Human Guided Ensemble Learning in StarCraft

Timothy Verstraeten’
Tom Jaspers
Anna Harutyunyan

Roxana Rédulescu*
Robrecht Conjaerts

Peter Vrancx

Yannick Jadoul
Tim Brys
Ann Nowé

tiverstr,rradules@vub.ac.be
Vrije Universiteit Brussel
Pleinlaan 2
1050 Elsene

ABSTRACT

In reinforcement learning, agents are typically only rewarded
based on the task requirements. However, in complex envi-
ronments, such reward schemes are not informative enough
to efficiently learn the optimal strategy. Previous literature
shows that feedback from multiple humans could be an ef-
fective and robust approach to guide the agent towards its
goal. However, this feedback is often too complex to specify
beforehand and should generally be given during the learn-
ing process. We introduce real-time human guided ensemble
learning, in which feedback from multiple advisers is learned
simultaneously with the agent’s behaviour. We evaluate
our approach in a small scale one-on-one combat scenario
in StarCraft: Brood War. Our preliminary results show
that a single expert adviser can provide proper guidance,
while using groups of multiple advisers does not improve
the convergence speed. In future work, we will investigate
an alternative to the tile-coding approximator in order to
effectively incorporate advice from multiple humans.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

Keywords

human advice, reward shaping, reinforcement learning, en-
semble learning

1. INTRODUCTION

Reinforcement learning (RL) [?] allows goal-oriented agents
that are able to sense and act upon their surroundings to
learn an optimal control-policy from scratch just by interact-
ing with the environment. Despite offering powerful learning
mechanisms, one major drawback of RL stands out: an im-
practical large amount of experience is necessary to reach
a good solution. Speeding up the learning process has thus
become a focus point in RL research. A few developed direc-
tions include learning by demonstration to acquire a good
initial policy [?, ?], transfer learning from another related
RL task [?] and providing additional guidance to the RL
agent [?].

*These authors contributed equally to this work.

We focus here on the latter approach, namely reward
shaping (RS), through which the agent can receive a more
informative reward after each action taken, thus enabling it
to converge faster towards the optimal policy. This addi-
tional guidance during the learning process can be obtained
by specifying knowledge manually into the RS function [?]
or by learning feedback from a human adviser as a suitable
RS function [?], an approach that is considered in the cur-
rent work.

While leveraging the human problem solving capacity can
provide an immeasurable benefit, one has to consider han-
dling the mistakes that humans can make during the feed-
back process. Ome possible approach consists in building
an ensemble system that can robustly handle guidance from
multiple sources, in order to avoid the unreliability issue
arising from only one [?].

We introduce human ensemble learning, a mechanism which
aggregates a set of learners, each of them guided by a hu-
man adviser. Related work already provides frameworks to
combine the advice from multiple external sources [?, ?]. In
these cases, human feedback is considered either as a sepa-
rate reward function, independent but closely related to the
actual reward function imposed by the environment, or as a
priorly known expert advice function. However, in most set-
tings, human advice is secondary to the feedback from the
environment with as sole purpose to guide the agent. Addi-
tionally, behavioural advice is in general too complicated to
manually specify. We provide a framework to learn multi-
ple human advice functions and incorporate them as reward
shapings to guide the ensemble agent towards the optimal
strategy.

As a testing scenario we have chosen StarCraft,! a Real-
Time Strategy (RTS) game in which complex combat strate-
gies have to be employed in order to win the game. While
RTSs have proven to be a challenge for AI [?, ?], humans
seem to succeed in devising different strategies and solutions
to achieve victory.

Outline. We start by explaining the components of our
human guided ensemble learning framework in Sections 2, 3
and 4. Section 5 describes our experimental setup, while in
Section 6 we discuss our preliminary results. We conclude
our work in Section 7.

