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Abstract

Reinforcement learning provides a framework for algorithms that learn from interaction
with an unknown environment. Over the years, several researchers have contributed to
this framework by proposing algorithms that optimise their behaviour over time. This
learning process is characterised by maximising a single, scalar reward signal. However,
many real-life problems are inherently too complex to be described by a single, scalar
criterion. Usually, these problems involve multiple objectives that often give rise to a
conflict of interest. An example can be found in the manufacturing industry where the
goal of a company is to come up with a policy that, at the same time, maximises the profit
and the user satisfaction while minimising the production costs, the labour costs and the
environmental impact. For these types of problems, the traditional reinforcement learning
framework is insu�cient and lacks expressive power.

In this dissertation, we argue the need for particular reinforcement learning algorithms that
are specifically tailored for multi-objective problems. These algorithms are multi-objective
reinforcement learning (MORL) algorithms that provide one or more Pareto optimal bal-
ances of the problem’s original objectives. What this balance intrinsically conveys depends
on the emphasis and the preferences of the decision maker. In the case the decision
maker’s preferences are clear and known a priori, single-policy techniques such as scalar-
isation functions can be employed to guide the search towards a particular compromise
solution. In this light, we analyse several instantiations of scalarisation functions such as
the linear and Chebyshev scalarisation function and we demonstrate how they influence
the converged solution.

In case the preference articulation of the decision maker is unclear before the optimisation
process takes place, it might be appropriate to provide a set of Pareto optimal trade-o�
solutions to the decision maker that each comprise a di�erent balance of the objectives.
One possibility to obtain a set of solutions is to collect the outcomes of several scalarisation
functions while varying their direction of search. In this dissertation, we propose two
algorithms that follow this principle for both discrete and continuous Pareto fronts.
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Abstract

A more advanced idea we pursue as well is to learn a set of compromise solutions in a
simultaneous fashion. In order to accommodate for a genuine multi-policy algorithm, we
extend the core principles of the reinforcement learning framework, including the know-
ledge representation and the bootstrapping process. For continuous action spaces, we
propose the multi-objective hierarchical optimistic optimisation algorithm that increment-
ally constructs a binary tree of optimistic vectorial estimates. For sequential decision
making problems, we introduce Pareto Q-learning. Pareto Q-learning is the first temporal
di�erence-based reinforcement learning algorithm that learns a set of Pareto non-dominated
policies in a single run. Internally, it relies on a specific bootstrapping process that sep-
arates the immediate reward from the set of future rewards. This way, each vectorial
estimate in the set can be updated as new information becomes available. The algorithm
also comprises a mechanism to retrieve the state and action sequences that correspond
to each of these policies.

Finally, we demonstrate the behaviour of a multi-policy algorithm on a simulation envir-
onment of a transmission system. For a transmission to be optimal, it needs to be both
smooth and fast, which are in essence conflicting objectives. We analyse how the solution
method explores the objective space and continually refines its knowledge.
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Samenvatting

Reinforcement learning voorziet een raamwerk voor algoritmen die leren uit interacties
met een onbekende omgeving. Sinds vele jaren hebben onderzoekers bijgedragen tot dit
raamwerk door dergelijke algoritmen voor te stellen die hun gedrag optimaliseren over de
tijd heen. Dit leerproces wordt gekarakteriseerd door het trachten maximaliseren van een
enkel, scalair beloningsignaal. Echter zijn vele problemen uit de reële wereld van nature
uit te complex om beschreven te worden door een enkel, scalair criterium. Doorgaans
hebben deze problemen betrekking op meerdere doelstellingen die vaak aanleiding geven
tot strijdige belangen. Een voorbeeld hiervan is te vinden in de industrie waar het doel van
een onderneming is om te komen tot een beleid dat op hetzelfde moment de winst en de
tevredenheid van de gebruiker maximaliseert, terwijl het eveneens de productiekosten, de
arbeidskosten en de milieu-impact tracht te minimaliseren. Voor dit soort problemen is het
traditionele reinforcement learning framework ontoereikend en ontbreekt het expressiviteit.

In dit proefschrift pleiten we voor de behoefte aan specifieke reinforcement learning al-
goritmen die speciaal zijn aangepast voor problemen met meerdere objectieven. Deze
algoritmen heten vervolgens multi-objectieve reinforcement learning (MORL) algoritmen
die een of meerdere Pareto optimale evenwichten van de doelstellingen verstrekken. Wat
dit evenwicht intrinsiek uitstraalt is afhankelijk van de klemtoon en de voorkeuren van de
beleidsmaker. In het geval dat de voorkeuren van de beleidsmaker duidelijk en bij voorbaat
bekend zijn, kunnen single-policy technieken zoals scalarisatie functies gebruikt worden om
het zoeken naar een bepaald compromis te begeleiden. In dit opzicht analyseren we ver-
schillende instantiaties van scalarisatie functies zoals de lineaire en Chebyshev scalarisatie
functie en we laten zien welke invloed ze hebben op de geconvergeerde oplossing.

In het geval dat de voorkeuren van de beleidsmaker onduidelijk zijn voor het optimalisa-
tieproces plaatsvindt, zou het aangewezen zijn om een verzameling van Pareto optimale
oplossingen aan de beleidsmaker voor te stellen die elk een ander evenwicht van de doel-
stellingen afweegt. Een mogelijkheid om een verzameling oplossingen te verkrijgen bestaat
eruit de uitkomsten van een aantal scalarisatie functies, die elk uiteenlopende delen van
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Samenvatting

het zoekgebied onderzoeken, te verzamelen. In dit proefschrift stellen we twee algoritmen
voor die dit principe volgen voor zowel discrete als continue Pareto ruimtes.

Een meer geavanceerd idee dat we ook nastreven bestaat eruit om een verzameling van
compromissen te leren op een gelijktijdige basis. Om tegemoet te komen aan een daad-
werkelijk multi-policy algoritme, breiden we de beginselen van het reinforcement learning
kader uit, met inbegrip van de kennis representatie en het bootstrapping proces. Voor con-
tinue actie ruimtes, stellen wij het multi-objectief hiërarchische optimistisch optimalisatie
algoritme voor dat stapsgewijs een binaire boom van vectoriële optimistische schattin-
gen construeert. Voor sequentiële problemen introduceren we Pareto Q-learning. Pareto
Q-learning is het eerste temporal di�erence-gebaseerd reinforcement learning algoritme
dat een verzameling van Pareto dominerende oplossingen simultaan leert. Intern berust
het algoritme op een specifiek bootstrapping proces dat de onmiddellijke beloning van de
verzameling van de toekomstige beloningen scheidt. Op deze manier kan elke vectoriële
schatting in de verzameling worden bijgewerkt als er nieuwe informatie beschikbaar wordt.
Het algoritme omvat tevens een mechanisme om de opeenvolging van toestanden en acties
die corresponderen met elk van deze geleerde oplossingen te achterhalen. Tot slot demon-
streren we het gedrag van een multi-policy algoritme op een simulatieomgeving van een
transmissiesysteem. Opdat een transmissie optimaal is, moet deze zowel soepel als snel
zijn, welke in wezen strijdige doelstellingen zijn. We analyseren hoe deze oplossingsmeth-
ode de zoekruimte van het transmissiesysteem verkent en voortdurend zijn kennis verruimt.
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1

| Introduction

This dissertation is concerned with the study of reinforcement learning in situations where
the agent is faced with a task involving multiple objectives. Reinforcement learning is a
branch of machine learning in which an agent has to learn the optimal behaviour in an
unknown environment. In essence, the agent has to learn over time what is the optimal
action to take in each state of the environment. In reinforcement learning, the agent
employs a principle of trial and error to examine the consequences actions have in particular
states. It does so by analysing a scalar feedback signal associated to each action. Based on
this signal, reinforcement learning tries to discover the optimal action for each particular
situation that can occur.

However, many real-world problems are inherently too complex to be described by a
single, scalar feedback signal. Usually, genuine decision making problems require the sim-
ultaneous optimisation of multiple criteria or objectives. These objectives can be correlated
or independent, but they usually are conflicting, i.e., an increase in the performance of
one objective implies a decrease in the performance of another objective and vice versa.
An example can be found in the area of politics where parliamentarians have to decide
on the location where to build a new highway that at the same time increases the e�-
ciency of the tra�c network and minimises the associated environmental and social costs.
Other examples might not be limited to only two objectives. For instance, in the man-
ufacturing industry, the goal of a company comprises many criteria such as maximising
the profit and the customer satisfaction while minimising the production costs, the labour
costs and the environmental impact. In these situations, traditional reinforcement learning
approaches often fail because they oversimplify the problem at hand which on its turn
results in unrealistic and suboptimal decisions.

In literature, di�erent approaches exist that strive towards the development of specific
multi-objective reinforcement learning techniques. However, most of these approaches are
limited in the sense that they cannot discover every optimal compromise solution, leaving
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CHAPTER 1. INTRODUCTION

potentially fruitful areas of the objective space untouched. Also, some of these approaches
are not generalisable as they are restricted to specific application domains.

In this dissertation, we evaluate di�erent approaches that allow the discovery of one or
more trade-o� solutions that balance the objectives in the environment. We group the
algorithms in four categories. We first di�erentiate between single-policy and multi-policy
techniques, based on the fact whether the algorithm learns a single compromise or a set of
solutions, respectively. Furthermore, we also distinguish between the type of scalarisation
function used in the process, i.e., being a linear scalarisation function or a monotonically
increasing variant. We analyse the conceptual details of the algorithms and emphasize
the associated design decisions. Additionally, we verify the theoretical guarantees and the
empirical performance of these algorithms on a wide set of benchmark problems.

In the following sections, we will start o� with the basics of artificial intelligence. We
will define what agents are and what characterises an intelligent agent. Subsequently, we
outline the problem statement and the contributions of this dissertation.

1.1 Agents
Nowadays, people often admit computer systems are brilliant and clever devices since they
allow them to send and receive e-mail messages, organise agendas, create text documents
and so much more. However, to o�er this functionality, all the computer system does is
processing some predefined lines of code that were implemented by a software engineer. If
the computer system is asked to perform an unforeseen request that was not envisaged by
the software engineer, the computer system will most likely not act as inquired or not act
at all. Therefore, it is naive to think of these types of systems as being clever since they
possess no reasoning capabilities and are not able to work autonomously. Yet, computer
systems that do hold these properties are called agents.

In artificial intelligence (AI), the principle of an agent is a widely used concept. However,
how an agent is defined di�ers throughout the di�erent branches of AI. In general, the
definition by Jennings et al. (1998) is considered a good summary of what comprises an
agent:

Definition 1.1

An agent is a computer system that is situated in some environment, and that is
capable of autonomous action taking in this environment in order to meet its design
objectives.

Although this definition still remains very broad, the principle components of an agent
structure are clear, i.e., the agent observes the environment it is operating in and selects
an action, which in its turn can change the state of the environment, as illustrated in
Figure 1.1.
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1.2. LEARNING AGENTS

actionsobservations

Environment

Figure 1.1: The agent acts upon its observations of the environment.

Other definitions make the features that constitute an agent more specific. For instance,
in Weiß (1999), an intelligent agent is characterised by three additional requirements:

• Reactivity : The ability to perceive the environment and to respond in a timely
fashion to changes that occur in order to satisfy its design objectives.

• Pro-activeness : The ability to take initiative in order to satisfy its design objectives.
• Social ability : The ability to interact with other agents and possibly humans in

order to satisfy its design objectives.

The notion of pro-activity relates to the ability of the agent to express a specific behaviour
that strives to achieve a certain goal. In the case the environment is static and fully known
to the agent, the problem of finding a plan or recipe might be straightforward. When the
environment contains multiple agents or when it comprises dynamic structures, the agent
should continuously react to these changes. Ideally, the agent should be pro-active and
reactive at the same time, i.e., acting upon the changes in the environment while expressing
goal-directed behaviour. Since the environment can comprise multiple agents that do not
necessarily share the same goals, the agent also needs to possess social skills. These
skills allow the agents to coordinate and to negotiate with one another in order to meet
their objectives. In the following section, we will make this definition more explicit by
considering agents that have the ability to learn.

1.2 Learning agents
For an agent to possess the properties of reactivity, pro-activeness and social ability, it
needs a mechanism to reason about how to solve the problem at hand. Reinforcement
learning is a theoretical machine learning framework that permits agents to learn from their
own experience (Sutton and Barto, 1998). This experience is characterised by interactions
between the agent and a stochastic stationary environment which take place at every
discrete time step t = 1, 2, . . .. Each time step, the agent perceives the current state
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CHAPTER 1. INTRODUCTION

of the environment and selects an action a(t). Upon the application of this action, the
environment transitions the agent into a new state s(t + 1) and provides an associated
immediate reward r(t+1). Internally, the reinforcement learning agent adapts the estimate
of the quality of the action a(t) into the direction of the obtained feedback signal. This
process is illustrated in Figure 1.2. The goal of the agent is to learn a policy, i.e., a
mapping from situations to actions, in order to maximise the rewards obtained.

a(t)

s(t+1)

r(t+1)

Environment

Figure 1.2: The reinforcement learning agent selects an action a(t) which transitions the
agent into a new state s(t + 1). At the same time the agent receives the scalar reward
r(t + 1).

As time progresses and more and more actions are tried out, the estimates associated with
each action become more and more precise. In the reinforcement learning framework, these
estimates are guaranteed to converge to their expected value given certain assumptions,
meaning that the agent can learn the optimal strategy over time that maximises the scalar
feedback signal.

1.3 Problem statement
In this dissertation, we are concerned with problems that consist of multiple, conflicting
objectives. In these problems, the feedback signal does not provide a scalar indication
of the quality of an action but it is vectorial, i.e., one scalar reward for each objective.
As an example, imagine the problem an investor is facing when trying to optimise his
portfolio. At the same time, the investor is eager to maximise the possible returns of his
investment while also maximising the security of the investment, i.e., minimising the risk.
An illustration of the portfolio management problem can be found in Figure 1.3 where
di�erent types of investments are compared based on their performance on security and
potential return, which are both to be maximised. A consequence of a vectorial evaluation
of solutions is that there is no single optimal strategy but the agent assisting the investor
can discover multiple trade-o� policies that balance these objectives. In the illustration, we
highlight these compromises as we see that some investments such as for instance saving
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bonds (a) and precious metals (b) are very secure but o�er only small profit margins.
A counter example is the stock market (d) that has the potential of a high return of
investment while at the same time a high probability in money losses as well. Real estate
properties (c) o�er a more balanced compromise between the two objectives. Since there
are no solutions improving these four investments on any of the two objectives, these
four approaches are said to be optimal trade-o�s which the agent can discover. However,
there are also solutions that are not optimal. Consider for instance, the investment in
technological devices, such as computers (e), and cars (f), which rapidly devalue and take
o� in valuation.

Se
cu

rit
y

Possible return

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.3: The trade-o� between security and the potential return in a portfolio man-
agement problem. The optimal solutions (a) to (d) are denoted by black dots while the
dominated solutions, such as (e) and (f) are white dots. The goal of the agent optimising
the investment problem would be to discover the optimal compromise solutions (a) to (d).

Internally, the agent needs a mechanism to evaluate these multi-objective solutions based
on the preferences of the investor. In some cases, these preferences can be very clear and
the possible solutions can be totally ordered to select the best solution. For instance, the
preference could be to maximize the possible return, regardless of the security objective.
Hence, the agent would only suggest solution (d), i.e., the stock market. In other cases,
when the preferences are unclear (or possibly even unknown), only a partial order can be
retained. The mechanism that evaluates solutions while taking into account this preference
information is called a scalarisation function. Based on the specific instantiation of the
scalarisation function, di�erent properties arise. Each of these properties will be covered
in Chapter 3.

In general, multi-objective reinforcement learning approaches that learn these compromise
solutions can be characterised based on two aspects. In Section 3.4, we provide a detailed
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taxonomy, but for now it is su�cient to characterise the approaches based on (1) whether
one or more solutions are returned and (2) whether these solutions are situated in a
convex or non-convex region of the objective space.

A first and simple category of approaches learns a single, convex solution at a time.
Since the solution is located in a convex region, mathematical formulas guarantee that
the solution can be retrieved by a linear, weighted combination of the objectives. The
e�ectiveness of this category is represented in Figure 1.4 (a) where both objectives need
to be maximised. The blue dots represent dominated solutions while the set of optimal
solutions, referred to as the Pareto front, is depicted in black. The areas in red denote a
subset of the Pareto front that can be discovered by convex combinations. In this red area,
the white dot represents a possible solution the techniques in this category would learn.

A second category represents a collection of techniques that learn a set of multiple,
convex solutions. These mechanisms exploit the same mathematical properties of the
algorithms of the first category, but this time to retrieve a set of trade-o� solutions. Each
of these solutions then lies in convex areas of the Pareto front, as depicted in Figure 1.4
(b). Ideally, this category of algorithms would aim to discover the entire set of solutions
covering the red areas.

Although a significant amount of research in reinforcement learning has been focussing
on solving problems from the viewpoint of these situations (Vamplew et al., 2010; Roijers
et al., 2013), only a subset of the Pareto front is retrievable, leaving potential fruitful
parts of the objective space untouched. A large part of this dissertation addresses the
problem of discovering solutions that cannot be defined by convex combinations. In that
sense, we analyse the theoretical and the empirical performance of reinforcement learning
algorithms for retrieving optimal solutions, that lie in both convex and non-convex parts
of the Pareto front. This constitutes the third and fourth category. The third category
encompasses algorithms that learn a single convex or non-convex solution at a time, as
depicted in Figure 1.4 (c).

The fourth category involves algorithms for learning multiple solutions simultaneously.
These algorithms then retrieve a set of both convex and non-convex solutions as presented
in Figure 1.4 (d). In essence, these algorithm are genuine multi-policy algorithms that
can discover the entire Pareto front of optimal solutions, as they are not limited to a
specific subset.
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Figure 1.4: Research in multi-objective reinforcement learning is categorised in four clusters
based on the type and the amount of solutions learned.

As such, we can formulate the research question that motivates the work in this thesis:

Research question

How can agents solve multi-objective reinforcement learning problems and learn one
or more Pareto optimal trade-o� solutions that balance several criteria?

Throughout this thesis, we provide three responses to this research question, based on
the context of the multi-objective problem. Firstly, in Chapter 4, we assume a context
where only a single solution is retrieved at a time, i.e., situations (a) and (c) in Figure 1.4.
We research how reinforcement learning can be extended to learn solutions in convex
and non-convex regions of the Pareto front and what the limitations of these techniques
are. Secondly, in Chapter 5, we propose two algorithms that iteratively learn multiple
solutions based on linear combinations, similar to the context of Figure 1.4 (b). Finally, in
Chapter 6, we present two algorithms that learn multiple optimal solutions at a time that
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are located in both convex and non-convex regions of the Pareto front. These approaches
relate to Figure 1.4 (d).

1.4 Contributions
While answering the research question, we have made several contributions to the field
of multi-objective reinforcement learning. We summarise the main achievements in the
following list:

• We provide an overview of the foundations and the history of standard, single-
objective reinforcement learning. We closely examine the theoretical characteristics
of the reinforcement learning framework and explicitly describe all the components
that compose a reinforcement learning problem.

• We provide a taxonomy of multi-objective reinforcement learning research based on
the type of scalarisation function used in the decision making process and the amount
of solutions learned.

• We highlight the advantages and limitations of current state-of-the-art approaches
within this field. We argue that there is a need for algorithms that go beyond the
exclusive search for convex solutions. We show that these solutions only represent a
subset of the Pareto front, leaving other optimal trade-o� solutions undiscovered.

• We propose a framework for single-policy algorithms that rely on scalarisation func-
tions to reduce the dimensionality of the multi-objective feedback signal to a scalar
measure. In this framework, the knowledge representation of the agent is extended
to store a vector of estimates and the scalarisation function is employed in the action
selection process.

• In that same framework, we argue that the choice of the scalarisation function is
crucial since it has a huge impact on the solution the reinforcement learning technique
converges to. In this respect, we theoretically and empirically analyse a linear and
non-linear scalarisation function on their e�ectiveness in retrieving optimal trade-o�
solutions.

• We analyse how the weight parameters of the linear scalarisation function relate to
specific parts of the objective space. We highlight that the mapping from weight
space to objective space is non-isomorphic, meaning that it is far from trivial to
define an appropriate weight configuration to retrieve a desired trade-o� solution.

• In this regard, we propose two adaptive weight algorithms (AWA) that iteratively
adjust their weight configurations based on the solutions obtained in previous rounds.
These algorithms have the ability to adaptively explore both discrete and continuous
Pareto fronts.

• We surpass single-policy scalarisation functions by investigating algorithms that sim-
ultaneously learn a set of Pareto optimal solutions. We first propose MO-HOO, an
algorithm that is tailored for single-state environments with a continuous action
space. Internally, MO-HOO constructs and refines a tree of multi-objective estim-
ates that cover the actions space. For multi-state environments we propose Pareto
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Q-learning, which is the first temporal di�erence based multi-policy algorithms that
does not employ a linear scalarisation function. The main novelty of Pareto Q-
learning is the set-based bootstrapping rule which decomposes the estimates into
two separate components.

• We go beyond academic benchmark environments and analyse the multi-policy MO-
HOO algorithm on a simulation environment of a wet clutch, a transmission unit
that can be found in many automotive vehicles. In this setup, the goal is to find an
engagement that is both fast and smooth, which are conflicting criteria.

1.5 Outline of the dissertation
In this section, we provide an outline of the content of each of the chapters of this
dissertation:

In Chapter 2, we introduce the foundations of single-objective reinforcement learning.
We present its history and foundations, which lie in the fields of psychology and optimal
control theory. Additionally, we define the components that comprise a reinforcement
learning setting such as value functions and policies. We also describe the notion of a
Markov decision process, which is a mathematical framework to model the environment
the agent is operating in. Furthermore, we emphasise the synergies and the di�erence
between model-based and model-free learning for sequential decision making problems.
Since the remainder of this dissertation is focussed on model-free learning, we pay particular
attention to the Q-learning algorithm, which is one of the foundations of the studies in
the following chapters.

In Chapter 3, we present the idea of learning in environments that require the optim-
ising multiple criteria or objectives. We introduce the general concepts of multi-criteria
decision making and we provide a survey of the theoretical foundations of multi-objective
optimisation. With special care, we describe the characteristics of the Pareto front and
the articulation of the preferences of the decision maker. In this regard, we categor-
ise multi-objective reinforcement learning algorithms based on a taxonomy that classifies
these techniques based on the type of scalarisation function, i.e., a linear or a more gen-
eral monotonically increasing scalarisation function, and the amount of solutions learned,
i.e., single-policy or multi-policy. We situate the current state-of-the-art reinforcement
learning algorithms within this problem taxonomy, together with our contributions within
this dissertation.

In Chapter 4, we elaborate on multi-objective reinforcement learning algorithms that
employ a scalarisation for learning a single policy at a time. We first present a general
framework for single-policy reinforcement learning, based on the Q-learning algorithm. In
this framework, we analyse the established linear scalarisation function and we draw at-
tention to its advantages and limitations. Additionally, we elaborate on an alternative
scalarisation function that possesses non-linear characteristics. This is the Chebyshev scal-
arisation function, which is well-known in the domain of multi-objective optimisation. We
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stress the lack of convergence guarantees of the Chebyshev function within the frame-
work on reinforcement learning on a theoretical level. Furthermore, we investigate to what
degree this limitation holds in practice on several benchmark instances.

In Chapter 5, we explore the relation between the weight configuration, which incorporates
predefined emphasis of the decision maker, and the learned policy in the objective space.
Based on this mapping, we investigate how single-policy algorithms can be augmented to
obtain multiple solutions by iteratively adapting this weight configuration. We propose two
algorithms that rely on tree structures to produce a series of weight configurations to obtain
a set of optimal solutions. The first algorithm is specifically tailored for Pareto fronts with
a discrete amount of solutions while the second algorithm is capable of retrieving solutions
with a high degree of diversity in continuous Pareto fronts.

In Chapter 6, we present two distinct algorithms for learning various compromise solu-
tions in a single run. The novelty of these algorithms lies in the fact that they can retrieve
all solutions that satisfy the Pareto relation, without being restricted to a convex subset.
A first algorithm is the multi-objective hierarchical heuristic optimisation (MO-HOO) al-
gorithm for multi-objective X -armed bandit problems. This is a class of problems where an
agent is faced with a continuous finite-dimensional action space instead of a discrete one.
MO-HOO is a single-state learning algorithm that is specifically tailored for multi-objective
industrial optimisation problems that involve the assignment of continuous variables. A
second algorithm is Pareto Q-learning (PQL). PQL extends the principle of MO-HOO to-
wards multi-state problems and combines it with Q-learning. PQL is the first temporal
di�erence-based multi-policy MORL algorithm that does not use the linear scalarisation
function. Pareto Q-learning is not limited to the set of convex solutions, but it can learn the
entire Pareto front, if enough exploration is allowed. The algorithm learns the Pareto front
by bootstrapping Pareto non-dominated Q-vectors throughout the state and action space.

In Chapter 7, we go beyond the academic benchmark environments and apply a collec-
tion of our algorithms on a real-life simulation environment. This environment simulates
the filling phase of a wet clutch which are used in shifting and transmission systems of
automotive vehicles. We analyse the application of a multi-policy reinforcement learning
algorithm. More precisely, we apply the multi-objective hierarchical optimistic optimisa-
tion (MO-HOO) algorithm on the simulation environment in order to approximate its
Pareto front.

In Chapter 8, we conclude the work presented in this dissertation and we outline avenues
for future research.

A graphical outline of the dissertation is provided in Figure 1.5. The arrows indicate
the recommended reading order.
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Figure 1.5: Graphical outline of the dissertation.
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2

| Single-objective
reinforcement learning

In reinforcement learning (RL), the agent is faced with the problem of taking decision in
unknown, possibly dynamic environments. In the standard single-objective case, the overall
goal of the agent is to learn the optimal decisions so as to maximise a single, numerical
reward signal. These decisions are in essence actions that have to be selected in certain
states of the environment. This environment is usually defined using a Markov Decision
Process. This is a mathematical framework used to model the context of the problem the
agent is solving. We describe this framework in Section 2.2. As the environment itself may
be evolving over time, the consequence of a particular action on the resulting behaviour
might be highly unpredictable. Also, the e�ect of the actions might not be direct but
delayed. Therefore, the agent has to learn from its experience, using trial-and-error, which
actions are fruitful.

In this chapter we introduce some preliminary concepts on single-objective reinforcement
learning that we use as a basis throughout this dissertation. Firstly, we elaborate on the
historical background of reinforcement learning which lies in the field of animal learning
and optimal control. We also explain the theoretical foundations of reinforcement learning
and explicitly define all the components that compose a reinforcement learning problem.
We will focus on both stateless as well as stateful problems. Subsequently, this general
introduction will be augmented with an experimental analysis of several action selection
strategies in a classical reinforcement learning problem. In the end, we conclude the
chapter by summarising the most important aspects.
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2.1 History of reinforcement learning
Reinforcement learning is learning from interaction with an unknown environment in order
to take the optimal action, given the situation the agent is facing (Sutton and Barto,
1998). The agent is not supported by a teacher pointing out the optimal behaviour or
correcting sub-optimal actions, but it is solely relying on itself and its past experience in
the environment. This experience is quantified by the agent’s previously selected actions
in the states of the environment and the observed reward signal. This principle of learning
dates back to two main research areas which evolved rather independently from each other.
These two tracks are animal learning and optimal control.

Psychologists observing animals have already found out over a hundred years ago that
these creatures exhibit learning behaviour. A first experiment was conducted by Edward
L. Thorndike, where he placed a cat in a wooden box and let it try to escape (Thorndike,
1911). In the beginning, the cat tried various approaches until it accidentally hit the
magical lever that allowed it to flee. When Thorndike later put the cat again in this cage,
it would execute the correct action more quickly than before. The more Thorndike repeated
this experiment, the faster the cat escaped the box. In essence, the cat executed a type of
trial-and-error learning where it would learn from its mistakes and its successes (Schultz
and Schultz, 2011). These mistakes and successes are then quantified by a feedback
signal, i.e., in the case of the cat, this signal would reflect if the action led to the cat’s
freedom or not. Sometimes the e�ect of an action can be direct, like in the case of
the cat, but in some situations the outcome can also be delayed. For instance, in the
game of chess, the true influence of a single move may not be clear at the beginning
of the game, as only at the end of the game a reinforcement is given for winning or
losing the game. Hence, the delayed reward needs to be propagated in order to favour or
disfavour the course of actions in case of winning or losing the game, respectively. Another
distinctive challenge that characterises reinforcement learning is the so-called exploration-
exploitation trade-o�. This trade-o� comprises one of the major dilemmas of the learning
agent: when has it acquired enough knowledge in the environment (exploration), before
it can use this information and select the best action so far (exploitation), given that
the environment is stochastic and perhaps even changing over time? It is clear that if the
agent explores too much, it might unnecessarily re-evaluate actions that it has experienced
numerous times to result in poor performance. When the agent explores too little, it is not
guaranteed that the action the agent estimates to be the best policy is also the best policy
in the environment. In Section 2.4.2, we will elaborate on some established techniques
for dealing with this issue.

The second research track that is a foundation of reinforcement learning is the discipline
of optimal control. In optimal control, the goal is to find a sequence of actions so as to
optimise the behaviour of a dynamic system over a certain time period. One of the principal
discoveries within this field was the Bellman equation (Bellman, 1957). The Bellman
equation defines a complex problem in a recursive form and serves as a foundation of many
Dynamic Programming (DP) algorithms (Bertsekas, 2001a,b). Dynamic programming is
a mechanism for solving a complex problem by breaking it apart into many subproblems
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and will be covered in more detail in Section 2.4.1. First, we describe a mathematical
framework that serves as a model for sequential decision making. This framework is a
Markov decision process.

2.2 Markov decision processes
In sequential decision making, Markov decision processes (MDP) are used to define the
environment the agent is operating in. MDPs provide a mathematical model to describe
a discrete-time state-transition system (Puterman, 1994). At each time step t, the agent
is in a certain state s(t) and must select an action a(t). Upon selecting this action,
the environment transitions the agent into a new state s(t + 1) and the agent receives a
corresponding reward r(t+1). The transition from state s(t) to state s(t+1), given action
a(t), is based on a probability distribution defined as the transition function T . Formally,
a Markov decision process is described as follows:

Definition 2.1

A Markov decision process is a 4-tuple (S, A, T, R), where

• S = s1, . . . , sN is a finite set of states,
• A = fisœSA(s) where A(s) is a finite set of available actions in state s œ S,
• T : S ◊ A ◊ S æ [0, 1] is the transition function T (sÕ|s, a) specifying the

probability of arriving in state sÕ after selecting action a in state s,
• R : S ◊ A ◊ S æ R is the reward function R(s, a, sÕ

) specifying the expected
reward associated to transitioning from state s with action a to state sÕ.

It is important to note that this transition to s(t + 1) only depends on the previous state
s(t) and not on any previously visited states. This property is called the Markov Property:

Definition 2.2

A system is said to possess the Markov Property if the future state transitions of
the system are independent of the previous states, given the current state:

T (s(t + 1)|s(t, a(t), . . . , s(0), a(0)) = T (s(t + 1)|s(t), a(t))

In general, we distinguish between two di�erent types of MDPs. These are infinite horizon
and finite-horizon MDPs. In finite-horizon MDPs, the state space S consists of terminal
states, i.e., states that end the problem, and no more reward can be obtained. Hence, the
problem is said to be episodic as it consists of several episodes where the agent initiates
its decision making loop from a start state to a terminal state. Usually, video game
environments are defined by finite-horizon problems: the episode starts with the character
at a particular location in the world and the episode ends if it reaches a checkpoint.
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In some situations, the exact length of the agent’s lifetime might not be known in
advance. These problems are referred to as infinite-horizon problems since they have got
a continuous nature. An example of such a problem is the cart pole problem (Sutton and
Barto, 1998). In this problem, a robot tries to balance a pole on a cart by applying force
to that cart. Based on the angle of the pole and the velocity of the cart, the robot has to
learn when to move left or right along a track. Clearly, for this problem it is not possible
to state beforehand where or when the agent’s lifespan comes to a halt.

The overall goal of the agent is to learn a policy, a mapping from states to actions. We
are not just interested in any policy, but in an optimal policy, i.e., a policy that maximises
the expected reward it receives over time. A formal definition of a policy will be provided
in Section 2.3 where we present general notations of reinforcement learning. We conclude
the definition of MDPs by presenting an illustrative example.

Example 2.1

In this example, we consider the Tetris game, a puzzle-based game released the 1980s
by Alexey Pajitnov that is still very popular today . In Tetris, geometric shapes, called
Tetriminos, need to be organised in the matrix-like play field (see Figure 2.1 (a)),
called the wall. There are seven distinct shapes that can be moved sideways and
rotated 90, 180 and 270 degrees. A visual representation of the di�erent Tetriminos
can be found in Figure 2.1 (b). These shapes need to be placed in order to form a
horizontal line without any gaps. Whenever such a line is created, the line disappears
and blocks on top of the horizontal line fall one level down. Many versions of the
Tetris game exist, including di�erent levels and di�erent game speeds, but the goal
of the Tetris game in this example is to play as long as possible, i.e., until a piece
exceeds the top of the play field. This game can be modelled in terms of an Markov
decision process as follows:

• The states in the MDP represent the di�erent configurations of the play field
and the current Tetriminos being moved. The configuration can be described
by the height of the wall, the number of holes in the wall, di�erence of height
between adjacent columns and many more (Gabillon et al., 2013; Furmston
and Barber, 2012).

• The actions in the MDP are the possible orientations of the piece and the
possible locations that it can be placed on the play field.

• The transition function of the MDP define the next wall configuration de-
terministically given the current state and action. The transitions to the next
Tetrimino are given by a certain distribution, e.g., uniformly over all possible
types.

• The reward function of the MDP provides zero at all times, except when the
height of the wall exceeds the height of the play field. In that case, a negative
reward of ≠1 returned.
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(a)

(b)

Figure 2.1: The Tetris game (a) and its seven geometrical shapes called Tetriminos (b).

2.3 Notations of reinforcement learning
In the previous section, we have presented a definition of the environment the agent is
operating in. The next part of the puzzle is to define the goal of the agent in that environ-
ment, that is, to act in such a way in order to maximise the reward it receives over time.
In this section, we formally describe this goal in mathematical terms. Subsequently, we
also specify how the agent gathers knowledge on the fruitfulness of its action and how this
knowledge evolves over time. We present two distinct types of learning, i.e., model-based
and model-free learning, depending on whether a model of the environment is available to
the agent or not. In this dissertation, we concentrate on model-free learning. Therefore,
in Section 2.4.2, we present some additional techniques on how to gather knowledge in
an incremental manner and how to tackle the exploration-exploitation problem, discussed
earlier in Section 2.1.

In reinforcement learning problems, the agent is in a certain state of the environment
s(t) and has to learn to select the action a(t) at every time step t = 0, 1, . . .. In return,
the environment transitions the agent into a new state s(t + 1) and provides a numerical
reward r(t + 1) representing how beneficial that action was. It is important to note that
the transition to s(t + 1) and the observed reward r(t + 1) are not necessary (and also not
likely) to be deterministic. On the contrary, these are usually random, stationary variables.
This means they are random with respect to a certain distribution, but the distribution is
not changing over time.
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Definition 2.3

In a stationary environment, the probabilities of making state transitions or receiving
reward signals do not change over time.

A schematic overview of the RL agent is given in Figure. 2.2.

a(t)

s(t+1)

r(t+1)

Environment

Figure 2.2: The reinforcement learning model, based on (Kaelbling et al., 1996).

The goal of this agent is to act in such a way that its expected return, Rt, is maximised.
In the case of a finite-horizon problem, this is just the sum of the observed rewards. When
the problem consists of an infinite-horizon, the return is an infinite sum. In this case,
a discount factor, “ œ [0, 1[, is used to quantify the importance of short-term versus
long-term rewards. Consequently, the discount factor ensures this infinite sum yields a
finite number:

Rt =

Œÿ

k=0
“krt+k+1. (2.1)

When “ is close to 0, the agent is myopic and mainly considers immediate rewards. Instead,
if “ approaches 1, the future rewards are more important. For finite-horizon MDPs, the
sum might be undiscounted and “ can be 1.

In order to retrieve this return, the agent needs to learn a policy fi œ �, where � is the
space of policies. A policy is a function that maps a state to a distribution over the actions
in that state. Several types of policies exist, depending on the type of distribution and on
the information it uses to make its decision. Here we distinguish between two properties,
i.e., (1) deterministic or stochastic and (2) stationary or non-stationary. Each of these
types of policies will be defined in the following paragraph.

A deterministic policy is a policy that deterministically selects actions.
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Definition 2.4

A deterministic policy fi œ � is a policy for which the probability of selecting an
action a in state s at time step t, i.e., fi(s, a), equals 1 while for every other action
aÕ œ A, the probability is 0

÷a œ A(s) : fi(s, a) = 1 · ’aÕ ”= a œ A : fi(s, aÕ
) = 0

A stochastic policy is a policy that selects actions according to a probability distri-
bution (Nowé et al., 2012). Thereby, deterministic policies are a subset of stochastic
policies.

Definition 2.5

A stochastic policy fi œ � is a policy for which the probability of selecting an action
a in state s at time step t, i.e., fi(s, a) is larger or equal to 0 while ensuring that the
sum of probabilities equals 1.

’a œ A(s) : fi(s, a) Ø 0 ·
ÿ

aœA(s)
fi(s, a) = 1

A stationary policy is a policy that selects actions based on the current state only (Puter-
man, 1994).

Definition 2.6

A stationary policy fi œ � is a function for which the input is only the current state
s, i.e.,

fi : S æ A.

A non-stationary policy is a policy that does not select actions based on the current state
only, but also on the time-step t. Hence, the selection of an action does not only depend
on the state the agent is in, but also on the absolute time the agent has been operating
in the environment (Kaelbling et al., 1995). For instance, in a robot environment, the
action could be selected depending on lifespan of the agent. Generally speaking, it is to
be expected that the agent would select di�erent actions at the last day of its lifespan
than at the beginning.

Definition 2.7

A non-stationary policy fi œ � is a function for which the input is the current state
s and the a time step t, i.e.,

fi : S ◊ t æ A.
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In standard, single-objective reinforcement learning (SORL), an optimal policy fiú œ � of
the underlying MDP is a deterministic stationary policy (Bertsekas, 1987). In the upcoming
chapters of this dissertation we will see that this is not the case when the reward signal
is composed of multiple objectives.

Based on the stationary principle in SORL, the agent can learn a policy that is globally
optimal, i.e., over multiple states, by taking actions locally for each state individually. The
notion of the value function is important for this matter.

Definition 2.8

The value function V fi
(s) specifies how good a certain state s is in the long term

according to the policy fi. The function returns the expected, discounted return to
be observed when the agent would start in state s and follow policy fi:

V fi
(s) = Efi{Rt|s(t) = s}

= Efi

; Œÿ

k=0
“ krt+k+1 | s(t) = s

<

The value of an action a in a state s under policy fi œ � is represented by a Qfi
(s, a).

This is called a Q-value, referring to the quality of an action in a state and can be defined
as follows.

Definition 2.9

The value of an action a in a state s, Qfi
(s, a) is the expected return starting

from s, taking action a, and thereafter following policy fi:

Qfi
(s, a) = Efi{Rt|s(t) = s, a(t) = a}

= Efi

; Œÿ

k=0
“ krt+k+1 | s(t) = s, a(t) = a

<

In the previous sections, we have introduced a theoretical framework that forms the basis of
reinforcement learning. We have formally defined the environment the agent is operating in
and how the agent represents its knowledge. In the following sections we will describe how
we can learn the optimal Q-values, Qú, which will be used to learn the optimal policy, fiú.

2.4 Learning methods
Two main categories of learning approaches exist. These are model-based and model-free
techniques. In model-based learning, an explicit model of the environment is used to
compute the optimal policy fiú. This model can either be available a priori to the agent
to exploit or it can be learned over time. In the former case, dynamic programming is
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the advised solution technique, while in the latter case dyna architecture methods, which
concise an integrated architecture for learning, planning, and reacting, can be used (Sutton,
1991). Model-based approaches will be discussed in Section 2.4.1.

In model-free learning, no explicit model of the environment is considered, but the agent
learns the optimal policy in an implicit manner from interaction. As we will see in Sec-
tion 2.4.2, model-free learning uses the same mathematical foundations as model-based
learning.

2.4.1 Model-based learning
In a model representation of the environment the knowledge on the transition function
T (sÕ|s, a) and the reward function R(s, a, sÕ

) are explicit. When these aspects of the en-
vironment are known to the agent, dynamic programming methods can be used to compute
the optimal policy fiú. Dynamic programming will be explained in the subsequent sections.

