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Résumé : Multi-objective multi-armed bandits (MOMAB) is an extension of the multi-armed bandits
framework that considers reward vectors instead of scalar reward values. Scalarization functions trans-
form the reward vectors into reward values in order to use the standard multi-armed bandits (MAB)
algorithms. However for many applications it is not obvious to come up with a good scalarization set
and therefore there is needed to develop MAB that discover the whole Pareto set of arms. Our approach
to this multi-objective MAB problem is two folded : i) identify the set of Pareto optimal arms and ii)
identify the minimum subset of scalarization functions that optimize the set of Pareto optimal arms. We
experimentally compare the proposed MOMAB algorithms on a multi-objective Bernoulli problem.

1 Introduction
Multi-armed bandits (MAB) is a machine learning paradigm used to study and analyze resource allocation

in stochastic and noisy environments. We consider the definition for a multi-armed bandit algorithm where
only one arm is played at a time and there are fixed equal range stochastic reward vectors for each arm.
The multi-armed bandit framework considers multi-objective, or multi dimensional, rewards and imports
techniques from multi-objective optimization into the multi-armed bandits algorithms. This framework is
called multi-objective multi-armed bandits (MOMABs) Drugan & Nowe (2013).

Let’s consider an initial set of arms I with cardinality K, where and K ≥ 2 and the vector reward
space is defined as a D-dimensional hypercube [0, 1]D. When arm i is played a random vector of rewards
is received, one component per objective, when one of the arms is pulled. The random vectors have a
stationary distribution with support in the D-dimensional hypercube [0, 1]D but the vector of true expected
rewards µi = (µ1

i , . . . , µ
D
i ), where D is the number of objectives, is unknown. At time steps t1,t2,. . ., the

corresponding reward vectors Xt1
i , Xt2

i , . . . are independently and identically distributed according to an
unknown law with unknown expectation vector µi = (µ1

i , . . . , µ
D
i ). Reward values obtained from different

arms are also assumed to be independent. A scalarized MOMAB algorithm chooses the next machine to
play based on the sequence of past plays and obtained reward values.

MOMABs lead to important differences compared to the standard MABs. A reward vector can optimize
one objective and be sub-optimal in the other objectives, leading with many vector rewards qualitatively
incomparable. Thus, there could be several arms considered to be the best according to their reward vectors.

A common approach is to transform the multi-objective environment into a single-objective environment
using scalarization functions. Single-objective environments, in general, results in a single optimum, the-
refore we need a set of scalarization functions to generate a variety of elements belonging to the Pareto
optimal set.

In this paper, we consider three types of scalarization functions that weight the values of the reward
vector : i) linear, ii) Chebyshev and iii)Lp norm scalarization functions. We consider that each set of weights
generate a scalarization function. Linear scalarization is a popular choice in designing multi-objective
reinforcement learning algorithms Lizotte et al. (2010); van Moffaert et al. (2013); Wang & Sebag (2012)
as well as multi-armed bandits Drugan & Nowe (2013).

Main contributions. In this paper, we introduce several scalarization based MOMAB algorithms that
identify the entire Pareto set of optimal arms. In Section 3, we report a first contribution. We propose an
algorithm that considers a fixed set of scalarization functions and that deletes suboptimal arms, i.e. arms
that are not optimum for any scalarization function, in order to identify the Pareto optimal set of arms. The
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proposed algorithm is an extension to scalarized reward vectors of the successive rejects algorithm Audibert
et al. (2010). We name this algorithm the scalarized successive rejects algorithm and we assume that each
scalarization function identifies a single arm as optimal.

In Section 4, we generalize the scalarized successive rejects algorithm to allow that p arms are identi-
fied from the Pareto optimal front when the Lp norm is used as the scalarization function. The proposed
algorithm is an extension to the reward vectors of multi-arm identification algorithm Bubeck et al. (2013).
Because of the usage of the Lp scalarization function, this algorithm can identify arms on a non-convex
Pareto front when p > 2. In Section 5, we compare runs of the proposed multi-objective algorithms on the
bi-objective stochastic environment generated with the control problem mentioned above.

A common approach in optimization is to select a number of linear scalarization functions that are uniform
randomly spread in the weighted space. However, most of the multi-objective environments do not have the
isomorphism property meaning that the scalarized values are not uniform randomly spread in the objective
space. A solution to this problem could be an increasing the number of scalarization functions in order
to identify all arms in the Pareto front. However, in stochastic environments optimizing in a scalarized
direction is more costly than in deterministic environments because arms are pulled for each scalarization in
order to compute confidence intervals to decide which is the best arm for a particular scalarization function.
Note that it is not straightforward to reuse arm pulls from one scalarization function to another since the
ranking and the values of arms in each of them can be different. Therefore, using the right amount of
scalarization functions is from a computational point of view important in a multi-armed bandits setting.
This bring us to the third contribution of this paper, which is to find a minimum set of scalarization functions
such that all the Pareto optimal arms are identified.

