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Abstract

The paper proposes a mechanism for the spontaneous formation
of perceptually grounded meanings under the selectionist pressure of
a discrimination task. The mechanism is defined formally and the
results of some simulation experiments are reported.
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1 Introduction

The research reported here is part of a larger research program to understand
the origins of language and meaning using complex systems mechanisms such
as self-organisation, co-evolution, and level formation [5]. This paper focuses
on the meaning creation process. A theoretical model is proposed to explain
how an autonomous agent may originate new meanings. The agent is au-
tonomous in the sense that its ontology is not explicitly put in by a designer,
nor is there any explicit instruction.



For the purpose of this paper, meaning is defined as a conceptualisation
or categorisation of reality which is relevant from the viewpoint of the agent.
Meanings can be expressed through language, although they need not be.
Meaning takes many forms depending on the context and nature of the situ-
ation concerned. Some meanings (such as colors) are perceptually grounded.
Others (such as social hierarchies) are grounded in social relations. Still oth-
ers (such as goals or intentions for actions) are grounded in the behavioral
interaction between the agent and the environment. This paper focuses on
perceptually grounded meanings, although the proposed mechanism could
also be used for other domains.

The proposed model is theoretical in the sense that no claim is made or
evidence given that it is empirically valid for humans or animals. The goal is
only to outline and validate possibilities. Independently of such a validation,
applications where agents (software agents or robotic agents) autonomously
have to make sense of their environment are already possible.

The present paper focuses on meaning creation in a single agent. Work is
under way to also study meaning creation in multiple agents and investigate
how a common language can act as a way to achieve a coherent conceptual
framework between agents even though every agent individually builds up
his own repertoire.

The rest of the paper is in four parts. The next section describes the
approach. This is followed by a section which describes the proposed mech-
anisms more formally. Then some experimental results are reported. The
final section contains some conclusions and a discussion of related work.

2 Approach

Agents engage in tasks relevant for their survival in a specific environment. In
this paper, I focus on perceptually grounded discrimination tasks. The agent
attempts to distinguish one object or situation from others using sensors and
low-level sensory processes. The question is whether an agent is capable to
develop autonomously a repertoire of features to succeed in discrimination
and to adapt this repertoire when new objects are considered. A specific
attempt to perform a discrimination and the subsequent adaptation of the
feature repertoire is called a discrimination game.

Let us assume that there is a set of objects, or more generally situations,
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Figure 1: Feature perception is the process of going from an object to a
feature set in two steps: sensory channels contain states from sensors and
sensory routines, and they are transformed into features by feature detectors.

which have characteristics that are sensed through sensory channels, either
derived straightly from sensors or from low level sensory routines. A sensory
channel yields a value between 1.0 and 0.0. For example, the sensory channels
could capture properties of moving objects like size, speed, average grey
area, etc., or internal states reflecting motivations, sensations or actuator
streams. We are conducting experiments in our laboratory with real mobile
robots, speech, and active vision that yield a possible sensory basis for the
mechanisms proposed here. In this paper, the meaning creation process is
however studied abstractly without reference to specific applications.

A meaningful distinction takes the form of a feature, which decomposes
into an attribute and a value. The feature is derived by a feature detector
which discretises the continuous space of one sensory channel. The feature
indicates that the value of a sensory channel falls within one subregion of the
space (see fig 1.). There are absolute features, such as ‘(color red)’, which
are based on absolute values of a sensory channel for a single object, and
relative meanings (such as ‘(speed faster)’) which compare states of sensory
channels for different objects. This paper only focuses on absolute features.
A particular attribute is not necessarily relevant for each object.

