JESSE'S RESEARCH

Jesse Davis jesse.davis@cs.kuleuven.be https://dtai.cs.kuleuven.be/sports/

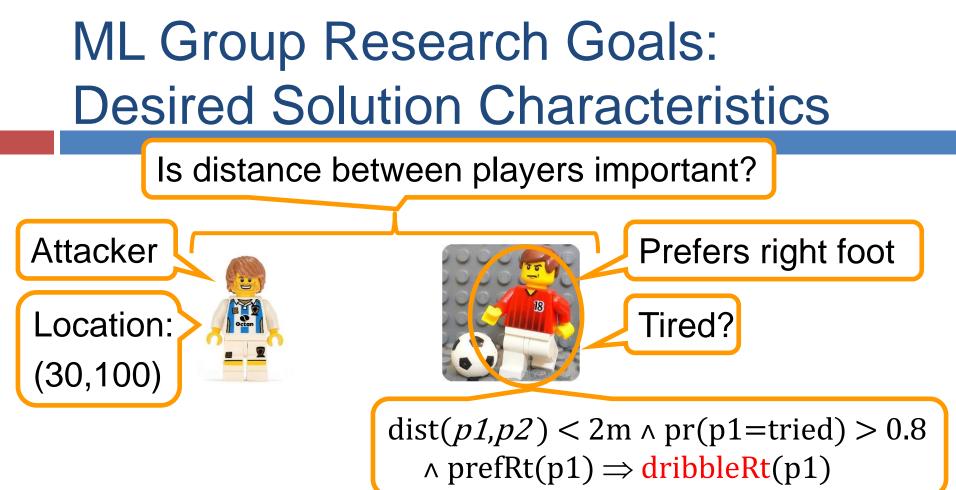
Research Program: Jesse Davis

Technology Push: Significantly advance the state of the art in machine learning

Applications drive innovation in machine learning

Anticipate scientific advances needed to address applications

Application Pull: Use machine learning to address significant problems in health, sports, and their intersection



- 1. Represent discrete and continuous attributes
- 2. Model uncertainty
- 3. Capture important relationships
- 4. Incorporate domain knowledge
- 5. Produce interpretable output

Part I: Learning Probabilistic (Relational) Models

Learning while accounting for model use

Learning the structure of propositional probabilistic graphical models

Learning the structure of probabilistic relational models

Deep transfer: Transferring across entirely different domains

Learning while accounting for model use

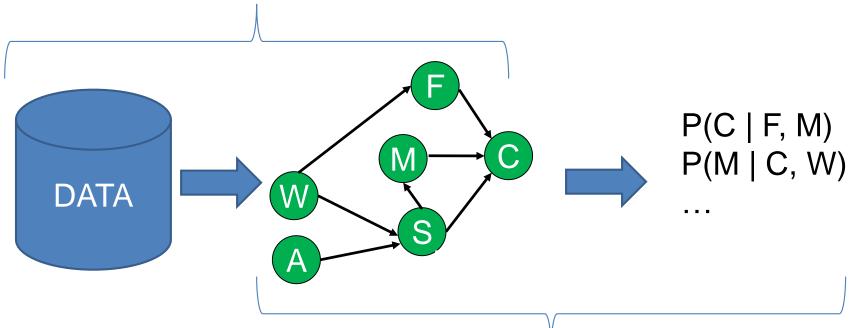
Learning the structure of propositional probabilistic graphical models

Learning the structure of probabilistic relational models

Deep transfer: Transferring across entirely different domains

Motivation

Learning is hard and requires lots of approximations



Inference is hard and model has big effect on inference

Problem: Learning and inference treated separately, but really should consider model use at learning stage

Three Directions

Prediction with learned models that considers energy constraints [Verachtert et al. IJCAI'16]

 Learning tractable for Markov logic networks [Van Haaren et al. MLJ'16]

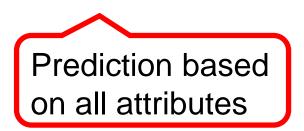
Expanding the set of queries that can be answered efficiently [Bekker et al. NIPS'15]

Motivation

- Learned models are increasingly deployed on portable devices with resource constraints
 - Battery
 - Memory
 - Etc.
- Goal: Prediction with learned models must account for these constraints
 - Focus NOT on training efficiency: Done off line

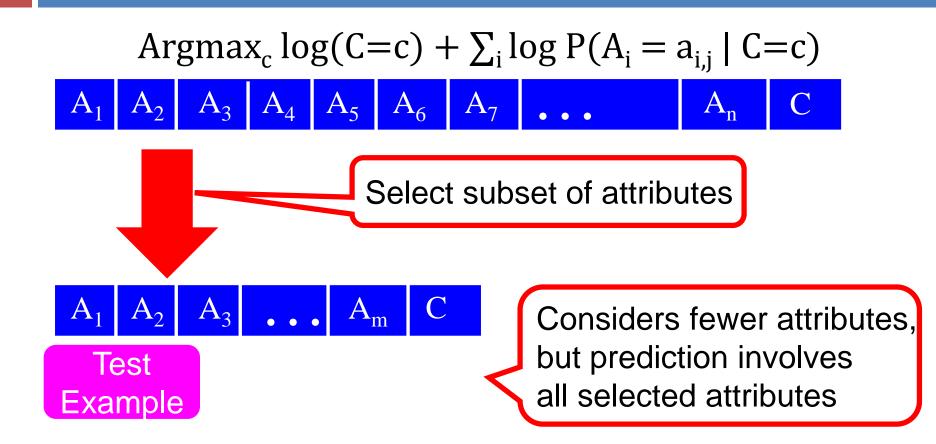
Prediction with Naïve Bayes

Argmax_c log(C=c) +
$$\sum_{i}$$
 log P(A_i = a_{i,j} | C=c)
A₁ A₂ A₃ A₄ A₅ A₆ A₇ ... A_n C



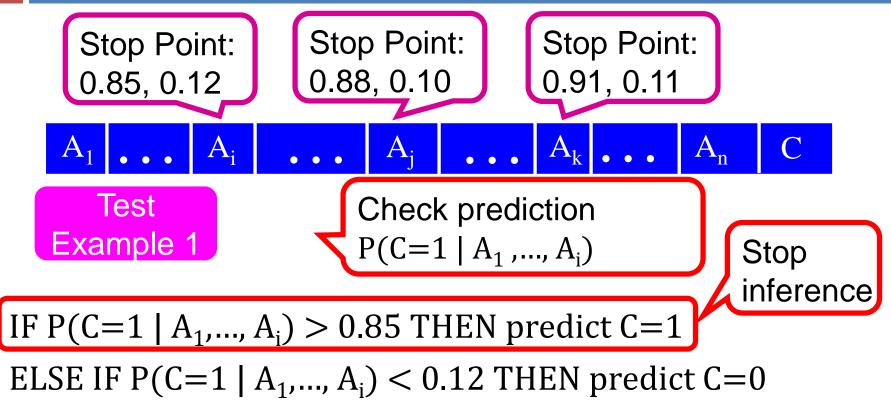
Question: Can we improve prediction efficiency?

Idea 1: Feature Selection



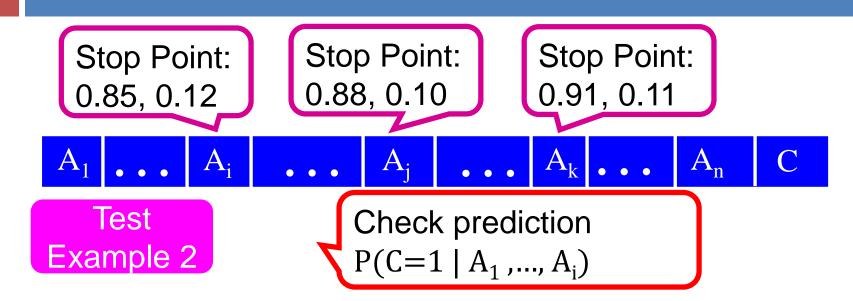
Question: Can we do better?

Our Idea: Naïve Bayes with Stop Points



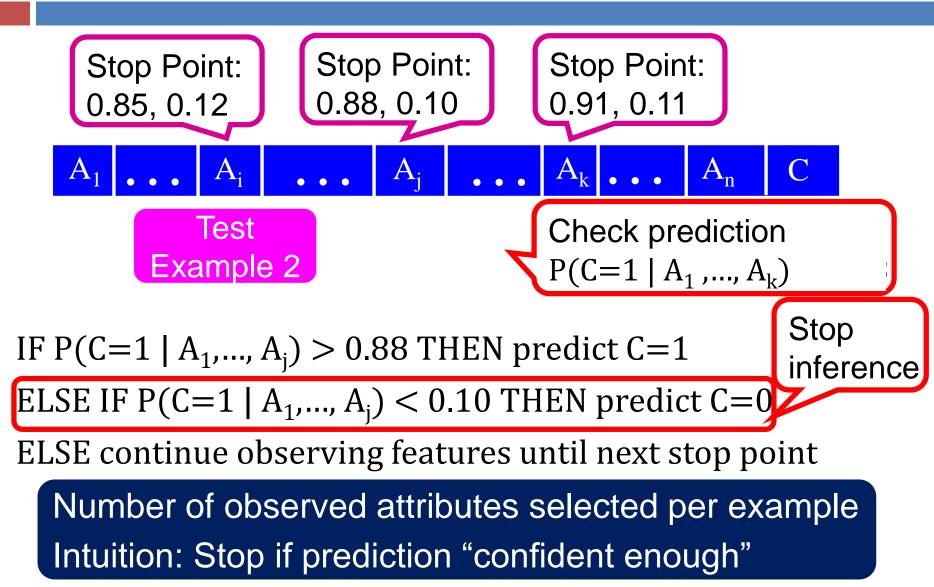
ELSE continue observing features until next stop point

