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I think the next century will be the century of com.plex
C omplex lly.” [adj., v. kuh m-pleks, kom-pleks; n. kom-pleks]

. 1) composed of many interconnected parts; compound;
Stephen Hawl(lng composite: a complex highway system

2) characterized by a very complicated or involved arrangement
of parts, units, etc.: complex machinery

3) so complicated or intricate as to be hard to understand
or deal with: a complex problem

Source: Dictionary.com

“Complex systems consist of a large number of
iInteracting components. The interactions give rise
to emergent hierarchical structures. The
components of the system and properties at
systems level typically change with time.”

H.J. Jensen, in Encyclopedia of Complexity and Systems Science



Importance of metaphors, analogies and common languages

SCience Daily News Enter Search Term E

/\PVVXY NEWS  SCIENCEJOURNALS CAREERS MULTIMEDIA  CO

News Home Hot Topics Categories From the Magazine Sciencelnsider Scienc

News > Math > How bird flocks are like liquid helium

LATEST NEWS

COBBS LAB, ISC-CNR

All together now. Flocks of starlings fly over Rome's city center.

How bird flocks are like liquid helium



Tool box

Agent-based and numerical simulations
Information theory
(Non-linear) Dynamical systems
Data mining and optimisation
Networks
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Social networks Biological networks

- Collaboration networks - Protein-protein interaction networks
- Communication networks - Neural networks

- Online social networks - Food webs



Network representation

Ay = {1 if node v; is adjacent to node v;, (3.2)

0 otherwise.

If the network is weighted, A;; can take positive values different from one,
representing the weight of the link. In general, undirected and directed
networks will yield symmetric and asymmetric adjacency matrices, respec-

tively. The adjacency matrix of the network illustrated in Fig. 3.1 is given
by

(00111
00001
10011]. (3.3)
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Fig. 3.1 An undirected and unweighted network.



Properties: Scale-free (and heterogeneous)

Number of nodes with k& links

distributions
Bell Curve
,"Q‘\
[ Most nodes have
L{\ )\ the same number of links
,‘}’ -+-»" '\ No '"X"’y
)¢ . x'\ wnntdd nodes
Aty '

X\ ,
AX4K\ [V
SRk o P w L

1

O

Number of nodes with k links

Power Law Distribution

$

| .

IT Very many nodes
. with only a few links
&

.

.

;\\ A few hubs with
\f . large number of links
T3

Tiv

Lk

RN APy o R

Number of links (k)

Number of links (k)




Properties: Scale-free (and heterogeneous)
distributions

p(z) =Cx™ (> Tmin)

> — 1
/le P p(x)dr = - f - Bajrﬁnin (B<a—1)

Moments diverge when: B = a —1

In particular, the variance diverges when: 2 < o < 3

When a moment diverges, its empirical
measurement diverges as the number of sample
iIncreases



Are power-laws everywhere or do we see them everywhere?

quantity n <$> g Tmax -'%min e’ Ttail D

count of word use 18855 11.14 148.33 14086 7+2 1.95(2) 2958 + 987 0.49
protein interaction degree 1846 2.34 3.05 56 5E2 3.1(3) 204 = 263 0.31
metabolic degree 1641 5.68 17.81 468 4+1 2.8(1) 748 + 136 0.00
Internet degree 22688 5.63 37.83 2583 21+9 2.12(9) 770 1124 0.29
telephone calls received 51360423 3.88 179.09 375746 120 £49 2.09(1) 102592+210147 |0.63
intensity of wars 115 15.70 49.97 382 21+3.5 1.7(2) 70 + 14 0.20
terrorist attack severity 9101 4.35 31.58 2749 12+4 2.4(2) 547 + 1663 0.68
HTTP size (kilobytes) 226 386 7.36 57.94 10971 36.25 £22.74  2.48(5) 6794 + 2232 0.00
species per genus 509 5.59 6.94 56 442 2.4(2) 233+ 138 0.10
bird species sightings 591 |3384.36 10952.34 138705 6679 £2463  2.1(2) 66 =41 0.55
blackouts (x10%) 211 | 253.87 610.31 7500 230+ 90 2.3(3) 59 + 35 0.62
sales of books (x10%) 633 | 1986.67 1396.60 19077 2400 + 430 3.7(3) 139 £ 115 0.66
population of cities (x10°) 19447 9.00 77.83 8009 52.46 £11.88 2.37(8) 580 £ 177 0.76
email address books size 4581 12.45 21.49 333 57 21 3.5(6) 196 + 449 0.16
forest fire size (acres) 203 785 0.90 20.99 4121 6324 3487  2.2(3) 521 £ 6801 0.05
solar flare intensity 12773 | 689.41 6520.59 231300 323 £ 89 1.79(2) 1711 £+ 384 1.00
quake intensity (x10%) 19302 24.54 563.83 63 096 0.794 £80.198 1.64(4) 11697 £ 2159 0.00
religious followers (x106) 103 27.36 136.64 1050 3.85 £ 1.60 1.8(1) 39+26 0.42
freq. of surnames (x10%) 2753 50.59 113.99 2502 111.92+40.67 2.5(2) 239 +215 0.20
net worth (mil. USD) 400 |2388.69 4167.35 46000 900 + 364 2.3(1) 30277 0.00
citations to papers 415229 16.17 44.02 8904 160 = 35 3.16(6) 3455 £ 1859 0.20
papers authored 401445 7.21 16.52 1416 133 £13 4.3(1) 988 + 377 0.90
hits to web sites 119724 9.83 392.52 129641 2+13 1.81(8) 50981 16 898 0.00
links to web sites 241428 853 9.15 106871.65 1199466 3684 £ 151 2.336(9) 28986 £ 1560 0.00

TABLE 6.1

Basic parameters of the data sets described in this section, along with their power-law fits and the corresponding p-value (statistically significant values are
denoted in bold).

