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Abstract. The paper surveys recent work on modeling the origins of commu-
nication systems in groups of autonomous distributed agents. It is shown that
five principles gleaned from biology are crucial: reinforcement learning, self-
organisation, selectionism, co-evolution through structural coupling, and level
formation.
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1 Introduction

It is by now well accepted that we can discover new computational and problem solving
paradigms by studying natural systems, particularly complex dynamical systems. This
strategy was still a dream 15 years ago [11] but has borne rich fruits. Novel computa-
tional problem solving paradigms now exist based on analogies with spin glasses, ge-
netic evolution, immune system dynamics, collective insect behavior, DNA, biochem-
ical reactions, and last but not least neural networks. In each case, a set of primitive
elements and their behavior is defined, an interaction is set up with the environment,
and the collective behavior is studied that emerges from interactions between the indi-
vidual elements and the environment. A specific problem is solved by mapping it into
the initial states of a complex system and defining the dynamics such that a solution cor-
responds to one of its attractors. For example, the traveling salesman problem can be
mapped onto the initial state of a spin-glass system, and after the spin-glass dynamics
has operated, a final solution can be read from the resulting state. The same problem can
also be mapped into DNA strings [1] or the initial states of other dynamical systems.

About 5 years ago, a number of researchers started to adopt this same strategy with
respect to language (see [13] for review of earlier work). The basic idea is that a com-
munity of language users (further called agents) can be viewed as a complex adaptive
system which collectively solves the problem of developing a shared communication
system. To do so, the community must reach an agreement on a repertoire of forms (a
sound system in the case of spoken language), a repertoire of meanings (the conceptu-
alisations of reality), and a repertoire of form-meaning pairs (the lexicon and grammar).
Communication is not a general computational problem of course (although neither is
the traveling salesman) but nevertheless a problem of great interest.



First of all there is a strong interest from a scientific point of view. Finding the key
how communication systems of the complexity of human natural languages emerge
may help to solve the problem how human language itself may have originated and
evolved. This longstanding fascinating question is receiving increasing attention lately
([5], [6]), but only clear scientific models that explain how language evolved (as op-
posed to enumerating conditions why language evolved) can be expected to steer us
away from the many speculations that made the field suspect for a long time. By clear
scientific models I mean that the cognitive structures and interaction behaviors of each
agent is specified and that it is shown how they collectively lead to a language.

Second, there is an interest because of possible applications. On the one hand, au-
tonomous artificial agents which need to coordinate their activity in open-ended envi-
ronments could make use of these mechanisms to develop and continuously adapt their
communication systems [14]. On the other hand, understanding how language develops
and evolves is probably our only hope to ever get to technological artefacts that exhibit
human-level language understanding and production. Human languages are constantly
changing and differ significantly from one speaker to the next and from one context
to the next. So, we need language technologies which exhibit the same adaptivity as
humans.

The rest of the paper reviews some of the experiments conducted so far. They al-
ways have the same form: (1) They involve a population of (artificial) agents, possibly
robots. (2) The agents engage in interactions situated in a specific environment. Such
an interaction is called a game. (3) Each agent has a sensori-motor apparatus, a cog-
nitive architecture, and a script determining how it interacts with others. (4) There is
an environment (possibly the real world) which consists of situations that are ideally
open-ended. The situation in modeling the evolution of communication systems is dif-
ferent from that of using spin glasses or other natural dynamical systems. Spin glasses
are much simpler systems and have been thoroughly studied in the natural sciences,
wheres how humans acquire, interpret and produce language remains to a great extent
a mystery.

2 Imitiation games for the emergence of sound system

The work of De Boer [3] is one of the best examples how a repertoire of forms may
become agreed upon in a distributed group of agents. This work focuses exclusively on
the emergence of vowels. Clear universal tendencies exist for vowel systems [10] and
it was already shown that they are due to functional and sensori-motor constraints [8].
The question being addressed in the new experiments is how agents can come to share
a system of vowels without having been given a pre-programmed set nor with central
supervision.