!Created by Blizzard Entertainment: http://blizzard.
com/games/sc/

2. REINFORCEMENT LEARNING

In reinforcement learning, an agent learns the policy that
maximizes the cumulative reward for achieving a certain goal
over a sequence of observations at time-steps t € N. Based
on its current policy and environment, the agent executes an
action and updates its policy based on the reward given by
the environment. This environment is modelled as a Markov
decision process (MDP) M = (S, A,T,~, R) [?], where S, A
are the state and action spaces, T: S x A x S — [0,1] is a
probabilistic transition function, v is a discount factor deter-
mining the importance of future rewards and R: SxAxS —
R is the immediate reward function.

An agent behaves according to a policy 7 : S x A —
[0,1], meaning that in a given state, actions are selected
according to a certain probability distribution. Optimizing
7 is equivalent to maximizing the expected discounted long-
term reward from a given starting state so and action ao:

Qﬂ(s,(l) = ET,W Z,Yt,rt_'_l | s = Sp,a = a0:| (1)

t=0
where r;y1 is the reward obtained upon taking action a; at
state s¢. This is the idea of value-based methods, in which a
value function (VF) maintains and optimizes iteratively the
expected long-term reward for each state-action pair based
on the observations made during explorations of the envi-
ronment.

A method of this kind is SARSA, which updates its Q-
values using the temporal-difference (TD) ¢ between subse-
quent state-action pairs (s, a) and (s, a’):

Q" (s,a) = Q" (s,a) + ad (2)
0=rit1 + ’YQﬁ(SI a/) - Q"(s,a) (3)

where « is the learning rate, and s’ and a’ are taken accord-
ing to respectively T and w. This approach falls into the
category of on-policy methods, which means the agent will
learn the value function of its behaviour policy.

In general, the target policy can be different from the be-
haviour, in which case, the learning is off-policy. For exam-
ple, Q-learning computes the value function of the greedy
policy ©*. The TD update rule is replaced by:

Q™ (s,a) = Q™ (s,a) + ad
§=ri1 +ymax Q"™ (s',a') — Q" (s,a)

where the TD is computed w.r.t. the greedy action a’.

3. REWARD SHAPING

In order to speed up convergence towards the optimal pol-
icy, guidance can be provided to the agent by augmenting
the reward function R with an additional more informative
reward shaping function F'.

It is necessary and sufficient to consider F' as a potential-
based reward shaping function (PBRS) in order to guarantee
policy invariance and make sure that the shaping does not
lead to learning sub-optimal policies [?]. A PBRS function is
constrained by a real-valued potential function ® as follows:

F(s,s") =v®(s") — ®(s)

We can extend F' further by including behavioural knowl-
edge, giving us an advice PBRS function [?].

F(s,a,s",a") = v®(s',a") — ®(s,a) (4)

Ensemble learner
a i at

=I Environment
A

Sty Tesal

(Agent 1) (Agentl) (Agentn) own (l)

Off-policy

Shaping Shaplng Shaping
> function 1 function i function n

On-policy

St

O)

h‘[+1|
> (Human 1) C Human i) C Human n)

Figure 1: Hierarchy of ensemble system — The ensem-
ble agent executes an action a: based on the preferences
p’(ss,a]) for every possible action a? of each of its off-policy
sub-agents i. The sub-agents update their Q-values based
on a reward signal and the next state given by the environ-
ment. This reward signal is shaped for each agent by ffﬂ,
a value provided by an advice PBRS function. The advice
function captures the intended feedback of human adviser 3,
given his reward signals hj,,.

Inserting such knowledge manually under the constraints
of a potential function ® can prove to be difficult. How-
ever, a framework can be constructed to incorporate exter-
nal guidance, e.g., by a human expert, as a secondary VF
[?]. This additional VF specifies the values of the advice
policy intended by the human. More specifically, it defines
the discounted future rewards given by the adviser at each
state-action, based on the immediate rewards provided by
the human after each action (i.e., fixed positive rewards for
encouraged actions and zero otherwise).

The agent learns this advice policy simultaneously with
its own behaviour (defined by the primary VF). In order to
guarantee convergence towards the intended advice function,
the secondary VF is learned on-policy [?].