Critical Truths About Power Laws: Michael P. H. Stumpf and Mason A. Porter
https://people.maths.ox.ac.uk/porterm/papers/critical.pdf

Power laws, Pareto distributions and Zipf's law, M. E. J. Newman
http://arxiv.org/pdf/cond-mat/0412004v3.pdf

Power-law distributions in empirical data, Aaron Clauset et al.
http://arxiv.org/pdf/0706.1062v2.pdf



https://people.maths.ox.ac.uk/porterm/papers/critical.pdf
http://arxiv.org/pdf/cond-mat/0412004v3.pdf
http://arxiv.org/pdf/0706.1062v2.pdf

Models of networks

Mechanistic models, whose goal is to understand the
mechanisms leading to certain structures observed in empirical
networks. In general, such models are defined by simple rules
on how nodes and links are created or destroyed in the course
of time. Examples include the growing network model (e.g.
BA). Comparison between networks generated by the model
and empirical networks allows us to identify potential forces
having driven the evolution of the empirical networks.

t=0 t=1 t=2 t=3 t=4

Fig. 3.3 First several stages of the BA model. The bold lines represent new links. We
set mop =3 and m = 2.



Models of networks

Growing networks with preferential attachment model was
proposed by Barabasi and Albert in 1999 (BA or PA model),
while the model had been known for longer time [de Solla Price
(1976); Szyman ski (1987); Mahmoud et al. (1993)]. The model
Is an instance of a family of multiplicative stochastic models,
starting around a century ago with the Polya urn model and the
Yule process. Historically, the mechanism of preferential
attachment was also identified qualitatively by the sociologist
Robert Merton, who called it the Matthew effect, also called
rich-gets-richer, after a passage in Biblical Gospel of Matthew.
The Yule process was studied by the economist Herbert Simon,
iInterested in the distribution of wealth, who showed that it
produces power-law distributions. This work inspired the Price’s
network model [de Solla Price (1976)].



Models of networks

Random graph models in which links are random variables
with certain constraints. The most fundamental model of random
graph is the Erdos-Renyi model, and other examples include
the configuration model, the exponential random graph
models and random networks with communities. These models
provide neither an explanation for the values taken by the
parameters nor the reason for certain constraints to emerge in
an empirical network. Instead, they have nice mathematical and
statistical properties. For this reason, random graphs provide a
useful baseline, or null model, for deciding whether patterns
observed in empirical data are significant. In practice, if a value
of a measurement observed in empirical data is significantly
different from the expected value for the random graph model,
the model does not represent the process behind the empirical
data.



Erdos-Renyi networks

One of the simplest random graph models is the Erd6s-Rényi random graph,
introduced by Hungarian mathematicians Erdés and Rényi in 1959 (see
[Bollobés (2001)] for detailed exposure). The model, also called the Poisson
or binomial random graph, is denoted by G(IV, q) and has two parameters,
the number of nodes, IV, and the probability ¢ that a link exists between a
pair of nodes. The self-loops are excluded. For each pair of nodes, consider
a Bernoulli process that determines whether or not they are connected
by a link. In fact, G(IV,q) does not represent a single network, but a
random ensemble of them in the probabilistic sense. Any network without
multiple edges or self-loops is generated by the random graph G(N,q) as
long as 0 < ¢ < 1.

The degree distribution is a binomial distribution

N -1
p(k) = ( " )q"’(l )"
well approximated by a Poisson distribution when N is sufficiently large

p(k) = U;C—ik€_<k>
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The degree distribution of the Intemet, science collaboration network, and the protein interaction network of yeast (Table 2.1). The dashed line corre-
sponds to the Poisson prediction, obtained by measuring «o for the real network and then plotting Eq. (8). The significant deviation between the data and
the Poisson fit indicates that the random network model underestimates the size and the frequency of highly connected nodes, or hubs.



Configuration model

The configuration model is a generalisation of the Erdés-Rényi random
graph to the case of an arbitrary but given degree of each node. It is
used to inspect the effect of heterogeneous degree distributions because it
does not have more specific features such as high clustering. The model
is defined as a random graph in which all possible configurations appear
with the same probability under the constraint that node v; has degree
ki (1 < i < N). The degree sequence {k;} is often generated by a given
degree distribution p(k) under the constraint that the sum of the degrees is
an even number to satisfy the handshaking lemma.

(1) k;—3 k2—2 ka:2 k.‘zl

AR RO The density of self-loops and
multiple edges goes to zero when N

@ ! is sufficiently large.
(2b)

AAR P Co—o—o—o

(2¢)

W}O—.—.

(2a)




Configuration model

The configuration model is a generalisation of the Erdés-Rényi random
graph to the case of an arbitrary but given degree of each node. It is
used to inspect the effect of heterogeneous degree distributions because it
does not have more specific features such as high clustering. The model
is defined as a random graph in which all possible configurations appear
with the same probability under the constraint that node v; has degree
ki (1 < i < N). The degree sequence {k;} is often generated by a given
degree distribution p(k) under the constraint that the sum of the degrees is
an even number to satisfv the handshaking lemma.

Because v; owns k; stubs, the expected number of links between wv;
and v; is given by
kik;
2M’

where A}; represents the statistical average of the adjacency matrix.