In Section 6, for each Pareto optimal arm, the linear scalarization function with the smallest variance
around the mean of the arm is selected as the best scalarization function.

Section 7 concludes the paper.

2 Background : the partial scalarized order relationship

There are mainly two partial order relationships used in multi-objective optimization. Pareto partial order
relationship Zitzler et al. (2003) is the natural order for these environments allowing to order the reward
vectors directly in the multi-objective reward space. Scalarization functions Eichfelder (2008) transform
the reward vectors into scalar rewards using e.g. linear or non-linear weighted sums.

A reward vector µ is considered better than, or dominating, another reward vector ν, ν ≺ µ, iff there
exists at least one dimension j for which νj < µj , and for all other dimensions o we have νo ≤ µo. We say
that µ is non-dominated by ν, ν 6� µ, iff there exists at least one dimension j for which νj < µj .

Let the Pareto optimal reward set O∗ be the set of reward vectors that are non-dominated by any of the
reward vectors. Let the Pareto optimal set of arms I∗ be the set of arms whose reward vectors belong to
O∗. Then, ∀µ∗` ∈ O∗, and ∀µo, we have µ∗` 6≺ µo.

We further assume that it is impossible, from the application point of view, to determine a-priori which
arm in I∗ is better than another arm from the same set. Therefore, the reward vectors in the Pareto optimal
reward set O∗ are considered equally important.

Optimization and learning algorithms using Pareto partial order relationships Wiering & de Jong (2007);
Drugan & Nowe (2013) often have computational problems because of the large sets of best arms that need
to be explored and stored.

2.1 Scalarized multi-objective multi-armed bandits

Due to its simplicity, the linear scalarization is the most popular scalarization function in designing
multi-objective optimization problems. This maps the problem into a single-objective environment whose
optimization results in a single optimum. Therefore, we need a set of scalarization functions to generate a
variety of elements belonging to the Pareto optimal set. It weighs each value of the reward vector and the
result is the sum of these weighted values.

The linear scalarized reward is

fL(µi) = ω1 · µ1
i + . . . ωD · µDi , ∀i
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FIGURE 1 – a) Ten reward vectors, where five are optimal : µ∗1, µ∗2, µ∗3, µ∗4 and µ∗5. Compute the maxi-
mal reward values for b) the linear scalarization function, and c) the Chebyshev scalarization function. d)
Compute the best (the straight upper line) and the second best (the doted line) reward values for the L2

scalarization function.

where (w1, . . . , wD) is a predefined weight vector and
∑D
j=1 ω

j = 1. A known problem with linear sca-
larization is its incapacity to potentially find all the points in a non-convex Pareto set, even by varying the
weights.
Lp norm is a scalarization function that generalizes the linear scalarized function, and it is defined as

fp(µi) = p

√√√√ D∑
j=1

ωj · (µji − zj)p

where p is a positive integer, z = (z1, . . . , zD) is a reference point chosen such that is dominated by all the
optimal reward vectors µ∗i . For each objective j, this reference point is the minimum of the current optimal
rewards sampled so far minus a small positive value, εj > 0,

zj = min
1≤i≤D

µji − ε
j , ∀j (1)

An Lp scalarization function can find p solutions on a non-convex Pareto front, being a polynomial function
with p solutions.

The Chebyshev scalarization has the advantage that in certain conditions it can find all the points in a
non-convex Pareto set. The Chebyshev scalarization reward is

fC(µi) = min
1≤j≤D

ωj · (µji − z
j), ∀i

The Chebyshev metric can be considered as a particular case of the Lp norm with p←∞.
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2.2 Comparing the partial order relationships
Consider the 10 bi-dimensional reward vectors from Figure 1 a) and the Pareto partial order. Let there

be five optimal reward vectors, µ∗1 = (0.55, 0.49), µ∗2 = (0.53, 0.511), µ∗3 = (0.52, 0.541), µ∗4 =
(0.505, 0.563) and µ∗5 = (0.5, 0.569) in O∗. Consider five different suboptimal reward vectors, µ6 =
(0.51, 0.52), µ7 = (0.5, 0.5), µ8 = (0.505, 0.495), µ9 = (0.5, 0.5), and µ10 = (0.49, 0.51). Note that the
suboptimal reward µ6 is non-dominated by three optimal reward vectors from O∗, µ∗1, µ∗4 and µ∗5, but it is
dominated by µ∗2 and µ∗3. µ7 and µ8 are dominated by all the other reward vectors.

