Conflict-Driven Clause Learning

Current Trends in Al

Bart Bogaerts
March 13, 2020

R | ARTIFICIAL
| INTELLIGENCE
X RESEARCH GROUP

THANKS

» Many slides provided by Joao Marques Silva

> Material of a SAT/SMT summer school http:
//satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf

» Forms the basis of Joao Marques-Silva, Sharad Malik:
Propositional SAT Solving. Handbook of Model Checking 2018:
247-275

http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf

» The SAT problem
> DPLL (1962)

» CDCL (1996)

» What's hot in SAT?
» Tentacles of CDCL

The SAT problem

B | ARTIFICIAL
;}’ INTELLIGENCE
;—Q&:_ RESEARCH GROUP

THE SUCCESS OF SAT

» Given a formula in propositional logic (in CNF), decide whether it is
satisfiable

THE SUCCESS OF SAT

» Given a formula in propositional logic (in CNF), decide whether it is
satisfiable
» Well-known NP-complete decision problem [C7]

THE SUCCESS OF SAT

» Given a formula in propositional logic (in CNF), decide whether it is

satisfiable
» Well-known NP-complete decision problem [C7]
» |n practice, SAT is a success story of Computer Science
» Hundreds (even more?) of practical applications

THE SUCCESS OF SAT

» Given a formula in propositional logic (in CNF), decide whether it is

satisfiable
» Well-known NP-complete decision problem [C71]
» |n practice, SAT is a success story of Computer Science
» Hundreds (even more?) of practical applications

Model-Based Diagnosis

' .o Noise Analysis Technology Mappi
sty FaultLocaligatin - PEdIgee [:gnsistelf(?y“:uuﬂio:li]p;:g,ﬁl?oﬂﬁgn

Maximum Satisfiability Configuration epination Analysis
SUftwaI'e Testmgrilter nesign SWitching Network Verification

fafiahil Equivalence Checking Resource Constrained Scheduling
Satisfiability Modulo Theoriespagcaoe Nianagement syitc et
= Constraint Programming ~ FPGA Routing
su‘ftwareHM(]dEI chECkI"gcryptanalysisT8|800m Feature Subscription Timetabling

aplotyping model Findi :
Test Pattern Generation ode P|g1ﬂl:rl$glllali_[t!¥lcasgﬁtllrﬂs?sd el!es[i?g!lﬂglﬁgléilnlg]g

PuwerEstimationcim‘“it.nelay Cnmputation Genome Rearrangement -
Test Suite Minimization lazy Clause Generation
Pseudo-Boolean Formulas

SAT SOLVER IMPROVEMENT

[Source: Le Berre&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200 T T T
Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003) +
1000 - Zchaff (2004) +
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)

WOk X+

o o
Minisat 2.1 (2008) X ¥ B
Precosat (2009) 5
Glucose (2009) &
Clasp (2009) ~ * x
Cryptominisat (2010)
Lingeling (2010). £

*

800 -

Minisat 2.2 (2010)

Glucose 2 (2011) x 4
Glueminisat (2011)

Contrasat (2011) x K &P
Lingeling 587f (2011) %(X *

6000GO0®0+O4d bl

CPU Time (in seconds)
=)
8
T

200

0 20 40 60 80 100 120 140 160 180 200
Number of problems solved

PRELIMINARIES

VVvVvYVYyVvVYvyyYy I

v

Variables: w,x,y,z,a,b,c,...

Literals: w,X,y,a,..., butalso—-w, -y, ...

Clauses: disjunction of literals or set of literals

Formula: conjunction of clauses or set of clauses

(Partial) assignment: partial/total mapping from variables to {0, 1}

Model: (partial) assignment such that at least one literal in every
clause is true (1)

Formula can be SAT/UNSAT

PRELIMINARIES

VVvVvYVYyVvVYvyyYy

Variables: w,x,y,z,a,b,c,...

Literals: w,X,y,a,..., butalso—-w, -y, ...