Dynamic programming

Richard Bellman introduced dynamic programming as a process that solves a complex
problem by breaking it down into subproblems. This definition relates closely to the
process of solving an MDP by computing a policy which consists of local action selections
in every state.

An important discovery within this field is the Bellman equation. The Bellman equa-
tion (Bellman, 1957) is a recursive function used to calculate the value of a state s
according to a certain policy fi œ �, i.e., V fi

(s):

V fi
(s) =

ÿ

a

fi(s, a)

ÿ

a

T (sÕ|s, a)[R(s, a, sÕ
) + “V fi

(sÕ
)]. (2.2)

This recursive equation gives the utility of a state in terms of the average immediate
reward and a weighted average of the utility of the successor states based on the trans-
ition function.

Since the value function of a policy provides a scalar value, policies can be ranked in a
total order. This order relation is defined as follows:

Definition 2.10

A policy fi œ � is better than or equal to a policy fiÕ œ � if its expected return is
greater than or equal to the expected return of fiÕ over all states, i.e.,

fi Ø fiÕ
i� V fi

(s) Ø V fiÕ
(s), ’s œ S.

There is always a policy fiú œ � that is the optimal policy of an MDP. The value function
of this policy is greater than or equal to the value function of all policies over all states.

V ú
(s) = max

fi
V fi

(s), ’s œ S (2.3)
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Similar to the definition of the optimal value function of a state, we can also define the
optimal state-action value function Qú over all states and all actions:

Qú
(s, a) = max

fi
Qfi

(s, a), ’s œ S, a œ A(s). (2.4)

This equation gives us the expected return for selecting an action a in state s and thereafter
following the optimal policy fiú. Hence,

Qú
(s, a) = Efi{r(t + 1) + “V ú

(s(t + 1))|s(t) = s, a(t) = a}. (2.5)

Since V ú
(s) is the value of a state under the optimal policy, it is equal to the expected

return for the best action of that state. This is referred to as the Bellman optimality
equation of a state s and is defined as follows.

V ú
(s) = max

aœA(s)
Qfiú

(s, a)

= max

aœA(s)
Efiú{Rt|s(t) = s, a(t) = a}

= max

aœA(s)
Efiú

; Œÿ

k=0
“kr(t + k + 1)|s(t) = s, a(t) = a

<

= max

aœA(s)
Efiú

;
r(t + 1) + “

Œÿ

k=1
“kr(t + k + 1)|s(t) = s, a(t) = a

<

= max

aœA(s)
E{r(t + 1) + “V ú

(s(t + 1))|s(t) = s, a(t) = a}

= max

aœA(s)

ÿ

sÕ

T (sÕ|s, a)[R(s, a, sÕ
) + “V ú

(sÕ
)]

(2.6)

The Bellman optimality equation for state-action pairs, Qú, is defined in a similar way:

Qú
(s, a) = E{r(t + 1) + “ max

aÕ
Qú

(s(t + 1), aÕ
)|s(t) = s, a(t) = a}

=

ÿ

sÕ

T (sÕ|s, a)[R(s, a, sÕ
) + “ max

aÕ
Qú

(sÕ, aÕ
)].

(2.7)

Algorithms that solve this equation to calculate the optimal policy are called dynamic
programming algorithms. Over the years many dynamic programming algorithms have
been proposed, but the two main approaches are policy iteration and value iteration.
Policy iteration uses an alternation of evaluation and improvement steps to calculate the
value of the entire policy. Value iteration does not need a separate evaluation step but is
able to compute the value of a policy iteratively using a simple backup scheme. For more
information on these two principle dynamic programming algorithms, we refer to (Bellman,
1957; Puterman, 1994; Bertsekas, 2001a,b).

Note: It is important to note that the Bellman equation is based on the property of
additivity, meaning that passing the sum of two variables through a function f is
equal to summing the result of f applied to the two variables individually.
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Definition 2.11

A function f is additive if it preserves the addition operator:

f(x + y) = f(x) + f(y)

This is a basic, but an important requirement as we will see once we equip multi-objective
learning algorithms with scalarisation functions in Chapter 4.

2.4.2 Model-free learning
In the previous section we have examined techniques to compute the optimal policy when a
model of the environment is available. In this section, we explore the model-free approach,
i.e., the agent does not have at its dispense a model of the environment, but it has to learn
what to do in an implicit manner through interaction. This is referred to as learning from
experience. In this section, we will present a well-known algorithm, called Q-learning,
that does exactly this.

Q-learning

One of the most important advances in reinforcement learning was the development of the
Q-learning algorithm (Watkins, 1989; Watkins and Dayan, 1992). In Q-learning, a table
consisting of state-action pairs is stored. Each entry contains a value for ˆQ(s, a) which
is the learner’s current estimate about the actual value of Qú

(s, a). In the update rule,
the Q-value of a state-action pair is updated using its previous value, the reward and the
values of future state-action pairs. Hence, it updates a guess of one state-action pair with
the guess of another state-action pair. This process is called bootstrapping. The ˆQ-values
are updated according to the following update rule:

ˆQ(s, a) Ω (1 ≠ –(t)) ˆQ(s, a) + –(t)[r + “ max

aÕ
ˆQ(sÕ, aÕ

)], (2.8)

where –(t) œ [0, 1] is the learning rate at time step t and r is the reward received for
performing action a in state s. The pseudo-code of the algorithm is listed in Algorithm 1.

In each episode, actions are selected based on a particular action selection strategy, for
example ‘-greedy where a random action is selected with a probability of ‘, while the
greedy action is selected with a probability of (1 ≠ ‘). Upon applying the action, the
environment transitions to a new state sÕ and the agent receives the corresponding reward
r (line 6). At line 7, the ˆQ-value of the previous state-action pair (s, a) is updated towards
the reward r and the maximum ˆQ-value of the next state sÕ. This process is repeated until
the ˆQ-values converge or after a predefined number of episodes.

To conclude, Q-learning and general model-free learning possess a number of advantages:

• It can learn in a fully incremental fashion, i.e., it learns whenever new rewards are
being observed.

37



CHAPTER 2. SINGLE-OBJECTIVE REINFORCEMENT LEARNING

Algorithm 1 Single-objective Q-learning algorithm
1: Initialise ˆQ(s, a) arbitrarily
2: for each episode t do
3: Initialise s
4: repeat
5: Choose a from s using a policy derived from the ˆQ-values (e.g., ‘-greedy)
6: Take action a and observe sÕ œ S, r œ R
7: ˆQ(s, a) Ω ˆQ(s, a) + –t(r + “ max

aÕ
ˆQ(sÕ, aÕ

) ≠ ˆQ(s, a))

8: s Ω sÕ

9: until s is terminal
10: end for

• The agent can learn before and without knowing the final outcome. This means that
the learning requires less memory and that it can learn from incomplete sequences,
respectively, which is helpful in applications that have very long episodes.

• The learning algorithm has been proven to converge under reasonable assumptions.
Provided that all state-action pairs are visited infinitely often and a suitable evolution
for the learning rate is chosen, the estimates, ˆQ, will converge to the optimal values,
Qú (Tsitsiklis, 1994).

At first sight, visiting all state-action pairs infinitely often seems hard and infeasible in
many applications. However, the amount of exploration is usually reduced once the Q-
values have converged, i.e., when the di�erence between two updates of the same Q-value
does not exceed a small threshold. In the next section, we will discuss some well-known
techniques for balancing exploration and exploitation in model-free environments.

Action selection strategies

As we have already discussed in Section 2.1, the exploration-exploitation trade-o� is one
of the crucial aspects of reinforcement learning algorithms. This dilemma is the issue of
deciding when the agent has acquired enough knowledge in the environment (exploration),
before it can use this information and select the best action so far (exploitation). Below,
we elaborate on the four main techniques that leverage a certain trade-o� of exploration
and exploitation.

• Random action selection : This is the most simple action selection strategy. In this
case, the agent does not take into account its ˆQ-estimates, but it selects an action
a randomly from the set A(s). It is obvious that this action selection strategy is not
a mechanism to let the agent obtain high-quality rewards (exploitation), but it is a
simple technique to let the agent explore as it selects uniformly between the actions
in a state.

• Greedy action selection : In this strategy, the agent selects the action that it believes
is currently the best action based on its estimate ˆQ. However, if the agent follows
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this strategy too early in the learning phase, this estimate might be inaccurate and
the resulting policy might be sub-optimal.

• ‘-greedy action selection : This mechanism is a simple alternative to acting greedy
all the time. In an ‘-greedy action selection, the agent selects a random action with
a probability of ‘ and a greedy action with a probability of (1 ≠ ‘). It is important
to note that the ratio of exploration and exploitation is static throughout the entire
learning phase.

• Softmax action selection : In order to leverage this ratio of exploration and exploit-
ation, a probability distribution can be calculated for every action at each action
selection step, called a play. The softmax action selection strategy selects actions
using the Boltzmann distribution. The probability of selecting an action a in state
s is defined at follows:

P (a) =

e
Q̂(s,a)

·

q
aÕœA(s) e

Q̂(s,aÕ)
·

, (2.9)

where · œ R+
0 is called the temperature. In the case of high values for · , the

probability distribution of all actions are (nearly) uniform. When a low value is
assigned to · , the greedier the action selection will be. Usually, this parameter is
changed over time where in the beginning of the learning phase a high value for ·
will be chosen which is being degraded over time.

2.5 Reinforcement learning in stateless environments
After we explained the theoretical foundations of reinforcement learning, it might be ap-
propriate to evaluate these techniques in a practical context. Therefore, we turn ourselves
to a classical problem in reinforcement learning, called the multi-armed bandit problem.
In the multi-armed bandit problem, or also called the n-armed bandit problem, a gambler
is faced with a collection of slot machines, i.e., arms, and he has to decide which lever
to pull at each time step (Robbins, 952). Upon playing a particular arm, a reward is
drawn from that action’s specific distribution and the goal of the gambler is to maximise
his long-term scalar reward.

This problem is a stateless problem, meaning that there is no state in the environment.1
Therefore, we do not need an implementation of the entire Q-learning algorithm of Sec-
tion 2.4.2, but we can use a simpler updating rule. We can update the estimate ˆQ using the
sample average method. The ˆQ(a)-value, representing the estimate of action a is given by:

ˆQ(a) =

r(0) + r(1) + . . . + r(k)

k
, (2.10)

where r(i) is the reward received at time step i and k is the number of times action a has
been selected as yet. Initially, the ˆQ-value of each action is assigned 0. Once the agent
performs an action selection, called a play, the episode is finished.

1or only a single state, depending on the viewpoint
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Although this problem seems trivial, it is not. The multi-armed bandit problem provides a
clear mapping to the exploration-exploitation dilemma of Section 2.1; the agent has to try
to acquire new knowledge while at the same time use this knowledge to attempt to optimise
the performance of its decisions. Extensive research has been conducted for this problem
in the field of packet routing (Awerbuch and Kleinberg, 2008), ads placement (Pandey
et al., 2007) and investment and innovation (Hege and Bergemann, 2005).

2.5.1 Experimental evaluation
In this section, we experimentally compare the action selection strategies of Section 2.4.2
on the multi-armed bandit problem. More precisely, we analyse the following strategies:

• Random action selection
• Greedy action selection
• ‘-greedy, ‘ = 0.1
• ‘-greedy, ‘ = 0.2
• Softmax, · = 1

• Softmax, · = 0.1
• Softmax, · = 1000 ú 0.9play

• Softmax, · = 1000 ú 0.95

play

We will analyse their behaviour on a 4-armed bandit problem. The expected reward of
each arm is given below in Table 2.1. The rewards are drawn from a normal distribution
with mean Qú

a and the variance equal to 1. Furthermore, the initial Q-values are assigned
to zero and we averaged the performance of the action selection strategies over 1000 trials
of each 1000 plays.

Action Qú
a

action #1 1.7
action #2 2.1
action #3 1.5
action #4 1.3

Table 2.1: The Qú
a for each action of the multi-armed bandit problem.

We first depict the behaviour of the action selection strategies in terms of three criteria:
(1) the probability over time of selecting the optimal action, which is in this case action
#2, (2) the average reward received over time and (2) the number of times each action
is selected. These results are presented in Figures 2.3, 2.4 and 2.5, respectively. We
summarise the results for each of the traditional action selection strategies below.2

2For n-armed bandits also more specialised action selection strategies exist that analyse the upper
confidence bound of each arm (Auer et al., 2003; Audibert et al., 2009)
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Figure 2.3: The probability of selecting optimal actions for each of the action selection
strategies in the multi-armed bandit problem.

• Random action selection : As this strategy does not consider the obtained knowledge
in the ˆQ-values and selects actions uniformly at random, the probability of selecting
the optimal action is 1

4 as there are 4 actions in this environment (see Figure 2.3
and Figure 2.5). Because the strategy is very naive and not exploiting, the average
reward obtained over time in Figure 2.4 is also very low.

• Greedy action selection : Selecting the greedy action all of the time is also not an
ideal strategy. In Figure 2.3, we see that the greedy action is always stuck and never
finds the best action. As, we see in Figure 2.5, action #1 is selected all of the times,
because the algorithm never explores other levers than the one it selected the first
time. Hence, only for this action the ˆQ-value approaches the Qú-value, while for the
other actions, the ˆQ-value remains its initial value.

• ‘-greedy action selection : Introducing the ‘-parameter clearly allows us up to some
extent to balance exploration and exploitation. In Figure 2.3, we see that introducing
an ‘ parameter of 0.1 allows us in the end to reach a performance of 84%. Utilising
a higher probability for random actions with ‘ = 0.2 degrades the performance in
terms of the optimal actions and the average reward compared to ‘ = 0.1.

• Softmax action selection : We see that the algorithms with · = 0.1 and · = 1 do
not perform well. With a high · value, the algorithm is exploring a lot while a low
· value makes the algorithm behave greedily and it gets stuck in a local optimum.
Therefore, it is recommended to let the temperature parameter degrade over time.
This idea is implemented when assigning · = 1000ú0.9play and · = 1000ú0.95

play.
From the figures, we see that the strategies explore a lot in early learning phases
while exploiting more at the end. For this particular case, we see that when assigning
· = 1000ú0.9play yields the best performance in terms of selecting the optimal action
and the obtained reward.

41



CHAPTER 2. SINGLE-OBJECTIVE REINFORCEMENT LEARNING

0 100 200 300 400 500 600 700 800 900 1000
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Play

A
ve

ra
g
e
 r

e
w

a
rd

 

 

Random

ε−greedy, ε=0

ε−greedy, ε=0.1

ε−greedy, ε=0.2

Softmax, τ=1

Softmax, τ=0.1

Softmax, τ=1000*0.9play

Softmax, τ=1000*0.95play

Figure 2.4: The average reward obtained for each of the action selection strategies in the
multi-armed bandit problem.

The total accumulated reward obtained for each of the action selection strategies is
presented in Table 2.2. This statistic also shows that the softmax strategy found the
best compromise between explorative and exploitative behaviour over the entire learning
period. The ‘-greedy strategies approach its performance due to their rapid increase in
early learning phases, but this does not su�ce to surpass the performance of the softmax
algorithm.

Strategy Cumulative reward
Random 1649.8
Greedy 1698.3
‘-greedy, ‘ = 0.1 1950.1
‘-greedy, ‘ = 0.2 1947.6
Softmax, · = 1 1737.6
Softmax, · = 0.1 1644.4
Softmax, · = 1000 ú 0.9play 1976.5
Softmax, · = 1000 ú 0.95

play 1903.1

Table 2.2: The total accumulated reward for each of the action selection strategies in the
multi-armed bandit problem.

Even in this simple, stateless example, we have seen that it is crucial to find a good
balance between exploration and exploitation. Behaving too greedily and exploiting too
early tends to lead to suboptimal performance at the end of the learning task, while
unnecessary exploration does not allow to obtain a lot of reward during learning. Although
the softmax algorithm provided the best performance for this learning task, this result
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Figure 2.5: The number of times each action is selected for each action selection strategy.

cannot be generalised. Up to this day, there is no general answer to solving the exploration-
exploitation dilemma as it requires tuning that is problem-specific (Auer et al., 2002). In the
following chapter, we will analyse the additional di�culties that arise when the environment
is no longer single-objective, but when multiple reward signals are supplied to the agent.

2.6 Summary
In this chapter, we introduced the foundations of single-objective reinforcement learning.
We presented its history, which lies in the fields of psychology and optimal control theory.
We explained the crucial aspects that define a reinforcement learning problem and de-
scribed all its components, such as the Markov decision process and definitions of a policy
and a value function. We paid special attention to the Bellman equation which is the
foundation of many reinforcement learning methods. We also emphasised the synergies
and the di�erences between model-based and model-free learning for sequential decision
making problems, i.e., situations where the model is either known or unknown to the
agent. For model-free learning approaches, the Q-learning algorithm was one of the major
breakthroughs in the late 1980s.

Furthermore, we introduced di�erent action selection strategies that allow to balance the
exploration towards uncharted territory and the exploitation of the acquired knowledge.
These mechanisms were tested on a simple, single-state problem, called the n-armed
bandit problem.
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3

| Learning in Multi-Criteria
Environments

Many real-world problems require the simultaneous optimisation of multiple criteria or
objectives. These objectives can be either correlated, conflicting or independent. In this
chapter we present several characteristics for learning in these environments. We intro-
duce the general concepts of multi-criteria decision making and we provide a survey of the
theoretical foundations of multi-objective optimisation. With special care, we introduce
evolutionary multi-objective (EMO) algorithms that use population-based principles to
o�er a wide range of advantages in multi-objective environments. Many of these EMO al-
gorithms have also inspired research to solving multi-objective problems with reinforcement
learning techniques. This research area is called multi-objective reinforcement learning
(MORL) and is the topic of this dissertation. We formally specify the di�erences between
single-objective reinforcement learning and MORL in Section 3.3 and highlight why spe-
cific MORL algorithms are required for solving this particular set of problems. Finally, we
present an overview of MORL research that is categorised by two aspects and we highlight
our main contributions in Section 3.4.

3.1 Introduction
Many real-world decision making problems are inherently too complex to be described by
a single aspect or criterion. Restricting ourselves to these one-dimensional approaches
would be a simplification of the problem at hand which would result in unrealistic and
suboptimal decisions. Usually, these decision making problems deal with the systematic
and simultaneous optimisation of a collection of objectives (Coello Coello et al., 2006;
Tesauro et al., 2008; Hernandez-del Olmo et al., 2012). These objectives can be correlated
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or independent, but usually they are conflicting, i.e., an increase in the performance of one
objective implies a decrease in the performance of another objective and vice versa. For
example, in the area of portfolio management, the manager wants to maximise the returns
while at the same time reduce the risks. It is clear that a risky policy has the potential
of a high return of investment while at the same time a high probability in money losses
as well (Hassan, 2010). In vehicle routing, the goal is to generate a tour on a network
that minimises the overall distance of the route, the workload of the driver, the customer
satisfaction and many more (Jozefowiez et al., 2008). Additionally, in a wireless sensor
network the packets need to be routed in such a way that both energy consumption and
latency is optimised (Gorce et al., 2010).

In such cases, there is no single optimal solution, but the idea is to come up with trade-o�
or compromise solutions that balance one or more objectives. As such, we are dealing with
a multi-criteria decision making (MCDM) problem. MCDM is a process that analyses
complex problems that possess multiple, possible conflicting objectives (Zionts, 1979). In
the following section, we will accurately define the fundamental components of MCDM.

3.1.1 Definitions of Multi-Criteria Decision Making
In this section, we will formally introduce multi-criteria decision making (MCDM) and
multi-objective optimisation, which define the key foundations of problem solving in mul-
tiple dimensions. Belton and Stewart define MCDM as follows (Belton and Stewart,
2002):

Definition 3.1

MCDM is an umbrella term to describe a collection of formal approaches which seek
to take explicit account of multiple criteria in helping individuals or groups explore
decisions that matter.

In other words, MCDM is concerned with the development of methodologies to solve
complex decision making problems involving multiple goals of conflicting nature. Although
MCDM problems have been typical and relevant for all problems of mankind, research in
the area was relatively minimal until the last 40 years. Up to today, MCDM is a vivid
research track that has generated significant amount of methods and techniques for multi-
criteria problems (Stewart, 1992; Figueira et al., 2005; Tzeng and Huang, 2011; Aruldoss
et al., 2013).

3.1.2 Multi-Objective Optimisation
Multi-objective optimisation (MOO) is a subarea of MCDM where each objective can be
defined by means of a mathematical equation and constraints. Without loss of generality
it can be assumed that these objectives are to be maximised. A general multi-objective
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optimisation problem can be formulated by an objective function F :

max F(x) = (f1(x), f2(x), . . . , fm(x)), (3.1)

where m is the number of objectives and x = (x1, x2, . . . , xk) is the decision vector in
the decision space X. The decision vector x then defines the input to the optimisation
problem. The objective function fi evaluates the decision vector on objective i and assigns
it a real value, i.e., fi : X æ R. Thus, the objective function F provides an objective
vector (y1, y2, . . . , ym), where each index i contains the value of fi(x). Furthermore,
constraints might be specified on the objective functions that define a minimal threshold
for the objective function value fi for objective i. In order to find a feasible solution to
the problem, this constraint should be met. The constraint function g : X æ R, where
g(x) Æ 0 is to be satisfied. Usually, multi-objective optimisation problems - and also the
works presented in this dissertation - deal with problems where m œ {2, 3}. In the case
of m > 3, we speak of many-objective optimisation. This is a separate research track
aimed at solving problems with very high dimensionality that require specific multi-criteria
solution methods (Deb and Jain, 2014; Jain and Deb, 2014).

Defining optimal solutions

So far, we have formalised the components that define a MOO problem. The goal of solving
such a problem is to identify a decision vector x œ X such that ’x

Õ œ X, F(x

Õ
) ª F(x).

Therefore, it is crucial to define a binary relation ª on the objective space. In a single-
objective problem, defining such a relation is easy; the solutions are evaluated by a single
scalar value which entails that we can totally order the solutions as in Figure 3.1 (a).
However, in the multi-objective case, we are no longer optimising in a single-dimension
but the objective function provides a vectorial evaluation of a solution. Therefore, typically,
there is no single global solution in MOO problems, but there exist a set of solutions that
meet a certain optimality criterion (see Figure 3.1 (b)). The traditional relation that
compares two solutions is the Pareto dominance relation (Pareto, 1896).

A solution (strictly) Pareto dominates another solution if it is strictly better on at least
one objective of another solution xÕ, while not being strictly worse on the other objectives:

Definition 3.2

A solution x œ X strictly Pareto dominates another solution x

Õ œ X, i.e., x

Õ ª x

when
x

Õ ª x ≈∆ ÷j : fj(x) > fj(x

Õ
) · ’ i ”= j : fi(x) ⌅ fj(x

Õ
). (3.2)

This binary relation possesses a few properties:

• Irreflexive: The Pareto dominance relation is not reflexive since it does not hold that
a solution x Pareto dominates itself.
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Figure 3.1: In the single-objective case in (a), the solutions of the problem can be totally
ordered. In the case of two or more dimensions, the solutions are vectorial and no longer
totally ordered. The Pareto relation specifies a partial order. The optimal solutions are
denoted by black dots in both figures.

• Asymmetric: The Pareto dominance relation is not symmetric since x ª x

Õ does not
imply x

Õ ª x.
• Antisymmetric: Since the Pareto dominance relation is not symmetric, it cannot be

antisymmetric.
• Transitive: The Pareto dominance relation is transitive as when x ª x

Õ and x

Õ ª x

ÕÕ,
then x ª x

ÕÕ also holds.

The definition of strict Pareto dominance can be relaxed. A solution x weakly Pareto
dominates another solution x

Õ, i.e., x

Õ ∞ x when there does not exist an objective where
x

Õ is better than x.

Definition 3.3

A solution x œ X weakly Pareto dominates another solution x

Õ œ X, i.e., x ∞ x

Õ

when
x

Õ ∞ x ≈∆ ’j : fj(x) Ø fj(x

Õ
). (3.3)

The Pareto relation defines a partial order amongst the solutions. Two solutions x and
x

Õ are incomparable if x does not Pareto dominate x

Õ and vice versa:

Definition 3.4

Two solutions x, x

Õ œ X are incomparable, i.e., x Î x

Õ when

x Î x

Õ ≈∆ x ⌃ x

Õ · x

Õ ⌃ x. (3.4)
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A solution x is non-dominated by another solution x

Õ if it is either Pareto dominating
or incomparable with that solution:

Definition 3.5

A solution x œ X is non-dominated by another solution x

Õ œ X, i.e., x ⌃ x

Õ when

x ⌃ x

Õ ≈∆ x

Õ ª x ‚ x

Õ Î x. (3.5)

The goal of solving MOO problems is to come up with solutions that are Pareto optimal,
i.e. the solutions that are non-dominated by any other solution:

Definition 3.6

A solution x œ X is Pareto optimal i� it is non-dominated by any other solution
x

Õ œ X:
x is Pareto optimal ≈∆ ’x

Õ œ X : x ⌃ x

Õ. (3.6)

The set of decision vectors that define Pareto optimal solutions is called the Pareto op-
timal set, while the set of objective vectors of these solutions is called the Pareto front. In
Figure 3.1 (b), the white dots represent solutions that are dominated by the black dots,
which define the Pareto front. The Pareto dominance is a commonly accepted optimality
criterion for multi-objective problems (Bäck, 1996; Knowles and Corne, 2002; Vamplew
et al., 2010). Nevertheless, also other optimality criteria exist, such as ‘-dominance (Lau-
manns et al., 2002), ordering cones (Batista et al., 2011), etc. Especially in multi-objective
reinforcement learning, these alternatives play a crucial role. For more information on op-
timality criteria, we refer to Section 3.1.2.

Characteristics of the Pareto front

The Pareto optimal set and the Pareto front are closely related and possess some interesting
characteristics that can have an impact on the multi-criteria decision making process. In
this section, we highlight the main properties of the Pareto front, which are the range,
the shape and the size.

The range of the Pareto front represents the dimensions of the Pareto front. For instance,
in a two-dimensional environment, the range can provide details on the width and the height
of the area that holds the Pareto optimal solutions. This area can be represented by two
points, i.e., the ideal point and the nadir point:
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Definition 3.7

Let Y ™ X be the set of Pareto optimal solutions of a maximisation problem. The
ideal point z = (z1, z2, . . . , zm) œ Rm of this problem is then defined as:

zi = max

yœY
fi(y). (3.7)

Definition 3.8

Let Y ™ X be the set of Pareto optimal solutions of a maximisation problem. The
nadir point z = (z1, z2, . . . , zm) œ Rm of this problem is then defined as:

zi = min

yœY
fi(y) (3.8)

In Figure 3.2, we depict a graphical representation of both points. Based on these coordin-
ates, the decision maker has more knowledge of the area and size of the objective space that
contains the optimal solutions, which can be helpful for example in interactive optimisation
processes, where the user can interactively steer the search process (Deb et al., 2006).
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objective 1

Figure 3.2: The Pareto front of a maximisation problem. The back dots denote the Pareto
front that dominate the white dots. The red and green dots depict the nadir and ideal
point, respectively.

The size of the Pareto front can also have an impact on the optimisation process. When
the size of the Pareto front is relatively large, traditional techniques might have a di�cult
time approaching the entire set of optimal solutions. The number of objectives of a
problem also directly relates to the size of the Pareto front. As proven in Winkler (1985),
the number of Pareto incomparable solutions increases with the number of objectives.

The shape of the Pareto front is another important property that influences the optim-
isation process. The form of the Pareto front reflects how strongly the optimal solutions
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Figure 3.3: When the internal angle a of all indentations in the Pareto front is either
smaller, bigger or equal to 180 degrees, the shape of the Pareto front is convex (a),
concave (b) or linear (c), respectively. Both objectives are to be maximised.

are correlated. We di�erentiate between a discrete and a continuous decision space. If
the decision space is discrete, the set of Pareto solutions is not contiguous and contains
a finite number of elements as in Figure 3.2. When the decision space is continuous, the
shape of the Pareto front represents a line that connects all optimal solutions without any
gaps (Ehrgott, 2005). Since the shape of the Pareto front also influences the e�ectiveness
of particular MORL algorithms that rely on (linear) scalarisation functions, as we will see
in Section 4.2.2, it is appropriate to review this property below. We distinguish between
five principal types of Pareto fronts, depending on their shape:

• Convex shape : A Pareto front is convex in shape if the shape of the Pareto front is
bulging outwards. Another way to determine the shape is to look at the internal angle
that is defined by every three adjacent vectors as denoted in Figure 3.3 (a). When
no internal angle is greater than 180 degrees, the Pareto front is convex (Yaochu,
2003). An example of a convex Pareto front can be found in Figure 3.4 (a). More
formally, a Pareto front is convex if a normalised linear combination of two of its
elements y1 and y2 is always lower than a normalised third element y3:

Definition 3.9

Let Y ™ X be the set of Pareto optimal solutions of a maximisation problem.
The Pareto front is convex if :

’y1, y2 œ Y · ’0 Æ ⁄ Æ 1, ÷y3 œ Y : ⁄Îy1Î + (1 ≠ ⁄)Îy2Î Æ Îy3Î. (3.9)

• Concave shape: A Pareto front is concave in shape if the shape of the Pareto front is
bulging inwards. Alternatively, it should also hold that there are indentations where
the internal angle is greater than 180 degrees, as shown in Figure 3.3 (b). 1 An
example of a concave Pareto front can be found in Figure 3.4 (b). Mathematically

1Concave or non-convex are synonyms.
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speaking, a Pareto front is concave if a normalised linear combination of two of its
elements y1 and y2 is always larger than a normalised third element y3:

Definition 3.10

Let Y ™ X be the set of Pareto optimal solutions of a maximisation problem.
The Pareto front is concave if :

’y1, y2 œ Y · ’0 Æ ⁄ Æ 1, ÷y3 œ Y : ⁄Îy1Î + (1 ≠ ⁄)Îy2Î Ø Îy3Î. (3.10)

• Linear shape: A Pareto front is linear if the line representing the Pareto front can
be analytically defined by m · x + b, where m is the slope of the line and b is the
intercept. Logically, the internal angle is then equal to 180 degrees for every triple
of vectors (Figure 3.3 (c)). An example of a linear Pareto front can be found in
Figure 3.4 (c). Technically, a Pareto front is linear if a normalised linear combination
of two of its elements y1 and y2 is equal to a normalised third element y3:

Definition 3.11

Let Y ™ X be the set of Pareto optimal solutions of a maximisation problem.
The Pareto front is linear if :

’y1, y2 œ Y · ’0 Æ ⁄ Æ 1, ÷y3 œ Y : ⁄Îy1Î + (1 ≠ ⁄)Îy2Î = Îy3Î. (3.11)

• Disconnected shape: In some problems, the Pareto front might not be continuous but
discontinuous, i.e., there might exist gaps as in Figure 3.1 (d). Problems that retain
a disconnected Pareto front are particularly di�cult for multi-objective optimisation
techniques as these methods no longer guarantee to converge to the global Pareto
front if it contains gaps (Huband et al., 2006).

Pareto fronts can also contain combinations of the above shapes. For instance, in Fig-
ure 3.4 (e), we depict a Pareto front that contains a mixture of both convex and concave
shapes.
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Figure 3.4: Several Pareto fronts with di�erent shapes.

Other characteristics of the Pareto front are not listed here. The interested reader can find
a more comprehensive discussion of other properties in Ehrgott and Gandibleux (2002);
Figueira et al. (2005).

To conclude, we denote a practical MOO problem in an illustrative manner. This is the
problem of acquiring a new vehicle.
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Example 3.1

When a person is looking to buy a vehicle, he might be interested in a vehicle that
is both cheap and speedy. In other words, the person would like to find a vehicle
that maximises the speed objective and minimises the cost objective. In Figure 3.5,
we depict 12 vehicles and their performance in terms of these two objectives. We
note that in this example, there is no single vehicle that is both the fastest and the
cheapest, but there are several trade-o� solutions: vehicles that balance the speed
and cost objective in a certain way. In our example, we clearly see that vehicle (f) is
not an ideal solution as every other vehicle is better in terms of speed. This solution,
together with the other solutions denoted by white dots are Pareto dominated by the
black dots. These five vehicles are Pareto optimal and mutually incomparable as they
provide an optimal trade-o�. These vehicles then define the Pareto optimal set while
their evaluations on the speed and cost level define the Pareto front.

Depending on the specific trade-o� the person is interested in, e.g., preferring cost
over speed or vice versa, the optimal decision would be to acquire one of these five
vehicles.
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Figure 3.5: Vehicles can be evaluated on several criteria. The vehicles (a) to (e), denoted
by a black dot, possess optimal combinations of speed and cost, while the white dots, such
as vehicle (f), are not optimal, but dominated.

Articulation of preferences

So far, we have presented the principal theoretical concepts of multi-criteria optimisation,
such as the Pareto optimal set and the Pareto front. We now introduce another major
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part of the MCDM process, more precisely the role of the decision maker. The decision
maker possesses preferences or opinions concerning the solutions in the objective space.
These opinions reflect the relative importance of the di�erent objectives, e.g, the preferred
balance between speed and cost in Example 3.1. Whether deliberately or not, these
preferences are applied in the mind of the decision maker to evaluate the results obtained
by the optimisation process, in order to finally select a single solution in the execution
phase. In literature, we discover three distinct ways how the preferences of the decision
maker can be used in the optimisation process to select a single solution in the objective
space. These are a priori, a posteriori and interactive articulation of preferences. We
will highlight these types of preferences which will be used to introduce the algorithmic
notions of single-policy and multi-policy categories.

In the case of a priori articulation of preferences, the decision maker provides its pref-
erences before the optimisation process takes place. Many of these a priori methods
incorporate preferences in the form of parameters that steer the search process to solu-
tions that satisfy these preferences. Usually, a scalarisation function is employed that
reduces the original multi-objective problem to a single-objective problem, taking into ac-
count the preferences of the decision maker as constraints to refine the optimality criterion.
A scalarisation function f is a function that projects a vector to a scalar, given a certain
weight vector:

Definition 3.12

A scalarisation function f is a function that projects a vector v to a scalar:

v
w

= f(v, w), (3.12)

where w is a weight vector parameterising f .

Many implementations of scalarisation functions exist, such as the weighted global criterion
method, the weighted sum, the Chebyshev scalarisation functions (Dunford et al., 1988)
and lexicographic methods, where an order exists among the objectives, similar to how
words are ordered in the alphabet. As the preferences of the decision maker are known
beforehand, there is no need to approximate the entire Pareto front of optimal solutions.
For instance, in Example 3.1, if the decision maker would know its preferred alignment
of speed and cost, this information could be used to seed the search process. Since the
weight vector w specifies the compromise solution the user is interested in ahead of time,
there is no need to learn a set of trade-o� solutions. This way, one can reuse established
single-objective solution methods as the dimensionality of the problem is reduced to one.
The class of solution techniques that adopt this principle are called single-policy algorithms
as each execution of the optimisation process yields only a single solution as presented in
Figure 3.6. In the upcoming chapters, we will more closely investigate these functions and
determine their performance once combined in a reinforcement learning setting.
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MOO
Problem Provision of preferences
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MOO
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Preference articulation phase Optimization phase Execution phase

Figure 3.6: In a priori optimisation, the decision maker first supplies its preferences in
an explicit format in the articulation phase. In the optimisation process, this explicit
preference information is employed in a single-policy algorithm in order to obtain the best
compromise solution according to the decision maker.

In some cases, the decision maker might not succeed to express its preferences before
the optimisation process is initiated. This could be the case when the decision maker is
unfamiliar with the problem at hand or because he might have a hard time explicitly stating
its preferences. For instance, in Example 3.1, someone with no experience in automotive
vehicles might have a hard time to formally describe its preferences a priori. Another
example could be the situation where the government has to decide on where to build a
new airport. For this type of problem, the government could quite accurately estimate
the monetary costs associated to the build, but it would be much harder to specify a
weight vector that evaluates solutions based on other criteria. For example, the increase
of noise, tra�c and pollution in the area and the social cost of expropriating families
from their houses are qualitative rather than quantitative cost functions. In these cases,
it is appropriate to o�er a palette of trade-o� solutions which the decision maker can
choose from once he has a clearer view on what solutions appeal to him. The class of
algorithms that obtain a set of trade-o� solutions rather than a single solution are called
multi-policy algorithms. How the decision maker finally picks a single solution from this
set is defined by a preference articulation process. In this selection process the user can
either supply specific weights to define an explicit representation of its preferences or use
other, less-quantifiable preferences that allow a more implicit representation. This principle
is called a posteriori preference articulation as it makes use of a generate-first-choose-later
approach (Messac and Mattson, 2002). We depict the process in Figure 3.7.

Provision of preferences

explicit implicit

MOO
Problem

MOO
Algorithm

multi-policy

single 
solution

Optimization phase Preference articulation phase Execution phase

Figure 3.7: In a posteriori optimisation, a multi-policy algorithm first proposes a set of
trade-o� solutions. In the next step, the decision maker can select a single solution from
this set according to its explicit or implicit preferences.
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In the two previous approaches, the role of the decision maker was minimal, i.e., he
supplied his preference information explicitly or implicitly either before or after the multi-
objective optimisation algorithm is initiated. However, the decision maker may also interact
with the optimisation process in an iterative manner. For instance, when the set of trade-
o� solutions obtained by an a posteriori optimisation process is too large or when too many
objectives are present, the decision maker might have a hard time choosing its preferred
compromise solution. In that case, interactive methods can help to incorporate the possibly
subjective and implicit preferences of the decision maker during the optimisation process
itself. This interactive setting allows the decision maker to gradually specify its area of
interest within the objective space, even if this area was not entirely clear to the decision
maker itself at the start of the process. Several approaches are possible to interact with
the optimisation process. Firstly, the decision maker can opt to interactively redefine
the parameters of the scalarisation function, traditionally used for single-policy methods,
to steer the search towards a desired compromise solution (Alves and Climaco, 2000;
Sakawa and Kato, 1998; Sakawa and Shibano, 1998). Secondly, instead of evaluating a
single solution at a time, the decision maker can also interactively evaluate a finite set
of alternative solutions. Each run of the multi-policy algorithm, the decision maker can
select the solutions that it finds appealing. The interactive algorithm then takes this
partial and limited preference knowledge into account to refine the search to regions in
the objective space that match this information. In the end, the decision maker needs to
select a single solution in a similar manner as the a posteriori approach to end up with
the best trade-o� solution (see Figure 3.8). Examples of this principle are the light-beam
methods (Jaszkiewicz and S≥owiÒski, 1994, 1995; Kalyanmoy and Abhay, 2007).

MOO
Problem Provision of preferences MOO

Algorithm
single 

solution

Preference articulation phase Optimization phase Execution phase

explicit implicit single-policy multi-policy

Provision of preferences

Preference articulation phase

explicit implicit

Figure 3.8: In interactive optimisation, the user can first define partial and rough preference
information in an implicit or explicit form which the optimisation algorithm uses to suggest
a single solution or a set of solutions. In an alternating fashion, the user can redefine and
reassign more accurate preference information to steer the search process. In the end, the
same principle can be employed to select a single solution for the selection phase.

In this section, we have provided an overview of di�erent scenarios of the decision maker
and how preference information influences the search process. We have introduced the
two classes of multi-objective optimisation algorithms, called single-policy and multi-policy
algorithms. In the following section, we describe some evolutionary multi-objective optim-
isation algorithms that are particularly suited for multi-policy optimisation.
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3.2 Evolutionary Multi-Objective Optimisation
So far, we have seen that multi-objective solution methods can be characterised by whether
they learn a single policy or multiple policies at the same time. Single-policy methods
may not be very exotic as the function they optimise is usually a scalarisation function
applied on the problem’s original objective functions. Hence, single-policy techniques relate
closely to standard, single-objective solution methods. Moreover, multi-policy algorithms
might arouse more excitement as they simultaneously optimise multiple objectives and
o�er a set of trade-o� solutions in a single run. In this regard, evolutionary algorithms
(EA) are of great interest for multi-policy optimisation as their internal mechanisms are
intrinsically coupled to the principle of supplying a set of solutions. In this section, we
will more closely elaborate on EAs since they provide foundations to some concepts in
multi-objective reinforcement learning.

Evolutionary algorithms are inspired by natural systems and apply the principles of bio-
logical evolution to design algorithms for problem solving (Bäck, 1996). Evolutionary
algorithms consist of an initially random population of individuals that evolves over a
series of generations until a termination criterion is met. Each generation, a principle
based on the survival of the fittest is mimicked to determine which candidates of the
previous generation can seed the next generation based on an evaluation, selection, re-
combination and mutation steps (Spears, 2000). We describe these components in more
detail in the following paragraph.

