
1

Conflict-Driven Clause Learning
Current Trends in AI

Bart Bogaerts

March 13, 2020

2

THANKS

I Many slides provided by Joao Marques Silva
I Material of a SAT/SMT summer school http:

//satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
I Forms the basis of Joao Marques-Silva, Sharad Malik:

Propositional SAT Solving. Handbook of Model Checking 2018:
247-275

http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf
http://satsmt2013.ics.aalto.fi/slides/Marques-Silva.pdf

3

OVERVIEW

I The SAT problem
I DPLL (1962)
I CDCL (1996)
I What’s hot in SAT?
I Tentacles of CDCL

4

The SAT problem

5

THE SUCCESS OF SAT

I Given a formula in propositional logic (in CNF), decide whether it issatisfiable

I Well-known NP-complete decision problem [C71]
I In practice, SAT is a success story of Computer Science

I Hundreds (even more?) of practical applications

5

THE SUCCESS OF SAT

I Given a formula in propositional logic (in CNF), decide whether it issatisfiable
I Well-known NP-complete decision problem [C71]

I In practice, SAT is a success story of Computer Science
I Hundreds (even more?) of practical applications

5

THE SUCCESS OF SAT

I Given a formula in propositional logic (in CNF), decide whether it issatisfiable
I Well-known NP-complete decision problem [C71]
I In practice, SAT is a success story of Computer Science

I Hundreds (even more?) of practical applications

5

THE SUCCESS OF SAT

I Given a formula in propositional logic (in CNF), decide whether it issatisfiable
I Well-known NP-complete decision problem [C71]
I In practice, SAT is a success story of Computer Science

I Hundreds (even more?) of practical applications

6

SAT SOLVER IMPROVEMENT

[Source: Le Berre&Biere 2011]

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
PU

 T
im

e
(i

n
se

co
nd

s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

7

PRELIMINARIES

I Variables: w, x, y, z, a, b, c, . . .
I Literals: w, x̄, ȳ, a, . . . , but also ¬w,¬y, . . .
I Clauses: disjunction of literals or set of literals
I Formula: conjunction of clauses or set of clauses
I (Partial) assignment: partial/total mapping from variables to {0, 1}
I Model: (partial) assignment such that at least one literal in everyclause is true (1)
I Formula can be SAT/UNSAT

I Example:
F , (r) ∧ (̄r ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Example models:
I {r, s, a, b, c, d}
I {r, s, x̄, y, w̄, z, ā, b, c, d}

7

PRELIMINARIES

I Variables: w, x, y, z, a, b, c, . . .
I Literals: w, x̄, ȳ, a, . . . , but also ¬w,¬y, . . .
I Clauses: disjunction of literals or set of literals
I Formula: conjunction of clauses or set of clauses
I (Partial) assignment: partial/total mapping from variables to {0, 1}
I Model: (partial) assignment such that at least one literal in everyclause is true (1)
I Formula can be SAT/UNSAT
I Example:

F , (r) ∧ (̄r ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Example models:
I {r, s, a, b, c, d}
I {r, s, x̄, y, w̄, z, ā, b, c, d}

8

RESOLUTION

I Resolution rule: [DP60,R65]
(α ∨ x) (β ∨ x̄)

(α ∨ β)

I Complete proof system for propositional logic

I Extensively used with (CDCL) SAT solvers
I Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)

(α)
I (α) subsumes (α ∨ x)

8

RESOLUTION

I Resolution rule: [DP60,R65]
(α ∨ x) (β ∨ x̄)

(α ∨ β)

I Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

I Extensively used with (CDCL) SAT solvers

I Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]
(α ∨ x) (α′ ∨ x̄)

(α)
I (α) subsumes (α ∨ x)

8

RESOLUTION

I Resolution rule: [DP60,R65]
(α ∨ x) (β ∨ x̄)

(α ∨ β)