This VF can then be used as a potential function in Equa-
tion 4 in order to shape the rewards given by the environ-
ment. Combining this advice PBRS function with Equa-
tion 3, we have:

O =7ri41 + fre1 + ’YQ(S/,a/) - Q(s,a)

fre1 = YPip1(s',a) — @u(s,)

where ®; is the secondary VF at time t.

4. HUMAN GUIDED ENSEMBLE LEARN-
ING

In ensemble RL, an agent manages multiple sub-agents
j and aggregates their individually learned policies 7; in
order to define one ensemble policy 7 [?, ?]. One way to
combine the strategies of the sub-agents is to compute a
preference value p(s,a) for each action a in state s of the
ensemble agent by aggregating the preference values of the
sub-agents. An example of this is rank voting (RV) [?], in

which each sub-agent j assigns a rank r7(s,a;) € [1,--- ,n]
to all its n actions a; in state s, such that:

rj(s,al) > rj(s,ag) < QM (s,a1) > Q™ (s,a2)

Ties in the Q-values result in the same rank for both actions.
The preference values of the ensemble agent are then de-
scribed as follows:

An exploratory policy (such as e-greedy [?]) can be estab-
lished over these preference values to define the behaviour
of the learning ensemble agent.

Using the combination of ensemble learning and reward
shaping by an external human adviser, we can now describe
a framework that is capable of aggregating feedback, given
in parallel by multiple human advisers, in order to offer a
more robust guiding strategy for an RL agent. Every human
guides a single sub-agent. This means that the ensemble
agent manages sub-agents observing the same experience,
but with differently shaped Q-values.

With the aim of maximizing the diversity over the pref-
erences of the sub-agents, we maintain an ensemble of Q-
learning agents (i.e., off-policy learners), as this does not
include learning the similar exploratory behaviour of the
agents. However, the secondary VFs (i.e., the potential
functions ®, used to define the advice PBRS function in
Equation 4) should be learned on-policy [?]. An overview of
the ensemble system is given in Figure 1.

S. EXPERIMENTS

We evaluate our human guided ensemble learning frame-
work in the context of a one-on-one combat scenario in Star-
Craft. We investigate whether incorporating feedback from
multiple humans yields faster convergence towards the opti-
mal policy.

5.1 StarCraft Environment

We assess our approach in the context of StarCraft: Brood
War, a Real-Time Strategy (RTS) video game. As a rein-
forcement learning framework, we employ Brood War API
(BWAPI), which is an open-source library that allows scripted
interaction with the StarCraft environment [?]. It has been
used in RL research as an experimental setting for both small
scale combat [?] as well as more complex scenarios [?].

We focus on training an agent for a small scale one-on-one
combat in a setting inspired by [?]. This allows us to study
the performance of our ensemble agent, solving a rather sim-
ple task in a complex, yet entertaining, environment.?

The state space of the StarCraft environment consists of
the following features: the position of the agent in the con-
tinuous xy-coordinate system (with z,y € [0,1000]), the ab-
solute vector from the agent to the enemy w.r.t. the co-
ordinate system, the difference in health points (HP) and
whether or not the enemy is engaging in combat. An agent
can move in all cardinal directions over a fixed distance and
is allowed to engage the enemy, move towards the enemy or
stay idle. Additionally, the agent can shoot from a certain
distance, while the enemy can only attack in close range.

2The source code is available at https://github.com/
timo-verstraeten/human-ensembles-starcraft

The state space is discretized by employing a tile-coding
function approximator [?], such that each feature has 4 tilings.
This implies that the state space is not jointly discretized
over all features, and thus features are considered indepen-
dently in the computation of a Q-value.

The goal of the agent is to kill the enemy using a minimal
number of steps, while having left as many health points
as possible. The agent receives rewards according to the
following formula:

R(s,s') = HPogent — Hf?enemy, if a player dies
—0.3, otherwise

where HPqgent € [0,20] and HPenemy € [0,35] are respec-
tively the agent’s and enemy’s HP. The damage done by
each character was set in such a way that close-range com-
bat would kill the agent. Thus, a more complex strategy
than ‘rushing’ towards the enemy should be employed by
the agent in order to win.