In Figure 1 b), for any set of weights, the optimum reward vectors are µ∗1, µ∗3, and µ∗5, but never µ∗2 or µ∗4
that are non-convex points. O∗L therefore does not include µ∗2 and µ∗4 from the non-convex Pareto optimal
reward set O∗.

In Figure 1 c), the optimum reward vectors are µ∗1, µ∗3, µ∗4 and µ∗5, but never µ∗2. Thus, O∗C with a fixed
reference point does not include all from the arms in O∗.

In Figure 1 d), the best and the second best reward values for Lp scalarization function are plotted. The
best arms are only two, which are the extremities µ∗1 and µ∗5. The second best arms are the rest of the three
Pareto optimal arms µ∗2, µ∗3 and µ∗4. Note that all the Pareto points are identified if we consider the two lines
combined, a single line identifies a complementary subset of the Pareto front.

2.3 The regret metric
The scalarized regret for a particular scalarized function f j and for the arm i is

∆j
i =def f j(µ∗)− f j(µi) (2)

where the optimum reward value µ∗ is the reward for which the function f (linear,Lp, or Chebyshev) attains
its maximum value

f j(µ∗) = argmaxk∈If
j(µk)

It is straightforward to show that the maximum value for any set of weights is a Pareto optimal arm. We
denote the Pareto optimal set of arms identifiable by : i) the linear scalarization with I∗L, ii) the Lp-norm
scalarization with I∗p and iii) the Chebyshev scalarization with I∗C . The corresponding set of Pareto optimal
reward sets are : i)O∗L for linear scalarization, ii)O∗p for Lp norm, and iii)O∗C for Chebyshev scalarization.

As mentioned above, the scalarized regret is the difference between the maximum value for a scalarization
function on the set of arms I and the scalarized value for an arm i.

While this definition of regret seems natural, it is improper for our goal because it gathers a collection
of independent regrets instead of minimizing the regret of a multi-objective strategy in all objectives. The-
refore, we need other mechanisms to ensure the global performance of the multi-armed bandits that use
scalarization functions.

Empirical estimates. The expected value of each arm is computed by averaging the samples observed
over time. Let Ti(n) be the number of times that arm i is pulled during a total number of pulls of n. The
mean of arm i is estimated as µ̂i(n) =

∑Ti(n)
s=1 Xk(s)/Tk(n), is the s-th sample observed for arm i.

3 Scalarization based Pareto optimal set of arms identification algo-
rithms

In this section, we introduce a scalarization based multi-objective MAB algorithm with the goal of identi-
fying the Pareto optimal set of arms. This class of algorithm deletes suboptimal arms in such a way that the
probability to delete the optimal arm is bounded. There are two classes of algorithms : i) with fixed budget,
and ii) with fixed confidence. We focus on the fixed budged best arm identification algorithms, more exactly
the successive reject algorithm Audibert et al. (2010).

3.1 The scalarized successive rejects algorithm (sSR)
We introduce the scalarized successive rejects (sSR) policy which is an extension of the successive rejects

algorithm for single objective such that for each set of weights, or scalarization functions, we identify the
best arm that optimizes that scalarization function. Intuitively, this algorithm is a set of parallel best arm
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Algorithm 1 The scalarized successive rejects sSR(I, S, n)
Require: A set of arms I
Require: A set of scalarization functions S
Require: The budget n ∗ |S|
I∗S ← ∅, A

j
1 ← I, ∀f j ∈ S

Let n0 = 0, and nk =
⌈

1
log(K)

· n−K
K+1−k

⌉
for all f j ∈ S do

for all rounds k = 1, 2, . . . ,K − 1 do
Pull arm i ∈ Ajk for nk − nk−1 rounds
Let i← argmini∈Aj

k
f j(µ̂i) the arm to dismiss

Ajk+1 ← Ajk \ argmini∈Aj
k
f j(µ̂i)

end for
if i∗ /∈ I∗S , where i∗ ∈ AjK−1 then
I∗S ← I∗S ∪ {i∗}

end if
end for
return I∗S

identification algorithms Audibert et al. (2010), where each scalarization function identifies a single Pareto
optimal arm, not necessary distinct. The pseudo-code for our scalarized successive rejects algorithm is given
in Algorithm 1.