In the robotic simulations, the sensori-motor apparatus of the agents consists of an
acoustic analyser on the one hand, which extract the first formants from the signal,
and an articulatory synthesiser on the other hand. The agents play an imitation game.
One agent produces a random sound from its repertoire. The other agent (the imitator)
recognises it in terms of its own repertoire and then reproduces the sound. Then the
first agent attempts to recognise the sound of the imitator again and if it is similar to its



own, the game is a success otherwise a failure. This setup therefore adopts the motor
theory of perception whereby recognition of a sound amounts to the retrieval of a motor
program that can reproduce it.

To achieve this task, the agents in the De Boer experiment use two cognitive struc-
tures: The vowels are mapped as points into a space formed by the first, second and
third formants (see figure 1) and a nearest-neighbor algorithm is used to identify an
incoming sound with the sounds already stored as prototypes. These prototypes have
an associated motor program that can be used to reproduce the sound. When an imita-
tion game succeeds, the score of the prototype goes up, which means that the certainty
that it is in the repertoire increases. There are two types of failure. Either the incom-
ing sound is nowhere near any of the sounds already in the repertoire. In that case it is
added to the prototype space and the agent tries to find its corresponding motor program
by a hill-climbing process, producing and listening to itself. Alternatively, the incom-
ing sound is near an existing sound but the reproduction is rejected by the producing
agent. This means that the imitator does not make sufficiently fine-grained distinctions.
Consequently the failure can be repaired by adding this new incoming sound as a new
prototype to the repertoire and associating it with a motor program learned again by hill-
climbing. In order to get new sounds into the repertoire, agents occasionally ”invent”
a new sound by a random choice of the articulatory parameters and store its acoustic
image in the prototype space. Sounds which have consistently low scores are thrown
out and two sounds that are very close together in the prototype space are merged.

Quite remarkably, the following phenomena are perceived when a consecutive series
of games is played by a population of agents: (1) A repertoire of shared sounds emerges
through self-organisation (see figure 1). (2) The repertoire keeps expanding as long
as there is pressure to do so. (3) Most interestingly, the kinds of vowel systems that
emerge have the same characteristics as those of natural vowel systems. The experiment
therefore not only shows that the problem can be solved in a distributed fashion but also
that it captures some essential properties of natural systems.

Fig. 1. Example of the evolution of a vowel system. Vowels are represented in formant space
(first and second formant). We see that progressively coherence as well as increased complexity
emerges.



Three principles have been used: Reinforcement learning [18] based on feedback
after each game. It is used to reinforce a vowel in the repertoire of an individual agent
or dismiss it. Reinforcement learning in itself does not explain however how the group
arrives at a shared solution. There is a second principle at work: self-organisation. Self-
organisation (in the sense of Nicolis and Prigogine [9]) arises when there is a positive
feedback loop in an open non-linear system. Concretely there is a positive feedback
between use and success. Sounds that are (culturally) successful propagate. The more a
sound is used the more success it has and it will be used even more. Self-organisation
explains that the group reaches coherence, but not why these specific vowels occur
and not others. For this we need a third principle, namely selectionism. The scores of
vowels that can be successfully distinguished and reproduced given a specific sensori-
motor apparatus have a tendency to increase and they hence survive in the population.
Novel sounds or deviations of existing sounds (which automatically get produced due
to the unavoidable stochasticity) create variation, and sensori-motor constraints select
those that can be re-produced and recognised. The closer we can model human natural
sensori-motor behavior the more realistic the vowel systems become.

3 Discrimination games for evolving meaning repertoires

Another series of experiments has demonstrated how a meaning repertoire may emerge
in a population. Once again, a population of agents is defined which play a consecutive
series of games. The games are typically discrimination games. An agent perceives
some part of reality, for example through a camera and low level segmentation and
feature detection, and selects one of the objects (more precisely segments in the visual
image) as the topic. The agent then tries to distinguish the topic from the other objects
in the context, for example by finding a category, or a logical combination of categories,
that is valid for the topic but not for the other objects in the context. Thus suppose the
scene contains a red triangle to the left of the image, a green square to the right, and a
red square above it. Suppose that the red triangle has been chosen as topic, then possible
distinctive features are: red, triangle, object to the left, or a conjunctive combination of
them.