The paper examines the hypothesis that the origins of meaning are based
on construction and selection processes embedded in discrimination tasks.
Each individual agent is assumed to be capable to construct new features,
i.e. new segmentations of the continuous sensory space. The process of
generating diversity and variation is subjected to selection pressure coming
from the discrimination task: The agent attempts to differentiate an object
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Figure 2: Discrimination is the process of comparing two feature sets to find
the discriminating features.

from a set of other objects which constitute the context based on the available
repertoire of features and values. A discrimination may be based on one or
more features grouped as a distinctive feature set. There may be more than
one possible distinctive feature set, but also none if not enough features
are available. This happens either because no feature could be found to
characterise the topic, or the attributes used to characterise the topic were
not applicable to the other objects in the context, or a feature does not make
a sufficiently fine-grained distinction. When there is no distinctive feature
set, the discrimination fails and there is pressure to construct new feature
detectors.

Feature detectors are refined in a hierarchical fashion and therefore form
a kind of discrimination tree. The first detector divides the space up in some
regions (in this paper always 2). This region might then later be segmented
by an additional feature detector if objects that need to be discriminated
fall within the same region. Thus feature-detectors form natural hierarchies,
which go as deep as required.

The set of objects among which a discrimination has to take place is
assumed to be open, in the sense that new objects may enter the environment
that require different or more refined features.
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Figure 3: Feature detectors grow hierarchically as needed by the task domain.

3 Formal description of the mechanism

3.1 Terminology

Let there be a set of objects O = {oy,...,0,,} and a set of sensory channels
S = {o1,...,0,}, being real-valued functions over O. Each function o; defines
a value 0.0 < 0,(0;) < 1.0 for each object o;.

An agent a has a set of feature detectors D, = {d4 1, ..., dam}- A feature
detector dg . = (Paj, Vak, Pak,0j) has an attribute name p,x, a set of possible
values V, i, a function ¢, , and a sensory channel o;. The result of applying
a feature detector d,, to an object o; is a feature written as a pair (pg v)
where p is the attribute name and v = ¢, 4(0;(0;)) € Vi the value.

The feature set of a for o; is defined as F,,, = {(Pak v) | dag € Dy, dor =
(Paje, Va, Pak, 0j), v = dar(o;(0;))}. Two features (ay v1), (ag v2) are dis-
tinctive iff a1 = as and v; # vy. A distinctive feature set DaC’Ot is a set of
features distinguishing an object o, from a set of other objects C'. DaC,Ot =
{f1f={pv) € F,, and Yo, € C either Af = (p' V') € F,,, with p =
por Af' € F,,with f and f' distinctive}. Clearly there can be several
distinctive feature sets for the same o, and C', or none.

3.2 Discrimination games

A discrimination game d =< a, 0, C' > involves an agent a, a topic o; € O,
and a context C' C O(){o;}. The outcome of the game is twofold. Either
a distinctive feature set could be found, DgOt # (), and the game ends in
success, or no such feature set could be found, DaC,Ot = (), and the game ends

in failure.



As part of each game the repertoire of meanings is adjusted in the fol-
lowing way by the agent:
1. DS, = 0, i.e. the game is unsuccessful. This implies that there are
not enough distinctions and therefore Vo, € C, F, ,, C F,,,. There are
two ways to remedy the situation:

(a) If there are still sensory channels for which there are no feature
detectors, a new feature detector may be constructed. This option
is preferred.

(b) Otherwise, an existing attribute may be refined by creating a new
feature detector that further segments the region covered by one
of the existing attributes.

2. ng # (). In case there is more than one possibility, feature sets are
ordered based on preference criteria. The ‘best’ feature set is chosen
and used as outcome of the discrimination game. The record of use
of the features which form part of the chosen set is augmented. The

criteria are as follows:

(a) The smallest set is preferred. Thus the least number of features
are used.

(b) In case of equal size, it is the set in which the features imply
the smallest number of segmentations. Thus the most abstract
features are chosen.

(c) In case of equal depth of segmentation, it is the set of which the
features have been used the most. This ensures that a minimal
set of features develops.

The whole system is selectionist. Failure to discriminate creates pressure
to create new feature detectors. However the new feature detector is not
guaranteed to do the job. It will be tried (next time) and only thrive in
the population of feature detectors if it is indeed successful in performing
discriminations.