Let’s consider a set of fixed scalarization functions S = {f1, f2, . . . , f |S|} and to each scalarization
function f j let a set of active arms Aj1 be associated. At initialization, each active arms set contains the
whole set of arms, Aj1 ← I. The algorithm considers K − 1 phases of increasing length. In each phase,
we pull an arm iff it is active for that scalarization function. Thus, in the k-th phase, all the active arms,
i.e. not dismissed yet, are equally pulled for nk − nk−1 times. The length of a phase is chosen to obtain a
logarithmic convergence rate, and as for the single objective successive reject algorithm. We have

nk =

⌈
1

log(K)
· n−K
K + 1− k

⌉

where, by definition, we have log(K) = 1
2 +

∑K
j=2

1
j . For each scalarization function f j ∈ S, we suc-

cessively remove the arm with the minimum scalarized reward from the list of active arms. The algorithm
stops when, for each scalarization function, all the arms but the best arm are deleted from the list of active
arms. The surviving arm is recommended as the best arms for the function f j and, in the same time a Pareto
optimal arm in I∗.

The worst arm is pulled n1 =
⌈

1
log(K)

· n−KK
⌉

times, the second worst arms is pulled for n2 =
⌈

1
log(K)

· n−KK−1

⌉
times, and the number of times an arm is pulled increases with its quality. The best arm is pulled nK−1 =⌈

1
log(K)

· n−K2
⌉

times. This algorithm has a fixed budget n · |S| which it is not exceed because

K−1∑
k=1

nk + nK−1 ≤ K +
n−K

log(K) + 1

(
1

2
+

K−1∑
k=1

1

K + 1− k

)
= n

Let’s consider the complexity measure

H2 = max
i∈I

max
fj∈S

i

(∆j
i )

2
(3)

where ∆j
i is defined as in Equation 2. H2 quantifies the hardness of the scalarized successive rejects algo-

rithm (SSR).
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Algorithm 2 Efficient Scalarized Successive Rejects esSR(I,S,n)
Require: A set of arms I
Require: A set of scalarization functions S
Require: The budget n · |S|
I∗S ← ∅, A

j
1 ← I, ∀f j ∈ S

Let n0 = 0, and nk =
⌈

1
log(K)

· n−K
K+1−k

⌉
for all rounds k = 1, 2, . . . ,K − 1 do

for all arm i for which ∃f j , i ∈ Ajk do
Select arm i for nk − nk−1 rounds

end for
for all f j ∈ S do

Let i← argmini∈Aj
k
f j(µ̂i) the arm to dismiss

Set Ajk+1 ← Ajk \ {i}
end for

end for
if i∗ /∈ I∗S , where i∗ ∈ AjK−1 then
I∗S ← I∗S ∪ {i∗}

end if
return I∗S

Theorem 1
The probability of wrongly deleting an optimal arm given a scalarization function, f j ∈ S, after any number
of n plays is at most

en ≤
(
K − 1

2

)
· e−

(n·|S|−K)

H2log(K)

Proof 1
Let Xi,1,. . .,Xi,n be random D-dimensional variables generated for arm i with common range [0, 1]D. The
expected reward vector for the arm i after n pulls is

X̂i,n = 1/n ·
n∑
t=1

Xi,t ← ∀j, X̂j
i,n = 1/n ·

n∑
t=1

Xj
i,t

The proof follows directly from the proof in Audibert et al. (2010) when the reward vectors Xi,t are
transformed into reward values using the scalarization function f j . Then, Yi,t ← f j(Xi,t). We obtain the
inequality from the theorem by using the union bound over all the scalarization functions.

Remark 3.1 The output of the previous algorithm will include a Pareto optimal arm for each scalarization
function. But Algorithm 1 finds only the Pareto optimal arms that are optimal given a set of scalarization
functions S. Thus, not all the arms in I∗ are also included in I∗S . Furthermore, Algorithm 1 does not gua-
ranty that the optimal solutions of the scalarization functions are different. As it could be more scalarization
functions that correspond to same Pareto optimal arm. Moreover, it is well known that linear scalarization
functions cannot find all the points on a non-convex Pareto front.

Remark 3.2 Note that, for a set of weights in a linear scalarization function, there is a single optimal
arm. This is an important assumption in Algorithm 1 which deletes all but one arm for a given set of weight
vectors. In case we would use the Chebyshev function, there could be more than one optimal arm for a set
of weights. We could be to consider more than one optimal arm for a single set of weight vectors when the
Chebyshev function is used.

Remark 3.3 Algorithm 1 is a naive variant of the scalarized SR because it runs for each set of weights
in S the single objective successive rejects algorithm from Audibert et al. (2010). To improve its perfor-
mance, samples of the active arms are used by all the scalarization functions. The pseudo-code is given in
Algorithm 2. Unlike in Algorithm 1, all the scalarization functions have common rounds. This means that
an arm active for at least a scalarization function in the round k is pulled only for nk − nk−1 times. This is
the main difference between Algorithm 1 and Algorithm 2.