* R

(3.64)



Beyond the degree distribution

clustering coefficient
density of cliques

motifs

k-core

degree-degree correlations

Modularity:

Many networks are
Inhomogeneous and are made of
modules: many links within
modules and a few links between
different modules




Properties: Modularity

Observed in social, biological and information networks
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Properties: Multi-level modularity (hierarchy)

Networks have a hierarchical/multi-scale structure: modules within
modules
Nested organization




nb. Different notions of hierarchy

Hierarchy = multi-scale

structure: modules within Hierarchy = subordination
modules
General
, Colonel
Y
O () Captain
Y
@ Sergeant



nb. Different notions of hierarchy

Hierarchy = multi-scale Hierarchy of nodes with
structure: modules within different degrees of
modules “modularity” (clustering)

C Ll Lo 1 llllllll L Ll L =
10° 10' 10° 10%0° 10' 10? 1n®

Hierarchical Organization of Modularity in Metabolic Networks, E. Ravasz et al.
http://barabasi.com/f/108.pdf



http://barabasi.com/f/108.pdf

Modularity in questions

- Why do we observe modularity in complex systems?

- What is the impact of modularity on the function and
dynamics of systems?

- |s it possible to uncover communities in networks in
an algorithmic fashion?




Why modularity?

Generic mechanisms driving the emergence of modularity,
“a la rich-gets-richer™?

D. Meunier, et al., Modular and hierarchical organisation in complex brain networks



Why modularity?

Generic mechanisms driving the emergence of modularity,
“a la rich-gets-richer™?

Simple systems evolve more rapidly if there are stable
intermediate forms (modules) than if there are not present.

Among possible complex organizations, modular hierarchies
are observed because they are the ones that have had the
time to evolve.

Simon, H. (1962). The architecture of complexity.
http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf



http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf

Why modularity?

Watchmaker parable:

“There once were two watchmakers, named Hora and Tempus, who made very
fine watches. The phones in their workshops rang frequently; new customers
were constantly calling them. However, Hora prospered while Tempus became
poorer and poorer. In the end, Tempus lost his shop. What was the reason
behind this?

The watches consisted of about 1000 parts each. The watches that Tempus
made were designed such that, when he had to put down a partly assembled
watch (for instance, to answer the phone), it immediately fell into pieces and had
to be reassembled from the basic elements.

Hora had designed his watches so that he could put together subassemblies of
about ten components each. Ten of these subassemblies could be put together
to make a larger sub- assembly. Finally, ten of the larger subassemblies
constituted the whole watch. Each subassembly could be put down without
falling apart.”

Simon, H. (1962). The architecture of complexity.
http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf



http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf

Why modularity?

Probability that an interruption occurs while a piece is added, say p=0.01

Tempus Hora

- must complete 1 assembly - must complete 111
of 1000 elements assemblies of 10 elements

- loses on average 100 - loses on average 5 pieces
pieces (1/0.01) (random beween 0 and 9)

- finishes an assembly with - finishes an assembly with
probability (1-0.01)*1000 ~ probability (1-0.01)*10 ~
0.000004 0.9

- Time to finish a watch: 100 / Time to finish a watch: 111 *
(1-0.01)*000 5/(1-0.01)*M0

It will take Tempus 4000 times as long to assemble a swatch
Importance of disturbance due to the environment

Robust intermediate steps during evolution: if the system breaks down
(whatever the reason), evolution does not restart from scratch, but from
intermediate, stable solutions (back-up!).



Random networks with communities

“These networks consist of 128 vertices divided into 4 communities of 32
nodes each. Each vertex pair is connected by an edge with one of two different
probabilities, one for pairs in the same group and one for pairs in different
groups, with values chosen so that the expected degree of each vertex remains
fixed at 16. As the average number b of between-group connections per vertex
is increased from zero, the community structure in the network, stark at first,
becomes gradually obscured until, at the point where between- and within-
group edges are equally likely, the network becomes a standard Poisson
random graph with no community structure at all.”

Connection to stochastic block-models (see later).

Robustness of community structure in networks, Brian Karrer et al.
http://dept.stat.Isa.umich.edu/~elevina/karrer_et_al.pdf



http://dept.stat.lsa.umich.edu/~elevina/karrer_et_al.pdf

Random networks with communities

Generalization to arbitrary number of communities, distribution of community
size and degree distribution

FIG. 1. (Color online) A realization of the new benchmark, with
500 nodes.

Benchmark graphs for testing community detection algorithms, Andrea Lancichinetti et al.
https://6¢131308-a-62cb3ala-s-sites.googlegroups.com/site/andrealancichinetti/
benchmark.pdf



https://6c131308-a-62cb3a1a-s-sites.googlegroups.com/site/andrealancichinetti/benchmark.pdf

What is Community Detection?

Is it possible to uncover the (multi-scale) modular organisation of networks in

an automated fashion”? And please avoid false positives.
Given a graph, we look for an algorithm able to uncover its modules without

specifying their number nor their size
The method should be scalable to accomodate very large networks, as often

observed in the real-world.

algorithm

=

\
/




Why community detection?

Graphs help us to comprehend in a visual way the global organisation of the
system. This works extremely well when the graph is small but, as soon as the
system is made of hundreds or thousands of nodes, a brute force
representation typically leads to a meaningless cloud of nodes.
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Why community detection?

Uncovering communities/modules helps to change the resolution of the
representation and to draw a readable map of the network

Find a partition of
the network into
communities

Coarse-grained
description

Martin Rosvall and Carl T. Bergstrom, PNAS 105, 1118 —1123 (2008)



Why community detection?

Uncovering communities/modules helps to change the resolution of the
representation and to draw a readable map of the network

‘ \@ | Bigdatd

il - Big data

Big data is
an all-

-
=~ 5

encompassing term for any
collection of data sets so large and
complex that it becomes difficult to

process using traditional data
processing applications. The
challenges include analysis,
capture, curation, search, sharing,
storage, transfer, visualization, and
privacy violations. Wikipedia

Recommended pages
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Industrial Internet 7
Data-centric programming
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Why community detection?