4 Implementation

The discrimination game defined above has been implemented and encap-
sulated as an agent. The programs create a set of sensory channels and an
initial set of objects which have arbitrary values for some of the sensory chan-
nels. A typical example is the following list of objects and associated values
for channels:

[sc-3:0.73] [sc-4:0.82] [sc-5:0.07]

[sc-0:0.89] [sc-3:0.02] [sc-4:0.56] [sc-6:0.48]

[sc-0:0.74] [sc-1:0.92] [sc-2:0.22] [sc-3:0.56]
[sc-8:0.52] [8c-9:0.03]

[sc-2:0.36] [8c-3:0.09] [sc-4:0.14]

[sc-1:0.47] [sc-2:0.61] [sc-3:0.69] [sc-5:0.67]

[sc-6:0.14] [sc-9:0.43]

[sc-1:0.84] [sc-4:0.82] [sc-5:0.70] [sc-8:0.81]

[sc-1:0.40] [sc-2:0.32] [sc-3:0.68] [sc-4:0.96]
[sc-5:0.41] [sc-7:0.14] [sc-8:0.76]

[sc-1:0.84] [8c-2:0.89] [sc-3:0.63] [sc-8:0.41]

[sc-0:0.72] [sc-1:0.02] [sc-3:0.92] [sc-4:0.44]
[sc=5:0.04] [sc-7:0.29]

0-9: [sc-1:0.35] [s¢c-2:0.72] [sc-3:0.58] [sc-4:0.34]
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A feature detector is a function assigning a feature-value to a certain
attribute. The name of the attribute indicates its nature. It is of the form
sc;—ni— ... where ¢ is the sensory channel followed by the number of segments
of each consecutive segment. For example, sc-5-2 is the name of an attribute
whose feature detector operates on sc-5 and divides it in 2 regions. sc-5-2-2
would be the name of an attribute that is a further refinement. (sc-5-2 v-0)
is a feature combining this attribute with the value v-0.

In normal operation, the agent continuously goes through a loop perform-
ing the following activities:

1. A context is delineated. The context consists of the objects currently
in the field of attention of the agent.

2. One object in this context is chosen randomly as topic.

3. The feature sets of the topic and the other objects in the context are
derived.



4. An attempt is made to find possible discriminating feature sets.

We now show some typical situations for an agent a-5, which starts from
no features at all. In the first game, a-5 tries to differentiate the object 0-5
from o0-3. The agent does not have a way yet to characterise the topic and
creates a new attribute operating on sc-5.

a-5: 0-5 <-> {0-3 }
Topic: NIL

Not enough features topic
New attribute: sc-5-2

The next game to distinguish 0-5 from 0-9 and o-1 is already successful,
because 0-5 is again the topic. The context contains objects that do not have
any response for sc-5, and thus no features can be constructed:

a-5: 0-5 <-> {0-9 o-1 }
Topic: ((sc-5-2 v-1))
Context: (NIL NIL)
Success: ((sc-5-2 v-1))

The next game is also sucessful because 0-6 has value v-0 for sc-5-2, o-2
has nothing and o0-5 has v-1.

a-5: 0-6 <-> {0-2 o-5 }
Topic: ((sc-5-2 v-0))
Context: (NIL ((sc-5-2 v-1)))
Success: ((sc-5-2 v-0))

In the following game the attributes are not sufficiently distinctive and
therefore a new attribute is created. As long as there are possibilities to focus
on additional sensory channels, existing attributes will not be refined. The
new attribute operates on sc-3.

a-5: 0-7 <-> {o-1 0-2 }

Topic: ((sc-1-2 v-1))

Context: (NIL ((sc-1-2 v-1)))

No distinctive features but new one possible: (sc-2 sc-3 sc-8)
New attribute: sc-3-2



When uncovered sensory channels are no longer available, more refined
feature detectors for existing attributes start to be made. In the following
example, 0-0 fails to be distinguished from 0-8 and 0-1, even though a set of
features is available to characterise each object. A refinement of the attribute
operating over sc-9 is chosen.