Clauses: disjunction of literals or set of literals

Formula: conjunction of clauses or set of clauses

(Partial) assignment: partial/total mapping from variables to {0, 1}

Model: (partial) assignment such that at least one literal in every
clause is true (1)

» Formula can be SAT/UNSAT

» Example:

FE(AFVS)A(WVa)AFVD)AFVZVE)A(DVEVd)

> Example models:
> {r7s7a?b’c7d}
» {r737)_(7y7 M_/7Z757b7c7d}

RESOLUTION

» Resolution rule; [DP60,R65]

(aVX) (BVX)
(aVp)

» Complete proof system for propositional logic

RESOLUTION

» Resolution rule:

(aVx) (BVX)
(aVp)

» Complete proof system for propositional logic

(xVva) (xVva) (yva) (yva)

|~ ~
\ /

» Extensively used with (CDCL) SAT solvers

[DP60,R65]

RESOLUTION

» Resolution rule: [DP60,R65]

(aVx) (BVX)
(aVp)

» Complete proof system for propositional logic

(xVva) (xVva) (yva) (yva)

(a) \ /
» Extensively used with (CDCL) SAT solvers

» Self-subsuming resolution (with o/ C «): le.g. SP04,EBO5]

(aVx) (o’ VX)

()

> (a) subsumes (a V x)

UNIT PROPAGATION

Fo= 0
(w
i

A (FV S)A
Va)/\(X\/a\/b)
VZVc)A(bvevd)

UNIT PROPAGATION

F = (NA(VS)A
(wv)/\(x\/a\/b)
(yvzve)a(bvevd)

» Decisions / Variable Branchings:
w=1lx=1ly=1z=1

UNIT PROPAGATION

F = (NA(VS)A
(wv)/\(x\/a\/b)
(yvzve)a(bvevd)

» Decisions / Variable Branchings:

w=1lx=1y=1z=1

Level

Dec. Unit Prop.

N

z——>c——>d

v

UNIT PROPAGATION
Level Dec. Unit Prop.

F = (NAFVS)A ¢ 0 r—>s
(W v)/\(x\/a\/b) ! W—’i
(yvzve)an(bvecvd)) b

Decisions / Variable Branchings: 3 y

w=1lx=1ly=1z=1 \

4 z—>c——>d

» Additional definitions:
> Antecedent (or reason) of an implied assignment
> (bvcvd)ford
> Associate assignment with decision levels
> w=101,x=102,y=103,z=104
> r=100,d =104, ..

DPLL

B | ARTIFICIAL
,%’ INTELLIGENCE
%:_ RESEARCH GROUP

THE DPLL ALGORITHM
|
v
Unassigned N
variables ?
lv
Assign value
to variable
Unit
propagation
Conflict 7
lv
N Can undo

decision ?
lv
Unsatisfiable
Backtrack &
flip variable

» Optional: pure literal rule

THE DPLL ALGORITHM
Assign value
Conflict 7

|
v
variables ?
lv
Satisfiable
to variable
propagation
lv
N Can undo

decision ?
lv
Unsatisfiable
Backtrack &
flip variable

» Optional: pure literal rule

F = (xvy)A(avb)A(avb)A(avb)A(avb)

THE DPLL ALGORITHM

|
v

Unassigned N
variables ?

lv

Assign value

Satisfiable
to variable

Unit
propagation

!

Conflict 7

lv

N Can undo

decision ?
Unsatisfiable

lv
Backtrack &
flip variable

» Optional: pure literal rule

F = (xvy)A(avb)A(avb)A(avb)A(avb)

Level Dec. Unit Prop.
0 0
1 X
2 y
3 a b 1
X
y
a

THE DPLL ALGORITHM

L F = (xVy)A(avb)A(avb)A(avb)A(avh)
Unassigned N
variables ?
lY Level Dec. Unit Prop.
Satisfiable
Assi |
e 0o 0
}7 1 X
Unit 2 y
propagation
N Conflict 7

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &
flip variable

» Optional: pure literal rule

THE DPLL ALGORITHM

L F = (xVy)A(avb)A(avb)A(avb)A(avh)
Unassigned N
variables ?
lY Level Dec. Unit Prop.
Satisfiable
Assi |
e 0o 0
}7 1 X
Unit 2 y
propagation
N Conflict 7

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

» Optional: pure literal rule

THE DPLL ALGORITHM

|
v

Unassigned N
variables ?

lv
Assign value
to variable

1‘7

Unit
propagation

!