Pareto optimal set of arms identification

Note that the complexity measure from Equation 3 is given by the worst scalarized value of an arm when
all scalarization functions are considered. Similarly, the budget of Algorithm 1 is also given by the worst
case, i.e. all arms are active for at least a scalarization function.

In the best case where all functions agree on the arm ranking, Algorithm 2 is |S| times more efficient
then its sequential variant Algorithm 1 where the arms are independently pulled for each scalarization
function. In the worst case, where the scalarization functions do not agree at all on the ranking of the arms,
Algorithm 2 is as efficient as Algorithm 1 because all the arms needs to be played through all the rounds.

4 The scalarized multiple arm successive accepts and rejects algo-
rithm

The algorithm presented in the previous section can use any type of scalarization function. When linear
scalarization is used, a single arm will be optimal, w.r.t. this scalarization function, so it make sense to delete
all but one arm in K − 1 rounds. In case the Lp scalarization is used, p arms can be optimal. Therefore, we
also present an algorithm which allows to identify p best arms per scalarization. The proposed algorithm is
an extension of multiple best arm identification Bubeck et al. (2013) to the scalarized multi-objective MAB
algorithms. The main difference between the scalarized SR from Algorithm 2 and the scalarized successive
accepts and rejects is the latter accepts arms when they are identified within a certain confidence as being
one of the p best arms.

The goal of this algorithm is to minimize the probability of misclassification, i.e. of deleting one of the
p-optimal arms. Let {J1, . . . , Jp} be the set of p optimal arms. We want to upper bound the probability

en = P({J1, . . . , Jp} 6= {1, . . . , p})

Similar to Bubeck et al. (2013), we define two performance measures. The reward gap between mean
reward of two arms given a scalarization function f j is defined as

∆<p>
(i)j =

{
f j(µ̂i)− f j(µ̂p+1) if i ≤ p
f j(µ̂p)− f j(µ̂i) if i > p

(4)

where the notation (i) ∈ {1, . . . ,K} is defined such that ∀j

∆<p>
(1)j ≤ . . . ≤ ∆<p>

(K)j

The complexity measure that quantifies the hardness of the scalarized successive accepts and rejects algo-
rithm is defined as

H<p>
2 = max

i∈I
max
fj∈S

i

(∆<p>
(i)j )2

(5)

Given X0
i , . . . , X

t
i samples from the distribution of the arm i, the empirical reward gap when a learning

algorithm using the scalarization f j is

∆̂
<p(k)>
(i)j =

{
f j(µ̂i)− f j(µ̂p+1) if i ≤ p(k)
f j(µ̂p(k))− f j(µ̂i) if i ≥ p(k) + 1

(6)

where the notation (i) ∈ I is defined such that

f j(µ̂1) ≤ . . . ≤ f j(µ̂K)

and p(k+1)← p(k)−1. Relying on the estimates of the reward gap from Equation 6, we decide whenever
to accept or reject an arm during the k-th phase.

The pseudo-code for the scalarized successive accepts and rejects is given in Algorithm 3. For each
scalarization function f j , we consider a set of active arms in the round k, Ajk, and a set of accepted arms
Jjp . At initialization, the set of active arms coincide with the whole set of arms,Aj1 ← I. The set of accepted
arms is empty, pj(1)← p. Like in Algorithm 2, for each arm that is active for at least a scalarization function
is pulled for nk − nk−1 rounds, where nk is chosen to ensure a logarithmic regret.

For each function f j ∈ S, compute the maximum empirical reward gap ∆̂
<p(k)>
(i)j for this round. For the

best p(k) arms, this is the distance with the best p(k) + 1 th empirical mean. For the other active arms in
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Algorithm 3 The scalarized successive accepts and rejects algorithm sSAR(p, I,S,n)
Require: A set of arms I
Require: A set of scalarization functions S
Require: The budget n · |S|
Require: The number of arms returned p
I∗S ← ∅, pj(1)← p, Aj1 ← I, ∀f j ∈ S
Let n0 = 0, and nk =

⌈
1

log(K)
· n−K
K+1−k

⌉
for all rounds k = 1, 2, . . . ,K − 1 do

for all arm i for which ∃f j , i ∈ Ajk do
Select arm i for nk − nk−1 rounds

end for
for all f j ∈ S do

Let i← argmaxi∈Aj
k
∆̂
<pj(k)>
(i)j the arm to dismiss

Ajk+1 ← Ajk \ {i}
if the arm i among the best pj(k) arms for the scalarization f j , f j(µ̂i) > f j(µ̂pj(k)+1) then

