low
sample efficiency in RL without prior knowledge is mitigated thanks to the exploratory
bias introduced by the demonstrations.
In this chapter, we showed that indeed RLfD techniques (injecting the demonstrations

through the knowledge injection techniques identified in Chapter 3) can outperform both
plain LfD and RL in a variety of settings. We proposed a value-function based encoding
of demonstrations as an alternative for existing policy-encodings of demonstrations. We
analysed both types of approach, looking at the relation between performance and demon-
stration dataset size, quality, and demonstrator type. Interestingly, the value-function
based approach, which is 1-Nearest Neighbour flavoured, yields impressive performance for
small dataset sizes, while a decision tree-style approach performs better for large datasets.
In general, we found that the intuition that more and better data yields better performance
holds. Similarly, we found that agent performance was best when the demonstrator had
a similar perception of the world.
In the next and final contribution chapter, we will investigate how one can incorporate

multiple heuristics of unknown quality in the same reinforcement learning process.

83

6 | Ensembles of Shapings in
Reinforcement Learning

Where there is no guidance, a people falls, but in an
abundance of counselors there is safety.

King Solomon, Proverbs 11:14

In this final contribution chapter, we consider the question of how to handle multiple
sources of information. How should a reinforcement learning agent that has several ‘pieces’
of heuristic information available, which all could potentially help in the learning process,
combine these pieces of information such that they are maximally exploited? How can the
agent do this without prior knowledge of how good each piece of information is?
This chapter develops a framework to achieve this within the context of reward shap-

ing.1 Thus we no longer consider the other injection techniques as we did in the previous
chapters.
We start out with a general perspective to develop the ideas that are later on crystallized

in the context of reinforcement learning and reward shaping.
1And therefore equivalently in the context of initialization, see Section 3.3.2

85

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

6.1 Introduction
When making decisions, especially decisions with a potentially high impact, it is considered
good practice to solicit the advice of one or more third parties [Bonaccio and Dalal, 2006].
The idea is that when many parties agree, one can be more confident about the accuracy of
the proposed decision. Conversely, if there is disagreement, the decision maker can at least
take into account the fact that it is possible he does not know the best response, and take
precautionary measures. This strategy is not only frequently used by humans, but is also
implemented in automated decision makers. In the latter case, such approaches are most
commonly referred to as ensemble techniques [Polikar, 2006]. A set of decision makers is
combined into an ensemble (French for ‘together’), and their advice or proposed decisions
are aggregated into an actual decision using a specific strategy, such as majority voting.
Ensembles derive their power from the diversity that is present in the set of their decision
makers [Krogh et al., 1995], which allows the composite decision maker to outperform
any single one of its components (clearly it would be pointless to combine many identical
predictors). This diversity can originate from many sources: the decision makers can use
different decision-making algorithms, they could have been trained on different inputs, be
differently parameterized, etc. The reasoning is that due to their diversity, the different
decision makers will make their mistakes on different inputs, and thus that the strategic
combination of their advice will lead to a reduction of mistakes.
In this chapter, we argue for an as yet little researched way of generating this diversity.

Instead of diversifying algorithm parameters or the training inputs fed into the algorithms,
we create a diverse set of utility functions based on the original one. This process allows
for the exploitation of structure found in the original utility function or the inclusion of
domain knowledge, and yields several distinct ways to evaluate decisions for the ensemble
to use. Although the idea of using diversity of evaluation in an ensemble could have
general applicability, we develop it in the context of reinforcement learning, which is spe-
cifically amenable to the idea due to the distinct way an agent evaluates its behaviour (the
accumulation of stochastic, delayed rewards over time, as opposed to an instantaneous
deterministic objective function evaluation).
We first briefly discuss ensemble techniques and multi-objectivization, and then form-

ally introduce multi-objective reinforcement learning. Following that, we look how the
former ideas can be combined and integrated into reinforcement learning. We discuss
and prove some theoretical properties of this approach, and experimentally show for three
reinforcement learning problems that a significant boost in performance can be obtained.

86

6.2. ENSEMBLE TECHNIQUES

6.2 Ensemble Techniques
As discussed before, a successful ensemble [Polikar, 2006] is built by providing two com-
ponents: (1) a set of diverse decision makers, and (2) a strategy for the combination of
their outputs such that the number of mistakes made is minimized. The choice of how
to diversify the decision makers is crucial, as it is desirable that different decision makers
are experts on different (overlapping) parts of the input space,2 or put another way, that
different decision makers make their mistakes on different inputs. We discuss two common
ways of creating this required diversity: diversity of input and algorithm.
A lot of research on ensemble techniques has focused on classification and regression

problems [Polikar, 2006]. Most successful techniques in those domains generate diversity
by feeding different decision makers with different (possibly overlapping) subsets of the
training data, i.e., diversity of input. Bagging [Breiman, 1996] is the most naive approach
in this category, as it trains different classifiers on randomly sampled subsets of the training
data, aggregating their output by majority voting. Boosting [Schapire, 1990] takes this
idea one step further,3 by intelligently selecting the subset of training data attributed to
each classifier. It trains a first classifier with a random subset of the training data. Then, a
second classifier is trained on data only half of which the first classifier can classify correctly.
A third classifier is then trained on instances which the first two disagree on. This process
can be applied recursively to build a strong ensemble. AdaBoost [Freund and Schapire,
1997] is an extremely popular and successful generalization of boosting, improving on
boosting by including a more refined probabilistic training data sampling procedure, and
weighted majority voting, based on classifiers’ success during the training phase.
Diversity of algorithm refers to the actual algorithms used by decision makers being

different, either inherently, or through different parameterization. Hansen and Salamon
[1990] note that different neural network instances, trained on the full set of training
data (in stark contrast to the ‘diversity of input’ approaches), will still be diverse due
to different initializations of their weights and different sequencing of the training data.
These networks end up in different local optima of the weights-space and therefore have
different accuracy in different parts of the input space. In differential evolution literature,
Mallipeddi et al. [2011] use ensembles of mutation strategies and parameters, positing
that “different optimization problems require different mutation strategies with different
parameter values” and “different mutation strategies with different parameter values may
be better during different stages of the evolution.” Their ensembles compared favourably

2Input is being used here as referring to such concepts as input features in classification, state in
reinforcement learning, candidate solution in evolutionary computation, etc.

3Note that bagging and boosting have different goals: bagging aims to decrease variance in the models
it produces, while boosting aims to decrease their bias [Bauer and Kohavi, 1999].

87

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

with the state-of-the art in differential evolution. Wiering and van Hasselt [2008] combine a
variety of reinforcement learning algorithms with significantly different properties, showing
how their ensemble requires less learning experiences to achieve equal or better performance
than the single best algorithm.
These two ways to generate ensemble diversity have been researched extensively in dif-

ferent research areas and have yielded several powerful techniques. In this chapter, we
argue for a third approach based on diversity of evaluation. In the following section, we
describe multi-objectivization, the process we will use to achieve this diversity.

6.3 Multi-Objectivization
Multi-objectivization [Knowles et al., 2001] is the process of creating a variety of utility
functions for a task, starting from a single one.4 Formally, multi-objectivization takes
single-objective problem p with utility function u : X → R, and outputs multi-objective
problem p̂ with utility function u = {u1, u2, . . . , un} : X → Rn, with n > 1. The idea
is that p̂ should be constructed in such a way that it is easier to solve than p. There
are basically two approaches to create a diverse set of utility functions or ‘objectives’,5
starting from a single-objective problem: either through decomposition of the original
single objective, or through addition of extra objectives.
A prime example of multi-objectivization through decomposition is found in decision

tree literature, where instead of using the total classification error to guide tree gener-
ation, tree performance is measured using the per-class misclassification, and trees are
optimized using a multi-objective algorithm, which has been shown to lead to better
trees in some cases [Fieldsend, 2009]. Another good example is the transformation of
constrained optimization problems6 into unconstrained ones, with the original objective
being decomposed into an unconstrained objective, and several other objectives encod-
ing the constraints [Coello Coello, 2000; Watanabe and Sakakibara, 2005; Saxena and
Deb, 2007]. For example, Coello Coello [2000] gives empirical evidence that this form of
constraint relaxation can outperform more standard penalty stratagems in Evolutionary
Algorithms. This idea was also studied in reinforcement learning, where Raicevic [2006]
assigned different reward signals to the sub-tasks resulting from a task decomposition.

4In this chapter, we are only concerned with problems that are originally single-objective. Actual
multi-objective problems may also benefit from the approach described here. But, since optimality is
defined differently in multi-objective problems, it is unclear whether applying multi-objectivization will
have unwanted effects.

5Both utility function and objective will be used interchangeably throughout this chapter, and refer to
the same concept.

6Constrained optimization problems are problems where one needs to optimize a given objective function
with respect to a set of variables, given constraints on the values of these variables.

88

6.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING

Multi-objectivization through the addition of objectives typically involves the incorpor-
ation of some heuristic information or expert knowledge on the problem. Jensen [2005]
was one of the first to use what he calls ‘helper’ objectives next to the primary one. He
investigated the job-shop scheduling and traveling salesman problems and found that addi-
tional objectives based on respectively time and distance-related intuitions help solve these
problems faster. In genetic programming, where the goal is to evolve an accurate program
to solve specific tasks, Bleuler et al. [2001] and de Jong et al. [2001] found that adopting
program size as a second objective resulted in smaller and more accurate programs being
evolved. This helper objective is a straightforward implementation of Occam’s razor, and
solves the common genetic programming problem of ‘bloat’, i.e., the tendency to evolve
large overly-complex programs. The same principle of encoding minimization of model
complexity for better generalization as an extra objective was succesfully used in decision
tree research by Kim [2006].
In most of these examples, multi-objectivization is beneficial because the true utility

function is not available; only approximations are. Consider the case of learning a decision
tree to classify some data. We can not evaluate the true utility (accuracy) of a given
decision tree, because that would involve testing it on all possibly relevant data in the
universe. Therefore, one uses an approximation of this true utility, by measuring the
tree’s accuracy on the available training data, a subset of all possible data. Thus, it can
be helpful to use heuristics, such as minimizing tree size, as further guidance that may
improve the approximation of the true utility (or rather, create an order over decision trees
using multiple objectives that is more like the true order over decision trees).
In temporal difference reinforcement learning, the true utility of an action is the expected,

discounted, accumulated reward to be gained by taking an action and then following some
behaviour. Since this utility is never directly given, but must be approximated based
on observed rewards, reinforcement learning could benefit from the principle of multi-
objectivization.
Before we describe our approach to multi-objectivization in reinforcement learning, we

must give some preliminaries on multi-objective reinforcement learning itself.