I Complete proof system for propositional logic
(x ∨ a) (x̄ ∨ a) (ȳ ∨ ā) (y ∨ ā)

(a) (ā)

⊥

I Extensively used with (CDCL) SAT solvers
I Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)

(α)
I (α) subsumes (α ∨ x)

9

UNIT PROPAGATION

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

I Additional definitions:
I Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d
I Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

9

UNIT PROPAGATION

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

I Additional definitions:
I Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d
I Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

9

UNIT PROPAGATION

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.
0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

I Additional definitions:
I Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d
I Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

9

UNIT PROPAGATION

F = (r) ∧ (̄r ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

I Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.
0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

I Additional definitions:
I Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d
I Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...

10

DPLL

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

3

∅

x

ȳ

a b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

3

∅

x

ȳ

ā b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

∅

x̄

a

y

b ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

11

THE DPLL ALGORITHM

Assign value
to variable

Unassigned
variables ?

Unit
propagation

Conflict ?

Can undo
decision ?

Backtrack &
flip variable

Unsatisfiable

Satisfiable
Y

N

Y

N

Y

N

I Optional: pure literal rule

F = (x∨y)∧(a∨b)∧(ā∨b)∧(a∨b̄)∧(ā∨b̄)

Level Dec. Unit Prop.
0

1

2

∅

x̄

ā

y

b̄ ⊥

a ā

y

a ā

ȳ

x

a ā

x̄

12

CDCL

13

WHAT IS A CDCL SAT SOLVER?

I Extend DPLL SAT solver with: [DP60,DLL62]
I Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

I Exploit UIPs [MSS96,SSS12]
I Minimize learned clauses [SB09,VG09]
I Opportunistically delete clauses [MSS96,MSS99,GN02]

I Search restarts [GSK98,BMS00,H07,B08]
I Lazy data structures

I Watched literals [MMZZM01]
I Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]
I Phase saving [PD07]

I ...

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

I Analyze conflict

I Reasons: x and z
I Decision variable & literals assigned at lower decision levels

I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

I Analyze conflict

I Reasons: x and z
I Decision variable & literals assigned at lower decision levels

I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels

I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels
I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels
I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels
I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels
I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution

I Learned clauses result from (selected) resolution operations

14

CLAUSE LEARNING

Level Dec. Unit Prop.
0

1

2

3

∅

xx

y

zz a

b

⊥

(ā ∨ b̄) (z̄ ∨ b) (x̄ ∨ z̄ ∨ a)

(ā ∨ z̄)

(x̄ ∨ z̄)

I Analyze conflict
I Reasons: x and z

I Decision variable & literals assigned at lower decision levels
I Create new clause: (x̄ ∨ z̄)

I Can relate clause learning with resolution
I Learned clauses result from (selected) resolution operations

15

CLAUSE LEARNING – AFTER BRACKTRACKING

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

I Clause (x̄ ∨ z̄) is asserting at decision level 1
I Learned clauses are always asserting [MSS96,MSS99]
I Backtracking differs from plain DPLL:

I Always bactrack after a conflict [MMZZM01]

15

CLAUSE LEARNING – AFTER BRACKTRACKING

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

I Clause (x̄ ∨ z̄) is asserting at decision level 1

I Learned clauses are always asserting [MSS96,MSS99]
I Backtracking differs from plain DPLL:

I Always bactrack after a conflict [MMZZM01]

15

CLAUSE LEARNING – AFTER BRACKTRACKING

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.
0

1

∅

x z̄

I Clause (x̄ ∨ z̄) is asserting at decision level 1

I Learned clauses are always asserting [MSS96,MSS99]
I Backtracking differs from plain DPLL:

I Always bactrack after a conflict [MMZZM01]

15

CLAUSE LEARNING – AFTER BRACKTRACKING

Level Dec. Unit Prop.
0

1

2

3

∅

x

y

zz aa

bb

⊥⊥

z

Level Dec. Unit Prop.
0

1

∅

x z̄

I Clause (x̄ ∨ z̄) is asserting at decision level 1
I Learned clauses are always asserting [MSS96,MSS99]
I Backtracking differs from plain DPLL:

