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Research Program: Jesse Davis

Application Pull: Use machine learning 

to address significant problems in 

health, sports, and their intersection 

Technology Push:  Significantly advance 

the state of the art in machine learning

Anticipate scientific advances 

needed to address applications

Applications drive innovation 

in machine learning



ML Group Research Goals: 

Desired Solution Characteristics
Is distance between players important?

Tired?

1. Represent discrete and continuous attributes

2. Model uncertainty

3. Capture important relationships

4. Incorporate domain knowledge 

5. Produce interpretable output

dist(p1,p2 ) < 2m ˄ pr(p1=tried) > 0.8 
˄ prefRt(p1)  dribbleRt(p1) 

Attacker

Location:

(30,100)

Prefers right foot



Part I: Learning Probabilistic  

(Relational) Models



Outline

 Learning while accounting for model use 

 Learning the structure of propositional 

probabilistic graphical models

 Learning the structure of probabilistic relational 

models

 Deep transfer: Transferring across entirely 

different domains
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Motivation

DATA
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P(C | F, M)

P(M | C, W)

…

Learning is hard and requires lots of approximations

Inference is hard and model has big effect on inference

Problem: Learning and inference treated separately, but 

really should consider model use at learning stage



Three Directions

 Prediction with learned models that considers 

energy constraints [Verachtert et al. IJCAI’16]

 Learning tractable for Markov logic networks 

[Van Haaren et al. MLJ’16]

 Expanding the set of queries that can be 

answered efficiently [Bekker et al. NIPS’15]



Motivation

 Learned models are increasingly deployed on 

portable devices with resource constraints

 Battery

 Memory

 Etc. 

 Goal: Prediction with learned models must 

account for these constraints

 Focus NOT on training efficiency: Done off line



Prediction with Naïve Bayes

Test 

Example

Prediction based 

on all attributes

A1 A2 AnA3 …A4 A5 A6 A7 C

Argmaxc log(C=c) + ∑i log P(Ai = ai,j | C=c)

Question: Can we improve prediction efficiency?



Idea 1: Feature Selection

A1 A2 AnA3 …A4 A5 A6 A7 C

Test 

Example

A1 A2 AmA3 … C

Question: Can we do better?

Select subset of attributes

Considers fewer attributes,

but prediction involves

all selected attributes

Argmaxc log(C=c) + ∑i log P(Ai = ai,j | C=c)



Our Idea: 

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Ai) > 0.85 THEN predict C=1

ELSE IF P(C=1 | A1,…, Ai) < 0.12 THEN predict C=0

ELSE continue observing features until next stop point

Test 

Example 1

Stop Point: 

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ai) = 0.88 Stop 

inference

Stop Point: 

0.88, 0.10

Stop Point: 

0.91, 0.11



Our Idea:

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Ai) > 0.85 THEN predict C=1

ELSE IF P(C=1 | A1,…, Ai) < 0.12 THEN predict C=0

ELSE continue observing features until next stop point

Test 

Example 2

Stop Point: 

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ai) = 0.17

Continue

inference

Stop Point: 

0.88, 0.10

Stop Point: 

0.91, 0.11



Our Idea:

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Aj) > 0.88 THEN predict C=1

ELSE IF P(C=1 | A1,…, Aj) < 0.10 THEN predict C=0

ELSE continue observing features until next stop point

Stop Point: 

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ak) = 0.08

Stop

inference

Stop Point: 

0.88, 0.10

Stop Point: 

0.91, 0.11

Test 

Example 2

Number of observed attributes selected per example

Intuition: Stop if prediction “confident enough” 



Adding Stop Points

 Stop point (k, u, l) checks at attribute k if

 P(C=1 | A1 ,…, Ak) > u: stop and predict C=1

 P(C=1 | A1 ,…, Ak) < l: stop and predict C=0

 Order features from most to least informative

 Add a stop point at attribute k if u and l exist:

 S% of examples are stopped 

 Accuracy on stopped examples higher than 

accuracy on 

 Stopped examples if all attributes observed 

 All examples if all attributes observed



Empirical Evaluation

 Question: How does our approach compare to 

static orderings from standard feature selection?