1. In the evaluation step, the current population is evaluated given a certain objective
function that assesses its quality.

2. In the selection step, this fitness is used to determine which candidates of the cur-
rent population are chosen for mating. These candidates will become parents that
produce o�spring.

3. In the recombination step, the information of two or more selected parents is com-
bined in order to produce o�spring.

4. In the mutation step, the o�spring undergoes mutation, i.e., small perturbations, in
order to maintain genetic diversity from one generation to another.

5. In the reinsertion step, it is determined which elements of the old population and
the new o�spring are to be inserted in the new population. This step is based on
the size of the newly generated o�spring and their fitness evaluation.

This process is repeated until the fitness of a candidate solution exceeds a certain threshold
or after a predefined number of iterations. An overview of the di�erent steps that comprise
an evolutionary algorithm is depicted in Figure 3.9.
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Figure 3.9: An overview of the di�erent components of an evolutionary algorithm.

Due to the fact that evolutionary algorithms evolve a population of solutions rather than
a single solution, they are particularly suited for problems involving multiple and conflicting
objectives. With this in mind, researchers in the 1980s grew a rapidly increasing interest in
the area of evolutionary multi-objective (EMO) algorithms (Scha�er, 1985; Van Veldhuizen
and Lamont, 1998; Coello Coello, 1999). As a result of their principal characteristics, EMO
algorithms are inherently powerful multi-policy algorithms that yield a set of candidate
solutions in a single run.

In this thesis, we focus on sequential decision making under uncertainty. The reasons
why we consider reinforcement learning instead of EMO algorithms are as follows:

• Traditionally EMO algorithms are focussed on problems involving a single state. Al-
though workarounds are possible for multi-state environments (Goh and Tan, 2009),
they are merely ad-hoc solutions. The reinforcement learning framework is specific-
ally tailored for dealing with multiple states.

• The applications that we believe can benefit from this work in the near future are
robotic problems. In these problems, the learning speed and the sampling cost
are crucial aspects. Intrinsically, reinforcement learning is concerned with these
properties.

• On a theoretical side, the performance and the power of evolutionary algorithms
are argued by Holland’s schema theorem (Holland, 1992). However, this theorem is
not a formal convergence proof. For some reinforcement learning algorithms, such
as for instance for the Q-learning algorithm in Section 2.4.2, convergence proofs
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exist (Tsitsiklis, 1994). This is why we find it more appropriate to focus on rein-
forcement learning in this dissertation.

3.3 Definitions of Multi-Objective RL
In the previous section, we have described the theoretical foundations of multi-objective
optimisation and all the components that comprise a MCDM problem. In this section, we
proceed to the main topic of this dissertation, i.e., multi-objective reinforcement learning
(MORL). We characterise the key components that comprise a MORL environment which
is a multi-objective Markov decision process. Subsequently, we also categorise the di�erent
MORL algorithms in a problem taxonomy. We will analyse two di�erent types of problem
taxonomies, i.e., an axiomatic and a utility approach.

3.3.1 Multi-Objective Markov Decision Process
In Section 2.2, we have seen that a Markov decision process is the principal structure to
define the environment the reinforcement learning agent is operating in. In the case of
a multi-objective problem consisting of m objectives, the environment is modelled as a
multi-objective Markov decision process (MOMDP). Formally, a MOMDP is described as
follows:

Definition 3.13

A multi-objective Markov decision process is a 4-tuple (S, A, T, R), where

• S = s1, . . . , sN is a finite set of states,
• A = fisœSA(s) where A(s) is a finite set of available actions in state s œ S,
• T : S ◊ A ◊ S æ [0, 1] is the transition function T (sÕ|s, a) specifying the

probability of arriving in state sÕ after selecting action a in state s,
• R : S ◊ A ◊ S æ Rm is the reward function R(s, a, sÕ

) specifying the m-
dimensional expected reward vector associated to transitioning from state s
with action a to state sÕ.

From the definition, we can see that the only di�erence compared to standard MDPs is
the reward function. Instead of a single, scalar reward, the reward function now returns
an m-dimensional vector in case of a problem with m objectives:

R(s, a, sÕ
) = (R1(s, a, sÕ

), R2(s, a, sÕ
), . . . , Rm(s, a, sÕ

)) (3.13)

The agent is in a certain state of the environment s(t) and has to learn to select the action
a(t) at every time step t = 0, 1, . . .. In return, the environment transitions the agent into
a new state s(t + 1) and provides a vectorial reward r(t + 1) representing how beneficial
that action was. A schematic overview of the RL agent is given in Figure 3.10.
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Figure 3.10: The multi-objective reinforcement learning environment returns a vectorial
feedback signal r(t + 1) upon the selection of a particular action a(t).

Due to this vectorial reward function, also other reinforcement learning definitions change
in the case of multi-objective environments. In the case of a MOMDP, the goal of the
agent is to act in such a way that its expected vectorial return, Rt, is Pareto optimal:

Rt =

Œÿ

k=0
“k

rt+k+1 (3.14)

Additionally, the state-dependent value function of a state s is now vectorial:

Definition 3.14

The value function V

fi
(s) specifies how good a certain state s in the long term

according to the policy fi œ �. In a MOMDP, the function returns the expected,
discounted vectorial return to be observed when the agent would start in state s and
follow policy fi:

V

fi
(s) = Efi{Rt|s(t) = s}

= Efi

; Œÿ

k=0
“ k

rt+k+1 | s(t) = s

<

For the sake of completeness, we review the optimality criterion that we previously defined
in Section 3.1.2 now also for multi-objective reinforcement learning. A policy fi (strictly)
Pareto dominates another policy if it is strictly better on at least one objective of another
policy fiÕ, while not being strictly worse on the other objectives over all states:
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Definition 3.15

A policy fi œ � strictly Pareto dominates another policy fiÕ œ �, i.e., fiÕ ª fi when

fiÕ ª fi ≈∆ ÷j : V fi
(s)j > V fiÕ

(s)j · ’ i ”= j : V

fi
(s)i ⌅ V

fiÕ
(s)i, ’s œ S. (3.15)

A policy fi weakly Pareto dominates another policy fiÕ, i.e., fiÕ ∞ fi when there does not
exist an objective where V

fi
(s) is better than V

fi
(sÕ

) over all states.

Definition 3.16

A policy fi œ � weakly Pareto dominates another policy fiÕ œ �, i.e., fi ∞ fiÕ when

fiÕ ∞ fi ≈∆ ’j : V

fi
(s)j Ø V

fiÕ
(s)j . (3.16)

Two policies fi and fiÕ are incomparable if V

fi
(s) does not Pareto dominate V

fiÕ
(s) over

all states and vice versa:

Definition 3.17

Two policies fi œ � and fiÕ œ � are incomparable, i.e., fi Î fiÕ when

fi Î fiÕ ≈∆ fi ⌃ fiÕ · fiÕ ⌃ fi. (3.17)

A policy fi is non-dominated by another policy fiÕ if it is either Pareto dominating or
incomparable with that solution:

Definition 3.18

A policy fi œ � is non-dominated by another policy fiÕ œ �, i.e., fi ⌃ fiÕ when

fi ⌃ fiÕ ≈∆ fiÕ ª fi ‚ fiÕ Î fi. (3.18)

The goal of solving MOMDPs by MORL is to come up with policies that are Pareto
optimal, i.e. the policies that are non-dominated by any other policy:

Definition 3.19

A policy fi œ � is Pareto optimal i� it is non-dominated by any other policy fiÕ œ �:

fi is Pareto optimal ≈∆ ’fiÕ œ � : fi ⌃ fiÕ. (3.19)
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3.4 Problem taxonomy
So far, we have elaborated on the multi-objective reinforcement learning framework and
its foundations in multi-objective optimisation. We have discussed three types of pref-
erence articulation in multi-criteria decision making and we have presented the notion
of scalarisation functions. In this section, we present a problem taxonomy that categor-
ises MORL algorithms according to the type of scalarisation function and the amount of
policies learned, i.e., single-policy or multi-policy. Within this taxonomy, we classify related
work on MORL and emphasise the main contributions of this dissertation. In literature,
two types of problem taxonomies for MORL algorithms exists, i.e., an axiomatic and a
utility-based. We begin by describing the axiomatic approach and emphasise why it is
more appropriate in this work than the utility-based approach in Section 3.4.2.

3.4.1 Axiomatic approach
In Figure 3.11, we depict the major MORL algorithms that are published in literature.
The approaches in red are the contributions of this dissertation. In the following subsec-
tions, we will analyse in more depth each category of related work and briefly outline our
improvements to the MORL research field.

monotonically 
increasing scalarization

linear scalarization

single-policy multi-policy

- MO-MCTS
- White's algorithm
- CONMODP
- Pareto Q-learning
- MO-HOO

- Parellel Q-learning
- CHVI
- Lizotte's algorithm
- MOFQI

- Thresholded lexicographic Q-learning
- MDRL algorithm
- W-learning
- Policy-gradient methods (CPGRL)
- Chebyshev scalarization Q-learning

- Linear scalarization Q-learning
- Qlp
- Hybrid RL

- Castelletti et al
- Natarajan and Tadepalli
- AW algorithms

Figure 3.11: An overview of multi-objective algorithms for learning and planning settings.
We categorise these approaches on two factors: whether or not they learn a single policy or
multiple policies and whether or not the scalarisation function is a linear or a monotonically
increasing combination of the objectives. The approaches in red are the contributions of
this dissertation.
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Single-policy algorithms with a linear scalarisation function

In Section 3.1.2, we have provided a general description of a scalarisation function as
a function that projects a vector to a scalar. In the case of MORL, we can make this
definition a bit more specific (Roijers et al., 2013):

Definition 3.20

A scalarisation function f is a function that projects the multi-objective value V

fi

to a scalar value:
V fi

w

= f(V

fi
(s), w), (3.20)

where w is a weight vector parameterising f and V

fi is the value function in state s.

Thus, the scalarisation function maps the multi-objective value function in a state to
a scalar value. In this way, a traditional reinforcement learning setting is created as the
environment becomes one-dimensional. We di�erentiate between two types of scalarisation
functions. i.e., a linear or a monotonically increasing scalarisation function. When f
computes a linear combinations of the values of a vector given a weight vector w, f is
in essence linear. This linear combination is simply a weighted sum of the values for
each objective with the corresponding element in w. Following the notation in Roijers
et al. (2013), the linear scalarisation function can be formalised by the following definition.

Definition 3.21

A linear scalarisation function f computes the inner product of a vector-valued
value function V

fi and a weight vector w

V fi
w

= w · V

fi, (3.21)

where w is a positive weight vector parameterising f and V

fi is the value function in
a state s.

Each element of the weight vector w specifies the relative importance of each objective
and should satisfy the following equation:

mÿ

o=1
wo = 1. (3.22)

The linear scalarisation function possesses some interesting properties. For starters, it
is a simple and classical approach that requires few modifications to standard solution
methods. Also, it is proven that the linear scalarisation function converges to a Pareto
optimal solution (Vamplew et al., 2010). However, the linear scalarisation function also
has downsides. For instance, it is not always clear how to specify the weights in order
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to find a desired trade-o� between solutions. Additionally, as the scalarisation function
computes a linear combination of the objectives, only a subset of the Pareto front can be
learned as we will see in Chapter 4.

We begin this overview in the simplest category of MORL algorithms, i.e., algorithms
that employ a linear scalarisation function to obtain a single policy. These algorithm
are particularly tailored for the scenario with an a priori articulation of preferences in
Section 3.1.2, where a single policy is to be obtained that is optimal for a given weight
vector. Incorporating the linear scalarisation function in MORL is relatively easy as one
can apply the scalarisation function on the vectorial reward function to obtain a scalarised
feedback signal or one can learn a vectorial value function and apply the scalarisation
function in the action selection strategy. The latter is found to be more appropriate in the
case of function approximation as the scalarised value might be harder to learn than the
values for each of the objectives individually (Roijers et al., 2013; Tesauro et al., 2008).
Therefore, learning a single policy through linear scalarisation is not exceptionally di�cult
as highlighted in Vamplew et al. (2010) where a linear scalarised Q-learning algorithm is
proposed that is a trivial extension to the single-objective version of the algorithm.

Although there is no specific need for specialised algorithms for this category, MORL
algorithms involving a linear scalarisation function have been an active research topic for
many years (Natarajan and Tadepalli, 2005; Castelletti et al., 2010; Vamplew et al., 2010;
Roijers et al., 2013). For instance, in Perez et al. (2009), a method is developed for
the provision and the allocation of computational resources. The authors use a linear
scalarisation function to reduce the dimensionality of the multi-objective feedback signal
to obtain a single, scalar reward. In Castelletti et al. (2002), a reinforcement learning
algorithm is developed for the operational management of a water system. The solution
method is a Q-learning variant, called Qlp, that tries to regulate the provision of water
to downstream agricultural users that live near Lake Como in Italy while also providing
flood protection on the lake shores. The same authors extended the fitted Q-iteration
algorithm or multiple objectives in Castelletti et al. (2010). Fitted Q-iteration is a batch,
model-free reinforcement learning algorithm that learns an approximation of the optimal
Q-function. Each iteration of the algorithm consists of a single application of the standard
Q-learning update rule in Equation 2.8 for each input sample, followed by the execution of
a supervised learning method in order to train the next Q-function approximation (Ernst
et al., 2005). In Tesauro et al. (2008), the hybrid RL algorithm is proposed for balancing
power consumption and the response time to user requests in computing servers by linear
combinations.

In this dissertation, we analyse the advantages and the limitations of the algorithms of this
category in Chapter 4. In the same chapter, we propose a framework for these algorithms,
where the scalarisation function can be seen as a parameter. In this framework, the
knowledge representation of the agent is extended to store a vector of estimates and the
scalarisation function is employed in the action selection process.
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Single-policy algorithms with a monotonically increasing scalarisation function

Although the linear scalarisation function is common and its use is widespread (Vamplew
et al., 2010), it may not su�ce to express every user preference. In that case, non-
linear preferences might be more appropriate. Scalarisation functions belonging to this
class of algorithms are called monotonically increasing scalarisations functions. The set of
monotonically increasing functions is a superset of the linear functions, i.e., they are less
specific than linear functions and can be defined as follows.

Definition 3.22

A scalarisation function f is monotonically increasing if:

’ i, V

fi
i Ø V

fiÕ

i =∆ ’w, f(V

fi, w) Ø f(V

fiÕ
, w) (3.23)

where w is a positive weight vector parameterising f and V

fi is the value function in
a state s.

In layman’s terms, this means that the scalarisation function preserves the weakly Pareto
dominance relationship. As highlighted in Roijers et al. (2013), monotonically increasing
functions are a broad class of functions. For example, the Pareto relation, the Chebyshev
function (Dunford et al., 1988) and lexicographic orderings (Gábor. et al., 1998) are
members of this class of functions.

Due to specific preference relations of the decision maker, single-policy algorithms with a
monotonically increasing scalarisation function also achieved significant attention in MORL
research. Humphrys (1997) models a mind with internal tension and competition between
selfish behaviours in a decentralised manner by constructing a multi-agent system. To
accommodate for intelligent action selection, W-learning is proposed. In W-learning di�er-
ent parts of the mind modify their behaviour based on whether or not they are succeeding
in getting the body to execute their actions (Humphrys, 1997). The thresholded lex-
icographic Q-learning (TLQ) algorithm is another example of a non-linear scalarisation
function (Gábor. et al., 1998). In TLQ, constraints should be met for all but the last ob-
jective. These constraints define a minimal threshold level for the values of the objectives,
which can be ordered in a lexicographic fashion. For example, in stock markets, the TLQ
could find a policy that maximises the return on investment while not exceeding a certain
level of risk. While constraints and thresholds are a specific type of preference information,
it is also possible to define an area of interest in the objective space as being preferred by
the decision maker. This area can then gradually scale and move in an interactive manner
as the algorithm proceeds. In Mannor and Shimkin (2002), this idea is proposed in the
multiple directions reinforcement learning (MDRL) algorithm. MDRL o�ers a possibility
to steer the average reward vector towards a target set using so-called approaching policies.
Although these approaching policies employ a standard linear scalarisation function, the
mechanism to steer the policies uses a selection strategy that is non-linear. This concept is
extended for episodic tasks as well in Vamplew et al. (2009) where stochastic combinations
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are constructed of optimal policies that are obtained through linear scalarisation. In Uchibe
and Doya (2007), a policy-gradient algorithm is proposed that learns in a direct and it-
erative manner a single policy satisfying predefined constraints. This algorithm is called
constrained policy gradient reinforcement learning (CPGRL) as it iteratively updates the
policy in the direction of a gradient satisfying one or more constraints. Similar to the pre-
vious approaches, mixture policies are constructed with non-linear scalarisation functions.

In Chapter 4, we will more closely analyse monotonically increasing scalarisation func-
tions and their performance in multi-objective reinforcement learning. We argue that the
choice of the scalarisation function is crucial since it has a huge impact on the solution
the reinforcement learning technique converges to. In this respect, we theoretically and
empirically compare the linear and the non-linear Chebyshev scalarisation function on their
e�ectiveness in retrieving optimal trade-o� solutions.

Multi-policy algorithms with a linear scalarisation function

Multi-policy algorithms that employ a linear scalarisation function aim to learn policies that
are optimal for linear combinations of a weight vector and the vector-valued value function.
This set of policies represents the convex hull, which is a subset of the Pareto front. 2 The
convex hull defines a set of policies for which the linear combination of the value of policy
fi, V

fi, and some weight vector w is maximal (Roijers et al., 2013).

Definition 3.23

The convex hull (CH) of a set of policies � = {fi1, . . . , fik} is a set of policies for
which there exists a w which linear combination with the vector-valued value function
in a state s is maximal

CH(�) = {fi œ �|÷w œ Rm, ’fiÕ œ � : w · V

fi
(s) Ø w · V

fiÕ
(s)} (3.24)

where w is the weight vector satisfying Equation 3.22 and V

fi is the vectorial value
function of policy fi in a state s.

In Figure 3.12 (a), white dots denote the Pareto front of a bi-objective problem and in
Figure 3.12 (b) the red line represents the corresponding convex hull.

Several algorithms have been proposed that follow this principle. One of the most import-
ant contributions is the convex hull value-iteration (CHVI) algorithm which computes the
deterministic stationary policies that are on the convex hull of the Pareto front (Barrett and
Narayanan, 2008). From batch data, CHVI extracts and computes every linear combina-
tion of the objectives in order to obtain all deterministic optimal policies. CHVI bootstraps

2Do note that in mathematics and geometry, the term ‘convex hull’ has a di�erent meaning than in
MORL. In geometry, the convex hull of a set of points S is the minimal subset of C µ S so that every
point in S can be expressed by a convex combination of the points in C. In MORL, the convex hull is
considered the upper envelope of the points in C, i.e., those points whose convex combinations are Pareto
dominating all other points in S.
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Figure 3.12: (a) A Pareto front of bi-objective policies represented by white dots. (b) The
convex hull of the same Pareto front is represented by a red line.

by calculating the convex hull of the union over all actions in sÕ, that is
t

aÕ Q(sÕ, aÕ
). The

most computationally expensive operator is the procedure of combining convex hulls in
the bootstrapping rule. The 4 deterministic policies in Figure 3.12 (b), denoted by red
dots, are the ones that CHVI would learn.

Lizotte et al. (2010) reduce the asymptotic space and time complexity of the boot-
strapping rule by simultaneously learning several value functions corresponding to di�erent
weights and by calculating their piecewise linear spline representation. Recently, they
validated their work on clinical trial data for three objectives to propose a treatment to
patients based on a trade-o� between the e�ectiveness of the drugs and severity of the
side e�ects. Nevertheless, the practical possibilities for higher dimensional spaces are not
straightforward (Lizotte et al., 2012).

In Kazuyuki et al. (2009), the parallel Q-learning algorithm is proposed. Parallel Q-
learning is similar to CHVI in the sense that it learns optimal piecewise-linear policies for
all weights. It computes the convex hull by defining sum and union operators for sets,
similar to the way CHVI bootstraps. The algorithm su�ers from convergence issues in the
sense that vertices are continuously being added to the polygon representing the convex
hull. The authors introduce a threshold parameter to reduce the size of the sets and to
increase the accuracy.

In Castelletti et al. (2011, 2012), the fitted Q-iteration algorithm is extended to learning
sets of policies in multi-objective environments. This o�-line algorithm is called multi-
objective fitted Q-iteration (MOFQI) and it computes the set of expected return vectors
obtained for all the possible weight values in a single run.

While the aforementioned multi-policy algorithms learn only a finite set of deterministic
policies, it might be interesting to employ probabilistic combinations of these policies. Such
a stochastic combination of two policies is called a mixture policy (Vamplew et al., 2009).
Take for instance a very easy multi-objective problem where the agent can only follow two
deterministic policies fi1 and fi2 with V

fi1
(s0) = (1, 0) and V

fi2
(s0) = (0, 1), where s0
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denotes the start state. If one would follow policy fi1 with probability p and policy fi2 with
probability (1≠p), the average reward vector would be (p, 1≠p). Thus, although there are
only two deterministic policies for the original problem, a mixture policy implicates that we
can sample the entire convex hull of policies by combining the deterministic policies with
a certain probability. Hence, stochastic combinations of the policies of the Pareto front in
Figure 3.12 (a) can represent every solution on the red line in Figure 3.12 (b). However,
mixture policies might not be appropriate in all situations, as highlighted in Roijers et al.
(2013). For instance, in the setting of Lizotte et al. (2010), clinical data is analysed to
propose a treatment to patients based on a trade-o� between the e�ectiveness of the drugs
and severity of the side e�ects. Consider the case where only two policies exist that either
maximise the e�ectiveness and the severity of the side e�ects and vice versa. While the
average performance of the mixture policy of these two basic policies might yield good
performance across a number of episodes, the policy itself might be unacceptable in each
episode individually, i.e., for each patient independently.

Single-policy algorithms for multiple policies In the above subsection, we have dis-
cussed on specific and elaborate algorithms that retrieve multiple policies simultaneously. A
simpler and straightforward alternative is to run a single-policy algorithm multiple times and
to collect the resulting policies in a set. For instance, one can run the linear scalarisation
algorithm many times for varying weights to approximate the Pareto front. Nevertheless
the approach, being basic and relatively ine�cient, is implemented in many settings (Cas-
telletti et al., 2002; Vamplew et al., 2008, 2010). In order to increase the e�ciency, a
method is also proposed that does not need to learn from scratch but which allows to
reuse policies obtained in previous runs of the algorithms (Natarajan and Tadepalli, 2005).

Strictly speaking, this iterative principle is an intermediate approach compared to genuine
multi-policy algorithms that learn these policies simultaneously. This is why we choose to
place these techniques in between the single and multi-policy setting in Figure 3.11.

In Chapter 5, we analyse how the weight parameters of the linear scalarisation function
relate to specific parts of the objective space. We highlight that the mapping from weight
space to objective space is non-isomorphic, meaning that it is far from trivial to define
an appropriate weight configuration to retrieve a desired trade-o� solution. In this light,
we propose two adaptive weight algorithms (AWA) that iteratively adjust their weight
configurations based on the solutions obtained in previous rounds. These algorithms have
the ability to adaptively explore both discrete and continuous Pareto fronts.

Multi-policy algorithm with a monotonically increasing scalarisation function

Because of the properties of linear scalarisation functions, sum and union operators can be
quite straightforwardly defined on convex hulls. The downside is that only a subset of the
Pareto front will be retrieved, leaving potentially interesting trade-o� solutions inaccessible
to the decision maker. In White (1982), a dynamic programming (DP) algorithm computes
a set of Pareto dominating policies. White’s algorithm bootstraps the Pareto dominating
Q-vectors of the next state to the set of the current state-action pair. The idea is that,
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after the discounted Pareto dominating rewards are propagated and the ˆQset’s converge to
a set of Pareto dominating policies, the user can traverse the tree of ˆQset’s by applying a
preference function. As highlighted in Section 2.3, a deterministic stationary policy su�ces
for single-objective reinforcement learning. In the case of MORL, White (1982) showed
that deterministic non-stationary policies, i.e., policies that do not only condition on the
current state but usually also on the time step t, can Pareto dominate the best deterministic
stationary policies. As a result, in infinite horizon problems with large values for the
discount factor, the number of non-stationary policies increases exponentially and therefore
it can lead to an explosion of the sets. In order to make the algorithm practically applicable,
Wiering and de Jong (2007) proposed the CON-MODP algorithm which solves the problem
of non-stationary policies by introducing a consistency operator, but their work is limited
to deterministic transition functions. Monte Carlo tree search is also extended for multiple
objectives in the MO-MCTS method to learn a set of solutions (Wang and Sebag, 2012,
2013). In MCTS, a search tree is incrementally built and explored simultaneously (Coulom,
2007). The nodes of the tree represents visited states and branches represent actions. At
the end of an episode, the nodes are weighted according to the outcome of the episode
in order to bias the action selection in future plays. In MO-MCTS, the upper confidence
bounds of the actions are scalarised in either of two distinct manners. One possibility
is to apply the hypervolume quality indicator on the combination of their estimates and
the set of Pareto optimal policies computed so far. Because the hypervolume measure is
costly to compute, as an alternative, it is also possible to simply determine whether a tree
walk obtained a non-dominated reward or not in a boolean fashion. This way, scalarised
multi-objective value functions are constructed that ease the process of selecting an action
with vectorial estimates.

Up to this moment, there are no on-line reinforcement learning methods for learning
multiple policies that lie on the Pareto front. As quoted twice in Roijers et al. (2013), this
is a specific need for this type of algorithms although the setting is far from straightforward:

. . . MORL methods that can work with nonlinear scalarisation functions are of
substantial importance. Unfortunately, coping with this setting is especially
challenging . . .

. . . we are not aware of any methods that use a value function approach to
learn multiple policies on the PCS. When stochastic policies are permitted, the
problem is easier [. . . ] However, when only deterministic policies are permitted,
the problem is more di�cult.

Because of the challenging nature of this setting, a large part of this dissertation focusses
on the development of multi-policy methods for learning Pareto optimal policies. To this
extent, we propose two algorithms in Chapter 6. These are the multi-objective hierarchical
optimistic optimisation (MO-HOO) and the Pareto Q-learning algorithm.

The MO-HOO algorithm is applicable in multi-objective X -armed bandit problems. This
is a class of problems similar to a standard bandit problem where an agent is faced with
a continuous finite-dimensional action space instead of a discrete one as the example of
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Section 2.5. The goal of the agent is to discover ranges in the continuous action space
that provide Pareto optimal rewards. Our algorithm builds a binary tree where each node
represents an optimistic estimate of the corresponding area in the objective space. More
precisely, each node stores a set of optimistic estimates of the Pareto front attainable
from sampling its subtree.

In the Pareto Q-learning (PQL) algorithm, we further refine the idea of the MO-HOO
algorithm and extend it for multi-state environments. PQL is the first temporal di�erence-
based multi-policy MORL algorithm that does not use the linear scalarisation function.
Internally, Pareto Q-learning incrementally updates sets of vectorial estimates based on
the obtained rewards and the set of Pareto non-dominated estimates of the next state. As
a result, the algorithm is not limited to the convex hull, but it can learn the entire Pareto
front of deterministic non-stationary policies, if enough exploration is provided.

3.4.2 Utility approach
The axiomatic problem taxonomy assumes the Pareto front is the optimality criterion.
Recently, a utility-based problem taxonomy was proposed where the optimality criterion
is not assumed but derived (Roijers et al., 2013). In that taxonomy, it is argued that
there are more suitable solution concepts than the Pareto relation to denote the set of
optimal policies in MORL. The utility-based taxonomy derives the optimality criterion
based on three properties. These properties are (1) the fact if the decision maker requires
a single policy or multiple policies, (2) the type of scalarisation function, being linear or
monotonically increasing and (3) whether deterministic or stochastic policies are allowed.
The utility-based taxonomy is comprehensive and provides justification for the optimality
criterion, specialised for the specific context.

In this dissertation, we limit ourselves to deterministic policies as stochastic policies
represent a specific type of policies that we do not envisage having a significant potential in
real-life engineering applications. Therefore, in the axiomatic taxonomy, we could reduce
the utility-based taxonomy by one category. Similar to the utility-based taxonomy, we
cluster research based on the number of policies required and the type of scalarisation
function. However, we do not agree with the statement in Roijers et al. (2013) that
the scalarisation function is publicly stated by the decision maker at the beginning of
the MCDM process. In the utility-based approach, they assume the implicit or explicit
scalarisation function employed by the decision maker is known and provided beforehand
to the optimiser which can then exploit the properties of the scalarisation function at
hand. For instance, they assume that in the case of an a posteriori scenario the multi-
objective optimiser knows that the decision maker will use a linear scalarisation function
in its thought process once the agent has provided a set of solutions. In this regard, the
algorithm only needs to retrieve policies on the convex hull as others will be disregarded
by the linear scalarisation function once the decision maker discloses its desired weights.
In our opinion, the authors then assume there are two articulations of preferences instead
of only a single articulation when the weights are provided. We do not agree with the
fact that the scalarisation function is always predefined knowledge to the multi-criteria
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optimiser or even known by the decision maker before initiating the optimisation process.
From our point of view, there should be only a single articulation of preferences where
the decision maker reveals its desired scalarisation function and weights at the same time.
Therefore, we hold on to the fact that the Pareto front is the only optimality criterion
in the general MCDM case. In the case where the scalarisation function can be assumed
before initiating the process, a utility-based taxonomy could be employed.

3.5 Summary
In this chapter, we introduced general concepts for learning in multi-criteria environments.
We have defined multi-criteria decision making, the umbrella term for describing a collec-
tion of approaches which seek to take explicit account of the multiple objectives in order
to facilitate and improve decision making. Multi-objective optimisation is an important
branch of MCDM which solves these problems by means of mathematical equations. Gen-
erally speaking, by solving MCDM problems, one needs to find solutions that are Pareto
optimal. Because this optimality criterion entails a partial order, there usually exists no
single optimum solution as in the case of single-objective optimisation. In this case, there
exists a set of optimal trade-o� solutions, called the Pareto front. We have drawn atten-
tion to the role of the decision maker in the MCDM process and how it can articulate
its preferences. We have highlighted three di�erent types of preference articulation which
influence the flow of the optimisation process and how the decision maker and the multi-
criteria solver interact.

Evolutionary multi-objective optimisation is an important class of algorithms that are
particularly suited for multi-objective problems as they evolve a set of solutions in a single
run. These techniques are intrinsically multi-policy algorithms as they obtain a set of
solutions instead of a single solution, as single-policy algorithms do.

After carefully introducing the foundations of multi-objective optimisation, we focussed
on the main topic of this dissertation, which is multi-objective reinforcement learning. We
have defined multi-objective Markov decision processes and what constitutes an optimal
policy. In the end, a problem taxonomy is provided which classifies MORL research on 4
categories, i.e., the number of policies obtained (single or multi-policy) and whether the
scalarisation is linear or monotonically increasing. In the following chapter, we will more
closely analyse di�erent types of scalarisation functions for MORL and to what degree they
can be used to approximate the set of optimal trade-o� solutions.
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| Learning a Single
Multi-Objective Policy

Multi-objective reinforcement learning algorithms that employ a scalarisation function to
obtain a single multi-objective policy have been omnipresent in research (Gábor. et al.,
1998; Vamplew et al., 2008; Perez et al., 2009; Van Mo�aert et al., 2013b). Most com-
monly, a linear scalarisation function is used to transform the multi-objective nature of
the problem to a standard single-objective RL problem (Castelletti et al., 2002; Tesauro
et al., 2008), although non-linear scalarisation functions could potentially solve a few of its
limitations (Roijers et al., 2013). In this chapter, we will both theoretically and empirically
analyse the linear scalarisation function and the non-linear Chebyshev scalarisation func-
tion. We will elaborate on the advantages and the limitations of each scalarisation function
and highlight how these scalarisation functions can be incorporated in a general framework.

In more detail, we will present the following contributions in this chapter:

• Present a general framework for scalarised MORL
• Investigate the usefulness of the linear scalarisation function and its limitations
• Research on a theoretical and empirical level whether the Chebyshev scalarisation

function can also be applied in MORL

This research has been published in Van Mo�aert et al. (2013b,a,c).

4.1 A framework for scalarised MORL algorithms
Before we analyse the specifics of linear and non-linear scalarisation functions, we expand on
how the higher dimensionality of the reward signal influences the knowledge representation
of the agent. Traditionally, in single-objective reinforcement learning, the agent keeps
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a table of Q(s, a)-values that store the expected cumulative discounted reward for the
combination of each state s and action a in the environment. These Q(s, a)-values are
then updated over time using an update rule, such as for instance the traditional Q-
learning update rule of Equation 2.8.

In multi-objective environments, the knowledge representation of the agent is not abund-
ant enough to store the supplementary information the environment provides. In the
case of learning a single multi-objective policy, the agent now stores a ˆ

Q-vector for each
state-action pair.1 On its turn, a ˆ

Q-vector comprises a ˆQ-value for each objective, i.e.,

ˆ

Q(s, a) = (

ˆQ1(s, a), . . . , ˆQm(s, a)). (4.1)

These ˆ

Q-vectors are then updated for each component individually. For instance, in the
case of multi-objective Q-learning, the bootstrapping rule for objective o of a ˆ

Q-vector is:

ˆQo(s, a) Ω ˆQo(s, a) + –t(ro + “ max

f(Q̂(sÕ,aÕ),w)
ˆQo(sÕ, aÕ

) ≠ ˆQo(s, a)), (4.2)

where ro is the o’th component of the immediate reward vector and max

f(Q̂(sÕ,aÕ),w)
ˆQo(sÕ, aÕ

)

retrieves the o’th component of the ˆ

Q-vector that contains the maximum scalarised value
for a given scalarisation function f and a weight vector w.

In on-line learning, an action strategy, such as ‘-greedy and softmax, needs to be employed
to decide on the next action. When learning a single multi-objective policy, the scalarisation
function f is adopted as a scoring mechanism for action selection strategies. The function
transforms a multi-dimensional ˆ

Q-vector into a scalar value that comprises a combined
score for an action a based on its di�erent objectives. We refer to the ‰SQ(s, a) to denote
the scalar outcome of applying f on ˆ

Q(s, a). Therefore, when having to select an action
in a state s, the ‰SQ(s, a)-values for each action a in s are computed and passed on to the
traditional action selection strategy. In the case of a scalarised ‘-greedy selection strategy,
the pseudo code is depicted in Algorithm 2. For the current state s, the agent initialises
a list named SQList to store the scalar ˆQ-values. For each action in s, we compute the
scalar ‰SQ(s, a)-value and append it to the SQList, which the ‘-greedy strategy uses to
make its decision on the next action to select.

The scalarised multi-objective Q-learning algorithm comprises the main aspects high-
lighted above, i.e., the multi-objective bootstrapping rule and a scalarised action selection
strategy. An outline of the algorithm is listed in Algorithm 3. At line 1, the ˆQ-values for
each triplet of states, actions and objectives are initialised. The agent starts each episode
in state s (line 3) and chooses an action based on the multi-objective action selection
strategy at line 5, e.g, scalarised ‘-greedy. Upon taking action a, the environment trans-
itions the agent into the new state sÕ and provides the vector of sampled rewards r. As the

1It is also possible to directly scalarise the reward signal and learn standard Q̂(s, a)-values instead. In
literature, this is called expectation of scalarised return, while learning a Q̂o(s, a), as is most common
in literature, is called scalarisation of expected return. Although both approaches seem identical, there
are examples where di�erent policies are optimal for each of the methods. For more information on both
principles, we refer to (Roijers et al., 2013)
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Algorithm 2 Scalarised ‘-greedy strategy
1: SQList Ω {}
2: for each action ai œ A do
3: ‰SQ(s, a) Ω f(

ˆ

Q(s, a), w) Û Scalarise ˆ

Q(s, a)-values
4: Append ‰SQ(s, a) to SQList
5: end for
6: return ‘-greedy(SQList)

Q-table has been expanded to incorporate a separate value for each objective, these values
are updated for each objective individually using the modified Q-learning update rule at
line 8. More precisely, the ˆQ-values for each triplet of state s, action a and objective o
are updated using the corresponding reward for each objective, r, into the direction of
the best scalarised action of the next state sÕ. It is important to note that this frame-
work only adds a scalarisation layer on top of the action selection mechanisms of standard
reinforcement learning algorithms.

Algorithm 3 Scalarised multi-objective Q-learning algorithm
1: Initialise ˆ

Q(s, a) arbitrarily
2: for each episode t do
3: Initialise state s
4: repeat
5: Choose action a from s using a policy derived from ˆ

Q, e.g., scalarised ‘-greedy
6: Take action a and observe state sÕ œ S and reward vector r œ Rm

7: for each objective o do
8: ˆQo(s, a) Ω ˆQo(s, a) + –t(ro + “ max

f(Q̂(sÕ,aÕ),w)
ˆQo(sÕ, aÕ

) ≠ ˆQo(s, a))

9: end for
10:
11: s Ω sÕ Û Proceed to next state
12: until s is terminal
13: end for

4.2 Linear scalarised MORL
After introducing a general framework for scalarised MORL algorithms, we can proceed
by specifying the scalarisation function f . When f computes a linear combination of the
values of a vector given a weight vector w, f is linear in nature. This function then
computes the dot product of the ˆ

Q-vector of a state-action pair and a corresponding
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non-negative weight vector:
‰SQ(s, a) =

ˆ

Q(s, a) · w

=

mÿ

o=1

ˆ

Qo(s, a) · wo,
(4.3)

where w is a weight vector specifying the relative importance of each objective. The
weight vector itself should satisfy the following equations:

’o œ [1, m] : 0 Æ wo Æ 1. (4.4)

mÿ

o=1
wo = 1. (4.5)

4.2.1 Optimality of linear scalarised MORL
One important advantage of the linear scalarisation function is its property of additivity.
In essence, this means that the result of the scalarisation function applied on the vectorial
value function of a policy fi is equal to applying the scalarisation function in the learning
process directly:

f(V

fi
(s), w) = V

fi
(s) · w

= Efi{Rt|s(t) = s} · w

= Efi

; Œÿ

k=0
“ k

rt+k+1 | s(t) = s

<
· w

= Efi

; Œÿ

k=0
“ k

w · rt+k+1 | s(t) = s

<

= Efi

; Œÿ

k=0
“ kf(rt+k+1, w) | s(t) = s

<

(4.6)

Hence, the single-objective MDP that was obtained by applying the linear scalarisation
function on the original MDP has additive returns. As a result, the linear scalarisation
function in combination with the Bellman equation, and thus RL in general, is proven to
converge to the optimal policy fiú for the weight vector w. Subsequently, this optimal
policy is also optimal in the original objective space:

Theorem 4.1

If f is a linear scalarisation function and V

fiú is the vector-valued value function of
the converged and optimal policy fiú, then fiú is also Pareto optimal.

fi œ � · ’ fiÕ œ � : V

fi · w Ø V

fiÕ
· w =∆ fi is Pareto optimal.

76



4.2. LINEAR SCALARISED MORL

For insights in the proof of this theorem, we refer to Nakayama et al. (2009).

4.2.2 Convexity of linear scalarised MORL
So far, we have seen that the linear scalarisation function is theoretically proven to con-
verge to a Pareto optimal solution in the objective space of the original problem. In this
section, we will analyse whether the inverse also holds, i.e., is every Pareto optimal solution
discoverable by employing a linear scalarisation function or not?

In Das and Dennis (1997), this research question is answered by examining the influence
of the weights in the objective space. For simplicity reasons, the authors analysed the
matter for a problem with two objectives f1 and f2, but it could be generalised for m-
objective environments as well. The authors argue that the weight space of the linear
scalarisation can be considered a goniometric circle with a radius of 1 in order to satisfy
Equation 4.5. A visual representation of the process is provided in Figure 4.1 where the
Pareto front is entirely convex. The weights of the two objectives can then be represented
by w1 œ [0, 1] and w2 = 1 ≠ w1. The goal of the optimisation process is then to find
the solution x œ X so that:

max

xœX

w1f1(x) + (1 ≠ w1)f2(x). (4.7)

In the goniometric circle, this equation can be rewritten by considering the angle ◊ œ [0, fi
2 ]:

max

xœX

sin ◊

sin ◊ + cos ◊
f1(x) +

cos ◊

sin ◊ + cos ◊
f2(x). (4.8)

The utilisation of the weights can be seen as a transformation of the original axis of each
of the objectives, i.e., f1 and f2 to f1 and f2 in Figure 4.1. The rotated f1 and f2 axes
can be found by an elementary coordinate transformation:

5
f1
f2

6
=

5
cos ◊ sin ◊

≠ sin ◊ cos ◊

6
◊

5
f1
f2

6
(4.9)
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θ

w11

1 - w1
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f2

P

!1

!2

Figure 4.1: The linear scalarisation function can find any solution on the Pareto front with
an appropriate weight vector if it the Pareto front has a convex shape.