Network Scientists with Karate Trophies

§ %)

The first scientist at any
conference on networks who
uses Zachary's karate club as
an example is inducted into
the Zachary Karate Club
Club, and awarded a prize.
This tumblr records those
moments.

™ RSS
22 ARCHIVE



What is a “good” community?

A connected component is certainly a good community, in case of several
components




Percolation as a phase transition

Take the Erdos-Renyi network: how many disconnected components shall we
expect depending on p?

O ?
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Community detection versus network partitioning
Both terms refer to the division of a network into dense groups

Graph partitioning: the number and size of the groups is fixed by the user.
For instance, in a typical bisection problem: what is the best division of a
network into 2 groups of equal size such that the number of links between the
groups is minimised.

Application parallel computing: minimise inter-processor communication.
Divides the system into the required number of groups, whatever the
organisation of the system.

Community detection: the number and size of the groups are unspecified, but
determined by the organisation of the network. Ideally, the method should be
able to uncover a mixture of groups of different size in the same system. It
should divide a network only when a good subdivision exists and leave it
undivided otherwise.



Community detection versus network partitioning
Both terms refer to the division of a network into dense groups

Graph partitioning: the number and size of the groups is fixed by the user.
For instance, in a typical bisection problem: what is the best division of a
network into 2 groups of equal size such that the number of links between the
groups is minimised.

Application parallel computing: minimise inter-processor communication.
Divides the system into the required number of groups, whatever the
organisation of the system.

Community detection: the number and size of the groups are unspecified, but
determined by the organisation of the network. Ideally, the method should be
able to uncover a mixture of groups of different size in the same system. It
should divide a network only when a good subdivision exists and leave it
undivided otherwise.

Different but similar methods

In both cases:

1) How to formalise the problem? Definition of a good community
2) How to solve it in practice? Optimisation techniques to find it



Community detection versus network partitioning

Other difference: communities can be overlapping (in some systems, at
certain resolutions, it is the norm rather than the exception)




Graph bipartition

Definition of the problem:

Find the best division of a network into 2 groups of size n1 and n2 such that
the cut size is minimal, where the cut size is the total number of links
between different groups.

Solving the problem:

Looking through all bi-partitions and choose the one with the smallest cut
size?

Impossible in practice, as the exhaustive search is extremely costly in terms
of computer time

E.g. The number of ways to divide a network of 2n nodes into two groups of n

and n nodes is: (272)' Stirling on+1

S \/ﬁ

No method solving exactly the problem in polynomial time for all networks...
But several existing heuristics allow to find approximate solutions in non-
prohibitive times.

n'n!



Spectral methods

1
R=§ Z Aij

77 in different groups

Let us denote by s; = +1 the assignment of node i

IZ Z
ij

By performing a spectral decomnosition of the Lablacian matrix, one finds:

N
— E Acxz'va,i'va,j
a=2

If there is no condition on si, the optimal solution would be S; = U‘Z,i
.
R=-\
4

But this solution is not a partition (except in extremely trivial situations) and it
probably does not satisfy the required size of the groups.



Spectral methods

Approximation: If one wants a split into n1 and n2=n-n1 vertices, one orders
the components of the Fiedler vector from the largest positive to the smallest
negative and picks the n1 largest (smallest) components of the Fiedler vector

1 [0.14 127073 1 [0.14 12073
2 023 137053 2 023 13053
3001 16 050 3 =011 16 050
4 (<008 14041 4 <008 14041
5013 11 033 | 5013 11033
6 021 17028 6 021 17 028
7 002 6 021 7 002 6 021

8 0.15 8015 8 0.15 8015
9 =001 | 014 9 001 | 0.14
10 (<003 —p 5 0.13 10 <003 —p 5 0.13
11033 7002 11 033 7002
12 1073 0 <001 12 073 0 001
13 053 10 <003 13 053 10 <003
14 041 4 <008 14 041 4 <008
15 <082 30011 15 -0.82 3 011
16 10.50 2 =023 16 0.50 2023
17 0.28 19/-0.55 17 0.28 19/-0.55
18 =0.90 15 =082 18 =0.90 15 <082
19 '=0.55 18 =090 19 =055 18 =0.90

Complexity: O(N”2) on sparse networks



Community detection

What is the best partition of a network into modules?
How do we rank the quality of partitions of different sizes?

4 1 / 4 1 /
- . - N
- o S SO Q2

-------------------------------------------------------------------------------------------------------------------------------

Q3 Q4



Newman-Girvan Modularity

Q = fraction of edges within communities - expected fraction of
such edges

Let us attribute each node i to a community ci

Q = i Z [Aij — Pi'] o(ci, cj)

2m “—
2,7

expected number of links between i and |

QC’ = ! Z [Az] — kzk]/Zm] 5(02‘, Cj) QC - [—1/2, ].]

T 2m

2¥,

Allows to compare partitions made of different numbers of
modules

M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E, 69, 026113, 2004.



Note on the null model
kik;

Random network with constrained degrees P; =
2m

What if one has extra information about the nodes?

i t
Directed networks -> Pij = kql;nk;‘)u /m

Spatially-embedded networks -> P;P* = N;N; f(ds;)

Or if the information on the degrees is expected to be irrelevant:

Pij = (k)?/2m = (k)/N

ZPM — ZA” = 2m
7 1]




Modularity

Property 1 A partition where all the vertices are grouped into the same com-
munity has a modularity equal to zero. This proves to be simply shown from
the definition of the null model kg:j for which Zij kg:j = 2m and from the
expression of modularity in this particular case

Q=%Z[Az'j—kikj} =0. (3)

2m

2¥)

This property implies that any partition with a positive modularity is better

than this trivial one, but also that it is always possible to find a partition such
that Q) > 0.