Conflict 7

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Satisfiable

Unsatisfiable

» Optional: pure literal rule

F = (xvy)A(avb)A(avb)A(avb)A(avb)

Level Dec. Unit Prop.
0 0
1 X
2y

THE DPLL ALGORITHM

|
v

F = (xvy)A(avb)A(avb)A(avb)A(avb)
nassigne N
Uvariab‘i:,es.;j
lv
ey 0o 0

1‘7

Unit
propagation

!

Conflict 7

lv

N Can undo

Level Dec. Unit Prop.
Satisfiable

decision ?
lv
Unsatisfiable
Backtrack &
flip variable

» Optional: pure literal rule

THE DPLL ALGORITHM

|
v

F = (xVy)A(avb)A(aVb)A(aVvb)A(avb)
nassigne N
Uvariab‘i:,es.;j
lv
s 0o 0

1‘7

Unit
propagation

!

Conflict 7

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Level Dec. Unit Prop.
Satisfiable

Unsatisfiable

» Optional: pure literal rule

CDCL

B | ARTIFICIAL
,%’ INTELLIGENCE
j%:_ RESEARCH GROUP

WHAT IS A CDCL SAT SOLVER?

» Extend DPLL SAT solver with:

[DP60,DLL62]

» Clause learning & non-chronological backtracking [MSS96,8597,797]

> Exploit UIPs
» Minimize learned clauses
» Opportunistically delete clauses

» Search restarts

» Lazy data structures
» Watched literals

» Conflict-guided branching

» Lightweight branching heuristics
» Phase saving

[MSS96,SSS12]
[SB09,VG09]
[MSS96,MSS99,GN02]

[GSK98,BMS00,H07,B08]

IMMZZMOT]

[MMZZMO1]
[PDO7]

CLAUSE LEARNING

Level Dec. Unit Prop.

0
X
y\
z a
\b

0
1
2

3 L

7

CLAUSE LEARNING

Level Dec. Unit Prop.

0

X

z \ a /
b

» Analyze conflict

0
1
2

3 L

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0
1 X
3 z \: a /:)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0
1 X
3 z \: a /:)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels

> Create new clause: (X V 2)

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0 _
(avb) (zvb) (xvzva)
1 X
3 z \:A a /:)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels

> Create new clause: (X V 2)
» Can relate clause learning with resolution

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0 _
(avb) (zvb) (xvzva)
1 X | /
2 y \ o
3 z \i a /: L
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels
> Create new clause: (X V 2)

» Can relate clause learning with resolution

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0 _
(avb) (zvb) (xvzva)
1 X | /
2 y \ o
R \i g /:, - (X 2)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels
> Create new clause: (X V 2)

» Can relate clause learning with resolution

CLAUSE LEARNING

Level Dec. Unit Prop.
0 0 _
(avb) (zvb) (xvzva)
1 X | /
2 y \ o
@ E \i § /:, S (xv2)
b

» Analyze conflict
» Reasons: x and z
» Decision variable & literals assigned at lower decision levels
> Create new clause: (X V 2)
» Can relate clause learning with resolution
» |earned clauses result from (selected) resolution operations

CLAUSE LEARNING — AFTER BRACKTRACKING

Level Dec. Unit Prop.
0 0
1 X
3 z a €

CLAUSE LEARNING — AFTER BRACKTRACKING

Level Dec. Unit Prop.
0 0
1 X
2 y
3 z

» Clause (X V) is asserting at decision level 1

CLAUSE LEARNING — AFTER BRACKTRACKING

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X——> 2
2 y
3 z

» Clause (X V) is asserting at decision level 1

CLAUSE LEARNING — AFTER BRACKTRACKING

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X——> 2
2 y
3 z

» Clause (X V) is asserting at decision level 1
» |earned clauses are always asserting [MSS96,MSS99]

» Backtracking differs from plain DPLL:
» Always bactrack after a conflict [MMZZMO1]

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop.