Therefore, the goal is to find the solution maxxœX

f1, with f1 = f1 cos ◊ + f2 sin ◊. In
Figure 4.1, this maximisation can be regarded as a parallel translation of f2 to itself until it
hits the curve of the Pareto front (Das and Dennis, 1997). In this case, the point P is the
solution that is discovered by the linear scalarisation function employing a weight vector
of (w1, 1 ≠ w1) as f2 is tangent to the Pareto front at that point. Since the Pareto front
in this example is convex, it is equal to the convex hull and every element of the Pareto
front can be discovered by varying the ◊ angle, and thus the weight vector.

Theorem 4.2

If the value function V

fi of a policy fi lies on the convex hull of the Pareto front,
then there exists a weight vector w for which V

fi · w is maximal:

fi œ CH(�) =∆ ÷w œ Rm · ’fiÕ œ � : V

fi · w Ø V

fiÕ
· w.
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The next question to ask is whether this property holds for every possible shape of
the Pareto front, as we have discussed in Section 3.1.2. In Figure 4.2, we continue the
theoretical analysis of the linear scalarisation function on a combination of a convex and a
non-convex Pareto front. In the figure, we see that the Pareto front is convex on the left
side of point P and on the right side of point Q. In between those two points, the Pareto
front is bulging inwards and therefore represents a non-convex area. Given a weight vector
(w1, 1 ≠ w1), we see that f2 hits the Pareto front at two points P and Q simultaneously.
This causes no issues in the above process, since f2 is still tangent to the Pareto front,
only in this case, at two points. Therefore, points P and Q are discoverable by the linear
scalarisation function.

θ

w11

1 - w1
1

f1

f2

!1

P

Q

!2

Figure 4.2: In the case the orthogonal axis f2 is tangent to the Pareto front at two distinct
points at the same time, both points can still be discovered with a linear scalarisation
function.

The problem arises when one is interested in observing the solutions between points P
and Q. In Figure 4.3, we see that point R, located in the non-convex part of the Pareto
front, hits the tangent f Õ

2 with the weight vector (w1Õ , 1 ≠ w1Õ
). However, we note a

problem as f Õ
2 also intersects at another point S, where f Õ

2 is not tangent to the Pareto
front. Based on the continuity and di�erentiability of the Pareto front, Das and Dennis
(1997) analysed that if this characterisation holds, the solution R cannot be found by a
linear scalarisation function, regardless of the weight vector. This conclusion also holds
for other points in the non-convex area between points P and Q.
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θ
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1 - w1'
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Figure 4.3: Solutions located in the non-convex area of the Pareto front cannot be retrieved
by a linear scalarisation function.

Experimental validation

The theoretical properties of the linear scalarisation function have provided us insights
in its abilities and limitations. However, this theoretical analysis has been conducted for
optimisation processes in general and not for multi-objective reinforcement learning in
particular. Therefore, we will examine this scalarisation function methodologically and in
detail on two small multi-objective Markov decision processes. These two environments
contain a convex and non-convex Pareto front, respectively, and therefore provide a good
test bed to interpret the characteristics of the scalarisation function.
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Figure 4.4: A multi-objective Markov decision processes (a) with a convex Pareto front
(b).

Before we analyse the results, we briefly introduce the two environments. The environ-
ments contain each 7 states and 6 actions, as presented in Figures 4.4 (a) and 4.5 (a).
Each episode, the agent starts in the state S0 and aims to reach one of the 5 goal loca-
tions, denoted by a double border. Each time the agent selects an action, the environment
deterministically transfers the agent to the corresponding subsequent state and returns a
deterministic bi-objective reward signal. The reward vector associated with each action, is
depicted in the cell of the corresponding succeeding state. In Figure 4.4 (b) and Figure 4.5
(b), we illustrate the Pareto front of both environments. In each world, the corresponding
Pareto optimal set contains the policies ending with actions 2, 3, 4 and 5, while the policy
that selects 1 in the beginning of the episode is the dominated action. Depending on the
value of the vector of each action, the Pareto front is either entirely convex or non-convex.
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Figure 4.5: A multi-objective Markov decision processes (a) with a non-convex Pareto
front (b).

In Figures 4.6 (a) and (b), we depict the outcome of linear scalarised MORL algorithm
on both environments. The results were obtained after learning the ˆ

Q-vectors of each
state-action pair until the bootstrapping rule in Equation 4.2 did not incur any updates
larger than a small � to the value of each objective.
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Figure 4.6: The optimal actions for each weight vector using the linear scalarisation func-
tion on environments with a convex and a non-convex Pareto front, respectively.

For the environment with the convex Pareto front in Figure 4.6 (a), we depict a list of
linear functions, one for each policy. Each of these lines can be represented by a list of
trade-o�s, i.e., di�erent values of w1 œ [0, 1] while w2 = 1≠w1, together with a list of their
corresponding scalarised value function values from the start state S0, i.e., f(V

fi
(S0), w).

The set of policies that are optimal for some w1 œ [0, 1] are the policies whose line
representation lies on the upper convex envelope of the scalarised value functions (Lizotte
et al., 2010). This representation allows us to discover which policies are optimal for
which weight vector, i.e., the policies that lie on the black line in Figure 4.6 (a). In this
figure, we see that policy 1 is never optimal as its line does not intersect with the black
line. We also note that polices 2, 4 and 5 are optimal for a relatively large portion of the
weight space. Although, it is hardly noticeable on the figure, the linear scalarised MORL
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algorithm also successfully identified policy 3 as being optimal, albeit only for a very small
part of the weight space. These results correspond to the Pareto front in Figure 4.4 (b)
and, therefore, they also confirm that the linear scalarisation function can discover every
element on the convex hull.

For the non-convex Pareto front, we highlight the results in Figure 4.6 (b). Although
we know that four policies in this environment are Pareto optimal, the linear scalarised
MORL algorithm has only identified two regions of the weight space where two policies are
optimal. In this non-convex environment, the scalarised value functions of the other policies
are always lower than the scalarised value functions of the policies with returns (1, 0) and
(0, 1). The linear scalarised MORL algorithm is only able to discover the extremes of the
non-convex Pareto front, i.e., the knots in the Pareto front where the curve starts to bulge
inwards. Depending on the weight vector, either of these extreme policies are retrieved,
leaving the other, also Pareto optimal, policies undiscovered.

We can conclude the section on the linear scalarisation function by emphasising its sim-
plicity and usability in MORL. We have seen it is theoretically proven to converge to a
Pareto optimal policy. However, only policies on the convex hull, a subset of the Pareto
front, can be discovered, leaving the optimal solutions in the concavities of the Pareto
front undiscovered. In the next section, we will both theoretically and empirically analyse
an alternative scalarisation function that overcomes the limitations the linear scalarisation
function imposes.

4.3 Chebyshev scalarised MORL
So far we have seen that the linear scalarisation function fits well into the reinforcement
learning framework as it preserves additivity. As a result, the linear scalarisation function
in combination with MORL is guaranteed to converge to a policy on the convex hull of
the Pareto front (Das and Dennis, 1997). Nevertheless, the convex hull is only a subset
of the Pareto front which might not match the preferences of the decision maker. In
order to account for every possible preference the decision maker might yield, we are in
need for methods that are able to discover the entire set of optimal trade-o� solutions.
To overcome these limitations, researchers have been focussing on non-linear scalarisation
functions (Humphrys, 1997; Mannor and Shimkin, 2002). Some successful approaches
within this field employ a thresholded lexicographic order on the objectives (Gábor. et al.,
1998; Issabekov and Vamplew, 2012). In these approaches, a minimal threshold level
should be met for the values of each of the objectives, which can then be ordered in a
lexicographic order. Nonetheless, the scalarisation functions in these algorithms are still
very specific and tuned to the problem at hand. More precisely, they lack simplicity in their
formulation which is one of the main contributions to the success of the linear scalarisation
function. In this prospect, we investigate an alternative non-linear scalarisation function
which has proven its e�ciency and e�ectiveness in the general multi-objective optimisation
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domain. This scalarisation function is the Chebyshev scalarisation function, named after
the Russian mathematician Pafnuty Lvovich Chebyshev.2

4.3.1 Formal definition
The Chebyshev scalarisation function is an alternative scalarisation function based on Lp

distance metrics (Dunford et al., 1988). These metrics measure the distance between two
vectors a = (a1, . . . , am) and b = (b1, . . . , bm), where m is the dimensionality of the
vector space. The Lp distance between points a and b is then defined as:

Lp(a, b) = Îa ≠ bÎp

=

! mÿ

o=1
|ao ≠ bo|p

"1/p
.

(4.10)

In the case where p = 1, the distance metric is:

L1(a, b) = Îa ≠ bÎ1

=

mÿ

o=1
|ao ≠ bo|.

(4.11)

This distance metric calculates the sum of the absolute di�erences of the coordinates of
each vector. This principle alludes to the distance one would need to walk in a big city to
reach point b starting from point a, since one cannot cross through buildings but needs to
stay on the streets. Therefore, it is also known as the taxicab or Manhattan distance.The
most common Lp metric is the Euclidean distance with p = 2. The Euclidean distance
is defined as the square root of the sum of the squares of the di�erences between the
corresponding coordinates of the points a and b.

L2(a, b) = Îa ≠ bÎ2

=

ı̂ıÙ
mÿ

o=1
(ao ≠ bo)

2.
(4.12)

In the case of p = Œ, the metric results in the LŒ or the Chebyshev metric. The Cheby-
shev metric is defined as the greatest distance between a and b along any dimension (Xu
et al., 2013). Its mathematical equation is defined as:

LŒ(a, b) = Îa ≠ bÎŒ

= max

o=1...m
|ao ≠ bo|. (4.13)

The best way to compare the di�erent distance metrics is to consider their unit spheres.
A unit sphere is a set of points that lies at a distance of one from a fixed central point.

2His name can be alternatively transliterated as Chebychev, Chebyshe�, Chebyshov, Tchebychev,
Tchebyche�, Tschebyschev, Tschebyschef or Tschebysche�
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Depending on the distance metric used, this sphere will be of a particular shape. Below, in
Figure 4.7 (a), (b) and (c), one can find and compare the unit spheres for the Manhattan,
Euclidean and Chebyshev distance metrics, respectively.

(a) (b) (c)

Figure 4.7: The unit spheres of the L1, L2 and LŒ distance metrics.

From the figure, we see that each shape intersects each axis at distance one from the
central point. We also note that the smaller the p-value, the smaller the size of the
unit sphere.

4.3.2 Scalarisation with the Chebyshev function
Now that we have properly introduced the Lp distance metrics, we research how they can
be used as a scalarisation function in multi-objective optimisation. The observant reader
might have already noticed that the L1 distance metric is very similar to the equation of the
linear scalarisation function. Actually, when one introduces weight vectors in Equation 4.11
and when b = (0, . . . , 0), the function becomes:

L1(a, b) = w1|a1 ≠ 0| + . . . + wm|am ≠ 0|
= w1|a1| + . . . + wm|am|
= w · a,

(4.14)

which is equivalent to the formula of the linear scalarisation function if the necessary
constraints of Equation 4.4 and 4.5 are satisfied for w.

The Chebyshev distance metric can also be transformed to serve as a scalarisation function
in multi-objective optimisation (Bowman and Joseph, 1976). In these approaches, the
Chebyshev norm is used to scalarise a given vector a by calculating the Chebyshev distance
from that point to an attraction point z

ú œ Rm. This attraction point serves as a point
of interest to guide the vector a to certain areas of the objective space. In Steuer and
Choo (1983), this idea is pursued by interactively redefining the attraction point to attain
certain solutions in the objective space. In more traditional approaches, the attraction
point acts as an ideal point, as described in Section 3.1.2. In this case, z

ú is a parameter
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that is constantly being adjusted during the optimisation process by recording the best
value so far for each objective o, plus a small negative or positive constant · , depending
whether the problem is to be minimised or maximised, respectively (Klamroth and Jørgen,
2007; Dächert et al., 2012).

One of the main advantages of the Chebyshev scalarisation function in general multi-
objective optimisation is that every Pareto optimal solution can be discovered by appro-
priately varying the weights and/or the attraction point. For a formal proof, we refer
to Miettinen (1999). Nevertheless, it remains hard to specify appropriate values for the w

and z

ú parameters in order to discover a desired trade-o� solution (Marler and Arora, 2004).

4.3.3 Convergence issues in MORL
In the previous sections, we have introduced the foundations of the Chebyshev scalarisa-
tion function and its ability to discover every Pareto optimal solution. This property is
theoretically proven to hold in the general topic of multi-objective optimisation. In this
section, we will verify whether this property also holds in MORL.

Before we can test the assumption, we need to specify how we can incorporate the
Chebyshev function in the scalarised MORL framework of Section 4.1. To accommodate
for a new scalarisation function, we only need to specify how one calculates the scalarised
‰SQ(s, a)-value given the Q-vector of that same state-action pair. Utilising the Chebyshev
function in this process gives us:

‰SQ(s, a) = ≠ max

o=1...m
wo · | ˆ

Qo(s, a) ≠ z

ú
o|, (4.15)

with w satisfying both Equation 4.4 and 3.22. Note that the Chebyshev formula is negated
to account for a maximisation problem.

However, for a scalarisation function to be suitable in reinforcement learning, it needs
to preserve additivity. Therefore, for any choice of w œ Rm and z

ú œ Rm, it needs
to hold that

f(V

fi, w) = Efi

; Œÿ

k=0
“ kf(rt+k+1, w)

<
. (4.16)

As analysed by Perny and Weng (2010), this equation does not hold if f is the Cheby-
shev formula. To highlight this, consider the following situation described by Roijers et al.
(2013). In an episode, the agent follows a policy fi that selects two actions which cor-
responding rewards are r1 = (0, 3) and r2 = (3, 0). Hence, when the discount factor
“ = 1, then V

fi
= (3, 3). If we now apply the Chebyshev function with z

ú
= (3, 3) and

w = (0.5, 0.5) on the vector-valued value function, we get on the one hand

f(V

fi, w) = ≠ max(|0.5 ◊ (3 ≠ 3)|, |0.5 ◊ (3 ≠ 3)|)
= ≠ max(|0.5 ◊ 0|, |0.5 ◊ 0|)
= 0

(4.17)
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While on the other hand, when applying f throughout the learning process, we see

Efi

; Œÿ

k=0

“ kf(rt+k+1, w)

<
= “ 0f(r1, (0.5, 0.5)) + “ 1f(r2, (0.5, 0.5))

= ≠ max(|0.5 ◊ (0 ≠ 3)|, |0.5 ◊ (3 ≠ 3)|
≠ max(|0.5 ◊ (3 ≠ 3)|, |0.5 ◊ (0 ≠ 3)|)

= ≠ max(|0.5 ◊ ≠3|, |0.5 ◊ 0| ≠ max(|0.5 ◊ 0|, |0.5 ◊ ≠3|)
= ≠ max(1.5, 0) ≠ max(0, 1.5)

= ≠1.5 ≠ 1.5

= ≠3

”= f(Vfi, w)

(4.18)

This inequality has important consequences in reinforcement learning. As a result of the
lack of additivity of the non-linear Chebyshev function, the Bellman equation no longer
holds and the Chebyshev function in combination with a learning algorithm is not proven
to converge to the optimal policy (Perny and Weng, 2010; Roijers et al., 2013). This
is an important disadvantage of the Chebyshev scalarisation function since it would have
been a powerful alternative to overcome the limitations of the linear scalarisation function
as it could potentially discover every Pareto optimal solution. Nevertheless, it serves as
an attractive research question to investigate the impact of this theoretical limitation on
some practical exercises.

4.3.4 Experimental validation
To verify the empirical performance of the Chebyshev MORL algorithm, we focus on
two environments with similar characteristics. These are the Deep Sea Treasure and the
Bountiful Sea Treasure environments. In the following subsections, we will empirically
analyse the e�ectiveness of the Chebyshev scalarised MORL algorithms in attaining the
Pareto optimal solutions for specific configurations.

Deep Sea Treasure world

The Deep Sea Treasure (DST) is proposed by Vamplew et al. (2010) and is a standard
MORL benchmark instance. The problem concerns a deterministic episodic task where
an agent controls a submarine, searching for undersea treasures. The world consists of a
10◊11 grid where 10 treasures are located, with larger values as the distance from the
starting location increases. A visualisation of the environment is depicted in Figure 4.8.
At each time step, the agent can move into one of the cardinal directions, i.e., up, down,
left and right.
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Figure 4.8: A visual representation of the Deep Sea Treasure world

The goal of the agent is to minimise the time needed to reach the treasure, while max-
imising the treasure value.3 In this environment, a Pareto optimal policy is a path to a
treasure that minimises the Manhattan distance to each of the 10 treasures. Given the
reward signal of the environment, the Pareto front is entirely non-convex and presented
in Figure 4.9.
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Figure 4.9: The Pareto front of the Deep Sea Treasure world

To thoroughly analyse the performance of the Chebyshev scalarised MORL algorithm, we
investigate the converged policy after 10.000 episodes for di�erent parameter configura-
tions. For each configuration, we specify a weight vector w œ [0, 1] and a static attraction
point z

ú œ Rm. We evaluate which policy the algorithm converges to for 11 weight
vector and 30 ◊ 140 attraction points. Therefore, in total we evaluate 46200 possible
configurations. In Figure 4.10, we depict on the x and y-axis the first and the second

3Traditionally, single-objective reinforcement learning solves a maximisation problem. If the problem
at hand concerns a minimisation of one of the objectives, negative rewards are used for that objective to
transform it also into a maximisation problem.
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coordinate of the z

ú vector, respectively. The z-axis represents the corresponding weight
used for the time objective, i.e., w1, while the second objective, i.e., the treasure objective,
is w2 = (1 ≠ w1). Eventually, the colour of the dot represents which of the 10 Pareto
optimal policy has been retrieved when following a greedy policy at the end of the learning
phase. In case the retrieved policy was not Pareto optimal, no dot is displayed.

Figure 4.10: A parameter sweep for di�erent weight vector and attraction points in the
Deep Sea Treasure world

From the figure, we see di�erent trends emerging. For starters, we see that for specific
configurations every possible Pareto optimal policy has been learned as all the possible
colours are present. To some degree, this result confirms the findings of the Chebyshev
scalarisation function in general multi-objective optimisation also in MORL. Secondly,
we see that the weight vector, usually employed by the decision maker to emphasise a
specific trade-o� between solutions, does not provide an explicit bias to specific parts of
the objective space. For instance, when the weight for the time objective is 0, we find
di�erent Pareto optimal solutions. On the contrary, when the weight is equal to 1, almost
regardless of the value of the attraction vector, the policy that retrieves the smallest
treasure is learned. Thirdly, for di�erent combinations of weight vector and attraction
vector, we see several areas emerging where particular solutions are optimal. When these
areas become more obvious also the space that separates these areas and where no Pareto
optimal policy is discovered, becomes more distinctive. This can easily be noticed when
comparing the areas for weights 0.5 and 1.
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Figure 4.11: The retrievable policies for di�erent weights in the Deep Sea Treasure world

In Figure 4.11, we approach this analysis from a di�erent viewpoint. In this stacked bar
chart, we investigate for each of the 11 weights the occurrence of each Pareto optimal
policy. With this representation, we can straightforwardly analyse in what percentage of
the cases the Chebyshev MORL algorithm does not converge to an optimal solution. We
see that for weights w1 from 0 to 0.6, the percentages of occurrence of each of the Pareto
optimal solutions remain relatively identical. We note that for these weights also over
30% of the time no Pareto optimal solution was learned, which is remarkable. Only for
the larger weights, we see a decrease in the amount of dominated policies but also in the
diversity of the optimal solutions, i.e., for weight w1 = 1 in 90% of the cases the optimal
policy towards the smallest treasure is learned.

From the previous figures, one could argue that certain weights, such as w1 = 0.4, o�er
a relatively good setting to obtain various Pareto optimal trade-o� solutions, if one plays
around with the values of the reference point. However, the robustness of these parameter
settings is also crucial, i.e., with the same configuration, do we always retrieve the same
solution of the policy space. In the next experiment, we repeat 11 runs of the Chebyshev
algorithm while keeping w1 = 0.4 fixed and varying the reference point z

ú. In Figure 4.12,
we then denote the configurations that consistently yield the same Pareto optimal policy
throughout the 11 runs. As we see, only for some very specific parameter configurations,
the Chebyshev algorithm consistently learns the same policies. More specifically, this is
the case in only 9.59% of the 4200 configurations examined. Therefore, this demonstra-
tion clearly shows the huge amount of variability of the Chebyshev single-policy MORL
algorithm, which will become a constant factor in each of the subsequent experiments.
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Figure 4.12: The variability of the Chebyshev single-policy MORL algorithm over multiple
runs with w1 = 0.4 is very large. In only 400 out of 4200 parameter configurations, the
same Pareto optimal policy is returned. In the other configurations, the results varied and
the algorithms converged to a di�erent policy.

Bountiful Sea Treasure world

Before we proceed to formulating conclusions on the Chebyshev scalarised MORL al-
gorithm, it is fruitful to investigate its e�ectiveness also on another environment with
other characteristics. The Bountiful Sea Treasure environment is a variation to the Deep
Sea Treasure environment where the reward signal is altered to accommodate for a convex
Pareto front. A visual representation of the environment and its Pareto front with 10
elements is provided in Figure 4.13 and Figure 4.14, respectively.

175

173

145

163

80

120

166

150140

5

Figure 4.13: A visual representation of the Bountiful Sea Treasure world

92



4.3. CHEBYSHEV SCALARISED MORL

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

20

40

60

80

100

120

140

160

180

Time objective

T
re

a
su

re
 o

b
je

ct
iv

e

 

 

Pareto front

Figure 4.14: The Pareto front of the Bountiful Sea Treasure world

Since both environments only di�er from one another in their reward signal, it is very
suitable to run a similar parameter sweep. In Figure 4.15, we depict the learned policies for
the same elements in the weight space and the space of attraction points. What strikes us
immediately is the fact that the diversity of the policies has disappeared compared to the
previous experiment. In a lot of cases, the extreme policies, denoted by red and blue dots,
are learned almost regardless of the weight parameter and the attraction point. However,
closely examining the results teaches us that still every Pareto optimal policy is being
learned, albeit for some policies only for a very restricted set of configurations.
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Figure 4.15: A parameter sweep for di�erent weight vector and attraction points in the
Bountiful Sea Treasure world

In Figure 4.16, we denote the probability of learning each Pareto optimal policy for
di�erent weight configurations. We note that for the extreme weights, i.e., w1 = 0 or
w1 = 1, a single Pareto optimal policy is learned with a large probability. Only in about
7% of the cases, the Chebyshev scalarised MORL algorithm yielded a dominated solution,
which is a lot less than in the previous experiment. For the other weights that entail
a more realistic compromise, we see a di�erent pattern emerging. As the value of the
weight increases, we see that the probability of learning the policy to the smallest treasure
decreases while the probability of the policy retrieving the largest treasure increases. Near
the centre of the weight space, we note that the probability of learning a dominated policy
is the largest.
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Figure 4.16: The retrievable policies for di�erent weights in the Bountiful Sea Treasure
world

In both environments, we have performed an in-depth analysis of the Chebyshev scalarised
MORL algorithm for several parameter configurations. We can now present two statements
on the e�ciency and the e�ectiveness of the scalarisation function in combination with
the MORL framework.

In terms of e�ectiveness, we have seen that in both environments every Pareto optimal
policy was retrieved using a specific parameter configuration. However, especially in the
convex environment, the frequency of some of the optimal solutions is very low, making
it especially di�cult to define a good weight vector and attraction point to retrieve a
specific trade-o� between objectives.

The e�ciency of the Chebyshev scalarised MORL algorithm is relatively low, i.e., we have
noted that in both environments in 10 to 30 percent of the situations, the algorithm did not
succeed in finding a Pareto optimal solution. The reason for this behaviour can be found in
the fact that the Chebyshev scalarisation function does not preserve the additivity relation.
In this example, we see that this means that the scalarisation function is not guaranteed
to converge to a Pareto optimal solution in every run of the algorithm. This is a serious
limitation as the decision maker is not concerned in retrieving suboptimal solutions. In the
case where the decision maker prefers robustness and consistency over the e�ectiveness
of the solution, he might opt employing a MORL algorithm with a linear scalarisation
function instead of the same algorithm with a non-linear Chebyshev scalarisation function.
In the following section, we will more closely compare both scalarised MORL algorithm
on several benchmark environments.

4.4 Benchmarking linear and Chebyshev scalarised MORL
To properly benchmark the two scalarised MORL techniques, it is necessary to obtain
simulation environments where the set of optimal policies in known. Given this information,
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we can then determine how close the learned policies approach the Pareto front of optimal
policies. The environments used for benchmarking the performance of both scalarisation
functions are the Deep Sea Treasure, Mountain Car and Resource Gathering environments.
Before we proceed to the empirical evaluation, we present a distance metric that allows to
compare the quality of the learned policies to their optimal values.

4.4.1 Performance criteria
In single-objective optimisation, the return of a policy can easily be compared to its optimal
value since the rewards are scalar. A result of this sole dimensionality of the reward signal,
there exists only a single optimal policy or multiple optimal policies but with an identical
return. In the multi-objective case, the rewards are vectorial and usually not one, but
multiple, optimal policies exist. Therefore, researchers have been investigating into quality
indicators that analyse the obtained multi-objective solutions on multiple criteria as well.
The two most important criteria are the degree of optimality and the spread. Moreover,
the decision maker is interested in solutions that approach the Pareto front as closely as
possible but also in solutions that are diverse in the objective space to o�er a disperse
set of trade-o� solutions.

Many quality indicators exist, but the one that is the most interesting for our context is
the hypervolume indicator (Zitzler et al., 2003a; Van Mo�aert et al., 2013a). The hyper-
volume measure is a quality indicator that evaluates a particular set of vectorial solutions
by calculating the volume with respect to its elements and a reference point (Figure 4.17).
As the goal is to maximise the hypervolume, this reference point is usually defined by de-
termining the lower limit of each objective in the environment. The hypervolume indicator
is of particular interest in multi-objective optimisation as it is the only quality measure
known to be strictly increasing with regard to Pareto dominance and it can be used for
environments with an m-dimensional objective space.

4.4.2 Parameter configuration
We use the same parameter configuration for both scalarised MORL algorithms in order to
investigate how closely their learned policies approach the Pareto front of the environment.
Therefore, we need to retrieve a set of learned policies first. A simple and straightforward
approach is to run the single-policy algorithm multiple times and to collect the resulting
policies in a set. For instance, one can run the linear scalarisation algorithm many times
for varying weights to approximate the Pareto front (Castelletti et al., 2002; Vamplew
et al., 2010, 2008). In this experiment, we employ a naive but standard scheme to vary
the weights which consists of a fixed step size of 0.1. In a bi-objective environment, the
weights of the first objective w1 are a consecutive sequence of 0, 0.1, 0.2, . . . , 1.0, while
the corresponding weight of the second objective is (1 ≠ w1) to satisfy Equation 3.22.
Therefore, there are 11 weights in a bi-objective environment and 64 possible weights in
an environment with 3 objectives. In Chapter 5, we investigate more complex schemes
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Figure 4.17: Illustration of the hypervolume calculator. It calculates the area of a set of
non-dominated policies, i.e., S1, S2 and S3, in the objective space with a given reference
point ref.

that take into account the shape of the Pareto front the previously obtained solutions to
determine the next weight.

For the Chebyshev scalarisation function, the attraction point is an additional parameter
that needs to be specified. A common approach is to adjust the parameter during the
learning process to continuously regulate the direction of search (Klamroth and Jørgen,
2007; Dächert et al., 2012). In practice, we redefine the attraction point every episode by
analysing the highest return for each objective individually, plus a small positive constant.
In our experiments, this constant was assigned to 1.

To accurately benchmark the performance of single-policy scalarised MORL algorithms,
we propose a train and test setting for each iteration. In the train setting, we learn for a
single episode with a specific weight parameter and an ‘-greedy action selection strategy
with ‘ > 0. In the test phase, we analyse the policy the agent currently has converged to by
determining the result of a greedy policy (‘ = 0). Each iteration, the return of this greedy
policy for a particular weight is then stored in a set. We name this set the approximation set
as it contains learned policies that aim to approximate the Pareto front of the environment.
In earlier work, Vamplew et al. (2010) propose to employ the hypervolume indicator on
this approximation set. The hypervolume of the approximation set can then be compared
to the hypervolume of the true Pareto front, i.e., the set of Pareto optimal policies of
the environment. The value of the reference point of the hypervolume metric is usually
defined by determining the lower limit of each objective in the environment. Therefore,
the value for the reference point of the hypervolume indicator is environment-specific and
can be found in Table 4.1
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Parameter Value
Deep Sea Treasure (-25, 0)
Mountain Car (-350, -250, -500)
Resource Gathering (-50, -10, -10)

Table 4.1: The value for the hypervolume indicator used to evaluate the policies for each
of the environments.

The Q-values are initialised optimistically to encourage exploration. We average the
results over 50 independent trials and depict the 95% confidence interval every 300 itera-
tions. The other parameter settings such as the learning rate, the discount factor and the
‘ parameter can be found in the table below.

Parameter Value
– 0.1
“ 0.9
‘ 0.1

Table 4.2: The parameter settings for the linear and Chebyshev scalarised MORL algorithm.

4.4.3 Deep sea treasure world
We compare both scalarised MORL algorithms on a familiar environment, that is the non-
convex Deep Sea Treasure world. In Figure 4.18, we depict the learning graphs for the linear
and Chebyshev scalarised MORL algorithms. As the optimal policies in the environment
form a non-convex Pareto front, the linear scalarisation function is struggling to approach
the Pareto front. After around 100 iterations, the algorithms exclusively learns the two
extreme policies of the Pareto front. Hence, a static hypervolume value with zero deviation
is denoted in the figure. The Chebyshev scalarised MORL algorithm is able to improve the
quality of its learned policies over time and surpasses the performance of its linear variant.
However, in the end, not every Pareto optimal policy has been learned as its line does not
coincide with the line of the Pareto front. This is merely a result of our naive and restricted
set of weight parameters and reference point values as we have seen in Section 4.3.4.
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Figure 4.18: The linear and Chebyshev scalarised MORL algorithms on the Deep Sea
Treasure world

These result are also emphasised in Figure 4.19, where we present the probability of
converging to one of the Pareto optimal policies in the Deep Sea Treasure environment.
As we see, the linear scalarised MORL does not succeed in learning policies other than the
extremes of the Pareto front, which is a serious limitation. As a positive side note, we can
verify that there was no occurrence where this scalarisation function did not converge to a
dominated policy. The Chebyshev scalarised MORL algorithm also learned these extreme
policies with a very large probability, but also other policies are retrieved, be it with a very
small probability. The policy to treasure value 24 is the only one that was not discovered by
the Chebyshev scalarised MORL algorithm. This is the case because that particular treasure
is located at only one timestep from the treasure with value 50. The di�erence in time
cost needed to reach the latter treasure is only 1, where the advantage in terms of treasure
value compared to the former is (50 ≠ 24). Therefore, the step size of the corresponding
weight interval, i.e., steps of size 0.1 in [0, 1], did not allow to assign significant credit to
the treasure with value of 24. In a few cases, also a dominated policy was learned.
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Figure 4.19: The retrieved policies for the linear and Chebyshev scalarised MORL al-
gorithms on the Deep Sea Treasure world

4.4.4 Mountain car world
The single-objective Mountain Car world is a famous benchmark for reinforcement learning
algorithms. In this world, a car is required to escape a one-dimensional valley. As the car’s
engine is less powerful than gravity, the vehicle must perform a series of acceleration and
reversal actions to build enough potential energy to escape the valley. A visual representa-
tion of the environment can be found in Figure 4.20. The state space of the environment
is a continuous domain of velocity and position coordinates. Traditionally, one would use
function approximation techniques to deal with the continuous state space, such as for
instance tile coding (Sutton and Barto, 1998). To simplify the setting, we discretised both
continuous domains into a 6 ◊ 6 grid. The action space consists of three actions: full
throttle forward, full throttle backward, and zero throttle. The multi-objective version of
this benchmark is challenging as it consists of three objectives that are to be optimised.
The three objectives are (1) the time required to escape the valley and (2) the number of
acceleration and (3) reversal actions, which are all to be minimised. The Pareto optimal set
contains 470 dominating policies and the maximum amount of steps allowed to reach the
goal location is 500 steps (Vamplew et al., 2010). It is important to note that the shape
of the Pareto optimal set has a significant portion of locally convex and non-convex areas.
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magnitude bias.7 We slightly modify the formulation from [32], by
ranking Q-values, instead of policy probabilities, i.e. let r : D�A �
N be the ranking map of a demon. Then rd(a) > rd(a�), if and only
if Qd(s, a) > Qd(s, a�). The combination or ensemble policy acts
greedily w.r.t. the cumulative preference values P :

P (st, a) =

|D|�1�

d=1

rd(a), �a � A (10)

In the next section we validate our approach on the typical moun-
tain car benchmark and interpret the results.

5 Experiments

In this section we give comparison results between the individuals in
our ensemble, and the combination policy. We remind the reader that
while all policies eventually arrive at the same (optimal) solution, our
focus is the time it takes them to get there.

We focus our attention to a classical benchmark domain of
mountain car [24]. The task is to drive an underpowered car up
a hill (Fig. 2). The (continuous) state of the system is composed
of the current position (in [�1.2, 0.6]) and the current velocity
(in [�0.07, 0.07]) of the car. Actions are discrete, a throttle of
{�1, 0, 1}. The agent starts at the position �0.5 and a velocity of
0, and the goal is at the position 0.6. The rewards are �1 for every
time step. An episode ends when the goal is reached, or when 2000
steps8 have elapsed. The state space is approximated with the stan-
dard tile-coding technique [24], using ten tilings of 10 � 10, with
a parameter vector learnt for each action. The behavior policy is a
uniform distribution over all actions at each time step.

Figure 2: The mountain car problem. The mountain height h is given
by h = sin(3x).

In this domain we define three intuitive shaping potentials. Each
is normalized into the range [0, 1].

Right shaping. Encourage progress to the right (in the direction of
the goal). This potential is flawed by design, since in order to get
to the goal, one needs to first move away from it.

�1(x) = cr � x (11)

7 Note that even though the shaped policies are the same upon convergence –
the value functions are not.

8 Note the significantly shorter lifetime of an episode here, as compared to
results in Degris et al. [5]; since the shaped rewards are more informative,
they can get by with very rarely reaching the goal.

Height shaping. Encourage higher positions (potential energy),
where height h is computed according to the formula in Fig. 2.

�2(x) = ch � h (12)

Speed shaping. Encourage higher speeds (kinetic energy).

�3(x) = cs � |ẋ|2 (13)

Here x = �x, ẋ� is the state (position and velocity), and c =
�cr, ch, cs� is a vector of tuned scaling constants.9

Thus our architecture has 4 demons: < d0, d1, d2, d3 >, where d0

learns on the base reward, and the others on their respective shaping
rewards. The combination policy is formed via rank voting, which
we found to outperform majority voting, and a variant of Q-value
voting on this problem.

The third (speed) shaping turns out to be the most helpful univer-
sally. If this is the case one would likely prefer to just use that single
shaping on its own, but we assume such information is not avail-
able a priori, which is a more realistic (and challenging) situation.
To make our experiment more interesting we consider two scenarios:
with and without this best shaping. Ideally we would like our combi-
nation method to be able to outperform the two comparable shapings
in the first scenario, and pick out the best shaping in the second sce-
nario.

We used � = 0.99. The learning parameters were tuned and se-
lected to be � = 0.4, � = 0.0001, � = �0.1, 0.05, 0.1, 0.1�, where
� is the trace decay parameter, � the step size for the second set of
weights in Greedy-GQ, and � the vector of step sizes for the value
functions of our demons.10 We ran 1000 independent runs of 100
episodes each. The evaluation was done by interrupting the off-policy
learner every 5 episodes, and executing each demon’s greedy policy
once. No learning was allowed during evaluation. The graphs reflect
the average base reward. The initial and final performance refer to
the first and last 20% of a run.

Table 1: Results for the scenario with two comparable shapings. The
combination has the best cumulative performance. In the initial

stage it is comparable to the right shaping, in the final – to the height
shaping (each being the best in the corresponding stages), overall
outperforming both. The results that are not significantly different

from the best (Student’s t-test with p > 0.05) are in bold.

Performance
Variant Cumulative Initial Final
No shaping -336.3 ± 279.5 -784.7 ± 385.9 -185.1 ± 9.9
Right shaping -310.4 ± 96.9 -378.5 ± 217.4 -290.3 ± 19.3
Height shaping -283.2 ± 205.2 -594.2 ± 317.0 -182.3 ± 7.5
Combination -211.2 ± 94.2 -330.6 ± 179.5 -180.2 ± 1.5

The results in Fig. 3, and Tables 1 and 2 show that individual shap-
ings alone aid learning speed significantly. The combination method
meets our desiderata: it either statistically matches or is better than
the best shaping at any stage, overall outperforming all single shap-
ings. The exception is the final performance of the run in Scenario 2,
where the performance of the best shaping is significantly different

9 The scaling of potentials is in general a challenging problem in reward
shaping research. Finding the right scaling factor requires a lot of a priori
tuning, and the factor is generally assumed constant over the state space.
The scalable nature of Horde could be used to lift this problem, by learning
multiple preset scales for each potential, and combining them via either a
voting method like the one described here, or a meta-learner. See Section 6.

10 These were tuned individually, as the value functions differ in magnitude.

4

Figure 4.20: A visual representation of the Mountain Car environment.

The learning graph for both scalarisation function is presented in Figure 4.21. The
Chebyshev scalarised MORL algorithm is learning faster and smoother than its linear vari-
ant. The learning curve of the former smooths out after a few hundred iterations, while
the line of the latter is still fluctuating a lot. The line of the Pareto front is, however, still
at significant distance. This is logical as we tried to approach the Pareto front containing
470 policies with only 64 di�erent weight parameters.
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Figure 4.21: The linear and Chebyshev scalarised MORL algorithms on the Mountain Car
environment.

As the Pareto front is very large, it is interesting to see where the learned policies are
situated in the objective space. Therefore, we construct a 3D plot that represents the
Pareto non-dominated solutions found by the two learning algorithms and the Pareto
optimal set in Fig. 4.22 (a). Closer investigation of the policies teaches us that the linear
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scalarised MORL algorithm retrieved only 25 distinct Pareto non-dominated policies, which
are not necessarily members of the Pareto front. On the contrary, the Chebyshev scalarised
MORL algorithm obtained 38 distinct non-dominated solutions. Note that both algorithms
were run only 64 times, i.e., using 64 weight tuples. We also observe that the policies
obtained by the linear scalarisation method are, as expected, located in convex areas of
the Pareto optimal set, while the Chebyshev function learned policies that are situated in
both convex and non-convex regions.

Next to optimality, the goal of a MORL algorithm is to ensure a significant spread in
the solution space. Ideally, when the obtained results are scattered across the objective
space, the decision maker has a larger choice amongst very di�erent policies. On the
contrary, when policies are clustered into particular areas, often the di�erences between
those policies are minimal and they do not provide the decision maker with a diverse set
of choices. In Figure 4.22 (b), (c) and (d), we present a sliced representation of the 3D
plot where we focus on only two objectives at a time. Note that the Chebyshev method
obtains a larger spread in the objective space, where the results of the linear scalarisation
function are clustered into particular regions.
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Figure 4.22: The policies in the objective space of the linear and Chebyshev scalarised
MORL algorithms on the Mountain Car environment.
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4.4.5 Resource gathering world
In this final experiment, we analyse the performance on an entirely convex environment,
named the Resource gathering task. In this environment, adapted from Barrett and
Narayanan (2008), the agent goes on a quest to bring gold and gems to its home site.
Upon returning to its starting location, the goods he acquired are analysed. The possible
gathering outcomes are bringing home nothing, gold, gems or gold and gems. A visual
representation of the environment is provided in Figure 4.23. The three objectives are
time, gold, and gems, and there are 4 Pareto optimal policies in this environment, i.e.,

1. a policy that returns to the home site as fast as possible without carrying anything,

2. a policy that gathers the gold and returns as fast as possible,

3. a similar one for the gems objective,

4. and a policy that gathers both resources as fast as possible.

These optimal policies are all located on the convex hull of the Pareto front as depicted
in Figure 4.24.