Our Idea: Naïve Bayes with Stop Points



IF $P(C=1 | A_1, ..., A_i) > 0.85$ THEN predict C=1ELSE IF $P(C=1 | A_1, ..., A_i) < 0.12$ THEN predict C=0ELSE continue observing features until next stop point Continue inference

Our Idea: Naïve Bayes with Stop Points



Adding Stop Points

Stop point (k, u, l) checks at attribute k if

P(C=1 | A₁,..., A_k) > *u*: stop and predict C=1
 P(C=1 | A₁,..., A_k) < *l*: stop and predict C=0

- Order features from most to least informative
- Add a stop point at attribute k if u and l exist:
 S% of examples are stopped
 - Accuracy on stopped examples higher than accuracy on
 - Stopped examples if all attributes observed
 - All examples if all attributes observed

Empirical Evaluation

- Question: How does our approach compare to static orderings from standard feature selection?
 IG: Information gain
 - ΔCP: Difference in conditional probabilities
 - Three others (omitted from graphs for readability)
- Give each approach the same feature budget
 - Energy improvement factor
 - Speed up as proxy for energy usage
 - Weighted accuracy

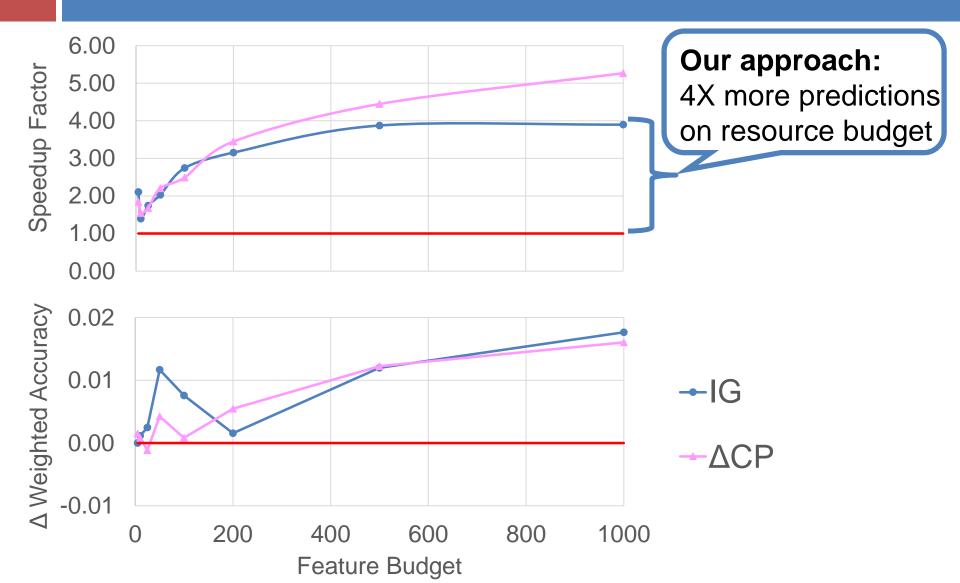
Data and Methodology

- Evaluation on seven data sets
 Attributes: 1,000 to 139,000
 Examples: 2,500 to 800,000
- □ 10 random splits: 40% train, 20% tune, 40% test
- Energy measurements: Raspberry Pi
 - Gives a controlled environment
 - Use multimeter to measure energy consumption for prediction

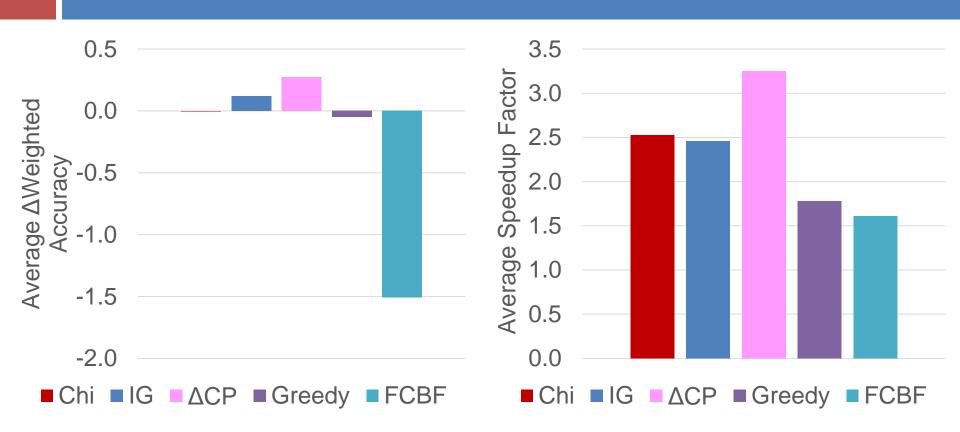
IMDB.drama: Energy Measurements

CPU time is a good proxy for energy usage

RCV: Speedup and Weighted Accuracy VS. Feature Budget



Summary of Results



Performance of best static model vs. dynamic model with the same feature budget

Learning while accounting for model use

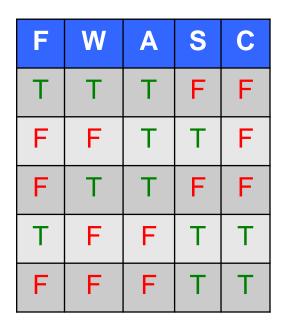
 Learning the structure of propositional probabilistic graphical models

Learning the structure of probabilistic relational models

Deep transfer: Transferring across entirely different domains

Problem Definition

Training Data

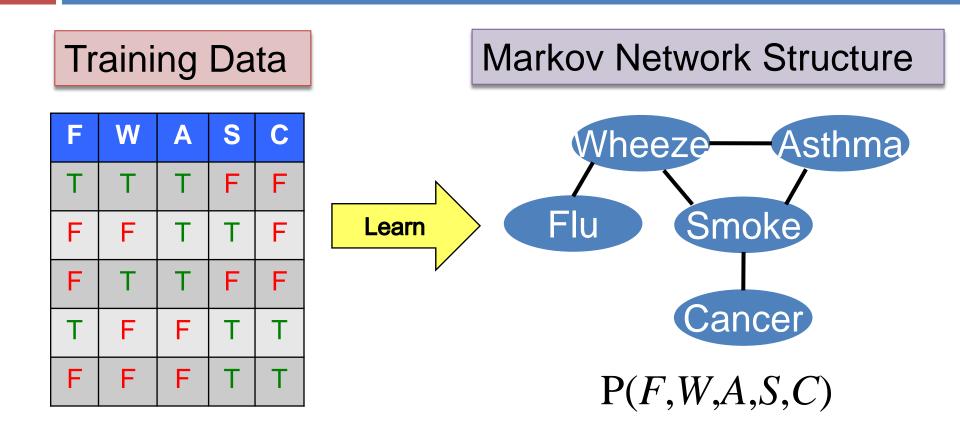


Goal:

Represent probability distribution over different configurations the variables can take on

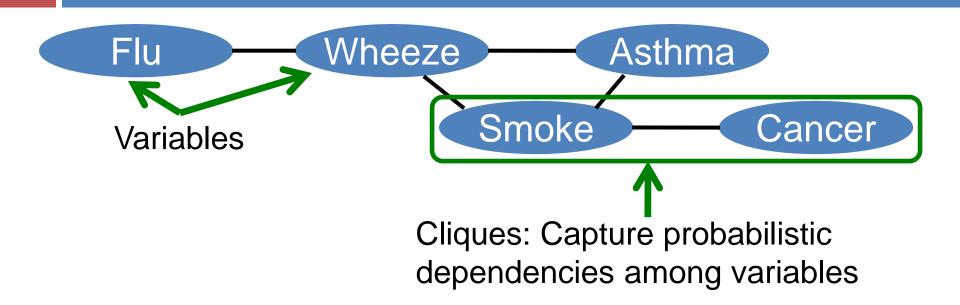
Applications: Diagnosis, prediction, recommendations, and much more!

Problem Definition



Applications: Diagnosis, prediction, recommendations, and much more!