 IG: Information gain

 ΔCP: Difference in conditional probabilities

 Three others (omitted from graphs for readability)

 Give each approach the same feature budget

 Energy improvement factor

 Speed up as proxy for energy usage

 Weighted accuracy



Data and Methodology 

 Evaluation on seven data sets

 Attributes: 1,000 to 139,000

 Examples: 2,500 to 800,000

 10 random splits: 40% train, 20% tune, 40% test

 Energy measurements: Raspberry Pi 

 Gives a controlled environment

 Use multimeter to measure energy consumption 

for prediction



IMDB.drama: Energy Measurements
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CPU time is a good proxy for energy usage



RCV: Speedup and Weighted Accuracy  

VS. Feature Budget 
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Our approach:

4X more predictions

on resource budget



Summary of Results

Performance of best static model vs. 

dynamic model with the same feature budget
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Problem Definition

Applications: Diagnosis, prediction, recommendations,

and much more!

F W A S C

T T T F F

F F T T F

F T T F F

T F F T T

F F F T T

Training Data

Goal:

Represent probability 

distribution over different 

configurations the variables 

can take on



Problem Definition

Applications: Diagnosis, prediction, recommendations,

and much more!

Smoke

Wheeze Asthma

Cancer

Flu

F W A S C

T T T F F

F F T T F

F T T F F

T F F T T

F F F T T

Training Data Markov Network Structure

P(F,W,A,S,C)



Markov Networks: Representation

(aka Markov random fields, Gibbs distributions, log-linear 

models, exponential models, maximum entropy models) 

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques: Capture probabilistic 

dependencies among variables

Undirected, graphical model that represents a joint distribution 

over a set of variables 



Markov Networks: Representation

Smoke Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 4.5

True True 2.7

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques have 

potentials functions Ф


x c

cc xZ )(

Z is the 

normalization constant  


c

cc x
Z

xP )(
1

)(

Represents the following 

distribution



Markov Networks: Representation

Smoke Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 4.5

True True 2.7

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques have 

potentials functions Ф

Convert potentials to features

Smoke  Cancer

FeatureWeight

1.5



Markov Networks: 

Log-Linear Representation

Smoke

Wheeze Asthma

Cancer

Flu

Feature iWeight of Feature i

P(x) =     exp       wi fi(x)
i
(1

Z )



Markov Networks: Learning

Smoke  Cancer

Weight Learning

 Given: Features, Data

 Learn: Weights

Structure Learning

 Given: Data

 Learn: Features, Weights 

Two Learning Tasks

Feature iWeight of Feature i

1.5

P(x) =     exp       wi fi(x)
i
(1

Z )



 )()()(log xnExnxP
w

iwiw

i






Markov Networks: Weight Learning

 Maximum likelihood weights

 Pseudo-likelihood

No. of times feature i is true in data

Expected no. times feature i is true according to model


i

ii xneighborsxPxPL ))(|()(

Slow: Requires inference at each step

No inference: More tractable to compute



Why Is Inference Hard?

F W A S C Weight

F F F F F

F F F F T

F F F T F

F F F T T

F F T F F

… … … … … …

T T T T T

P(x) =     exp       wi fi(x)
i
(1

Z )

Exponentially Many States

Computing Z requires summing 

over all possible states!



Inference Problem Highlighted

 Example: Smokes(X) ∧ Friends(X,Y) ⇒ Asthma(Y)

 People: 26 (a,…,z)

 Variable: 728

 Real-world data

 People: 1,000

 Variables > 1,000,000



Markov Network Structure Learning

 Goal find the features

 Broadly speaking, two standard approaches:

 Search through space of possible models 

(subproblem, search to generate features

 Local models: Use classifiers in a clever way



Search-Based Structure Learning
[Della Pietra et al., 1997]

 Given: Set of variables = {F, W, A, S, C}

 At each step

{F  W, F  A, …, A  C, F  S  C, …, A  S  C}

Current model = {F, W, A, S, C, S  C}

New model = {F, W, A, S, C, S  C, F  W}

Candidate features:

Conjoin variables to features in model

Select best candidate 

Iterate until no feature improves score



Local Model Approach Overview

 Step 1:  Learn “local models” to predict each 

variable given the others

 Step 2: Combine local models into global model

 Step 3: Learn weights

A

B

CB

A B D

D

C

CA B D

+Avoid running weight learning multiple times



DTSL: Decision Tree Structure 

Learning [Lowd and Davis, 2014]

 Given: Set of variables= {F, W, A, S, C}

 Do: Learn decision tree to predict each variable

F=?