I Always bactrack after a conflict [MMZZM01]

16

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

16

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

I Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I But a is a UIP

16

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

I Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I But a is a UIP

16

UNIQUE IMPLICATION POINTS (UIPS)

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xxx

yyy

zzz aaa

b ⊥

c

(b̄ ∨ c̄) (w̄ ∨ c) (x̄ ∨ ā ∨ b) (ȳ ∨ z̄ ∨ a)

(w̄ ∨ b̄)

(w̄ ∨ x̄ ∨ ȳ ∨ z̄)

(w̄ ∨ x̄ ∨ ā)(w̄ ∨ x̄ ∨ ā)

I Learn clause (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I But a is a UIP
I Learn clause (w̄ ∨ x̄ ∨ ā)

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP

I Second UIP:
I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers

I Recent results show it can be beneficial on current instances[SSS12]

17

MULTIPLE UIPS

Level Dec. Unit Prop.
0

1

2

3

4

∅

www

xx

yyy

zzz r

s

aaa

b ⊥

c

I First UIP:
I Learn clause (w̄ ∨ ȳ ∨ ā)

I But there can be more than 1 UIP
I Second UIP:

I Learn clause (x̄ ∨ z̄ ∨ a)

I In practice smaller clauses moreeffective
I Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

I Multiple UIPs proposed in GRASP [MSS96]
I First UIP learning proposed in Chaff [MMZZM01]

I Not used in recent state of the art CDCL SAT solvers
I Recent results show it can be beneficial on current instances[SSS12]

18

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

18

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

I Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

I Apply self-subsuming resolution (i.e. local minimization) [SB09]

18

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

I Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

I Apply self-subsuming resolution (i.e. local minimization) [SB09]

18

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

I Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

I Apply self-subsuming resolution (i.e. local minimization)

I Learn clause (x̄ ∨ ȳ ∨ z̄)

18

CLAUSE MINIMIZATION I

Level Dec. Unit Prop.
0

1

2

3

∅

xxx

yyy

zzz c

bbb

a

⊥

(ā ∨ c̄) (z̄ ∨ b̄ ∨ c) (x̄ ∨ ȳ ∨ z̄ ∨ a)

(z̄ ∨ b̄ ∨ ā)

(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)

I Learn clause (x̄ ∨ ȳ ∨ z̄ ∨ b̄)

I Apply self-subsuming resolution (i.e. local minimization)
I Learn clause (x̄ ∨ ȳ ∨ z̄)

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization
I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization
I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization
I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization

I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization

I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]

I Trace back from c until marked nodes or new nodes / decisions
I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization

I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

19

CLAUSE MINIMIZATION II

Level Dec. Unit Prop.
0

1

2

∅

ww a

b

ccc

xx e

d ⊥

I Learn clause (w̄ ∨ x̄ ∨ c̄)

I Cannot apply self-subsumingresolution
I Resolving with reason of c yields

(w̄ ∨ x̄ ∨ ā ∨ b̄)

I Can apply recursive minimization
I Learn clause (w̄ ∨ x̄)

I Marked nodes: literals in learned clause [SB09]
I Trace back from c until marked nodes or new nodes / decisions

I Learn clause if only marked nodes visited

20

SEARCH RESTARTS I

I Heavy-tail behavior: [GSK98]

I 10000 runs, branching randomization on industrial instance
I Use rapid randomized restarts (search restarts)

21

SEARCH RESTARTS II

I Restart search after a numberof conflicts

I Increase cutoff after eachrestart
I Guarantees completeness
I Different policies exist (seerefs)

I Works for SAT & UNSATinstances. Why?
I Learned clauses effective afterrestart(s)

solutioncutoffcutoff

21

SEARCH RESTARTS II

I Restart search after a numberof conflicts
I Increase cutoff after eachrestart

I Guarantees completeness
I Different policies exist (seerefs)

I Works for SAT & UNSATinstances. Why?
I Learned clauses effective afterrestart(s)

solutioncutoffcutoff

21

SEARCH RESTARTS II

I Restart search after a numberof conflicts
I Increase cutoff after eachrestart

I Guarantees completeness
I Different policies exist (seerefs)

I Works for SAT & UNSATinstances. Why?