Accept arm i, Jjp−pj(k) ← i

Set pj(k + 1)← pj(k)− 1 the remaining number of arms to be accepted
end if

end for
end for
return I∗S the set of non-dominated arms, I∗S ← ∪1≤i≤p ∪j∈S J

j
i

Ajk, ∆̂
<p(k)>
(i)j represents the distance with the best p(k) th arm. The arm corresponding with the largest gap

is deleted. In addition to Algorithm 2, the rejected arm in round k is accepted as among the top p arms when
its fitness function is larger than the top pj(k)+1 arms. The algorithm stops afterK−1 rounds. The output
for Algorithm 3 is a list with the set of arms accepted by at least a scalarization function.

Theorem 2
The probability of error with Algorithm 3 is at most

en ≤ 2K2 · e
− (n−K)

8H
<p>
2 log(K)

Proof 2
The proof follows directly from the proof in Bubeck et al. (2013) when the reward vectors Xi,t are transfor-
med into reward values using the scalarization function f j . Then, Yi,t ← f j(Xi,t). We obtain the inequality
from the theorem by using the union bound over all the scalarization functions.

Remark 4.1 Like in the single objective case, Algorithm 3 is a generalization of Algorithm 1. On the
other hand, Algorithm 2 can be considered with all type of scalarization functions, whereas Algorithm 3 is
designed for the Lp scalarization functions. Note that if p is larger than the size of the Pareto optimal set of
arms, arms that do not belong to I∗ will be returned as optimal. A solution is to verify that all arms in I∗A
are non-dominated and to delete the non-dominated arms.

5 Numerical example
We compare the performance of three scalarization multi-objective MAB algorithms proposed here with

an adaptation to the multi-objective spaces of the Hoeffding race algorithm Maron & Moore (1994) as a
baseline algorithm. In this version of the Hoeffding race algorithm Maron & Moore (1994), all the arms are
pulled equally often and, in the end, the arms with the highest empirical scalarized mean is chosen.

As a test problem, we consider multi-objective Bernoulli distributions on the means from the example
in Section 2.2. We assume sets of weight vectors of size 11 and that the corresponding weight vectors are
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FIGURE 2 – The Pareto regret, b) the unfairness, and c) the usage of the optimal arms for four algorithms,
e.g. Hoeffding race (HR), linear scalarized successive rejects (lSSR), Chebyshev scalarized successive re-
jects (cSSR), and L2 scalarized successive rejects.

uniformly randomly spread in the bi-objective space [0, 1] × [0, 1]. Then w1 ∈ {0.0, 0.1, 0.2, . . . , 1.0} in
the first objective, and 1− w1 in the second objective.

Each algorithm is run 30 times. For the Chebyshev scalarization function, we uniform randomly generate
the parameters εj ∝ [0, 0.1] from Equation 1 for the reference point z.

The scalarized successive rejects algorithm. In the first experiment, we compare the performance of
Algorithm 1 for the three scalarization functions presented in Section 2.1 with the Hoeffding race algorithm.
The test algorithms are

1. HR : The Hoeffding race algorithm
2. lSSR : The linear scalarized successive rejects algorithm
3. cSSR : The Chebyshev scalarized successive rejects algorithm
4. pSSR : The L2 scalarized successive rejects algorithm, where p = 2

We evaluate the performance of the four multi-objective MAB algorithms, lSSR, cSSR, pSSR and HR,
based on three performance measures as indicated in Figure 2.

Figure 2 a) gives the instantaneously Pareto regret metric for each of the three algorithms. According
with this measure, cSSR and pSSR are the best performing algorithms and the Hoeffding race is the worst
algorithm. lSSR is using linear scalarization and has a Pareto regret that is larger than of the same algorithm
using cSSR.

Figure 2 b) shows the unfairness in using the optimal arms, where we have used the definition of unfair-
ness as a regret metric from Drugan & Nowe (2013) briefly presented in the following. The unfairness of a
multi-objective multi-armed bandits algorithm is defined as the variance of the arms in I∗,

1

N · |I∗|
·
∑
i∈I∗

(T ∗i (N)− IE[T ∗(N)])
2
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FIGURE 3 – The Pareto regret, b) the fairness, and c) the usage of the optimal arms for four algorithms,
e.g. Hoeffding race (HR), Chebyshev scalarized successive rejects and accepts (cSSAR), L2 scalarized
successive rejects and accepts (pSSAR), and L5 scalarized successive rejects and accepts (pSSAR_5).

where T ∗i (N) is the number of times an optimal arm i is pulled, and IE[T ∗(N)] the expected number of
times optimal arms are selected. For a perfectly fair usage of optimal arms, we have that the unfairness is
about 0. When a multi-objective strategy uses only samples a subset of I∗, then the variance is large. In
other words, a well performing multi-objective MAB algorithm has low risk of unevenly choosing between
optimal arms.