0.2

0.5 0.7

S=?

P(C|F,S) = P(F|C,S) = …



DTSL: Feature Construction

 Construct one feature for each root-to-leave 

path in a tree

 Features include

F=?

0.2

0.5 0.7

S=?

P(C|F,S) = P(F|C,S) = …

F  C

F  ¬C
¬F  S  C

¬F  S  ¬C
¬F  ¬S  C

¬F  ¬S  ¬C



Motivation

 Search-based approaches

 Slow because due to lots of weight learning

 Generate long features in data-driven way

 Local-modal approaches

 Fast because weights learned only once

 Slow if many examples or variables

 Goal: Combine benefits of each approach



GSSL: Generate Select Structure 

Learn [Van Haaren & Davis, tbd]

 Two step process

 Step 1: Generate features

 Step 2: Select features

 Benefits include

 Fast, directed approach to feature generation

 Only run weight learning once



Step 1: Initialize by Converting 

Examples to Features

F1: F  W  A

F2: F  A  S

F3: W  A

F4: F  S  C

F5: S  C

F W A S C

T T T F F

T F T T F

F T T F F

T F F T T

F F F T T



Step 1: Feature Generation

F1: F  W  A

F2: F  A  S

F3: W  A

F4: F  S  C

F5: S  C

Base Features Generated Features

Repeat:

1) Randomly select feature

2) Drop arbitrary number of variables

3) Add generalized feature to feature set

F  A

S  C

W 

F  W

…

C

1

1

2

1

5

4

5

1

…

4



Step 2: Feature Selection

Generated Features

1) Prune features generated fewer times 

than a threshold

2) Weight learning with L1 prior to enforce sparsity

F  A

S  C

W 

F  W

…

C

5

4

5

1

…

4

Final Model

F  A

S  C

W 

…

C

2.3

0.0

-1.1

…

-2.1

Prune

??

??

??

…

??



GSSL Control Structure

Given: Example Set, Integer m, Threshold t

 Let BS = Example Set

 For i = 1 to m

 Randomly pick feature from BS

 Drop arbitrary number of variables, add new 

feature to FS

 Prune each feature generated less than t times

 Run L1 weight learning on remaining features



Empirical Evaluation

 Compared the following algorithms

 BLM [Davis and Domingos, 2010]

 L1 [Ravikumar et al., 2009]

 DTSL [Lowd and Davis, 2014]

 GSSL [Van Haaren and Davis, 2012]

 Compared on 20 different real-world domains

 1,600 to 290,000 train examples

 200 to 38,000 tune examples

 300 to 58,000 test examples

 16 and 1,500 variables

Note: Implementations and most datasets available:

http://alchemy.cs.washington.edu/papers/davis10a

http://alchemy.cs.washington.edu/papers/davis10a


Experimental Details

 Optimize pseudo-log-likelihood (PLL)

 Tried variety of parameters for each algorithm

 Use tune set PLL to pick best model

 Evaluation metrics

 Accuracy: Conditional marginal likelihood

 Speed: Run time



CMLL(x,e)  logP(X i  xi | E  e)
i





GSSL vs. L1

L1 better

GSSL wins on 11 out of 20 domains 

GSSL Better
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GSSL vs. DTSL

GSSL Better

DTSL

GSSL wins on 15 out of 20 domains 
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Run Time Comparison
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Challenge: Complex Data

Drug
PID  Date    Medication   Dose

P1  5/1/02  Warfarin       10mg

P1  2/2/03  Terconazole 10mg

Diseases

P1  2/1/01  Flu

P1  5/2/03  Bleeding

PID  Date    Diag.

Patient
PID   Birthday  Gender

P1    2/2/63         M

P2    4/7/55         M

 Data are complexly structured

 Data are highly uncertain

 Etc.



