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“Complex systems consist of a large number of 
interacting components. The interactions give rise 

to emergent hierarchical structures. The 
components of the system and properties at 

systems level typically change with time.” 

H.J. Jensen, in Encyclopedia of Complexity and Systems Science



Importance of metaphors, analogies and common languages



Tool box
Agent-based and numerical simulations 

Information theory 
(Non-linear) Dynamical systems 

Data mining and optimisation 
Networks 
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Information theory 
(Non-linear) Dynamical systems 
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Biological networks 
- Protein-protein interaction networks 

- Neural networks 
- Food webs

Social networks 
- Collaboration networks 

- Communication networks 
- Online social networks



Network representation



Properties: Scale-free (and heterogeneous) 
distributions
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Are power-laws everywhere or do we see them everywhere?

Critical Truths About Power Laws: Michael P. H. Stumpf and Mason A. Porter 
https://people.maths.ox.ac.uk/porterm/papers/critical.pdf 
Power laws, Pareto distributions and Zipf's law, M. E. J. Newman 
http://arxiv.org/pdf/cond-mat/0412004v3.pdf 
Power-law distributions in empirical data, Aaron Clauset et al. 
http://arxiv.org/pdf/0706.1062v2.pdf

https://people.maths.ox.ac.uk/porterm/papers/critical.pdf
http://arxiv.org/pdf/cond-mat/0412004v3.pdf
http://arxiv.org/pdf/0706.1062v2.pdf


Models of networks

Mechanistic models, whose goal is to understand the 
mechanisms leading to certain structures observed in empirical 
networks. In general, such models are defined by simple rules 
on how nodes and links are created or destroyed in the course 
of time. Examples include the growing network model (e.g. 
BA). Comparison between networks generated by the model 
and empirical networks allows us to identify potential forces 
having driven the evolution of the empirical networks.



Models of networks

Growing networks with preferential attachment model was 
proposed by Barabasi and Albert in 1999 (BA or PA model), 
while the model had been known for longer time [de Solla Price 
(1976); Szyman ́ski (1987); Mahmoud et al. (1993)]. The model 
is an instance of a family of multiplicative stochastic models, 
starting around a century ago with the Polya urn model and the 
Yule process. Historically, the mechanism of preferential 
attachment was also identified qualitatively by the sociologist 
Robert Merton, who called it the Matthew effect, also called 
rich-gets-richer, after a passage in Biblical Gospel of Matthew. 
The Yule process was studied by the economist Herbert Simon, 
interested in the distribution of wealth, who showed that it 
produces power-law distributions. This work inspired the Price’s 
network model [de Solla Price (1976)].



Models of networks

Random graph models in which links are random variables 
with certain constraints. The most fundamental model of random 
graph is the Erdos-Renyi model, and other examples include 
the configuration model, the exponential random graph 
models and random networks with communities. These models 
provide neither an explanation for the values taken by the 
parameters nor the reason for certain constraints to emerge in 
an empirical network. Instead, they have nice mathematical and 
statistical properties. For this reason, random graphs provide a 
useful baseline, or null model, for deciding whether patterns 
observed in empirical data are significant. In practice, if a value 
of a measurement observed in empirical data is significantly 
different from the expected value for the random graph model, 
the model does not represent the process behind the empirical 
data.



Erdos-Renyi networks

The degree distribution is a binomial distribution

well approximated by a Poisson distribution when N is sufficiently large 



Erdos-Renyi networks



Configuration model

The density of self-loops and 
multiple edges goes to zero when N 
is sufficiently large.