According with this measure, the best performing algorithm is cSSR and pSSR where the optimal arms
are fairly played. Note that this is an indication that the error probability to eliminate a (Pareto) optimal
arms in a preliminary phase (i.e., the performance metric for the Pareto successive rejects algorithm) is
small. The worst algorithm is the Hoeffding race algorithm.

Figure 2 c) shows the percentage of times all the Pareto optimal arms from I∗ are used. The worst
algorithm is again Hoeffding race that uses all the arms equal time, and linear scalarization has a slightly
better performance than the Hoeffding race. The other two algorithms perform similarly, being the best
algorithms.

The scalarized successive rejects and accepts algorithm. In the second experiment, we compare the
performance of Algorithm 3 for the Chebysev and the Lp scalarization functions presented in Section 2.1
with the Hoeffding race algorithm.

The test algorithms are
1. HR : The Hoeffding race algorithm
2. cSSAR : The Chebyshev scalarized successive rejects and accepts algorithm, where p = 2

3. pSSAR : The L2 scalarized successive rejects and accepts algorithm, where p = 2

4. pSSAR_5 : The L5 scalarized successive rejects and accepts algorithm, where p = 5

The performance of the scalarized successive rejects and accepts algorithm is similar. That might be
because the low number of Pareto optimal arms in the given example.
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Discussion. An important note is that the performance of the algorithms does not change with increasing
number of scalarization functions. Note that all the scalarized successive rejects algorithms perform better
than the base line algorithm, i.e. Hoeffding race. The linear scalarization successive rejects algorithm is
the second worst algorithm because, as suggested in Section 2.2, the linear scalarization function cannot
identify all the arms that are in the non-convex Pareto set of arms. The successive rejects algorithm using
Chebysev and Lp scalarization functions have similar performance and are the best algorithms.

Overall, the Pareto regret of the successive rejects and accepts algorithms is lower than the Pareto regret
of the algorithms using successive rejects algorithms. This could be because of the usage of the gap function
to evaluate when to delete an arm that can be quite small and thus prone to errors. In contrast, the fairness
of the successive rejects and accepts algorithms is lower than of the successive rejects algorithms, which
shows that indeed the Pareto optimal arms are the arms identified as optimal by the successive rejects and
accepts algorithms.

6 The minimal set of scalarization functions identification algorithm
The most popular method in multi-objective optimization Drugan (2013b,a) is to consider a large fixed

number of scalarization functions uniform randomly spread into the space of weight vectors. In this section,
we propose a variant of the naive Probable Approximately Correct (PAC) algorithm applied to identify the
best scalarization function for a Pareto optimal arm. We assume here that the set of best arms was a-priori
identified, for example, with Algorithm 1.

6.1 The performance metric
Let’s consider the mean-variance risk measure Sani et al. (2013) from portfolio analysis as a performance

measure of the goodness of a scalarization function indicating a particular Pareto optimal arm. Let i be a
Pareto optimal arm, i ∈ I∗, and let the mean variance of a scalarization function f j with respect to the
optimum arm i be

φji = f j(σ2
i )− ρ · f j(µi)

where σ2
i is the variance on the optimal arm i and µi is its mean. The best scalarization function for a Pareto

optimal arm is the scalarization function with the minimal mean-variance for the Pareto optimal arm.
Given X0

i , . . . , X
t
i samples from the distribution of the arm i, the empirical mean-variance when a lear-

ning algorithm using the scalarization f j over t rounds is considered is

φ̂tij = f((σ̂tij)
2)− ρ · f(µ̂tij)

where µ̂tij = 1
t

∑t
s=1X

s
ij and (σ̂tij)

2 = 1
t

∑t
s=1(Xs

ij − µ̂tij)2.
The regret of a suboptimal scalarization function f j is

∆ij = φ̂tij − φ̂i∗ (7)

where φ̂i∗ is the mean-variance of the best scalarization function for the Pareto optimal arm i, and ρ is a
positive number.

Each optimal arm identified, e.g. with Algorithm 1, is pulled a number of times and then the scalarization
function with the smallest variance around the mean is chosen. Let Si be the set of scalarization functions
that optimize the same arm i, where i ∈ I∗. More formally, the best scalarization function is defined by

f∗i ← argminj∈Si
φ̂ij

For a perfect fair usage of scalarization functions, we have that φ̂i∗ ← 0 which means that the minimal set of
scalarization functions identifies the whole set of Pareto optimal arms. S∗ is the set of optimal scalarization
functions.