5.2 Experimental Setup

For each experiment, we assembled unique groups of ad-
visers, each consisting of five people. During each experi-
ment, the agent receives advice simultaneously from all the
members of the group. Each individual was isolated and
only had the real-time visual information as it is given in
the original StarCraft environment. Thus, no information
about the underlying reinforcement learning problem was
available (such as Q-values). Prior to the experiments, they
were also informed about optimal and suboptimal strategies
that can be employed in the combat scenario, shown in Fig-
ure 2, and the possible actions the agent can take, to ensure
that each human has the knowledge to be a proper adviser.
They could communicate their feedback in the form of a bi-
nary signal (i.e., they provide a positive reward whenever
they want to endorse the agent’s action) during the first 5
episodes of the agent’s learning process. We have chosen to
only allow positive feedback signals, as learning sparse and
all-positive (or all-negative) feedback captures the intended
advice more robustly [?]. We made sure that the advisers
had enough time to provide their feedback on the current
action by slowing down the game speed. After the first 5
episodes, the agent had to learn the optimal behaviour on
its own for 195 additional episodes. An episode terminates
when one of the characters is defeated. Additionally, after
1000 steps, the agent rushes towards the enemy in order to
cut-off the episode.

As explained before, the optimal policies of the sub-agents
are learned off-policy, while the secondary VFs are learned
on-policy. We respectively used Q(\) and SARSA (), which
both employ eligibility traces in order to update previously
encountered Q-values with an impact factor of A, using the
currently observed reward [?].

The ensemble agent uses RV to choose an action based on
the greedy actions of the sub-agents. Following an e-greedy
policy (e = 0.1), the ensemble agent can execute this action
or alternatively select a random action with a probability of
€. The discount factor « is 1.0 in our problem setting. For
the learning rate o and eligibility traces decay factor A for
our primary VF, we respectively use 0.40 and 0.95, which are
jointly optimized for an e-greedy Q()) agent (using the same
e and 7 as mentioned before). Additionally, we took the
number of tilings (of the CMAC function approximator) to
be 4. The tile resolutions for the distance and angle features

(a) Kamikaze strategy — The agent rushes towards the
enemy in an attempt to minimize the number of steps
(local optimum).

(b) Optimal strategy — The agents shoots from behind
the trees, where the enemy cannot reach.

Figure 2: Possible strategies in the StarCraft scenario

(defining the vector between the agent and enemy) were set
to 30 and 10, while the resolution for the health feature was
set to 0.7. These tiling parameters are chosen in such a way
that they generalize the state space well, such that there is a
noticeable impact of the human advice, while still providing
good results. The positive reward provided by the human
advisers is set to 10, as this gives us the best results. We
alter v and a used in the human advice potentials to 0.5 and
0.6 to ensure faster convergence in the secondary VFs.

6. RESULTS AND DISCUSSION

We first present results for guidance by a single expert,
in comparison with an ensemble of five expert advisers. We
analyse the effect of the function approximator under human
advice on the results. We then study the results obtained
by introducing non-expert advisers, comparing their perfor-
mance and advice frequencies to the ensemble of experts.

6.1 Single Expert vs Multiple Experts

We show results for two groups which are new to the advis-
ing scene, and a group of experts (i.e., the first five authors of
this paper) who know the underlying state-action space, are
familiar with RL and had a lot of individual practice with
offering feedback to StarCraft agents. They can practice the
feedback mechanism for 1 test trial, after which they do 9
actual trials. These 9 trials are incorporated in the results.

Figure 3 presents a first view over the results, offering a
comparison between the group of experts, a single expert
adviser and the Q-learning baseline in terms of rewards and
steps. First, we notice that both cases involving human
advice manage to surpass the baseline, with multiple experts
advisers being asymptotically the best, by a slight difference.
However, the single expert adviser does manage to converge
faster, while reducing drastically the number of steps for the
initial episodes.