I Learned clauses effective afterrestart(s)

solutioncutoffcutoff

21

SEARCH RESTARTS II

I Restart search after a numberof conflicts
I Increase cutoff after eachrestart

I Guarantees completeness
I Different policies exist (seerefs)

I Works for SAT & UNSATinstances. Why?
I Learned clauses effective afterrestart(s)

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why?

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause

I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)

I In practice,
Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation:

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation: Watched Literals

I Watched literals are one example of lazy data structures
I But there are others

22

DATA STRUCTURES BASICS

I Each literal l should access clauses containing l
I Why? Unit propagation

I Clause with k literals results in k references, from literals to theclause
I Number of clause references equals number of literals, L

I Clause learning can generate large clauses
I Worst-case size: O(n)

I Worst-case number of literals: O(mn)
I In practice,

Unit propagation slow-down worse than linear as clauses are learned !

I Clause learning to be effective requires a more efficientrepresentation: Watched Literals
I Watched literals are one example of lazy data structures

I But there are others

23

WATCHED LITERALS

[MMZZM01]
I Important states of a clause

I Associate 2 references witheach clause
I Deciding unit requirestraversing all literals
I References unchanged whenbacktracking

23

WATCHED LITERALS

[MMZZM01]
I Important states of a clause
I Associate 2 references witheach clause

I Deciding unit requirestraversing all literals
I References unchanged whenbacktracking

23

WATCHED LITERALS

[MMZZM01]
I Important states of a clause
I Associate 2 references witheach clause
I Deciding unit requirestraversing all literals

I References unchanged whenbacktracking

23

WATCHED LITERALS

[MMZZM01]
I Important states of a clause
I Associate 2 references witheach clause
I Deciding unit requirestraversing all literals
I References unchanged whenbacktracking

24

ADDITIONAL KEY TECHNIQUES

I Lightweight branching [e.g. MMZZM01]
I Use conflict to bias variables to branch on, associate score witheach variable
I Prefer recent bias by regularly decreasing variable scores

I Clause deletion policies
I Not practical to keep all learned clauses
I Delete less used clauses [e.g. MSS96,GN02,ES03]

I Proven recent techniques:
I Phase saving [PD07]
I Literal blocks distance [AS09]

24

ADDITIONAL KEY TECHNIQUES

I Lightweight branching [e.g. MMZZM01]
I Use conflict to bias variables to branch on, associate score witheach variable
I Prefer recent bias by regularly decreasing variable scores

I Clause deletion policies
I Not practical to keep all learned clauses
I Delete less used clauses [e.g. MSS96,GN02,ES03]

I Proven recent techniques:
I Phase saving [PD07]
I Literal blocks distance [AS09]

24

ADDITIONAL KEY TECHNIQUES

I Lightweight branching [e.g. MMZZM01]
I Use conflict to bias variables to branch on, associate score witheach variable
I Prefer recent bias by regularly decreasing variable scores

I Clause deletion policies
I Not practical to keep all learned clauses
I Delete less used clauses [e.g. MSS96,GN02,ES03]

I Proven recent techniques:
I Phase saving [PD07]
I Literal blocks distance [AS09]

25

What’s hot in SAT

26

WHAT’S HOT IN SAT?

