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Abstract. We introduce a new hybrid metaheuristic that combines mul-
tiarmed bandits and hill-climbing: ‘guided restarts hill-climbing.’ We il-
lustrate it on quadratic assignment problem and compare with random
restarts hill-climbing.

1 Introduction

Hill-climbing is a local search method for discrete optimization. It starts with
a randomly chosen solution, then repeatedly selects the current solution’s best
neighbor until no improvement is possible—a local optimum is reached. The
quality of the resulting solution is highly dependent on the initial one. This is
solved by ‘random restarts hill-climbing:’ repeatedly restart hill-climbing and,
when no more time remains, return the best solution found so far.

Drawing initial solutions uniformly from the search space is inefficient when
some local optima have large basins since many initial solutions lead to the
same local optimum. We propose an algorithm which selects initial solutions
more intelligently: ‘guided restarts hill-climbing.’ The algorithm partitions the
solution space and learns which regions are worth exploring further and which
are not. The partitioning may be problem dependent.

2 Multiarmed Bandits

The problem of selecting a region to explore is similar to a multiarmed bandit—
a sequential decision making problem, where an agent must repeatedly select
one out of m actions with unknown reward distribution. The agent’s goal is
to maximize his total reward. He faces the so-called ‘exploration-exploitation
dilemma.’ Should he exploit what he thinks is the best arm and possibly loose
out on an even better arm; or explore further hoping to discover a better arm
but risking to get poor rewards?

Many learning algorithms address this problem. Some are simple but effective
in practice (ε-greedy, softmax, and their variants [1]) and often outcompete more
complicated algorithms (UCB1, EXP3, and their variants [2, 3]) even though
these have theoretical performance guarantees. As an example, we explain ε-
greedy Q-learning [4]. It estimates the expected reward of each arm with the
exponentially weighted moving average of the observed rewards and stores this



in each arm’s Q-value. This can be calculated iteratively by incrementing the
previous value qi with α(r − qi), where α is the learning rate and r is a new
reward for arm i. Selecting arms in ε-greedy fashion means: selecting the arm
with the highest Q-value with high probability (1 − ε), and selecting a random
arm with small probability (ε, which a parameter of the algorithm). A nice
characteristic of Q-learning is that it can quickly track changes in non-stationary
reward distributions and its parameters are easy to tune (α = ε = 0.1 usually
just works).

3 Guided Restarts

‘Guided restarts’ can be implemented with different multiarmed bandit algo-
rithms. Here, we use ε-greedy Q-learning.

1. Parameters: the number of arms m, the learning rate α, and the exploration
rate ε.

2. The solution space is divided in m regions, each of which corresponds to an
arm i = 1, . . . ,m. All Q-value are initialized with Q0 = 1.

3. The set of values of the discovered local optima is empty.
4. Repeat for t = 1, 2, . . . until no more time remains:

(a) With probability ε select an arm at random, with probability 1− ε select
the arm with the highest Q-value (ties are broken at random).

(b) Select a random solution from the corresponding region.
(c) Perform hill-climbing starting with that solution.
(d) If the resulting local optimum is the best one seen, store it as the best

solution.
(e) The selected arm i is rewarded with r = 1− h/t, where h is the number

of times a local optimum was found with the same value as the current
one; the arm’s Q-value is updated: qi ← qi + α(r − qi); and the set of
values of discovered local optima is updated.

5. Return the best solution.

4 Constant Improvement to Random Restarts

We applied our algorithm to an instance of the quadratic assignment problem
(‘Random 20’ from [5]): n = 20 objects must be assigned to a location, the flow
between these objects are given in a matrix F , and the distance between each two
locations in a matrix D. A solution is represented by permutation p of n numbers.
The goal is find the assignment p∗ that minimizes the sum of the products of
distance and flow between each two objects: p∗ = argminp

∑n
i=1

∑n
j=1 Fi,jDpi,pj ,

where pi represents the location of object i.
There are many ways to divide the solution space. We chose an object i at

random (at the start of each simulation) and each arm j = 1, . . . , n assigned
object i to a location j: pi = j. We applied the above algorithm with α = .1 and
ε = 0.



As is usually done for problems with solutions represented by permutations,
we consider hill-climbing with the neighborhood function ‘2-exchange:’ a solution
and its neighbor have the location of two objects swapped.

We performed 100 simulations with both random restarts and guided restarts
measuring the number of restarts until a global maximum was found. Guided
restarts is (statistically) significantly better than random restarts.1 The quantile-
quantile plot2 in Fig. 1 shows that guided restarts is a factor 3/2 faster than
random restarts.
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Fig. 1. Quantile-quantile plot of random versus guided restarts. The blue crosses rep-
resent the data; the red dashed line represents the trend (connecting first and third
quartile); the black solid line is the trend expected from equal algorithms (y = x).
Guided restarts performs faster than random restarts by a factor 3/2.

5 Conclusion

We introduced guided restarts hill-climbing and successfully demonstrated its
advantage over random restarts on a small optimization problem. Guided restarts
performed a factor faster than random restarts.

We look forward to applying the method to more challenging problems and to
extend it. We think the method can be improved by growing a tree of multiarmed
bandits as in Monte Carlo tree search methods [6].

1 The (Wilcoxon) rank sum test (since the data is not normally but geometrically
distributed) rejects the null hypothesis that the median of by random restarts is less
than or equal to the median of guided restarts with p = 0.05.

2 In a quantile-quantile plot, the i’th point has coordinates (xi, yi) where xi is the i’th
best value of the first sample and yi the i’th best value of the second sample.
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