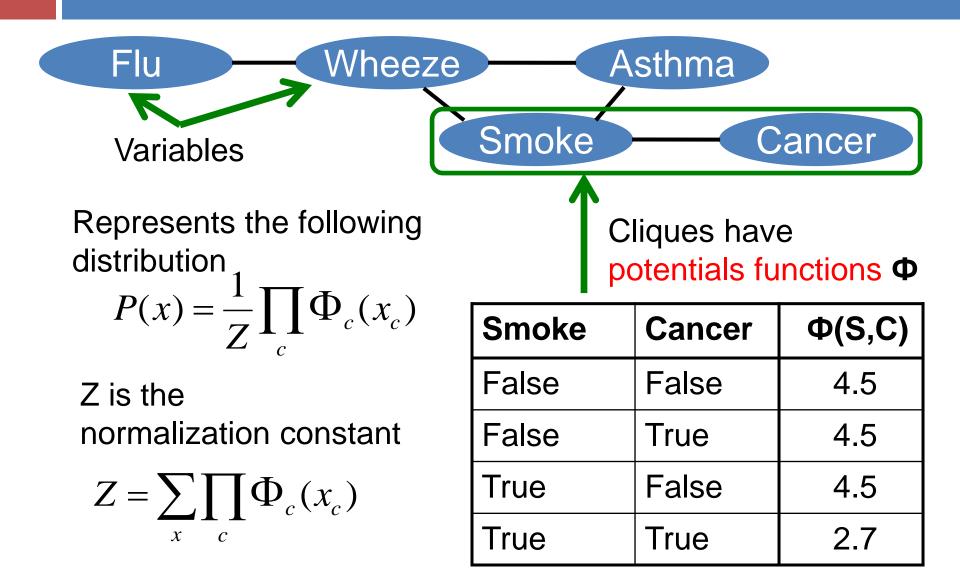
Markov Networks: Representation



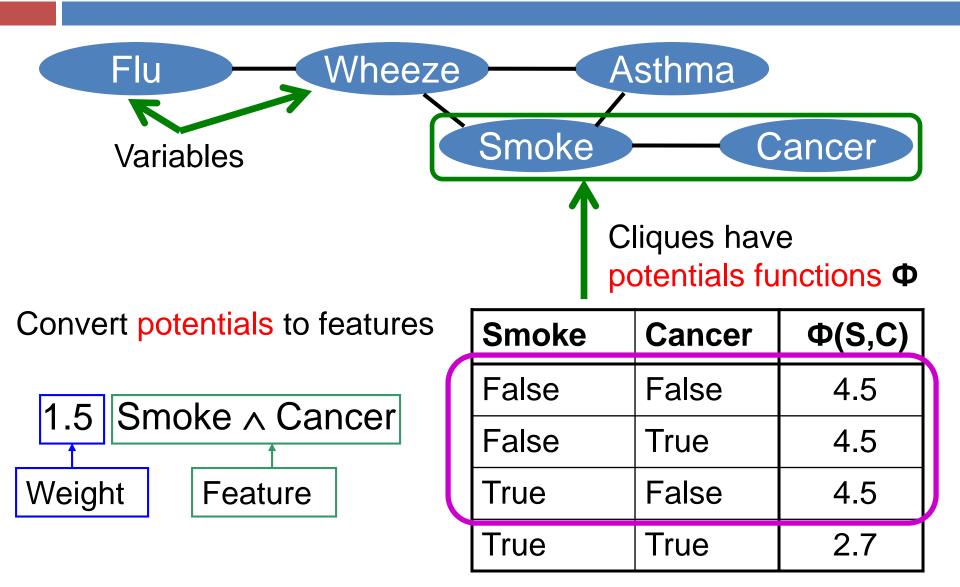
Undirected, graphical model that represents a joint distribution over a set of variables

(aka Markov random fields, Gibbs distributions, log-linear models, exponential models, maximum entropy models)

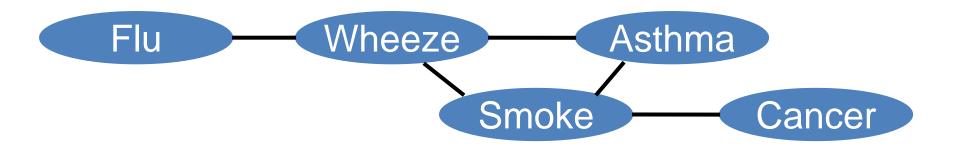
Markov Networks: Representation



Markov Networks: Representation



Markov Networks: Log-Linear Representation



Weight of Feature *i* Feature *i*

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$

Markov Networks: Learning

1.5 Smoke
$$\wedge$$
 Cancer
Weight of Feature *i* Feature *i*
$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$

Two Learning Tasks

Weight Learning

Given: Features, Data

Learn: Weights

Structure Learning

Given: Data

Learn: Features, Weights

Markov Networks: Weight Learning

Maximum likelihood weights

 \square

$$\frac{\partial}{\partial w_i} \log P_w(x) = \underbrace{n_i(x)}_{k} - \underbrace{E_w[n_i(x)]}_{k}$$
No. of times feature *i* is true in data
Expected no. times feature *i* is true according to model
Slow: Requires inference at each step
Pseudo-likelihood
$$PL(x) \equiv \prod_i P(x_i \mid neighbors(x_i))$$
No inference: More tractable to compute

Why Is Inference Hard?

Exponentially Many States

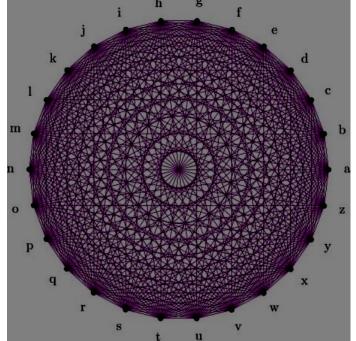
F	W	Α	S	С	Weight
F	F	F	F	F	
F	F	F	F	Т	
F	F	F	Т	F	
F	F	F	Т	Т	
F	F	Т	F	F	
Т	Т	Т	Т	Т	

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$

Computing Z requires summing over all possible states!

Inference Problem Highlighted

- Example: Smokes(X) ∧ Friends(X,Y) ⇒ Asthma(Y)
 People: 26 (a,...,z)
 Variable: 728
- Real-world data
 People: 1,000
 Variables > 1,000,000



Markov Network Structure Learning

Goal find the features

 Broadly speaking, two standard approaches:
 Search through space of possible models (subproblem, search to generate features

Local models: Use classifiers in a clever way

Search-Based Structure Learning

[Della Pietra et al., 1997]

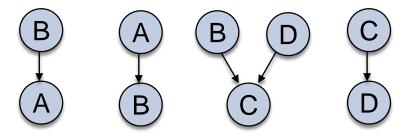
- □ Given: Set of variables = {**F**, **W**, **A**, **S**, **C**}
- At each step

Current model = {F, W, A, S, C, S \land C} Candidate features: Conjoin variables to features in model {F \land W, F \land A, ..., A \land C, F \land S \land C, ..., A \land S \land C} Select best candidate New model = {F, W, A, S, C, S \land C, F \land W}

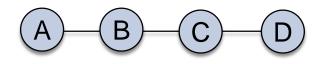
Iterate until no feature improves score

Local Model Approach Overview

Step 1: Learn "local models" to predict each variable given the others



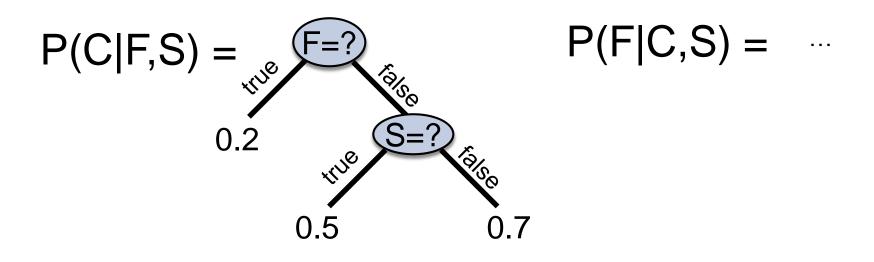
Step 2: Combine local models into global model



Step 3: Learn weights
 +Avoid running weight learning multiple times

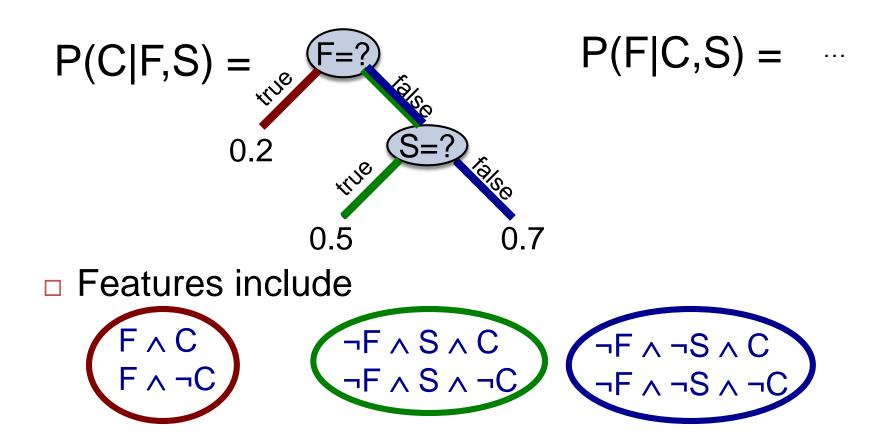
DTSL: Decision Tree Structure Learning [Lowd and Davis, 2014]

- □ Given: Set of variables= {**F**, **W**, **A**, **S**, **C**}
- Do: Learn decision tree to predict each variable



DTSL: Feature Construction

Construct one feature for each root-to-leave path in a tree



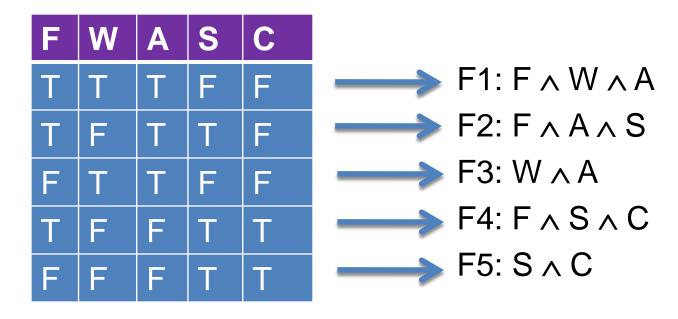
Motivation

- Search-based approaches
 - Slow because due to lots of weight learning
 Generate long features in data-driven way
- Local-modal approaches
 - Fast because weights learned only once
 Slow if many examples or variables
- Goal: Combine benefits of each approach

GSSL: Generate Select Structure Learn [Van Haaren & Davis, tbd]

- Two step process
 Step 1: Generate features
 Step 2: Select features
- Benefits include
 - Fast, directed approach to feature generationOnly run weight learning once