Modularity

Property 2 If a partition contains a disconnected community, it is always
preferable (in terms of modularity) to split this community into connected com-
munities. Let us consider, for the sake of simplicty, the case of a disconnected
community C1 formed by two connected subgraphs C11,Ci2. In this case, mod-

ularity is given by

LT
Q= 5| 3 X 4y~ )
'07601 i,j€C ,Jecl
1
- Ay ya > -ty
-C¢Cl ZaJEC iajecll
kik;
+ ) (A J)+2 > (Az‘j—%,f)-
1,j€C12 1€C11,7€C12

Giwen that A;; = 0 if © € Ci1,5 € Cie, the sum Z’iECu,jECm is composed
uniquely of negative terms and it is thus preferable to split the community into

two subcommunities.

This property implies that any partition made of disconnected communities is
sub-optimal and that the optimal partition of a graph is only made of connected
communities.



Modularity Optimization

Optimization of modularity is an NP-complete problem

Need for efficient heuristics




Optimization: Spectral methods

Similar method to one for minimizing the cut, based on the spectral
properties of the modularity matrix Q

ki
Qij = Aij —
Let us first focus on the best division of the network into 2 communities.

Let us denote by Si = £l the assignment of node i 6(¢;,c5) = %(SiS]’ +1)

Q= gy T utlens) = 12 Qo

By performing a spectral decomposmon of the modularlty matrix, one finds:

N
— E )‘a 'va,'iva,j
a=1

si is chosen to be as similar to the dominant eigenvector

s; = 1 i1f UN,; = 0
5; = —11if Un: < 0

M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices,
Phys. Rev. E, vol. 74, 036104, 2006.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

The algorithm is based on two steps that are repeated iteratively. First phase:
Find a local maximum

1) Give an order to the nodes (0,1,2,3,...., N-1)

2) Initially, each node belongs to its own community (N nodes and N
communities)

3) One looks through all the nodes (from 0 to N-1) in an ordered way. The
selected node looks among its neighbours and adopt the community of the
neighbour for which the increase of modularity is maximum (and positive).
4)This step is performed iteratively until a local maximum of modularity is
reached (each node may be considered several times).

Node 0 moves to the After N nodes have After each nodes has
community of Node 3 been considered been considered 4
times

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

Once a local maximum has been attained, second phase:
We build a new network whose nodes are the communities. The weight of the
links between communities is the total weight of the links between the nodes of

these communities.

14
é 1
New network of 4 nodes!
Note the self-loops 16

In typical realizations, the number of nodes diminishes drastically at this step.

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

The two steps are repeated iteratively, thereby leading to a hierarchical
decomposition of the network.

Multi-scale optimisation: local search first among neighbours, then among
neighbouring communities, etc.

2nd pass
26

— Q2

24

16 2

Hierarchical
representation

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Optimization: Greedy optimization

Topele] QOO Q @

OL AS OL AS OL
Partition initiale Apres la premicre passe Apres la seconde passe
(12 communautés, Q=-0.08) (4 communautés, Q=0.38) (2 communautés, Q=0.45)

Diaie] Dot Deldd

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Louvain

Algorithm 1 Pseudo-code of the community detection algorithm.

1: Community detectionG initial graph
2: repeat

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Place each vertex of GG into a single community
Save the modularity of this decomposition
while there are moved vertices do
for all vertex n of G do
¢ «— neighboring community maximizing the modularity increase
if c results in a strictly positive increase then
move n from its community to ¢
end if
end for
end while
if the modularity reached is higher than the initial modularity, then
end «— false
Display the partition found
Transform G into the graph between communities
else

end <« true
end if

20: until end




Louvain

The efficiency of the algorithm partly resides in the fact that the variation
of modularity A;; obtained by moving a vertex ¢ from its community to the
community of one of its neighbors j can be calculated with only local infor-
mation. In practice, the variation of modularity is calculated by removing ¢
from its community Ayemove:; (this is only done once) then inserting it into the
community of j Ajpsert;ij for each neighbor j of . The variation is therefore:

Az’j — A7‘emove;'é + A7l'rzusefr‘t;z'.7'-



Let us calculate the variation of modularity when a vertex x is removed from
its community. Assume that z is not alone in its community (the opposite case
is trivial). By removing x from its community, the size of the community of x
is decreased C, — C,\{z} and a new community only containing x is created
C’;. The original modularity is:

1 kik;
APNTPMNLES
C i,j€C

1 kik; 1 kik;
= 2 o 2 [Aij‘ znf]+zm,z [Aiﬂ“z—mj]’

C#Cy 1,j€C 1,j€C

(7)

and after removing the vertex z from C,, the modularity becomes:

/ 1 kik; 1 kik;
O D X

C#C, i,jeC i,j€Cz \{z}

| k2
1 kik
:Q_EZ |:Aza:_2m]7
1€Cx\{z}

where we used the fact that A;; is symmetric. The modularity variation is given
by:

A'r'emove - Q, - Q — _% Z |:Az:v - %] . (9)



Let us consider the situation where a vertex z is alone in a community and
where it is moved into another community C. The original modularity is:

o= Lo 210 5]

1,j€C
1 kik
- Y Xt T e
C#(Cm,Cﬂ 1,j€C 1,j€Cq
1 k2
+%[Am‘%}’

and after movement of z to C'1, which becomes Ci, the modularity becomes:

/ [ kik.: 1 [ kik:
== Az —_ L J Az - L
@ Z Z J 2m + 2m Z J 2m
C#C M igeot - i,j€C] -
B ' kikj] 1 ' kik;)
- Y om XAt D 5]
C;éc ,jEC - - i,j€C1 = -
1 kik, 1 k2
- Az:z: - " A:c:c — = .
+miezol 2m]+2m[ Qm}

The modularity variation is given by:

Ainsert = Q Q=— Z |:A’L-’B — 9 (12)

zECl



In both cases, whether it concerns removal or insertion, the calculations of
variations are performed using only local information on x and its neighbors.



