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THANKS

» Many slides provided by Joao Marques Silva

> Material of a SAT/SMT summer school http:
//satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf

» Forms the basis of Joao Marques-Silva, Sharad Malik:
Propositional SAT Solving. Handbook of Model Checking 2018:
247-275


http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf

» The SAT problem
> DPLL (1962)

» CDCL (1996)

» What's hot in SAT?
» Tentacles of CDCL
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THE SUCCESS OF SAT

» Given a formula in propositional logic (in CNF), decide whether it is

satisfiable
» Well-known NP-complete decision problem [C71]
» |n practice, SAT is a success story of Computer Science
» Hundreds (even more?) of practical applications
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SAT SOLVER IMPROVEMENT

[Source: Le Berre&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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PRELIMINARIES
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Variables: w,x,y,z,a,b,c,...

Literals: w,X,y,a,..., butalso—-w, -y, ...

Clauses: disjunction of literals or set of literals

Formula: conjunction of clauses or set of clauses

(Partial) assignment: partial/total mapping from variables to {0, 1}

Model: (partial) assignment such that at least one literal in every
clause is true (1)

Formula can be SAT/UNSAT
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VVvVvYVYyVvVYvyyYy

Variables: w,x,y,z,a,b,c,...

Literals: w,X,y,a,..., butalso—-w, -y, ...

Clauses: disjunction of literals or set of literals

Formula: conjunction of clauses or set of clauses

(Partial) assignment: partial/total mapping from variables to {0, 1}

Model: (partial) assignment such that at least one literal in every
clause is true (1)

» Formula can be SAT/UNSAT

» Example:

FE(AFVS)A(WVa)AFVD)AFVZVE)A(DVEVd)

> Example models:
> {r7s7a?b’c7d}
» {r737)_(7y7 M_/7Z757b7c7d}



RESOLUTION

» Resolution rule; [DP60,R65]

(aVX) (BVX)
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» Complete proof system for propositional logic
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» Resolution rule:

(aVx) (BVX)
(aVp)

» Complete proof system for propositional logic

(xVva) (xVva) (yva) (yva)

|~ ~
\ /

» Extensively used with (CDCL) SAT solvers

[DP60,R65]



RESOLUTION

» Resolution rule: [DP60,R65]

(aVx) (BVX)
(aVp)

» Complete proof system for propositional logic

(xVva) (xVva) (yva) (yva)

(a) \ /
» Extensively used with (CDCL) SAT solvers

» Self-subsuming resolution (with o/ C «): le.g. SP04,EBO5]

(aVx) (o’ VX)

()

> (a) subsumes (a V x)
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UNIT PROPAGATION

F = (NA(VS)A
(wv )/\(x\/a\/b)
(yvzve)a(bvevd)

» Decisions / Variable Branchings:

w=1lx=1y=1z=1

Level

Dec. Unit Prop.

N

z——>c——>d
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UNIT PROPAGATION
Level  Dec. Unit Prop.

F = (NAFVS)A ¢ 0 r—>s
(W v )/\(x\/a\/b) ! W—’i
(yvzve)an(bvecvd) ) b

Decisions / Variable Branchings: 3 y

w=1lx=1ly=1z=1 \

4 z—>c——>d

» Additional definitions:
> Antecedent (or reason) of an implied assignment
> (bvcvd)ford
> Associate assignment with decision levels
> w=101,x=102,y=103,z=104
> r=100,d =104, ..
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THE DPLL ALGORITHM

|
v

F = (xVy)A(avb)A(aVb)A(aVvb)A(avb)
nassigne N
Uvariab‘i:,es.;j
lv
s 0o 0

1‘7

Unit
propagation

!

Conflict 7
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N Can undo
decision ?

lv
Backtrack &
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Level  Dec. Unit Prop.
Satisfiable

Unsatisfiable

» Optional: pure literal rule
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WHAT IS A CDCL SAT SOLVER?