Empirically, ensemble learning tends to generalize better
in most cases, compared to an agent learning in isolation [?,
?]. Nonetheless, for the multiple expert advisers, we can see
that the gained cumulative reward stays close to the base-
line. We can speculate that the lack of coordination might be
detrimental to the overall performance. The reason for this
might be that the tile-coded function approximator gener-

alizes too much by assuming independent features. A single
expert knows how to take advantage of this generalization
in order to guide the agent downwards and then right. How-
ever, the variety in the advice from multiple humans makes
coordinating this exploitation more difficult.

We take a closer look on how the function approximator
affects our results. Figure 4 shows the normalized frequen-
cies of advice given by a single adviser (a) and multiple ex-
pert advisers (b). We can see that the feedback is naturally
less sparse for multiple advisers. The effect of the func-
tion approximator is depicted in sub-plots (¢) and (d) for
respectively a single and multiple advisers. As each feature
is handled independently in the tile-coding, the advice gets
generalized over all features separately. These plots show
the extrapolation of advice over the x and y coordinates.
The optimal policy is in short “first go down for a while,
then go right” (w.r.t. the starting position of the agent, as
shown in Figure 2). For a single adviser, this can easily be
done by rewarding the right actions. This is demonstrated
in sub-plot (c), where we have two lines where the effective
advice is concentrated (i.e., one around x = 500 and one
around y = 400). However, when all five advisers give a
positive reward for going down, they all have to coordinate
to go right afterwards at the same moment. This lack of
coordination is shown in sub-plot (d), where the effective
advice is more evenly distributed in certain portions of the
state space. Notice that the single vertical line (z = 500)
is still intense, meaning that all advisers agree upon going
down from the starting position.

The decrease in performance can also be due to the sim-
plicity of the policy to learn (i.e., go down, then right, as
depicted in Figure 2b). The main difficulty of the problem is
that it is easier for the agent to minimize its number of steps
(see Figure 2a), rather than to learn a more complex combat
behaviour. Such a sub-optimal strategy can easily be pre-
vented using only one expert adviser, while having multiple
advisers introduces unnecessary variance in the guidance [?].

Thus, even though ensembles of advisers reduce the noise
inherent to independent human advice, the function approx-
imator generalizes the ensemble advice too much over single
features, such that coordination to counter the extrapolated
advice is necessary. On the other hand, when we have a

setting
Multiple Expert Advisers
~— Single Expert Adviser

~— Q-Learning Baseline

Smoothed average reward
Smoothed average steps

50 100 150 200 0 50 100
Episode Episode

(a) Rewards (b) Steps

Figure 3: Comparison of the average smoothed rewards and steps per episode over 9 trials between advice from multiple
humans, advice from a single (expert) human, and a baseline without any human advice. The human advice is given in the
first 5 episodes. The data is smoothed using local polynomial regression. The grey areas around the line plots represent the
95% confidence intervals associated with the smoothing.

(a) Single expert (b) Multiple experts

ﬂ I

=
300 g 3004
E E
H
= frequency
400+ = H 4004 1.00
=
H 075
S==S==E-== SE=-=E
> 5001 £ > 5001 0.50
E E
= g 0.25
600 B EnEmE.=E 600
8 - 0.00
=
=
7001 g 7001
£
400 500 600 700 400 500 600 700
X X
(c) Single expert (through tile-coding) (d) Multiple experts (through tile-coding)

Figure 4: (a) and (b) show the normalized frequency of advice per visited state, given by respectively a single expert and group
A, consisting of five expert advisers. (c) and (d) present the generalization of these frequencies over each feature independently
when put through the tile-coder. (d) is thus a view of what the effective advice would be if all the feedback from the experts
were accumulated and given to a single agent. These results show only the extrapolation over the x and y features.

simple target policy, the human advice could have less noise 6.2 Experts \L) Non-Experts
than the variance introduced by the ensemble learner. We now investigate the human advice over the different

setting
Group A (Experts)

~— Group B (Non-experts)

== Group C (Non-experts)

Q-Learning Baseline

Smoothed average reward
Smoothed average steps

\

0 50 100 150 200 0 50 100
Episode Episode

(a) Rewards (b) Steps

Figure 5: Comparison of the average smoothed rewards and steps per episode over 9 trials between two non-expert groups and
one expert group. The human advice is given in the first 5 episodes. The data is smoothed using local polynomial regression.
The grey areas around the line plots represent the 95% confidence intervals associated with the smoothing.