Step 1: Initialize by Converting Examples to Features



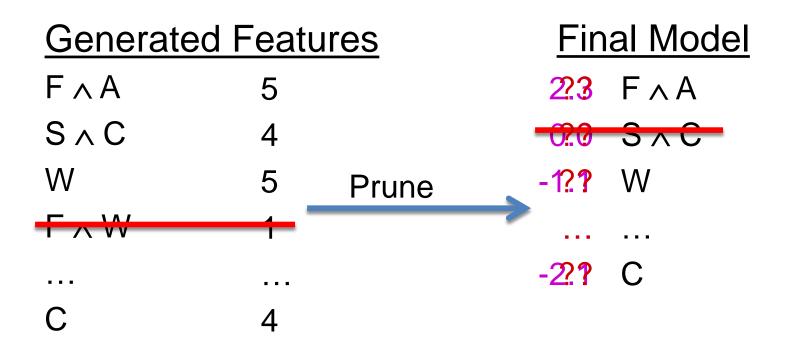
Step 1: Feature Generation

Base Features	<u>Generate</u>	Generated Features	
F1: F ^ W ^ A	F∧A	3	
F2: F A A A S	S∧C	4	
F3: W ∧ A	W	5	
F4: F ∧ S ∧ C	$F \wedge W$	1	
F5: S ∧ C			
	С	4	

Repeat:

- 1) Randomly select feature
- 2) Drop arbitrary number of variables
- 3) Add generalized feature to feature set

Step 2: Feature Selection



- 1) Prune features generated fewer times than a threshold
- 2) Weight learning with L1 prior to enforce sparsity

GSSL Control Structure

Given: Example Set, Integer m, Threshold t

- □ Let BS = Example Set
- For i = 1 to m
 - Randomly pick feature from BS
 - Drop arbitrary number of variables, add new feature to FS
- Prune each feature generated less than t times
- Run L1 weight learning on remaining features

Empirical Evaluation

Compared the following algorithms

- BLM [Davis and Domingos, 2010]
- L1 [Ravikumar et al., 2009]
- DTSL [Lowd and Davis, 2014]
- GSSL [Van Haaren and Davis, 2012]
- Compared on 20 different real-world domains
 - **1**,600 to 290,000 train examples
 - 200 to 38,000 tune examples
 - 300 to 58,000 test examples
 - 16 and 1,500 variables

Note: Implementations and most datasets available: http://alchemy.cs.washington.edu/papers/davis10a

Experimental Details

- Optimize pseudo-log-likelihood (PLL)
- Tried variety of parameters for each algorithm
- Use tune set PLL to pick best model
- Evaluation metrics

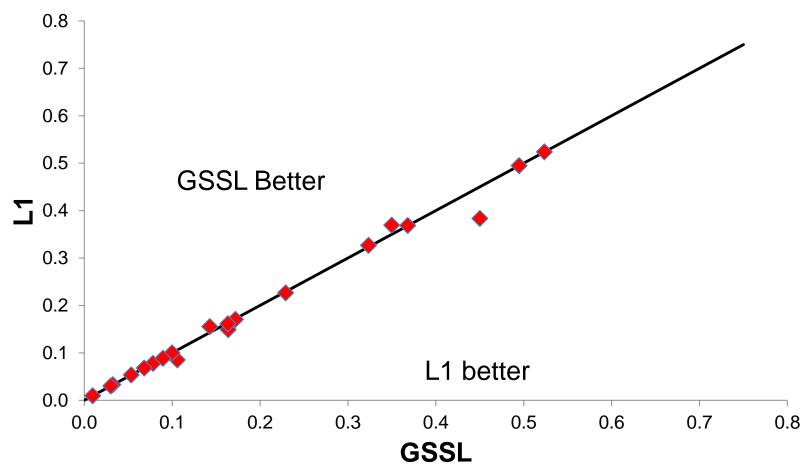
Accuracy: Conditional marginal likelihood

$$CMLL(x,e) = \sum_{i} \log P(X_i = x_i | E = e)$$

Speed: Run time

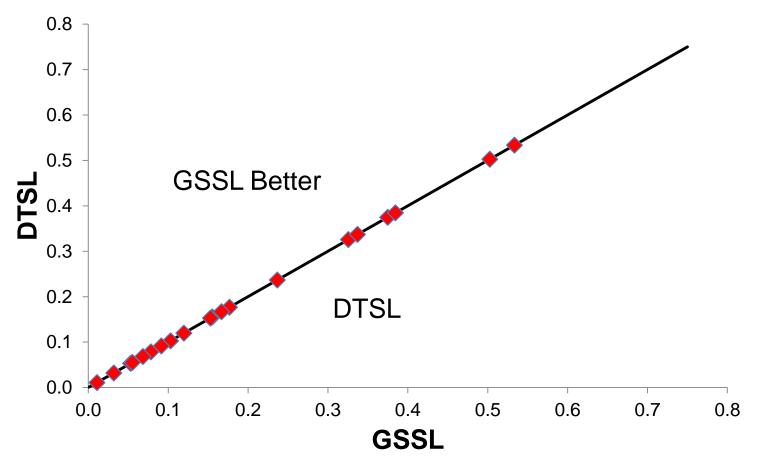
GSSL vs. L1

GSSL wins on 11 out of 20 domains

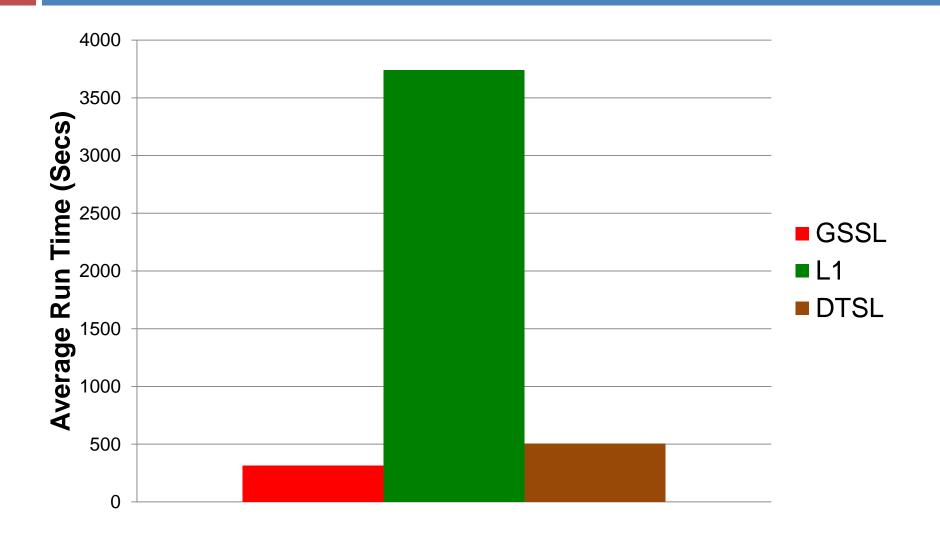


GSSL vs. DTSL

GSSL wins on 15 out of 20 domains



Run Time Comparison



Learning while accounting for model use

Learning the structure of propositional probabilistic graphical models

Learning the structure of probabilistic relational models

Deep transfer: Transferring across entirely different domains

Challenge: Complex Data

PID	Birthday	Gender
P1	2/2/63	М
P2	4/7/55	М

Drug

	<u> </u>		
PID	Date	Medication	Dose
P1	5/1/02	Warfarin	10mg
P1	2/2/03	Terconazole	10mg

Diseases

PID	Date	Diag.
P1	2/1/01	Flu
P1	5/2/03	Bleeding

- Data are complexly structured
- Data are highly uncertain

Etc.

Traditional Solution

Patient

PID	Birthday	Gender
P1	2/2/63	М
P2	4/7/55	Μ

Drug

	0		
PID	Date	Medication	Dose
P1	5/1/02	Warfarin	10mg
P1	2/2/03	Terconazole	10mg

Diseases

PID	Date	Diag.
P1	2/1/01	Flu
P1	5/2/03	Bleeding

Statistical Approach

Logical Approach

- Models uncertainty
- Ignores relations

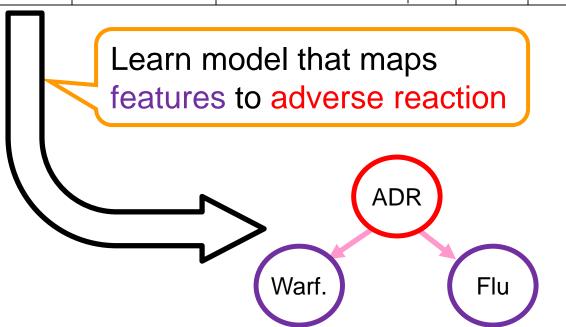
Models relations

Ignores uncertainty

Statistical Approach Overview

Data representation: i.i.d. vectors

Patient	Warfarin	Terconazole	 Flu	ADR
P1	Yes	Yes	No	Yes
P2	No	No	Yes	No



Logical Approach Overview

Data representation: First-order logic

Dr	ug		
PID	Date	Medication	Dose
P1	5/1/02	Warfarin	10mg
P1	2/2/03	Terconazole	10mg

- Constant: Terconazole
 Variable: p
- □ **Literal:** Drug(P1, Terconazole)

Learn: Set of first-order logical rules

Drug(p, Terconazole) \land Wt(p, w) \land w < 120 \Rightarrow ADR(p)