Traditional Solution

Drug
PID  Date    Medication   Dose

P1  5/1/02  Warfarin       10mg

P1  2/2/03  Terconazole 10mg

Diseases

P1  2/1/01  Flu

P1  5/2/03  Bleeding

PID  Date    Diag.

Patient
PID   Birthday  Gender

P1    2/2/63         M

P2    4/7/55         M

Statistical Approach

Models uncertainty

Ignores relations

Logical Approach 

Models relations

Ignores uncertainty



Statistical Approach Overview

Data representation: i.i.d. vectors

Patient Warfarin  Terconazole …  Flu   ADR

P1         Yes          Yes No    Yes

P2         No            No Yes    No

Learn model that maps 

features to adverse reaction

FluWarf.

ADR



Logical Approach Overview

Data representation: First-order logic

Learn: Set of first-order logical rules

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

PID  Date    Medication   Dose

P1  5/1/02  Warfarin       10mg

P1  2/2/03  Terconazole 10mg

 Constant: Terconazole

 Variable: p

 Literal: Drug(P1, Terconazole)

Drug



Solution: Statistical Relational Learning

 Combine the statistical and logical approaches

 Intuition: Attach probabilities to first-order rules to 

capture uncertainty

 Example: Smoking causes cancer

Smokes(person)  Cancer(person) : 0.15



VISTA: A SRL Framework
[Davis et al., IJCAI’07]

Integrates feature induction and model construction

 If-then rules capture implicit, relational features

 Rules become features in statistical model 

Drug(p,Terconazole) ˄ Wt(p, w) ˄  w <120  ADR(p) 

Rule MRule 13Rule 1 …

ADR

Rule 5



VISTA: A SRL Framework
[Davis et al., IJCAI’07]

R1 R2 RnR3 …R4 R5Candidate Rules:

Δ Model’s score:

Rule 2

ADR

Rule 5 Rule MRule 13 …

0.02 0.05 -0.01 0.01 0.03 -0.01…

Iteratively add rules until stop criteria is met



Tasks Addressed
[Davis et al., IJCAI’07, ICML’07]

 Given:   A set of 3D conformations 

of a small molecule  

 Predict: Molecule’s binding affinity

to a target protein

 Given:   A radiologist’s structured

mammography report 

 Predict: Abnormality is malignant



Challenge: Hidden Structure

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Drug Observation
PID  Date    Medication   Dose

P1  5/1/02  Warfarin       10mg

P1  2/2/03  Terconazole 10mg

Diseases

P1  2/1/01  Flu

P1  5/2/03  Bleeding

PID  Date    Diag. PID   Date    Weight

P2   2/2/03    120

Data and hence discovered patterns 

mention specific drugs or diseases

Regularities may involve drug or disease classes: 

Enzyme inducers increase risk of internal bleeding



Solution: Clustering of Objects

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Cluster2(x)  Drug(p, x)  …  …  ADR(p)

Cluster2(x) = {Terconazole,… , Ketoconazole}

During learning, invent a clustering of objects 

that can appear in rules

A group of “similar” objects



Motivation for Approach

 Why not use existing hierarchies?

 Why not cluster objects before learning?

 Inventing clusters during learning allows them:

 To be tailored to specific prediction task

 To exploit the context of the rule and the model



LUCID: Algorithmic Overview
[Davis et al., ICML’12]

R1 R2 Rm,c… Rn R1,cCandidate Rules:

Δ Model’s score:

Rule 1

ADR

Rule 5 Rule MRule 13 …

0.02 0.05 … -0.01 0.03 -0.01…

…



Incorporating a Cluster in a Rule

If a candidate rule improves model’s score then

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Cluster2(d)  Drug(p, d)  Wt(p, w)  w < 120  ADR(p)

1) Conjoin the invented predicate to the rule

2) Replace the object with a variable



Learning the Cluster Definition

 Which objects should be grouped together?

 All constant of same type?

 Slow because thousands of diagnosis and drugs

 Intuitively: Focus on similar constants,

e.g., given Terconazole:

 Which drugs can replace Terconazole?

 Which drugs complement Terconazole?