6.4 Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning [Roijers et al., 2013] (MORL) is a generalization
of standard single-objective reinforcement learning, with the environment formulated as a
multi-objective MDP, or MOMDP 〈S,A, T, γ,R〉. The difference with the single-objective
case is the reward function. Instead of returning a scalar value, it returns a vector of

89

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

scalars, one for each of the m objectives:

R(s, a, s′) = [R1(s, a, s′), . . . , Rm(s, a, s′)]

Policies are in this case evaluated by their expected vector returns Qπ:

Qπ(s, a) = [Qπ1 (s, a), . . . , Qπm(s, a)]

=
[
E
{∑∞

k=0 γ
kR1(st+k, at+k, st+k+1)|st = s, at = a

}
, . . . ,

E
{∑∞

k=0 γ
kRm(st+k, at+k, st+k+1)|st = s, at = a

}]

Since there are multiple (possibly conflicting) signals to optimize, there is typically no total
order over policies. Policies may be incomparable, i.e., the first is better on one objective
while the second is better according to another objective, and thus the notion of optimality
has to be redefined. A policy π1 is said to strictly Pareto dominate another policy π2, i.e.,
π1 � π2, if for each objective, π1 performs at least as well as π2, and it performs strictly
better on at least one objective. The set of non-dominated policies is referred to as the
Pareto optimal set or Pareto front. The goal in multi-objective reinforcement learning,
and multi-objective optimization in general, is either to find a Pareto optimal solution, or
to approximate the whole set of Pareto optimal solutions.
With a multi-objective variant of Q-learning, Q-values for each objective can be learned

in parallel, stored as Q-vectors [Gábor et al., 1998; Van Moffaert et al., 2013]:

Q̂(s, a)← Q̂(s, a) + αδ

δi = Ri(s, a, s′) + γmax
a′

Q̂i(s′, a′)− Q̂i(s, a)

The most common approach to derive a policy from these estimates is to calculate
a linear scalarization, or weighted sum based on the estimated Q-vectors and a weight
vector w [Vamplew et al., 2010; Roijers et al., 2013; Van Moffaert et al., 2013]:

π(s) = arg max
a

wT Q̂(s, a)

The weight vector determines which trade-off solutions are preferred, although setting
these weights a priori to achieve a particular trade-off is hard and non-intuitive [Das and
Dennis, 1997], often requiring significant amounts of parameter tuning.

90

6.5. MULTI-OBJECTIVIZATION IN REINFORCEMENT LEARNING

6.5 Multi-Objectivization in Reinforcement Learning
In this section, we describe how multi-objectivization can be achieved in a reinforcement
learning context. First, we describe CMOMDPs, a subclass of multi-objective MDPs that
contain multi-objectivized MDPs. Then, we describe how an MDP can be transformed
into a CMOMDP through multi-objectivization using reward shaping. In the section after
this one, we will describe how ensemble techniques can be used to solve such a CMOMDP.

6.5.1 CMOMDP
Recall that multi-objective MDPs (MOMDPs) require the simultaneous optimization of
multiple feedback signals. As conflicts may exist between objectives, there is in general a
need to identify (a set of) trade-off policies. The set of optimal, i.e., non-dominated, in-
comparable policies is called the Pareto-front. Assuming all objectives are to be maximized,
define the set S∗p to contain all policies π of MOMDP p that are within εo of optimality for
at least one objective o (with respect to the expected discounted cumulative reward Qπ):

π ∈ S∗p ⇐⇒ ∃o ∈ Op,∀π′ ∈ Πp : Qπ
o + εo ≥ Qπ′

o

εo ≥ 0 defines the largest difference in utility of objective o that the system designer is
indifferent about, Op is the set of objectives in p and Πp is the set of possible policies for
p. S∗p will include at least the extrema of the Pareto-front of p.
We identify MOMDPs with correlated objectives (CMOMDP) as a specific sub-class of

MOMDPs, defined to contain those MOMDPs p whose set S∗p (and by extension whose
Pareto-front) is so small that trade-offs between solutions on the Pareto-front are negligible,
i.e. there are no noteworthy conflicts between the objectives. By consequence, the system
designer does not care about which of the very similar optimal policies is found, but rather
how fast it is found (and perhaps how well it is approximated). Formally:

p ∈ CMOMDP ⇐⇒ ∀o ∈ Op : max
π∈S∗p

(Qπ
o)− min

π′∈S∗p
(Qπ′

o) ≤ εo

Thus, whether a multi-objective problem is contained in this class is to a certain extent sub-
jective, depending on the system designer’s preferences (εo). Such problems can be seen
as providing multiple sources of information or feedback for the same basic single-objective
problem, and intelligently combining such objectives may yield faster and better optimiz-
ation. See Figure 6.1 for a visual comparison between an MOMDP and a CMOMDP.
An example of a CMOMDP is the traffic light control problem in our previous work [Brys

et al., 2014c]. Popular metrics to quantify agents’ behaviour in that setting are the average
delay experienced by cars and the throughput of the system. In practice, optimizing either

91

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

V0

V1

V0

V1

MOMDP CMOMDP

Figure 6.1: Representative examples of an MOMDP and a CMOMDP. Dots represent
policies, and red dots are optimal policies. In the CMOMDP, the optimal policies are so
similar that the system designer/user does not care about which one is found, whereas in

the MOMDP, it matters which trade-off is found.

one of these results in optimizing the other, and combining these signals using a simple
weighted sum was shown to result in faster learning.

6.5.2 Multi-objectivization
The relevance of this problem class may seem limited, as one does not encounter many
such problems in the literature. But, we describe below how any single-objective MDP can
be transformed (or multi-objectivized) into a CMOMDP using multiple reward shaping
functions.
We reiterate that multi-objectivization [Knowles et al., 2001] is the process of turning

a single-objective problem into a multi-objective problem in order to improve solving of
the single-objective problem. Our goal is to turn a single objective RL problem into
a CMOMDP, i.e., a multi-objective problem without (significant) conflicts between the
objectives, in order to better solve the single objective RL problem. We desire furthermore
the property that finding an optimal policy in the CMOMDP equates to finding a (near-)
optimal policy in the original single-objective problem.
MDPs can be multi-objectivized by copying the reward function multiple times, which

results in a CMOMDP with a single Pareto-optimal point. Of course, this modification in
itself can not improve learning (unless other sources of diversity are present). But, these
copies of the basic reward signal can be diversified by enriching them with heuristic know-
ledge using the potential-based reward shaping paradigm. Since potential-based reward

92

6.5. MULTI-OBJECTIVIZATION IN REINFORCEMENT LEARNING

shaping is guaranteed to not alter the optimality of solutions [Ng et al., 1999], adding a dif-
ferent potential-based reward shaping to each of the copies of the reward signals keeps the
problem a CMOMDP with a single Pareto optimal point. Yet, each of the different shaping
functions provides a different evaluation of the behaviour during the learning process.
More formally: to turn MDP M into CMOMDP M′ using m reward shaping functions
Fi, the reward vector R of M′ is constructed as follows:

R(s, a, s′) = [R(s, a, s′) + F1(s, a, s′), . . . ,
R(s, a, s′) + Fm(s, a, s′)] (6.1)

where R is the reward function of M. Thus, we copy the base reward of M m times, and
add a different shaping function to each.
We prove that this formulation preserves the total ordering, and thus also the optimality,

of policies between M and M′, provided the shapings are potential-based. That is, that
multi-objectivization by reward shaping does not introduce conflicts.

Theorem 1. Let M be a given (finite, discrete) MDP, M = (S,A, T, γ,R). We say that
the MOMDP M′ is a shaping-based multi-objectivization of M, iff M′ = (S,A, T, γ,R)
with

R(s, a, s′) = [R(s, a, s′) + F1(s, a, s′), . . . ,
R(s, a, s′) + Fm(s, a, s′)]

If all shaping functions Fi, i = 1, . . . ,m are potential-based, as defined in Equation 3.1,
we have the following properties:

• Any policy π∗ which is an optimal policy for M, is a Pareto optimal policy for M′.
• No other Pareto optimal policies for M′ exist, i.e., if π is not an optimal policy for

M, π is not Pareto optimal in M′.

Proof: The proof follows from the results by Ng et al. [1999]. There, Ng et al. proved that
if a policy is optimal for an MDP with reward function R, it is also optimal for the shaped
MDP with rewards R + F (and vice versa), provided that F is a potential-based shaping
function. So, any policy π∗ that is optimal for MDP M will also be optimal for each of the
shaped rewards R+Fi. Since π∗ maximises the returns for all objectives, no policy which
Pareto dominates π∗ can exist (since such a policy would have to perform strictly better
on at least one objective) and π∗ must be part of the Pareto front for M′. Now suppose a
policy π exists, which is part of the Pareto front of M′, but which is not optimal in M. Since
π is suboptimal in M, according to Ng et al. [1999] it must also be suboptimal for each
of the R + Fi objectives. However, this means that any policy π′, that is optimal in M,7
will achieve a strictly higher return for all objectives. Thus, π′ Pareto dominates π and π

7At least one such optimal policy must exist, see e.g., [Puterman, 2014].

93

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

V V0

V1

MDP Multi-objectivized MDP

Figure 6.2: Representative examples of an MDP and multi-objectivized MDP. Dots
represent policies, and red dots are optimal policies. Note that in the multi-objectivized

MDP, the value functions of policies are fully correlated between the different
‘objectives’. Recall furthermore that this correlation is not necessarily true for the

immediate reward + shaping.

cannot be part of the Pareto optimal set for M′, which contradicts our original assumption.

Corollary. Since all optimal policies of M′ (and thus also of M) achieve the highest
expected return for each objective in M′, the Pareto front of M′ consists of a single point.
Moreover, since Ng et al. [1999] actually prove that the total order of policies is preserved
when using potential-based shaping, and not just optimality, MOMDP M′ also has a total
order over all policies. These all lie on a single line in the multi-objective value-function
space, see Figure 6.2.

One may wonder what the purpose of this multi-objectivization is if all policies lie on
the same line in the multi-objective space, i.e., if the objectives are all fully correlated.
Why do we need extra objectives if they are correlated with all other objectives? The
answer to that lies in the important distinction between return and reward. Rewards are
generated at each time step for the state transition that occurred. Return is the discounted
accumulation of these rewards. The returns (which measure the quality of a policy) of
the objectives generated in the multi-objectivization we propose here are fully correlated,
while the immediate rewards are not. These latter may differ wildly, and this heterogeneity
in immediate rewards, combined with a guarantee of correlation of the total return, is the
power of this proposed multi-objectivization.

94

6.6. ENSEMBLE TECHNIQUES IN REINFORCEMENT LEARNING

Whether a multi-objectivization will actually be successful in making a problem easier to
solve depends on the formulation of the shaping functions themselves. The best potential
function8 is V ∗ itself, the optimal value function of the problem.9 While it is unlikely that
the system designer can define a single potential function that equates V ∗ throughout
the search space (which would amount to solving the problem), it is more likely that they
can define several potential functions that correlate well with V ∗ in different parts of the
state space, i.e., several rules of thumb for different situations,10 or rules of thumb that
weakly correlate with V ∗ throughout the state space. If these shapings are used to multi-
objectivize an MDP, one can then attempt to strategically combine these signals, for which
we will use ensemble techniques described in the next section.

