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THANKS

I Many slides provided by Joao Marques Silva
I Material of a SAT/SMT summer school http:

//satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
I Forms the basis of Joao Marques-Silva, Sharad Malik:

Propositional SAT Solving. Handbook of Model Checking 2018:
247-275

http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
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OVERVIEW

I The SAT problem
I DPLL (1962)
I CDCL (1996)
I What’s hot in SAT?
I Tentacles of CDCL
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The SAT problem
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THE SUCCESS OF SAT

I Given a formula in propositional logic (in CNF), decide whether it issatisfiable

I Well-known NP-complete decision problem [C71]
I In practice, SAT is a success story of Computer Science

I Hundreds (even more?) of practical applications
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SAT SOLVER IMPROVEMENT

[Source: Le Berre&Biere 2011]
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PRELIMINARIES

I Variables: w, x, y, z, a, b, c, . . .
I Literals: w, x̄, ȳ, a, . . . , but also ¬w,¬y, . . .
I Clauses: disjunction of literals or set of literals
I Formula: conjunction of clauses or set of clauses
I (Partial) assignment: partial/total mapping from variables to {0, 1}
I Model: (partial) assignment such that at least one literal in everyclause is true (1)
I Formula can be SAT/UNSAT

I Example:
F , (r) ∧ (̄r ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Example models:
I {r, s, a, b, c, d}
I {r, s, x̄, y, w̄, z, ā, b, c, d}
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RESOLUTION

I Resolution rule: [DP60,R65]
(α ∨ x) (β ∨ x̄)

(α ∨ β)

I Complete proof system for propositional logic

I Extensively used with (CDCL) SAT solvers
I Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)

(α)
I (α) subsumes (α ∨ x)
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(a) (ā)
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UNIT PROPAGATION

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

I Additional definitions:
I Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d
I Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...
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DPLL
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ȳ

x

a ā
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ȳ

x

a ā
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ā b̄ ⊥

a ā
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x̄



12

CDCL
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WHAT IS A CDCL SAT SOLVER?

I Extend DPLL SAT solver with: [DP60,DLL62]
I Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

I Exploit UIPs [MSS96,SSS12]
I Minimize learned clauses [SB09,VG09]
I Opportunistically delete clauses [MSS96,MSS99,GN02]

I Search restarts [GSK98,BMS00,H07,B08]
I Lazy data structures

I Watched literals [MMZZM01]
I Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]
I Phase saving [PD07]

I ...
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CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅
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y

zz a

b

⊥

I Analyze conflict

I Reasons: x and z
I Decision variable & literals assigned at lower decision levels

I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations
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CLAUSE LEARNING – AFTER BRACKTRACKING

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

I Clause (x̄ ∨ z̄) is asserting at decision level 1
I Learned clauses are always asserting [MSS96,MSS99]
I Backtracking differs from plain DPLL:

I Always bactrack after a conflict [MMZZM01]
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MULTIPLE UIPS

Level Dec. Unit Prop.
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I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]
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I Recent results show it can be beneficial on current instances[SSS12]
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CLAUSE MINIMIZATION II
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I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization
I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited
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SEARCH RESTARTS I

I Heavy-tail behavior: [GSK98]

I 10000 runs, branching randomization on industrial instance
I Use rapid randomized restarts (search restarts)
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SEARCH RESTARTS II

I Restart search after a numberof conflicts

I Increase cutoff after eachrestart
I Guarantees completeness
I Different policies exist (seerefs)

I Works for SAT & UNSATinstances. Why?
I Learned clauses effective afterrestart(s)

solutioncutoffcutoff
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DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why?

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others
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WATCHED LITERALS

[MMZZM01]
I Important states of a clause

I Associate 2 references witheach clause
I Deciding unit requirestraversing all literals
I References unchanged whenbacktracking
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ADDITIONAL KEY TECHNIQUES

I Lightweight branching [e.g. MMZZM01]
I Use conflict to bias variables to branch on, associate score witheach variable
I Prefer recent bias by regularly decreasing variable scores

I Clause deletion policies
I Not practical to keep all learned clauses
I Delete less used clauses [e.g. MSS96,GN02,ES03]

I Proven recent techniques:
I Phase saving [PD07]
I Literal blocks distance [AS09]
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WHAT’S HOT IN SAT?

I Clause learning techniques [e.g. ABHJS08,AS09]
I Clause learning is the key technique in CDCL SAT solvers
I Many recent papers propose improvements to the basic clauselearning approach

I Preprocessing & inprocessing
I Many recent papers [e.g. JHB12,HJB11]
I Lots of recent work on symmetry exploitation (static/dynamic)[e.g. DBB17,JKKK17]
I Essential in some applications
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WHAT’S HOT IN SAT?