Figure 4.23: A visual representation of the Resource Gathering environment.
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Figure 4.24: The Pareto front of the Resource Gathering environment.
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Figure 4.25: The linear and Chebyshev scalarised MORL algorithms on the Resource
Gathering environment.

The result of learning is presented in Figure 4.25. We see that the linear scalarised
MORL learns very fast and retrieves the entire set of Pareto optimal policies after roughly
50 iterations. This behaviour was to be as expected as the Pareto front is entirely convex.
Only in the initial learning phases, a dominated policy was learned, but in future iterations
every Pareto optimal policy was retrieved. As presented in Figure 4.26, we note that,
also in this environment, the probability of learning one of the Pareto optimal policies
is not uniform. As we will see in the following chapter, this is entirely the e�ect of the
weight parameters.

From the learning graph, one might have the impression that the Chebyshev scalarised
MORL algorithm is once again performing relatively well as its line approaches the line of
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the Pareto front. However, additional results have shown that increasing the number of
iterations does not help in learning the entire Pareto front. The bar chart in Figure 4.26,
also teaches us that in many cases, the simplest policy, i.e., the one that returns to the
home location as fast as possible without any artefacts, is learned while the policy that
retrieves both gems and gold is never learned. Also, in more than 50% of the cases, a
dominated policy was learned with the Chebyshev scalarised MORL algorithm, which is
not a good indication.
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Figure 4.26: The retrieved policies for the linear and Chebyshev scalarised MORL al-
gorithms on the Resource Gathering environment.

4.5 Conclusions
In this chapter, we have investigated single-policy MORL that employ scalarisation func-
tions. In this branch of MORL, the decision maker wants to obtain a single optimal policy
that satisfies its interest, based on a weight vector that is priorly defined. In order to
accommodate for a multidimensional feedback signal, we have proposed a general frame-
work for scalarised MORL. This framework learns and updates Q-vectors, which comprise
a standard Q-value for each individual objective. In the action selection strategy, these
Q-vectors are scalarised given a certain scalarisation function.

We have argued two instantiations for scalarisation functions, but the linear scalarisation
function is the most common approach. We have investigated the theoretical properties
of the linear scalarisation function and we have seen they also hold in the case of a
reinforcement learning setting. More precisely, the linear scalarised MORL algorithm is
guaranteed to converge to a Pareto optimal solution, which is an essential property for
reinforcement learning in general. As a downside, not every Pareto optimal policy is
discoverable but only the policies that are situated on the convex hull can be retrieved.
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In general multi-objective optimization, the Chebyshev scalarisation function is proven to
be able to discover every Pareto optimal solution, regardless of the shape of the Pareto
front. However, researchers have analysed that this property does not hold in MORL. In
this chapter, we empirically investigate to what degree this theoretical limitation e�ects
the behaviour of the learning agent in practice. After thoroughly investigating both scal-
arisation functions on three benchmark instances, we have seen that in most cases, the
Chebyshev scalarised MORL performs acceptably and is able to find policies the linear
scalarised MORL algorithm does not manage to retrieve. As a drawback, this performance
is very parameter-specific and in a significant amount of cases, the Chebyshev scalarised
MORL indeed converges to a suboptimal policy. As a conclusion we could state that the
Chebyshev scalarised MORL algorithm does not solve all the limitations of the linear scal-
arisation function but it has the potential to significantly improve its performance in terms
of the optimality of the solution and their spread in the objective space. In its strictest
form, one could state that non-linearity and MORL inherently exclude each other due the
lack of additivity. However, the search for non-linear scalarisation functions that can be
used to enhance the performance of single-policy optimisation should not take a halt at
this point. We highlight three scenarios where non-linear scalarisation function can still
be employed and that can potentially guide future research.

For starters, one could combine temporal di�erence learning with a non-linear scalarisation
function in pure form, that is without any refinement or restrictions. In such case, the
scalarisation function should be used as a heuristics that is not founded on any theoretical
principles but that can guide the search to potential fruitful areas of the objective space.
The work in Van Mo�aert et al. (2013b,a,c) falls in this category.

Secondly, it is possible to combine temporal di�erence learning with a non-linear scal-
arisation function, be it in a more restricted form. To solve the issue of non-additivity,
one can alter either the learning algorithm itself or its state representation (Geibel, 2006).
Nevertheless, this approach remains very specific and complex. Additionally, as mentioned
by Roijers et al. (2013), the speed of learning su�ers from this workaround. Yet, it would
undoubtedly be of great interest to further investigate this path.

Thirdly, one could investigate the use of non-linear scalarisation functions also outside
the temporal di�erence setting. Instead of adopting a value-iteration approach where
a value function is learned, one could learn a policy directly. These are policy-search
methods which directly and iteratively update a single policy without learning a value
function first. In that facet, policy-gradient methods for MORL have also been proposed.
In Uchibe and Doya (2007), a policy-gradient algorithm is proposed that learns in a direct
and iterative manner a single policy satisfying predefined constraints. This algorithm is
called constrained policy gradient reinforcement learning (CPGRL) as it iteratively updates
the policy in the direction of a gradient satisfying one or more constraints. As CPGRL
does not learn in a temporal di�erence manner, it poses no problem in combining it with
a non-linear scalarisation function.
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4.6 Summary
In this chapter, we investigated single-policy MORL that rely on scalarisation functions
to transform the dimensionality of the reward signal to a single dimension. We have
proposed a framework that allows to reuse standard reinforcement learning algorithms
in a multi-objective setting by employing a scalarisation function in the action selection
strategy. We have theoretically and empirically analysed the linear and the non-linear
Chebyshev scalarisation function and emphasised their advantages and limitations. We
have seen that non-linearity and temporal di�erence learning do not synthesise well due to
the lack of additivity of the scalarised returns. However, we have illuminated several paths
for future research that can boost the development of learning algorithms that handle a
non-linear scalarisation function.
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5

| Iteratively learning
multiple multi-objective

policies

In the previous chapter, we have investigated into MORL algorithms that employ a scalar-
isation function and a weight vector to discover a single trade-o� solution. In this chapter,
we explore how this single-policy setting can be augmented to obtain multiple policies
by adaptively varying the weight vector. The main question to research is then how to
consecutively redefine the weight vector in other to find a diverse set of trade-o� solutions
taking into account the relation between the weight vector and the slope of the Pareto
curve. As pointed out in Das and Dennis (1997), this relation is non-isomorphic, meaning
that the mapping from the weight space to the converged solution in the objective space
is unclear. In this chapter, we will dig deep into this problem and highlight the reasons
for this relation. We will propose two tree-based mechanisms that allow to define adapt-
ive weights in the case of a discrete and continuous Pareto front. These techniques are
experimentally validated on several benchmark problems and conclusions are formalised.

In more detail, we will present the following contributions in this chapter:

• Analyse how single-policy algorithms can obtain multiple policies
• Investigate the non-isomorphic mapping from weight to objective space
• Propose an adaptive weight algorithm that can e�ciently explore discrete Pareto

fronts
• A similar set of algorithms that can e�ciently explore continuous Pareto fronts

This research has been published in Van Mo�aert et al. (2014a) and in Van Mo�aert
et al. (2013).
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5.1 Iteratively learning an archive of trade-o� solutions
Over the years, a few mechanisms have been proposed to obtain a set of trade-o� solutions
with single-policy algorithms. Usually, a single-policy algorithm is run multiple times and
its resulting policies are collected in an archive or approximation set, denoted by A. For
instance, one can run the linear scalarisation algorithm many times for varying weight
vectors to approximate the convex hull of the Pareto front (Castelletti et al., 2002; Vamplew
et al., 2008, 2010). In the case the Pareto front is continuous, it is both impossible and
unnecessary to retrieve every Pareto optimal solution. In this respect, the idea is to find
an archive that is both (i) (close to) optimal and (ii) diverse, using a predefined number
of weights. Diversity is a very important aspect as it is important to guarantee that the
policies are not clustered into particular areas of the objective space, but that they identify
diverse trade-o�s that the decision maker can choose from. In Figure 5.1 (a), we depict
a poor archive since some policies tend to be clustered in specific areas while leaving
other regions of the objective space uncharted. In Figure 5.1 (b), the policies are more
widespread and, therefore they define a better approximation.
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Figure 5.1: A poor approximation of a continuous Pareto front is shown in (a), while in
(b) the policies are more diverse and spread across the objective space.

A common strategy is to uniformly and evenly divide the weight space in chunks of equal
size and to collect the results. Nevertheless the approach, being simple and intuitive, is
proven not to provide an even spread of solutions in the objective space. Moreover, as
pointed out by Das and Dennis (1997), only for very specific shapes of the Pareto front, an
even spread in the weight space provides an even spread in the objective space. Basically,
without any prior knowledge on the shape of the Pareto front, it is impossible to foresee
what point in the objective space a certain weight vector will yield. In layman’s terms,
learning with a weight vector of (0.8, 0.2) does not guarantee that the solution obtained
will compromise 80% of the best solution for the first objective and 20% of the best
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solution of the second objective. This idea is illustrated in Figure 5.2 (a) and (b) which
uses the same visualisation as in Section 4.2.2. In both figures, we depict the solutions A,
B and C that correspond to three weight vectors, represented by the angles ◊, ◊Õ and ◊ÕÕ,
respectively. 1 Although the three angles roughly divide the weight space in three parts
of equal size, we see that the retrieved solutions do not uniformly cover the Pareto front
in the objective space. In Figure 5.2 (b), the influence of the shape of the Pareto front is
even larger since the solutions are now more clustered and at uneven distance from each
other than in Figure 5.2 (a). These examples highlight that it is of crucial importance to
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Figure 5.2: Depending on the shape of the Pareto front in (a) and (b), di�erent solutions
A, B and C are found for three identical weight vectors, defined by the angles ◊, ◊Õ and
◊ÕÕ.

investigate heuristics that consecutively define and redefine the weights vectors. In this
regard, in Section 5.3, we describe several heuristics that implicitly extract the shape of
the Pareto front and that guide the search in future iterations.

In the case that the Pareto front is discrete and only contains a limited number of
solutions, adaptive weight heuristics can be employed to e�ciently explore the objective
space to find each and every optimal solution. In this discrete context, spread is not
an important aspect but the retrieval of all solutions is. Therefore, we investigate how
to explore the multi-dimensional objective space as fast and as e�cient as possible by
proposing an adaptive weight algorithm that uses a tree-based search mechanism. This
algorithm will be analysed in Section 5.2.

1For clarity reasons, the line f Õ
2 and f ÕÕ

2 perpendicular to f Õ
1 and f ÕÕ

1 are omitted in the illustration
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5.1.1 Related Work
Several researchers have attempted to define adaptive weighting schemes in the case of
general optimisation problems. For continuous Pareto fronts, Dubois-Lacoste et al. (2011)
proposed a series of algorithms that alter the weight of a linear scalarisation function with
a so-called dichotomic scheme to specify the direction of search. As the optimisation
algorithm relies on a linear scalarisation of objectives, only solutions on the convex hull
of the Pareto front are retrieved, as we have seen in Section 4.2. These adaptive weight
algorithms are created specifically for stochastic local search algorithms. Internally, they
combine interesting techniques such as divide-and-conquer by either progressively explor-
ing finer levels or by moving the search towards solutions that comprise the largest gap
according to several metrics.

In Das and Dennis (1998), the normal boundary intersection (NBI) algorithm is proposed.
NBI is able to produce an evenly distributed set of solutions given an evenly distributed
set of parameters. In its internal workings, NBI breaks the original problem down into a
set of subproblems, each with a specific scalarisation scheme. This scalarisation scheme is
indi�erent of the relative scales of objective functions but it is not guaranteed to retrieve
optimal solutions in non-convex regions of the Pareto front.

To overcome the limitation of the linear scalarisation function concerning non-convexity,
Kim and de Weck (2005) suggest to combine an adaptive weighting scheme with ad-
ditional inequality constraints. Their algorithm divides the original problem into several
subproblems that each focus on particular regions of the objective space. By continuously
refining these regions, the algorithm is able to discover an even spread of solutions in both
convex and non-convex regions of the Pareto front.

These approaches have proven their usefulness in general optimisation processes involving
state-less and usually deterministic problems. However, they are not ideal for sequential
multi-objective reinforcement learning problems where the state space can be large and
where both the transition function as the reward signal can be stochastic. In Section 5.2
and 5.3, we propose two mechanisms that allow to repeatedly use single-policy MORL
algorithms to obtain multiple policies in both discrete as well as continuous Pareto fronts.

5.2 Adaptive weight algorithms for discrete Pareto fronts
In some situations the system engineer might have some insights in the solution space
of the problem. For instance, in case the dynamics of in the environments are rather
deterministic and the number of actions limited, the number of optimal solutions in the
objective space usually restricted. However, for the system engineer to find the appropriate
weight configurations that retrieve all solutions with minimal computational e�ort is not
trivial. To stress this statement, one can investigate the correspondence of the weight space
to the objective space of the Bountiful Sea Treasure environment, previously introduced
in Section 4.3.4. The objective space of the environment contains 10 Pareto optimal
solutions that are each retrievable with a certain weight vector. In Figure 5.3 (a), we
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denote an exhaustive sweep of the weight space and the converged policy in the objective
space. On the x-axis, we depict the weight w1 assigned to the first objective while the
weight of the second objective is w2 = 1 ≠ w1. We see that several areas in the weight
space emerge that each converge to the same solutions. However, it is clear that some
policies correspond to a much larger set of weights than others, e.g., the blue policy occurs
much more frequently than the yellow policy. Additionally, some policies correspond to
such a restricted set of weights that (1) a uniform sampling of the weight space will be
biased towards particular policies and (2) it is unrealistic that the system engineer would
ever find it by purely guessing the weights. This aspect is highlighted in Figure 5.3 (b)
where we depict a zoomed-in portion of a particular area of Figure 5.3 (a). We note
that the interval of weights that converge to the green policy is very narrow and located
between the yellow and turquoise policies. Subsequently, when the number of objectives
increases, also the number of decision variables, i.e., the weights, increases, which makes
the problem of retrieving all optimal solutions even harder.

Therefore, we elaborate on an algorithm that e�ciently explores the weight space of any
m-dimensional problem in order to find every optimal solution with as minimal computa-
tional e�ort as possible. This algorithm will be unveiled in the upcoming section.
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Figure 5.3: In (a), we depict the mapping of weight space to objective space of the
Bountiful Sea Treasure environment. In (b), we present a zoomed-in area of (a) and we
note that some policies are only retrievable for a very restricted set of weights.

5.2.1 The algorithm
The algorithm we propose is a tree search algorithm that can be incorporated with an
underlying single-policy MORL algorithm, such as the linear scalarised MORL algorithm
of Section 4.2. The tree search algorithm incrementally supplies a sequence of weight
configurations to e�ciently explore the weight space. In computer science, searching is
often performed with tree-like structures as their hierarchical composition makes them
very e�cient for searching purposes.
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Our tree search algorithm exploits two properties of convex linear combinations. First,
we know that the weight space for linear scalarisation is always (m≠1)≠dimensional, with
m the number of objectives. This is due to the fact that all weights must sum to 1, and
therefore setting all but one weight is enough to also fix the value for the last weight.
Selecting a specific weight assignment w = (w1, w2, . . . , wm) transforms the MOMDP
into a standard MDP where the optimal policy is also the Pareto optimal policy of the
original MOMDP.

Another important aspect of convex Pareto optimal sets is that the set of policies that is
optimal for a weight wo œ [0, 1] are precisely those policies whose line-representations lie
on the upper convex envelope of the Q-functions (Ehrgott, 2005), i.e., if for two di�erent
weight assignments w and w

Õ the same policy is optimal, it is also optimal for the weight
assignments between w and w

Õ.
The aim of our method is to take benefit from these properties and exploit the structure of

convex hulls to identify the weight space regions that are associated with a particular Pareto
optimal policy, and specifically by recursively refining the boundaries of these regions.

0 1
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Figure 5.4: A visualisation of the exploration of the weight space of a bi-objective problem.
In this case, the weight w1 (x-axis) is the only decision variable, since w2 = 1 ≠ w1.
Di�erent symbols and colours identify di�erent Pareto optimal policies.

Initially, the algorithm starts by solving the MOMDP using the linear scalarised MORL
algorithm of Chapter 4 with the weight combinations that define the boundaries of the
entire weight space. For instance, for a bi-objective problem, the two extrema are (w1 =

0, w2 = 1) and (w1 = 1, w2 = 0). As a running example, we visualise the search process for
a bi-objective toy problem in Figure 5.4 (a), with di�erent symbols and colours identifying
di�erent Pareto optimal policies. If the discounted cumulative rewards of the converged
policies are identical, our search stops since we can conclude that there is only one Pareto

114



5.2. ADAPTIVE WEIGHT ALGORITHMS FOR DISCRETE PARETO FRONTS

optimal policy within the corresponding interval in the weight space. Note that di�erent
policies can be optimal for a given weight assignment, but their discounted cumulative
rewards must be the same. If the discounted cumulative rewards for the policies found are
di�erent, as is the case in our toy problem, the region bounded by these weight assignments
is split into equal parts. In our example, the interval is split in the middle of the original
weight configurations. Subsequently, the scalarised MORL algorithm is run again with
the weight values at the split point, as can be seen in Figure 5.4 (b). Thus, we build a
binary tree corresponding to the regions in the weight space. Using breadth-first search,
we e�ciently search the tree to identify the weight space regions associated with di�erent
policies, by only expanding nodes, i.e., splitting regions, if some of the boundary points
yield di�erent policies. After four iterations on our toy problem, two Pareto optimal policies
are identified, with the intervals currently estimated at [0, a] and [a, 1] respectively, with
a somewhere between 0.25 and 0.375 . Further refinements of the boundary may reveal
new intervals lying in ]0.25, 0.375[ that yield other Pareto-optimal policies.
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Figure 5.5: A visualisation of exploration of the weight space of a problem involving three
objectives. In this case, the weight w1 (x-axis) and w2 (y-axis) are the decision variables,
since w3 = 1 ≠ w1 ≠ w2. Di�erent symbols and colours identify di�erent Pareto optimal
policies.

Logically, the tree structure and its splitting strategy are dependent on the number of
objectives. In the case of only two objectives, the tree is a binary tree and the splitting
mechanism only operates on a single dimension since evaluating a single new point is
su�cient. In environments with three and four objectives, the tree structure becomes
a quadtree and octree, respectively. Also, the number of split points increases with the
number of objectives. In the event of three objectives, the number of split points is 5, i.e.,
one point in the middle of each edge of the square, and one in the middle. This process is
visualised in Figure 5.5. Note that the upper-right part of the weight space is infeasible,
since in that region w1 + w2 > 1.

In general, we look for center points in lower dimensional figures. Since an environment
with m objectives consist of (m ≠ 1) dimensions that are free, since the weight of the last
objective, wm is entirely dependent on weights wo with o œ [0, m ≠ 1]. Therefore, we are
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iterating through geometrical hypercubes lower than dimension (m ≠ 1), i.e., dimension
1 (points) to dimension (m ≠ 2). Moreover, we know that a hypercube of dimension z
contains 2

z vertices, e.g., a cube has 8 vertices. Each of these vertices of the z-dimensional
figure plays a role in one or more lower dimensional figures of dimension (z ≠ 1). For
instance, a vertex of a cube is part of three faces of dimension 2. Therefore, we can use
the combinatorial binomial coe�cient to know how many times a vertex in a space with
(m ≠ 1) dimensions can be used in a space with only k < (m ≠ 1) dimensions. This is!m≠1

k

"
. Of course, we are counting some doubles, so we have to subtract 2

k. In the formula
below, we calculate the sum of lower dimensional figures by iterating with k. Additionally,
we also add one point, this is the center point of the (m ≠ 1) dimensional figure itself.

1 +

m≠2ÿ

k=1
2

m≠1≠k

3
m ≠ 1

k

4
= 1 +

m≠2ÿ

k=1
2

m≠1≠k (m ≠ 1)!

k!(m ≠ 1 ≠ k)!

. (5.1)

For example, for an environment with four objectives, the tree structure is an octree and
the geometrical figures we are splitting are cubes. In that case, the number of split points
to be evaluated is equal to the number of edges, i.e., one split point in the middle of each
edge, plus the number of faces, i.e., one split point in the middle of each face, plus 1
split point for the middle of the cube:

1 + 12 + 6 = 19. (5.2)

5.2.2 Experimental evaluation
In this section, we will perform an empirical evaluation of di�erent weight schemes on
several MORL benchmark instances.

5.2.3 The Bountiful Sea Treasure world
We first analyse the tree-based algorithm on the standard Bountiful Sea Treasure (BST)
environment of Section 4.3.4. The correspondence of the weight space to the objective
space of that environment is already depicted in Figure 5.3. In the experiments, we compare
our algorithm to two alternative weight schemes that are often employed in literature. The
first scheme is a predefined sequence of weights that divide the weight space in chunks of
equal size. The second scheme is an unbiased, uniform random weight selection strategy.
We analyse the results by investigating the cardinality, i.e., the number of optimal elements
obtained over time compared to the size of the Pareto front.
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Figure 5.6: Number of Pareto optimal policies identified as a function of the number of
weight combinations tried on the Bountiful Sea Treasure environment.

In Figure 5.6, we depict a cumulative sum of the cardinality of the optimal policies for
the random and the predefined weight sequence and the tree search algorithm. All of the
results are averaged over 50 runs and the 95% confidence interval is depicted at regular
time intervals. Note that our deterministic tree search method e�ciently explores the
weight space and is able to obtain every element of the Pareto optimal set in under 100
iterations, where one iteration equals solving the MDP with a single weight combination.
The predefined sequence also performs acceptably but it takes around 200 iterations before
the entire Pareto front is retrieved. The random weight sequence performs worse as it
only finds 8 Pareto optimal policies after 1000 iterations. The fact that the random and
the predefined sequence are still able to obtain 8 policies is due to the still somewhat
reasonable sizes of most of the weight space regions leading to di�erent policies. In the
three-objective version of this world in Section 5.2.5, we will see that the di�erence with
the random method becomes much larger, as the size of most regions shrinks dramatically.

5.2.4 The Resource Gathering world.
The Resource Gathering world of Section 4.4.5 contains three objectives. Therefore, the
weight space in Figure 5.7 is two-dimensional, as only w1 and w2 need to be set as
w3 = 1 ≠ w1 ≠ w2.
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Figure 5.7: The four Pareto optimal policies in the Resource Gathering world and its
associated locations in the weight space.

From this figure, we can clearly see the four large, distinct regions, which should ease the
discovery of the four Pareto optimal policies. In Figure 5.8 we summarise the performance
on this benchmark instance. We notice that, although there are no huge di�erences
in size between the various regions, the random sequence on average needs up to 50
iterations. The predefined weight sequence is doing a bit better although still 22 weight
configurations are tried before every solution is found. We also see that the performance
of this scheme is often stagnating and plateaus are formed where a lot of weights are often
retrieving policies that were found in previous iterations. Obviously, this is because the
scheme provides weights that are at a predefined distance from one another rather than
determined adaptively. Finally, the tree-based search algorithm only requires 5 iterations
at minimum cost of resources.
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Figure 5.8: The number of Pareto optimal policies identified as a function of the number
of weight combinations tried for di�erent search algorithms on the Resource Gathering
world.

5.2.5 The Bountiful Sea Treasure 3D world
Additionally, we extend the two-dimensional BST by adding a third objective, namely the

pressure objective. This objective relates to the depth of the submarine and a penalty
is given linear to this depth, i.e., at every step, the agent receives a reward of ≠depth.
As a result, the Pareto optimal set still consists of 10 optimal policies, but instead of
allowing for any shortest path to a treasure, the submarine must travel as long as possible
in the shallowest water before making its descent to a particular treasure. Therefore, the
Bountiful Sea Treasure 3D world is the most challenging environment of the three discussed
here. As is clear from the weight space in Figure 5.9 (a), a single policy is optimal in 95%
of the space, while the other optimal policies are only obtained for a very specific set of
weights (see the zoomed-in representation in Figure 5.9 (b)). Even using a brute-force
exploration of the weight space, while trying all weight combinations with increments of
0.001, only allowed to discover 7 of the 10 Pareto optimal policies. This again shows that
uniformly sampling the weight space to identify the convex parts of the Pareto optimal
set can be a very ine�cient procedure indeed.
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Figure 5.9: (a) The weight space of the Bountiful Sea Treasure 3D with its associated
Pareto optimal policies. A large part of the weight space converges to the same blue
policies while other policies correspond to a very restricted collection of weights. (b )The
zoomed-in portion of the top-left of (a). Only 7 out of 10 Pareto optimal policies are
identified using an exhaustive brute-force search.

In Figure 5.10, we show the search performance of the di�erent weight schemes. It is clear
that a random sequence only finds a limited subset of the Pareto front at a very slow pace.
The predefined sequence performs very well in the first 1500 iterations of the experiment
but stagnates afterwards. The boost in early iterations is credited to the vertical order
in which the weight space is explored in our implementation. If the weight space is to
be explored horizontally, it would vary w1 first instead of w2 and then the blue policy
would be constantly retrieved for the first 10000 iterations. Finally, our tree search is able
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to identify all Pareto optimal policies, although requiring many more evaluations than on
the previous worlds. This is due to the extremely small size of the weight space regions
associated with some of the Pareto optimal policies. Note that there is some stochasticity
in the search process, since the learning agent did not converge at every iteration, resulting
in a misclassification of the weight combination. Nevertheless, our algorithm is able to
deal with this stochasticity and eventually retrieves all Pareto optimal solutions.
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Figure 5.10: The number of Pareto optimal policies identified as a function of the number
of weight combinations tried for di�erent search algorithms on the Bountiful Sea Treasure
3D world.

Figure 5.11 shows the resulting quad-tree of the tree search method. Colours indicate
the depth of the tree, with red being the deepest levels. The figure clearly shows that the
algorithm is able to concentrate on the regions containing several policies, while avoiding
those other regions that correspond to the same policy. Figures 5.12 and 5.13 also confirms
this, by showing which weight combinations are evaluated by the tree search algorithm.
The algorithm intensively explores the boundaries between di�erent regions, and ignores
the interiors of these regions, as they will not yield new policies. Refining the boundaries
between regions can help find very small regions that are associated with other Pareto
optimal policies.

122



5.2. ADAPTIVE WEIGHT ALGORITHMS FOR DISCRETE PARETO FRONTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Weight W
1

W
e
ig

h
t 
W

2

Visualization of adaptive weights, iteration 2720

Figure 5.11: The resulting quad-tree after 2720 iterations. The colours indicate the depth
of the tree, red being the deepest levels. We see that the algorithm spends as little time as
necessary on the portion of the weight space corresponding to the blue policy in Figure 5.9
(a) before concentrating on the small regions containing several policies

Figure 5.12: The search process of the algorithm, where each point is a weight that is
evaluated. We note that the algorithm quickly intensifies its search towards the top-left
of the space.
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Figure 5.13: A zoomed-in portion of Figure 5.12. We clearly see that exploration is
focussed on the boundaries between regions.

5.2.6 Advantages and limitations
We showed that a uniform sampling of the weight space often does not lead to a uniform
sampling of the convex parts of the Pareto optimal set. Therefore, the decision maker
should not only rely on intuition when tuning weights by hand, since it wastes significant
amounts of computation power. To overcome these problems, the decision maker should be
assisted with adaptive weight algorithms. In this regard, our algorithm performs breadth-
first search on a tree-based partitioning of the weight space, and explores those regions
that contain the boundaries between already identified policies. Even though the number
of split points of the tree structure increases exponentially in the number of objectives,
it is still preferable over non-adaptive schemes since sampling high-dimensional spaces is
notoriously more complex. We experimentally showed it to outperform a uniform random
sampling of the weight space, and that it can automate the process of tuning weights
to find policies that achieve a desired trade-o� between the di�erent objectives. In some
occasions a predefined weight sequence might show acceptable results but this performance
is not guaranteed as the order in which the sequence followed is crucial to avoid plateau
performance.

The tree-search algorithm serves as a simple and useful mechanism to learn multiple
policies by repeatedly executing single-policy optimisation algorithms with di�erent weights.
Because the search strategy and the optimisation algorithm are inherently two distinctive
components, the principle can also be combined with other optimisation techniques than
MORL, such as for instance local search. The strategy is extendible to environments with
a high number of objectives as only the structure of the tree changes. Another alternative
to the process described here, is to use k-d trees, instead of quadtrees, octrees, etc. Since
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k-d trees do not split regions symmetrically, but based on an inspection of the bounding
weight assignments and the neighbouring regions, the search process could be sped up.

In case the environment is roughly deterministic and contains a discrete amount of optimal
policies, the tree search algorithm will perform well. However, if a lot of stochasticity is
present, the equality operator on which the search strategy is based to accentuate or ignore
particular areas should be relaxed. In that case, a distance metric could be employed. If
the distance between the policies then does not exceed a certain threshold, the policies
are said to be roughly equal and the strategy should not emphasise their corresponding
area in the weight space.

5.3 Adaptive weight algorithms for continuous Pareto
fronts

In the previous section, we assumed the Pareto front contains a discrete amount of policies.
However, in real-life applications, this assumption might no longer hold and the Pareto
front could be continuous. If we would naively apply the tree-based strategy in this context,
the algorithm would perform splits at every single level since the equality operator is too
strict. Therefore, continuous Pareto fronts require the use of heuristics to yield an archive
of solutions that is both optimal and well-spread. In the subsequent section, we will
describe in more detail what these properties entail.

5.3.1 Defining good approximation set
Usually, a good archive is considered to contain solutions of high quality and that are well-
spread to o�er a diverse set of trade-o�s. To formally specify these properties, one needs
distance metrics to measure the space between the archive and the true Pareto front, if
available. Currently, there is no single best measure available to evaluate the quality of
an archive, but researchers often use quality indicators to asses its performance (Knowles
and Corne, 2002; Zitzler et al., 2003b). Quality indicators usually transform a set of
m-dimensional vectors into a real number:

Definition 5.1

A (unary) quality indicator is a function I : A æ R, which assigns each vector
(A1, A2, . . . , Ap) of a set of m-dimensional elements to a real value I(A1, . . . , Ap)

So far in this dissertation, we have already dealt with one specific quality indicator. Re-
member the hypervolume measure of Section 4.4.1, which is also a quality indicator as it
takes a set of vectors as input and provides a real number representing the volume of that
set in the objective space. Other typical quality indicators are:
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• Generational distance : A measure that calculates how far the elements in the
archive, generated by the optimisation algorithm, are from those in the Pareto
front (Van Veldhuizen and Lamont, 1998). Internally, the average Euclidean dis-
tance dist from the elements of the archive A to the Pareto front PF is calculated.
The lower the GD value, the closer the obtained elements are to the Pareto front:

GD(A, PF ) =

1

|A|

1 |A|ÿ

i=1
dist(Ai, PF )

2
2

. (5.3)

• Inverted generational distance : This variant of the generational distance indicator
calculates the distance from the viewpoint of the Pareto front (Van Veldhuizen and
Lamont, 1998). In essence, IGD(A, PF ) = GD(PF, A):

IGD(PF, A) =

1

|PF |

1 |P F |ÿ

i=1
dist(PFi, A)

2
2

. (5.4)

• Generalised spread : A measure of diversity that calculates the extent of spread
amongst the obtained solutions (Aimin et al., 2006). It calculates the ratio of the
Euclidean distance from the extremes of the archive to the Pareto front to the mean
distance between each point and its nearest neighbour. This way, one gets an idea
of the density of the solutions in the archive.

Often not a single indicator is used in the performance assessment process but rather a
combination of multiple quality indicators before conclusions are drawn. To be theoretically
correct, Zitzler et al. (2003b) state that an infinite number of unary set measures is needed
to detect in general whether one approximation is better than another one.

5.3.2 Existing adaptive weight algorithms
In Dubois-Lacoste et al. (2011), a series of adaptive weight algorithms (AWAs) is proposed
to steer the search process. These algorithms are analysed in combination with two-
phase local search (TPLS) optimisers. TPLS is a powerful algorithmic framework that
comprises two phases and focusses exclusively on bi-objective problems. In a first phase,
a single-objective local search algorithm obtains a high-quality solution for one of the
objectives, while in the second phase this solution serves as a starting point for a sequence
of future weight configurations. In the end, the goal of TPLS is to find an archive of high
quality yet diverse trade-o� solutions. Some TPLS variants use a predefined sequence,
while others select the new weight as a function of the solutions previously discovered,
and their coverage of the Pareto front. We summarise these existing variants in the
following paragraph.

• TPLS: The standard procedure defines a sequence for w1 ranging from 0 to 1 with
steps of 1

Nscalar
, where Nscalar determines the step size. The weight for the other
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objective, i.e., w2 is calculated by w2 = 1 ≠ w1 for the bi-objective case. However,
although the method performs a uniform sampling of the weight space, there is no
guarantee that the resulting solutions will yield a uniform spread in the objective
space as we have seen earlier in this chapter. Another crucial aspect of TPLS is the
sequential order of weights. When TPLS is stopped prematurely, it will not have
sampled the latter part of the weight space, potentially leaving a part of the Pareto
front uncharted. Hence, TPLS does not produce solutions as good as possible as
fast as possible, i.e., it has poor anytime behaviour.

• RA-TPLS: To overcome these problems, the Regular Anytime TPLS algorithm (RA-
TPLS) is proposed (Dubois-Lacoste et al., 2011). The algorithm explores the weight
space in a divide-and-conquer manner by progressively exploring finer levels k. RA-
TPLS starts at evaluating w1 = 0 and w1 = 1 at level 0. At the next level, when
k = 1, w1 œ {0.5}. At level k = 2, w1 œ {0.25, 0.75} and so forth. As the search
continues, the coverage of the weight space is refined. Therefore, at any time, the
search e�ort is (almost) evenly distributed across the possible weight settings.

• AN-TPLS: The previous two methods generate weights in a predefined manner.
However, sometimes the shape of the Pareto front is irregular and the search direction
should be adapted by taking into account the actual shape of the Pareto front.
Adaptive Normal (AN) TPLS defines a metric to identify the largest gap in the
coverage of the Pareto front (Dubois-Lacoste et al., 2011). Between all the currently
obtained trade-o�s, the pair with the largest gap according to the metric specified
(Euclidean distance in this variant) is used to calculate the next weight, aiming to
fill this largest gap. The new weight w1 is perpendicular to the line between the
objective function F of solutions s1 and s2 defining the largest gap in the objective
space, assuming s1 and s2 are normalised (Dubois-Lacoste et al., 2011):

w1 =

F2(s1) ≠ F2(s2)

F2(s1) ≠ F2(s2) + F1(s2) ≠ F1(s1)

(5.5)

• AN-TPLS-HV: An extension to the standard adaptive TPLS algorithm of above uses
an alternative metric to specify a distance measure. The hypervolume measure is
employed to measure the size of the gap in the Pareto front (Dubois-Lacoste et al.,
2011). Given two solutions s1 and s2, the hypervolume measure calculates the
rectangle defined in the objective space:

HV (s1, s2) = |(F1(s1) ≠ F1(s2)) · (F2(s1) ≠ F2(s2))| (5.6)

Although these methods are developed with local search algorithms in mind, they can
be adapted to interact with other optimisation algorithms, such as reinforcement learning.
In order to assess their performance, we proceed to an experimental evaluation of these
existing techniques, before we propose some alternatives of our own.
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5.3.3 Experimental evaluation
Before we proceed to the results, we depict the properties of the existing AWAs in a sim-
ulation environment, mimicking a distributed smart camera network. This environment is
named CamSim. Afterwards, in Section 5.3.4, we propose novel extensions that overcome
most of the limitations of the current AWAs.

Simulation environment

CamSim (Esterle et al., 2013) simulates a distributed smart camera network. 2 Smart
cameras are fully computationally capable devices endowed with a visual sensor, and typic-
ally run computer vision algorithms to analyse captured images. Where standard cameras
can only provide plain images and videos, smart cameras can pre-process these videos and
provide users with aggregated data and logical information, such as the presence or not
of an object of interest. Since smart cameras are designed to have a low energy footprint,
their processing capabilities are also low. Communication between cameras allows the
network as a whole to track objects in a distributed fashion, handing over object tracking
responsibilities from camera to camera as objects move through the environment. In one
approach (Esterle et al., 2014), cameras exchange object tracking responsibilities through
auctions, sending auction invitations to other cameras, who may then bid to buy objects.
The cameras use pheromone-based on-line learning to determine which other cameras they
trade with most often. This neighbourhood relationship graph (the vision graph), enables
them to selectively target their auction invitations and achieve higher levels of e�ciency.
In Lewis et al. (2013), six di�erent behavioural strategies are available to cameras, which
determine the level of marketing activity they undertake, given the learnt vision graph.
Some strategies incurred higher levels of communication overhead but typically obtained
higher levels of tracking confidence; other strategies obtained the opposite results. How-
ever, the trade-o� realised by each strategy is found to be highly scenario dependent;
as camera positions varied and object movements di�ered, the relative benefits of the
strategies is greatly influenced.

Although cameras make decisions based on local information, we are primarily interested
in performance at the global level. This consists of two network-level objectives:

1. Tracking confidence: the achieved tracking confidence during a small time window
for each object by the camera tracking that object, summed over all objects. This
objective is to be maximised.

2. Number of auction invitations: the number of invitations sent by all cameras as a
result of auction initiations, during a small time window, a proxy for communication
and processing overhead. This objective is to be minimised.

The camera agents are single-state independent learners and can choose between six
marketing strategies defining each agents behaviour. The scalarised reward rtotal is a

2The CamSim software is open-source and retrievable at https://github.com/EPiCS/CamSim
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camera-specific reward and is a weighted-sum of the utility reward rutility and the negative
auction invitation reward rauction, given w1 for the first objective and (1 ≠ w1) for the
second objective:

rtotal = w1 ◊ rutility + (1 ≠ w1) ◊ ≠rauction. (5.7)

The utility reward of a camera i is calculated by

rutility =

ÿ

jœOi

[cj · vj · „i(j)] ≠ p + sp. (5.8)

Here, vj is a visibility parameter which is determined by the distance and angle of the
observed object to the observing camera. The tracking performance is estimated by a
confidence value cj . Both values cj and vj are between 0 and 1 as soon as the observed
object is within the field of view of a camera, 0 otherwise. In addition to utility earned by
tracking objects, a camera b may make a payment to another camera s in order to ‘buy’
the right to track an object from that camera. This requires that the ‘selling’ camera
s already itself owns the object. If an exchange is agreed, then the object is removed
from the inventory of camera s and added to camera b. Moreover, p denotes the sum of
all payments made in trades in that iteration, and sp conversely denotes the sum of all
payments received (Esterle et al., 2011).

The rauction reward denotes the number of auction invitations sent by this camera at
the current time step. Our aim is to minimise the number of auction invitations, but
traditionally, RL concerns a maximisation problem. Therefore, we want to maximise the
negative number of auction invitations in Equation 5.7. The agents use a softmax action
selection strategy with · equal to 0.2. For more information on the details behind these
marketing strategies, we refer to Lewis et al. (2013).

Simulated data In our simulation, a scenario comprises a set of cameras with associated
positions and orientations, along with a set of objects and their movement paths through
the environment. We simulate and evaluate configurations within 11 qualitatively di�erent
scenarios using the open source CamSim software. We also acquired video feed data from
a real smart camera network, which gives us a twelfth scenario. All simulated scenarios
are depicted in Figure 5.14, where a dot represents a camera and the associated triangle
represents its field of view.

Real-life data Figure 5.15 shows snapshots from each camera at five di�erent points
in time. Each camera captured 1780 frames, looped four times to create a total of 7120

frames, each with a resolution of 640 ◊ 480.
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(a) Scen 1 (b) Scen 2 (c) Scen 3 (d) Scen 4

(e) Scen 5 (f) Scen 6 (g) Scen 7 (h) Scen 8

(i) Scen 9 (j) Scen 10 (k) Scen 11

Figure 5.14: The scenarios tested with the CamSim simulation tool. A dot represents a
camera, the associated triangle represents its field of view.

Figure 5.15: Shots from five participating cameras tracking a single person.

Results I

We will now present the results of applying the adaptive two-phase weight schemes in
combination with reinforcement learning agents in CamSim. There are two main side
marks. First, note that we do not use local search techniques as in the original TPLS
proposals (Dubois-Lacoste et al., 2011) so therefore we refer to these implementations
as two-phase reinforcement learning or TPRL. Secondly, in the current setup, the weight
parameter used in each iteration of the simulation is the same for all agents in the scenario.
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Figure 5.16: The hypervolume over time for each of the adaptive weight algorithms on
scenario 1.