=
Voo

b——> L

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop. (bve) (wve) (xvavb) (yvzva)
0 [/
1 w (W Vv b)
2 (wvxva)
3
(WVvXVyVvz)
4

b=——> 1

» Learnclause (WVXVYyV2Z)

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop. (bve) (wve) (xvavb) (yvzva)
0 [/
1 w (W Vv b)
2 (wvxva)
3
(WVvXVyVvz)
4

» Learnclause (WVXVYyV2Z)
» ButaisaUIP

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop. (bve) (wve) (xvavb) (yvzva)

0 0 /
1 M

(w v b)
2 . (wvxva)
3 y
(WVvXVyVvz)

—_—

J

|

- <[l
- <€—o

> VNI
» ButaisaUIP

> Learnclause (WV XV a)

MULTIPLE UIPS

Level Dec. Unit Prop.
0 [
1 w

2 X
3 y\

- X

|

e

|

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > learnclause (wVyVa)
1 w

2 X
4 z

K

- <o

| |

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > learnclause (wVyVa)
1 w » But there can be more than 1UIP

2 X
4 z

A

|

e

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > Learnclause (wVyVa)
1 w » But there can be more than 1 UIP
» Second UIP:
2 X > Learnclause (X VZVa)
3 y

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > Learnclause (wVyVa)
1 w » But there can be more than 1 UIP
» Second UIP:
2 be > Learnclause (X VZVa)
> |n practice smaller clauses more
3 y effective

» Compare with (W VX VyVZ)

e

e

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > Learnclause (wVyVa)
1 w » But there can be more than 1 UIP
» Second UIP:
2 X > learnclause (X VZVa)
> |n practice smaller clauses more
3 y effective

> Compare with (W VX VyVZ)

\: r)% a c
s b———> 1|
» Multiple UIPs proposed in GRASP [MSS96]
» First UIP learning proposed in Chaff MMZZMO01]

» Not used in recent state of the art CDCL SAT solvers

17

MULTIPLE UIPS

Level Dec. Unit Prop. » First UIP:
0 0 > Learnclause (wVyVa)
1 w » But there can be more than 1 UIP
» Second UIP:
2 X > learnclause (X VZVa)
> |n practice smaller clauses more
3 y effective

> Compare with (W VX VyVZ)

\: r)% a c
s h——— L
» Multiple UIPs proposed in GRASP [MSS96]
» First UIP learning proposed in Chaff MMZZMO01]
» Not used in recent state of the art CDCL SAT solvers

» Recent results show it can be beneficial on current instances
[SSS12]

17

CLAUSE MINIMIZATION |

Level Dec. Unit Prop.
0 0
1 x——>b
2 y

DN
N\

CLAUSE MINIMIZATION |

Level Dec. Unit Prop.
0 0
1 X———>b
2 y
3 z C m— |

» Learnclause (X \Vy VZV b)

(ave)

(zvbve)

\

(xvyvzva)

CLAUSE MINIMIZATION |

Level Dec. Unit Prop. (ave) (zvbve) (xvyvzva) (xVvb)

0o l/

1 xX——>b (zvbva)
2 ¥ (Xvyvzvbh)
3 z C m— |

» Learnclause (X \Vy VZV b)
» Apply self-subsuming resolution (i.e. local minimization)

[SBO9]

CLAUSE MINIMIZATION |

Level Dec. Unit Prop. (ave) (zvbve) (xvyvzva) (xVvb)
0 [/
1 B——>» (zvbva)
2 (XVyVvzvbh)
3 C = |
(xVvyvz)

> B

» Apply self-subsuming resolution (i.e. local minimization)

CLAUSE MINIMIZATION |

Level Dec. Unit Prop. (ave) (zvbve) (xvyvzva) (xVvb)
0 [/
1 B——>» (zvbva)
2 (XVyVvzvbh)
3 C = |
(xVvyvz)

> SVENEI
» Apply self-subsuming resolution (i.e. local minimization)
» Learnclause (X VyV Z)

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.

©

0
1

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.

©

0
1

> Learnclause (W VXV C)

19

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.

> Learnclause (W VXV C)
0 0

» Cannot apply self-subsuming
1 resolution

\ / > Resolving with reason of c yields
(wvXxvavb)

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0 0

¥

> Learnclause (W VXV C)

» Cannot apply self-subsuming
resolution
> Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

19

CLAUSE MINIMIZATION I

Level Dec. Unit Prop. o
> Learr-eladse{w-vx&}
0)
0 » Cannot apply self-subsuming
1

resolution

\ / > Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

» Marked nodes: literals in learned clause [SB0O9]

19

CLAUSE MINIMIZATION I

Level Dec. Unit Prop. o
> Learr-eladse{w-vx&}
0)
! » Cannot apply self-subsuming
1 resolution

M

/ > Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

» Marked nodes: literals in learned clause [SB0O9]
» Trace back from ¢ until marked nodes or new nodes / decisions
> Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.