Solution: Statistical Relational Learning

Combine the statistical and logical approaches

Intuition: Attach probabilities to first-order rules to capture uncertainty

Example: Smoking causes cancer

 $Smokes(person) \Rightarrow Cancer(person)$: 0.15

VISTA: A SRL Framework

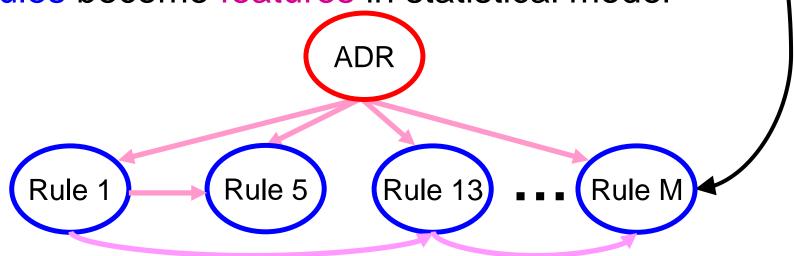
[Davis et al., IJCAI'07]

Integrates feature induction and model construction

If-then rules capture implicit, relational features

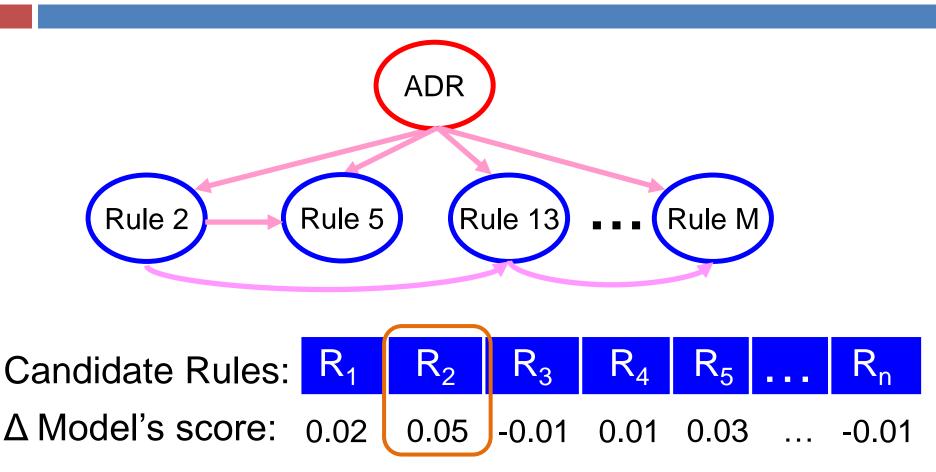
Drug(p,Terconazole) \land Wt(p, w) \land w <120 \Rightarrow ADR(p)

Rules become features in statistical model



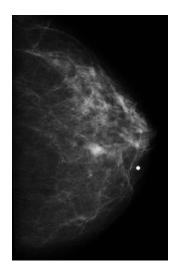
VISTA: A SRL Framework

[Davis et al., IJCAI'07]

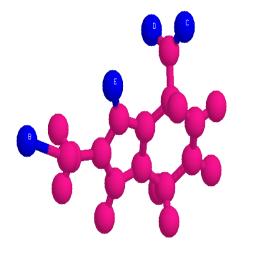


Iteratively add rules until stop criteria is met

Tasks Addressed [Davis et al., IJCAI'07, ICML'07]



Given: A radiologist's structured mammography report Predict: Abnormality is malignant



Given: A set of 3D conformations
 of a small molecule
 Dradict: Malagula's binding officity

Predict: Molecule's binding affinity to a target protein

Challenge: Hidden Structure

Drug

PID	Date	Medication	Dose
P1	5/1/02	Warfarin	10mg
P1	2/2/03	Terconazole	10mg

Diseases		
PID	Date	Diag.
P1	2/1/01	Flu
P1	5/2/03	Bleeding

Observation

PID	Date	Weight
P2	2/2/03	120

Data and hence discovered patterns mention specific drugs or diseases

Drug(p, Terconazole) \land Wt(p, w) \land w < 120 \Rightarrow ADR(p)

Regularities may involve drug or disease classes: Enzyme inducers increase risk of internal bleeding

Solution: Clustering of Objects

Drug(p, Terconazole) \land Wt(p, w) \land w < 120 \Rightarrow ADR(p)

During learning, invent a clustering of objects that can appear in rules

 $Cluster2(x) \land Drug(p, x) \land ... \land ... \Rightarrow ADR(p)$

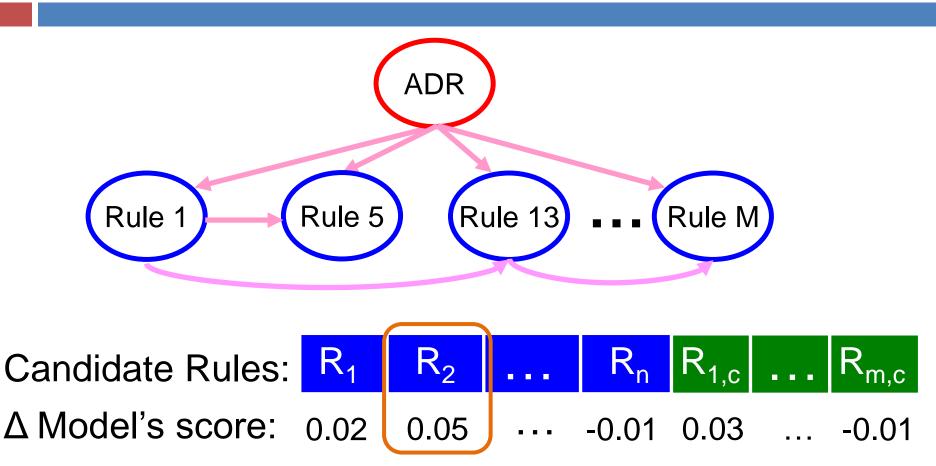
Cluster2(x) = {Terconazole,..., Ketoconazole}

A group of "similar" objects

Motivation for Approach

- Why not use existing hierarchies?
- Why not cluster objects before learning?
- Inventing clusters during learning allows them:
 To be tailored to specific prediction task
 To exploit the context of the rule and the model

LUCID: Algorithmic Overview [Davis et al., ICML'12]



Incorporating a Cluster in a Rule

If a candidate rule improves model's score then

Drug(p, Terconazole) \land Wt(p, w) \land w < 120 \Rightarrow ADR(p)

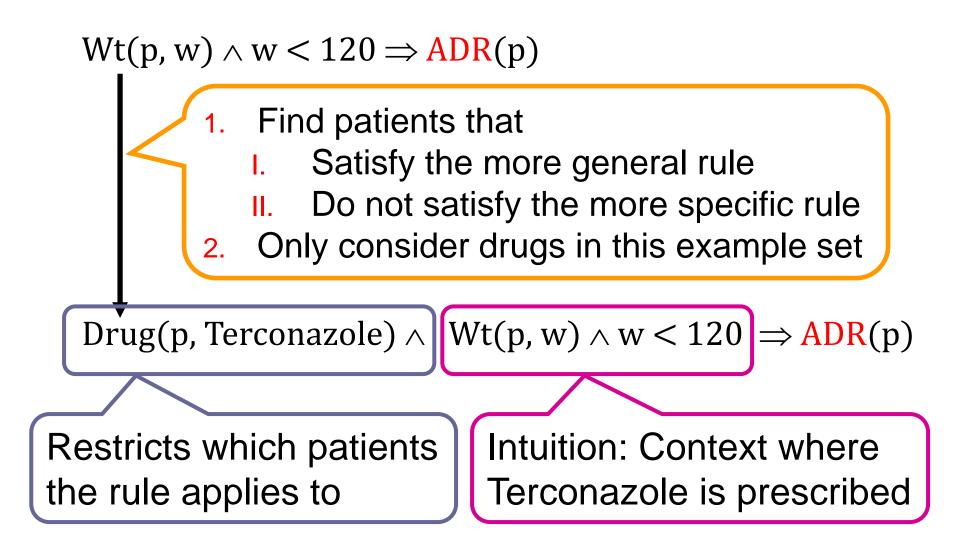
Cluster2(d) \land Drug(p, d) \land Wt(p, w) \land w < 120 \Rightarrow ADR(p)

Conjoin the invented predicate to the rule
 Replace the object with a variable

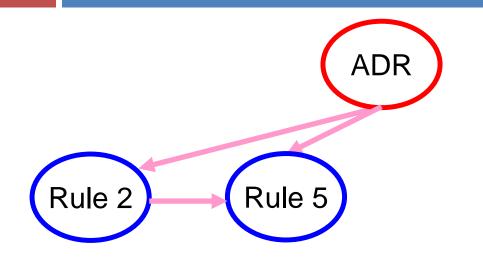
Learning the Cluster Definition

- Which objects should be grouped together?
 - All constant of same type?
 - Slow because thousands of diagnosis and drugs
- Intuitively: Focus on similar constants, e.g., given Terconazole:
 - Which drugs can replace Terconazole?
 - Which drugs complement Terconazole?
- Idea: Use constants in "near miss" examples

Finding Relevant Objects: Near Miss Examples



Evaluating Clusterings



Cluster2(Terconazole) Cluster2(**Ketoconazole**) Cluster2(Ketoconazole)

New Rule 5: Cluster2(d) \land Drug(p, d) \land ... \Rightarrow ADR(p)

Candidates:	Rifampicin	Ketocanazole		Alpranolol
Δ score:	0.04	0.02	• • •	-0.01

Add objects until none improves the score

Tasks and Data

- Tasks considered:
 - Myocardial infarction on selective Cox-2 inhibitors
 - Internal bleeding with Warfarin
 - Angioedema with ACE inhibitors
- Data from Marshfield Clinics
 - Diagnoses
 - Medications
 - Lab tests
 - Observations