I Proofs
I Proof logging (RUP, RAT, DRAT) [HHKW17]
I Proof complexity [VEGGN18]

I Other Inference Methods
I (Probabilistic) Model counting [e.g. AHT18]
I Optimisation (E.g., MAXSAT – more later) [e.g. LM09]
I Enumeration
I MUSes / MCSes

I Applications
I In various domains
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Tentacles of CDCL
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SOME TENTACLES OF CDCL

I Lazy Clause Generation for Constraint solving or SAT modulotheories
I Conflict-driven pseudo-Boolean solving
I Incremental SAT solving for MAXSAT & QBF.
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SAT ENCODINGS

I Many different problems can easily be encoded into SAT
I For instance, finite-domain Constraint Solving
I Various encoding options:

I Equality: encode variable X ∈ [−100, 100] by Boolean variables
JX=−100K, JX=−99K, . . .with uniqueness constraints

I Bound: encode variable X ∈ [−100, 100] by Boolean variables
JX≤−100K, JX≤−99K, . . .with constraints

JX≤−100K ∨ JX≤−99K, JX≤−99K ∨ JX≤−98K, . . .

I Log: encode variable X ∈ [−100, 100] by means of bitvectors
I This talk assumes the Bound encoding.
I For each type of constraints, an encoding has to be invented
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SAT ENCODINGS – EXAMPLE

X,Y,Z,U,V ∈ [−100, 100] (1)
4U− X − Y ≥ 4 (2)
V ≥ U (3)
Z ≥ 5V (4)
Y + Z ≤ 24 (5)

(JX≤−100K ∨ JX≤−99K) ∧ (JX≤−99K ∨ JX≤−98K) ∧ · · · ∧ (JY≤−100K ∨ JY≤−99K) ∧ . . .

· · · ∧ (JX≤−3K ∨ JY≤9K ∨ JU≤2K) ∧ · · · ∧ (JX≤9K ∨ JY≤9K ∨ JU≤5K) ∧ . . .

(JV≤100K ∨ JU≤100K) ∧ (JV≤99K ∨ JU≤99K) ∧ · · · ∧ (JV≤5K ∨ JU≤5K) ∧ . . .

· · · ∧ (JV≤0K ∨ JZ≤4K) ∧ · · · ∧ (JV≤2K ∨ JZ≤14K) ∧ . . .
· · · ∧ (JY≤9K ∨ JZ≤14K) ∧ . . .
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CONSTRAINT PROGRAMMING USING SAT

I If the SAT encoding of a CP program is not too large (at least: fitsin memory), we can create it eagerly and use a CDCL solver tosolve it.
I But... we can also generate it lazily = Lazy Clause Generation(LCG)

I Many constraint propagators work by search + domain propagation
I Idea: generate parts of the encoding only when CDCL solvers needsit:

I During propagation
I During explanation

Can use structure in constraints to learn better clauses !Example on Blackboard
I Many more interesting phenomena going on in LCG (see you nextweek!)
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PSEUDO-BOOLEAN SOLVING

Observations:
I Resolution proof system is weak (cfr Pigeonhole)
I Stronger proof systems exist, for instance cutting planes makesuse of (linear) pseudo-Boolean constraints (linear constraints overliterals) [CCT87]

I A clause a ∨ b̄ ∨ c corresponds to a PB constraint
a + b̄ + c ≥ 1

I A PB constraint
a + b̄ + 2 · c + d ≥ 2

cannot be translated into a single clause
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CUTTING PLANE PROOF SYSTEM

l ≥ 0 (literal axiom)∑
i aili ≥ A

∑
i bili ≥ B∑

i(cai + dbi)li ≥ cA + dB (linear combination)∑
i aili ≥ A∑

idai/celi ≥ dA/ce
(division)
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CUTTING PLANES VS RESOLUTION

I In theory, learning cutting planes could allow to derive unsatproofs much faster
I In practice, CDCL solvers seem to outperform cutting planesolvers
I Very recently, new cutting-plane solvers, inspired by CDCL arearising [GNY19]

I Various issues show up: generalizing CDCL, 1UIP, ... far from obvious!
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INCREMENTAL SAT SOLVING & SAT ORACLES

I Incremental SAT Solving: [ES01]
I Allow calling a solver with a set of assumptions

I Variables whose value is set before the search start (never backtrackover them!)
I Often used: replace each clause Ci with Ci ∨ ¬ai

I ai = 1 to activate clause Ci
I ai = 0 to deactivate clause Ci

I Enables clause reuse

I Answer of a SAT solver:
I SAT + satisfying assignment
I UNSAT + unsat core (MUS)

I Use: SAT solver as oracle in encompassing algorithm
I For optimization (MAXSAT)
I For tackling problems arbitrary high up the polynomial hierarchy(QBF)
I Cores/Assignments often used in encompassing algorithm (whichmight be a CDCL/LCG solver itself!)
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THANK YOU

If you are interested in doing research in this direction (Master thesis /PhD), don’t hesitate to e-mail me, or drop by my office
bart.bogaerts@vub.bePleinlaan 9, 3.67

bart.bogaerts@vub.be
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