
MISTA 2015

On Task Scheduling Policies for Work-Stealing Schedulers

Steven Adriaensen · Yasmin Fathy · Ann Nowé

1 Background

Parallel computing architectures are becoming more and more mainstream. To take

advantage of their parallel processing capabilities, a computation must be divided in a

set of interdependent tasks that can be executed in parallel [7]. Such computation can

be represented by a Directed Acyclic Graph (DAG), where vertices are the instructions

and edges represent execution order dependencies. Instructions that do not depend

on each other can be executed in parallel. In this article we consider the fork-join

model of computation. Here, fork instructions generate a new (sub)task that can be

processed independently (out-degree of 2). Join instructions cause a task to wait for the

completion of another (in-degree of 2). All other instructions have an in/out-degree of

at most 1 and make up the task. Typically a computation can be divided in many more

tasks than there are processing units. This gives rise to the task scheduling problem:

Which tasks are to be executed by which processor, and in which order?

Work-stealing [2] is a state-of-the-art dynamic, distributed scheduling algorithm.

Here, each worker maintains its own local work-pool. One of the workers starts pro-

cessing the root task. When a fork is encountered, it places one of the tasks in its pool

and continues to process the other. If a task stalls (join) or is completed (out-degree

0) the worker will start working on another task from its own pool, or, if it is empty, it

will steal work from another worker’s pool. Many work-stealing implementations exist

[1,5,4], ranging from libraries to runtimes of parallel programming languages. These

systems make different design decisions that impact their performance in subtle ways,

causing them to perform well in some settings, and poorly in others.

Steven Adriaensen
Vrije Universiteit Brussel
E-mail: steven.adriaensen@vub.ac.be

Yasmin Fathy
University of Surrey
E-mail: Y.Fathy@surrey.ac.uk

Ann Nowé
Vrije Universiteit Brussel
E-mail: ann.nowe@vub.ac.be



In this abstract we’ll discuss one of these design decisions, i.e. the scheduling policy

used. In Section 2 we discuss the choice of scheduling policy, in particular the impact of

the structure of computation thereon. Section 3 describes an existing adaptive schedul-

ing policy and its weaknesses. Finally, Section 4 reports our ongoing research attempts

towards more general scheduling policies.

2 Choice of Scheduling Policy

When executing a fork the system is faced with a choice, i.e. continue the current or

execute the spawned task? The choice a system makes is determined by its schedul-

ing policy. Here, most systems either always continue the current (help-first [5]) or

always execute the spawned task (work-first [1]), i.e. use a pure policy.1 Some systems

implement a mixed policy known as SLAW [4] (see Section 3).

Using help-first, a fork is implemented as a call to the scheduler, which creates

and stores an object for the spawned task in the work-pool. Using work-first, a fork

is implemented as an ordinary function call, which only returns after the subtask

is completed. To steal a continuation, the thief modifies the runtime stack (which

holds the continuation) of its victim. Using help-first, steals are more efficient, but

the overhead is higher than using work-first. Usually only a fraction of the tasks is

stolen and therefore work-first implementations tend to be more efficient on average.

Furthermore, minimizing overhead is essential to allow fine task granularity [1]. Work-

first also has desirable theoretical properties: Let S1 be the space required by a serial

execution, then a parallel execution on P processors using work-first requires at most

S1P space, which is existentially optimal to within a constant factor [2].

One might wonder, if work-first is more efficient on average and has attractive the-

oretical properties, why do (the majority of the) systems use help-first? An important

reason is that it is easier to implement as a library (without compiler support). Also

in some systems ordinary function calls are expensive [6]. In addition, using work-first,

recursive forks can cause the runtime stack to overflow and for particular computation

structures it fails to distribute work efficiently if the residual parallelism2 R is low [3].

Consider the extreme, yet common, example of an iterative parallel loop which forks P

sequential body computations (R ≈ 1). To exploit the parallelism of this computation,

each worker should process a single body. Using help-first, the first worker executes

the loop task, generating P body tasks and each worker steals one of them in parallel.

Using work-first, the first worker starts processing the first body and the loop task

is handed from worker to worker sequentially. Here, help-first clearly distributes work

more efficiently. Also, as mentioned before, help-first induces a lower cost on stealing.

It is therefore tempting to conclude that help-first performs better when R is low,

while work-first performs better when R is high (as in [3]). However, we’ll argue this

not to be true in general. Consider a recursive parallel loop, reversing the argumenta-

tion above, work-first will distribute the body tasks much more quickly than help-first.

In general, you can mirror any fork-join computation where help-first generates work

more quickly3 than work-first. Rather, if R is low and peer workers are idle, we want

to execute the sub-computation with the highest parallelism first.