 Idea: Use constants in “near miss” examples



Finding Relevant Objects: 

Near Miss Examples

Wt(p, w)  w < 120  ADR(p)

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

1. Find patients that 

I. Satisfy the more general rule

II. Do not satisfy the more specific rule

2. Only consider drugs in this example set

Restricts which patients 

the rule applies to

Intuition: Context where 

Terconazole is prescribed



Evaluating Clusterings

New Rule 5:

Δ score:

Rule 2

ADR

Rule 5

Cluster2(d)  Drug(p, d)  …  ADR(p)

Cluster Definition:

Cluster2(Terconazole)

Cluster2(Rifampicin)

Cluster2(Ketoconazole)

Candidates: Rifampicin   Ketocanazole …  Alpranolol

Cluster2(Ketoconazole)Cluster2(Alpranolol)

Add objects until none improves the score

0.04 0.02 -0.01…



Tasks and Data

 Tasks considered:

 Myocardial infarction on selective Cox-2 inhibitors

 Internal bleeding with Warfarin

 Angioedema with ACE inhibitors

 Data from Marshfield Clinics

 Diagnoses

 Medications

 Lab tests

 Observations



Data Preparation

First 

Prescription
Patient’s

history

Adverse

Reaction? 

Positives: Adverse event after prescription

Negatives: Took medicine and no adverse event,

matched on age and gender to positives

Training data Censoring window



Evaluation Metric

FPTP

TP

+
Precision = 

Recall = 
FNTP

TP

+

AUC

10 fold cross validated area under precision-recall curve



Systems Compared

VISTA

SNE+VISTA

Expert+VISTA

LUCID

Expert+Lucid

Dynamically

Invented

Clusters

Hand-Crafted

Expert

Hierarchy

Precluster

Learned rules can contain

P

P

P

P

P



Results
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Challenge:

Acquiring Data Can Be Expensive

Costs include:

P
e
rf

o
rm

a
n

c
e

Amount of data

But more data 

is better…

Money

Emotional

Time



Inductive Learning Cycle

 Get a task: 

 Collect data

Learn 

first task

Learn 

second task

Forget what 

we learned!

P
e
rf

o
rm

a
n
c
e

Amount of data

But more data 

is better…

Money

Emotional

Time

Do this again



Problem: One Off Solutions

 Interested in modeling many different domains

 Ideally:

 Problem: New domain looks “different”

Learn 

first task

Solution: Inductive transfer

Learn 

second task

Acquire 

knowledge



Transfer Learning

 Transfer: Makes use of data (or model or 

knowledge or …) from auxiliary domain

 Broadly speaking two types of transfer

 Shallow: Same variables, different distributions

 Deep: Different predicates, entities, properties 

Inductive Learning

 Given: Target Data

 Learn: Model

Transfer Learning

 Given: Target Data, 

Source Data

 Learn: Model



Same Variables, 

Different Distribution

First Task Second Task



Location 2

Function 3

Protein 2Protein 1

Location 1

Function 2
Function 1

Interacts

Entirely Different Domains

First Domain

Word 1

Web PageWeb Page

Word 1

Professor

Research 

Project

Linked

Word 2

Second Domain



Terminology

 Constants, variables, predicates, functions

E.g.: Anna, x, Friends(x,y), MotherOf(x)

 Grounding: Replace all variables by constants

E.g.: Friends(Anna,Bob)

 Clause: 

E.g.: Friends(x,y) ˅ Friends(y,z) ˅ Friends(x,z)

 Predicate variable: Variable instead of 

predicate name
r(x,y)  s(x,z)  r(z,y)

Location(x,y)  Interacts(x,z)  Location(z,y)

r → Location, s → Interacts



Markov Logic Networks (MLNs)
[Richardson & Domingos, MLJ’06]

  satisfiesit  formulas of weightsexpP(world)

 A logical knowledge base is a set of

hard constraints on the set of possible worlds

 Let us make them soft constraints

 Give each formula a weight 

 Worlds that violate a formula become less probable

Location(x,y)  Interacts(x,z)  Location(z,y)1.5



MLN to Markov Network

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

∀X Smokes(X) ⇒ Cancer(X) 
∀X,Y Friends(X,Y) ⇒ [Smokes(X) ⇔ Smokes(Y)]

Constants: Anna (A), Bob (B)



Smoke(x)  Cancer(x)

Markov Logic Networks: Learning

Structure Learning

 Given: Target Data

 Learn: Formulas, Weights 

Formula iWeight of Feature i

0.15

P(x) =     exp wi fi(x)
i
(1

Z )

Search through 

spaces of clauses

Convex optimization 

of pseudolikelihood



Function1

Protein1

Protein2

Interacts

HasFunction

HasFunction

Protein-Protein Interaction Twitter

Challenge: Domains Described by 

Different Predicates, Objects, Etc.