I Clause learning techniques [e.g. ABHJS08,AS09]
I Clause learning is the key technique in CDCL SAT solvers
I Many recent papers propose improvements to the basic clauselearning approach

I Preprocessing & inprocessing
I Many recent papers [e.g. JHB12,HJB11]
I Lots of recent work on symmetry exploitation (static/dynamic)[e.g. DBB17,JKKK17]
I Essential in some applications

27

WHAT’S HOT IN SAT?

I Proofs
I Proof logging (RUP, RAT, DRAT) [HHKW17]
I Proof complexity [VEGGN18]

I Other Inference Methods
I (Probabilistic) Model counting [e.g. AHT18]
I Optimisation (E.g., MAXSAT – more later) [e.g. LM09]
I Enumeration
I MUSes / MCSes

I Applications
I In various domains

28

Tentacles of CDCL

29

SOME TENTACLES OF CDCL

I Lazy Clause Generation for Constraint solving or SAT modulotheories
I Conflict-driven pseudo-Boolean solving
I Incremental SAT solving for MAXSAT & QBF.

30

SAT ENCODINGS

I Many different problems can easily be encoded into SAT
I For instance, finite-domain Constraint Solving
I Various encoding options:

I Equality: encode variable X ∈ [−100, 100] by Boolean variables
JX=−100K, JX=−99K, . . .with uniqueness constraints

I Bound: encode variable X ∈ [−100, 100] by Boolean variables
JX≤−100K, JX≤−99K, . . .with constraints

JX≤−100K ∨ JX≤−99K, JX≤−99K ∨ JX≤−98K, . . .

I Log: encode variable X ∈ [−100, 100] by means of bitvectors
I This talk assumes the Bound encoding.
I For each type of constraints, an encoding has to be invented

31

SAT ENCODINGS – EXAMPLE

X,Y,Z,U,V ∈ [−100, 100] (1)
4U− X − Y ≥ 4 (2)
V ≥ U (3)
Z ≥ 5V (4)
Y + Z ≤ 24 (5)

(JX≤−100K ∨ JX≤−99K) ∧ (JX≤−99K ∨ JX≤−98K) ∧ · · · ∧ (JY≤−100K ∨ JY≤−99K) ∧ . . .

· · · ∧ (JX≤−3K ∨ JY≤9K ∨ JU≤2K) ∧ · · · ∧ (JX≤9K ∨ JY≤9K ∨ JU≤5K) ∧ . . .

(JV≤100K ∨ JU≤100K) ∧ (JV≤99K ∨ JU≤99K) ∧ · · · ∧ (JV≤5K ∨ JU≤5K) ∧ . . .

· · · ∧ (JV≤0K ∨ JZ≤4K) ∧ · · · ∧ (JV≤2K ∨ JZ≤14K) ∧ . . .
· · · ∧ (JY≤9K ∨ JZ≤14K) ∧ . . .

32

CONSTRAINT PROGRAMMING USING SAT

I If the SAT encoding of a CP program is not too large (at least: fitsin memory), we can create it eagerly and use a CDCL solver tosolve it.
I But... we can also generate it lazily = Lazy Clause Generation(LCG)

I Many constraint propagators work by search + domain propagation
I Idea: generate parts of the encoding only when CDCL solvers needsit:

I During propagation
I During explanation

Can use structure in constraints to learn better clauses !Example on Blackboard
I Many more interesting phenomena going on in LCG (see you nextweek!)

32

CONSTRAINT PROGRAMMING USING SAT

I If the SAT encoding of a CP program is not too large (at least: fitsin memory), we can create it eagerly and use a CDCL solver tosolve it.
I But... we can also generate it lazily = Lazy Clause Generation(LCG)

I Many constraint propagators work by search + domain propagation
I Idea: generate parts of the encoding only when CDCL solvers needsit:

I During propagation
I During explanation

Can use structure in constraints to learn better clauses !Example on Blackboard

I Many more interesting phenomena going on in LCG (see you nextweek!)