Optimization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

Very fast: O(N) in practice. The only limitation being the storage of the network in
main memory

Good accuracy (among greedy methods)

Karate Arxiv Internet Web nd.edu Phone Web uk-2005 Web WebBase 2001

Nodes/links ~ 34/77  9k/24k  70k/351k  325k/IM  2.04M/5.4M  39M/783M 118M/1B
CNM 38/0s  .772/3.6s .692/799s  .927/5034s -/- -/- -/-
PL A42/0s  .757/3.3s .729/575s .895/6666s -/- -/- -/-
wWT A42/0s  .761/0.7s .667/62s  .898/248s .553/367s -/- -/-
Our algorithm .42/0s  .813/0s  .781/1s 935/3s .76/44s 979/738s 984 /152mn

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



How to test the methods?

Test the heuristics: what is the value of Q obtained for different algorithms? Time
complexity?

2
327 |2 Comsers ey Be—
_é.‘s - |+ Fast Greedy ; o-0/bo 2 /
5 o go/ V| ™S N
ER ) o°o-: / oa—g ,A—AA
‘!9 h o jo ?/ AAl/ N
§“’ i / e T 5
| 2% o4’ oy o Na / :
2V e ow% X X - N 4
L Y N A

I 1 1 I I 1 1 1

Se+01 1e+02 S5e402 1e+03 5e+03 1e+04 Se+04 1e+05
number of vertices, log-scale

graph size subdivision coarsening local search math prog SS+ML
karate [42] 34 [29] 419  [41] 4198 [12] .4188 (1] 4197 .4197
dolphins [22] 62 [29] .4893 (31] .5171 [33] .5285 [40] .5285 .5276
polBooks 105 [29] .3992 [37] .5269 % .5204 % 5272 .5269
afootball [14] 115 [39] .602 41] .605 4] .6045 1] .6046 .6002
jazz 198 [29] 442 9] .4409 [12] 4452 1] 445  .4446
celeg_metab 453 [29] .435 450  [12] 4342 1] 450  .4452
email [17] 1133 [29] .572 (9] .5569 [12] .5738 1] 579  .5774
Erdos02 [16 6927 [29] .5969 [32] .6817 [33] .7094 7162
PGP _main 5 11k [29] .855 9] .7462 [12] .8459 8841
cmat03.main 25] | 28k [29] .723  [41] .761 12] .6790 8146
ND_edu [2] 325k 7] 927 [4] .935 9509




How to test the methods?

Comparison with real-world data: do modules reveal nodes having similar meta-
data?

FIG. 3: Krebs' network of books on American politics. Ver-
tices represent books and edges join books frequently pur-
chased by the same readers. Dotted lines divide the four
communities found by our algorithm and shapes represent
the political alignment of the books: circles (blue) are liberal,
squares (red) are conservative, triangles (purple) are centrist
or unaligned.

But: meta-data are often unknown. No insurance that modular organization
coincides with semantic/cultural organisation



How to test the methods?

Benchmarks: artificial networks with known community structure.

M
E = 0z, =6
@ '2E 3 3 |[22=-7
8 S f{mz -8 - -
c ‘: 3 c . .
B 3 ; - i
£5 3 208
ngf 0.8 : E
b= 3 8
28 3 S 08
§§ 086 E §
§3 E % 0.4
B2 04k E €
5 - @—@ Normalized mutual informaton (NF) 3 goz
© - &—® % of nodes grouped correctly (NF) R i
B 02F o —a Nomalized mutual informaton (EO) E
E =& % of nodes grouped correctly (EO) - 0 1 i L L a8 NS5 e =S
o Buuitisii L Lusiiis Lisiiin PP lusn [, I £ § F &8 gv 3 &da
0 01 02 03 04 05 06 07 Method

Proportion of out links z_ /k

But: random networks (their structure is quite different from real-world networks).
In the way the benchmark is built, there is a (hidden) choice for what good
partitions should be

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi, Phys. Rev. E 78, 046110 (2008)



Comparing partitions

A popular way to compare two partitions P; and P, is the normalized variation

of information*?

H(Py|P2) + H(P,|P1)
logN ’

where H(P;|P,) is the conditional entropy of the partition P; given P,, namely the additional

V(Pl, Pz) =

(15)

information needed to describe P; once Ps is known. The conditional entropy is defined in
a standard way for the joint distribution P(C}, Cs) that a node belongs to a community C'; of
P, and to a community Cy of P,. The normalized variation of information, which has been
shown to be a true metric on the space of partitions, belongs to the interval [0, 1] and vanishes

only when the two partitions are identical.



How to test the methods?

Ajk the people!

fellows

about N Es m B

On Facebook, you only have friends. In real life however, these
friends are part of different groups: fam slose friends. co-workers
childhood friends, etc. The way you communicate with them likely

depends on the group they belong to. And vet, on Facebook

reveal everything 1o everybody
There are ways to chose those with whom you want to share some
information (be it a picture, a status update, a link, etc.), but we think

that those are too complex. They require you to add your friends one

by one to friend lists, which might take a tremenduous amount of
time if you have hundreds of contacts
We are working on a way to automatically generate those groups of

friends, using only the information on “who




Limitations of modularity (1)

The modularity landscape tends to be very rugged, with many

partitions, possibly very different, having similar value of
modularity.