Configuration model



Beyond the degree distribution

Modularity: 
Many networks are 
inhomogeneous and are made of 
modules: many links within 
modules and a few links between 
different modules

clustering coefficient 
density of cliques 
motifs 
k-core 
degree-degree correlations



Properties: Modularity

Observed in social, biological and information networks



Properties: Multi-level modularity (hierarchy)
Networks have a hierarchical/multi-scale structure: modules within 
modules 
Nested organization



nb. Different notions of hierarchy 

Hierarchy = multi-scale 
structure: modules within 
modules

Hierarchy = subordination



nb. Different notions of hierarchy 

Hierarchy = multi-scale 
structure: modules within 
modules

Hierarchy of nodes with 
different degrees of 
“modularity” (clustering)

Hierarchical Organization of Modularity in Metabolic Networks, E. Ravasz et al. 
http://barabasi.com/f/108.pdf

http://barabasi.com/f/108.pdf


Modularity in questions

- Why do we observe modularity in complex systems? 
- What is the impact of modularity on the function and 

dynamics of systems? 
- Is it possible to uncover communities in networks in 

an algorithmic fashion? 



Why modularity?

Generic mechanisms driving the emergence of modularity, 
“à la rich-gets-richer”? 

D. Meunier, et al., Modular and hierarchical organisation in complex brain networks



Why modularity?

Generic mechanisms driving the emergence of modularity, 
“à la rich-gets-richer”? 

Simple systems evolve more rapidly if there are stable 
intermediate forms (modules) than if there are not present. 

Among possible complex organizations, modular hierarchies 
are observed because they are the ones that have had the 
time to evolve.

Simon, H. (1962). The architecture of complexity.  
http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf

http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf


Why modularity?

Watchmaker parable: 
“There once were two watchmakers, named Hora and Tempus, who made very 
fine watches. The phones in their workshops rang frequently; new customers 
were constantly calling them. However, Hora prospered while Tempus became 
poorer and poorer. In the end, Tempus lost his shop. What was the reason 
behind this? 
The watches consisted of about 1000 parts each. The watches that Tempus 
made were designed such that, when he had to put down a partly assembled 
watch (for instance, to answer the phone), it immediately fell into pieces and had 
to be reassembled from the basic elements. 
Hora had designed his watches so that he could put together subassemblies of 
about ten components each. Ten of these subassemblies could be put together 
to make a larger sub- assembly. Finally, ten of the larger subassemblies 
constituted the whole watch. Each subassembly could be put down without 
falling apart.”

Simon, H. (1962). The architecture of complexity.  
http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf

http://www.cs.brandeis.edu/~cs146a/handouts/papers/simon-complexity.pdf


Why modularity?

Probability that an interruption occurs while a piece is added, say p=0.01

 Tempus 

- must complete 1 assembly 
of 1000 elements 

-  loses on average 100 
pieces (1/0.01) 

-  finishes an assembly with 
probability (1-0.01)^1000 ~ 
0.000004 

- Time to finish a watch: 100 /
(1-0.01)^1000

Hora 

- must complete 111 
assemblies of 10 elements 

- loses on average 5 pieces 
(random beween 0 and 9) 

- finishes an assembly with 
probability (1-0.01)^10 ~ 
0.9 

Time to finish a watch: 111 * 
5 /(1-0.01)^10

It will take Tempus 4000 times as long to assemble a swatch 
Importance of disturbance due to the environment 
Robust intermediate steps during evolution: if the system breaks down 
(whatever the reason), evolution does not restart from scratch, but from 
intermediate, stable solutions (back-up!).



Random networks with communities

 “These networks consist of 128 vertices divided into 4 communities of 32 
nodes each. Each vertex pair is connected by an edge with one of two different 
probabilities, one for pairs in the same group and one for pairs in different 
groups, with values chosen so that the expected degree of each vertex remains 
fixed at 16. As the average number b of between-group connections per vertex 
is increased from zero, the community structure in the network, stark at first, 
becomes gradually obscured until, at the point where between- and within-
group edges are equally likely, the network becomes a standard Poisson 
random graph with no community structure at all.” 

Connection to stochastic block-models (see later).