1 In literature, the help/work-first policies are also known as child/continuation-stealing.
2 R = T1

P∗T∞
, where Tn is the minimal execution time on n processors

3 The same holds for memory consumption



3 SLAW

As discussed in previous section, what scheduling policy performs best depends on

factors unknown before execution. SLAW is to date, the only policy that dynamically

adapts its scheduling policy to avoid stack-overflows (help-first at threshold depth),

keep memory consumption within theoretical bounds (work-first when # active tasks

exceeds threshold) and efficiently distribute tasks. The latter is achieved by switching

policy periodically from help-first to work-first if the number of times the worker was

victimized (stolen from) is smaller than the number of tasks generated during last

period (i.e. enough work is available). Here, [4] makes the overgeneralizing assump-

tion that work-first is more time/memory efficient and help-first generates work more

quickly. When this assumption does not hold, SLAW can be shown to perform poorly,

consistently making the wrong choice. Another downside of SLAW is that the choice

of the period introduces a tradeoff between the increase in overhead due to frequent

policy switching on the one hand, and the adaptiveness of the system on the other.

4 Ongoing Research

We’re currently looking into alternative scheduling policies to overcome the weaknesses

of SLAW (see Section 3). One mixed policy that shows promise is Anti-Imitation (AI).

Using AI the first worker starts using a random pure policy, when stealing a task, the

stealer anti-imitates its victim, using the opposite policy. Independently of the random

choice of the initial worker, AI manages to distribute work quickly for a wider range of

computations than SLAW. Note that any (iterative or recursive) parallel loop task is

stolen at most once before generating all body tasks. As policy switching occurs only

when stealing a task, it doesn’t increase the overhead (unlike SLAW). AI, however, has

weaknesses of its own. When one of the pure policies is more time efficient, on average

half of the active workers will be using the slower policy (i.e. be slower). Also, memory

efficiency and potential stack-overflows are still concerns that need to be addressed.

Acknowledgements
Steven Adriaensen is funded by a Ph.D grant of the Research Foundation Flanders (FWO).

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An efficient multithreaded runtime system, vol. 30. ACM (1995)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.
Journal of the ACM (JACM) 46(5), 720–748 (1999)

3. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling policies
for async-finish task parallelism. In: Parallel & Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1–12. IEEE (2009)

4. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: Slaw: A scalable locality-aware adaptive work-
stealing scheduler. In: Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on, pp. 1–12. IEEE (2010)

5. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 conference on Java
Grande, pp. 36–43. ACM (2000)

6. Robison, A.: A primer on scheduling fork-join parallelism with work stealing. Tech. Rep.
ISO/IEC JTC 1/SC 22/WG 21, The C++ Standards Committee (2014)

7. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobbs journal 30(3), 202–210 (2005)



Appendix

In this section we present and discuss some motivating, preliminary results. All re-

sults were obtained in simulation, using a cost model valided by using it to accurately

reproduce prior experiments (more specifically those in [3,4]).

Generalized Loop Benchmark

In this experiment we consider the Generalized Loop Benchmark (GLB), the pseudo-

code of which is given in Figure 1. This computation consists of 2 types of tasks:

Loop Task: Performs no work, but splits itself up into a Loop and Body task.

Body Task: Performs the actual work,4 but spawns no further tasks.

A parameter pleft determines the probability that the loop task is computed in the

current thread, rather than the spawned thread. For pleft values 0 and 1, GLB reduces

to a recursive and iterative parallel loop respectively. In our experiments the # body

tasks (n) is taken equal to the number of processing units (P = 64), such that R = 1.

While rather artificial, this benchmark was chosen as it clearly illustrates the prop-

erties of help and work-first w.r.t. work-distribution, discussed in Section 2.

procedure loop(i,n)
if i < n then

with probability pleft do
Fork body(i)
loop(i+1, n)

otherwise
Fork loop(i+1, n)
body(i)

Join
else

body(i)
end if

end procedure 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

P
left

S
pe

ed
up

Speedup on Generalized Loop Benchmark (64 way SMP)

 

 

work−first
help−first
SLAW
AI

Fig. 1 Code and results for the Generalized Loop Benchmark (GLB)

Observations

Figure 1 shows the Speedup T1
TP

obtained for GLB, on a 64 way SMP machine, averaged

over 1000 runs, using the work-first, help-first, SLAW and AI policies.

We observe that help-first outperforms work-first if and only if pleft > 0.5, which

corresponds exacty to the case where the expected parallelism of the current thread is

higher than that of the spawned thread. As R is low, SLAW will always use help-first

on this benchmark, failing to distribute work efficiently when pleft < 0.5. AI on the

other hand manages to distribute work reasonably efficiently for all pleft, with near

oracle performance for pleft → 0, 1. Its speedup w.r.t. SLAW ranges from 0.8 to 3.6.

4 In our experiments, as dummy work, a body task computes a single iteration of the suc-

cessive over-relaxation (SOR) benchmark on 1
P

th
of a 2000x2000 matrix.