Word

User1

User2

Follows

HasWord

HasWord



Function1

Protein1

Protein2

Interacts

HasFunction

HasFunction

Protein-Protein Interaction Twitter

Challenge: Domains Described by 

Different Predicates, Objects, Etc.

Word

User1

User2

Follows

HasWord

HasWord

r(x, z) ∧ s(x, y)  r(y, z)

Common templates used to model domains

Use variables and not predicate names



Transfer as Declarative Bias

Search through (Large) Space of Possible Clauses

Intuition: Bias learning toward models that

contain previously useful clauses

Maximum

Length

Hint: Try these 

models first

Hint: Try these 

models first

Hint: Up weight 

these clauses

Short Clauses

Long clauses

General-to-

specific search



Overview of TODTLER
[Van Haaren, Kolobov, & Davis, AAAI’15]

r(x, z) ∧ s(x, y)  r(y, z)
r(x, y)  r(y ,x)
….

Word(a, w) ∧ Follows(a, b) 
 Word(b, w)

Follows(a, b)  Follows(b, a)

…

Follows(Jan, Jesse)

Follows(Jesse, Jan)

Word(Jesse, Basketball)

…

Source domain

distribution over 

templates

Target domain

distribution over 

formulas

Adapted target domain distribution 

Combine

Learn distribution over 2nd-

order clause templates in 

source and transfer it to target



Learning the Posterior

 Probabilistic inference for a posterior over
2nd-order clauses is hopelessly intractable

 Hence will use a heuristic approach

 Generate second-order templates

 For each template create all its first-order 
groundings

 Treat each first-order clause independently and 
score its “usefulness” based on pseudolikelihood

 Template score: Aggregation over its first-order 
groundings



Constructing Second-Order Clause 

Templates

 Generate all second-order clause templates

 Maximum number of predicate variables

 Maximum number of object variables 

 Maximum length

 Generate first-order clauses by grounding out 

predicate variables with predicate names 

 Do this in source and target domain



Score first-order clauses 

0.19 Word(a, w) ∧ Follows(a, b)  Word(b, w)

0.13 Type(a, t) ∧ Follows(a, b)  Type(b, t)

…

0.08 Follows(a, b)  Follows(b, a)

…

Source Data

Using the Source Data

0.15 s(x, z) ∧ r(x, y)  s(y, z)

0.08 r(x, y)  r(y, z)

Ranking of Second-Order Templates

Aggregate scores of template’s 

first-order instantiations

Improvement in PLL 

obtained by adding 

clause to empty MLN

Rescale PLLs between 

0 and 1 and average



0.13 s(x, z) ∧ r(x, y)  s(y, z)

0.08 r(x, y)  r(y, z)

0.23 Loc(p, l) ∧ Interacts(p, q)  Loc (q, l)

0.14 Interacts(p, q)  Interacts(q, p)

0.12 Func(p, f) ∧ Interacts(p, q)  Func (q, f)

Ranked Templates

0.30 Loc(p, l) ∧ Interacts(p, q)  Loc (q, l)

0.16 Func(p, f) ∧ Interacts(p, q)  Func (q, f)

0.15 Interacts(p, q)  Interacts(q, p)

Learning in Target Domain

Score first-order clauses 

Target Data

Combine Scores 

Walk down list

Pick clauses



Empirical Evaluation

 Can we successully transfer among different 
domains?

 Will transfer outperform learning from scratch?

 Which transfer approach is the best?

 Will we discover and transfer relevant templates?