Robustness of community structure in networks, Brian Karrer et al. 
http://dept.stat.lsa.umich.edu/~elevina/karrer_et_al.pdf 

http://dept.stat.lsa.umich.edu/~elevina/karrer_et_al.pdf


Random networks with communities
Generalization to arbitrary number of communities, distribution of community 
size and degree distribution 

Benchmark graphs for testing community detection algorithms, Andrea Lancichinetti et al. 
https://6c131308-a-62cb3a1a-s-sites.googlegroups.com/site/andrealancichinetti/
benchmark.pdf 

https://6c131308-a-62cb3a1a-s-sites.googlegroups.com/site/andrealancichinetti/benchmark.pdf


What is Community Detection?

Is it possible to uncover the (multi-scale) modular organisation of networks in 
an automated fashion? And please avoid false positives. 
Given a graph, we look for an algorithm able to uncover its modules without 
specifying their number nor their size 
The method should be scalable to accomodate very large networks, as often 
observed in the real-world.



Why community detection?
Graphs help us to comprehend in a visual way the global organisation of the 
system. This works extremely well when the graph is small but, as soon as the 
system is made of hundreds or thousands of nodes, a brute force 
representation typically leads to a meaningless cloud of nodes.



Why community detection?
Uncovering communities/modules helps to change the resolution of the 
representation and to draw a readable map of the network

Martin Rosvall and Carl T. Bergstrom, PNAS 105, 1118 –1123 (2008)



Why community detection?
Uncovering communities/modules helps to change the resolution of the 
representation and to draw a readable map of the network

InfoBaleen 



Why community detection?



What is a “good” community?
A connected component is certainly a good community, in case of several 
components



Percolation as a phase transition
Take the Erdos-Renyi network: how many disconnected components shall we 
expect depending on p?



Percolation as a phase transition



Community detection versus network partitioning
Both terms refer to the division of a network into dense groups 

Graph partitioning: the number and size of the groups is fixed by the user. 
For instance, in a typical bisection problem: what is the best division of a 
network into 2 groups of equal size such that the number of links between the 
groups is minimised. 
Application parallel computing: minimise inter-processor communication. 
Divides the system into the required number of groups, whatever the 
organisation of the system. 

Community detection: the number and size of the groups are unspecified, but 
determined by the organisation of the network. Ideally, the method should be 
able to uncover a mixture of groups of different size in the same system. It 
should divide a network only when a good subdivision exists and leave it 
undivided otherwise.



Community detection versus network partitioning
Both terms refer to the division of a network into dense groups 

Graph partitioning: the number and size of the groups is fixed by the user. 
For instance, in a typical bisection problem: what is the best division of a 
network into 2 groups of equal size such that the number of links between the 
groups is minimised. 
Application parallel computing: minimise inter-processor communication. 
Divides the system into the required number of groups, whatever the 
organisation of the system. 

Community detection: the number and size of the groups are unspecified, but 
determined by the organisation of the network. Ideally, the method should be 
able to uncover a mixture of groups of different size in the same system. It 
should divide a network only when a good subdivision exists and leave it 
undivided otherwise.

Different but similar methods 
In both cases: 
1) How to formalise the problem? Definition of a good community 
2) How to solve it in practice? Optimisation techniques to find it



Community detection versus network partitioning
Other difference: communities can be overlapping (in some systems, at 
certain resolutions, it is the norm rather than the exception)



Graph bipartition

Definition of the problem: 
Find the best division of a network into 2 groups of size n1 and n2 such that 
the cut size is minimal, where the cut size is the total number of links 
between different groups. 

Solving the problem: 
Looking through all bi-partitions and choose the one with the smallest cut 
size? 
Impossible in practice, as the exhaustive search is extremely costly in terms 
of computer time 

E.g. The number of ways to divide a network of 2n nodes into two groups of n 
and n nodes is: 

No method solving exactly the problem in polynomial time for all networks… 
But several existing heuristics allow to find approximate solutions in non-
prohibitive times.

Stirling



Spectral methods

Let us denote by                  the assignment of node i 

By performing a spectral decomposition of the Laplacian matrix, one finds: 

If there is no condition on si, the optimal solution would be 

But this solution is not a partition (except in extremely trivial situations) and it 
probably does not satisfy the required size of the groups.