a-5: 0-0 <-> {0-8 o-1 }
Topic: ((sc-3-2 v-1) (sc-4-2 v-1)(sc-5-2 v-0))
Context: (((sc-0-2 v-1)(sc-1-2 v-0) (sc-3-2 v-1)
(sc-4-2 v-0) (sc-5-2 v-0)))
((sc-0-2 v-1) (sc-3-2 v-0) (sc-4-2 v-1)))
No distinctive features but refinements possible.
Refining attribute: sc-5-2 => sc-5-2-2

After a sufficient number of discrimination games the set of features sta-
bilises. For the set of objects given above, the following is a stable dis-
crimination tree. For each attributes the possible values are listed with their
corresponding regions as well as the number of times a feature has been used.

sc-5-2:
v-0: [0.00 0.50] 358.
sc-5-2-2:
v-0: [0.00 0.25] 31.
sc-5-2-2-2:
v-0: [0.00 0.12]
sc-5-2-2-2-2:
v-0: [0.00 0.06] ; v-1: [0.06 0.12] 3.

v-1: [0.12 0.25]

v-1: [0.25 0.50] 22.
v-1: [0.50 1.00] 309.

sc-1-2:

v-0: [0.00 0.50] 651. ; wv-1: [0.50 1.00] 628.
sc-3-2:

v-0: [0.00 0.50] 713. ; v-1: [0.50 1.00] 733.
sc-8-2:

v-0: [0.00 0.50] 15. ; v-1: [0.50 1.00] 8.
sc-2-2:

v-0: [0.00 0.50] 99. ; v-1: [0.50 1.00] 112.



sc-0-2:
v-0: [0.00 0.50] ; wv-1: [0.50 1.00] 42.
sc-4-2:
v-0: [0.00 0.50] 223.
sc-4-2-2:
v-0: [0.00 0.25]
v-1: [0.25 0.50] 1.
(att a-5 sc-4 2 2 2):
v-0: [0.25 0.37] 5.; wv-1: [0.37 0.50] 5.
v-1: [0.50 1.00] 215.
sc-4-2-2:
v-0: [0.50 0.75] 1.
v-1: [0.75 1.00] 2.
sc-4-2-2-2:
v-0: [0.75 0.87] 5. ; v-1: [0.87 1.00] 2.
sc-6-2:
v-0: [0.00 0.50] 2. ; v-1: [0.50 1.00]

We see that more abstract features, like (sc-1-2 v-0), are used more often.
For some, like (sc-5-2 v-0), there is a deep further discrimination. For others,
like (sc-5-2 v-1), there is none. Some features, like (sc-6-2 v-1), have not been
used at all and could therefore be eliminated. Another experiment with the
same objects but for a different agent a-6 yields a different discrimination
tree. In one example, some sensory channels (such as sc-6) were not used,
sc-4 was no longer refined, etc. Usually there are indeed many different
possibilities and an important question for further study is how optimal the
discrimination trees obtained with the proposed mechanism are.

When new objects enter the environment, the agent should construct
new distinctions if they are necessary. This is effectively what happens. If
new sensory channels become available, for example because a new sensory
routine has become active, then it will be exploited if the need arises.

10
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Figure 4: The graph shows the evolution of the discriminatory capacities
of a single agent. The total number of objects (10) is fixed. There are 5
sensory channels. The average success in discrimination games as well as
the global success is shown on the y-axis. The number of discrimination is
mapped on the x-axis (scale 1/10). All objects can be discriminated after
150 discrimination games.

5 Experimental Results

5.1 Fixed set of objects

Fig 4. shows a typical example where an agent builds up a repertoire of
feature detectors, starting from scratch. The graph shows the increasing dis-
crimination success as experienced by the agent in discrimination games. It
also shows the global success with the features so far, i.e. all objects are
compared to all other objects only based on their features. Progress in find-
ing more discriminatory features depends on encountering those objects that
require more discrimination. Because context and topic are set probabilisti-
cally, this is not predictable.