Data and Methodology

 Transfer among three domains:

 Yeast protein: 7 predicates, 1.4M ground atoms
[Davis et al., ECML’05]

 WebKB: 3 predicates, 4.4M ground atoms 
[Craven & Slattery, MLJ’01]

 Twitter: 3 predicates, 50K ground atoms

 Evaluation metrics

 Area under the precision recall curve (AUC PR)

 Negative conditional log likelihood (CLL)

 Run time 



Twitter to WebKB
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Twitter to WebKB
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WebKB to Yeast
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Run Time
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Templates Ranked in Top 10

Yeast WebKB Twitter

Symmetry: 

r(x, y)  r(y, x)

1st 1st 2nd

Homophily

s(x, y) ∧ r(z, y)  s(z, y)

3rd 8th 6th

Transitivity 

r(x, y) ∧ r(y, z)  r(x, y)

6th 2nd -

Triangle Completion

r(x, z) ∧ r(y, z)  r(x, y)

10th - 5th

Cycle

r(x, y) ∧ r(y, z)  r(z, x)

- 4th -



Part II: Applications to Sports



Traditional Sports Data: Box Scores

https://en.wikipedia.org/wiki/Box_score_(baseball)

Box Score from 1876 Box Score from 1908

Box Score from 1962

https://miscbaseball.wordpress.com/2009/1

0/11/1908-the-cubs-win-the-world-series/



Sports Analytics

“Traditional” approach to evaluating players

 Scouts evaluate subjectively on gut

 Traditional statistics

98



Sabremetrics: A Better Idea

99



“Bill James…asked the question why” 

– Paul DePodesta, “Moneyball”

 Question 1: Which statistics best quantify 

various aspects of team or player performance?

 Question 2: Can we come up with a single 

statistic to rank players?

 Question 3: How can we project future team or 

player performance?

Assumption: Available data is box score like 

Why are common statistics meaningful?



Sports Data Today

Complex Data

How can we exploit

all the collected data?

Train

Scout

Identify players

Etc.

Automated data

analysis techniques



How Can Analytics Help?

Number of shots on target: 10

Compute relevant metrics

Learn predictive models

Heart Rate > 140 AND

Distance > 8KM  Tired

Discover novel patterns

Player 1 pass to Player 2 AND 

Player 2 dribbles …

Complex Data



Three New Types of Data

 Event stream: Events with time and location

 Athlete monitoring: 

GPS, accelerometer, etc. 

 Optical tracking: 

X, Y locations of players

Pass
(60,10)

Throw

(75,0)

Pass

(86,15)

Cross

(90,20)

Shot

(88,43)
…

Run

(80,5)
…

Out

(75,0)



Outline

 Rating players: Assign a rating to each action a 

player performs in a match

 Understand strategy: Discover patterns from 

player tracking data



Outline

 Rating players: Assign a rating to each action a 

player performs in a match

 Understand strategy: Discover patterns from 

player tracking data



Distribution of Some Events

0

50000

100000

150000

200000

250000

300000

350000

400000
p
a
s
s

o
u

t

b
a

ll 
re

c
o
v
e
ry

a
e
ri
a

l

c
le

a
ra

n
c
e

fo
u

l

b
a

ll 
to

u
c
h

ta
k
e
 o

n

ta
c
k
le

d
e

le
te

d
 e

v
e

n
t

in
te

rc
e
p

ti
o
n

d
is

p
o
s
s
e
s
s
d

c
o
rn

e
r 

a
w

a
rd

e
d

c
h
a
lle

n
g
e

b
lo

c
k
e
d

 p
a
s
s

k
e
e
p
e
r 

p
ic

k
-u

p

a
tt
e
m

p
t 
s
a

v
e
d

s
a
v
e

m
is

s

e
n

d

p
la

y
e
r 

o
ff

p
la

y
e
r 

o
n

s
ta

rt

o
ff
s
id

e
 p

ro
v
o

k
e
d

o
ff
s
id

e
 p

a
s
s

c
a

rd

e
n
d

 d
e
la

y

s
ta

rt
 d

e
la

y

c
la

im

g
o
a

l

F
re

q
u

e
n

c
y
 o

f 
E

v
e

n
t

Question: Only a small fraction of the 

actions involve attempts and goals, how 

can we value all actions?