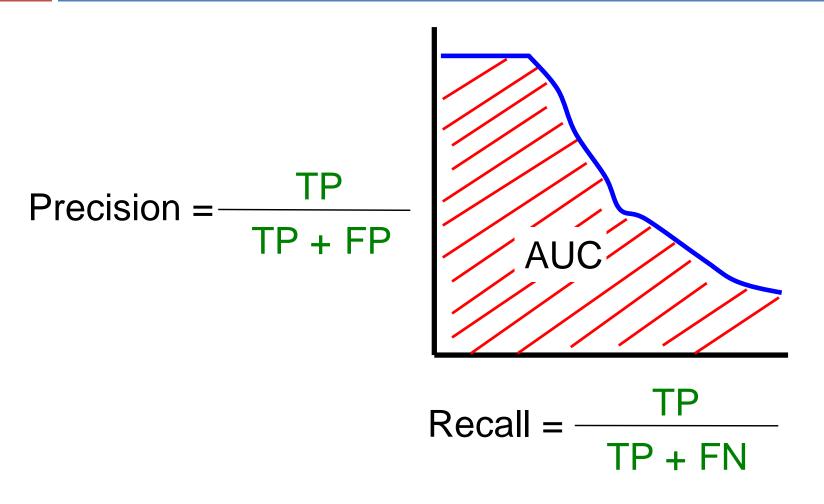
Data Preparation



Positives: Adverse event after prescription

Negatives: Took medicine and no adverse event, matched on age and gender to positives

Evaluation Metric

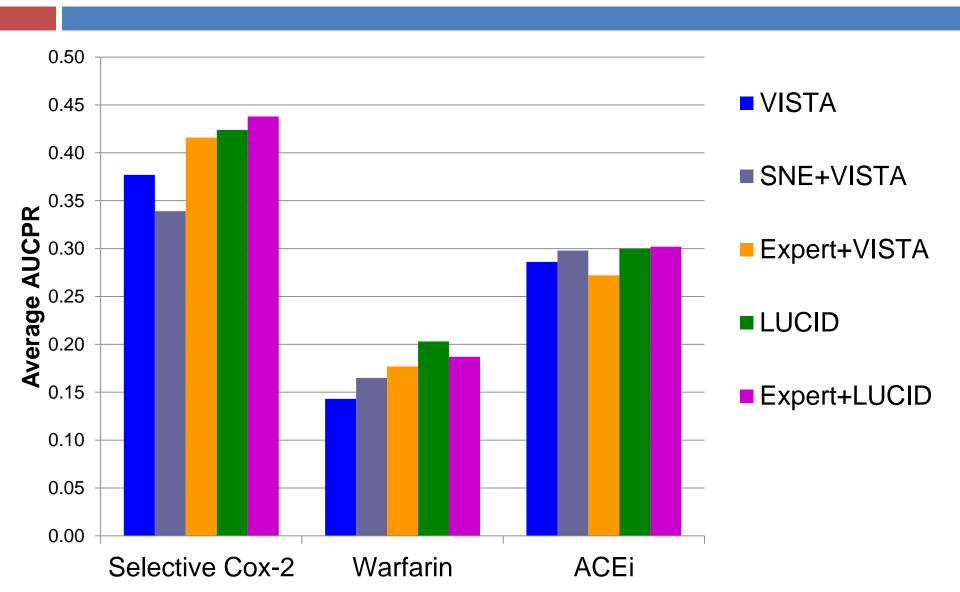


10 fold cross validated area under precision-recall curve

Systems Compared

Learned rules can contain

	Hand-Crafted Expert Hierarchy	Precluster	Dynamically Invented Clusters
VISTA			
SNE+VISTA			
Expert+VISTA			
LUCID			
Expert+Lucid			



Learning while accounting for model use

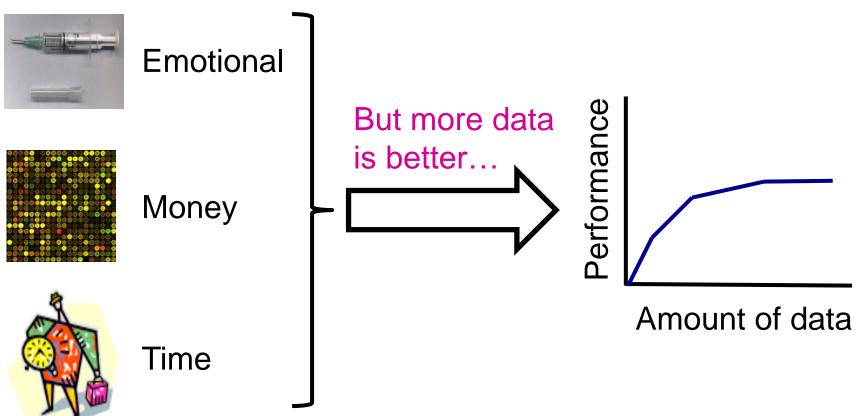
Learning the structure of propositional probabilistic graphical models

Learning the structure of probabilistic relational models

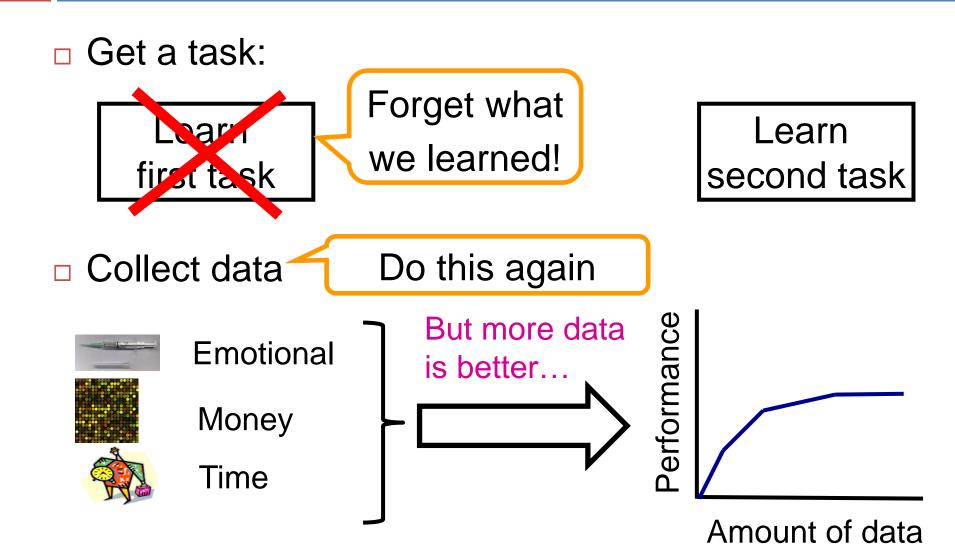
Deep transfer: Transferring across entirely different domains

Challenge: Acquiring Data Can Be Expensive

Costs include:

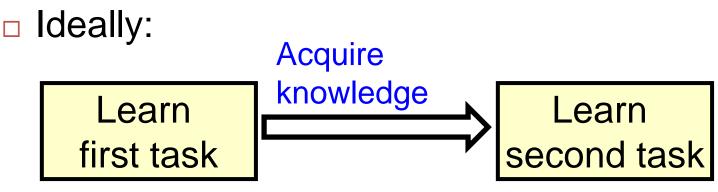


Inductive Learning Cycle



Problem: One Off Solutions

Interested in modeling many different domains



Problem: New domain looks "different"

Transfer Learning

Inductive Learning

Given: Target Data

Learn: Model

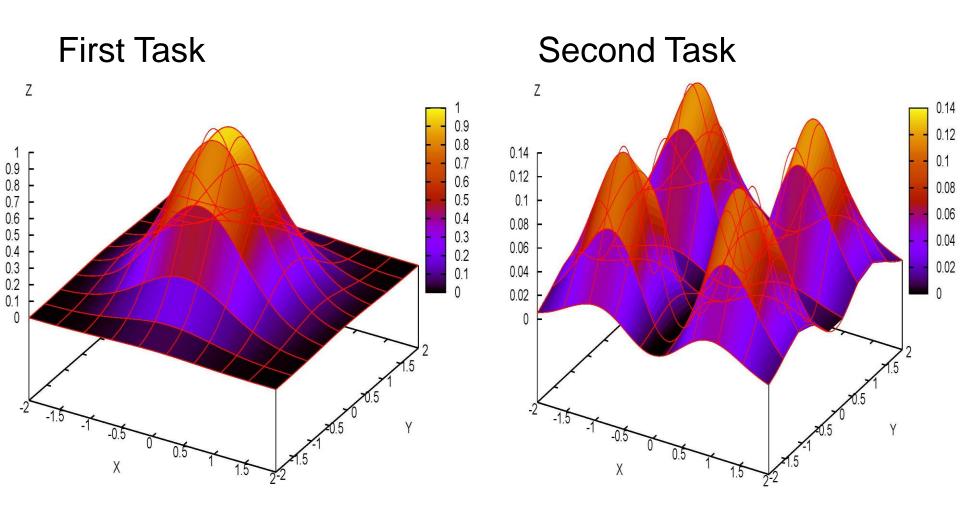
Transfer Learning

Given: Target Data,
Source Data

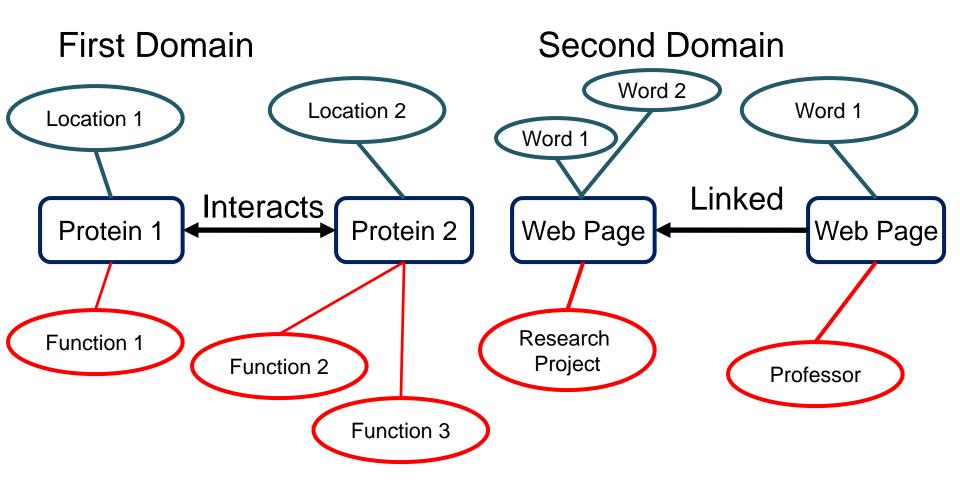
Learn: Model

- Transfer: Makes use of data (or model or knowledge or ...) from auxiliary domain
- Broadly speaking two types of transfer
 Shallow: Same variables, different distributions
 Deep: Different predicates, entities, properties