6.6 Ensemble Techniques in Reinforcement Learning
Ensemble techniques have been introduced in Reinforcement Learning by Wiering and van
Hasselt [2008]. Their approach involved several distinct reinforcement learning algorithms
(agents) learning in parallel from the same experiences. The ensemble policy from which
these experiences are generated is derived from a voting mechanism based on each agent’s
action preferences. Others have investigated the robustness of ensembles of neural network
reinforcement learners, showing how these ensembles alleviate the problem of parameter
tuning and are more stable [Hans and Udluft, 2010; Faußer and Schwenker, 2011] or how
to select the best subset of ensemble agents for learning [Faußer and Schwenker, 2015]. In
our multi-objectivization setting, the diversity required for an ensemble will not primarily
come from the algorithms or their parameters, which may all be the same, but from the
reward signal, which is enriched with a different shaping signal for each ensemble agent.
The different ensemble strategies we will describe below can all be formalized as calcu-

lating a weighted (wi) sum of each ensemble agent’s preferences (pi), where the actual
8Recall that potential function is the term used in reward shaping literature to refer to the value function

constructed to represent some knowledge. It is no different from the value functions we have been using
throughout this thesis to represent knowledge, but we use the term potential function in this chapter to
be consistent with the reward shaping context.

9V ∗(s) = maxa Q∗(s, a).
10E.g., shaping using kinetic (speed) or potential energy (height) in the Mountain Car domain [Singh

and Sutton, 1996], a problem where an underpowered car needs to build up momentum to climb a hill.
These are opposite forces in this domain, as the car trades speed for height and vice versa, yet each is
useful in a different situation: the car needs to focus on gaining speed when it can no longer gain height,
and focus on gaining height when speed is already high.

95

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

choice for weight and preference functions will define the different strategies. The greedy
ensemble policy then is:

π(s) = arg max
a

n∑
i

wi(s)pi(s, a) (6.2)

The preference function pi(s, a) defines how high agent i values action a in state s. In the
simplest case, pi(s, a) = Qi(s, a), i.e., an agent’s preference function is its estimated Q-
function. The weight function wi(s) defines the relative importance of an agent in state s,
i.e., how much an agent contributes to the ensemble decision relative to the other agents.
Without loss of generality, we constrain wi to: ∀s :

∑n
i wi(s) = 1. Without prior know-

ledge, it is advisable to set each agent’s contribution to wi(s) = 1
n , independent of state.

Algorithm 1 describes the pseudocode for a greedy reward-function based ensemble of
RL agents. At each step of the process, state s is observed, and action a is chosen given
s, based on Equation 6.2. Action a is executed, next state s′ is observed, and each agent
i observes reward Ri, which in the shaping case amounts to Ri = R + Fi. These are
used to update each learning agent.11 Equation 6.2 gives a greedy policy; an ε-greedy, or
soft-max policy can be defined analogously.

Algorithm 1 Greedy Ensemble of RL agents
1: procedure Greedy-Ensemble
2: initialize s
3: for each step of episode do
4: a← arg maxa

∑n
i wi(s)pi(s, a)

5: take action a, observe r, s′
6: for each learner i do
7: update agent i with (s, a,Ri(s, a, s′), s′)
8: end for
9: s← s′

10: end for
11: end procedure

Algorithm 2 illustrates a specific implementation of this ensemble of RL agents:12 a
greedy ensemble of standard Q-learners using the linear ensemble technique. The agents’
preference function is their estimated Q-function, and all agents have equal contribution.

11For on-policy learners, the ensemble needs to choose next action a′ as well, before updating the
learners.

12Note that we can refer to such an algorithm as an ensemble of RL agents or a single agent learning
multiple value-functions or policies.

96

6.6. ENSEMBLE TECHNIQUES IN REINFORCEMENT LEARNING

Note that each agent i learns independently, in that there is no mixing of values. Only at
the action selection stage is there ‘mixing’ between the agents.

Algorithm 2 Greedy linear ensemble of Q-learners
1: procedure Greedy-Q-Ensemble
2: initialize s
3: initialize each learner
4: for each step of episode do
5: a← arg maxa

∑n
i

1
nQi(s, a)

6: take action a, observe r, s′
7: for each learner i do
8: Qi(s, a)← Qi(s, a) + α [Ri(s, a, s′) + γmaxa′ Qi(s′, a′)−Qi(s, a)]
9: end for
10: s← s′

11: end for
12: end procedure

Below, we describe four ensemble strategies, each defined by a different implementation
of the weight and preference functions.

6.6.1 Linear
The most straightforward ensemble strategy (also often used in multi-objective reinforce-
ment learning in general), is to calculate a linear combination of the different estimated
Q-functions: pi(s, a) = Qi(s, a), as in Algorithm 2, line 5.
In this ensemble, the weight function serves two purposes:

1. to weigh the relative importance of the different ensemble agents

2. to compensate for the differences in magnitude between the different agents’ Q-
functions

Thus, we decompose the weight function into two weight functions: wi,ri and wi,sc,
respectively used for the two goals described above. These are then combined in this way:
wi(s) = wi,ri(s)wi,sc(s)∑n

i
wi,sc(s)

. Unless prior information is available, which could come from a
tuning phase prior to learning, or from expert knowledge on the efficacy of each reward
shaping function,13 the relative importance weight function is set to wi,ri(s) = 1

n , subject
13 Marivate and Littman [2013] for example learn these weights in a limited setting.

97

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

to
∑n
i wi,ri(s) = 1. Although the agents are learning on the same base reward signal,

their shaping signals may have wildly varying scalings and therefore result in estimated
Q-functions of varying scalings. This can be compensated for using the scaling weights
wi,sc, but, without prior knowledge, we set these weights to: wi,sc(s) = 1.
Importantly, in contrast to what we claimed in prior work [Brys et al., 2014a], this

ensemble is not equivalent to a single learner learning with a single composite shaping (a
reward shaping function F (s, a, s′) =

∑n
i wi(s)Fi(s, a, s′)), due to the non-linearity of

the max operator employed [Roijers et al., 2013]. A single composite shaping is a much
more computationally and memory efficient combination of shapings, since it does not
require the storage of several value functions, but may result in the loss of information, as
any dimensionality reduction technique risks.14 We will also compare with this approach
in the experimental section.

6.6.2 Majority Voting

Intuitively, in majority voting [Wiering and van Hasselt, 2008],15 each agent casts a single
vote, choosing its preferred action. Given equal weights, the greedy ensemble action is the
one that received the most votes. Formally, an agent’s preference function is this:

pi(s, a) =
{

1 if a = arg maxbQi(s, b)
0 else.

In this case, the weight function only serves to weigh the relative importance of agents,
since with voting, all agents’ preference functions have the same codomain: (0, 1). Again,
unless prior information is available, we set the weight function to: wi(s) = 1

n .

6.6.3 Rank Voting
Rank voting [Wiering and van Hasselt, 2008] is a more fine-grained voting mechanism,
where, as in majority voting, the lowest ranked action gets a score of 0, and the most
preferred action a score of 1. In contrast, the in-between actions get a score proportional
to their rank:

pi(s, a) = #actions− rank(s,a)
n− 1

14For example, if nine out of ten ensemble agents have attribute the highest expected return to action
a, but the tenth believes this action will yield a very large negative return, in a linear combination, the
fact that the majority agreed on action a will be lost, and another action will be deemed ‘best’ due to the
effect of a single of the ensemble agents.

15In more recent work, van Hasselt preferred the term plurality voting [van Hasselt, 2011].

98

6.6. ENSEMBLE TECHNIQUES IN REINFORCEMENT LEARNING

where rank(s, a) outputs the index of (s, a) from [1,#actions]) in the sorted list according
to some quality criterion. Commonly, one will sort according to Q(s, a).
The weight function is again used to weigh the relative importance of agents.

6.6.4 Confidence-based
Adaptive objective selection is a technique we previously introduced specifically to solve
CMOMDPs [Brys et al., 2014b]. It builds on work on multi-objectivization in evolutionary
computation where Jensen [2005] proposes to base every optimization decision on feedback
from only a single of the several objectives [Jensen, 2005]. This is possible since each of
the objectives alone can be used to solve the original MDP.
Specifically, at every step, this ensemble technique tries to measure how confident each of

the ensemble agents is about its estimates for the current state, and uses the most confident
agent’s estimates alone to make an action selection decision. Thus, the preference function
is simply the Q-function, as in the linear ensemble. The difference with that ensemble lies
in the weight function wi(s), which incorporates the measure of confidence:

wi(s) =
{

1 if i = arg maxagent confidence(s, agent)
0 else.

We define confidence as an estimation of the likelihood that the estimates are correct.
Higher-variance reward distributions will make any estimate of the average reward less
confident, and always selecting the agent whose estimates are most likely to be correct
will maximize the likelihood of correctly ranking the action set. This is loosely inspired by
the use of confidence intervals in UCB [Auer et al., 2002].
To measure confidence in estimates, we model every (s, a)-pair as a distribution, and not

just a mean (Q-value). This allows us to determine how well each agent can differentiate
between the actions based on common statistical tests. See Figure 6.3 for an illustration
of this concept. Below, we describe an efficient way to represent these distributions and
measure confidence for the case of tile-coding function approximation. For a discussion
on how to represent these distributions in other cases, we refer the reader to our previous
work [Brys et al., 2014b].
Tile-coding provides a very natural way to represent (s, a)-pairs as distributions, without

requiring the storage of extra information. For a (s, a)-pair, agent i can simply take the
weights in θi,a activated by s as samples representing the distribution of that pair. Then,
we can estimate confidence by applying a paired statistical test to the samples of every
action (or of the estimated best and worst actions). Such tests calculate a p-value which
indicates how likely it is to observe the given estimates under the hypothesis that they come
from the same distribution. The smaller the p-value, the more likely it is the distributions

99

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

agent0

a0 a2a1

a0 a1a2

agent1 a0 a2a1

a0 a1a2
agent0

agent1

Q(s, a)-values only (s, a) distributions

Figure 6.3: Showing two agents’ estimates (top and bottom respectively). Determining
which agent can be most confident about its estimates is impossible based on the

estimated Q-values alone (left). Extra information is necessary (right). In this example,
the second agent’s estimates are deemed to be more reliable, as the actions’ distributions

are more significantly different/show less overlap.

are different, and that the agent can differentiate correctly between the actions. We can
use a paired test, such as the paired Student’s t-test or the Wilcoxon signed-rank test,
because the weights for different actions will come from the same tiles in the same tilings,
although stored in different weight vectors.
This confidence-based ensemble has several interesting properties. It makes its decisions

a function of the state-space, which can account for different shapings being more or less
reliable in different parts of the state space. Furthermore, it uses the different agents’
estimates in a scale-invariant way. That is, its workings do not depend on the relative
scalings of the shapings, since all statistical tests proposed are scale-invariant, and thus
no parameters are introduced. This is a significant improvement over the simpler linear
ensemble, which usually requires weight tuning, if only to align the magnitudes of the
different shapings. Do note however that, despite using concepts such as distributions
and statistical tests, there are no theoretical underpinnings to this confidence ensemble;
it is no more than a heuristic.