Modularity, Q

The performance of modularity maximization in practical contexts, Benjamin H. Good et al.
http://arxiv.org/pdf/0910.0165.pdf



http://arxiv.org/pdf/0910.0165.pdf

Limitations of modularity (2)

Second, () exhibits a resolution limit, because using @ it is impossible to
detect dense clusters of nodes that are smaller than a certain scale [For-
tunato and Barthélemy (2007)]. The resolution limit originates from the
dependency of the null model on 2M. The dependency decreases when the

number of links, M, is increased. Then, modularity maximisation tends to
favour larger communities. In the limit M — oo, the null model is neglected
and modularity optimisation simply uncovers the connected components.
Modularity-based methods implicitly favour communities having a certain
size, depending on the size of the entire network. not onlv on its inter-
nal structure

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full



http://www.pnas.org/content/104/1/36.full

Limitations of modularity (2)

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full



http://www.pnas.org/content/104/1/36.full

Limitations of modularity (3)

Finally, al-
though modularity allows us to compare partitions of the same network,
it is by no means intended to compare modularity values of different net-
works. Therefore, () should not be used as a measure of the modularity of
a network. For instance, the modularity of the best partition of a random
network tends to () = 1 when the network is sufficiently large, whereas this
network is by no means modular [Guimera et al. (2004)].

Resolution limit in community detection Santo Fortunato and Marc Barthélemy
http://www.pnas.org/content/104/1/36.full



http://www.pnas.org/content/104/1/36.full

Connections with the field of statistical inference.

The model most commonly used in this context is the
so-called stochastic block model, which is a random graph
model of a network with community structure D, 23, EE]
One takes some number n of nodes, initially without any
edges, and divides them into g groups in some way, with
g; being the group to which node 7 is assigned, as pre-
viously. Then one places edges between nodes indepen-
dently at random, with the probability, which we de-
note w,s, of an edge between a particular pair of nodes
depending on the groups r and s to which the nodes be-
long. Thus there is a symmetric ¢ X ¢ matrix of parame-
ters w,s which determine the probabilities of edges within
and between every pair of groups. If the diagonal ele-
ments w,, of this matrix are larger than the off-diagonal
elements, then networks generated by the model have a
higher probability of edges within groups than between
them and hence have traditional community structure.

Community detection in networks: Modularity optimization and maximum likelihood are
equivalent, M. E. J. Newman



Connections with the field of statistical inference.

Maximisation of the log-likelihood of observing the network
given the model parameter.

In the case of the degree-corrected stochastic block model.

kik;
log P(A[Q2,8) = 3 Z (Am logwg,g; — wgzﬂa)

2m

The planted partition model [30, 31] is a special case of
the stochastic block model in which the parameters w,

describing the community structure take only two differ-
ent values:

Wout if r # s.

Wy = { “in ifr =s, (11)

Optimal partition of the planted partition model = optimal
partition of modularity:-)

Community detection in networks: Modularity optimization and maximum likelihood are
equivalent, M. E. J. Newman



Dynamics as way to uncover communities




Dynamics as way to uncover communities

1

1001
010001 0
010001

11111100111 1110 1111101 1110 0000 10100 0000
01110100 10110 11010 10111 1001 0100 1001 10111
10100 1001 010000110100 0011 0110 1101101100011 0100

101110011 0100 0111 10001 1110 10001 0111 0100 10110
11110110 10101 11110 00011




The Map Equation: coding trajectories

Imagine a random walk on a given network. If the network has commu-
nity structure, the random walker would wander within a community for a
long time before crossing a bridge to a different community. A straightfor-
ward way to describe the trajectory of the random walk is to write down
the visited nodes in an ordered list, e.g., v1, v4, v1, V7, V3, .... The amount
of information required to express the trajectory is estimated as follows.
We code each node into a finite binary sequence, i.e., a code word, and

concatenate the code words. For example, if vy, v3, v4, and v; are coded
into 000, 010, 011 and 110, the aforementioned trajectory is coded into
000011000110010 - - -. For unique decoding, the code has to be prefix-free.
In other words, a code word must not be a prefix (i.e., initial segment) of
another code word. For example, if v; and vy are coded into 000 and 0001,
respectively, the code is not prefix-free because 000 is an initial segment of

0001.



The Map Equation

The Huffman code is a prefix-free code that encodes symbols separately
and generally yields short binary sequences to represent trajectories of the
random walk. It assigns a short code word to a frequently visited node
and vice versa. The mean code word length per step of the random walk
is given by Zf;l pfL(i), where p} is the stationary density of the random

walk at node v; and L(%) is the length of the code word for node v;.

When the symbols .(vz- in our case) appear independently, the Huffman
code often yields a code length that is close to the theoretical lower bound
obtained by the Shannon entropy, which is

N
H=-) p;logp; (3.85)
i=1
per step. However, the sequence of nodes is correlated in time because it
is produced by the random walk. Then, an alternative coding scheme may
lessen the mean code length. In particular, we can design a [two-layered
variant of the Huffman code to exploit the community structure of the
network. Because there are less nodes in a community CM; as compared to
the entire network, we can express a trajectory within CM; with a shorter,
different Huffman code, which is local to CM,;. Based on this observation,

we rebuild the Huffman code as follows.



(1)
(2)

The Map Equation

When the walker enters community CM;, a code word to represent this
entry event (is issued.

The walker wanders within CM;. The trajectory of the walker during
this period is encoded by concatenating the code words corresponding
to the sequence of the visited nodes. The sequence of these code words
is simply placed after the code word produced in the previous step (i.e.,
entry to CM;). It should be noted that the intra-community code words
make sense only within CM;. A different community CM;: (i’ # i) may
use the same code word as the one used within CM; to represent a
different node in CM;:.

The walker exits CM;. This event is represented by a special code word,
which is concatenated after the sequence of code words produced so far.