Same Variables, Different Distribution



Entirely Different Domains



Terminology

- Constants, variables, predicates, functions E.g.: Anna, x, Friends(x,y), MotherOf(x)
- Grounding: Replace all variables by constants
 E.g.: Friends(Anna,Bob)
- Clause:
 - **E.g.:** Friends(*x*,*y*) v Friends(*y*,*z*) v Friends(*x*,*z*)
- Predicate variable: Variable instead of

predicate name

 $r(x,y) \land s(x,z) \Rightarrow r(z,y)$ $\downarrow r \rightarrow \text{Location}, s \rightarrow \text{Interacts}$ $\text{Location}(x,y) \land \text{Interacts}(x,z) \Rightarrow \text{Location}(z,y)$

Markov Logic Networks (MLNs)

[Richardson & Domingos, MLJ'06]

A logical knowledge base is a set of hard constraints on the set of possible worlds

Let us make them soft constraints

- Give each formula a weight
- Worlds that violate a formula become less probable

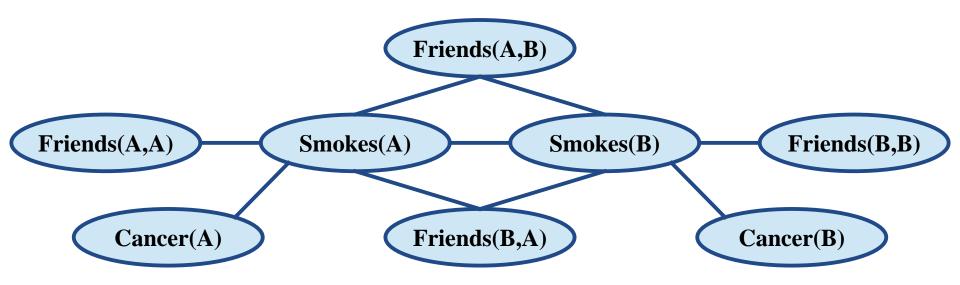
1.5 Location(*x*,*y*) \land Interacts(*x*,*z*) \Rightarrow Location(*z*,*y*)

 $P(world) \propto exp(\sum weights of formulas it satisfies)$

MLN to Markov Network

$$\forall X \text{ Smokes}(X) \Rightarrow \text{Cancer}(X) \\ \forall X, Y \text{ Friends}(X, Y) \Rightarrow [\text{Smokes}(X) \Leftrightarrow \text{Smokes}(Y)]$$

Constants: Anna (A), Bob (B)



Markov Logic Networks: Learning

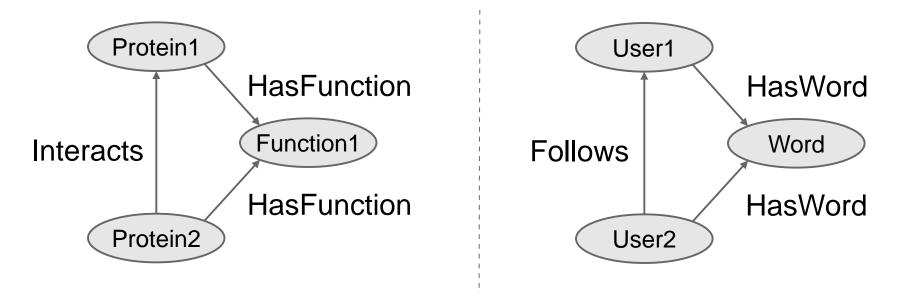
0.15 Smoke(x)
$$\Rightarrow$$
 Cancer(x)
Weight of Feature *i* Formula *i*
P(x) = $\frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$

Structure Learning
Given: Target Data
Learn: Formulas, Weights

Search through spaces of clauses

Convex optimization of pseudolikelihood

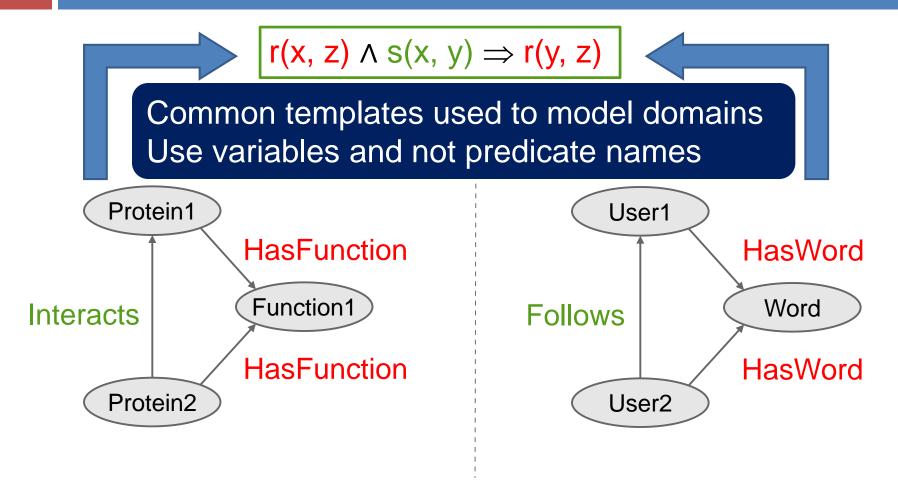
Challenge: Domains Described by Different Predicates, Objects, Etc.



Protein-Protein Interaction

Twitter

Challenge: Domains Described by Different Predicates, Objects, Etc.

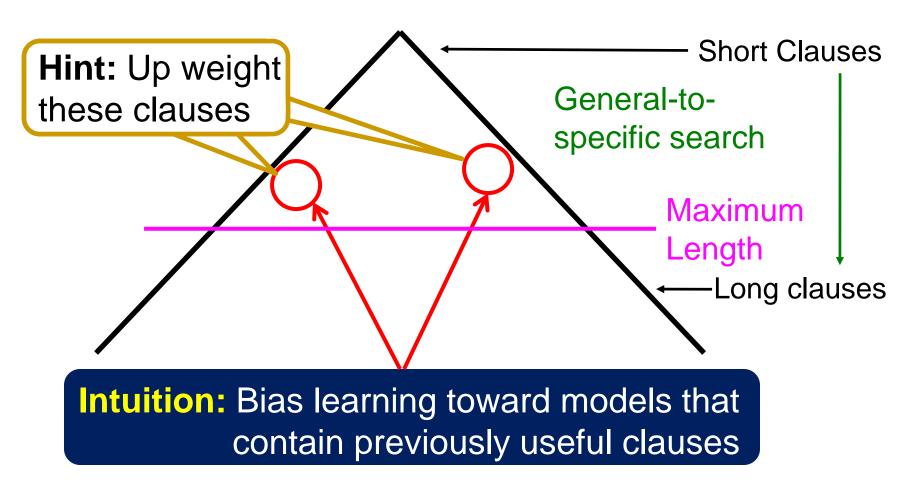


Protein-Protein Interaction

Twitter

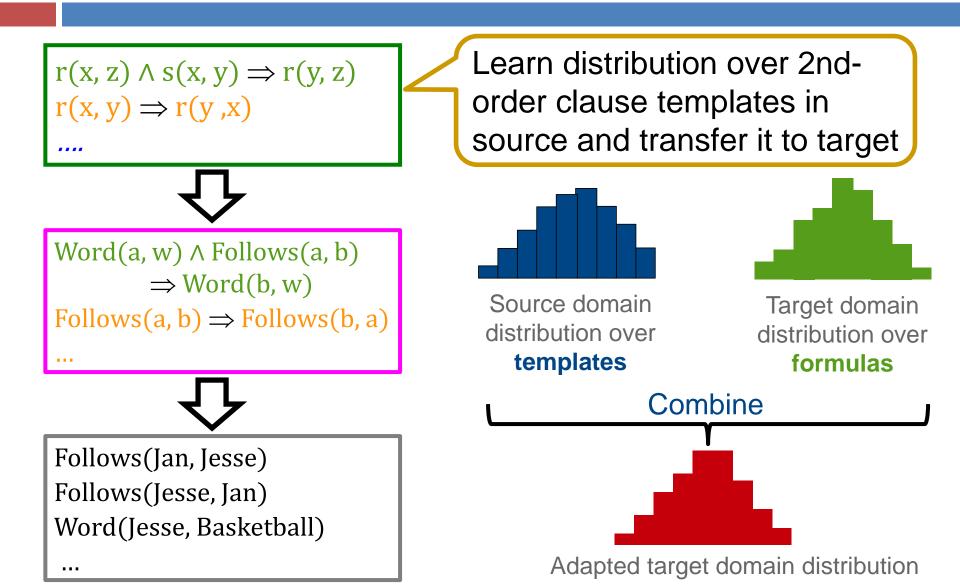
Transfer as Declarative Bias

Search through (Large) Space of Possible Clauses



Overview of TODTLER

[Van Haaren, Kolobov, & Davis, AAAI'15]