6.7 Empirical Validation
We empirically demonstrate the usefulness of the proposed approach in the three domains
we have been considering in this thesis: cart pole, the pursuit domain and Mario. All
experiments are averaged over 100 trials for statistical significance, evaluated using the
Student’s t-test with p = 0.05. In the first two domains, we compared the following

100

6.7. EMPIRICAL VALIDATION

approaches, mainly by measuring their cumulative performance (an indication of how fast
they learn):16

1. vanilla Q(λ)-learning with pessimistic initialization

2. vanilla Q(λ)-learning with optimistic initialization

3. Q(λ)-learning shaped with a single shaping

4. Q(λ)-learning shaped with a composite shaping, i.e., a linear combination of all the
shapings (Φ(s) =

∑n
i

1
nΦi(s))

5. an ensemble of Q(λ)-learners, each shaped with a single of the shapings, combined
with one of the four ensemble techniques

(a) linear
(b) majority voting
(c) rank voting
(d) confidence

We compare with optimistic initialization to analyse the effect of undirected uniform
exploration, versus the more directed biased exploration that the shapings provide, which
we hypothesize will be more effective. The shaping variants are always pessimistically
initialized, so that exploration is almost exclusively driven by the shaping, besides the
exploration induced by the action selection mechanism.
Furthermore, we perform two sets of experiments. One with normalized shapings, i.e.,

shapings with their potential function ∈ [0, 1], and one with non-normalized shapings,
to show how ensemble techniques are affected by the differences in magnitude between
the shapings.
Lastly, we analyse the diversity induced by the different shaping signals.

6.7.1 Cart Pole
We transform Cart Pole into a CMOMDP by multi-objectivizing the problem using two
potential-based shaping functions [Harutyunyan et al., 2015a]:

16In Mario, we only compared vanilla Q(λ)-learning with initialization set to 0, a composite shaping and
linear and rank voting ensembles. Majority voting was left out to save time in favour of rank voting that
always performed at least as good in previous experiments. The confidence ensemble was left out since in
Mario we did not use tile-coding function approximation.

101

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

Angle encourages the agent to keep the angle of the pole close to 0, i.e., upright. Its
potential function is defined as ΦA(s) = −|θ| (radians).

Angular velocity encourages the agent to keep the velocity of the pole low, since a fast
moving pole is harder to control. Its potential function is defined as ΦAV (s) = −|θ̇|
(radians).

These shapings are scaled by 100 for optimal effect.17 The angle is normalized by dividing
by 0.20944 (the largest angle of the pole before failure in radians), and the angular velocity
is normalized by dividing by 6, the maximum angular velocity.

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Q-Learning

Q-Learning optimistic

Angle shaping

Angular velocity shaping

Composite shaping

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Q-Learning

Composite shaping

Linear ensemble

Majority voting ensemble

Rank voting ensemble

Confidence ensemble

Single shapings Ensembles

Figure 6.4: Cart Pole - normalized shapings. The composite shaping outperforms the
individual shapings, while the ensembles slightly outperform the composite shaping.

Figure 6.4 and Table 6.1 summarize the first experiment in Cart Pole with normalized
shapings. As can be expected, both the angle and angular velocity shapings help the
agent learn much faster than without this prior knowledge. Unguided, uniform exploration
through optimistic initialization on the other hand results in slightly worse performance
compared to the baseline vanilla Q(λ), as the agent is encouraged to explore failure states
too. Furthermore, a simple composite shaping (the average of the angle and angular
velocity shapings) outperforms either of the individual shapings alone, while the ensembles
slightly, but significantly, outperform this composite shaping. Arguably, in this case the
composite shaping is preferable due to the lower computational and memory complexity,
even though its sample efficiency is slightly worse than the ensembles.

17The shaping tuning problem has been addressed by Harutyunyan et al. [2015a], where the authors
propose to include the same shaping with a number of different scalings in the ensemble. That is beyond
the scope of this thesis.

102

6.7. EMPIRICAL VALIDATION

In the case of non-normalized shapings (Figure 6.5 and again Table 6.1), the angular
velocity shapings’s performance drops significantly due to its much larger magnitude rel-
ative to the reward function. Consequently, the composite shaping and linear ensemble’s
performance drop too, since they are sensitive to the relative magnitudes of the different
signals they are composed of. Importantly, the performance of the voting and confidence
ensembles is unaffected, thanks to their scale-invariance. This suggests that the paramet-
erless voting and confidence ensembles yield more robust combinations of shapings.

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Q-Learning

Q-Learning optimistic

Angle shaping

Angular velocity shaping

Composite shaping

0 200 400 600 800 1000

Episode

0

200

400

600

800

1000

S
te

p
s

p
o
le

 u
p

Q-Learning

Composite shaping

Linear ensemble

Majority voting ensemble

Rank voting ensemble

Confidence ensemble

Single shapings Ensembles

Figure 6.5: Cart Pole - non-normalized shapings. The composite shaping and linear
ensemble’s performance is lower compared to the normalized shapings case, due to their
sensitivity to the scaling of the signals they incorporate. The voting and confidence

ensembles are scale-invariant and yield therefore similar performance to the normalized
shaping case.

6.7.2 Pursuit Domain
We formulate a CMOMDP by multi-objectivizing the problem using three potential-based
shaping functions:18

Proximity encourages a predator to move closer to the prey. Its potential function is
defined as ΦP (s) = −d(pred, prey), with d the Manhattan distance.

Angle encourages the predators to move to different sides of the prey, trapping it. It is
defined to maximize the angle in radians between them and the prey to π: ΦA(s) =

18It has been proven that potential-based shaping in multi-agent RL does not alter the Nash Equilib-
ria [Devlin and Kudenko, 2011].

103

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

Algorithm Cumulative performance
Q-Learning 5.0 · 105 ± 3 · 104

Q-Learning optimistic 4.7 · 105 ± 3 · 104

Normalized Non-normalized
Angle shaping 8.1 · 105 ± 7 · 103 8.3 · 105 ± 6 · 103

Angular velocity shaping 8.2 · 105 ± 2 · 104 7.7 · 105 ± 2 · 104

Composite shaping 8.8 · 105 ± 3 · 103 8.5 · 105 ± 1 · 104

Linear ensemble 8.9 · 105 ± 2 · 103 8.6 · 105 ± 1 · 104

Majority voting ensemble 8.8 · 105 ± 3 · 103 8.8 · 105 ± 3 · 103

Rank voting ensemble 8.8 · 105 ± 3 · 103 8.8 · 105 ± 3 · 103

Confidence ensemble 8.8 · 105 ± 3 · 103 8.8 · 105 ± 3 · 103

Table 6.1: Cart Pole - normalized. Averages of 100 trials of 1000 episodes each,
measuring the number of steps the pole was up before falling. Those results not

significantly different from the best are indicated in bold.

arccos(a·b
|a||b|), with a and b vectors pointing from the prey to the two predators

respectively.

Separation encourages the predators to move away from each other. Its potential function
is defined as ΦS(s, a) = d(pred1, pred2) with d again the Manhattan distance.

Proximity and Separation are normalized by dividing by 2× size, with size = 20 both the
width and height of the world; Angle is normalized by dividing by π. Furthermore, Proximity
is implemented as 2× size− d(pred, prey), so that all shaping functions are positive, as
theory indicates potentials should be when γ < 1 and there is no step-reward [Grześ and
Kudenko, 2009].
The results of the first experiment (with normalized shapings) are shown in Figure 6.6

and Table 6.2. While the proximity and angle shapings improve performance compared to
the baseline, the separation shaping appears not to be that useful and slightly degrades
performance. Optimistic initialization results in much worse performance, due to the
excessive exploration of unseen states far away from the prey. The composite shaping
yields performance in-between the other shapings’, not as good as the proximity shaping
alone, showing that in this case the simple combination of signals is not better than the
best of its constituting parts, unlike in the Cart Pole domain. The ensembles on the other
hand outperform the composite shaping, and all but the majority voting one outperform
the proximity shaping’s performance.
When one cannot normalize the shapings’ magnitudes in this domain (because the size of

the world is not known for example, or infinite), the performance yielded by the individual

104

6.7. EMPIRICAL VALIDATION

0 50 100 150 200 250 300 350 400

Episode

0

100

200

300

400

500

600

700

S
te

p
s

Q-Learning

Q-Learning optimistic

Proximity shaping

Angle shaping

Separation shaping

Composite shaping

0 50 100 150 200 250 300 350 400

Episode

0

100

200

300

400

500

600

700

S
te

p
s

Q-Learning

Proximity shaping

Linear ensemble

Majority voting ensemble

Rank voting ensemble

Confidence ensemble

Single shapings Ensembles

Figure 6.6: Pursuit domain - normalized shapings. The ensembles yield similar final
performance and better cumulative performance than the individual or composite

shapings.

0 50 100 150 200 250 300 350 400

Episode

0

100

200

300

400

500

600

700

S
te

p
s

Q-Learning

Q-Learning optimistic

Proximity shaping

Angle shaping

Separation shaping

Composite shaping

0 50 100 150 200 250 300 350 400

Episode

0

100

200

300

400

500

600

700

S
te

p
s

Q-Learning

Proximity shaping

Linear ensemble

Majority voting ensemble

Rank voting ensemble

Confidence ensemble

Single shapings Ensembles

Figure 6.7: Pursuit domain - non-normalized shapings. The individual and composite
shapings, as well as the linear ensemble are most affected by the large differences in

magnitude.

and composite shapings, as well as the linear ensemble is much worse, while the voting
and confidence ensembles are again least affected due to their scale-invariance (Figure 6.7
and again Table 6.2). The fact that the performance of the ensembles still degrades is
because they are scale-invariant across the different reward signals, but not within the
different reward signals. That is, they are invariant to differences in scalings between
the different reward+shaping signals, but they are not invariant to differences in scaling

105

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

Algorithm Cumulative performance
Q-Learning 7.4 · 104 ± 3 · 103

Q-Learning optimistic 1.0 · 105 ± 2 · 103

Normalized Non-normalized
Proximity shaping 4.6 · 104 ± 6 · 102 7.8 · 104 ± 1 · 103

Angle shaping 5.6 · 104 ± 1 · 103 8.2 · 104 ± 3 · 103

Separation shaping 7.5 · 104 ± 2 · 103 2.1 · 105 ± 9 · 103

Composite shaping 4.9 · 104 ± 7 · 102 1.0 · 105 ± 2 · 103

Linear ensemble 4.1 · 104 ± 4 · 102 8.9 · 104 ± 1 · 103

Majority voting ensemble 4.9 · 104 ± 6 · 102 7.5 · 104 ± 7 · 102

Rank voting ensemble 4.6 · 104 ± 4 · 102 6.6 · 104 ± 7 · 102

Confidence ensemble 4.3 · 104 ± 6 · 102 5.7 · 104 ± 7 · 102

Table 6.2: Pursuit domain. Averages of 100 trials of 400 episodes each, measuring the
number of steps needed to catch the prey. Those results not significantly different from
the best are indicated in bold. The ensembles yield better cumulative performance than

the individual or composite shapings.

between the reward and shaping signals themselves, which is a different problem addressed
elsewhere [Harutyunyan et al., 2015a].