Spectral methods
Approximation: If one wants a split into n1 and n2=n-n1 vertices, one orders 
the components of the Fiedler vector from the largest positive to the smallest 
negative and picks the n1 largest (smallest) components of the Fiedler vector

Complexity: O(N^2) on sparse networks



Community detection

What is the best partition of a network into modules? 
How do we rank the quality of partitions of different sizes?



Newman-Girvan Modularity

Q = fraction of edges within communities - expected fraction of 
such edges  

Let us attribute each node i to a community ci 

expected number of links between i and j 

Allows to compare partitions made of different numbers of 
modules 

M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks, 
Phys. Rev. E, 69, 026113, 2004.

QC 2 [�1/2, 1]



Note on the null model

Random network with constrained degrees 

What if one has extra information about the nodes?

Pij = kini koutj /mDirected networks ->

Spatially-embedded networks -> 

Or if the information on the degrees is expected to be irrelevant:
Pij = hki2/2m = hki/N

X

ij

Pij =
X

ij

Aij = 2m



Modularity



Modularity



Modularity Optimization

Optimization of modularity is an NP-complete problem

Need for efficient heuristics



Optimization: Spectral methods
Similar method to one for minimizing the cut, based on the spectral 
properties of the modularity matrix Q 

Let us first focus on the best division of the network into 2 communities. 

Let us denote by                    the assignment of node i 

By performing a spectral decomposition of the modularity matrix, one finds: 

si is chosen to be as similar to the dominant eigenvector

�(ci, cj) =
1

2
(sisj + 1)

M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices, 
Phys. Rev. E, vol. 74, 036104, 2006.

Qij = Aij �
kikj
2m



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech., P10008, 2008.

The algorithm is based on two steps that are repeated iteratively. First phase: 
Find a local maximum 
1) Give an order to the nodes (0,1,2,3,...., N-1) 
2) Initially, each node belongs to its own community (N nodes and N 
communities) 
3) One looks through all the nodes (from 0 to N-1) in an ordered way. The 
selected node looks among its neighbours and adopt the community of the 
neighbour for which the increase of modularity is maximum (and positive). 
4)This step is performed iteratively until a local maximum of modularity is 
reached (each node may be considered several times).



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech., P10008, 2008.

Once a local maximum has been attained, second phase:  
We build a new network whose nodes are the communities. The weight of the 
links between communities is the total weight of the links between the nodes of 
these communities.

In typical realizations, the number of nodes diminishes drastically at this step.



Optmization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech., P10008, 2008.

The two steps are repeated iteratively, thereby leading to a hierarchical 
decomposition of the network. 
Multi-scale optimisation: local search first among neighbours, then among 
neighbouring communities, etc.



Optimization: Greedy optimization

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech., P10008, 2008.



Louvain



Louvain



Louvain







Optimization: Greedy optimization
Louvain: multi-scale, agglomerative and greedy

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech., P10008, 2008.

Very fast: O(N) in practice. The only limitation being the storage of the network in 
main memory 
Good accuracy (among greedy methods)



How to test the methods?
Test the heuristics: what is the value of Q obtained for different algorithms? Time 
complexity?



How to test the methods?
Comparison with real-world data: do modules reveal nodes having similar meta- 
data? 

But: meta-data are often unknown. No insurance that modular organization 
coincides with semantic/cultural organisation



How to test the methods?
Benchmarks: artificial networks with known community structure. 

But: random networks (their structure is quite different from real-world networks). 
In the way the benchmark is built, there is a (hidden) choice for what good 
partitions should be

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi, Phys. Rev. E 78, 046110 (2008)



Comparing partitions



How to test the methods?
Ajk the people! 



Limitations of modularity (1)

The modularity landscape tends to be very rugged, with many 
partitions, possibly very different, having similar value of 
modularity. 