32

CONSTRAINT PROGRAMMING USING SAT

I If the SAT encoding of a CP program is not too large (at least: fitsin memory), we can create it eagerly and use a CDCL solver tosolve it.
I But... we can also generate it lazily = Lazy Clause Generation(LCG)

I Many constraint propagators work by search + domain propagation
I Idea: generate parts of the encoding only when CDCL solvers needsit:

I During propagation
I During explanation

Can use structure in constraints to learn better clauses !Example on Blackboard
I Many more interesting phenomena going on in LCG (see you nextweek!)

33

PSEUDO-BOOLEAN SOLVING

Observations:
I Resolution proof system is weak (cfr Pigeonhole)
I Stronger proof systems exist, for instance cutting planes makesuse of (linear) pseudo-Boolean constraints (linear constraints overliterals) [CCT87]

I A clause a ∨ b̄ ∨ c corresponds to a PB constraint
a + b̄ + c ≥ 1

I A PB constraint
a + b̄ + 2 · c + d ≥ 2

cannot be translated into a single clause

34

CUTTING PLANE PROOF SYSTEM

l ≥ 0 (literal axiom)∑
i aili ≥ A

∑
i bili ≥ B∑

i(cai + dbi)li ≥ cA + dB (linear combination)∑
i aili ≥ A∑

idai/celi ≥ dA/ce
(division)

35

CUTTING PLANES VS RESOLUTION

I In theory, learning cutting planes could allow to derive unsatproofs much faster
I In practice, CDCL solvers seem to outperform cutting planesolvers
I Very recently, new cutting-plane solvers, inspired by CDCL arearising [GNY19]

I Various issues show up: generalizing CDCL, 1UIP, ... far from obvious!

36

INCREMENTAL SAT SOLVING & SAT ORACLES

I Incremental SAT Solving: [ES01]
I Allow calling a solver with a set of assumptions

I Variables whose value is set before the search start (never backtrackover them!)
I Often used: replace each clause Ci with Ci ∨ ¬ai

I ai = 1 to activate clause Ci
I ai = 0 to deactivate clause Ci

I Enables clause reuse

I Answer of a SAT solver:
I SAT + satisfying assignment
I UNSAT + unsat core (MUS)

I Use: SAT solver as oracle in encompassing algorithm
I For optimization (MAXSAT)
I For tackling problems arbitrary high up the polynomial hierarchy(QBF)
I Cores/Assignments often used in encompassing algorithm (whichmight be a CDCL/LCG solver itself!)

36

INCREMENTAL SAT SOLVING & SAT ORACLES

I Incremental SAT Solving: [ES01]
I Allow calling a solver with a set of assumptions

I Variables whose value is set before the search start (never backtrackover them!)
I Often used: replace each clause Ci with Ci ∨ ¬ai

I ai = 1 to activate clause Ci
I ai = 0 to deactivate clause Ci

I Enables clause reuse
I Answer of a SAT solver:

I SAT + satisfying assignment
I UNSAT + unsat core (MUS)

I Use: SAT solver as oracle in encompassing algorithm
I For optimization (MAXSAT)
I For tackling problems arbitrary high up the polynomial hierarchy(QBF)
I Cores/Assignments often used in encompassing algorithm (whichmight be a CDCL/LCG solver itself!)

36

INCREMENTAL SAT SOLVING & SAT ORACLES

I Incremental SAT Solving: [ES01]
I Allow calling a solver with a set of assumptions

I Variables whose value is set before the search start (never backtrackover them!)
I Often used: replace each clause Ci with Ci ∨ ¬ai

I ai = 1 to activate clause Ci
I ai = 0 to deactivate clause Ci

I Enables clause reuse
I Answer of a SAT solver:

I SAT + satisfying assignment
I UNSAT + unsat core (MUS)

I Use: SAT solver as oracle in encompassing algorithm
I For optimization (MAXSAT)
I For tackling problems arbitrary high up the polynomial hierarchy(QBF)
I Cores/Assignments often used in encompassing algorithm (whichmight be a CDCL/LCG solver itself!)