In Figure 5.16 we analyse the anytime property of each method, i.e., how fast does the
algorithm explore the non-dominated parts of the Pareto front in terms of the hypervolume
measure. We focus on scenario 1, but the conclusions generalise to the other scenarios as
well. Note that each iteration represents the average value over 10 episodes with a specific
scalarisation, determined by an AWA. One episode itself consists of 1000 simulations steps.
The uniform distribution in the weight space, i.e., TPRL, is the original AWA used in Lewis
et al. (2013) on this problem. We clearly see that the naive methods such as TPRL,
random and RA-TPRL explore the objective space quite slowly in terms of the hypervolume
measure. The adaptive methods such as AN-TPRL and AN-TPRL-HV, which adapt their
weights by considering the ‘gap’ between solutions, perform roughly the same as their
lines overlap. We note that their hypervolume values increase rapidly in early stages, while
they stagnate after 25 iterations. In the end, the performance approaches RA-TPRL and
randomly exploring the weight space.

In Figure 5.17 (a) to (e), we denote the final archive obtained by each of the methods.
We normalised the values of the solutions for each of the methods and transformed them
in order to create a maximisation problem for both objectives. We note that some methods
are better at dividing the computational e�ort across the objective space. For example,
Figure 5.17 (a) is a clear indication that a uniform distribution of the weight space with
TPRL does not guarantee a uniform spread in the objective space. AN-TPRL and AN-
TPRL-HV, in Figure 5.17 (d) and (e), adapt the weights in terms of the Euclidean and
hypervolume metric, respectively. However, those algorithms focus their resources on
particular areas, while leaving other, possibly interesting, trade-o� solutions uncharted. In
the following section, we highlight the reasons for the limited coverage of the objectives
space of these methods.
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Figure 5.17: The Pareto fronts obtained after 50 iterations for each of the adaptive weight
algorithms on Scenario 1.
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5.3.4 Novel adaptive weight algorithms for RL
Although the adaptive weight algorithms have served their purpose on a number of test
domains (Dubois-Lacoste et al., 2011; Lust and Teghem, 2010), there are still some open
questions on their performance in MORL. This doubt is based on the following reasons.

Firstly, the AWAs of Section 5.3.2 are tailored for stochastic local search algorithms that
can be seeded using particular solutions to provide the optimisation algorithm with a good
initial position in the search space. The AWAs make extensive use of this property to bias
the search direction to fruitful and uncharted areas of the Pareto front. However, seeding
the reinforcement learning agent in such a way is not possible as most problems tend to
be episodic and consist of multiple stages that the agent has to go through. Secondly, the
dichotomic scheme in Equation 5.5 uses the segment between two solutions s1 and s2 to
calculate the new weight. However, the equation does not guarantee that the resulting
solution obtained by the calculated weight will lie between the interval of the two parent
solutions, i.e., between s1 and s2.

The solution that we propose is to combine the properties of RA-TPLS and AN-TPLS,
meaning that we use the layered-division of the weight space where deeper layers intensify
the search process to particular areas of RA-TPLS together with an adaptive ordering of
the elements of the di�erent layers, based on the aspects of the Pareto front currently being
explored. Similarly to AN-TPLS we use di�erent metrics, such as the Euclidean distance
and the hypervolume indicator, to qualify the di�erence between solutions. By merging
both procedures, we combine the best of both worlds, i.e., the layered approach allows
us to explore the rough outline of the Pareto front in initial iterations of the algorithm
and secondly, we do not rely on the dichotomic scheme in Equation 5.5 which does not
scale well to general application domains. Subsequently, we no longer require specific
seeds that bias the search direction and eventually also the performance of the obtained
solutions. We call this algorithm RA-TPRL-DIST and RA-TPRL-HV with the Euclidean
and hypervolume metric, respectively. An outline of the procedure for the bi-objective case
is given in Algorithm 4. The algorithms starts by examining the bounds of the Pareto front,
i.e., we evaluate the optimisation algorithm, in this case RL(), with weights w1 = 0 and
w1 = 1. The solutions s1 and s2 and their corresponding weights are added to a tree-like
data structure that stores the segments of the weight space (line 4). Every iteration, the
largest segment, according to a metric (Euclidean distance or hypervolume), that is not
explored yet is determined (line 6) and the new weight is calculated to be in the middle
of that segment (line 7). Subsequently, the reinforcement learning algorithm is run with
that weight and 2 new segments are added to the tree. i.e., the segment connecting
the left solution and the middle solution and another segment from the middle to the
right solution. (lines 9 and 10). Eventually, the Archive stores the set of multi-objective
solution acquired throughout the run.

We also see opportunities for trying out an alternative metric. The hypervolume measure
in AN-TPLS-HV is an interesting indicator that calculates the surface that two solutions
occupy in the two-dimensional objective space. Although the hypervolume measure in
Equation 5.6 works well for calculating the volume of two solutions in the objective space,
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Algorithm 4 An Improved AWA
1: s1 Ω RL(0)

2: s2 Ω RL(1)

3: Add s1, s2 to Archive
4: tree Ω new Tree(new Segment(0, s1, 1, s2))

5: while stopping criteria not met do
6: Segment lg Ω tree.getLargestGap()

7: w Ω lg.weights1 +lg.weights2
2

8: sÕ Ω RL(w)

9: tree.add(new Segment(lg.weights1 , lg.s1 , w, sÕ))
10: tree.add(new Segment(w, sÕ, lg.weights2 , lg.s2))
11: Add sÕ to Archive
12: end while
13: return Archive

it is not the common hypervolume formula. An alternative hypervolume calculation takes
into account a particular reference point ref to measure the volume of a given set of
solutions, for any number of elements. It is clear that some solutions in the set will
have less or more contribution to the final performance because the rectangles, defined by
the reference point to each of the solutions, will have significant overlaps. Therefore, it
might be interesting to consider the degree of overlap between solutions directly and to
minimise this overlap. We call this metric the overlapping hypervolume (OHV) measure
(Figure 5.18). The measure calculates the ratio of the overlap and the unique hypervolume
of the two solutions (Equation 5.9 and 5.13).The idea is to order the solutions using this
measure in order to intensify the search to segments with the smallest overlap first.

Note that our test environment only considers two objectives, but we believe this al-
gorithm could be generalised to more objectives quite easily, since both distance measures
are applicable in m-dimensional spaces.

overlap = |(ref1 ≠ min(F1(s1), F1(s2)) · (ref2 ≠ min(F2(s1), F2(s2))| (5.9)

surfs1 = |(F1(s1) ≠ ref1) · (F2(s1) ≠ ref2)| (5.10)

surfs2 = |(F1(s2) ≠ ref1) · (F2(s2) ≠ ref2)| (5.11)

total = surfs1 + surfs2 ≠ overlap (5.12)

OHV (s1, s2) =

overlap

total
(5.13)
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overlap

ref

F (s1)

F (s2)

Figure 5.18: The overlapping hypervolume (OHV) measures the percentage of overlap
between two solutions s1 and s2 in the objective space.

Results II

Next, we analyse and compare the former adaptive weight selection mechanisms of Sec-
tion 5.3.2 and 5.3.4 on both simulated and real-life scenarios. We focus on the speed at
which these methods approximate the Pareto front as measured by the quality indicators
of Section 5.3.1.

First we investigate the anytime property of each of the methods. The results in Fig-
ures 5.19 extend the results of Figure 5.16 by including our novel methods. We note
that the combination with the overlapping hypervolume metric (AN-TPRL-OHV) does
not manage to improve a lot after the initial iterations as it reaches similar performance to
TPRL on scenario 1. The best combination of speed of learning and final performance is
obtained by our RA-TPRL-HV and RA-TPRL-OHV, while the Euclidean distance metric
(RA-TPRL-DIST) learns significantly slower. For scenario 7 in Figure 5.20, similar con-
clusions can be formed except that AN-TPRL-OHV is now amongst the best performing
algorithms, leaving TPRL far behind. In general, the naive methods and RA-TPRL-DIST
are the slowest learners of the pack, while the adaptive methods reach similar performance
in the end. In initial stages, the AN-TPRL and AN-TPRL-HV methods learn a bit faster,
but this di�erence is negligible.
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Figure 5.19: The hypervolume over time for each of the adaptive weight algorithms on
scenario 1.

In Figure 5.17 the 50 solutions of the archive are depicted for each of the methods. We
see that TPRL, although providing promising results in previous work on CamSim (Lewis
et al., 2013), clearly lacks at exploring every part of the Pareto front as it leaves particular
areas uncovered. On the third row of Figure 5.17, the methods that combine RA-TPRL
with the distance, hypervolume and overlapping hypervolume metrics improve these results
in terms of spread in the objective space, while minimising the gaps by taking into account
the limited number of iterations. Other results using quality indicators that quantify these
gaps in the Pareto front are presented in Table 5.1. We note that our RA-TPRL-HV
method obtains the best results in terms of spread in the 10 scenarios. The best method
in terms of generational (inverted) distance di�er a lot for each scenario but in general
the di�erences between the methods are minimal.
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Figure 5.20: The hypervolume over time for each of the adaptive weight algorithms on
scenario 7.
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Figure 5.21: The hypervolume over time for each of the adaptive weight algorithms on
the real-life data.

In Figure 5.21 the running hypervolume on the real-life data is depicted. Similar per-
formance is obtained for the naive methods but in this example, we clearly see that the
AN-TPRL methods are stuck at a specific performance level and cannot find contributions
to their Pareto front. Our RA-TPRL-HV and RA-TPRL-OHV algorithms are able to im-
prove these latter methods after 5 iterations. At the bottom of Table 5.1, we depict the
results of the quality indicators of the di�erent adaptive weight methods. We note that
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the results are similar for the simulated data, meaning that best performance is obtained
by the RA-TPRL-DIST, RA-TPRL-HV and RA-TPRL-OHV methods.

5.3.5 Conclusions
Environments with complex dynamics usually have a continuous, but finite-dimensional,
Pareto front. For these situations, one can resort to heuristics to retrieve a good approxim-
ation set, containing solutions that are both qualitative and diverse. We have empirically
analysed a series of algorithms that are based on a dichotomic scheme and we note that
their performance could be improved significantly. Therefore, we propose a hierarchical
decomposition of the weight space in combination with di�erent metrics. These metrics
determine the order in which the elements are to be evaluated. All the methods are ex-
tensively compared on 11 network scenarios in the multi-objective multi-agent CamSim
framework. On these problems, we note that our methods can (1) explore the Pareto
front faster, (2) obtain improved solutions in terms of hypervolume and (3) better spread
in the objective space. Nevertheless, these algorithms remain heuristics and they do not
provide guarantees for all possible multi-objective problems. Therefore, there is always
room for improvement and need for other adaptive weight algorithms that use di�erent
metrics to explore the objective space.

5.4 Summary
In this chapter, we investigated mechanisms that allow single-policy algorithms to iterat-
ively obtain multiple policies. By repeatedly running a single-policy algorithm with di�erent
weight configurations, one can attempt to find a set of high-quality policies. We have seen
that for small and discrete Pareto fronts, one can employ tree-based search strategies that
e�ciently refine the search space in a divide-and-conquer style. For continuous Pareto
fronts, the set of optimal policies is in essence infinite and one needs to come up with
a good approximation set. This approximation set should contain policies of high-quality
and diversity in the objective space. For this situation, we have assessed the perform-
ance of several established adaptive weight algorithms to highlight their shortcomings. In
response to that, we have proposed a hierarchical decomposition of the weight space in
combination with di�erent metrics.
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TPRL Random RA-TPRL RA-TPRL-DIST RA-TPRL-HV RA-TPRL-OHV AN-TPRL AN-TPRL-HV AN-TPRL-OHV
Scenario 1

GSpread 0.97501 0.91959 0.95257 0.80777 0.81487 0.8076 1.00112 1.00059 1.04571
HV 0.60384 0.66785 0.66347 0.6732 0.67332 0.67311 0.65238 0.65446 0.53106

GDistances 2.99143 2.98875 2.96057 2.92172 2.91005 2.92752 2.92267 2.95842 2.94144
IGDistance 14.20181 14.07198 14.07761 14.07234 14.07109 14.07234 14.07971 14.07675 14.14254

Scenario 2
GSpread 0.90053 0.92837 0.92312 0.93271 0.87589 0.92952 0.95014 1.00981 0.91466

HV 0.66331 0.66783 0.67734 0.67008 0.67916 0.67087 0.6792 0.68073 0.65541
GDistances 2.83976 2.82884 2.74931 2.9209 2.87788 2.91765 3.02818 3.1312 2.74639
IGDistance 12.95593 12.95081 12.90369 12.95266 12.97541 12.95451 12.96075 12.98492 12.93109

Scenario 3
GSpread 0.89829 0.92254 0.88001 0.90019 0.85584 0.88654 0.95599 1.05615 0.97401

HV 0.55002 0.54008 0.54899 0.54764 0.5553 0.54865 0.58074 0.53527 0.52907
GDistances 3.03947 3.04809 2.98084 2.99027 2.9913 2.99857 3.10163 3.20551 3.02713
IGDistance 13.99183 14.1615 14.03292 14.2017 14.10126 14.18741 14.08196 14.17774 14.05668

Scenario 4
GSpread 0.90403 0.92403 0.92751 0.88937 0.87291 0.87961 0.9389 1.02157 0.96905

HV 0.46702 0.45717 0.46915 0.47347 0.47403 0.47481 0.46587 0.45524 0.44411
GDistances 3.11392 3.11126 3.06278 3.08443 3.08056 3.07423 3.15675 3.22976 3.15611
IGDistance 14.81707 14.7147 14.8793 14.84748 14.89994 14.81748 14.85078 14.85685 14.88275

Scenario 5
GSpread 0.89728 0.93505 0.93387 0.8638 0.83163 0.85699 0.9592 1.02245 0.98591

HV 0.7239 0.70845 0.73191 0.73584 0.73768 0.73611 0.72231 0.71118 0.61485
GDistances 2.8878 2.8815 2.84129 2.8124 2.81807 2.83094 3.00157 3.06383 2.94756
IGDistance 13.20978 13.28262 13.16021 13.16986 13.16021 13.17839 13.21716 13.26455 13.31449

Scenario 6
GSpread 0.89975 0.90772 0.90297 0.92098 0.8757 0.92804 0.95141 1.04161 0.91413

HV 0.35623 0.31604 0.33999 0.32833 0.34209 0.32689 0.34858 0.33307 0.32476
GDistances 3.23164 3.4249 3.15232 3.27144 3.36656 3.40051 3.49461 3.61006 3.37513
IGDistance 14.84423 14.60966 14.63511 14.63258 14.63511 14.62701 14.63511 14.63511 14.62822

Scenario 7
GSpread 0.88941 0.91815 0.91261 0.87262 0.86677 0.87676 0.92367 1.02515 0.92114

HV 0.6351 0.63149 0.63461 0.64238 0.64151 0.64271 0.64698 0.64234 0.63078
GDistances 2.91725 2.91555 2.85605 2.89079 2.88499 2.8822 2.98927 3.08699 2.94745
IGDistance 13.56464 13.60138 13.62932 13.60277 13.60277 13.62932 13.52138 13.56219 13.50574

Scenario 8
GSpread 0.89045 0.89952 0.92083 0.87468 0.8426 0.85821 0.94294 1.00346 0.90937

HV 0.67929 0.67015 0.70277 0.69972 0.69903 0.70077 0.68043 0.6726 0.64769
GDistances 2.87852 2.86679 2.81096 2.86095 2.87561 2.858 2.99304 3.0593 2.90116
IGDistance 13.32639 13.12466 13.25595 13.29731 13.2644 13.27501 13.23966 13.25307 13.27036

Scenario 9
GSpread 0.98498 0.97623 0.9948 0.85214 0.84111 0.8635 1.01375 1.00589 1.01342

HV 0.77092 0.72027 0.76646 0.77816 0.77854 0.77773 0.75198 0.74881 0.71142
GDistances 2.86232 2.87269 2.8102 2.76207 2.755 2.77794 2.84333 2.90014 2.92109
IGDistance 13.12838 13.17884 13.11477 13.11224 13.11206 13.11371 13.15331 13.17327 13.18997

Scenario 10
GSpread 0.94538 0.97646 0.95739 0.94302 0.91827 0.93815 1.00365 1.06029 1.00073

HV 0.62974 0.63441 0.63944 0.63959 0.63967 0.63957 0.63652 0.64938 0.63766
GDistances 2.80424 2.79834 2.7291 2.73846 2.75131 2.73696 2.95668 3.00213 2.82691
IGDistance 12.79585 12.72557 12.74433 12.74441 12.74441 12.74441 12.74441 12.74229 12.73365

Scenario 11
GSpread 0.94689 0.96702 0.95472 0.92537 0.90926 0.91007 0.98978 1.05081 0.99617

HV 0.56738 0.56372 0.56865 0.57189 0.57219 0.57197 0.5778 0.58042 0.56247
GDistances 2.94136 2.94263 2.88296 2.90703 2.91029 2.90481 2.99781 3.05835 3.00429
IGDistance 13.93518 13.93155 13.93476 13.93734 13.93801 13.93734 13.99275 13.95814 13.95763

Real-life scenario
GSpread 0.8974 0.90369 0.89542 0.86498 0.85507 0.85358 0.94972 1.016 0.95567

HV 0.53053 0.48302 0.52724 0.53287 0.53401 0.5332 0.49554 0.44196 0.46728
GDistances 3.10149 3.12013 3.09672 3.05587 3.05963 3.06153 3.09171 3.17102 3.11861
IGDistance 14.9041 15.24093 14.98453 14.77806 14.77806 14.77806 14.96315 15.17256 15.12926

Table 5.1: Quality indicators on 12 di�erent scenarios in CamSim
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6

| Simultaneously learning
multiple multi-objective

policies

In the previous two chapters, we focussed our attention on single-policy reinforcement
learning algorithms, i.e., algorithms that obtain a single policy at each run. Perform-
ing repeated runs of these algorithms might act as a suitable but primitive approach to
discover a set of trade-o� solutions. In this chapter, we investigate algorithms that re-
trieve various compromise solutions simultaneously. Hence, they are called multi-policy
algorithms. In this chapter, we propose two multi-policy algorithms that each cover a
particular topic of MORL.

A first algorithm is the multi-objective hierarchical heuristic optimisation (MO-HOO) for
multi-objective X -armed bandit problems. This is a class of problems similar to a standard
bandit problem. Only in this case, the agent is faced with a continuous, finite-dimensional
action space instead of a discrete one. MO-HOO evolves a tree of Pareto non-dominated
estimates that explores the continuous action space in a hierarchical manner. As a result,
the algorithm is specifically tailored for multi-objective industrial optimisation problems
that involve the assignment of continuous variables.

A second algorithm is Pareto Q-learning. Pareto Q-learning (PQL) combines the prin-
ciples of MO-HOO with Q-learning to make it applicable in multi-state problems. PQL
is the first temporal di�erence-based multi-policy MORL algorithm that does not use the
linear scalarisation function. Pareto Q-learning is not limited to the convex hull, but it can
learn the entire Pareto front of deterministic non-stationary policies, if enough exploration
is provided. The algorithm learns the Pareto front by bootstrapping Pareto non-dominated
Q-vectors throughout the state and action space. As we will see, one of the crucial as-
pects of this algorithm is its bootstrapping process, i.e., how to update a set of Q-vectors

141



CHAPTER 6. SIMULTANEOUSLY LEARNING MULTIPLE MULTI-OBJECTIVE
POLICIES

with another set of Q-vectors, bearing in mind that both sets might not contain the same
number of elements.

In more detail, we will present the following contributions in this chapter:

• Analyse related work on multi-policy MORL
• Propose and evaluate a multi-policy MORL algorithm for multi-objective X -armed

bandit problems
• Propose and evaluate a multi-policy temporal-di�erence MORL algorithm for multi-

objective sequential decision making problems

This research has been published in Van Mo�aert et al. (2014b), Van Mo�aert and Nowé
(2014) and Van Mo�aert et al. (2015).

6.1 Related work on simultaneously learning multiple
policies

Over the years, several algorithms have been proposed that simultaneously retrieve multiple
multi-objective policies. Usually, these algorithms fall into two separate categories, i.e.,
algorithms that employ either linear scalarisation functions or monotonically increasing
scalarisation functions, such as the Pareto dominance relation.

Most algorithms that learn multiple policies belong to the first category. Because of
the properties of linear scalarisation functions, sum and union operators can be quite
straightforwardly defined on convex hulls. One of the most important contributions is the
convex hull value-iteration (CHVI) algorithm which computes the deterministic stationary
policies that lie on the convex hull of the Pareto front (Barrett and Narayanan, 2008). From
batch data, CHVI extracts and computes every linear combination of the objectives in order
to obtain all deterministic optimal policies. CHVI bootstraps by calculating the convex
hull of the union over all actions in sÕ, that is

t
aÕ Q(sÕ, aÕ

). The most computationally
expensive operator is the procedure of combining convex hulls in the bootstrapping rule.
Lizotte et al. (2010) reduce the asymptotic space and time complexity of the bootstrapping
rule by simultaneously learning several value functions corresponding to di�erent weights
and by calculating their piecewise linear spline representation. They validated their work on
clinical trial data for two objectives to propose a treatment to patients based on a trade-o�
between the e�ectiveness of the drugs and severity of the side e�ects. Nevertheless, the
practical possibilities for higher dimensional spaces are not straightforward (Lizotte et al.,
2012). In Kazuyuki et al. (2009), the parallel Q-learning algorithm is proposed. Parallel
Q-learning is similar to CHVI in the sense that it learns optimal piecewise-linear policies
for all weights. It computes the convex hull by defining sum and union operators for
sets, similar to the way CHVI bootstraps. The algorithm su�ers from convergence issues
since vertices are continuously being added to the polygon representing the convex hull.
To overcome this, the authors introduce a threshold parameter to reduce the size of the
sets and to increase the accuracy. In Castelletti et al. (2011, 2012), the fitted Q-iteration
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algorithm is extended to learn sets of policies in multi-objective environments. This o�-line
algorithm is called multi-objective fitted Q-iteration (MOFQI) and it computes the set of
expected return vectors obtained for a series of weight vectors in a single run.

The second category comprises algorithms that employ monotonically increasing functions
which are more general than the linear scalarisation function. A typical member of this
class would be the Pareto dominance relation. How it can be combined into a learning
paradigm has been a subject of research for many decades. In White (1982), a dynamic
programming algorithm simultaneously computes a set of Pareto non-dominated policies,
i.e., a ˆQset. The algorithm bootstraps the Pareto non-dominated Q-vectors of the next
state to the set of the current state-action pair. The idea is that, after the discounted
Pareto non-dominated rewards are propagated and the ˆQset’s converge to a set of Pareto
non-dominated policies, the user can traverse the tree of ˆQset’s by applying a preference
function. Wang and Sebag (2012, 2013) propose a multi-objective Monte Carlo tree search
(MO-MCTS) algorithm to learn a set of solutions. In MCTS, a search tree is incrementally
built and explored at the same time (Coulom, 2007). The nodes of the tree represent visited
states and branches represent actions. At the end of an episode, the nodes are weighted
according to the outcome of the episode in order to bias the action selection in future
plays. In MO-MCTS, the upper confidence bounds of the actions are scalarised in either
of two distinct manners. One possibility is to apply the hypervolume quality indicator to
determine which path of vectorial estimates in the tree introduces the largest hypervolume
contribution w.r.t. the policies that are already retrieved. Because the hypervolume
measure is costly to compute, as an alternative, it is also possible to simply determine
whether or not a tree walk obtained a non-dominated return in a boolean fashion. This
way, a scalarised multi-objective value function is constructed that eases the process of
selecting an action with vectorial estimates.

As highlighted by Roijers et al. (2013), there is a specific need for on-line reinforcement
learning algorithms that are able to discover the Pareto front although the setting is far
from straightforward. To fill this gap, we will research this problem from two distinct
viewpoints. Moreover, in the case of (1) single-state problem involving a continuous but
finite dimensional action space in Section 6.2 and (2) for multi-state sequential decision
making problems in Section 6.3.

6.2 Learning multiple policies in single-state problems
In the classical bandit problem, described in Section 2.5, a gambler wants to maximise
his reward by selecting the best possible action from a finite set of arms with unknown
reward distributions. The on-line aspect of this problem is very important, i.e. in order
to maximise his gain, the gambler needs to find a balance between exploring uncharted
territory and exploiting his current knowledge.

Recently, this problem is generalised to environments where the action space is con-
tinuous but finite-dimensional. In this case, the gambler is faced with an continuous set
of arms. This problem is called an X -armed bandit problem B consisting of a pair of
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B = (X , M), where X is a measurable space of arms and M determines the distribu-
tion of rewards associated with each arm (Bubeck et al., 2010). This problem has a
strong resemblance to operational research and control applications that involve the calib-
ration of several parameters. Examples of such applications are the tuning of hydrostatic
drive-train controllers (Van Vaerenbergh et al., 2014) and the adjustment the temperature
levels to maximise a chemical reaction (Cope, 2009). One of the algorithms that e�ect-
ively solves a X -armed bandit problem is the hierarchical optimistic optimisation (HOO)
strategy (Bubeck et al., 2010) which will be explained in the subsequent section.

6.2.1 Hierarchical Optimistic Optimisation
The HOO strategy iteratively constructs a binary tree over the action space X . A node
in the binary tree represents an area over X and is represented by (h, i), where i is the
index of the node at depth h. Hence, the root node is represented by (0, 1). Following the
terminology of Bubeck et al. (2010), (h+1, 2i≠1) and (h+1, 2i) refer to the child nodes
of the node located at (h, i). Let Ph,i µ X be the area of the action space corresponding
to node (h, i), given these two conditions:

P0,1 = X (6.1)

Ph,i = Ph+1,2i≠1 fi Ph+1,2i, ’h Ø 0 and 1 Æ i Æ 2

h. (6.2)
A node stores an optimistic estimate of the quality of its subtree, i.e. a U-value. The
Uh,i(n)-value is an initial estimate of the maximum value of the pay-o� function in the
corresponding region of the action space X and is defined as follows:

Uh,i(n) =

I
µ̂h,i(n) +

Ò
2 ln n

Th,i(n) + ‹1flh, if Th,i(n) > 0

+Œ, otherwise,

where µ̂h,i(n) is the mean estimate of the subtree of node n and the other two terms express
a standard optimistic exploration value and the maximum possible variation of the pay-o�
function, defined by the ‹1 and flh parameters. When the action is not sampled before, it
receives the highest optimistic value, i.e. +Œ. As we are interested in sampling near the
maxima of the pay-o� function, the HOO strategy focusses on estimating this function
near its maxima while leaving the other, less interested parts of the function, less explored.

Given the U-value of a node n, its B-value is computed by taking into account its own
U-value and the B-values of its two child nodes. The B-value is designed to put a tighter
upper-bound on the best possible value that can be obtained in that region of X . The
B-value estimate is:

Bh,i(n) Ω min {Uh,i(n), max{Bh+1,2i≠1(n), Bh+1,2i(n)}} . (6.3)

Thus, the root node stores an (optimistic) estimate of the quality of the entire action
space, where its left child stores a more accurate estimate for the interval [inf(X ), sup(X )

2 ]
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of the action space, i.e. between the infimum of X and half of its supremum given
the divide-and-conquer approach. Similarly, the right child of the root stores equivalent
information for [

sup(X )
2 , sup(X )]. Selecting an action is performed by traversing the subtree

with the largest B-value until a leaf value is reached. Thereafter the action is sampled and
the estimates of the nodes on the traversed path are updated and refined by considering
the observed reward and the number of times the subtree is visited in previous plays. An
outline of the algorithm can be found in Algorithm 5.

Bubeck et al. (2010) prove this algorithm to converge to the mean pay-o� function around
its maxima if the function’s smoothness is conform to being locally Lipschitz continuous.
In short, a function is said to be Lipschitz continuous if a small change in the function’s
input values signifies a mild change in the corresponding function values of that function,
which is a reasonable assumption in many engineering problems.

6.2.2 Multi-Objective Hierarchical Optimistic Optimisation
Transforming the single-objective HOO strategy to multi-objective environments requires
several adjustments to the algorithm’s internal workings. Below, we tackle the required
modifications for constructing the Multi-Objective Hierarchical Optimistic Optimisation
(MO-HOO) algorithm into four di�erent categories.

Sampling purpose

A first crucial aspect that arises when transforming a single-objective on-line algorithm to
a multi-objective environment is defining its purpose. In the standard problem the goal of
the agent is to maximise the average reward being received, which is the logical approach
as there is a total order between the scalar rewards. In the case of multiple objectives,
the Pareto dominance relation only supplies a partial order, i.e. only non-dominated and
dominated vectors can be compared but non-dominated vectors are incomparable amongst
each other. As a consequence, if one would average the reward vectors being obtained by
the agent, we are not guaranteed that the average is an actual attainable solution for the
problem. Take for instance, a very easy multi-objective problem where the agent can only
take two action a and b where the deterministic rewards are (1, 0) and (0, 1), respectively.
If one would take action a with probability x and action b with probability p = (1 ≠ x),
the average reward vector would be (x, 1 ≠ x). Thus, although there are only two possible
outcomes for the problem, considering average reward vectors implicates that we are no
longer sampling on the Pareto front but on the convex hull of the Pareto front, similar
to the stochastic mixture policies of Section 3.4.1. Therefore, averaging vectorial rewards
does not represent actual solution points in the objective space.

In control problems we are not interested in stochastic mixture policies obtained from
the convex hull of the Pareto front, but rather in sampling a genuine trade-o� in every
execution of the policy. This means that we want to identify actually realisable control
policies that lie on the Pareto front that o�er a fixed trade-o� between the di�erent control
objectives. However, despite the fact that our main goal is to identify the Pareto front, we
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Algorithm 5 The HOO strategy
Parameters: Two real numbers ‹1 > 0 and fl œ (0, 1), a sequence (Ph,i)hØ0,1ÆiÆ2h of subsets
of X satisfying the conditions (6.1) and (6.2).

Auxiliary function Leaf(T ): outputs a leaf of T .

Initialization: T =

)
(0, 1)

*
and B1,2 = B2,2 = +Œ.

1: for n = 1, 2, . . . do Û Strategy HOO in round n Ø 1

2: (h, i) Ω (0, 1) Û Start at the root
3: P Ω {(h, i)} Û P stores the path traversed in the tree
4: while (h, i) œ T do Û Search the tree T
5: if Bh+1,2i≠1 > Bh+1,2i then Û Select the “more promising” child
6: (h, i) Ω (h + 1, 2i ≠ 1)

7: else if Bh+1,2i≠1 < Bh+1,2i then
8: (h, i) Ω (h + 1, 2i)

9: else Û Tie-breaking rule
10: Z ≥ Ber(0.5) Û e.g., choose a child at random
11: (h, i) Ω (h + 1, 2i ≠ 1)

12: end if
13: P Ω P fi {(h, i)}
14: end while
15: (H, I) Ω (h, i) Û The selected node
16: Choose arm X in PH,I and play it Û Arbitrary selection of an arm
17: Receive corresponding reward Y

18: T Ω T fi {(H, I)} Û Extend the tree
19: for all (h, i) œ P do Û Update the statistics T and µ̂ stored in the path
20: Th,i Ω Th,i + 1 Û Increment the counter of node (h, i)

21: µ̂h,i Ω
!
1 ≠ 1/Th,i

"
µ̂h,i + Y/Th,i Û Update the mean µ̂h,i of node (h, i)

22: end for
23: for all (h, i) œ T do Û Update the statistics U stored in the tree
24: Uh,i Ω µ̂h,i +


(2 ln n)/Th,i + ‹1flh Û Update the U–value of node (h, i)

25: end for
26: BH+1,2I≠1 Ω +Œ Û B–values of the children of the new leaf
27: BH+1,2I Ω +Œ
28: T Õ Ω T Û Local copy of the current tree T
29: while T Õ ”=

)
(0, 1)

*
do Û Backward computation of the B–values

30: (h, i) Ω Leaf(T Õ
) Û Take any remaining leaf

31: Bh,i Ω min

Ó
Uh,i, max

)
Bh+1,2i≠1, Bh+1,2i

*Ô
Û Backward computation

32: T Õ Ω T Õ \
)

(h, i)
*

Û Drop updated leaf (h, i)
33: end while
34: end for
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do not want to neglect the sampling e�ciency of our method. Our motivating assumption
here is that sampling policies inherently has a certain cost associated with it, either in
time, in resources or both. Often these costs are associated with evaluating a control
strategy on a real system. Furthermore, we assume that solutions which lie far from the
Pareto front are suboptimal in at least one of the objectives and thus typically have higher
costs associated with them, e.g., because they are less e�cient, they take longer to reach
a goal, or they might even violate safety constraints. Therefore, our goal is to develop an
e�cient method for identifying the Pareto front, which minimises the amount of sampling
performed in regions far from the Pareto front.

Averaging over subtrees

In the original implementation of the HOO strategy, the U-value of a node stores an estim-
ate of the average reward of a subtree together with some additional statistics. However,
as we are dealing with multiple objectives at the same time, there is no point in averaging
multiple reward vectors into a single value for each objective. Together with the fact that
in the HOO strategy, one does not sample the same action more than once, but rather its
left or right child node, we no longer consider the U-values in their original form. There-
fore, in the multi-objective case, we only propagate the U -vector of leaf nodes as they are
samples that are not averaged out over subtrees.

Knowledge representation

Recall that in the single-objective HOO strategy, the agent’s goal is to maximise the scalar
reward obtained by sampling close to the optimum of the pay-o� function. Therefore, the
algorithm propagates an estimate of the maximum of the pay-o� function from leaf nodes
to the root node in terms of B-values. In a multi-objective problem, however, there usually
is no single-optimum but there are multiple Pareto non-dominated solutions. Thus, a scalar
estimate or B-value is insu�cient to store the quality of a region of the pay-o� function.
The solution we propose is to consider sets of estimates, i.e., B-sets. The elements of the
sets are B-vectors that store an estimate for each objective. The most optimistic upper
bound is now a vector u that is always a member of the Pareto front without excluding
other Pareto optimal vectors, e.g. u = (≠Œ, +Œ) for an environment with two objectives.

Information propagation

In Equation 6.3, the HOO strategy performs a backward computation to adjust the estim-
ate of a node by taking into account its U-value and the B-value of its two child nodes.
To determine the B-value of a node, the algorithm determines the highest upper bound of
its child nodes by a max operator. In the multi-objective variant, we replace this operator
by the operator ND(

t
B(Bh+1,2i≠1(n), Bh+1,2i(n)) which yields every non-dominated B-

vector of the left and right child of node n. The min operator in Equation 6.3 assures a
tighter bound of the B-value of node n. As we are not focussing on the average Pareto
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front or convex hull, we no longer consider the U-value of non-leaf nodes. However, as the
U -vectors of leafs are recalculated at every iteration, the additional statistics introduce a
level of robustness in the case of noisy environments.

If one would not be interested in the actual trade-o� achieved in every execution of the
policy, but rather in the average sampling performance, a multi-objective min operator
should be proposed. The specification of a multi-objective min operator could place a
stricter bound on the B-vectors in order to make them less optimistic. However, defining
such a min operator that would work in a multi-objective setting with multiple incom-
parable solutions is currently an open question as it is not clear to determine the logical
outcome of applying a min operator on a set of non-dominated B-vectors of child nodes
and a U -vector since there is no total order.

An algorithmic outline of the MO-HOO strategy for an m-objective problem can be
found in Algorithm 6.
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Algorithm 6 The MO-HOO strategy
Parameters: Two real numbers ‹1 > 0 and fl œ (0, 1), a sequence (Ph,i)hØ0,1ÆiÆ2h of subsets
of X satisfying the conditions (6.1) and (6.2).

Auxiliary function Leaf(T ): outputs a leaf of T .

Initialisation: T =

)
(0, 1)

*
and B1,2 = (+Œ, . . . , ≠Œ) and B2,2 = (≠Œ, . . . , +Œ).

1: for n = 1, 2, . . . do Û Strategy MO-HOO in round n Ø 1

2: (h, i) Ω (0, 1) Û Start at the root
3: P Ω {(h, i)} Û P stores the path traversed in the tree
4: Brand œ Bh,i Û Select random Pareto dominant B-vector
5: while (h, i) œ T do Û Search the tree T
6: if Brand œ Bh+1,2i≠1 then
7: (h, i) Ω (h + 1, 2i ≠ 1)

8: else
9: (h, i) Ω (h + 1, 2i)

10: end if
11: P Ω P fi {(h, i)}
12: end while
13: (H, I) Ω (h, i) Û The selected node
14: Choose arm X in PH,I and play it Û Arbitrary selection of an arm
15: Receive corresponding reward vector Y
16: T Ω T fi {(H, I)} Û Extend the tree
17: for all (h, i) œ P do Û Update the statistics T and µ̂ stored in the path
18: Th,i Ω Th,i + 1 Û Increment the counter of node (h, i)
19: ˆ

µh,i Ω
!
1 ≠ 1/Th,i

"
ˆ

µh,i+Y/Th,i Û Update the mean vector ˆ

µH,I of node (h, i)

20: end for
21: for all (h, i) œ T do Û Update the statistics U stored in the tree
22: Uh,i Ω ˆ

µh,i +


(2 ln n)/Th,i + ‹1flh Û Update the U–value set of node (h, i)

23: end for
24: BH+1,2I≠1 Ω (+Œ, . . . , ≠Œ) Û m-ary incomparable B–vectors to leaf’s children
25: BH+1,2I Ω (≠Œ, . . . , +Œ)

26: T Õ Ω T Û Local copy of the current tree T
27: while T Õ ”=

)
(0, 1)

*
do Û Backward computation of the B–values

28: (h, i) Ω Leaf(T Õ
) Û Take any remaining leaf

29: if Bh,i is Leaf(T ) then Û If node is leaf in original tree
30: Bh,i Ω Uh,i

31: else
32: Bh,i Ω ND

t
B

!
Bh+1,2i≠1, Bh+1,2i

"
Û Backward computation

33: end if
34: T Õ Ω T Õ \

)
(h, i)

*
Û Drop updated leaf (h, i)

35: end while
36: end for
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Computational complexity

The complexity is a crucial aspect of an algorithm as it determines its resources in terms
of time and computational e�ort in relation to the size of the problem. In MO-HOO, the
storage requirements are related to the size of the tree-structure. As in HOO (Bubeck
et al., 2010), the size of the tree is at most n after n rounds. Therefore, the storage
requirements are just O(n).

In terms of computational e�ort, the algorithm loops over the tree at every round to
update its statistics and to propagate the necessary information throughout the levels of
the tree. This can be accomplished in O(n) every round. As a result, the computational
complexity of the algorithm is O(n2

), where n is the number of rounds the algorithm is run.

6.2.3 Experiments
In the experimental section, we evaluate the performance of the MO-HOO algorithm on
two typical multi-objective benchmark functions. These are the Scha�er 1 function and
the Fonseca and Flemming function.

6.2.4 Scha�er 1 function
The first test function is the bi-objective Scha�er 1 function (Scha�er, 1985) that is
defined by:

maximise f(x) =

;
f1(x) = ≠x2

f2(x) = ≠(x ≠ 2)

2,

where x œ [≠10, 10]. Originally, these test functions are minimisation problems but we
negate them to obtain a maximisation problem as this is what our reinforcement learning
algorithm assumes. The function is depicted in Figure 6.1 where the Pareto front is
convex and indicated by green dots.
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Figure 6.1: The objective space of the Scha�er 1 function. The Pareto front of the function
is denoted by green dots.