The exit from CM; implies that the walker immediately enters a differ-
ent community, CM;. Therefore, a code word to notify that the walker
has entered CM; is issued. Then, the code words local to CM; are used
until the walker exits CM;. We repeat this procedure.



The Map Equation

Fig. 3.6 Optimal partitioning according to Infomap and the resulting code words.
This example is based on a demo applet available at Martin Rosvall’s website
http://www.mapequation.org/apps/MapDemo.html.

the trajectory shown
by the arrows in the figure is encoded into/0111011110001001110111. The
first 01 indicates that the walk starts in the left-bottom community, and
the 110 that follows indicates that the walk starts at the 110 node in this
community. 0010 in the middle indicates that the walk exits this community
(by the code word 00) and immediately enters the community to the right
(by the code word 10).



The Map Equation

In contrast to the original Huffman code, we have to invest 2Ncwm code
words to mark the entry to and exit from a community. However, we can
save the code length when the walker wanders in a community, which oc-
cupies a majority of steps. Overall, the mean code length is expected to be

smaller with the two-layer code in the presence of community structure. In
order to detect communities in practice, there is no need for devising the
optimal code of a given partition. Infomap instead proceeds by optimising
a quality function, called the map equation, which generalises Eq. (3.85).
The resulting quality function provides a theoretical limit of how concisely
we can specify a walk in the network using a given partition. The optimi-
sation is then performed by a greedy algorithm similar to the one used for
maximising modularity (Section 3.10.1), with additional fine- and coarse-
graining steps carried out for improving the partitioning.

L(M) =q~H(2)+) poH(E")
C

Minimizing the Map Equation provides the partition giving the best (most efficient)
coding scheme



Markov stability

The quality of a partition is determined by the patterns of a flow within the
network: a flow should be trapped for long time periods within a community
before escaping it.

The stability of a partition is defined by the statistical properties of a random

walker moving on the graph
J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales.

arXiv:0812.1811.

time




Markov stability

The quality of a partition is determined by the patterns of a flow within the
network: a flow should be trapped for long time periods within a community

before escaping it.
The stability of a partition is defined by the statistical properties of a random

walker moving on the graph

R(t) = Y P(C,to,to +t) — P(C, to,0)
ceP

probability for a walker to be in
the same community at times

P(C, to, to + t) t0 and t0 +t when the system is
at equilibrium

probability for two independent
P(Ca th OO) walkers to be in C (ergodicity)

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales.
arXiv:0812.1811.



Markov stability versus Modularity

Let us consider a random walk on an undirected network:

Pin+1 = E
J

R(1)

Az" *
: Pjmn — p; = kz/zm
kj equilibrium
Az’j kj k'zk'J
_ S5(c;, e
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walker is in the
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for independent
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Markov stability versus Modularity

Let us consider a random walk on an directed network:

Ay
Pin+1 — Z kofjtpj;n — p;k — T0;
j 7 equilibrium
_ Az-j .
R(]_) p— Z kqutﬂ'j — 7Tz°7Tj 5(0,;, Cj) 7£ Q
i,j - J .




Counting edges versus flows of probability

e

Qe s

rdir,1 = 0.42 rdir.1 = 0.33

Fig. 4. Directed Markov Stability versus extensions of
modularity. In this toy network [16], the weight of the bold
links is twice the weight of the other links. The partition on
the left (indicated by different colors) optimizes directed Markov
Stability (34), which intrinsically contains the pagerank as a null
model. The partition on the right instead optimizes an extension
of modularity based on in- and out-degrees [64], [65]. Hence
directed Markov Stability produces flow communities, whereas
the extension of modularity ignores the effect of flows.




Counting versus flows

dendrites

/ 44 millions \
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vertices
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vertices

disconnected components Q

17 millions vertices



Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times

. Ay
pizz “pj — i — p;i = ki/2m

i k; equilibrium
. t(B—1) kj kik,
R(t) = (e )i — > |0(ci, ¢)
2 i2m ~ 2m)
(2]
Bij = Aij/k; J \
Probabjlity that a Same probability
walker is in the for independent
same community walkers
initially and at

timet



time

Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times

R(0)=1— Z (/26;-7]325(@’ c;) Communities = Single nodes

12¥}

R(t) ~ (1 —t)R(0) + tQAC = Q(t) Zzgelaact))rlshrglc()ﬁularity of Reichart

Asymptotically, two-way partition given by the Fiedler vector



In practice: selection of the significant scales?
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In practice: selection of the significant scales?
football
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Lack of robustness -> high degeneracy in the landscape:
uncovered partitions are not to be trusted; wrong resolution



Time as resolution parameter
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Time as resolution parameter

a & 10* : 0.08 § . C
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Fig. 8. Flow communities at multiple scales in an airport network. The airport network contains N = 2905 nodes
(airports) and 30442 weighted directed edges. The weights record the number of flights between airports (i.e., the network does not
take into account passenger numbers, just the number of connections). Representative partitions at different levels of resolution
with (b) 44, (c) 18 and (d) 5 communities are presented. The partitions correspond to dips in the normalized variation of information
in (a) and show persistence across time (see Suppl. Info.).



Algorithms for memory networks: community detection

Edge partitions naturally provide overlapping communities.
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Recent trends

Network inferrence: stochastic block models and
model selection

Role detection and non-assortative communities
Non-backtracking random walks and detectability limit

Temporal communities
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Codes

Louvain method in Python:
http://perso.crans.org/aynaud/communities/

The Map Equation (and its variations)
http://www.mapequation.org/

Markov stability
https://github.com/michaelschaub/PartitionStability

Network inferrence:
https://graph-tool.skewed.de/static/doc/dev/community.html
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