> E_ - _
0 0

» Cannot apply self-subsuming
1 resolution

/ > Resolving with reason of c yields
(wvXxvavb)
> Can apply recursive minimization

» Learn clause (w V X)

M

» Marked nodes: literals in learned clause [SB0O9]

» Trace back from ¢ until marked nodes or new nodes / decisions
» Learn clause if only marked nodes visited

19

SEARCH RESTARTS |

» Heavy-tail behavior:

%below
\

07 /
064 /
054/

0.4

034

0 2000 4000

» 10000 runs, branching randomization on industrial instance
» Use rapid randomized restarts (search restarts)

6000

8000 10000 12000

#backtracks

[GSK98]

20

SEARCH RESTARTS I

» Restart search after a number
of conflicts

21

SEARCH RESTARTS I

» Restart search after a number
of conflicts
» Increase cutoff after each
restart
> Guarantees completeness
» Different policies exist (see
refs)

21

SEARCH RESTARTS I

» Restart search after a number
of conflicts
» Increase cutoff after each
restart
» Guarantees completeness
> Different policies exist (see
refs)
» Works for SAT & UNSAT
instances. Why?

cutoff cutoff

snlminn

21

SEARCH RESTARTS I

» Restart search after a number
of conflicts
» Increase cutoff after each
restart
» Guarantees completeness
> Different policies exist (see
refs) 3
» Works for SAT & UNSAT cutoft
instances. Why?

» Learned clauses effective after
restart(s)

solution

21

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
> Why?

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the

clause
» Number of clause references equals number of literals, L

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

» Number of clause references equals number of literals, L
» Clause learning can generate large clauses
> Worst-case size: O(n)

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

» Number of clause references equals number of literals, L
» Clause learning can generate large clauses
> Worst-case size: O(n)

> Worst-case number of literals: O(mn)

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

» Number of clause references equals number of literals, L
» Clause learning can generate large clauses
> Worst-case size: O(n)

> Worst-case number of literals: O(mn)
» |n practice,

Unit propagation slow-down worse than linear as clauses are learned !

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

» Number of clause references equals number of literals, L
> Clause learning can generate large clauses
> Worst-case size: O(n)

> Worst-case number of literals: O(mn)
» |n practice,

Unit propagation slow-down worse than linear as clauses are learned !

» Clause learning to be effective requires a more efficient
representation:

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause

» Number of clause references equals number of literals, L
> Clause learning can generate large clauses
> Worst-case size: O(n)

> Worst-case number of literals: O(mn)
» |n practice,

Unit propagation slow-down worse than linear as clauses are learned !

» Clause learning to be effective requires a more efficient
representation: Watched Literals

22

DATA STRUCTURES BASICS

» Each literal I should access clauses containing /
» Why? Unit propagation

» Clause with k literals results in k references, from literals to the
clause
» Number of clause references equals number of literals, L
> Clause learning can generate large clauses
> Worst-case size: O(n)
> Worst-case number of literals: O(mn)
» |n practice,

Unit propagation slow-down worse than linear as clauses are learned !

» Clause learning to be effective requires a more efficient
representation: Watched Literals

> Watched literals are one example of lazy data structures
» But there are others

22

WATCHED LITERALS

» Important states of a clause

literalsO =4
literals1=0
size=5

XXX X

unit

literalsO =4
literals1=1
size=5

XXX A

satisfied

literalsO =5
literals1=0
size=5

EONEG2ON

unsatisfied

IMMZZMO1]

23

WATCHED LITERALS

[MMZZMO1]
» Important states of a clause ’ | N ¢ ‘ N et
unresolve:
» Associate 2 references with = =
each clause
/I
‘ N unresolved
@5 @3 @1
,,,,,,,,,,,,,,,,,,,,,,,, R
unit
@5 @3 @7 @1
y
satisfied
@5 @3 @ @7 @1
v
’ N ‘ N after backtracking to level 4
@3 @1

