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Pervasiveness of NLP
Machine translation and language detection



(Multilingual) spelling correction and word suggestion



QA, conversational agents and personal assistants



• Real-life applications are trained on large human-annotated
datasets.

• Under the hood, low-level processing and analysis of linguistic
information.

Most of applications work with words as the basic unit of text.

To a computer, text is just a long string of characters...



Necessary first steps

Pre-processing

• sentence segmentation

• tokenization

• normalization

For example:
“This is a short sentence.” →
[“this”,“be”,“a”,“short”,“sentence”, “.”]

What about word meaning? How can we capture it computationally?



Motivating example: language models

• Estimate probabilities for all strings in a language.

• Crucial for tasks identifying words from a noisy input, in
generation, in ranking word sequences.

An N-gram model gives conditional probabilities:

p(work|known, for, his) = C(known,for,his,work)
C(known,for,his) (MLE)



Estimated from 1M-word Wiki sample
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Estimated from 2M-word Wiki sample
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• What is p(movie|known, for, his) according to the above counts?

• Answer: 0, since “known for his movie” was not observed in the
data.

• Regardless of the size of the training corpus, there will always be
unseen (and infrequent) words and sequences.

Lexical/data sparseness

• We need to be able to generalize and relate words

• Use the counts for “known for his film” since “movie”≈“film”.
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How do we obtain representations that
generalize?

• Human-crafted semantic classes

• Data-induced classes and representations: representation
learning

• “Specialized” representations, a mix of both (Mrkšić et al. 2017)
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Human-crafted classes: WordNet

(n) partner, spouse, better half, . . .synsetpartner

personsemantic typepartner

(n) relative, relation (n) significant other, . . .

. . .(n) wife, married woman (n) polygamist

hypernym
y

hyp
er

nym
y



Distributional hypothesis

The meaning of a word is an abstraction over the contexts in
which the word is used.

“You shall know a word by the company it keeps.” (Firth, 1957)

What’s a shrew
An owl scooping up a shrew.

From where I sat, the large morsel looked remarkably like a shrew or baby mouse.
Underwater sniffing is not a water shrew’s only trick.

Shrews sometimes get into the home by falling in window wells or squeezing in
tiny entry points.

What’s a shrew and how do I get rid of them?
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Small agile animal similar to a mouse



Some distributional approaches

Induce word representations from large corpora using

• clustering

• distributional semantic models (count-based)

• distributed representations (embeddings)

• latent-variable representations



Word clusters
Brown clusters from Dutch tweets
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Target-context co-occurrence matrix



Word embeddings



Latent-variable representations

Just an example
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Learning of word representations

Correct solution is not knowable by humans → unsupervised learning

• Ultimately interested in extrinsic tasks

• Features for part-of-speech tagging, named entity recognition,
syntactic parsing, semantic-role labeling

• But we often measure fit to human judgments using semantic
similarity benchmarks

• A convenient and (hopefully) reliable indicator of extrinsic
performance



Learning of word representations

“An AI must fundamentally understand the world around us, and we
argue that this can only be achieved if it can learn to identify and

disentangle the underlying explanatory factors hidden in the observed
milieu of low-level sensory data.” (Bengio et al. 2013)



Supervised learning

xPREDICTOR
INPUT

h

prediction h(x)OUTPUT target f (x)

loss
L(x , f , h)



Supervised + representation learning
(Huang et al. 2014)

xREPRESENTATION-
LEARNING INPUT

r

representation r(x)
PREDICTOR
INPUT

h

prediction h(r(x))OUTPUT target f (x)

loss
L(x , r , f , h)



Supervised + representation learning
(Huang et al. 2014)

xREPRESENTATION-
LEARNING INPUT

r

representation r(x)
PREDICTOR
INPUT

h

prediction h(r(x))OUTPUT target f (x)

loss
L(x , r , f , h)

Find r∗ and h∗ that minimize loss. A good rep-
resentation leads to better predictions: h(r(x)).