» Extend DPLL SAT solver with:

[DP60,DLL62]

» Clause learning & non-chronological backtracking [MSS96,8597,797]

> Exploit UIPs
» Minimize learned clauses
» Opportunistically delete clauses

» Search restarts

» Lazy data structures
» Watched literals

» Conflict-guided branching

» Lightweight branching heuristics
» Phase saving

[MSS96,SSS12]
[SB09,VG09]
[MSS96,MSS99,GN02]

[GSK98,BMS00,H07,B08]

IMMZZMOT]

[MMZZMO1]
[PDO7]
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CLAUSE LEARNING
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» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels
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» Can relate clause learning with resolution



CLAUSE LEARNING

Level Dec. Unit Prop.
0 0 _
(avb) (zvb) (xvzva)
1 X | /
2 y \ o
@ E \i § /:, S (xv2)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels
> Create new clause: (X V 2)
» Can relate clause learning with resolution
» |earned clauses result from (selected) resolution operations
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CLAUSE LEARNING — AFTER BRACKTRACKING

Level  Dec. Unit Prop. Level  Dec. Unit Prop.
0 0 0 0
1 X 1 X——> 2
2 y
3 z

» Clause (X V ) is asserting at decision level 1
» |earned clauses are always asserting [MSS96,MSS99]

» Backtracking differs from plain DPLL:
» Always bactrack after a conflict [MMZZMO1]
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UNIQUE IMPLICATION POINTS (UIPS)
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UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop. (bve) (wve) (xvavb) (yvzva)

0 0 /
1 M

(w v b)
2 . (wvxva)
3 y
(WVvXVyVvz)

—_—

J

|

- <[l
- <€—o

> VNI
» ButaisaUIP

> Learnclause (WV XV a)
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MULTIPLE UIPS

Level  Dec. Unit Prop. » First UIP:
0 0 > learnclause (wVyVa)
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Level  Dec. Unit Prop. » First UIP:
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MULTIPLE UIPS

Level  Dec. Unit Prop. » First UIP:
0 0 > Learnclause (wVyVa)
1 w » But there can be more than 1 UIP
» Second UIP:
2 X > learnclause (X VZVa)
> |n practice smaller clauses more
3 y effective

> Compare with (W VX VyVZ)

\: r )% a c
s h——— L
» Multiple UIPs proposed in GRASP [MSS96]
» First UIP learning proposed in Chaff MMZZMO01]
» Not used in recent state of the art CDCL SAT solvers

» Recent results show it can be beneficial on current instances
[SSS12]

17
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CLAUSE MINIMIZATION |

Level  Dec. Unit Prop.
0 0
1 X———>b
2 y
3 z C m— |

» Learnclause (X \Vy VZV b)

(ave)

(zvbve)

\
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CLAUSE MINIMIZATION |

Level  Dec. Unit Prop. (ave) (zvbve) (xvyvzva) (xVvb)

0o l/

1 xX——>b (zvbva)
2 ¥ (Xvyvzvbh)
3 z C m— |

» Learnclause (X \Vy VZV b)
» Apply self-subsuming resolution (i.e. local minimization)

[SBO9]
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Level  Dec. Unit Prop. (ave) (zvbve) (xvyvzva) (xVvb)
0 [ /
1 B——>» (zvbva)
2 (XVyVvzvbh)
3 C = |
(xVvyvz)

> SVENEI
» Apply self-subsuming resolution (i.e. local minimization)
» Learnclause (X VyV Z)
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> Learnclause (W VXV C)
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Level  Dec. Unit Prop.
0 0

¥

> Learnclause (W VXV C)
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> Learr-eladse{w-vx&}
0 )
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1 resolution

M

/ > Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

» Marked nodes: literals in learned clause [SB0O9]
» Trace back from ¢ until marked nodes or new nodes / decisions
> Learn clause if only marked nodes visited
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CLAUSE MINIMIZATION I

Level  Dec. Unit Prop.

> E_ - _
0 0

» Cannot apply self-subsuming
1 resolution

/ > Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

» Learn clause (w V X)

M

» Marked nodes: literals in learned clause [SB0O9]

» Trace back from ¢ until marked nodes or new nodes / decisions
» Learn clause if only marked nodes visited

19



SEARCH RESTARTS |

» Heavy-tail behavior:

%below
\

07 /
064 /
054/

0.4

034

0 2000 4000

» 10000 runs, branching randomization on industrial instance
» Use rapid randomized restarts (search restarts)

6000

8000 10000 12000

#backtracks

[GSK98]

20
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» Restart search after a number
of conflicts
» Increase cutoff after each
restart
» Guarantees completeness
> Different policies exist (see
refs)
» Works for SAT & UNSAT
instances. Why?

cutoff cutoff

snlminn
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SEARCH RESTARTS I

» Restart search after a number
of conflicts
» Increase cutoff after each
restart
» Guarantees completeness
> Different policies exist (see
refs) 3
» Works for SAT & UNSAT cutoft
instances. Why?