23

WATCHED LITERALS

» Important states of a clause

> Associate 2 references with
each clause

» Deciding unit requires
traversing all literals

[MMZZMO1]
! |
’ N ‘ N unresolved
@3 @1
('
‘ N unresolved
@ @3 @l
’’’’’’’’’’’’’’’’’’’’’ i {,
unit
@5 @3 @1 el
||
satisfied
@ @3 @7 @ el
b
’ N ‘ N after backtracking to level 4
@3 el

23

WATCHED LITERALS

MMZZMO1]
» Important states of a clause ’ ¢ N ¢ ‘ N et
unresolve
> Associate 2 references with = =
each clause b
» Deciding unit requires w ‘ N S
traversing all literals e —
» References unchanged when B
backtracking b _
unit
@5 @3 @7 @1
[
satisfied

@5 @3 @ @ @l

|
’ N ‘ N after backtracking to level 4

23

ADDITIONAL KEY TECHNIQUES

» Lightweight branching le.g. MMZZMO01]
> Use conflict to bias variables to branch on, associate score with
each variable
> Prefer recent bias by regularly decreasing variable scores

24

ADDITIONAL KEY TECHNIQUES

» Lightweight branching le.g. MMZZMO01]

» Use conflict to bias variables to branch on, associate score with
each variable
> Prefer recent bias by regularly decreasing variable scores

» Clause deletion policies

> Not practical to keep all learned clauses
» Delete less used clauses [e.g. MSS96,GN02,ES03]

24

ADDITIONAL KEY TECHNIQUES

» Lightweight branching le.g. MMZZMO01]

» Use conflict to bias variables to branch on, associate score with
each variable
> Prefer recent bias by regularly decreasing variable scores

» Clause deletion policies

> Not practical to keep all learned clauses
» Delete less used clauses [e.g. MSS96,GN02,ES03]

» Proven recent techniques:

» Phase saving [PDO7]
» Literal blocks distance [AS09]

24

vue

What's hot in SAT

B | ARTIFICIAL
§* INTELLIGENCE
j%:_ RESEARCH GROUP

25

WHAT'S HOT IN SAT?

» Clause learning techniques le.g. ABHJS08,AS09]

» Clause learning is the key technique in CDCL SAT solvers
» Many recent papers propose improvements to the basic clause
learning approach

» Preprocessing & inprocessing

» Many recent papers le.g. JHB12,HJIB11]
» |ots of recent work on symmetry exploitation (static/dynamic)

le.g. DBB17,JKKK17]
» Essential in some applications

26

WHAT'S HOT IN SAT?

» Proofs

» Proof logging (RUP, RAT, DRAT)
> Proof complexity

» Other Inference Methods

» (Probabilistic) Model counting

» Optimisation (E.g., MAXSAT - more later)
» Enumeration

> MUSes / MCSes

» Applications
» |nvarious domains

[HHKW17]
[VEGGN18]

le.g. AHT18]
[e.g. LMO09]

27

vue

Tentacles of CDCL

B | ARTIFICIAL
;}’ INTELLIGENCE
;—Q&:_ RESEARCH GROUP

28

SOME TENTACLES OF CDCL

» [azy Clause Generation for Constraint solving or SAT modulo
theories

» Conflict-driven pseudo-Boolean solving
» Incremental SAT solving for MAXSAT & QBF.

29

SAT ENCODINGS

» Many different problems can easily be encoded into SAT
» For instance, finite-domain Constraint Solving

» Various encoding options:

> Equality: encode variable X € [—100,100] by Boolean variables
[x==100], [x=—99], ... with uniqueness constraints

» Bound: encode variable X € [-100,100] by Boolean variables
[x<—100], [x<—99], ... with constraints

[x<—100] V [x<—99], [x<—99] V [x<—og], ...

> [og: encode variable X € [—100, 100] by means of bitvectors
» This talk assumes the Bound encoding.
» For each type of constraints, an encoding has to be invented

30

SAT ENCODINGS — EXAMPLE

X,Y,Z,U,V e [-100,100] (1)
AU-X-Y>4 2)
V>U 3)
Z>5V (4)
Y+Z<24 (5)

([x<=100] V [x<=99]) A ([x<—99] V [x<—98]) A--- A ([y<—100] V [r<—99]) A ...