LE 03~ LE
3 Q <]
s > s Human 1
] k-]]
L5 & T
5 5 5 Human 2
go2- goz- go2-
g g g I mans
3 S €
8 8 8 Human 4
5} 3 3
N H u N B -
0.0 d 0- 00- i
2 3 4 5 3 4 2 3 4 5
Episode Episode Episode

(a) Group A (Experts) (b) Group B (Non-experts) (¢) Group C (Non-experts)

Figure 6: Fraction of steps when advice was given by each human over the 9 trials per episode.

groups, and evaluate it in terms of impact on the conver-
gence speed and overall performance. Figure 5 presents the
comparison between the expert and the non-expert subject
groups, against the Q-learning baseline in terms of rewards
and steps. The expert group is the only one that manages
to get a clear separation from the baseline, while group C
requires the most episodes before convergence. In terms of
steps, the groups generally follow the trend of the Q-learning
case, although the expert group seems to have a slower start.
Again, group C requires the most episodes before conver-
gence. Moreover, we noticed during our experiments that
the performance varies a lot from run to run, as we only
allowed for positive feedback to be given and the advisers
could not always contribute a lot to the agent’s behaviour.
Figure 6 presents the fraction of steps in which advice is
given by each human in each group, for each of the first 5
episodes, over all the trials. Group C is the most homoge-
neous in terms of advice quantity, while for the other groups,
there are one or two main contributors. We can link these
findings back to the hypothesis that the lack of coordination
worsens the convergence speed. The advice given by group
A and B are mostly defined by one or two persons, which
means these persons can coordinate the advice better. In
contrast, the people in group C give an equal amount of
advice, which makes coordination more difficult.

7. CONCLUSIONS

We introduced real-time human guided ensemble learning,
a combination of ensemble learning with reward shaping that
learns the advice from multiple experts on-line. We evalu-
ated our approach in a StarCraft setting, controlling a single
agent in combat against one enemy. We had three groups of
five humans, one expert and two non-expert groups, giving
feedback to our learner during the first episodes of a number
of independent trials, and analysed the performance of the
learning process in terms of convergence speed. We noticed
that in our experimental setting, having multiple human ad-
visers does not increase the performance of the agent. When
compared to a single adviser, the learning process converges
less quickly, and at about the same rate as without any
human advice. Further analysis confirmed that multiple hu-
mans did indeed not succeed in outperforming a single ex-
pert adviser.

One of the things that could have affected our results, is
the function approximator, as we noticed that it seemed to
act in a way that was not suited for the relatively sparse
human feedback. The fact that all feature dimensions are
separately tiled, made the learner generalize too much over
a specific action. We noticed that after encouraging a cer-
tain action a few times, the way our function approximator
worked caused these actions to be rewarded in other unre-
lated regions of the state space. Even though a single expert
could still compensate for this flaw, multiple experts cannot
avoid it, due to a lack of coordination.

Additionally, the optimal strategy might be too simple
and transparent to the human advisers to have an ensemble
of agents, in contrast to a single human expert, whose advice
function is close to the actual optimal strategy the agent has
to learn.

Though we have not been able to irrefutably conclude that
combined human advice provides an advantage, the results
of our experiments indicate that further research can be ben-
eficial in order to obtain a real-time crowd-sourcing frame-
work for complex RL settings. In future work, we will adapt
the function approximator to avoid generalization over in-
dependent features and re-evaluate our approach. Addition-
ally, we will look into scenarios for which a more complex
strategy should be adapted in order to win the game.