The performance of modularity maximization in practical contexts, Benjamin H. Good et al. 
http://arxiv.org/pdf/0910.0165.pdf

http://arxiv.org/pdf/0910.0165.pdf


Limitations of modularity (2)

Resolution limit in community detection Santo Fortunato and Marc Barthélemy  
http://www.pnas.org/content/104/1/36.full

Qij = Aij �
kikj
2m

http://www.pnas.org/content/104/1/36.full


Limitations of modularity (2)

Resolution limit in community detection Santo Fortunato and Marc Barthélemy  
http://www.pnas.org/content/104/1/36.full

http://www.pnas.org/content/104/1/36.full


Limitations of modularity (3)

Resolution limit in community detection Santo Fortunato and Marc Barthélemy  
http://www.pnas.org/content/104/1/36.full

http://www.pnas.org/content/104/1/36.full


Connections with the field of statistical inference. 

Community detection in networks: Modularity optimization and maximum likelihood are 
equivalent, M. E. J. Newman



Connections with the field of statistical inference. 

Community detection in networks: Modularity optimization and maximum likelihood are 
equivalent, M. E. J. Newman

Maximisation of the log-likelihood of observing the network 
given the model parameter. 
In the case of the degree-corrected stochastic block model.

Optimal partition of the planted partition model = optimal 
partition of modularity:-)



Dynamics as way to uncover communities



Dynamics as way to uncover communities



The Map Equation: coding trajectories



The Map Equation



The Map Equation



The Map Equation



The Map Equation

Minimizing the Map Equation provides the partition giving the best (most efficient) 
coding scheme 



Markov stability

The quality of a partition is determined by the patterns of a flow within the 
network: a flow should be trapped for long time periods within a community 
before escaping it. 
The stability of a partition is defined by the statistical properties of a random 
walker moving on the graph 

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales. 
arXiv:0812.1811.



Markov stability

The quality of a partition is determined by the patterns of a flow within the 
network: a flow should be trapped for long time periods within a community 
before escaping it. 
The stability of a partition is defined by the statistical properties of a random 
walker moving on the graph 

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales. 
arXiv:0812.1811.

probability for a walker to be in 
the same community at times 
t0 and t0 +t when the system is 
at equilibrium 

probability for two independent 
walkers to be in C (ergodicity)



Markov stability versus Modularity
Let us consider a random walk on an undirected network: 



Markov stability versus Modularity
Let us consider a random walk on an directed network: 



Counting edges versus flows of probability



Counting versus flows



Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times 



Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times 

tim
e

Communities = Single nodes 

Tuneable modularity of Reichart  
and Bornholdt 

Asymptotically, two-way partition given by the Fiedler vector 



In practice: selection of the significant scales?

algo: for each t, 100 
optimizations of Louvain 
algorithm while changing the 
ordering of the nodes 

net: for each t, 100 
optimizations with a fixed 
algorithm but randomized 
modifications of the network 

QF: for each t, one 
optimization. Partitions at 5 
successive values of t are 
compared. 

football 

Compatible notions of robustness: 
Lack of robustness -> high degeneracy in the landscape: 
uncovered partitions are not to be trusted; wrong resolution
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Time as resolution parameter



Time as resolution parameter



Time as resolution parameter



Algorithms for memory networks: community detection

Edge partitions naturally provide overlapping communities.

T. Evans and R. Lambiotte, Phys. Rev. E, 80 (2009) 016105  
Y.-Y. Ahn, J.P. Bagrow, S. Lehmann, Science 2010



Recent trends

Network inferrence: stochastic block models and 
model selection 

Role detection and non-assortative communities 

Non-backtracking random walks and detectability limit 

Temporal communities
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Codes

Louvain method in Python: 
http://perso.crans.org/aynaud/communities/ 

The Map Equation (and its variations) 
http://www.mapequation.org/ 

Markov stability 
https://github.com/michaelschaub/PartitionStability 

Network inferrence: 
https://graph-tool.skewed.de/static/doc/dev/community.html

http://perso.crans.org/aynaud/communities/
http://www.mapequation.org/
https://github.com/michaelschaub/PartitionStability
https://graph-tool.skewed.de/static/doc/dev/community.html