A ([x<=3] Vv [y<o] Vv u<2]) A= A ([x<9] Vv [y<9] V uss]) A ...
([v<io0] V [u<ioo])) A ([v<eo] V [u<9o]) A --- A ([v<s] V [u<s]) A ...
o A(vo] V z<a) Ao A([v<2] V [z<]) A - .

A (<o) Vz<a]) A

CONSTRAINT PROGRAMMING USING SAT

» |f the SAT encoding of a CP program is not too large (at least: fits
in memory), we can create it eagerly and use a CDCL solver to
solve it.

> (But...)we can also generate it lazily = Lazy Clause Generation

LCG

» Many constraint propagators work by search + domain propagation
> |dea: generate parts of the encoding only when CDCL solvers needs
it:
» During propagation
» During explanation

32

CONSTRAINT PROGRAMMING USING SAT

» |f the SAT encoding of a CP program is not too large (at least: fits
in memory), we can create it eagerly and use a CDCL solver to

solve it.
» But... we can also generate it lazily = Lazy Clause Generation
(LCG)
» Many constraint propagators work by search + domain propagation
> |dea: generate parts of the encoding only when CDCL solvers needs
it:
» During propagation
» During explanation
Can use structure in constraints to learn better clauses !

Example on Blackboard

32

CONSTRAINT PROGRAMMING USING SAT

» |f the SAT encoding of a CP program is not too large (at least: fits
in memory), we can create it eagerly and use a CDCL solver to
solve it.

» But... we can also generate it lazily = Lazy Clause Generation

(LCG)
» Many constraint propagators work by search + domain propagation
> |dea: generate parts of the encoding only when CDCL solvers needs

it:
» During propagation
» During explanation
Can use structure in constraints to learn better clauses !

Example on Blackboard
» Many more interesting phenomena going on in LCG (see you next

week!)

32

PSEUDO-BOOLEAN SOLVING

Observations:
» Resolution proof system is weak (cfr Pigeonhole)

» Stronger proof systems exist, for instance cutting planes makes
use of (linear) pseudo-Boolean constraints (linear constraints over
literals) [CCT87]

> Aclausea Vb V ¢ corresponds to a PB constraint

a+b+c>1

> A PB constraint _
at+b+2.c+d>2

cannot be translated into a single clause

33

CUTTING PLANE PROOF SYSTEM

(literal axiom)

>0
al > bil; >
Zg.’f((;’i b S EAIT&B_ B (linear combination)
; >

Ei aili > A
>.ilai/clli = [A/c]

(division)

34

CUTTING PLANES VS RESOLUTION

» |n theory, learning cutting planes could allow to derive unsat
proofs much faster

» |n practice, CDCL solvers seem to outperform cutting plane

solvers
» Very recently, new cutting-plane solvers, inspired by CDCL are
arising [GNY19]

» Various issues show up: generalizing CDCL, TUIPR, ... far from obvious!

35

INCREMENTAL SAT SOLVING & SAT ORACLES

» Incremental SAT Solving: [ESOT]
> Allow calling a solver with a set of assumptions

> Variables whose value is set before the search start (never backtrack
over them!)
> Often used: replace each clause C; with C; v —a;
» a; = 1to activate clause C;
» a; = 0to deactivate clause C;

» Enables clause reuse

36

INCREMENTAL SAT SOLVING & SAT ORACLES

» Incremental SAT Solving: [ESOT]
> Allow calling a solver with a set of assumptions

> Variables whose value is set before the search start (never backtrack
over them!)

> Often used: replace each clause C; with C; v —a;

» a; = 1to activate clause C;
» a; = 0to deactivate clause C;

» Enables clause reuse
» Answer of a SAT solver:

» SAT + satisfying assignment
» UNSAT + unsat core (MUS)

36

INCREMENTAL SAT SOLVING & SAT ORACLES

» Incremental SAT Solving: [ESOT]
> Allow calling a solver with a set of assumptions

> Variables whose value is set before the search start (never backtrack
over them!)