Word representations

Important areas of research

• Definition of context

• Generic vs. sense-specific

• Multilinguality



Linear vs. syntactic context

• Linear context: fixed word window to each side of the target
word

• Syntactic context: follow syntactic paths (“dependencies”) (Pado
and Lapata 2007, Levy and Goldberg 2014)

The benefits far outweigh the risks
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A syntax-informed HMM model
(Šuster et al. 2015)

w1 w2 w3 w4 w5 w6

c1 c2 c3c0 c4 c5 c6

r1 r2 r3 r4 r5 r6

The magic happens beneath oak treesNMOD SBJ ROOT LOC NMOD PMOD



Sense representations

• HMMs give context-dependent representations at test time

• In other frameworks (e.g. embeddings), sense distinctions are
not possible by default. Several sense-inducing extensions exist,
see Camacho Collados et al. 2016 for an overview.

The jury is still out on whether sense representations are useful!

• Sense disambiguation is noisy.

• Human-defined sense distinctions not necessarily meaningful for
downstream tasks.



Sense representations
Multi-sense embeddings trained on Wikipedia



Multilingual representations

Goal
Obtain a representation of a concept for different languages.

• If we train (trivially) a model on different languages, the
obtained parameters won’t be “aligned”.

• A representation for a word in the source language should be
close to the representation for the word’s translation in another
language.

• Requires dictionaries or word/sentence alignments.



Cross-lingual learning

Idea
Use another language to improve representations in the source
language (Faruqui 2016).

Example
With multi-sense representations, we can use translations as “labels”
for word senses in the source language

track: a course of study; a piece of music, a rough path. . .

ChoosesentL1: a track that interests you

PonsentL2: una canción que te gusta
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Cross-lingual learning (Šuster et al. 2016)

Encoder
p(s|xi ,Ci ,C

′
i , θ)

the next turn-off on the right

à droite à la bifurcation suivante

sense(xi : turn-off): ”road”, ”feeling”... (hidden)

Decoder
p(xj |xi , s, θ)

right

sense prediction

context-word
prediction



More on embeddings

Skip-gram embeddings (word2vec, Mikolov et al. 2013a)

• Predict context word wc based on a target word wt

• Consider each context separately (skip-gram)

• Input is just < wt ,wc > pairs extracted from all windows in the
corpus

• • wt • •

• Words are represented in an embedding matrix W ∈ R|V |,d

• Distinct target and context matrices



Skip-gram embeddings

p(wc = i |wt) =
ewci

·wt∑
j e

wcj
·wt

• Running a logistic regression

• But update weights of both embedding matrices

Hard to optimize efficiently!

• Hierarchical softmax

• Negative sampling



Negative sampling

Intuition

• Could maximize p(D = 1|wt ,wc) under current set of weights

• Yields two-class logistic regression: σ(wc ·wt)

• But wouldn’t lead to interesting embeddings

• Setting all w to be the same would maximize all dot products
and give p = 1

• So, incorporate pairs for which p(D = 1|wt ,wc) must be low



Negative sampling

Construct negative pairs

• k extra pairs per training instance

• Replacing context word with a random word

Find weights discriminating well between positive and negative pairs

• High p(D = 1|wt ,wc)

• High p(D = 0|wt ,wcrand )



Word analogies from embeddings
(Mikolov et al. 2013b)



Summary

• Pervasiveness of NLP

• Words as basic units

• Lexical sparseness (based on a language-model example)

• Types of word representations

• Representation learning (with its relationship to supervised
learning)

• Active research areas for word representations

• Word embeddings



References
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Application:
Concept disambiguation (Tulkens et al. 2016)

Example

Idea

• Choose the sense whose KB definition is the most similar to the
word’s current neighborhood

• Similarly to the Simplified Lesk algorithm for word-sense
disambiguation





Procedure

1 Train biomedical embeddings

2 Based on the embeddings and the UMLS thesaurus, represent
each concept s with a vector vs :

• vs : is the average of definition vectors ds
• ds : is the sum over vectors of all words in the definition

3 For every occurrence of an ambiguous word w in a document,
sum the vectors of context words

4 Average these summed vectors into xw

5 Choose the highest-scoring concept: argmaxscosine(vs , xw )