In Figure 6.2 the sampling performance of the MO-HOO strategy is compared to a
random sampling strategy. Recall that our goal is to sample as fast as possible as close as
possible on the Pareto front. As the Pareto front is in this case continuous, we determine
whether the vector valued return of the sampled action is within a distance of ” of a
discrete approximation of the true Pareto front. In all our experiments, ” is set to 0.2
and the results are averaged over 50 independent runs. This discrete approximation of the
true Pareto front is obtained by collecting the Pareto non-dominated outcomes of many
independent random runs of the algorithm. From the figure, we note that the MO-HOO
strategy gradually increases its performance by sampling closer to the Pareto front as the
learning time increases. After 500 iterations, the probability of sampling a Pareto optimal
action approaches 1. The random strategy only achieves a performance of 18% to 20%.
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Figure 6.2: The sampling performance MO-HOO is compared to a naive random strategy.
We note that the probability of the MO-HOO strategy of sampling Pareto optimal solutions
approaches 1 as time increases.
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In Figure 6.3, we plot three graphs that provide additional insights in the behaviour of
the MO-HOO strategy. In a first subplot, we denote the sampled action at each time
step in the normalised action space. The MO-HOO strategy is exploring in early stages
of the process and afterwards it is exploiting its knowledge quite rapidly. In a second
subplot, we show the depth of the tree in relation to the action space. Subtrees that
are more expanded have a greater depth and focus on a finer part of the action space
compared to small subtrees. Where we note that the MO-HOO strategy roughly explores
some parts of the actions space, whereafter it focusses on the region corresponding to
the Pareto optimal area in the objective space. The third subplot depicts the sampled
points in the objective space. The colour of the points indicates the iteration number,
where red dots denote points obtained in later iterations. The MO-HOO samples the
Pareto optimal region after just a few iterations. We also see that the MO-HOO strategy
discovers a wide and diverse set of optimal solutions. This is a result of the optimistic
term added to the estimates. Imagine the case where multiple estimates are optimal and
therefore equally good. The algorithm then selects one and follows it down the tree until
it arrives in an untouched leaf node. In the event that this action selection also retrieves
an optimal reward vector, its estimate (plus the optimistic term) is propagated to the root
node. Because the leaf is located deeper in the tree, this optimistic term will be less than
for the other estimates that were originally present at the root node. Therefore, in the
next iteration, the algorithm will not select the same action in the action space, but it
will go for one of its original non-dominated estimates. As a result, a set of wide-spread
and optimal solutions is retrieved.
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Figure 6.3: The MO-HOO strategy quickly retrieves the area in the action space that
corresponds to the Pareto optimal area of the deterministic Scha�er 1 function (subplot
1 and 3). In subplot 2, we note that the algorithm first roughly explores the function at
random and thereafter it focusses specifically and exclusively on the optimal part of the
action space.

In Table 6.1, we present the average cardinality of all sampled policies during the learning
process for each of the strategies. Recall that the cardinality indicators simply counts the
number of Pareto non-dominated elements. Based on the results, we note MO-HOO
acquires more than 6 times the amount of Pareto non-dominated solutions obtained by
the random method. After 500 action selections, MO-HOO is able to retrieve on average
436.2 non-dominated points while the random strategy only obtained 69.5.

Strategy Cardinality
Random 69.5
MO-HOO 436.2

Table 6.1: The cardinality indicator on the Scha�er 1 function for random exploration and
MO-HOO. The goal is to maximise the number of Pareto optimal points.
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6.2.5 Fonseca and Flemming function
The second problem is the Fonseca and Fleming function Fonseca and Fleming (1993):

maximise f(x) =

I
f1(x) = ≠(1 ≠ e≠

qn

i=1
(xi≠ 1Ô

n
)2

)

f2(x) = ≠(1 ≠ e≠
qn

i=1
(xi+ 1Ô

n
)2

),

where x is a two-dimensional input vector with xi œ [≠4, 4] for input i. This bi-objective
function contains a large and an entirely non-convex Pareto front which makes it especially
appealing to assess an algorithm’s ability to find a close and uniform approximation of the
Pareto front. The function and its corresponding Pareto front can be found in Figure 6.4.
While the previous optimisation function is entirely deterministic, we added Normal noise
with ‡ = 0.1 to the values of each of the objectives.
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Figure 6.4: The objective space of the Fonseca and Flemming function. The Pareto front
is highlighted by green dots.

In this environment the input vector itself is multi-dimensional. Therefore, we adjust the
implementation of a node in the tree to take into account a multi-dimensional interval,
i.e., one interval for each input variable. In this implementation, the tree splits the interval
of the first variable for nodes located at uneven depth in the tree. In the case the node is
at an even tree depth, the interval represented by the second variable is split.

In Figure 6.5, we depict the sampling performance of the MO-HOO strategy on this
noisy function. As this function is significantly harder than the previous pay-o� function,
the probability of sampling the Pareto front increases more slowly than is the case for the
Scha�er 1 function. When the learning process stopped after 1000 iterations, MO-HOO
samples Pareto optimal actions in 88% of the cases. The naive random strategy reached
a performance of only 20%.
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Figure 6.5: The sampling performance MO-HOO is compared to a naive random strategy.
As this function is larger and noisy, the probability of the MO-HOO strategy sampling
Pareto optimal solutions approaches 0.88 at the end of 1000 iterations.

In Figure 6.6, we investigate more closely the sampled actions in the action space, the
development of the tree structure and the observed policies in the objective space. In
the beginning of the process, we see the MO-HOO strategy rather randomly exploring
the action space while focussing its samples on a particular part of the search space as
time increases. After around 400 iterations of treating every part of the action space
equally, a certain trend in the sampled policies starts to appear. However, this trend still
seems to be rather noisy (subplot 1 of Figure 6.6). Also, compared to the more simple
Scha�er 1 function, the optimal part of the tree does not stand out that much (subplot
2 of Figure 6.6). The main reason for this behaviour is probably the di�culty of the
function together with the noise and the multi-dimensional input vector which influences
the procedure the algorithm splits intervals.

155



CHAPTER 6. SIMULTANEOUSLY LEARNING MULTIPLE MULTI-OBJECTIVE
POLICIES

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

iteration

a
ct

io
n

Sampled points in action space

 

 

action
action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

action space

d
e
p
th

Tree depth

 

 

action
action

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−1.5

−1

−0.5

0

0.5

objective 1

o
b
je

ct
iv

e
 2

Obtained points in objective space

Figure 6.6: Subplots 1 and 2 depict that the MO-HOO strategy needs a bit more time
on the Fonseca and Flemming function to explore the fruitful areas. We see that the
algorithm needs around 400 iterations before it had clear idea on which parts to further
explore.

The consequence of this practice is that the MO-HOO strategy did not entirely cover the
continuous Pareto front as there are still some uncharted gaps. Table 6.2, we see that over
50 runs, MO-HOO obtained on average a set containing 16.22 solutions that o�er an non-
dominated balance between the two objectives. The random strategy obtained on average
a set containing 8.1 non-dominated elements. However, as the results of Figure 6.6 denote,
the non-dominated solutions of the MO-HOO strategy are much closer to the Pareto front
and they clearly dominate the solutions obtained by the random strategy.

Strategy Cardinality
Random 8.1
MO-HOO 16.22

Table 6.2: The cardinality indicator on the Fonseca and Flemming function for random
exploration and MO-HOO.

6.2.6 Discussion
In this section, we have presented our first multi-policy algorithm for learning multiple
policies in a simultaneous manner. We name this strategy the multi-objective hierarchical
optimistic optimisation algorithm as it builds a tree of vectorial estimates that include
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some statistics on the variance of the samples. This algorithm is particularly suited for
real-life control problems that involve the optimisation of continuous parameters.

In the experimental section, we have seen that MO-HOO is an appropriate strategy to
discover a set of non-dominated solutions at once and to sample accordingly. Although
the pay-o� functions in this setting only consider two objectives, the principles of the
underlying tree-based algorithm can easily be extended to environments with more than
two objectives. However, when increasing the number of objectives in the pay-o� function,
also the number of Pareto incomparable solutions increases. Therefore, the problem also
gets harder for the optimisation algorithm and probably more running time is needed for
the algorithm to discover the Pareto optimal regions.

To possibly improve the algorithm, one could investigate how to consider the U -vectors
of non-leaf nodes in the backward computation to the root node. For each node, U -
vectors store statistical information on the average quality of the subtree starting from
that node. As this U -vector averages multiple reward estimates into a single estimate, we
did not find it beneficial to be included in the backward computation. If it would su�ce
for the decision maker to sample the convex hull of the Pareto front, the U -vectors could
provide supplementary guidance. Additionally the robustness of the MO-HOO strategy
would also increase as the U -vectors provide average information over subtrees which is
more resilient to noisy rewards.

So far, to the best of our knowledge, MO-HOO is the first multi-objective multi-policy
X -armed bandit solver. This has the advantage that it makes MO-HOO a very novel
optimisation algorithm that still includes a lot of uncharted research questions. However,
a rigorous experimental comparison of the algorithm is still needed. Due to time constraints
our experimental evaluation is limited to a comparison with a naive random strategy. A
possibility would be to perform an experimental study to genetic algorithms that also evolve
a population of solutions, as presented in Section 3.2. However, these algorithms rarely
consider the sampling cost and are often less suitable if the environment is stochastic.

In order to make MO-HOO an acceptable solution mechanism for control problems it
would be of great importance to investigate its performance on some environments that
are close to the real world. In Chapter 7, we take a first step and perform an initial
experiment on a realistic simulation environment of the filling phase of a wet clutch.

6.3 Learning multiple policies in multi-state problems
In the previous section we have investigated a multi-policy MORL algorithm for single-state
learning. In the case of a multi-state environment, the task at hand is a genuine sequential
decision making problem. Over the years, a few multi-policy algorithms (Barrett and
Narayanan, 2008; Lizotte et al., 2010, 2012) have been proposed that are all based on the
same principle of the algorithm of White (1982). In that paper, a dynamic programming
algorithm is proposed that computes a set of Pareto non-dominated policies. The dynamic
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programming function is as follows:

ˆQset(s, a) = R(s, a) ü “
ÿ

sÕœS

T (sÕ|s, a) V ND
(sÕ

) (6.4)

where R(s, a) is the expected reward vector observed after taking action a in state s and
T (sÕ|s, a) is the corresponding transition probability of reaching state sÕ from (s, a). We
refer to V ND

(sÕ
) as the set of non-dominated vectors of the ˆQset’s of each action in sÕ,

as denoted in Eq. 6.5. The ND operator is a function that removes all Pareto dominated
elements of the input set and returns the set of non-dominated elements.

V ND
(sÕ

) = ND(fiaÕ ˆQset(s
Õ, aÕ

)) (6.5)

The ü operator performs a vector-sum of a vector v and a set of vectors V . Summing two
vectors can be performed simply by adding the corresponding components of the vectors.

v ü V =

€

v

ÕœV

(v + v

Õ
) (6.6)

The idea is that, after the discounted Pareto dominating rewards are propagated and
the ˆQset’s converge to a set of Pareto dominating policies, the user can traverse the tree
of ˆQset’s by applying a preference function. As highlighted in Section 2.3, a determin-
istic stationary policy su�ces for single-objective reinforcement learning. In the case of
MORL, White (1982) showed that deterministic non-stationary policies, i.e. policies that
do not only condition on the current state but usually also on the timestep t, can Pareto
dominate the best deterministic stationary policies. Although we omit the theoretical proof
behind this theorem, the process is easily justified by considering the environment in Fig-
ure 6.7. In the example, adapted from Roijers et al. (2013), there is a single state S and
three actions a1, a2 and a3 that leave the state of the environment unchanged.

S

(4, 0) (0, 4)

(1,1)

a1
a2

a3

Figure 6.7: Deterministic non-stationary policies can Pareto dominate deterministic sta-
tionary policies.
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The rewards of these actions are deterministic and yield (4, 0), (0, 4) and (1, 1) for a1,
a2 and a3, respectively. If we consider only deterministic stationary policies, it is clear that
there are three Pareto optimal policies fi1, fi2 and fi3 that always select action a1, a2 and
a3, respectively. The value functions of these policies are then

V

fi1
(S) = (

4

1 ≠ “
, 0), (6.7)

V

fi2
(S) = (0,

4

1 ≠ “
), (6.8)

V

fi3
(S) = (

1

1 ≠ “
,

1

1 ≠ “
), (6.9)

where “ is the discount factor. Yet, if we would allow policies to be non-stationary, they
are not constrained to selecting the same action at every occurrence of a particular state.
For instance, we can construct a policy fi4 that alternates between selecting action a1 and
a2. Since fi4 then conditions on the fact whether the timestep t is odd or even, the policy
is said to be non-stationary. Consequently, the value function of fi4 equals

V

fi4
(S) = (

4

1 ≠ “2 ,
4“

1 ≠ “2 ). (6.10)

Accordingly, when “ > 1
3 , the non-stationary policy fi4 Pareto dominates the stationary

policy fi3, confirming the statement in White (1982).
However, since many conditions based on the timestep t can exist, a lot of non-stationary

policies similar to fi4 can be constructed that are Pareto non-dominated. Therefore, in
infinite horizon problems with large values for the discount factor, the number of non-
stationary policies the agent learns increases exponentially which can lead to a so-called
explosion of the sets. In order to make the algorithm practically applicable, Wiering and
de Jong (2007) propose the CON-MODP algorithm which solves the problem of non-
stationary policies by introducing a consistency operator, but their work is limited to
deterministic transition functions.

Our contribution in this section is Pareto Q-learning (PQL). To the best of our knowledge,
PQL is the first temporal di�erence-based multi-policy MORL algorithm that does not use
the linear scalarisation function. Thus, Pareto Q-learning is not limited to the convex
hull, but it can learn the entire Pareto front, if enough exploration is provided, which is a
standard condition for reinforcement learning algorithms. Pareto Q-learning also uses the
principle of White (1982) as a starting point. As a result, PQL also learns deterministic non-
stationary policies. For simplicity reasons, we currently only focus on episodic problems,
i.e., environments with terminal states that end the episode. In Section 6.3.8, we analyse
the challenges to extend PQL to ergodic environments.

Our PQL algorithm is particularly suited for on-line use, in other words, when the sampling
cost of selecting appropriate actions is important and the performance should gradually
increase over time. We also propose three evaluation mechanisms for the sets that provide a
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basis for on-line action selection strategies in Section 6.3.3. These evaluation mechanisms
use multi-objective indicators such as the hypervolume metric, the cardinality indicator
and the Pareto dominance relation in order to select the best possible actions throughout
the learning process. In Section 6.3.6, the Pareto Q-learning algorithm is evaluated on
multiple environments with two and three objectives and its performance is compared w.r.t.
several MORL algorithms. First, we elaborate on how we extend the core principles of the
algorithm of White (1982) in Section 6.3.1. More precisely, we present a novel mechanism
that allows to incrementally learn and update sets of non-dominated vectors over time.

6.3.1 Set-based Bootstrapping
The single-objective Q-learning bootstrapping rule updates an estimate of an (s, a)-pair
based on the reward and an estimate of the next state (Watkins, 1989). The update rule
guarantees that the ˆQ-values converge to their expected future discounted reward, even
when the environment’s transition function is stochastic. In this section, we analyse the
problem of bootstrapping sets of vectors. We first present a naive approach whereupon
we present our novel Pareto Q-learning algorithm.

Naive approach

The set-based bootstrapping problem boils down to the general problem of updating the set
of vectors of the current state-action (s, a)-pair with an observed reward vector r and a set
of non-dominated vectors of the next state, ND(fiaÕ ˆQset(sÕ, aÕ

)) over time. The di�culty
in this process arises from the lack of correspondence between the vectors in the two sets,
i.e., it is not clear which vector of the set of the current (s, a)-pair to update with which
vector in sÕ. This correspondence is needed to perform a pairwise update of each vector in
ˆQset(s, a) with the corresponding vector (if any) in the other set, as denoted in Figure 6.8.

[0.9, 0.1]

[0, 1]

[0.3, 0.7]

[0, 0]

[0.5, 0]

[0.15, 0.3]

[0, 0.5]

[0.3, 0.15]

[0.1, 0.9]

? [1, 0]

[0.2, 0.8]

[0.4, 0.6]
[0.6, 0.4]

[0.8, 0.2]

ND([a0Q̂set(s
0, a0))Q̂set(s, a)

[0.7, 0.3]

[0.5, 0.5]

r

Figure 6.8: Set-based bootstrapping: the problem of updating over time the set of vectors
of the current state-action pair with the observed reward vector and the optimal vectors
of the next state. There is no explicit correspondence between the elements in both sets,
so as to perform a pairwise update.
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A possible solution is to make this correspondence explicit by labelling or tagging the
vectors in the two sets. When vectors in the sets of (s, a) and sÕ are tagged with the same
label or colour, the bootstrapping process knows that these vectors can be updated in a
pairwise manner. More precisely, the process would be as follows: when sampling an action
a in s for the first time, the vectors in the set of the next state ND(fiaÕ ˆQset(sÕ, aÕ

)) are
labeled with a unique tag. Next, the bootstrapping process can continue for each vector
in sÕ individually and the tag is copied to the set of (s, a). This process is illustrated in
Figure 6.9 (a) for a bi-objective environment. Subsequently, when action a is sampled in
future timesteps, we would possess an actual correspondence between the vectors in the
two sets and we can perform a pairwise update for each objective of each vector with the
same label (Figure 6.9 (b)). However, the main problem with this naive solution is that
these sets are not stable but can change over time. We highlight two main cases that
can occur in a temporal-di�erence setting:

• It is possible that the set of (s, a) is updated with vectors from sÕ at timestep t, while
actions in sÕ that are previously unexplored are sampled at timestep t + 1. Then,
possibly new non-dominated vectors may appear in ND(fiaÕ ˆQset(sÕ, aÕ

)). When, in
future episodes, the set of (s, a) is to be updated again, there are elements in sÕ that
are not bootstrapped before and the correspondence between the sets is incomplete
(Figure 6.9 (c)).

• As estimates are being updated over time, it is very likely that vectors in sÕ that were
non-dominated at timestep t may become dominated by other vectors at timestep
t + 1. In Figure 6.9 (d), we see that in that case the correspondence no longer
holds, i.e., di�erent labels appear in the two sets. As a consequence, learning would
have to begin from scratch again for those vectors. Especially in early learning
cycles, the vectorial estimates can repeatedly switch between being non-dominated
and dominated. Hence, this naive updating process would waste a lot of samples
before the vectors mature.

It is clear that such a naive updating procedure would become even more cumbersome
and complex in environments with stochastic transitions. As a result, it would not be
generally applicable to a wide range of problem domains.
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ND([a0Q̂set(s
0, a0))Q̂set(s, a)

[0, 1]

[0.7, 0.2]

[0, 0]

r

ND([a0Q̂set(s
0, a0))Q̂set(s, a)

[0, 1]

[0.7, 0.2]

[0, 0.5]

[0.35, 0.1]

[0, 0]

r

(a) (b)

[1, 0]

[0, 1]
[0.2, 0.7]

[0.7, 0.2]

[0, 0.5]

[0.3, 0.1]

?

?

[0, 0]

ND([a0Q̂set(s
0, a0))Q̂set(s, a)

r

[1, 0]

[0.2, 0.7]

[0, 0.5]

[0.3, 0.1]

[0, 0]

?

ND([a0Q̂set(s
0, a0))Q̂set(s, a)

r

(c) (d)

Figure 6.9: Several situations can occur when updating a set with another set over time.
In (a), we would naively label the vectors of sÕ with a certain colour when sampling action
a in s for the first time. In (b), we note that the labeled and coloured vectors of sÕ

are now bootstrapped and present in (s, a). As the colours are also copied in (s, a), the
correspondence between the vectors in (s, a) and sÕ is explicit and in future timesteps
the vectors can be updated in a pairwise manner. Illustrations (c) and (d) highlight the
di�erent situations one should account for as the sets are not stable but can change over
time. For instance, new vectors can appear in sÕ (c) or estimates that were non-dominated
can become dominated (d). We refer to Section 6.3.1 for more details.

Our approach: Learning immediate and future reward separately

In the presentation of our updating principle, we first limit ourselves to environments with
deterministic transition functions. We then proceed to highlight the minimal extensions
to the algorithm to also cover stochastic transitions.

In standard, single-objective Q-learning, ˆQ-values store the sum of the estimated value
of the immediate reward and the future discounted reward as presented in Section 2.4.2.
Our idea consists of storing this information separately. We use R(s, a) to denote the
average observed immediate reward vector of (s, a) and NDt(s, a) to represent the set of
non-dominated vectors in the next state of s that is reached through action a at timestep
t. The next state of s is determined by observing the transitions during learning. By
storing R(s, a) and NDt(s, a) separately, we allow them to converge separately as well.
This way, no explicit correspondence between the two sets is required and the current set
of non-dominating policies at timestep t, NDt(s, a) is allowed to evolve over time. The
ˆQset of (s, a) can be calculated at run time by performing a vector-sum over the average
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immediate reward vector and the set of discounted Pareto dominating future rewards:

ˆQset(s, a) Ω R(s, a) ü “NDt(s, a) (6.11)

Whenever the action a in s is selected, the average immediate reward vector R(s, a) is
updated and the NDt(s, a) list is updated using the non-dominated ˆ

Q-vectors in the ˆQset

of every action aÕ in sÕ, i.e., ND(fiaÕ ˆQset(sÕ, aÕ
)).

We present an algorithmic outline of the Pareto Q-learning algorithm in Algorithm 7.
The algorithm starts by initialising the ˆQset’s as empty sets. In each episode, an action
is selected using a particular action selection strategy (line 5). How we actually perform
the action selection based on the ˆQset’s will be presented in the subsequent section.
Afterwards, the environment transfers the agent to state sÕ and provides the reward vector
r. In state sÕ, the non-dominated ˆ

Q-vectors for each action are retrieved at line 8 and
are discounted. At line 9, the average immediate reward for each objective, R(s, a), is
iteratively updated given the new reward r and the number of times that action a is
sampled, denoted by n(s, a). The algorithm proceeds until the ˆQset’s converge or after
a predefined number of episodes.

Algorithm 7 Pareto Q-learning algorithm
1: Initialise ˆQset(s, a)’s as empty sets
2: for each episode t do
3: Initialise state s
4: repeat
5: Choose action a from s using a policy derived from the ˆQset’s
6: Take action a and observe state sÕ œ S and reward vector r œ Rm

7:
8: NDt(s, a) Ω ND(fiaÕ ˆQset(sÕ, aÕ

)) Û Update ND policies of sÕ in s

9: R(s, a) Ω R(s, a) +

r≠R(s,a)
n(s,a) Û Update average immediate rewards

10: s Ω sÕ Û Proceed to next state
11: until s is terminal
12: end for

The updating principle can also be extended to stochastic environments, where the trans-
ition probability T (sÕ|s, a) ”= 1 for some next state sÕ, given state s and action a. In the
case of stochastic transition functions, we store the expected immediate and future non-
dominated rewards per (s, a, sÕ

)-tuple that is observed during sampling, i.e., R(s, a, sÕ
)

and NDt(s, a, sÕ
), respectively. By also considering the observed frequencies of the oc-

currence of next state sÕ per (s, a)-pair, i.e., F sÕ

s,a, we estimate T (sÕ|s, a) for each (s, a).
Hence, we learn a small model of the transition probabilities in the environment, sim-
ilar to Dyna-Q (Sutton and Barto, 1998), which we use to calculate a weighted pairwise
combination between the sets. To combine a vector from one set with a vector from the
other set, we propose the C-operator, which simply weighs them according to the observed
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transition frequencies:

C(

ˆ

Q(s, a, sÕ
), ˆ

Q(s, a, sÕÕ
)) =

F sÕ

s,aq
sÕÕÕœS F sÕÕÕ

s,a

ˆ

Q(s, a, sÕ
) +

F sÕÕ

s,aq
sÕÕÕœS F sÕÕÕ

s,a

ˆ

Q(s, a, sÕÕ
) (6.12)

6.3.2 Notions on convergence
In this section, we sketch a convergence proof of the Pareto Q-learning algorithm. A
sketch of the convergence of the algorithm can be accomplished by imitating the process
of the proof of the single-objective Q-learning algorithm. This algorithm is a recursive
algorithm that, in each stage, updates its estimates based on newly acquired information
of the environment. Since the correction terms of each update are random, Tsitsiklis
(1994) combines ideas from stochastic approximation and convergence theory of parallel
asynchronous algorithms to prove the convergence of Q-learning. In essence, Tsitsiklis
(1994) argues the update rule of the Q-learning algorithm in Equation 2.8 is a contraction.
Let us say that this update rule is a function G which takes as input a vector q œ Rn, then
G(G(G(G(...G(x))))) converges to a fixed-point for all x œ Rn. This means that regardless
of the initialisation of the Q-values, the update rule makes these values converge to their
optimal Qú-values under acceptable conditions. Basically, G is a contraction mapping
w.r.t. maximum norm || ||Œ. This means that the more times G is applied on a Q-value,
the closer the estimate will become to its optimal value Qú.

In the case of Pareto Q-learning, the situation is more complex because of two reasons.
Firstly, we learn Q-vectors instead of Q-values. Secondly, and more importantly, we learn
a set consisting of multiple vectors. Therefore, a traditional norm such as || ||Œ is not
applicable in this context. Luckily, the Hausdor� distance can be used to measure the
distance between sets of vectors. The Hausdor� distance between two sets X and Y of
discrete elements can be calculated as follows:

dH(X, Y ) = max{ min

’xœX,’yœY
d(x, y), min

’yœY,’xœX
d(y, x)}. (6.13)

Basically, the metric simply calculates the longest shortest distance between elements of
the two sets.

Although we do not provide a formal theoretical proof on the convergence of PQL, its
convergence can be argued by the following experiment. In Figure 6.10, we calculate at
each timestep the Hausdor� distance between the learned set and the elements of the
Pareto front. At first we note that the initial learned set only contains a null element and
the distance to the optimal set is large. As the Pareto Q-learning update rule is applied
more and more, the distance between the sets gradually decreases. Eventually, the distance
becomes zero, meaning that the learned sets becomes identical to the Pareto front and
all the optimal policies are learned.
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Figure 6.10: The Hausdor� distance between the learned set to the Pareto front over
time. At first, the distance is large but the update rule of Pareto Q-learning decreases the
distance until it becomes zero. Hence, eventually, the learned set becomes equal to the
Pareto front and all the optimal policies are learned.

6.3.3 Set evaluation mechanisms
In reinforcement learning, the on-line performance is crucial. Therefore, it is interesting to
see how the standard exploration strategies, such as ‘-greedy, can be applied on the ˆQset’s
during learning. In this section, we propose three evaluation mechanisms that obtain a
scalar indication of the quality of a ˆQset. These scalar evaluations are used in action
selection strategies to balance exploration and exploitation. We name these techniques
set evaluation mechanisms.

Hypervolume set evaluation

The first set evaluation mechanism we propose uses the hypervolume measure of Sec-
tion 4.4.1 to evaluate the ˆQset’s. Recall that the hypervolume indicator is well-suited for
two reasons: (1) it is the only quality indicator to be strictly monotonic with the Pareto
dominance relation and (2) it provides a scalar measure of the quality of a set of vectors.
An outline of the evaluation mechanism is given in Algorithm 8. First, we initialise the list
where the evaluations of each action of s will be stored. At line 4, we calculate the ˆQset

for each action and we compute its hypervolume which we append to the list. The list of
evaluations can then be used in an action selection strategy, similar to the single-objective
case. For instance, when selecting an action greedily, the action corresponding to the ˆQset

with the largest hypervolume is selected. When the ˆQset’s are empty, the hypervolume
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of each action is 0 and an action is selected uniformly at random.1 This set evaluation
mechanism, in combination with Pareto Q-learning, is referred to as HV-PQL.

Algorithm 8 Hypervolume Qset evaluation
1: Retrieve current state s
2: evaluations = {}
3: for each action a do
4: hva Ω HV (

ˆQset(s, a))

5: Append hva to evaluations Û Store hypervolume of the ˆQset(s, a)

6: end for
7: return evaluations

Cardinality set evaluation

An alternative to the previous evaluation mechanism uses the cardinality quality indicator
to evaluate actions. This evaluation mechanism, named C-PQL, considers the number of
Pareto non-dominated ˆ

Q-vectors of the ˆQset of each action.
The rationale behind this evaluation mechanism is that it can heuristically guide the

search process by providing a degree of domination one action has over other actions,
locally in a state. It is expected that these actions then have a larger probability to lead to
global Pareto optimal solutions. Especially when estimates are not yet mature, it might be
interesting to bias the action selection to actions with a large number of non-dominated
solutions. An outline of the evaluation mechanism is given in Algorithm 9. At line 2,
we initialise a list where we store the individual ˆ

Q-vectors of the ˆQset, together with a
reference to its corresponding action a (line 5). At line 8, we remove all dominated ˆ

Q-
vectors using the ND operator, such that only the non-dominated ˆ

Q-vectors remain in
the NDQs list. Using this list, the underlying action selection strategy can simply count
the number of times each action a of s remains in the list of Pareto dominating ˆ

Q-vectors,
i.e., the NDQs list, and eventually perform the action selection. Thus, when selecting
an action greedily, the action that relates to the largest number of Pareto dominating
ˆ

Q-vectors over all actions in s is selected.

Pareto set evaluation

The third evaluation mechanism is a simplified version of the cardinality metric. Instead
of considering the number of non-dominated elements in the ˆQset of each action in s,
we simply consider whether or not action a contains a non-dominated vector. The ap-
proach eliminates any actions which are dominated, and then randomly selects amongst
the non-dominated actions. Hence, this mechanism only relies on the Pareto relation and
is therefore called PO-PQL. PO-PQL removes the bias that the cardinality indicator in

1This is also the case for the other set evaluation mechanisms presented in this dissertation.
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Algorithm 9 Cardinality Qset evaluation
1: Retrieve current state s
2: allQs = {}
3: for each action a in s do
4: for each ˆ

Q in ˆQset(s, a) do
5: Append [a, ˆ

Q] to allQs Û Store for each ˆ

Q-vector a reference to a
6: end for
7: end for
8: NDQs Ω ND(allQs) Û Keep only the non-dominating solutions
9: return NDQs

C-PQL might have for actions with a large number of non-dominated vectors over actions
with just a few. The rationale behind this mechanism is to have a more relaxed evaluation
of the actions and to treat every non-dominated solution equally.

6.3.4 Consistently tracking a policy
The set evaluation mechanisms in Section 6.3.3 provide the necessary tools to perform
action selection during learning, i.e., balancing the exploration towards uncharted areas of
the state space and the exploitation of non-dominated actions. However, at any moment in
time, it might be necessary to apply the learned policies. In single-objective reinforcement
learning, the learned policy can be easily tracked by applying the arg max-operator over all
actions in each state, i.e., applying greedy action selection. In the case of a multi-policy
problem, we are learning multiple policies at the same time which requires an adapted
definition of a greedy policy in MORL.

Because of the nature of multi-policy setting, one needs to select actions consistently
in order to retrieve a desired policy based on the ˆ

Q-vectors. If one would select actions
based on local information about the ‘local’ Pareto front attainable from each action, then
there is no guarantee that the cumulative reward vectors obtained throughout the episode
will be globally Pareto optimal. This process is highlighted in Figure 6.11 (a) where the
state space is an 8◊8 grid and three global Pareto optimal policies exist, each given a
di�erent colour. In Figure 6.11 (b), we select actions that are locally non-dominated, i.e,
non-dominated within the current state. The black policy is a sequence of locally optimal
actions, as it always overlaps with one of the coloured lines, however, the resulting policy
is not globally Pareto optimal. To conclude, when in a state where multiple actions are
considered non-dominated, and thus incomparable, one can not randomly select between
these actions when exploiting a chosen balance between criteria. Instead, actions need
to be selected consistently.
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Figure 6.11: (a) In this environment, there is a green, yellow and red Pareto optimal action
sequence that is globally optimal. (b) Selecting actions that are locally non-dominated
within the current state does not guarantee that the entire policy is globally Pareto optimal.
Hence, the information about the global Pareto front has been lost in the local Pareto front.

Globally greedy policy

In order to solve the problem of locally optimal actions that are globally dominated, we
define a greedy policy as a policy fi that consistently follows or tracks a given expected
return vector V

fi
(s) from a state s so that its return equals V

fi
(s) in expectation. There-

fore, we need to retrieve fi, i.e., which actions to select from a start state to a terminal
state. However, due to the stochastic behaviour of the environment, it is not trivial to
select the necessary actions so as to track the desired return vectors. Let us consider the
small bi-objective MDP with deterministic transitions in Figure 6.12.
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S0 S1a

b

c

d

Action R(s, a) NDt(s, a)

ˆQset(s, a)

a (0.2, 0.0)
!
(0.9, 0.5), (2.0, 0.4), (0.0, 0.6)

" !
(1.1, 0.5), (2.2, 0.4), (0.2, 0.6)

"

b (0.9, 0.5) () (0.9, 0.5)
c (2.0, 0.4) () (2.0, 0.4)
d (0.0, 0.6) () (0.0, 0.6)

Figure 6.12: A small multi-objective MDP and its corresponding Qset’s. As we store
the expected immediate and future non-dominated vectors separately, we can consistently
follow expected return vectors from start to end state.

When the agent reaches a terminal state, denoted by a double circle, the episode is
finished. Assume that the discount factor “ is set to 1 for simplicity reasons. Once the
Qset’s have converged separately, we can identify three Pareto optimal policies in the start
state s0. These policies have corresponding expected reward vectors (1.1, 0.5), (2.2, 0.4)

and (0.2, 0.6). When one is for instance interested in following the policy with an expected
reward vector of (2.2, 0.4), the agent should select action a as the vector (2.2, 0.4) is an
element of the ˆQset of action a (and there is no other option). But, once in the next state,
the next action to select is not clear when one only stores the converged Qset’s. Hence,
should the agent select action b, c or d to acquire a return of (2.2, 0.4) at the end of the
episode? The approach we propose to solve this issue is based on the separation of the
average immediate and future rewards, i.e., we can simply subtract the average immediate
reward from the expected return we are targeting, in order to retrieve the next action to
select. This way, we can consistently follow the expected return from state s, V

fi
(s),

throughout the entire state space. In the example, the agent should select the action that
contains (2.2, 0.4)≠ (0.2, 0) = (2.0, 0.4) in its Qset, i.e., action c. The pseudo-code of the
tracking algorithm for environments with deterministic transitions is listed in Algorithm 10.
The agent starts in a starting state s of the environment and has to follow a particular
policy so as to obtain the expected value of the policy from that state, i.e., V

fi
(s), at the

end of the episode. For each action of the action set A, we retrieve both the averaged
immediate reward R(s, a) and NDt(s, a), which we discount. If the sum of these two
components equals the target vector to follow, we select the corresponding action and
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proceed to the next state. The return target to follow in the next state sÕ is then assigned
to ND and the process continues until a terminal state is reached.

Algorithm 10 Track policy fi given the expected reward vector V

fi
(s) from state s

1: target Ω V

fi
(s)

2: repeat
3: for each a in A do
4: Retrieve R(s, a)

5: Retrieve NDt(s, a)

6: for each ND in NDt(s, a) do
7: if “ ND + R(s, a) = target then
8: s Ω sÕ

: T (sÕ|s, a) = 1

9: target Ω ND

10: end if
11: end for
12: end for
13: until s is not terminal

When the transition scheme is stochastic, the tracking algorithm is adapted at certain
positions. The pseudo-code of the algorithm can be found in Algorithm 11. Once we have
found the action belonging to a certain target at line 6, we simply select the action and
arrive in state sÕ given T (sÕ|s, a). In the next phase of the algorithm, we decide on the next
target to follow. We decompose the original ˆ

Q(s, a) into its individual components, which
are the separate ˆ

Q(s, a, sÕÕ
)-vectors for the observed (s, a, sÕÕ

)-triplets. At line 9, we select
the vector for the current transition to state sÕ, i.e., ˆ

Q(s, a, sÕ
). Similar to the algorithm

for deterministic transitions, we decompose that vector into its average immediate and
its future discounted rewards. The latter one then becomes the new target to follow.
Additionally, when the vectors have not entirely converged yet, the equality operator at
line 6 should be relaxed. In this case, the action is to be selected that minimises the
di�erence between the left and the right term. In our experiments, we select the action
that minimises the Manhattan distance between these terms.
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Algorithm 11 Track policy fi given the expected reward vector V

fi
(s) from state s

1: target Ω V

fi
(s)

2: repeat
3: for each a in A do
4: Retrieve ˆQset(s, a)

5: for each Q in ˆQset(s, a) do
6: if Q = target then
7: s Ω sÕ

: T (sÕ|s, a) ”= 1

8: Knowing that Q = C(

ˆ

Q(s, a, sÕ
), . . .) using Equation 6.12

9: and that ˆ

Q(s, a, sÕ
) = R(s, a, sÕ

) + “ ND

10: Retrieve R(s, a, sÕ
)

11: Retrieve ND

12: target Ω ND

13: end if
14: end for
15: end for
16: until s is not terminal

6.3.5 Performance assessment of multi-policy algorithms
Before we analyse the experiments, we first discuss the general challenges in assessing the
performance of on-line multi-policy MORL algorithms. In single-objective reinforcement
learning, an algorithm is usually evaluated by its average reward accumulated over time.
The curve of the graph then indicates both the speed of learning and the final perform-
ance of the converged policy. In multi-objective reinforcement learning, the performance
assessment is more complex because of two main reasons: (1) the reward signal is vectorial
and not scalar and (2) there exists no total ordering of the policies but there is a set of
incomparable optimal policies.

For scalarised MORL algorithms that converge to a single policy, Vamplew et al. (2010)
propose to employ the hypervolume indicator on the approximation set of policies, i.e., the
policies that are obtained after applying a greedy policy for a range of experiments with
varying parameters in the scalarisation functions. The hypervolume of the approximation
set can then be compared to the hypervolume of the true Pareto front, i.e., the set of Pareto
optimal policies of the environment. Each experiment then represents an individual run of a
scalarised MORL algorithm with a specific weight vector w. In the case of tracking globally
greedy policies, we can adopt the mechanism by Vamplew et al. (2010) and calculate
the hypervolume of the cumulative reward vectors obtained by the tracking algorithm of
Section 6.3.4 for each of the non-dominated vectors in the ND(fia

ˆQset(s0, a)), where
s0 is the start state. The hypervolume of each of these vectors should then approach
the hypervolume of the Pareto front. It is important to note that in this way, we will
evaluate and track as many policies as there exist non-dominated ˆ

Q-vectors in the start
state for all actions.
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6.3.6 Benchmarking Pareto Q-learning
In this section, we analyse the performance of the Pareto Q-learning algorithm on two test
problems for each of the three set evaluation mechanisms, i.e., with either the hypervolume,
cardinality or Pareto evaluation mechanism. The algorithms are tested on several bench-
mark environments with a linear, convex and non-convex Pareto front. All the experiments
are averaged over 50 runs and their 95% confidence interval is depicted at regular intervals.

The Pyramid MDP

The Pyramid MDP is a new and simple multi-objective benchmark environment. A visual
representation of the world is depicted in Figure 6.13. The agent starts in the down-left
position, denoted by a black dot at (0, 0), and it can choose any of the four cardinal
directions (up, down, left and right). The transition function is stochastic so that with a
probability of 0.95 the selected action is performed and with a probability of 0.05 a random
transition is executed to a neighbouring state. The red dots represent terminal states. The
reward scheme is bi-objective and returns a reward drawn from a Normal distribution with
µ = ≠1 and ‡ = 0.01 for both objectives, unless a terminal state is reached. In that case,
the x and y position of the terminal state is returned for the first and second objective,
respectively. The Pareto front is therefore linear as depicted in Figure 6.14.
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Figure 6.13: The Pyramid MDP: the agent starts in the down-left position and can select
actions until a terminal state is reached, denoted by a red dot.
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Figure 6.14: The corresponding linear Pareto front of the Pyramid MDP.

As we are learning multiple policies simultaneously, which potentially may involve dif-
ferent parts of the state space, we found it beneficial to employ a train and test setting,
where in the train mode, we learn with an ‘-greedy action selection strategy with de-
creasing epsilon.2 In the test mode of the algorithm, we perform multiple greedy policies
using Algorithm 10 for every element in ND(fia

ˆQset(s0, a)) of the start state s0 and we
average the accumulated returns along the paths. Each iteration, these average returns
are collected and the hypervolume is calculated.

In Figures 6.15 and 6.16, we present the results of learning and sampling Pareto optimal
policies in the Pyramid MDP environment for the train and test phases, respectively.

2At episode eps, we assigned ‘ to be 0.997eps to allow for significant amounts of exploration in early
runs while maximising exploitation in later runs of the experiment.
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Figure 6.15: We depict the hypervolume of the estimates in the start state of the stochastic
Pyramid MDP and we note that the entire Pareto front is learned very quickly during the
learning phase.
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Figure 6.16: We track the estimates learned in Figure 6.15 through the state space and
denote that the hypervolume of their average returns approaches the Pareto front as well.

In Figure 6.15, we depict the hypervolume over time of the estimates in the start state
s0.3 Hence, for each iteration, we calculate HV (fia

ˆQset(s0, a)). We see that each of
the set evaluation mechanisms guide the Pareto Q-learning algorithm very well as the
hypervolume of the learned estimates approaches the hypervolume of the Pareto front (“

3In the Pyramid MDP, the reference point for the hypervolume calculation in both HV-PQL and the
performance assessment is specified to (≠20, ≠20) after observing the reward scheme.