6.7.3 Mario
Finally, we explore the ensembles and multi-objectivization using results from the previous
chapters in Mario. We formulate the CMOMDP by creating shapings using five potential
functions.19

Policy Transfer the policy transfer value function from Chapter 4 as a potential function.

Gaussian demonstrations the Gaussian value function generated from all 20 demonstra-
tions provided by the RL demonstrator from Chapter 5 as a potential function.

HAT demonstrations as the previous, but processed by HAT.

Right a potential function encouraging Mario to go right (Φ(s) = s4), as finishing the
level involves a significant amount of going right

19As a technical detail, in the Mario experiments of this section, we actually initialized the ensemble’s
Q-functions with the potential functions instead of shaping the reward functions. This is theoretically
equivalent, see Section 3.3.2.

106

6.7. EMPIRICAL VALIDATION

Up a potential function encouraging Mario going up (Φ(s) = s5), since being ‘up’ in-
creases Mario’s chances of dropping on enemies to kill them, or simply jumping over
them.

The first three already yield values between 0 and 1; for the latter two, we normalize their
output to be between 0 and 1.
Figure 6.8 and Table 6.3 show the results of an experiment comparing the Q-learning

baseline with a composite shaping and a linear and rank voting ensemble. In this case,
we observe the composite shaping performing best, with the two ensembles following
close behind. Since we were considering signals of equal magnitude, this is not necessarily
surprising, and it shows that a naive and computationally and memory efficient combination
of heuristics can definitely be preferable.

0 10000 20000 30000 40000 50000

Episode

500

0

500

1000

1500

2000

P
o
in

ts

Q-Learning

Composite shaping

Linear ensemble

Rank voting ensemble

Figure 6.8: Mario. This domain serves as a counter example. The naive combination of
shapings yields better performance than an ensemble.

Algorithm Cumulative performance
Q-Learning 6.6 · 107 ± 3 · 105

Composite shaping 7.4 · 107 ± 7 · 105

Linear ensemble 7.0 · 107 ± 6 · 105

Rank voting ensemble 6.7 · 107 ± 3 · 105

Table 6.3: Mario. Averages of 100 trials of 50.000 episodes each, measuring the points
accumulated in the game. Those results not significantly different from the best are

indicated in bold.

107

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

6.7.4 Diversity of shapings
Since our ensembles of shapings perform well in the experiments conducted, we can assume
that the different shapings induced the diversity required for ensemble systems to work.
In this section, we show that this diversity is indeed present and show how it evolves
during the learning process. We measure diversity at a given time step of the learning
process by calculating the Pearson correlation coefficient between Q-values. Specifically,
in a given state, for each pair of agents in an ensemble, we calculate the Pearson correlation
coefficient between the two agents’ Q-values in that state. For every visited state-action
pair, we average over all pairs of agents in the ensemble. A coefficient of 1 indicates full
correlation (i.e., the agents fully agree on the relative quality of actions in that state), a
coefficient of −1 indicates full anti-correlation (i.e., the agents have completely opposite
ideas on the relative quality of actions in that state), and 0 indicates uncorrelated estimates
(i.e., the agents disagree on the quality of actions, but in an inconsistent way). We
hypothesize that full correlation (at least initially) and full anti-correlation are not useful
for an ensemble, since with the former, there is no diversity, and with the latter, there is
no agreement. We hypothesize that good trade-offs between diversity and agreement will
yield a correlation coefficient around 0.
Figure 6.9 shows this analysis for the different ensembles used in Cart Pole, the Pursuit

domain, with normalized shapings and in Mario. Observe that in all three domains, early
in the learning process, the estimated Q-values of the different ensemble agents are indeed
uncorrelated, or even slightly anti-correlated. As learning progresses, the ensemble agents’
estimates become more and more correlated, as they converge to their optimal value func-
tions. Here we see the interplay between rewards and returns in the learning process.
Immediate rewards are uncorrelated or even anti-correlated due to the different shapings
sometimes disagreeing on what are ‘good’ states, and thus the initial estimates are also un-
correlated. As learning progresses, and rewards are propagated through the value function
representation, the estimates converge to the actual expected returns, which are correl-
ated, independent of the amount of anti-correlation that may exist between the shapings
themselves. The initial diversity makes the ensemble learn faster, and the later lack of
diversity is a result of the guarantee that the ensemble learns the optimal policy.

6.8 Summary
This chapter introduced a novel perspective on diversity in ensemble techniques, where
the necessary diversity is not derived from the differences in the algorithms themselves
or their input data, but rather from the way they evaluate their own performance, i.e.,
diversity of evaluation. This allows for the use of expert knowledge to complement an

108

6.8. SUMMARY

101 102 103

Episode

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n

Linear

Majority voting

Rank voting

Confidence

Cart Pole

101 102 103

Episode

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n

Linear

Majority voting

Rank voting

Confidence

101 102 103

Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n

Linear

Rank voting

Pursuit domain Mario

Figure 6.9: Pearson correlation coefficient between the Q-values of the different
ensemble agents over time. We can observe the diversity induced by the different reward
shaping signals early on, which diminishes as the learners converge to their optimal value

functions (which are fully correlated).

otherwise uninformative objective function (think for example of the objective function in
classification, which is usually only approximate due to the sheer size and unavailability of
all relevant data). Yet, certain guarantees are required for this approach to not compromise
optimality of solutions, since changing the objective function typically means changing the
problem (and thus the solutions to the problem).
Therefore, we developed a theoretical framework in the context of reinforcement learn-

ing that provably provides these guarantees, thus allowing the safe incorporation of many

109

CHAPTER 6. ENSEMBLES OF SHAPINGS IN REINFORCEMENT LEARNING

heuristics in a reinforcement learning process. It leverages the strong theory that un-
derpins potential-based reward shaping and shows promising results in the experiments
we conducted.

110

7 | Conclusions

Now all has been heard, here is the conclusion of the
whole matter.

King Solomon, Ecclesiastes 12:13

This chapter summarizes the contributions laid out in this thesis, and proposes some
directions for future research.

7.1 Contributions
The research described in this thesis deals with the situation where a reinforcement learning
agent is provided with prior or external heuristic knowledge. Such knowledge could be used
by the agent to explore its environment/task in a focused way, as opposed to a typically
uniform exploration when no information is available. Such focused exploration in turn
could yield much faster learning, in terms of number of interactions with the environment,
which are usually costly – i.e., an increased sample efficiency.
Our first contribution in this context is an overview of what components could

be present in such a reinforcement learning system with heuristic information,
specifically in the context of temporal-difference learning, a popular form of reinforcement
learning (see Chapter 3). We discussed several types of information and the sources that
could provide this kind of information, describing amongst others demonstrations, teacher
advice and behaviour transfer. We discussed two ways of encoding such information, as
value functions and policies, and provided a way to translate between these two encodings.

111

CHAPTER 7. CONCLUSIONS

Finally and most importantly, we discuss four common ways of injecting knowledge encoded
either as a value function or policy into a temporal difference process, describing their
theoretical properties: Q-value initialization, (dynamic) reward shaping, probabilistic policy
reuse (PPR), and the extra action method. From a small sampling from the literature, we
showed how different algorithms are built up using different components in this framework.
Our second contribution is the experimental validation of different instantiations

of this framework (see Chapters 4 and 5). First in policy transfer, and second in a
learning from demonstration setting. The main conclusion we can draw from this research is
that in both settings, all four knowledge injection techniques are plausible options to use, as
each of these can yield improved learning versus not injecting heuristic knowledge. Besides
simply validating and comparing the performance of the different knowledge injection
techniques in these settings, we analysed their robustness by varying several parameters of
these settings. In policy transfer, we have looked at transferring policies of low and high
quality (there is a clear positive correlation between the quality of the transferred policy
and the learning agent’s performance), at transfer in the context of a multi-agent system
(transferring a policy to all agents is better than to a single agent), and at transferring
deterministic and stochastic policies (stochastic policies provide a broader, more nuanced
bias than deterministic policies, which is often beneficial), spread over three different
benchmark problems.
The Reinforcement Learning from Demonstration setting combines demonstrations

and rewards as sources of information for learning. We have argued that the fields of RL
and Learning from Demonstration (LfD) can benefit from each other, with the rewards
in RL providing a ground truth for learning, with potential guarantees of optimality for
what is learned, and the demonstrations providing a useful bias for the otherwise slow
(low sample efficiency) RL process. Since the demonstrations are only treated as a heur-
istic, and not as the ‘truth,’ as usually is done in a pure LfD setting where no other
information is available, it is not problematic if the demonstrations are not of the highest
quality, or if there are not enough demonstrations. We have shown this experimentally, by
investigating demonstration datasets of varying sizes (showing an expected positive correl-
ation between dataset size and learning performance), by looking at demonstration dataset
quality (showing again an expected positive correlation between dataset quality, or demon-
strator performance, and learning performance), and by looking at different demonstrator
types and their effect on performance (the demonstrator with the same perception of the
world as the student yielded the best performance). These experiments have confirmed the
intuitions that indeed more and better demonstrations by demonstrators that have a per-
ception of the world similar to the student agent’s yield better performance. Furthermore,

112

7.2. FUTURE OUTLOOK

we developed a value-function based encoding of demonstrations as opposed to the exist-
ing policy encoding provided by classification LfD algorithms. This encoding has proven
to be preferable in settings where a limited number of demonstration samples is available.
An important take-away from this line of research (policy transfer and learning from

demonstration) is that it remains unclear which factors favour one of the knowledge injec-
tion techniques yielding better performance over the others. Each technique outperforms
the others in some settings. Therefore, when building a reinforcement learning system
where one wants to inject such heuristic information, each of the injection techniques
must be considered. We propose to consider these in the following order: PPR, initializa-
tion, extra action and dynamic shaping. PPR first since it has yielded the most consistently
good performance over all experiments, followed by initialization. The extra action method
also has performed consistently good, but due to its smaller bias, its effect on performance
has typically been smaller. Finally, dynamic shaping is the most complex to implement, and
has yielded mixed results, sometimes very good, but sometimes unstable, and therefore
we consider it as a last option.
Our final and most important contribution of this thesis is the development of

the ensembles of shapings framework (see Chapter 6). Building on work from the
ensemble literature and from multi-objectivization literature, we propose a general ma-
chine learning approach, instantiated in reinforcement learning, that provides a systematic
way of incorporating multiple pieces of heuristic knowledge in a learning process, in or-
der to guide its learning without compromising convergence or optimality guarantees. In
essence, the technique involves creating several reward signals, each augmented with a
shaping function encoding a different piece of knowledge, learning a Q-function for each
signal, and making ensemble decisions based on the different Q-functions.1 We prove that
this approach preserves convergence guarantees, and experimentally show that combining
various pieces of knowledge in this way can outperform a more naive way of combining
(a linear scalarization of the Q-functions encoding the knowledge), because it keeps the
different pieces of knowledge of knowledge separate, combines them in a scale-invariant
way, and allows for different combinations in different parts of the state space.