» Learned clauses effective after
restart(s)

solution

21
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DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause
» Number of clause references equals number of literals, L
> Clause learning can generate large clauses
> Worst-case size: O(n)
> Worst-case number of literals: O(mn)
» |n practice,

Unit propagation slow-down worse than linear as clauses are learned !

» Clause learning to be effective requires a more efficient
representation: Watched Literals

> Watched literals are one example of lazy data structures
» But there are others

22



WATCHED LITERALS

» Important states of a clause

literalsO =4
literals1=0
size=5

XXX X

unit

literalsO =4
literals1=1
size=5

XXX A

satisfied

literalsO =5
literals1=0
size=5

EONEG2ON

unsatisfied

IMMZZMO1]
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WATCHED LITERALS

[MMZZMO1]
» Important states of a clause ’ | N ¢ ‘ N et
unresolve:
» Associate 2 references with = =
each clause
/I
‘ N unresolved
@5 @3 @1
,,,,,,,,,,,,,,,,,,,,,,,, R
unit
@5 @3 @7 @1
y
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
@3 @1
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WATCHED LITERALS

» Important states of a clause

> Associate 2 references with
each clause

» Deciding unit requires
traversing all literals

[MMZZMO1]
! |
’ N ‘ N unresolved
@3 @1
('
‘ N unresolved
@ @3 @l
’’’’’’’’’’’’’’’’’’’’’ i {,
unit
@5 @3 @1 el
||
satisfied
@ @3 @7 @ el
b
’ N ‘ N after backtracking to level 4
@3 el
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WATCHED LITERALS

MMZZMO1]
» Important states of a clause ’ ¢ N ¢ ‘ N et
unresolve
> Associate 2 references with = =
each clause b
» Deciding unit requires w ‘ N S
traversing all literals e —
» References unchanged when B
backtracking b _
unit
@5 @3 @7 @1
[
satisfied

@5 @3 @ @ @l

|
’ N ‘ N after backtracking to level 4

23
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» Lightweight branching le.g. MMZZMO01]
> Use conflict to bias variables to branch on, associate score with
each variable
> Prefer recent bias by regularly decreasing variable scores
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ADDITIONAL KEY TECHNIQUES

» Lightweight branching le.g. MMZZMO01]

» Use conflict to bias variables to branch on, associate score with
each variable
> Prefer recent bias by regularly decreasing variable scores

» Clause deletion policies

> Not practical to keep all learned clauses
» Delete less used clauses [e.g. MSS96,GN02,ES03]

» Proven recent techniques:

» Phase saving [PDO7]
» Literal blocks distance [AS09]
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WHAT'S HOT IN SAT?

» Clause learning techniques le.g. ABHJS08,AS09]

» Clause learning is the key technique in CDCL SAT solvers
» Many recent papers propose improvements to the basic clause
learning approach

» Preprocessing & inprocessing

» Many recent papers le.g. JHB12,HJIB11]
» |ots of recent work on symmetry exploitation (static/dynamic)

le.g. DBB17,JKKK17]
» Essential in some applications
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WHAT'S HOT IN SAT?

» Proofs

» Proof logging (RUP, RAT, DRAT)
> Proof complexity

» Other Inference Methods

» (Probabilistic) Model counting

» Optimisation (E.g., MAXSAT - more later)
» Enumeration

> MUSes / MCSes

» Applications
» |nvarious domains

[HHKW17]
[VEGGN18]

le.g. AHT18]
[e.g. LMO09]
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SOME TENTACLES OF CDCL

» [azy Clause Generation for Constraint solving or SAT modulo
theories

» Conflict-driven pseudo-Boolean solving
» Incremental SAT solving for MAXSAT & QBF.
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SAT ENCODINGS

» Many different problems can easily be encoded into SAT
» For instance, finite-domain Constraint Solving

» Various encoding options:

> Equality: encode variable X € [—100,100] by Boolean variables
[x==100], [x=—99], ... with uniqueness constraints

» Bound: encode variable X € [-100,100] by Boolean variables
[x<—100], [x<—99], ... with constraints

[x<—100] V [x<—99], [x<—99] V [x<—og], ...