> Often used: replace each clause C; with C; v —a;

» a; = 1to activate clause C;
» a; = 0to deactivate clause C;

» Enables clause reuse
» Answer of a SAT solver:
» SAT + satisfying assignment
» UNSAT + unsat core (MUS)
» Use: SAT solver as oracle in encompassing algorithm

> For optimization (MAXSAT)

» For tackling problems arbitrary high up the polynomial hierarchy
(QBF)

> Cores/Assignments often used in encompassing algorithm (which
might be a CDCL/LCG solver itself!)

36

THANK YOU

If you are interested in doing research in this direction (Master thesis /
PhD), don't hesitate to e-mail me, or drop by my office

bart.bogaerts@vub.be
Pleinlaan 9, 3.67

37

bart.bogaerts@vub.be

REFERENCES

DP60

DLL62

MSS96

BS97

297
GSK98

MSS99

BMS00

MMZZMO1

M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J. ACM 7(3): 201-
215 (1960)

M. Davis, G. Logemann, D. Loveland: A machine program for theorem-proving. Commun.
ACM 5(7): 394-397 (1962)

J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfiability. ICCAD
1996: 220-227

R. Bayardo Jr, R. Schrag: Using CSP Look-Back Techniques to Solve Real-World SAT In-
stances. AAAI/IAAI 1997: 203-208

H. Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through Randomization.
AAAI 1998: 431-437

J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional Satisfiability.
IEEE Trans. Computers 48(5): 506-521 (1999)

L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve Hard Real-World
Instances of Satisfiability. CP 2000: 489-494

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering an Efficient SAT
Solver. DAC 2001: 530-535

38

REFERENCES

GNO02
ESO3
PDO7

HO7

ABHJS08

BO8
SB09
VGO9

AS09

SSS12

E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE 2002: 142-149
N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme for Satisfiability
Solvers. SAT 2007: 294-299

J. Huang: The Effect of Restarts on the Efficiency of Clause Learning. IJCAI 2007: 2318-
2323

G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, L. Sais: A Generalized Framework for
Conflict Analysis. SAT 2008: 21-27

A. Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)
N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243

A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved Propositional
Proof Traces. SAT 2009: 141-146

G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT Solvers. [JCAI
2009: 399-404

A. Sabharwal, H. Samulowitz, M. Sellmann: Learning Back-Clauses in SAT. SAT 2012: 498-
499

39

REFERENCES

DBB17

JKKK17

HHKW17

VEGGN18

AHT18

CCT87

LPO9

GNY19

Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe: Symmetric Explanation Learning: Ef-
fective Dynamic Symmetry Handling for SAT. SAT 2017: 83-100

Tommi A. Junttila, Matti Karppa, Petteri Kaski, Jukka Kohonen: An Adaptive Prefix-
Assignment Technique for Symmetry Reduction.SAT 2017:101-118

Marijn Heule, Warren A. Hunt Jr., Matt Kaufmann, Nathan Wetzler: Efficient, Verified Check-
ing of Propositional Proofs. ITP 2017: 269-284

Marc Vinyals, Jan Elffers, JesAs GirAjldez-Cru, Stephan Gocht, Jakob Nordstrém: In Be-
tween Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SAT
Solving. SAT 2018: 292-310

Dimitris Achlioptas, Zayd Hammoudeh, Panos Theodoropoulos: Fast and Flexible Proba-
bilistic Model Counting. SAT 2018: 148-164

William J. Cook, Collette R. Coullard, Gyorgy Turan: On the complexity of cutting-plane
proofs. Discret. Appl. Math. 18(1): 25-38 (1987)

Chu Min Li, Felip ManyA : MaxSAT, Hard and Soft Constraints. Handbok of SAT 613-631
(2009)

Stephan Gocht, Jakob Nordstrém, Amir Yehudayoff: On Division Versus Saturation in
Pseudo-Boolean Solving. IJCAI 2019: 1711-1718

40

	The SAT problem
	Basic Definitions

	DPLL
	DPLL Solvers

	CDCL
	CDCL Solvers
	Clause Learning, UIPs & Minimization
	Search Restarts & Lazy Data Structures

	What's hot in SAT
	What Next in CDCL Solvers?

	Tentacles of CDCL
	Lazy Clause Generation
	Pseudo-Boolean Solving
	Selected References