7.2 Future outlook
In general. All the techniques and results discussed in this thesis should be validated in
more complex settings, in combination with more complex function approximators (i.e.,
deep neural networks), to prove their usefulness at the cutting edge of reinforcement

1Alternatively, given the equivalence between static reward shaping and initialization, it could be seen
as different function approximators learning from the same reward signal but each approximator differently
initialized.

113

CHAPTER 7. CONCLUSIONS

learning.2 We do not foresee any reasons why the research discussed in this thesis could
not also be useful there, but we will not claim that indeed it does, until it has been
shown to be so.
Knowledge injection. The knowledge injection techniques we have investigated were

discussed and experimented with in the context of temporal difference learning methods.
While temporal difference learning is an important and popular class of reinforcement
learning algorithms, other classes, such as policy gradient algorithms are equally important,
thanks to their many theoretical and empirical successes. An investigation of the different
ways of biasing a policy gradient algorithm in a theoretically sound way would be useful
for the field, along with an empirical validation of the techniques identified. Perhaps it will
be possible to identify variants of the four techniques we discussed that work with policy
gradient algorithms. AlphaGo is an example of a policy gradient algorithm initialized with
values learned through a learning from demonstration technique.
An important issue when using techniques and algorithms, is their requirement for para-

meter tuning. Parameter tuning typically adds a large amount of overhead or (i.e. lowers
sample efficiency). An important avenue for future research is looking into how parameters
for probabilistic policy reuse and dynamic shaping could be automatically set, by linking
them to other parameters or through on-line analysis of the agent’s performance. If for
example it can be determined that the policy being reused is not very good, policy reuse’s
reuse parameter ψ could be decayed much faster, to quickly remove the bad bias. Simil-
arly with dynamic shaping, if it can be determined that the shaping function being learned
is simple and deterministic, the learning parameter β could be increased significantly to
speed up learning.
Policy Transfer. When transferring a policy, it is interesting to further investigate

how to modulate the bias introduced by this policy, by introducing further stochasticity
in the policy. We investigated this by first looking at transferring greedy deterministic
policies, and later more random stochastic policies. We found in the Pursuit domain,
that there is a sweet spot between fully random and fully greedy policies that yielded the
best performance. It should be investigated (not only in the context of policy transfer,
but in any heuristic setting where the knowledge is encoded as a policy) how one can
find this sweet spot that provides enough focus on good information, but leaves enough
randomness so that the environment is explored sufficiently too (a type of exploration-
exploitation trade-off).
Reinforcement Learning from Demonstration. In this Reinforcement Learning from

Demonstration (RLfD) setting, we have looked at two Learning from Demonstration (LfD)
techniques to process and encode the provided demonstrations before injecting them into

2We have not done this ourselves, since our research was performed when the deep revolution in
reinforcement learning was only beginning.

114

7.2. FUTURE OUTLOOK

the reinforcement learning process that should benefit from these demonstrations. One of
these techniques is a very straightforward application of a decision tree to build a policy,
the other was the generation of a piecewise Gaussian value function. Many more LfD
techniques exist that could be useful as the pre-processing and encoding component in
an RLfD setting. Further investigations into RLfD should consider more complex LfD
algorithms, especially as the tasks to be solved are of much higher complexity, in which
case the sample efficiency of LfD would be even more important than in the simpler
settings we have considered in this thesis.
Ensembles of shapings. In a general context, future work involves the investigation of

our ensemble ideas in other machine learning fields, as well as optimization literature, where
the idea of multi-objectivization has had some successes, but without strong theoretical
guarantees.
In a reinforcement learning context, there remain several avenues for future research.

Intra-signal scale-invariance, i.e., invariance to the relative magnitudes of reward and shap-
ing signals is a vital avenue for research, since the magnitude of shapings still requires
tuning in our ensemble approach. Harutyunyan et al. [2015a] recently started investigat-
ing this problem and provide a simple ensemble solution to this problem, which should
be further investigated.
The ensembles’ robustness against bad shapings is also an important issue. How is

performance of the ensemble techniques related to the proportion of ‘bad’ shapings in the
ensemble (do they degrade gracefully)? Can we build ensemble techniques that actively
monitor the quality and usefulness of each heuristic and alters it’s combination strategy
accordingly?
A more challenging, but very interesting question is: how can we automatically generate

shaping functions to be used in an ensemble? It should not be hard to generate many
combinations of state features, and many thousands of value functions can be tractably
learned in parallel [Sutton et al., 2011]. The difficulty will lie in building a shaping generator
that satisfies conditions similar to that of a weak learner (a learner that generates classifiers
that are merely better than random), as defined by Schapire [1990], in this case providing
shapings that yield slightly better performance than without shaping. Lastly, it remains
unclear how many of the ensemble algorithms such as AdaBoost that are very successful
in supervised learning could be used in reinforcement learning.

115

List of Publications

International Journals
1. Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E. Taylor and Ann Nowé (ac-

cepted). Multi-objectivization and Ensembles of Shapings in Reinforcement Learn-
ing. Neurocomputing.

2. Tim Brys, Tong T. Pham and Matthew E. Taylor (2014). Distributed learning and
multi-objectivity in traffic light control. Connection Science, 26(1), pages 65-83.
Taylor & Francis.

Book Chapters
1. Tim Brys, Yann-Michaël De Hauwere, Ann Nowé and Peter Vrancx (2012). Local

coordination in online distributed constraint optimization problems. Multi-Agent
Systems, Selected and Revised Papers of EUMAS-11, LNAI, Volume 7541, pages
31-47. Springer Berlin / Heidelberg. ISBN 978-3-642-34799-3.

Invited Surveys
1. Ann Nowé and Tim Brys (2016). A Gentle Introduction to Reinforcement Learn-

ing. In Proceedings of the Tenth International Conference on Scalable Uncertainty
Management (SUM), pages 18-32.

117

List of Publications

Proceedings of Conferences with International Referees
1. Halit Bener Suay, Tim Brys, Sonia Chernova, Matthew E. Taylor (2016). Learning

from Demonstration for Shaping through Inverse Reinforcement Learning. In Pro-
ceedings of the International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 429-437.

2. Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E. Taylor
and Ann Nowé (2015). Reinforcement Learning from Demonstration through Shap-
ing. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 3352-3358.

3. Tim Brys, Anna Harutyunyan, Matthew E. Taylor and Ann Nowé (2015). Policy
Transfer using Reward Shaping. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 181-188.

4. Kristof Van Moffaert, Tim Brys and Ann Nowé (2015). Risk-Sensitivity Through
Multi-Objective Reinforcement Learning. In Proceedings of the IEEE Congress on
Evolutionary Computation (IEEE CEC).

5. Silvio Rodrigues, Tim Brys, Rodrigo Teixeira Pinto, Ann Nowé and Pavol Bauer
(2015). Online Distributed Voltage Control of an Offshore MTdc Network using
Reinforcement Learning. In Proceedings of the IEEE Congress on Evolutionary Com-
putation (IEEE CEC).

6. Ivomar Brito Soares, Yann-Michaël De Hauwere, Kris Januarius, Tim Brys, Thi-
erry Salvant and Ann Nowé (2015). Departure MANagement with a Reinforcement
Learning Approach: Respecting CFMU Slots. In Proceedings of the IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC).

7. Tim Brys, Ann Nowé, Daniel Kudenko and Matthew E. Taylor (2014). Combining
Multiple Correlated Reward and Shaping Signals by Measuring Confidence. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI),
pages 1687-1693.

8. Steven Adriaensen, Tim Brys and Ann Nowé (2014). Fair-Share ILS: A Simple State-
of-the-art Iterated Local Search Hyperheuristic. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 1303-1310.

9. Steven Adriaensen, Tim Brys and Ann Nowé (2014). Designing Reusable Metaheur-
istic Methods: A Semi-automated Approach. In Proceedings of the IEEE Congress
on Evolutionary Computation (IEEE CEC), pages 2969-2976.

118

List of Publications

10. Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E. Taylor, Daniel Kudenko
and Ann Nowé (2014). Multi-Objectivization of Reinforcement Learning Problems
by Reward Shaping. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN), pages 2315-2322.

11. Kristof Van Moffaert, Tim Brys, Arjun Chandra, Lukas Esterle, Peter Lewis and Ann
Nowé (2014). A Novel Adaptive Weight Selection Algorithm for Multi-Objective
Multi-Agent Reinforcement Learning. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN), pages 2306-2314.

12. Tim Brys, Kristof Van Moffaert, Kevin Van Vaerenbergh and Ann Nowé (2013). On
the behaviour of scalarization methods for the engagement of a wet clutch. In Pro-
ceedings of the 12th International Conference on Machine Learning and Applications
(ICMLA), pages 258-263.

13. Tim Brys, Madalina M. Drugan and Ann Nowé (2013). Meta-evolutionary algorithms
and recombination operators for satisfiability solving in fuzzy logics. In Proceedings
of the IEEE Congress on Evolutionary Computation (IEEE CEC), pages 1060-1067.

14. Tim Brys, Madalina M. Drugan, Peter A.N. Bosman, Martine De Cock and Ann
Nowé (2013). Solving satisfiability in fuzzy logics by mixing CMA-ES. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO), pages 1125-
1132. Best Paper Award in IGEC/ESEP/BIO Track.

15. Tim Brys, Madalina M. Drugan, Peter A.N. Bosman, Martine De Cock and Ann
Nowé (2013). Local search and restart strategies for satisfiability solving in fuzzy
logics. In Proceedings of the IEEE Symposium Series on Computational Intelligence
(IEEE SSCI), pages 52-59. Nominated for Best Paper Award.

16. Tim Brys, Yann-Michaël De Hauwere, Martine De Cock and Ann Nowé (2012).
Solving satisfiability in fuzzy logics with evolution strategies. In Proceedings of
the 31st Annual North American Fuzzy Information Processing Society Meeting
(NAFIPS), pages 1-6. Best Student Paper Award.