174



6.3. LEARNING MULTIPLE POLICIES IN MULTI-STATE PROBLEMS

is set to 1). Based on the graph, we see that each of the set evaluation mechanisms has
very similar performance in early stages of the learning process. After around hundred
iterations, however, we note a small distinction in performance between C-PQL and HV-
PQL on the one hand and PO-PQL on the other hand. Closer investigation of the results
taught us that this di�erence is caused by the fact that, once the estimates become stable,
C-PQL and HV-PQL still create a total order out of the set of Pareto optimal estimates,
even though they are incomparable. That is why, in later iterations of the learning phase,
C-PQL and HV-PQL provide a (too) large bias towards particular areas of the state and
action space and therefore some estimates are no longer updated. Hence, the very close,
but not coinciding curves of their learning graphs. PO-PQL does not provide a total
order, but keeps the partial order that the multi-objective nature of the problem entails.
Therefore, it treats every Pareto optimal solution equally and the estimates are updated
much more consistently.

In Figure 6.16, we depict the results of the tracking algorithm of Section 6.3.4 that
globally follows every element of the start state in Figure 6.15 (a). We see that the
hypervolume of the average returns of each the estimated ˆ

Q-vectors in ND(fia
ˆQset(s, a))

is very similar to the learned estimates themselves. We see that tracking the estimates
obtained by PO-PQL allows to sample the entire Pareto front over time.
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Figure 6.17: The performance of the tracking algorithm for a specific estimate. We see
that the Manhattan distance of the running average of the return vector approaches the
tracked estimate over time.

In Figure 6.17, we see the tracking algorithm at work to retrieve the policy of a specific
vectorial estimate from the start state. In the figure, we denote the Manhattan distance
of the running average return to the estimate after learning. We see that averaging the
return of the policy obtained by the tracking algorithm over time approaches the estimate
predicted at the start state, i.e., the distance becomes zero in the limit.
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The Pressurised Bountiful Sea Treasure environment

In order to evaluate the Pareto Q-learning algorithm on an environment with a larger
number of objectives, we analyse its performance on the Pressurised Bountiful Sea Treasure
(PBST) environment of Section 5.2.5. This environment is very similar to the standard
Deep Sea Treasure (DST) environment (Vamplew et al., 2010) with the slight modification
of an additional objective.

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Iteration

H
yp

e
rv

o
lu

m
e

Hypervolume of vectors in start state

 

 

PO−PQL

C−PQL

HV−PQL

Pareto front

Figure 6.18: The results on the PBST environment. We depict the hypervolume over time
of the learned estimates in the start state. As time progresses, the vectors in the start
state approach their true values.
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Figure 6.19: We see that the hypervolume of the tracked policies in the PBST environment
is very similar to the hypervolume of the learned policies, which means that the learned
policies are also retrievable.

The results on the train and test phases are depicted in Figures 6.18 and 6.19, respect-
ively.4 In Figure 6.19, we depict the hypervolume of the tracked policies of the start state
by applying the greedy policies. As the environment has both deterministic reward and
transition schemes, the performance of the di�erent set evaluation mechanisms is almost
identical. The tracking algorithm performs very well and the graph is almost identical to
Figure 6.18 as in the previous environment.

6.3.7 Experimental comparison
In the previous section, we analysed the performance of Pareto Q-learning in combination
with the three set evaluation mechanisms. In this section, we conduct an empirical com-
parison of the algorithms to several single-policy and multi-policy MORL algorithms. We
conduct this experimental comparison on the Deep Sea Treasure environment.

The Deep Sea Treasure environment

The Deep Sea Treasure (DST) is a standard MORL benchmark instance that has been the
subject of many performance evaluations in MORL. A general description of the environ-
ment can be found in Section 4.3.4. In Figure 6.20, we denote the hypervolume during
the test phase of the algorithm with Pareto, cardinality and hypervolume set evaluations,

4In the PBST environment, the reference point for the hypervolume calculation in both HV-PQL and
the performance assessment is specified to (≠25, 0, ≠120) after observing the reward scheme.
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i.e., PO-PQL, C-PQL and HV-PQL, respectively. The reference point for the hypervolume
calculation is specified to (≠25, 0).

Furthermore, we also evaluate a naive random strategy, a multi-policy algorithm and two
single-policy algorithms. The multi-policy algorithm is the multi-objective Monte-Carlo
tree search algorithm by Wang and Sebag (2013). Recall that this algorithm incrementally
builds and explores a search tree of optimistic vectorial estimates. We implemented MO-
MCTS-DOM, i.e., the version that relies on the Pareto dominance relation to scalarize the
multi-objective value function, since this alternative is the best choice in terms of runtime
and performance (Wang and Sebag, 2013). The two single-policy algorithms employ the
linear and Chebyshev scalarisation functions of Chapter 4. These single-policy algorithms
are evaluated using the configuration specified in Section 6.3.5. In the following paragraph,
we highlight the performance of each algorithm individually.

Random The first algorithm we analyse is a random strategy. This algorithms serves
as a baseline since it does not use any learning principles but naively applies a random
policy. As expected, this algorithm learns slowly and reaches a hypervolume of 316. The
95% confidence interval of this algorithm is remarkably low since it always tends to find
the same solutions, more precisely, the policies that are located close to the start state.
The treasures that are far away are usually not discovered.

Linear scalarised MORL Since the environment contains 10 Pareto optimal solutions,
the linear scalarised MORL algorithm is run with 10 uniformly distributed weight vectors
to allow for a fair comparison to the multi-policy algorithms. More precisely, the con-
tinuous weight range of [0, 1] is uniformly discretised with steps of 1

10≠1 while satisfyingqm
o=1 wo = 1. Each of these weights is then used in an individual execution of the scalar-

isation algorithm and its results are collected in order to obtain a set of sampled policies in
the test phase. Thus, every 10 iterations (episodes), we calculate the hypervolume of the
10 greedy policies of each of those iterations. We note that, although we have a uniform
spread of weights, the algorithm only manages to retrieve a hypervolume of 768 which is in
correspondence with our results from Chapter 5. When we take a closer look at the results
obtained, we see that the algorithm learns fast but after 800 iterations, only the optimal
policies with return (≠1, 1) and (≠19, 124) for the time and treasure objectives, respect-
ively, are sampled. This is shown by the 95% confidence intervals that become zero. This
is to be expected as the Pareto front is non-convex and, hence, a linear combination of
the objectives then can only di�erentiate between the extreme policies of the Pareto front,
as highlighted in Section 4.2. Therefore, the linear scalarised MORL algorithm converges
to either of the optimal policies with return (≠1, 1) or (≠19, 124).

Chebyshev scalarised MORL This non-linear scalarisation function is equipped with
the same set of weight vectors as the linear scalarisation function. As we see in the graph,
the Chebyshev scalarised MORL algorithm learns slower than the linear scalarised MORL
algorithm but is able to surpass its performance after around 1700 iterations. However,
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as we have seen in Section 4.3, the Chebyshev scalarisation function is not guaranteed to
converge to a Pareto optimal policy in a value-iteration approach. Nevertheless, we see
that the algorithm performs acceptably in practice as it learns almost at the same speed
as the linear scalarised MORL algorithm and attains a bigger hypervolume of 860.36. This
is a confirmation that this scalarisation function, despite its lack of theoretical guarantees,
can be successful in MORL when employed as a heuristic. Possibly, a higher hypervolume
value could be reached, if we would equip the algorithm with more intelligent weight
parameters. In this regard, the mechanisms of Chapter 5 could act as a starting point.

MO-MCTS-DOM The multi-policy MO-MCTS algorithm that utilises the Pareto dom-
inance relation learns fast in the first 500 iterations but is, generally speaking, slower
compared to the single-policy strategies. Earlier results of the algorithm indicate that the
search tree algorithms requires substantial amounts of training time before a large set of
policies is retrieved. This is because the algorithm builds an archive of non-dominated
tree walks and, in the best case, appends only one solution at the end of every iteration.
Therefore, the algorithm intrinsically only learns multiple policies in an implicit manner,
while wasting information on explicit trade-o�s as the interaction with the environment
progresses. In the experiments in Wang and Sebag (2013), around 15600 iterations are
needed for MO-MCTS-DOM to converge to the set of optimal solutions, which is signi-
ficantly large for this environment. Therefore, considering 3000 iterations, allowed us only
to slowly reach a final performance comparable to the Chebyshev scalarisation function.

Pareto Q-learning So far, no algorithms managed to sample the entire Pareto front.
This was a result of either the shape of the Pareto front, the assignment of the weight
vectors or an ine�cient use of the available samples. Pareto Q-learning is not biased by
the first two aspects, but treats every Pareto optimal solution equally in the bootstrapping
process. Additionally, it explicitly learns multiple policies in a simultaneous fashion to
allow for an e�cient use of the available samples. Taking these principles into account,
we see that in early learning phases, i.e, iteration 0 to 450, regardless of the set evaluation
mechanisms, Pareto Q-learning learns notably faster than the other MORL algorithms.
This is because PQL can simultaneously combine and store information about multiple
optimal policies while the single-policy learners look only for an individual policy that
matches its a priori preferences, thereby discarding considerable amounts of information. In
the end, regardless of the set evaluation mechanisms used, Pareto Q-learning surpasses the
performance of the other MORL algorithms. In this experiment, the Pareto set evaluation
mechanism performs a bit better than the other set evaluation mechanisms and samples
every element of the Pareto front.
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Figure 6.20: The results on the Deep Sea Treasure environment. We compare a random
strategy, a multi-policy MORL algorithm named MO-MCTS-DOM and two single-policy
MORL algorithms that use a linear and Chebyshev scalarisation function. These algorithms
are then evaluated to Pareto Q-learning with the three set evaluation mechanisms. We note
that, regardless of the set evaluation mechanisms, PQL obtained better performance than
the multi-policy and single-policy MORL algorithms and in the end PO-PQL sampled the
entire Pareto front. For a more in-depth analysis of the results, we refer to Section 6.3.7.

6.3.8 Conclusions
The main contribution of this section is the novel Pareto Q-learner algorithm that learns
deterministic non-stationary non-dominated multi-objective policies for episodic environ-
ments with a deterministic as well as stochastic transition function. To the best of our
knowledge, PQL is the first multi-policy temporal di�erence algorithm that allows to learn
the entire Pareto front, and not just a subset. The core principle of our work consists of
keeping track of the immediate reward vectors and the future discounted Pareto domin-
ating vectors separately. This mechanism provides a neat and clean solution to update
sets of vectors over time.

In a reinforcement learning algorithm, the exploration and exploitation trade-o� is cru-
cial. Therefore, we developed three evaluation mechanisms that use the ˆQset’s as a basis
for action selection purposes during learning. We name them set evaluation mechanisms.
The current set evaluation mechanisms rely on basic multi-objective indicators to trans-
late the quality of a set of vectors into a scalar value. Based on these indications, local
action selection is possible during the learning phase. Currently, we have combined PQL
with a cardinality, hypervolume and Pareto indicator. We have seen that the Pareto in-
dicator performed the best on average as it treats every Pareto optimal solution equally.
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The cardinality and hypervolume set evaluation measures rate the actions also on addi-
tional criteria than the Pareto relation to provide a total order. We have seen that in
more complex environments, these set evaluation mechanisms bias the action selection
too much in order to learn the entire Pareto front. Nevertheless, it could be that the user
is not interested in sampling the entire Pareto front but is looking for particular policies
that satisfy certain criteria. For instance, other quality indicators such as the spread in-
dicator (Van Veldhuizen and Lamont, 1998) could be used to sample policies that are
both Pareto optimal and well-spread in the objective space. This can straightforwardly
be incorporated in our framework.

Additionally, we also conducted empirical evaluations on a benchmark instance and we
compared Pareto Q-learning’s performance to several single-policy MORL algorithms. We
have seen that selecting actions that are locally dominating does not guarantee that the
overall combination of selected actions in each state, i.e., the policy, is globally Pareto
optimal. As a solution, we proposed a mechanism that tracks a given return vector, i.e.,
we can follow a selected expected return consistently from the start state to a terminal
state in order to collect the predicted rewards.

To summarise, we note that PQL (1) can learn the entire Pareto front under the assump-
tion that each state-action pair is su�ciently sampled, (2) while not being biased by the
shape of the Pareto front or a specific weight vector. Furthermore, we have seen that (3)
the set evaluation mechanisms provide indicative measures to explore the objective space
based on local action selections and (4) the learned policies can be tracked throughout
the state and action space.

6.4 Summary
In this chapter, we investigated multi-objective reinforcement learning algorithms for sim-
ultaneously learning multiple policies. In this light, we have proposed two algorithms
for both single state as well as multi state environments. The first algorithm is the
multi-objective hierarchical optimistic optimisation algorithm that constructs a binary tree
over a continuous actions space. The second algorithm extends standard Q-learning for
discovering multiple trade-o� policies at once for sequential decision making problems.
Both algorithms share commonalities in the fact that they operate on sets of Pareto non-
dominated vectorial estimates.
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7

| Applications of
multi-objective

reinforcement learning

The contributions of the previous chapters concentrated on theoretical foundations of
single-policy and multi-policy MORL. we will now investigate how we can apply these
algorithms on a simulation environment, representing a real-life application. This environ-
ment simulates the filling phase of a wet clutch which is used in shifting and transmission
systems of automotive vehicles.

In this chapter, we will analyse the application of the multi-objective hierarchical op-
timistic optimisation (MO-HOO) algorithm on the simulation environment in order to
approximate its Pareto front. Before we proceed to the details of this practical exercise, it
is necessary to properly introduce the details of this application domain in Section 7.1.

In more detail, we will present the following contributions this chapter:

• Analyse the simulation environment of the filling phase of a wet clutch
• Evaluate the performance of MO-HOO for multi-policy learning in the environment
• Outline directions for further research

This research has been published in Van Mo�aert et al. (2014b).

7.1 The Filling Phase of a Wet Clutch
The problem considered in this paper is the e�cient engagement of a wet clutch, i.e., a
clutch where the friction plates are immersed in oil in order to smooth the transmission
and increase the lifetime of the plates. Wet clutches are typically used in heavy duty
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transmission systems, such as those found in o�-road vehicles and tractors. In Figure 7.1,
we depict a schematic representation of its functioning. Two sets of friction plates are
connected to the input and the output shaft, respectively, such that, when they are pressed
together, the torque generated by the motor, connected to the input shaft via a set of
gears, is transmitted to the output shaft, which is connected to the wheels of the vehicle.
The two sets of plates are free to translate axially, and a return spring keeps the clutch
open: to close the clutch, the plates are pressed together by a hydraulic piston, which can
be pushed against the plates by increasing the pressure of the oil in the clutch chamber.
This pressure can in turn be controlled by the current input of an electromechanical servo-
valve: by opening the valve, the clutch and supply line are filled up with oil, and the
pressure increases until it is high enough to overcome the return spring force. As a result,
the piston starts to move towards the plates. During this first part of the engagement,
called the filling phase, no torque is transferred. The transmission only commences as
the piston makes contact with the plates. The clutch then enters the slip phase, as the
slip, defined as the di�erence in rotational speeds between the shafts, decreases. When
the pressure is high enough, the output shaft is accelerated until it rotates synchronously
with the input, and the slip reaches zero.

Input shaft Output shaft
To valve

Piston

Drum

Friction plates

Return spring

Chamber

Figure 7.1: Schematic representation of a wet clutch (from Depraetere et al. (2010)).

However, it has been observed that the torque loss depends on the speed of the piston
when this reaches the plates: the lower the speed, the lower the torque loss, and the
smoother the engagement. In other words, there is a trade-o� among the two objectives:
on one hand, a very slow piston movement will result in a smooth engagement, which
takes a long time; on the other hand, a fast piston will engage in a short time, but it
will also cause a jerky engagement, with a large torque dip, and possibly damage the
setup. These two objectives are conflicting and make a good testbed for evaluating multi-
objective solution techniques.

The main issue with this setup is that there is no sensor providing information about
the actual position of the piston, which can only be detected when the piston actually
touches the plates. Given the available signals (oil pressure and temperature), there is
no reference trajectory that can be tracked using classical control methods. In this sense,
this setup is a good example of a limited feedback system. For this reason, wet clutches
are commonly controlled in open loop, applying a signal which is either defined ad-hoc,
or learned iteratively (Pinte et al., 2011).
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A parametric form of such a signal (Zhong et al., 2011) can be found in Figure 7.2.
First, a large current pulse is sent to the valve, in order to generate a high pressure level
in the oil chamber of the clutch, which will allow the piston to overcome the resistance of
the preloaded return spring, and accelerate towards the friction plates. After this pulse, a
lower constant current is sent out, in order to decelerate the piston as it approaches the
friction plates: before reaching this low value, the current decreases shortly to an even
lower value, creating a small dent in the signal, which should act as a ‘brake’, limiting the
speed of the piston. Finally, the current signal grows following a ramp with a low slope,
closing the clutch smoothly. The signal is parametrised as follows: the first parameter (a)
controls the duration of the initial peak, whose amplitude is fixed at the maximum level,
while the last (d) controls the low current level, just before the engagement begins. The
remaining parameters (b, c) control the shape of the ‘braking’ dent, while the final slope
during the engagement phase is fixed. In our setting the signal consists of two parameters,
i.e., only a and c are free, while b = 0, and d = c.

Figure 7.2: Parametric input signal from Zhong et al. (2011), with four parameters
(a, b, c, d). All parameter ranges are mapped to the unit interval [0, 1]. In this setting,
only two parameters can be controlled.

There currently is no reliable model of the whole engagement. However, an approximate
but deterministic model is available for the filling phase, until the piston touches the
plates. 1 Nonetheless, this model does not comprise the slip phase, which would allow
to simulate and optimise the resulting torque loss. But, torque loss has been observed
to depend on the speed of the piston upon engagement, and we can therefore minimise
piston velocity in simulation.

1Developed in Simulink R� by Julian Stoev, Gregory Pinte (FMTC), Bert Stallaert and Bruno Depraetere
(PMA, Katholieke Universiteit Leuven).
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7.2 Multi-policy analysis with MO-HOO
In this section, we analyse the MO-HOO algorithm of Section 6.2 on the wet clutch
environment. Since the model of the wet clutch consists of a single state with a continuous
but finite dimensional action space, the MO-HOO algorithm is a perfect fit for the job.

Before we continue to the actual results, it is necessary to have an intuition of the size
and the shape of the Pareto front of this environment. In contrast to the relatively simple
Scha�er 1 and Fonseca and Flemming functions of Section 6.2.3, where the identification
of the continuous Pareto front is relatively easy, this is not the case for the wet clutch
environment. In Figure 7.3, we denote the policies that are discovered through an ex-
haustive parameter sweep. First, we normalise both reward signals and transform them
for maximisation purposes:

rv = v, (7.1)

rt = (3 ≠ t)/3. (7.2)
We note that many of the parameters lead to dominated policies located in clustered
suboptimal areas of the objective space. These dominated policies are denoted by a
red colour. Additionally, we also see that some regions in the objective space are more
dense than others. This is an indication of the level of di�culty of the problem since small
changes in the decision space, i.e., the parameter values, imply big changes in the objective
space. The exhaustive search only discovered 8 Pareto non-dominated policies, denoted
by black squares, which are located in the top-right corner of the objective space. Since
the Pareto front is continuous, there should exist other non-dominated policies connecting
the black dots. The question is how to find them without wasting extensive resources on
the dominated areas of the objective space.
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Figure 7.3: An exhaustive search of the parameter space of the wet clutch simulation
environment discovered only 8 non-dominated policies.
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Figure 7.4: The sampling performance MO-HOO is compared to a naive random strategy.
We note that the MO-HOO strategy approaches a performance of around 60%, although
the standard deviation is quite large.

In Figure 7.4, we depict the results of the MO-HOO algorithm and a random algorithm
on this simulation environment. More precisely, we analyse the distance over time between
between the sampled policies and the 8 Pareto non-dominated policies retrieved by the
exhaustive search method. We inspect the percentage of Pareto optimal actions at a
distance of ” equal to 0.2 in the normalised objective space.

As expected on this complex environment, we see that randomly sampling the action
space almost never leads to a Pareto optimal policy. We even note that at some iterations,
the standard deviation is zero, meaning that in none of the 50 runs an element close to
the Pareto front is sampled. The MO-HOO strategy also struggles on this environment
and su�ers from quite some variation. Eventually, it approaches a performance of 60%.
Logically, the question arises why this performance does not reach 100% as time progresses.
To answer that question, we first investigate the sampled policies in the objective space
over time in Figure 7.5.

In Figure 7.5, the policies are colour-coded, with blue indicating policies obtained in early
iteration cycles, and red representing policies sampled near the end of the process. In this
plot, we notice several observations. For starters, we see that there appears a gradient
from early, dominated policies to policies closer to the 8 non-dominated points found by
the exhaustive search process. These points are denoted by black dots. We also note
that MO-HOO obtains many optimal trade-o� policies that lie in between the 8 initial
elements of the Pareto front.

In Figure 7.6, we depict the sampled points in the action space and the corresponding
tree depth. This visualisation confirms our intuition: on this complex task, the MO-HOO
strategy is excessively exploring although a clear trend in the sampled points appears after
already 4000 iterations. The tree also refines nodes at two particular parts of the action
space and two peaks emerge since we are optimising two actions simultaneously.
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Figure 7.5: The sampled policies in the objective space during each of the 20000 iterations.
The policies are colour-coded, with blue indicating policies obtained in early iteration cycles,
and red representing policies sampled near the end of the process. In general, red policies
are close to the Pareto front that was previously extracted, although it is not always the
case.
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Figure 7.6: Both figures more closely analyse the performance of MO-HOO on the wet
clutch environment. In the first subfigure, we depict the sampled points in the actions
space. We see that for each of the signals a and c a trend in the action space is emerging
over time, although there remains a substantial amount of variation. In the second sub-
figure, we see the evolution of the tree structure of the MO-HOO algorithm. Also in this
figure, we note that the algorithm is exploring the entire action space for quite some time
before it is confident enough to exploit a particular area.
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The cause for this behaviour is not very clear and might have multiple sources. First, the
wet clutch environment is a combination of multiple complex interacting systems which
impedes the analysis of the underlying optimisation function. In contrast to the standard
benchmark settings, such as the Scha�er 1 function, the wet clutch function is hard to
grasp and to visualise. Therefore, it is possible that the function does not satisfy the
assumption of the HOO strategy, which is that it should be locally Lipschitz di�erentiable.
Another possibility is that the MO-HOO strategy itself is exploring too much since its
estimates are too optimistic. This could be resolved by carefully tuning the fl and ‹1
parameter values which define the level of optimism added to each estimate. A possibility
would be to employ the F-Race algorithm (Birattari et al., 2010) to find the best values for
these parameters that steer the quantity of exploration. Finally, it could also be an issue
with the bounds the algorithm itself places on the estimates. Since there is no mechanism,
i.e, no min operator, to bound the estimates and as a result the algorithm keeps exploring
parameters that are suboptimal. A thorough analysis of the underlying function of the
wet clutch could possibly identify the issue.

To conclude, we still note that the MO-HOO strategy discovers a wide set of non-
dominated trade-o� solutions since it obtained on average 357.21 Pareto non-dominated
solutions at each run of the algorithm. As expected, the random strategy obtained only a
small set of 7.66 non-dominated solutions out of 20000 samples, as depicted in Table 7.1.

Strategy Cardinality
Random 7.66
MO-HOO 357.21

Table 7.1: Cardinality indicator for random exploration and MO-HOO.

7.3 Conclusions and future outlook
In this chapter, we analysed to which extent the theoretical algorithms behave on a complex
and real-world application. This application comprises the filling phase of a wet clutch,
which is a crucial part in a wide range of automotive vehicles.

We applied the MO-HOO strategy of Section 6.2 on a simulation environment, repres-
enting this setup. We have seen that the algorithm was struggling to find a good trade-o�
between exploring uncharted territory and exploiting its knowledge near the end the of the
optimisation process. As a result, the results had a larger variation than on the bench-
mark environments but the algorithm still performed acceptably. Eventually, MO-HOO
discovered no less than 357 non-dominated elements on average in each run, o�ering a
wide and diverse set of compromise solutions to the decision maker. We believe that
a closer investigation of the internals of the wet clutch environment could be beneficial
to find better values for the configuration parameters of the MO-HOO strategy itself,
although this remains an unanswered question for now.
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| Conclusions

Reinforcement learning is the study of intelligent systems that learn to take optimal de-
cisions in unknown and dynamic problem environments. Traditionally, this study aims to
learn the optimal actions so as to maximise a single, numerical reward signal. In this
light, we have illustrated some standard approaches such as the Q-learning algorithm in
Chapter 2. As we have seen, reinforcement learning provides a rigorous theoretical frame-
work for learning systems. However, this framework is based on the assumption that every
action can be evaluated by a single, scalar feedback signal. As we have seen in Chapter 3,
many real-world problems involve the simultaneous optimisation of multiple, possibly con-
flicting, objectives. An example is the optimisation of the return and its risk in portfolio
optimisation for stock markets (Hassan, 2010). It is clear that a risky policy has the po-
tential of a high return of investment while at the same time a high probability in money
losses as well. Therefore, there is no single optimal solution but a set of equally optimal
compromise solutions that balance these objectives. This set is referred to as the Pareto
front. In this case, the problem the agent tries to solve is considered a multi-objective
reinforcement learning problem.

In this dissertation, we study the development and the evaluation of MORL algorithms
that extend the standard, single-objective framework to discover a number of trade-o�
solutions. In Section 8.1, we highlight our main contribution, presented throughout this
thesis. Subsequently, in Section 8.2, we formalise additional remarks and limitations of
our newly developed algorithms which on their turn serve as a starting point for outlooks
for future research in Section 8.3.

8.1 Contributions
In this section, we summarise the main contributions of this dissertation. To thoroughly
understand the research domain, we presented a necessary overview of the foundations of
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standard, single-objective reinforcement learning in Chapter 2. This background is needed
to support the reader to fully comprehend the domain of multi-objective reinforcement
learning in Chapter 3. In that chapter, we discussed current state-of-the-art strategies for
multi-objective reinforcement learning and we proposed a taxonomy that classifies these
strategies on two main aspects. The first aspect considers whether the algorithm retrieves
a single solution or a set of solutions. As a result, the algorithm is either a single-policy or
a multi-policy approach. The second aspect is based on the type of scalarisation function
used in the process, i.e., is the function linear or merely monotonically increasing. In the
following paragraphs, we highlight our principal contributions that surpass the state-of-
the-art in the field of MORL.

In Chapter 4 we considered MORL algorithms that learn only a single trade-o� solution
at a time. These algorithms use scalarisation functions to reduce the dimensionality of
the multi-objective feedback signal to a single, scalar measure. To accommodate for these
functions, we have presented a general framework for scalarised MORL algorithms. In
this framework, the traditional Q-values are extended to Q-vectors that store an estimate
for every objective separately. In the action selection phase, the scalarisation function is
applied on the Q-vectors to acquire a single, scalarised estimate for a state-action pair.
This scalarised estimate can on its turn be used for action selection purposes, such as for
instance ‘-greedy. Although the idea is relatively simple, the choice of the scalarisation
function is crucial. We have elaborated on the standard linear scalarisation function and
investigated why it is guaranteed to converge to a Pareto optimal solution and why it
cannot retrieve every Pareto optimal solution. Additionally, we have researched to what
degree the monotonically increasing Chebyshev scalarisation function can also be applied in
MORL. In both a theoretical and empirical analysis we have seen that the Chebyshev func-
tion lacks additivity, which is a crucial requirement for reinforcement learning algorithms
that rely on the Bellman equation. However, the Chebyshev scalarisation function can still
be used as a heuristic without possessing any convergence guarantees. We compared both
scalarisation functions on three commonly accepted benchmark environments on several
performance measures.

Subsequently, in Chapter 5, we analysed how the weight parameters of the scalarisation
functions relate to specific parts of the objective space. We have seen that the mapping
from weight space to objective space is non-isomorphic, meaning that it is far from trivial
to define an appropriate weight vector that retrieves a desired compromise solution. In
this regard, we have proposed two classes of algorithms that adaptively explore both
discrete and continuous Pareto fronts. The algorithm that can be used in a discrete
setting constructs a tree over the weight space. Each iteration the tree is iteratively refined
to cover finer parts of the weight space until all solutions are found. This algorithm is
evaluated on two testing environment with two to three objectives. In the case the Pareto
front is continuous and, in essence, infinite, the goal is to find as fast as possible a
diverse set of optimal solutions that provide a careful coverage over the Pareto front.
This adaptive weight algorithm (AWA) can be combined with several distance metrics,
such as the hypervolume measure and a gap distance. This mechanism, together with all
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its variants, is tested on a smart camera environment where the goal is to maximise the
tracking confidence of moving objects while minimising the computational overhead.

In Chapter 6 we presented the pinnacle of our contributions. In this chapter, we no longer
use scalarisation functions to reduce the dimensionality, and hence also the di�culty of
the problem. Instead, we extend the core principles of reinforcement learning framework
to simultaneously learn a set of trade-o� solutions. The first algorithm we proposed in this
context is the multi-objective hierarchical optimistic optimisation (MO-HOO) algorithm
which is tailored for single-state environments with a continuous action space, as is the
case in a lot of engineering applications. The MO-HOO algorithm builds a tree of op-
timistic estimates over the action space and propagates a set of Pareto non-dominated
estimates to the root node. Based on these estimates, the algorithm continues the search
to promising parts of the action space that result in optimal and diverse solutions in the
objective space. This algorithm is tested on two optimisation functions, commonly used
in evolutionary multi-objective optimisation. For multi-state environments that require a
bootstrapping procedure, we proposed the Pareto Q-learning algorithm. Pareto Q-learning
is the first temporal di�erence-based multi-policy algorithm that does not employ a linear
scalarisation function and can therefore learn the entire Pareto front and not just a sub-
set. The main novelty of the Pareto Q-learning algorithm is the set-based bootstrapping
rule that separates the average immediate reward and the set of Pareto non-dominated
vectorial estimates. Pareto Q-learning can be combined with several quality measures to
accommodate for action selection strategies, such as the hypervolume and the cardinality
quality indicators.

In Chapter 7, we moved beyond the academic benchmark environments and tested multi-
policy MORL algorithms on a simulation environment of a real-world problem. This
problem concerns the filling phase of a wet clutch, a transmission unit that can be found
in many automotive vehicles. In this setup, the goal of the agent is to find an engagement
that is both fast and smooth, which are in essence conflicting objectives. We evaluated
the MO-HOO algorithm to learn a set of trade-o� solutions at once. We have seen the
task introduces an amplified level of complexity but the algorithm still managed to obtain
on average 357 trade-o� solutions in a single run.

8.2 Remarks
Throughout this thesis, we have presented several algorithms for learning in multi-criteria
environments. Many of these algorithms are novel in their specific field and required
changes to the theoretical reinforcement learning framework on a detailed conceptual level.
For instance, the MO-HOO algorithm of Chapter 6 is, to the best of our knowledge, the
first multi-objective X -armed bandit solver. On the one hand side, this algorithm extends
the boundaries of the MORL field but on the other hand side, the novelty of the algorithm
complicates a rigorous experimental comparison to other, specific algorithms for the same
type of problems. One possibility is to improve the experimental evaluation of the algorithm
is to compare it to evolutionary multi-objective algorithms. However, for the comparison to
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be fair, one needs to take into account some aspects. For instance, evolutionary algorithms
inherently evolve a population of solutions. Therefore, they mimic a multi-agent principle
where agents can cooperate to improve the overall quality. Additionally, the size of the
population plays a crucial role in the process and influences the performance as well.

A second remark is related to the convergence guarantees of the MO-HOO algorithm.
In that algorithm, we adjusted the internal mechanisms of the HOO tree to propagate
Pareto non-dominated estimates to the root node. Since our estimates are not averaged
over subtrees and there is no alternative multi-objective min operator, we cannot assume
MO-HOO to have the same convergence rate and upper bounds for the regret as the HOO
strategy. Although the algorithm seems to perform well on the three experiments we carried
out in this dissertation, a thorough theoretical analysis of the mechanism is still needed.

Thirdly, due to time constraints, we did not perform a rigorous

8.3 Outlooks for future research
Finally, we conclude the thesis by listing outlooks for future research that can open the
door to new advances in the multi-objective reinforcement learning domain:

• Alternative distance metrics for AWA algorithms: In Chapter 5, we have proposed
several distance measures that can be used to guide the search to optimal and well-
spread solutions. Although, the list of possible distance measures is quite elaborate,
there is no single best metric that will be the ideal solution approach for every
application domain. A possible next step would be to directly incorporate the genuine
multi-objective quality indicators such as the spread indicator (Van Veldhuizen and
Lamont, 1998) directly in the internal workings of the adaptive weight algorithm.

• Sampling the Pareto front with AWA algorithms: One could extend the reach of
the adaptive weight algorithms by extending the scalarisation principle. As this
mechanism currently relies on a convex combinations of the objectives, only policies
on the convex hull are retrievable. To also empower the discovery of policies in non-
convex regions of the Pareto front, one could try to combine AWAs with the adaptive
weighted sum principle in Kim and de Weck (2005) and Yliniemi and Tumer (2014),
where the objective space of the original problem is transformed to a convex shape.
In this transformed Pareto front, the linear scalarisation function can find solutions
that correspond to solutions in non-convex parts of the original objective space.

• Tighter bounds on MO-HOO: the MO-HOO algorithm of Chapter 6 is based on
the HOO algorithm which uses a combination of traditional min and max operator
to place bounds on the level of optimism of the estimates. In MO-HOO, the max

operator is replaced by a union operator that filters out the Pareto non-dominated
estimates. No multi-objective variant is found for the min operator and as a result,
the estimates might become too optimistic, resulting in an algorithm that explores
too much. In future work, the specification of a multi-objective min operator could
place a stricter bound on the B-vectors in order to make them less optimistic.
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However, it is not clear to determine what would be the logical outcome of applying
a multi-objective min operator on a U -vector and a set of non-dominated B-vectors.
Since there is no total order, defining a min operator that can deal with multiple
Pareto incomparable vectors remains an open research question.

• Alternative action evaluation indicators for Pareto Q-learning : In the Pareto Q-
learning algorithm of Chapter 6, three di�erent action evaluation mechanisms are
proposed. These are the hypervolume, cardinality and the Pareto set evaluation
mechanisms which quantify the quality of a set of Q-vectors. These mechanisms
were designed to treat every Pareto optimal solution equally (to a certain extent).
However, it could be that the decision maker is not interested in sampling the entire
Pareto front but that he is looking for particular policies that satisfy certain criteria.
For instance, other quality indicators such as the spread indicator (Van Veldhuizen
and Lamont, 1998) could be used to sample policies that are both Pareto optimal
and well-spread in the objective space. In future research, alternative set evaluation
mechanisms could be investigated to steer the search process.

• Pareto Q-learning for infinite-horizon problems: In Pareto Q-learning, the Qset’s
grow according to the size of the Pareto front. Therefore, Pareto Q-learning is
primarily designed for episodic environments with a finite number of Pareto optimal
policies. To make the algorithm practically applicable for infinite horizon problems
with a large value for the discount factor, we have to consider that all states can
be revisited during the execution of an optimal policy. Upon revisiting a state, a
di�erent action that is optimal w.r.t. other criteria can be chosen. As explained
in Mannor and Shimkin (2001), this o�ers a possibility to steer the average reward
vector towards a target set using approaching policies. Alternatively, we could reduce
the number of learned policies by using a consistency operator to select the same
action during each revisit of some state, similar to the work of Wiering and de Jong
(2007) for multi-criteria dynamic programming.

• Pareto Q-learning on continuous states: Currently, Pareto Q-learning is limited to a
tabular representation where each state-action pair stores a Qset. In order to make
Pareto Q-learning applicable to real-life problems or ergodic environments, these sets
should also be represented through function approximation. A possible idea is to fit
the elements in each set through a geometric approach, such as for instance ordinal
least-squares. If the environment would consist of two or three objectives, we would
be fitting the vectors on a curve or a plane, respectively. In that case, we would be
learning the shape of the Pareto front through local interactions that each update
parts of this geometric shape. Therefore, this research direction could pave the way
for multi-policy MORL in real-world problem environments.

• Risk-sensitive learning with Pareto Q-learning : Although Pareto Q-learning is primar-
ily designed for multi-objective problems. It could also be employed to augment
standard single-objective problems. Through a principle called multi-objectivisation,
additional, artificial objectives can be constructed to improve the performance on the
original objective, as measured by solution quality, time to solution, or some other
measure (Knowles et al., 2001). In this way, one could solve a practical problem of
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reinforcement learning in real-world applications, i.e., in those cases, algorithms that
solely focus on maximising the mean return might be inappropriate as they do not
account for the variability of their solutions. Thereby, a variability measure could
be included to accommodate for a risk-sensitive setting, where the decision maker
can explicitly define the tolerated level of deviation of the observed return from the
expected return. In Van Mo�aert et al. (2015), we scratched the surface of this
idea by learning a set of optimal trade-o� policies that balance mean reward and its
variance.

• Many-objective optimisation: The algorithms presented throughout this dissertation
were developed for multi-objective problems. In practice this means the environ-
ments deal with two to three objectives. Many-objective optimisation is another
research topic that moves beyond this point and deals with the optimisation of four
or more objectives (Deb and Jain, 2014; Jain and Deb, 2014). This branch poses
great challenges to the classical approaches since the number of Pareto incomparable
solutions grows when the number of objectives increases as well (Winkler, 1985).
Nonetheless, the underlying mechanisms of our algorithms, such as the hypervolume
and the Pareto dominance relation, are without adaptation also theoretically ap-
plicable in these many-objective environments. However, a huge amount of Pareto
incomparable solutions will unquestionably a�ect the running time of the algorithms
in practice since the space of possible solutions can become very large. In future
work, researchers could investigate to what degree these algorithms scale up to
many-objective problems. A possible idea to shrink down the huge solution space
would be to employ user-defined preference functions that emphasise certain parts
of the objective space.

8.4 Overview
In this dissertation, we have presented several multi-objective reinforcement learning al-
gorithms for many di�erent situations. For the sake of clarity, in Figure 8.1, we summarise
our algorithmic contributions based on three aspects. These aspects are (1) whether the
decision maker wants to learn a single or multiple policies, (2) whether or not convex solu-
tions su�ce (or are also non-convex solutions of interest?) and (3) whether the problem
consists of a continuous or a discrete action range.
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Figure 8.1: An overview of the di�erent algorithmic contributions in this dissertation,
depending on the type of problem and whether convex solutions su�ce for the decision
maker.
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s(t) State at timestep t
S = s1, . . . , sN Set of states
r(t + 1) Observed immediate reward at timestep t + 1

T (sÕ|s, a) Probability of arriving in state sÕ after selecting action a in
state s

R(s, a, sÕ
) Expected reward associated to transitioning from state s

with action a to state sÕ

· Temperature parameter of the Softmax action selection
Rt The return up to timestep t
fi Policy
fi(s, a) Probability of selecting an action a in state s
� Space of policies
V fi

(s) The value of state s under policy fi
V ú

(s) The value of state s under an optimal policy
Qfi

(s, a) The value of action a in state s under policy fi
Qú

(s, a) The value of action a in state s under an optimal policy
ˆQ(s, a) The estimated value of action a in state s
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List of symbols

Multi-objective reinforcement learning
F Multi-objective optimization function
m Number of objectives
X The space of decision vectors
ª Strict Pareto dominance
∞ Weak Pareto dominance
Î Pareto incomparable
⌃ Pareto non-dominated
R(s, a, sÕ

) Expected reward vector associated to transitioning from
state s with action a to state sÕ

V

fi
(s) The vector value of state s under policy fi

V

ú
(s) The vector value of state s under an optimal policy

Q

fi
(s, a) The vector value of action a in state s under policy fi

Q

ús, a The vector value of action a in state s under an optimal
policy

ˆ

Q(s, a) The estimated vector value of action a in state s
SQ(s, a) The scalarized value of action a in state s
CH(�) The convex hull of a set of policies �

PF (�) The Pareto front of a set of policies �

z

ú The attraction point of the Chebyshev scalarisation function
w The weight vector of a scalarisation function
X The continuous action space of an X -armed bandit problem
(h, i) A node of the tree of the HOO strategy at index i and

depth h
Ph,i The area of the action space corresponding to node (h, i)
Uh,i(n) The U -value of node n located at index i and depth h
Uh,i(n) The U-vector of node n located at index i and depth h
Bh,i(n) The B-value of node n located at index i and depth h
Bh,i(n) The B-vector of node n located at index i and depth h
µ̂h,i(n) The estimated average reward of node n located at index i

and depth h
Th,i(n) The number of times node n located at index i and depth

h is sampled
ˆQset(s, a) A set of Q(s, a) vectors
R(s, a) The average immediate reward of taking action a in state

s
NDt(s, a) The set of Pareto non-dominated vectors of the state

reached after selecting action a in state s
n(s, a) The number of times action a is selected in state s
F sÕ

s,a The observed frequency of reaching state sÕ after selecting
a in state s
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