The graph in fig 5. shows for the same experiment the increasing number
of features (as a percentage of the final total (22) features reached at the end
of the experiment), and the percentage of features that is effectively used.
We see that many features created earlier on are only gradually used and

11
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Figure 5: The graph plots data for the same experiment as in fig 1. The total
number of features and the percentage of features used of the total available
at each time moment.

there are still many cases that have not been encountered.

5.2 Increasing the set of objects

In the next experiment (fig 6.) we start from a set of 10 objects and gradually
add new objects in a probabilistic fashion, to reach a total of 50 objects. We
see that the feature repertoire is extended occasionally. The average discrim-
ination success remains close to the maximum (1.0) because new objects are
only encountered occasionally and the feature detectors already constructed
are general.

Fig 7. shows for the same experiment the relation between the total
number of features that are available and the features that are used. We see
that the repertoire of features created in the beginning is used much more
extensively, clearly showing

Initially not many new features are introduced but the available repertoire
is used better. Later on new features are indeed necessary.

12
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Figure 6: Graph showing a steady increase in the number of objects. The
graph shows on the y-axis the number of objects (as a percentage of the total
reached at the end, i.e. 50), the discriminatory success which remains close
to the maximum, and the number of features (as a percentage of the total
reached at the end, i.e. 35). The x-axis plots the number of discrimination
games (scale 1/10).
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Figure 7: Graph showing (on the y-axis) the relation between the increasing
total feature repertoire and the percentage of the available repertoire that is
used. The x-axis plots the number of discrimination games (scale 1/10).

6 Conclusions

The paper proposed a mechanism for the creation of perceptually grounded
meaning giving a set of sensory channels and a series of objects among which
discrimination has to take place. The mechanism is based on selectionist prin-
ciples. There is a generator of variety and selection pressure coming from
success or failure in discrimination. It was shown that the system arrives
quite rapidly at a set of possible features for discriminating objects. Most
interestingly, the system remains adaptive when new objects are added or
when new sensory channels become available. Further work is obviously re-
quired, particularly in the context of concrete applications where the sensory
channels are linked to visual, auditory, or internal sensors.

There has been a lot of other work on the problem of meaning creation,
particularly in the connectionist literature [4]. A perceptron for example
can be seen as a device that acquires a set of distinctions as relevant for a
classification task. The sensory channels constitute the inputs to the per-
ceptron, and the weights perform the function of selecting out regions which
will be input for the classification process. The most important differences

14



between these connectionist proposals and what has been presented here is
that (1) connectionist networks embed the build up of a feature repertoire
within the task of classification (as opposed to discrimination) and (2) an
inductive/instructional approach as opposed to selectionist approach is used.
An inductive approach is based on going through a (typically large) set of
examples which drives the weights stepwise to reflect the best classification.
In a selectionist approach a structure comes into existence by variation or
construction and is then tested as a whole for fitness in the environment.
Inductive approaches result in gradual generalisation. Selectionism gives im-
mediately generalisations which might be refined gradually.

The selectionist approach followed here is more in tune with work on
feature generation in genetic algorithms research [3], unsupervised learning
as exemplified by the Kohonen network [2], and most importantly proposals
made by Edelman known as Neural Darwinism [1]. Edelman assumes that
neuronal growth processes yield a primary repertoire stabilised by develop-
mental selection, which is then subjected to experiential selection, yielding
a secondary repertoire of categories. Using re-entrant maps and degeneracy,
categorial perceptions of different objects can be compared and generalised
to classes. Meaning creation and classification are clearly distinct here. The
selectionist pressure in the Edelman case comes from statistical signal correla-
tions (for the formation of the secondary repertoire) and similarity matching
(for the formation of classes). In this work, the selectionist pressure comes
from a discrimination task. Nevertheless, the neural machinery proposed by
Edelman (spontaneous variation, selection, re-entrant mapping) is probably
adequate for a neural implementation of the mechanisms proposed here.
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