> [ og: encode variable X € [—100, 100] by means of bitvectors
» This talk assumes the Bound encoding.
» For each type of constraints, an encoding has to be invented
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SAT ENCODINGS — EXAMPLE

X,Y,Z,U,V e [-100,100] (1)
AU-X-Y>4 2)
V>U 3)
Z>5V (4)
Y+Z<24 (5)

([x<=100] V [x<=99]) A ([x<—99] V [x<—98]) A--- A ([y<—100] V [r<—99]) A ...

A ([x<=3] Vv [y<o] Vv u<2]) A= A ([x<9] Vv [y<9] V uss]) A ...
([v<io0] V [u<ioo])) A ([v<eo] V [u<9o]) A --- A ([v<s] V [u<s]) A ...
o A(vo] V z<a) Ao A([v<2] V [z<]) A - .

A (<o) Vz<a]) A




CONSTRAINT PROGRAMMING USING SAT

» |f the SAT encoding of a CP program is not too large (at least: fits
in memory), we can create it eagerly and use a CDCL solver to
solve it.

> (But...)we can also generate it lazily = Lazy Clause Generation

LCG

» Many constraint propagators work by search + domain propagation
> |dea: generate parts of the encoding only when CDCL solvers needs
it:
» During propagation
» During explanation
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CONSTRAINT PROGRAMMING USING SAT

» |f the SAT encoding of a CP program is not too large (at least: fits
in memory), we can create it eagerly and use a CDCL solver to
solve it.

» But... we can also generate it lazily = Lazy Clause Generation

(LCG)
» Many constraint propagators work by search + domain propagation
> |dea: generate parts of the encoding only when CDCL solvers needs

it:
» During propagation
» During explanation
Can use structure in constraints to learn better clauses !

Example on Blackboard
» Many more interesting phenomena going on in LCG (see you next

week!)
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PSEUDO-BOOLEAN SOLVING

Observations:
» Resolution proof system is weak (cfr Pigeonhole)

» Stronger proof systems exist, for instance cutting planes makes
use of (linear) pseudo-Boolean constraints (linear constraints over
literals) [CCT87]

> Aclausea Vb V ¢ corresponds to a PB constraint

a+b+c>1

> A PB constraint _
at+b+2.c+d>2

cannot be translated into a single clause
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CUTTING PLANE PROOF SYSTEM

(literal axiom)

>0
al > bil; >
Zg.’f((;’i b S EAIT&B_ B (linear combination)
; >

Ei aili > A
>.ilai/clli = [A/c]

(division)
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CUTTING PLANES VS RESOLUTION

» |n theory, learning cutting planes could allow to derive unsat
proofs much faster

» |n practice, CDCL solvers seem to outperform cutting plane

solvers
» Very recently, new cutting-plane solvers, inspired by CDCL are
arising [GNY19]

» Various issues show up: generalizing CDCL, TUIPR, ... far from obvious!
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INCREMENTAL SAT SOLVING & SAT ORACLES

» Incremental SAT Solving: [ESOT]
> Allow calling a solver with a set of assumptions

> Variables whose value is set before the search start (never backtrack
over them!)
> Often used: replace each clause C; with C; v —a;
» a; = 1to activate clause C;
» a; = 0to deactivate clause C;

» Enables clause reuse
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INCREMENTAL SAT SOLVING & SAT ORACLES

» Incremental SAT Solving: [ESOT]
> Allow calling a solver with a set of assumptions

> Variables whose value is set before the search start (never backtrack
over them!)

> Often used: replace each clause C; with C; v —a;

» a; = 1to activate clause C;
» a; = 0to deactivate clause C;

» Enables clause reuse
» Answer of a SAT solver:
» SAT + satisfying assignment
» UNSAT + unsat core (MUS)
» Use: SAT solver as oracle in encompassing algorithm

> For optimization (MAXSAT)

» For tackling problems arbitrary high up the polynomial hierarchy
(QBF)

> Cores/Assignments often used in encompassing algorithm (which
might be a CDCL/LCG solver itself!)
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THANK YOU

If you are interested in doing research in this direction (Master thesis /
PhD), don't hesitate to e-mail me, or drop by my office

bart.bogaerts@vub.be
Pleinlaan 9, 3.67
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