6.2 The algorithm
The pseudo-code for this algorithm is given in Algorithm 4. For each optimal arm i ∈ I∗, we pull i for

`i = 4·(5+ρ)2
ε2 ln 2|I∗|·n

δ rounds. Afterwards, we select the scalarization function that minimizes the mean
variance function.
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Algorithm 4 Minimal set of Scalarization Identification algorithm MSI(I∗)
Require: ∀i ∈ I∗, Si a set of scalarization functions with the same optimal arm i, where S = ∪i∈I∗Si
Require: ε > 0, δ > 0
Require: n fixed budget
S∗ ← ∅
for all i ∈ I∗ do

Pull arm i for `i = 4·(5+ρ)2
ε2 ln 2|I∗|·n

δ times
Select the scalarization function f∗i ← argminj∈Si

φ̂ji
S∗ ← S∗ ∪ {f∗i }

end for
return S∗

Theorem 3
Algorithm 4 is a naive (ε, δ)-PAC algorithm with arm sample complexity of O( (5+ρ)2·n

ε2 log 2|I∗|·n
δ ).

Proof 3
Let f j be a scalarization function for which φij − ε > φi∗. Thus, the probability of erroneously choosing a
suboptimal scalarization function is

IP (φ̂ij < φ̂i∗) ≤ IP (φ̂ij < φji − ε/2 or φ̂i∗ > φi∗ + ε/2)

≤ IP (φ̂ij < φij − ε/2) + IP (φ̂i∗ > φi∗ + ε/2)

≤ 2(5 + ρ) · e−ε
2`i/2 =

δ

|I∗| · n
where the last inequality uses the Hoeffding inequality for mean-variance measure

IP (φ̂ij < φij − ε/2) ≤ (5 + ρ) · e−ε
2`i/2

IP (φ̂i∗ > φi∗ + ε/2) ≤ (5 + ρ) · e−ε
2`i/2

Choosing `i = 2·(5+ρ)
ε2 ln 2n

|I∗|·δ assures that IP (φ̂ij < φ̂i∗) ≤ δ
|I∗|·n . Summing over all the arms, we have

that the error probability is at most δ.

Remark 6.1 For an efficient scalarization-based algorithm we need a one to one correspondence between
optimal arms in the Pareto set and a set of weight vectors that defines a scalarization function. Algorithm 4
deletes all but one scalarization functions that optimize the same Pareto optimal arm.

Remark 6.2 There could be Pareto optimal arms that do not correspond to any scalarization function even
when the Pareto optimal is convex because, for example : i) an insufficient large number of scalarization
function considered, and ii) the non-uniform spread of optimal arms on the Pareto front. It should be noted
that the method of identifying the minimal set of weights from Lizzote et al Lizotte et al. (2010) is limited
to Markov Decision Process (MDP) settings, and therefore not applicable to the MOMABs we consider
here.

Remark 6.3 Algorithm 4 assumes that there is a single optimal arm for each tuple of weights as for the
linear scalarization. For the Chebyshev and Lp scalarization function this assumption does not hold since it
could be more than one optimal solution that is identified by a single scalarization function.

An adapted version for the Chebyshev and Lp scalarization deletes a scalarization function only if it is not
optimal for any optimal arm. Another solution would be to use another variant of the algorithm from Drugan
& Nowe (2013) where the performance of Chebyshev scalarization function is measured also by the number
of optimal arms identified as such.

7 Conclusions
In this paper, we consider that the scalarized based multi-objective multi-armed bandits algorithms have

to solve two problems : i) to identify the set of Pareto optimal arms, and ii) to identify the minimal set
of scalarization functions that can identify the set of Pareto optimal arms. We introduced three variants of
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the scalarized based multi-objective multi-armed bandits algorithms. We propose a scalarized based variant
of successive reject algorithm that can be used with any type of scalarization function. The scalarized
successive rejects algorithm shares the sample of the pulled arms between all the scalarized functions,
increasing the efficiency of the algorithm. A generalization of the successive accepts and rejects in the
scalarized context designed for Lp norm like scalarization functions where there are p best arms selected
for each scalarization function. The scalarized successive accepts and rejects algorithm can identify Pareto
optimal arms on a non-convex front. We show some experimental results where the efficiency of these
algorithms are tested and compared. The third variant of algorithms assumes a large set of scalarization
functions uniform randomly spread in the weight vector space identifies the minimal set of scalarization
functions.
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