Our Approach: STARSS

 Given: Event stream with type and location of all 

events (e.g., passes and shots)

 Do: Assign rating to each action

 Approach

1. Split matches in phases

2. Rate phases

3. Distribute phase rating over individual actions

4. Aggregate players ratings over season



Divide Match into Phases

Phase i

Phase i + 1 

Phase i + 2 

Split event stream based on change of possession



Rating Phases

X1,1 

Y1,1

X1,2 

Y1,2

X1,3 

Y1,3

X1,4 

Y1,4

X1,5 

Y1,5

X2,1 

Y2,1

X2,2 

Y2,2

X2,3 

Y2,3

X2,4 

Y2,4

X2,5 

Y2,5

X2,5 

Y2,5

Similarity metric: Dynamic Time Warping on event positions

Question: How good is 

this phase?

Answer: Compare to 

what happened in 

similar phases



Rating Phases

Rating phases:

1. Find k most similar phases (e.g., 100)

2. Of these, count how many result in a goal (e.g., 6)

𝑅𝑎𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 =
6 𝑔𝑜𝑎𝑙𝑠

100 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑝ℎ𝑎𝑠𝑒𝑠
= 0.06



Distribute Phase Rating Across Its 

Constituent Actions

Phase Rating: 0.19

.07

.05

.04

.03

Actions at end are more important: Exponential decay



Top 10 Players: EPL 2016-2017

Rank Team Player Rating

Per 90

Goals

Per 90

Assists

Per 90

1 Arsenal Alexis 

Sanchez

0.289 0.478 0.147

2 West Ham Dimitri Payet 0.279 0.315 0.420

3 West Ham Mauro Zarate 0.262 0.342 0.000

4 Chelsea Willian 0.249 0.164 0.196

5 Liverpool Philippe 

Coutinho

0.244 0.359 0.225

6 Arsenal Santi Cazorla 0.240 0.000 0.209

7 Arsenal Mesut Ozil 0.240 0.177 0.561

8 Sunderland Wahbi Khazri 0.240 0.167 0.084

9 Aston Villa Rudy Gestede 0.237 0.272 0.109

10 Man City Kevin De 

Bruyne

0.233 0.315 0.404



Outline

 Rating players: Assign a rating to each action a 

player performs in a match

 Understand strategy: Discover patterns from 

player tracking data



Discover Offensive Strategies in 

Football Matches

 Given:

 Event stream with type and location of all events 

(e.g., passes and shots)

 Locations of all players and the ball (10 hz sample)

 Find: Typical offensive strategies

Time t Time t+1 



Big Picture Problem

Lots and lots of game 

play sequences
Subset of actions that 

commonly lead to shots 

 Film study is time consuming

 Automation can help speed this up

 Computers good at finding patterns in large data sets



Challenges

 Relationships and how they change over time 

are important

 Space

 Interactions between players

 Order of events is important 

 May want to generalize over players involved

 Exact same sequence of events unlikely to 

occur multiple times 



Important Steps

1. Data cleaning

2. Event stream preprocessing

3. Clustering data 

4. Identifying important strategies



Step 1: Cleaning Data

 Outliers and incorrect values

 Valid field coordinates

 Player and ball movements seem “possible”

 Teams switch direction at half time: Normalize 

data such that team always attacks same goal

 Account for changes in data (e.g., position 

switches, new players, etc.)



Step 2: Event Stream Preprocessing

Event stream

Throw Pass Run Cross Shot SaveRun

Phase 2

…
Free

kick
Pass Throw Pass Run Cross Shot SaveRun …Run Out

Phase 1

Free

kick
PassRun Out



Step 3: Clustering

…

Divide phases into different groups such that 

the phases in a group are “similar”

Three Benefits

1. Teams employ 

multiple strategies

2. Generalize from a 

specific location

3. Subsequent step 

more computationally 

efficient



Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences



Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences



Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences

Pattern Count

3

2

1

1



Two Representative Patterns

An attack down 

the right flank

An attack down 

the left flank



Summary

 Focus on learning models from data 

 Expand frontiers of what is possible

 Account for real world problems

 Modeling structured data

 Applications drive research agenda

 Health: ADRs

 Sports

 …



Questions?