119

Bibliography

Abbeel, P., A. Coates, M. Quigley, and A. Y. Ng
2007. An application of reinforcement learning to aerobatic helicopter flight. Advances
in neural information processing systems, 19:1.

Abbeel, P. and A. Y. Ng
2005. Exploration and apprenticeship learning in reinforcement learning. In Proceedings
of the 22nd international conference on Machine learning, Pp. 1–8. ACM.

Albus, J. S.
1981. Brains, behavior, and robotics. Byte books Peterborough, NH.

Amazon
2016. Amazon prime air. http://www.amazon.com/b?node=8037720011. Accessed
20/4/2016.

Ammar, H. B., E. Eaton, M. E. Taylor, D. C. Mocanu, K. Driessens, G. Weiss, and K. Tuyls
2014. An automated measure of mdp similarity for transfer in reinforcement learning.
In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence.

Argall, B. D., S. Chernova, M. Veloso, and B. Browning
2009. A survey of robot learning from demonstration. Robotics and autonomous sys-
tems, 57(5):469–483.

Atkeson, C. G. and J. C. Santamaria
1997. A comparison of direct and model-based reinforcement learning. In International
Conference on Robotics and Automation. Citeseer.

121

BIBLIOGRAPHY

Atkeson, C. G. and S. Schaal
1997. Robot learning from demonstration. In International Conference on Machine
Learning, Pp. 12–20.

Auer, P., N. Cesa-Bianchi, and P. Fischer
2002. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-
3):235–256.

Baird, L.
1995. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the twelfth international conference on machine learning, Pp. 30–37.

Bauer, E. and R. Kohavi
1999. An empirical comparison of voting classification algorithms: Bagging, boosting,
and variants. Machine learning, 36(1-2):105–139.

Benda, M., V. Jagannathan, and R. Dodhiawala
1986. On optimal cooperation of knowledge sources - an empirical investigation. Tech-
nical Report BCS–G2010–28, Boeing Advanced Technology Center, Boeing Computing
Services, Seattle, WA, USA.

Bertsekas, D. P.
1995. Dynamic programming and optimal control, volume 1. Athena Scientific Belmont,
MA.

Bhattacharya, R. and E. C. Waymire
2007. A basic course in probability theory. Springer Science & Business Media.

Bleuler, S., M. Brack, L. Thiele, and E. Zitzler
2001. Multiobjective genetic programming: Reducing bloat using spea2. In Proceedings
of the 2001 Congress on Evolutionary Computation, volume 1, Pp. 536–543. IEEE.

Bonaccio, S. and R. S. Dalal
2006. Advice taking and decision-making: An integrative literature review, and implic-
ations for the organizational sciences. Organizational Behavior and Human Decision
Processes, 101(2):127–151.

Bou Ammar, H., D. C. Mocanu, M. E. Taylor, K. Driessens, K. Tuyls, and G. Weiss
2013. Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part
II, chapter Automatically Mapped Transfer between Reinforcement Learning Tasks via
Three-Way Restricted Boltzmann Machines, Pp. 449–464. Berlin, Heidelberg: Springer
Berlin Heidelberg.

122

BIBLIOGRAPHY

Bou Ammar, H., K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss
2012. Reinforcement learning transfer via sparse coding. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1,
Pp. 383–390. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Breiman, L.
1996. Bagging predictors. Machine learning, 24(2):123–140.

Browne, C. B., E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton
2012. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43.

Brys, T., A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé
2015a. Reinforcement learning from demonstration through shaping. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), Pp. 3352–3358.

Brys, T., A. Harutyunyan, M. E. Taylor, and A. Nowé
2015b. Policy transfer using reward shaping. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, Pp. 181–188. IFAAMAS.

Brys, T., A. Harutyunyan, P. Vrancx, M. E. Taylor, D. Kudenko, and A. Nowé
2014a. Multi-objectivization of reinforcement learning problems by reward shaping. In
International Joint Conference on Neural Networks (IJCNN), Pp. 2315–2322. IEEE.

Brys, T., A. Nowé, D. Kudenko, and M. E. Taylor
2014b. Combining multiple correlated reward and shaping signals by measuring confid-
ence. In Twenty-Eighth AAAI Conference on Artificial Intelligence, Pp. 1687–1693.

Brys, T., T. T. Pham, and M. E. Taylor
2014c. Distributed learning and multi-objectivity in traffic light control. Connection
Science, 26(1):1–19.

Caruana, R.
1995. Learning many related tasks at the same time with backpropagation. Advances
in neural information processing systems, Pp. 657–664.

Coello Coello, C. A.
2000. Treating constraints as objectives for single-objective evolutionary optimization.
Engineering Optimization, 32(3):275–308.

123

BIBLIOGRAPHY

Crick, C., S. Osentoski, G. Jay, and O. C. Jenkins
2011. Human and robot perception in large-scale learning from demonstration. In
Proceedings of the 6th international conference on Human-robot interaction, Pp. 339–
346. ACM.

Das, I. and J. E. Dennis
1997. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto
set generation in multicriteria optimization problems. Structural optimization, 14(1):63–
69.

de Jong, E., R. Watson, and J. Pollack
2001. Reducing bloat and promoting diversity using multi-objective methods. Pp. 11–
18.

Degris, T., P. M. Pilarski, and R. S. Sutton
2012. Model-free reinforcement learning with continuous action in practice. In 2012
American Control Conference (ACC), Pp. 2177–2182. IEEE.

Devlin, S. and D. Kudenko
2011. Theoretical considerations of potential-based reward shaping for multi-agent
systems. In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, Pp. 225–232. IFAAMAS.

Devlin, S. and D. Kudenko
2012. Dynamic potential-based reward shaping. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1, Pp. 433–440.
International Foundation for Autonomous Agents and Multiagent Systems.

Devlin, S., D. Kudenko, and M. Grześ
2011. An empirical study of potential-based reward shaping and advice in complex,
multi-agent systems. Advances in Complex Systems, 14(02):251–278.

Efthymiadis, K. and D. Kudenko
2013. Using plan-based reward shaping to learn strategies in Starcraft: Broodwar. In
IEEE Conference on Computational Intelligence in Games (CIG), Pp. 1–8. IEEE.

Fachantidis, A., I. Partalas, M. E. Taylor, and I. Vlahavas
2015. Transfer learning with probabilistic mapping selection. Adaptive Behavior,
23(1):3–19.

Faußer, S. and F. Schwenker
2011. Ensemble methods for reinforcement learning with function approximation. In
Multiple Classifier Systems, Pp. 56–65. Springer.

124

BIBLIOGRAPHY

Faußer, S. and F. Schwenker
2015. Selective neural network ensembles in reinforcement learning: Taking the advant-
age of many agents. Neurocomputing, 169:350–357.

Fernández, F. and M. Veloso
2006. Probabilistic policy reuse in a reinforcement learning agent. In Proceedings of
the fifth international joint conference on Autonomous agents and multiagent systems,
Pp. 720–727. ACM.

Fieldsend, J. E.
2009. Optimizing decision trees using multi-objective particle swarm optimization. In
Swarm Intelligence for Multi-objective Problems in Data Mining, Pp. 93–114. Springer.

Freund, Y. and R. E. Schapire
1997. A decision-theoretic generalization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences, 55(1):119–139.

Gábor, Z., Z. Kalmár, and C. Szepesvári
1998. Multi-criteria reinforcement learning. In ICML, volume 98, Pp. 197–205.

Google
2016. Google self-driving car project. https://www.google.com/selfdrivingcar/. Ac-
cessed 20/4/2016.

Grześ, M. and D. Kudenko
2009. Theoretical and empirical analysis of reward shaping in reinforcement learning. In
International Conference on Machine Learning and Applications, Pp. 337–344. IEEE.

Hans, A. and S. Udluft
2010. Ensembles of neural networks for robust reinforcement learning. In Ninth Inter-
national Conference on Machine Learning and Applications (ICMLA), Pp. 401–406.
IEEE.

Hansen, L. K. and P. Salamon
1990. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(10):993–1001.

Harutyunyan, A., T. Brys, P. Vrancx, and A. Nowé
2015a. Multi-scale reward shaping via an off-policy ensemble. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems, Pp. 1641–
1642. IFAAMAS.

125

BIBLIOGRAPHY

Harutyunyan, A., S. Devlin, P. Vrancx, and A. Nowé
2015b. Expressing arbitrary reward functions as potential-based advice. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

Jensen, M. T.
2005. Helper-objectives: Using multi-objective evolutionary algorithms for single-
objective optimisation. Journal of Mathematical Modelling and Algorithms,
3(4):323–347.

Kaelbling, L. P., M. L. Littman, and A. W. Moore
1996. Reinforcement learning: A survey. Journal of artificial intelligence research,
Pp. 237–285.

Karakovskiy, S. and J. Togelius
2012. The Mario AI benchmark and competitions. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):55–67.

Kim, D.
2006. Minimizing structural risk on decision tree classification. In Multi-Objective
Machine Learning, Pp. 241–260. Springer.

Kim, H. J., M. I. Jordan, S. Sastry, and A. Y. Ng
2004. Autonomous helicopter flight via reinforcement learning. In Advances in Neural
Information Processing Systems 16, S. Thrun, L. K. Saul, and B. Schölkopf, eds.,
Pp. 799–806. MIT Press.

Klopf, A. H.
1972. Brain function and adaptive systems: a heterostatic theory. Technical Report
AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA.

Knowles, J. D., R. A. Watson, and D. W. Corne
2001. Reducing local optima in single-objective problems by multi-objectivization. In
Evolutionary Multi-Criterion Optimization, Pp. 269–283. Springer.

Knox, W. B. and P. Stone
2010. Combining manual feedback with subsequent MDP reward signals for reinforce-
ment learning. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, Pp. 5–12.

Konidaris, G. and A. Barto
2006. Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceed-
ings of the 23rd international conference on Machine learning, Pp. 489–496. ACM.

126

BIBLIOGRAPHY

Konidaris, G. and A. G. Barto
2007. Building portable options: Skill transfer in reinforcement learning. In International
Joint Conference on Artificial Intelligence, Pp. 895–900.

Krogh, A., J. Vedelsby, et al.
1995. Neural network ensembles, cross validation, and active learning. Advances in
neural information processing systems, 7:231–238.

Lazaric, A.
2008. Knowledge transfer in reinforcement learning. PhD thesis, Politecnico di Milano.

Liao, Y., K. Yi, and Z. Yang
2012. Cs229 final report reinforcement learning to play mario. Technical report, Stanford
University, USA.