37

THANK YOU

If you are interested in doing research in this direction (Master thesis /PhD), don’t hesitate to e-mail me, or drop by my office
bart.bogaerts@vub.bePleinlaan 9, 3.67

bart.bogaerts@vub.be

38

REFERENCES

DP60 M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J. ACM 7(3): 201-215 (1960)
DLL62 M. Davis, G. Logemann, D. Loveland: A machine program for theorem-proving. Commun.ACM 5(7): 394-397 (1962)
MSS96 J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfiability. ICCAD1996: 220-227
BS97 R. Bayardo Jr., R. Schrag: Using CSP Look-Back Techniques to Solve Real-World SAT In-stances. AAAI/IAAI 1997: 203-208
Z97 H. Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275
GSK98 C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through Randomization.AAAI 1998: 431-437
MSS99 J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional Satisfiability.IEEE Trans. Computers 48(5): 506-521 (1999)
BMS00 L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve Hard Real-WorldInstances of Satisfiability. CP 2000: 489-494
MMZZM01 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering an Efficient SATSolver. DAC 2001: 530-535

39

REFERENCES

GN02 E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE 2002: 142-149
ES03 N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518
PD07 K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme for SatisfiabilitySolvers. SAT 2007: 294-299
H07 J. Huang: The Effect of Restarts on the Efficiency of Clause Learning. IJCAI 2007: 2318-2323
ABHJS08 G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, L. Sais: A Generalized Framework forConflict Analysis. SAT 2008: 21-27
B08 A. Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)
SB09 N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243
VG09 A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved PropositionalProof Traces. SAT 2009: 141-146
AS09 G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT Solvers. IJCAI2009: 399-404
SSS12 A. Sabharwal, H. Samulowitz, M. Sellmann: Learning Back-Clauses in SAT. SAT 2012: 498-499

40

REFERENCES

DBB17 Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe: Symmetric Explanation Learning: Ef-fective Dynamic Symmetry Handling for SAT. SAT 2017: 83-100
JKKK17 Tommi A. Junttila, Matti Karppa, Petteri Kaski, Jukka Kohonen: An Adaptive Prefix-Assignment Technique for Symmetry Reduction.SAT 2017:101-118
HHKW17 Marijn Heule, Warren A. Hunt Jr., Matt Kaufmann, NathanWetzler: Efficient, Verified Check-ing of Propositional Proofs. ITP 2017: 269-284
VEGGN18 Marc Vinyals, Jan Elffers, JesÃºs GirÃ¡ldez-Cru, Stephan Gocht, Jakob Nordström: In Be-tween Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SATSolving. SAT 2018: 292-310
AHT18 Dimitris Achlioptas, Zayd Hammoudeh, Panos Theodoropoulos: Fast and Flexible Proba-bilistic Model Counting. SAT 2018: 148-164
CCT87 William J. Cook, Collette R. Coullard, György Turan: On the complexity of cutting-planeproofs. Discret. Appl. Math. 18(1): 25-38 (1987)
LP09 Chu Min Li, Felip ManyÃ : MaxSAT, Hard and Soft Constraints. Handbok of SAT 613-631(2009)
GNY19 Stephan Gocht, Jakob Nordström, Amir Yehudayoff: On Division Versus Saturation inPseudo-Boolean Solving. IJCAI 2019: 1711-1718

	The SAT problem
	Basic Definitions

	DPLL
	DPLL Solvers

	CDCL
	CDCL Solvers
	Clause Learning, UIPs & Minimization
	Search Restarts & Lazy Data Structures

	What's hot in SAT
	What Next in CDCL Solvers?

	Tentacles of CDCL
	Lazy Clause Generation
	Pseudo-Boolean Solving
	Selected References

