
Search : Brute force and Heuristic

• In solving problems, we sometimes have to search
through many possible ways of doing something.
Getting from Brussels to Oostende
Winning a chess game.

• Many problems can be formalized in a general way as
search problems.

See AI a modern approach
The essence of AI, A. Cawsely (chapter 4)

Search and Problem Solving
• Search problems described in terms of:

– An initial state. (e.g., initial chessboard, current positions
of objects in world, current location)

– A target state.(e.g., winning chess position, target location)
– Some possible actions, that get you from one state to

another. (e.g. chess move, robot action, simple change in
location).

• Search techniques systematically consider all
possible action sequences to find a path from the
initial to target state.

Example: Romania

• State Space Graphs
• State space:

– Cities
• Successor

function:
– Go to adj city

with cost = dist
• Start state:

– Arad
• Goal test:

– Is state ==
Bucharest?

• Solution
- path from Arad to
Bucharest

Example: Romania, cont.

• Search Tree

• Search:
– Expand out possible plans
– Maintain a frontier of unexpanded plans
– Try to expand as few tree nodes as possible

Another example: 8 puzzle

• States: Integer location of each tile
• Initial state: Any state can be initial
• Actions: {Left, Right, Up, Down}
• Goal test: Check whether goal configuration is

reached
• Path cost: Number of actions to reach goal

8-puzzle: as search tree

Simpler example, no loops
• How do we systematically and exhaustively search

possible routes, in order to find, say, route from
library (initial state) to university (goal state)?

FactorySchool

Library
Hospital

Park

Newsagent

University

Church

Search Space
• The set of all possible states reachable from the initial

state defines the search space.
• We can represent the search space as a tree.

library

school hospital

factory
park newsagent

university church

FS

L
H

P

N

U

C

Simple Search Techniques
• How do we search this tree to find a possible route from

library to University?
• May use simple systematic search techniques, which try

every possibility in systematic way.
• Referred to as brute force or blind techniques
• Breadth first search - Try shortest paths (least hops)

first.
• Depth first search - Follow a path as far as it goes, and

when reach dead end, backup and try last encountered
alternative.

Breadth first search

library

school hospital

factory park newsagent

university
church

Explore nodes in tree order: library, school,
hospital, factory, park, newsagent, university, church.
(conventionally explore left to right at each level)

Depth first search
• Nodes explored in order: library, school, factory,

hospital, park, newsagent, university.

library

school hospital

factory park newsagent

university
church

Algorithms for breadth first and
depth first search.

• Very easy to implement algorithms to do these kinds
of search.

• Both algorithms keep track of the list of nodes found.
– E.g., [library, school, hospital, ….]
– List is sometimes referred to as an agenda. But

implemented using
stack for depth first,
queue for breadth first.

Algorithm for breadth first:
• Start with queue = [initial-state] and found=FALSE.
• While queue not empty and not found do:

– Remove the first node N from queue.
– If N is a goal state, then found = TRUE.
– Find all the successor nodes of N, and put them at

the end of the queue.

Algorithm for depth first:
• Start with stack = [initial-state] and found=FALSE.
• While stack not empty and not found do:

– Remove the first node N from stack.
– If N is a goal state, then found = TRUE.
– Find all the successor nodes of N, and put them on

the end of the stack.

Note: Detailed work through of algorithms and discussion
of trees/graphs in textbook.

Choice between algorithms
• When is one technique more appropriate than the

other?
– Shortest path? BF
– Is memory a problem? DF
– Do you want to find the solution quickly? Depends on the

structure of the search tree
• To avoid long paths in DF search; define depth limit
• To find shortest path quickly, change DF search to

iterative deepening

Extensions to basic algorithm
• Loops: What if there are loops (i.e., we are searching a

graph)? How do you avoid (virtually) driving round and
round in circles?

• Algorithm needs to keep track of which nodes have
already been explored, and avoids redoing these
nodes.

FS

L
H

P

N

U

C

Extensions to basic algorithm
• Variation of DF search

– Start with stack = [initial-state] and found=FALSE.
– While stack not empty and not found do:

• Remove the first node N from stack.
• If N is not in visited then:

– Add N to visited
– If N is a goal state, then found = TRUE.
– Find all the successor nodes of N, and put them at the end of

the stack.

Extensions to basic algorithm
• Other variation of DF search

– Start with stack = [initial-state] and found=FALSE.
– While stack not empty and not found do:

• Remove the first node N from stack.
– Add N to visited
– If N is a goal state, then found = TRUE.
– Find all the successor nodes of N, and put the non-visited

nodes at the end of the stack.

Heuristic search algorithms.

• Depth first and breadth first search turn out to be too
inefficient for really complex problems.

• Instead we turn to “heuristic search” methods, which
don’t search the whole search space, but focus on
promising areas.

• To identify promising areas we need an evaluation
function

• The evaluation function scores a node in the search tree
on how close it is to the goal/target state.

Hill Climbing

(number) indicates the “as the crow flies”-distance to the goal

Library (6)

School (5) Hospital (3)

Factory (4) Park (1) Newsagent (2)

University (0) Church (1)

FS

L
H

P

N

U

C

Hill Climbing
• Hill climbing: always choose successor node with

highest score.
– Start with current-state=initial-state
– Until current-state=goal-state or there is no change

in current state do:`
• Get the successors of current state
• Evaluate the successors and assign them a

score
• If one of the successors is better than current-

state, then set the new-current state to be the
successor with the best score

• Avoids loop
• Algorithm may halt without success in local optimum

Best first search algorithm
• Best first search algorithm almost same as

depth/breadth. But we use a priority queue, where
nodes with high scores are taken off the queue first.

• Hence still exhaustive search and performance
depends on the quality of the evaluation function

• Start with agenda=(initial-state)
• While agenda not empty and not found do:

– Remove the BEST node N from agenda.
– If N is a goal state, then found = TRUE.
– Find all the successor nodes of N, assign them a

score, and put them on the agenda organised as a
priority queue.

Best first search

• Order nodes searched: Library, hospital,
park, newsagent, university.

Library (6)

School (5) Hospital (3)

Factory (4) Park (1) Newsagent (2)

University (0) Church (1)

A* algorithm
• Extension of best-first search (takes total path length

into account)
• A*: Score based on predicted total path “cost”, so

(weighed) sum of
– actual cost/distance from initial to current node,
– predicted cost/distance to target node.

• In Breadth First search (if the cost of traversing a link
is the same), the solution with the lowest cost will be
found first. However it may take time. In Best First
search a solution can be found quickly, yet it may not
be a very good one. The A* algorithm finds a cheap
solution quickly.

A* algorithm, an example
A :10

2 2
B:8 C:9

4 3 best first : A,B,D,E,F
D:6 G: 3 A* : A,B,C,G,F’

3
E:4 2

total cost = 13 total cost = 7
4

F: 0

Summary
• General search methods can be used to solve

complex problems.
• Problems are formulated in terms of initial and target

state, and the primitive actions that take you from
one state to next.

• May need to use heuristic search for complex
problems, as search space can be too large.