Loftin, R., B. Peng, J. MacGlashan, M. L. Littman, M. E. Taylor, J. Huang, and D. L.
Roberts
2016. Learning behaviors via human-delivered discrete feedback: modeling implicit
feedback strategies to speed up learning. Autonomous Agents and Multi-Agent Systems,
30(1):30–59.

Mallipeddi, R., P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren
2011. Differential evolution algorithm with ensemble of parameters and mutation
strategies. Applied Soft Computing, 11(2):1679–1696.

Marivate, V. and M. Littman
2013. An ensemble of linearly combined reinforcement-learning agents. In Workshops
at the Twenty-Seventh AAAI Conference on Artificial Intelligence.

Michie, D. and R. Chambers
1968. Boxes: An experiment in adaptive control. Machine intelligence, 2(2):137–152.

Minsky, M.
1961. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.
2015. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533.

Ng, A. Y., D. Harada, and S. Russell
1999. Policy invariance under reward transformations: Theory and application to reward

127

BIBLIOGRAPHY

shaping. In Proceedings of the Sixteenth International Conference on Machine Learning,
volume 99, Pp. 278–287.

Nicolescu, M. N. and M. J. Mataric
2003. Natural methods for robot task learning: Instructive demonstrations, general-
ization and practice. In Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, Pp. 241–248. ACM.

Polikar, R.
2006. Ensemble based systems in decision making. Circuits and Systems Magazine,
IEEE, 6(3):21–45.

Puterman, M. L.
2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons.

Raicevic, P.
2006. Parallel reinforcement learning using multiple reward signals. Neurocomputing,
69(16):2171–2179.

Ravindran, B. and A. G. Barto
2003. Relativized options: Choosing the right transformation. In International Confer-
ence on Machine Learning, Pp. 608–615.

Roijers, D. M., P. Vamplew, S. Whiteson, and R. Dazeley
2013. A survey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research, 48:67–113.

Rummery, G. A. and M. Niranjan
1994. On-line Q-learning using connectionist systems. University of Cambridge, Depart-
ment of Engineering.

Russell, S.
1998. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, Pp. 101–103. ACM.

Russell, S. and P. Norvig
1995. Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall,
Egnlewood Cliffs, 25:27.

Sammut, C., S. Hurst, D. Kedzier, and D. Michie
2002. Learning to fly. Imitation in animals and artifacts, P. 171.

128

BIBLIOGRAPHY

Saxena, D. K. and K. Deb
2007. Trading on infeasibility by exploiting constraint‚Äôs criticality through multi-
objectivization: A system design perspective. In IEEE Congress on Evolutionary
Computation, Pp. 919–926. IEEE.

Schaal, S.
1997. Learning from demonstration. Advances in neural information processing systems,
9:1040–1046.

Schapire, R. E.
1990. The strength of weak learnability. Machine learning, 5(2):197–227.

Selfridge, O. G., R. S. Sutton, and A. G. Barto
1985. Training and tracking in robotics. In International Joint Conference on Artificial
Intelligence, Pp. 670–672. Citeseer.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
2016. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489.

Singh, S., T. Jaakkola, M. L. Littman, and C. Szepesvári
2000. Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287–308.

Singh, S. P. and R. S. Sutton
1996. Reinforcement learning with replacing eligibility traces. Machine learning, 22(1-
3):123–158.

Skinner, B. F.
1938. The behavior of organisms: An experimental analysis. Appleton-Century.

Skinner, B. F.
1951. Science and human behavior. Simon and Schuster.

Smart, W. D. and L. P. Kaelbling
2000. Practical reinforcement learning in continuous spaces. In International Conference
on Machine Learning, Pp. 903–910. Citeseer.

Smart, W. D. and L. P. Kaelbling
2002. Effective reinforcement learning for mobile robots. In IEEE International Confer-
ence on Robotics and Automation, volume 4, Pp. 3404–3410. IEEE.

129

BIBLIOGRAPHY

Song, J., Y. Gao, H. Wang, and B. An
2016. Measuring the distance between finite markov decision processes. In Proceedings
of the 2016 International Conference on Autonomous Agents & Multiagent Systems,
Pp. 468–476. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Stone, P. and M. Veloso
2000. Multiagent systems: A survey from a machine learning perspective. Autonomous
Robots, 8(3):345–383.

Suay, H. B., T. Brys, S. Chernova, and M. E. Taylor
2016. Learning from demonstration for shaping through inverse reinforcement learning.
In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Pp. 429–437.

Sutton, R.
2016. The future of AI. https://www.youtube.com/watch?v=pD-FWetbvN8. Accessed
28/6/2016.

Sutton, R. and A. Barto
1998. Reinforcement learning: An introduction, volume 1. Cambridge Univ Press.

Sutton, R. S., D. A. McAllester, S. P. Singh, Y. Mansour, et al.
1999. Policy gradient methods for reinforcement learning with function approximation.
In NIPS, volume 99, Pp. 1057–1063.

Sutton, R. S., J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup
2011. Horde: A scalable real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. In The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, Pp. 761–768. IFAAMAS.

Taylor, M. E.
2008. Autonomous inter-task transfer in reinforcement learning domains. ProQuest.

Taylor, M. E., N. Carboni, A. Fachantidis, I. Vlahavas, and L. Torrey
2014. Reinforcement learning agents providing advice in complex video games. Connec-
tion Science, 26(1):45–63.

Taylor, M. E., B. Kulis, and F. Sha
2011a. Metric learning for reinforcement learning agents. In Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS). 22

130

BIBLIOGRAPHY

Taylor, M. E. and P. Stone
2007. Cross-domain transfer for reinforcement learning. In Proceedings of the 24th
International Conference on Machine Learning, Pp. 879–886. ACM.

Taylor, M. E. and P. Stone
2009. Transfer learning for reinforcement learning domains: A survey. The Journal of
Machine Learning Research, 10:1633–1685.

Taylor, M. E., P. Stone, and Y. Liu
2007. Transfer learning via inter-task mappings for temporal difference learning. Journal
of Machine Learning Research, 8(1):2125–2167.

Taylor, M. E., H. B. Suay, and S. Chernova
2011b. Integrating reinforcement learning with human demonstrations of varying ability.
In The 10th International Conference on Autonomous Agents and Multiagent Systems,
Pp. 617–624.

Thorndike, E. L.
1911. Animal intelligence: Experimental studies. Macmillan.

Thorndike, E. L. and R. S. Woodworth
1901. The influence of improvement in one mental function upon the efficiency of other
functions. ii. the estimation of magnitudes. Psychological Review, 8:247–261.

Thrun, S.
1996. Is learning the n-th thing any easier than learning the first? Advances in neural
information processing systems, Pp. 640–646.

Thrun, S. and L. Pratt
2012. Learning to learn. Springer Science & Business Media.

Torrey, L. and M. E. Taylor
2012. Help an agent out: Student/teacher learning in sequential decision tasks. In
Proceedings of the Adaptive and Learning Agents workshop (at AAMAS-12).

Tsitsiklis, J. N.
1994. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16(3):185–202.

Vamplew, P., R. Dazeley, A. Berry, R. Issabekov, and E. Dekker
2010. Empirical evaluation methods for multiobjective reinforcement learning al-
gorithms. Machine Learning, 84(1-2):51–80.

131

BIBLIOGRAPHY

van Hasselt, H. P.
2011. Insights in reinforcement learning. Hado van Hasselt.

van Lent, M. and J. E. Laird
2001. Learning procedural knowledge through observation. In Proceedings of the 1st
international conference on Knowledge capture, Pp. 179–186. ACM.

Van Moffaert, K., M. M. Drugan, and A. Nowé
2013. Scalarized Multi-Objective Reinforcement Learning: Novel Design Techniques.
In 2013 IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning. IEEE.

Watanabe, S. and K. Sakakibara
2005. Multi-objective approaches in a single-objective optimization environment. In
IEEE Congress on Evolutionary Computation, volume 2, Pp. 1714–1721. IEEE.

Watkins, C. J. C. H.
1989. Learning from delayed rewards. PhD thesis, University of Cambridge.

Whiteson, S., B. Tanner, M. E. Taylor, and P. Stone
2011. Protecting against evaluation overfitting in empirical reinforcement learning. In
2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), Pp. 120–127. IEEE.

Wiering, M. and M. Van Otterlo
2012. Reinforcement learning. Adaptation, Learning, and Optimization, 12.

Wiering, M. A. and H. van Hasselt
2008. Ensemble algorithms in reinforcement learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 38(4):930–936.

Wiewiora, E.
2003. Potential-based shaping and Q-value initialization are equivalent. Journal of
Artificial Intelligence Research (JAIR), 19:205–208.

Wiewiora, E., G. Cottrell, and C. Elkan
2003. Principled methods for advising reinforcement learning agents. In International
Conference on Machine Learning, Pp. 792–799.

132

	Abstract
	Acknowledgments
	Contents
	Introduction
	Reinforcement Learning
	Research Question and Contributions

	Reinforcement Learning
	The Reinforcement Learning Problem
	Reinforcement Learning Algorithms
	Function Approximation and Eligibility Traces
	Q()-Learning with Tile-Coding

	Sample Efficiency
	Benchmark Problems
	Cart Pole
	Pursuit Domain
	Super Mario

	Summary

	Incorporating Prior or External Knowledge
	Type of Knowledge
	Transfer Learning
	Demonstrations
	Off-line Advice
	On-line Advice/Feedback

	Encoding Knowledge
	Injecting Knowledge
	Q-function Initialization
	Reward Shaping
	Probabilistic Policy Reuse
	Extra Action
	Convergence and Optimality

	A Sampling from the Literature
	A Brief Detour: How to Measure Improvement
	Summary

	Policy Transfer
	Transfer Learning
	Policy Transfer
	Reusing a Policy using Mappings

	Experiments
	Early and Late Policy Transfer in Cart Pole
	Multi-Agent Policy Transfer in the Pursuit Domain
	Small and Large Bias in Mario

	On Bias
	Summary

	Reinforcement Learning from Demonstration
	Learning from Demonstration
	Reinforcement Learning from Demonstration
	Constructing a Value Function from Demonstrations
	Experiments
	Initialization, Dynamic Shaping, PPR and Extra Action
	The Effect of Small/Large Amounts of Data
	The Effect of Demonstration Quality
	The Effect of Demonstrator Type
	Policy Transfer vs Reinforcement Learning from Demonstration

	Summary

	Ensembles of Shapings in Reinforcement Learning
	Introduction
	Ensemble Techniques
	Multi-Objectivization
	Multi-Objective Reinforcement Learning
	Multi-Objectivization in Reinforcement Learning
	CMOMDP
	Multi-objectivization

	Ensemble Techniques in Reinforcement Learning
	Linear
	Majority Voting
	Rank Voting
	Confidence-based

	Empirical Validation
	Cart Pole
	Pursuit Domain
	Mario
	Diversity of shapings

	Summary

	Conclusions
	Contributions
	Future outlook

	List of Publications
	Bibliography