In the experiments reported in [17] the agents start from a visual image captured
by a camera. The cognitive structure being used consists of discrimination trees for
every sensori-motor channel available to the agent (figure 2). The tree divides a sensory
channel up into finer and finer subregions. New divisions are generated by randomly
selecting a channel and making a further subdivision, somewhat like leaves growing on
a tree in a random fashion. Data about each segment in the scene falls into a subregion
on each of the channels and a distinctive subregion (and hence a category) is identified
if the data of the topic falls into it but not the data of any other object in the scene. Each
category has a score reflecting how much it has been used successfully. When categories
have no success they are eventually pruned. Experiments with robotic agents confronted
with real world environments have shown that a stable repertoire of categories builds up.
The categorial repertoires are not necessarily identical in each agent and they continue
to expand or contract when the environment changes.



Fig. 2. The discrimination trees developed by two physically embodied agents (left) and (right).
The top of the figure shows the trees after playing 100 games and bottom after 200 games.

Other similar experiments use other kinds of categorial mechanisms (for example
prototypes or adaptive subspaces [4]. What is important therefore is not the specific
learning mechanism, but rather the idea of organising the repertoire formation process
in terms of a series of games. We see that some of the same mechanisms have been
put to work as for emergent sound systems: Reinforcement learning, because the envi-
ronment gives feedback on which categories are distinctive and this is used to maintain
or eliminate them, and selectionism, because the spontaneously generated categorial
distinctions undergo selection pressure from the environment and the discrimination
task itself. There is no self-organisation because each agent constructs individually his
own repertoire which will only be similar to the extent that the agents are in the same
environment and use the same sensori-motor apparatus.

4 Naming games for form-meaning repertoires

Other work has focused on how a shared set of form-meaning relations could collec-
tively be built up by a population of agents (see e.g. [5], [12]). Once again there is a
population of agents. They play naming games. The agents have two components in
their cognitive architecture: A mechanism for categorisation, such as the discrimination
trees discussed earlier, and a lexicon which consists of a two-way associative memory
storing form-meaning pairs. The agents do not have a general overview nor can they
inspect each others’ lexicons.

When the speaker has a meaning to express, he looks up in his lexicon what the pre-
ferred word is. The hearer uses his own lexicon to retrieve the most expected meaning.
The game succeeds when the meaning retrieved by the hearer is compatible with that of



the speaker. There is lateral inhibition: the scores of the associations that were used go
up and those of competing associations go down. When the game fails, scores of par-
ticipating associations go down. In some simulations, speaker and hearer have access
to each other’s meanings, which violates the ”no-telepathy” assumption. In other ex-
periments, this is not the case and speaker and hearer only indirectly can learn whether
the same meaning was used. This introduces additional difficulties such as word-sense
ambiguity (one word with multiple meanings) in addition to synonymy (one meaning
multiple words).

Figure 3 (from [15]) gives a typical example of experimental results in which an
increasing population of distributed agents collectively create a shared lexicon by play-
ing naming games (and discrimination games as discussed in the previous subsection).
The agents in this case are robots perceiving geometric scenes in the form of colored
geometric figures pasted on the white board in front of them. We clearly see a winner-
take-all situation in which one word dominates after a struggle against alternatives. We
also see that word-sense ambiguity gets damped. This is more difficult because often
more than one meaning is compatible with the same situation and agents have to wait
until a situation arises that disambiguates the word-meaning relation.
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Fig. 3. A meaning-form diagram which graphs for a specific meaning all the possible forms and
their score. A winner-take-all situation is clearly observed.

Analysing this experiment we see the same three principles as in earlier experi-
ments. There is clearly again a form of reinforcement learning which is now based on
success or failure in the language game as a whole. The game succeeds if the hearer



identifies the object that the speaker had in mind. There is self-organisation due to the
positive feedback loop between use and success: When a word-meaning pair is success-
ful, the score goes up. Agents prefer the word that has the highest score for producing
and interpreting, hence words that have more success will be used and this leads again
towards greater success. Selectionism also plays a role here because the sensori-motor
apparatus of the agent and the situations they encounter acts as selectionist forces. For
example, a word-meaning pair for which the meaning cannot reliably be recognised by
the hearer will have less chance of survival.

A fourth principle, also widely used in biology, plays an additional role now, namely
structural coupling (Maturana and Varela) leading to co-evolution between meaning
repertoires and lexicons. Specifically a meaning formation repertoire (such as the one
discussed in the previous subsection) is coupled to the lexicon formation repertoire in
two ways: New categories may be generated at any time to be successful in discrimi-
nation. This obviously influences what word-meaning pairs may arise. But conversely,
success in the language game influences the score of the categories used, so the categori-
sation process becomes tuned to be better adapted to the language in the environment of
the agents. This way the ontologies of the different agents become similar even though
there is no telepathy and it is not innately given.

5 Experiments in the origins of grammar

Several researchers, most notably Batali [2], Kirby [7] and Steels [16],[17] have been
conducting experiments to explain how languages with the grammatical complexity of
human natural languages may emerge. This requires a scale-up along all dimensions
(form, meaning, and form-meaning association) and it is therefore not surprising that
many open questions remain. I briefly discuss experiments conducted by Batali [2] as a
representative example.

The experiment once again starts by setting up a population of agents. They have a
cognitive architecture which consists of a repertoire of meaning structures and a gram-
mar able to relate (structured) meanings with expressions that have a syntactic structure.
The computational and learning mechanisms used by Batali are based on recurrent neu-
ral networks but other types of learning such as memory-based learning or grammar
induction could equally well be used. The agents play a language game in which the
speaker conceives of a meaning, uses his grammar to translate that to a form, and then
transmits that to the hearer. The hearer parses the form and interprets it into a possible
meaning. In the Batali experiment the (unrealistic) assumption is made that speaker and
hearer share meaning independent of language, but other experiments (such as [17])
do not make this assumption and agents only get indirect feedback whether the mean-
ing they guessed was the right one. If the game fails (the meanings are not equal), the
networks of the hearer adapts to be more successful in future games. Batali has shown
that syntactic structures indeed emerge when a consecutive series of games is played.
The syntactic structures are surely not of the same complexity as syntactic structures
found in human languages and the grammar does not exhibit the sometimes very regu-
lar systematicity found in natural languages, but nevertheless compositionality is clearly



visible: new sentences could be constructed by the combination of parts built up from
earlier sentences.

The Batali experiment (and other experiments in emergent grammar such as the
ones reported in [16]) use the same principles as discussed in earlier experiments: rein-
forcement learning by the individual to tune in to the conventions present in the popu-
lation, self-organisation based on a positive feedback loop between use and success to
get coherence, selectionism constrained by the environments, the sensori-motor appa-
ratus and the cognitive architecture of the agents, and co-evolution between syntax and
semantics through structural coupling. But the study of grammar also introduces a new
phenomenon, namely level formation, resulting in hierarchical structures and compo-
sitionality. Levels form because partial structures can be reused and thus form stable
islands within larger structures. Level formation is also found in many biological sys-
tems. For example, when a symbiotic relation develops between organisms they may
evolve into a dependent relationship leading to a new higher level organism.

6 Conclusions

Although we are only at the beginning of the evolutionary approach to linguistics briefly
sketched in this paper, it is already quite clear that some general principles are emerging
to understand how a group of distributed agents might autonomously generate commu-
nication systems of the complexity of human natural language. These principles are: re-
inforcement learning, self-organisation, selection, co-evolution through structural cou-
pling, and level formation. It is not surprising that all these principles have been inspired
by biology. The view that emerges from this research is that language can best be seen as
a living system that is continuously evolving and adapting in a cultural process based on
the distributed activity of its users. Consequently the computational investigations into
genetic evolution, ant path formation, neural networks, and other biological systems are
an important source of insight. This view is in stark opposition to the Chomskyan ap-
proach to linguistics, which suggests that language is a largely innate static abstraction
uniformly present in the population. The paradigm shift implicit in the work reported
here is as profound and important as the shift in biology from typological thinking to
the population thinking that started the Darwinian revolution.
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