Learning the Posterior

Probabilistic inference for a posterior over 2nd-order clauses is hopelessly intractable

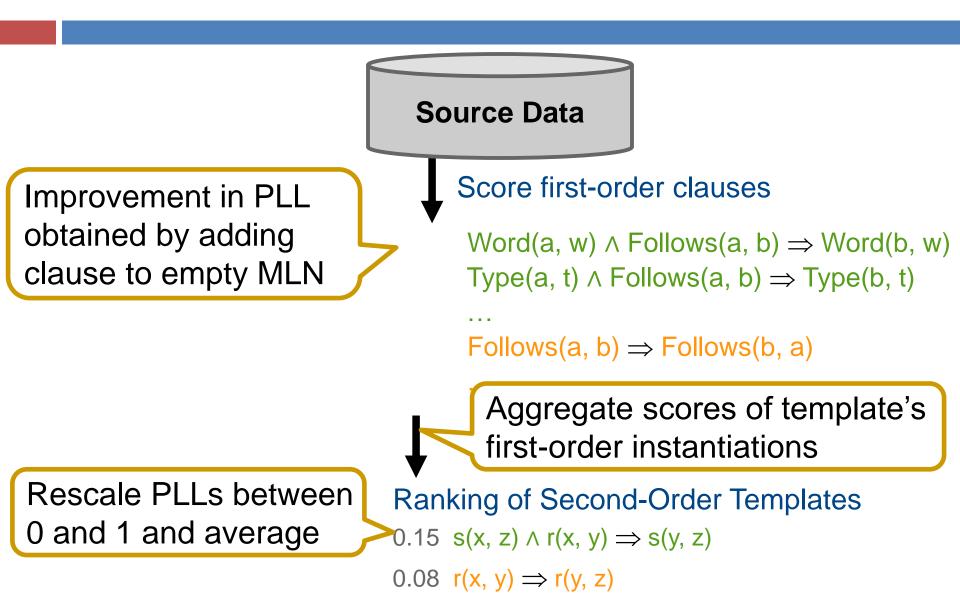
- Hence will use a heuristic approach
 - Generate second-order templates
 - For each template create all its first-order groundings
 - Treat each first-order clause independently and score its "usefulness" based on pseudolikelihood
 - Template score: Aggregation over its first-order groundings

Constructing Second-Order Clause Templates

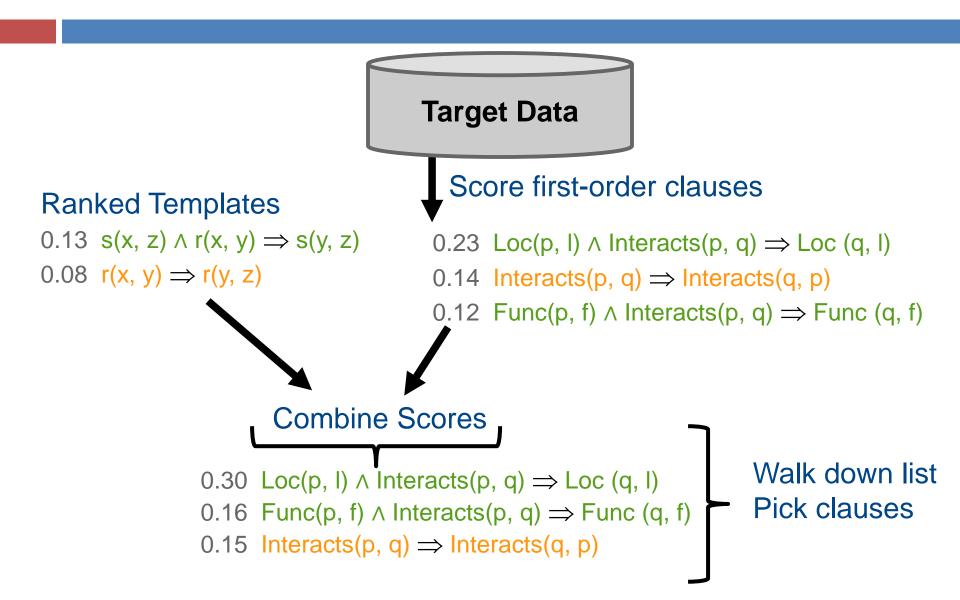
- Generate all second-order clause templates
 - Maximum number of predicate variables
 - Maximum number of object variables
 - Maximum length
- Generate first-order clauses by grounding out predicate variables with predicate names

Do this in source and target domain

Using the Source Data



Learning in Target Domain



Empirical Evaluation

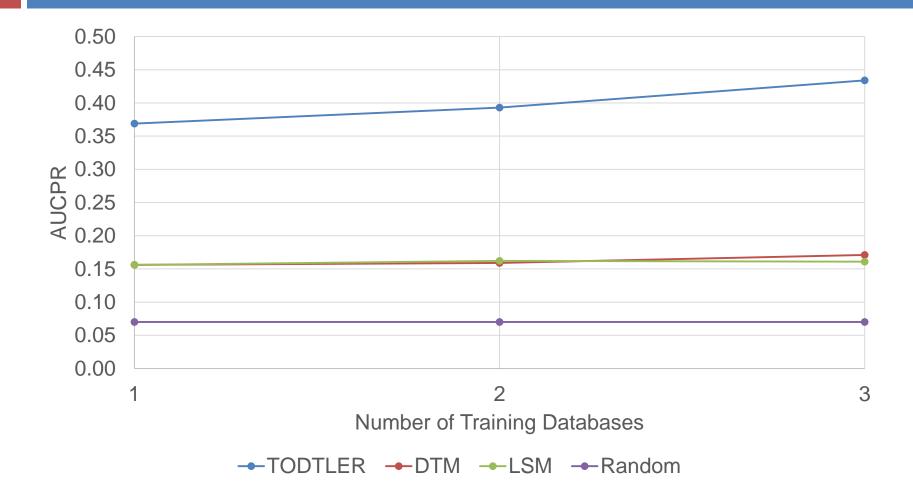
- Can we successully transfer among different domains?
- □ Will transfer outperform learning from scratch?
- Which transfer approach is the best?
- Will we discover and transfer relevant templates?

Data and Methodology

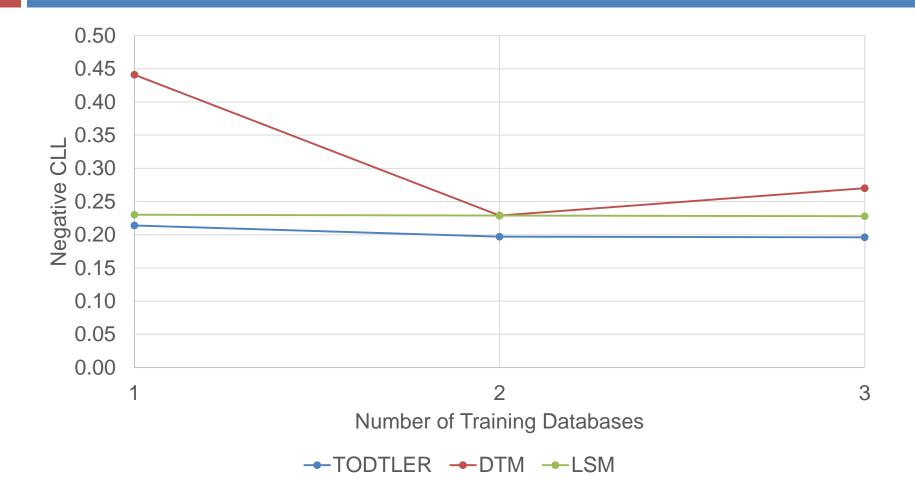
Transfer among three domains:

- Yeast protein: 7 predicates, 1.4M ground atoms [Davis et al., ECML'05]
- WebKB: 3 predicates, 4.4M ground atoms [Craven & Slattery, MLJ'01]
- **Twitter:** 3 predicates, 50K ground atoms
- Evaluation metrics
 - Area under the precision recall curve (AUC PR)
 - Negative conditional log likelihood (CLL)
 - Run time

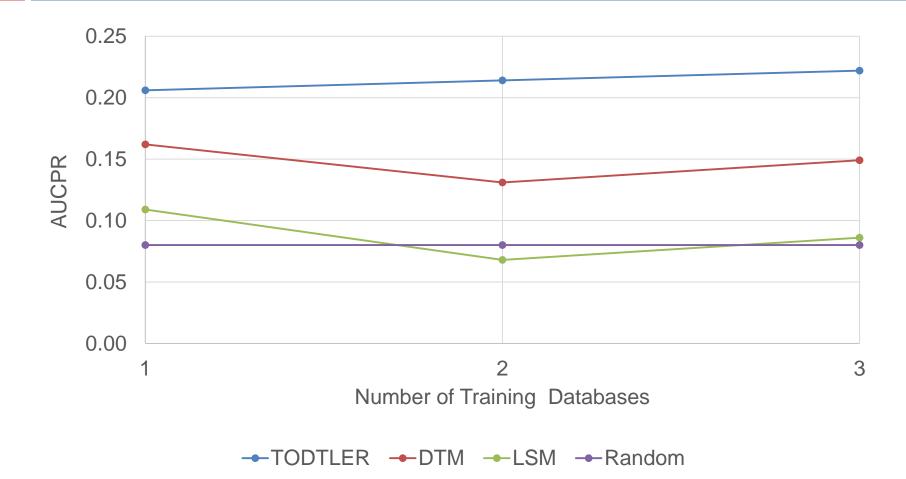
Twitter to WebKB



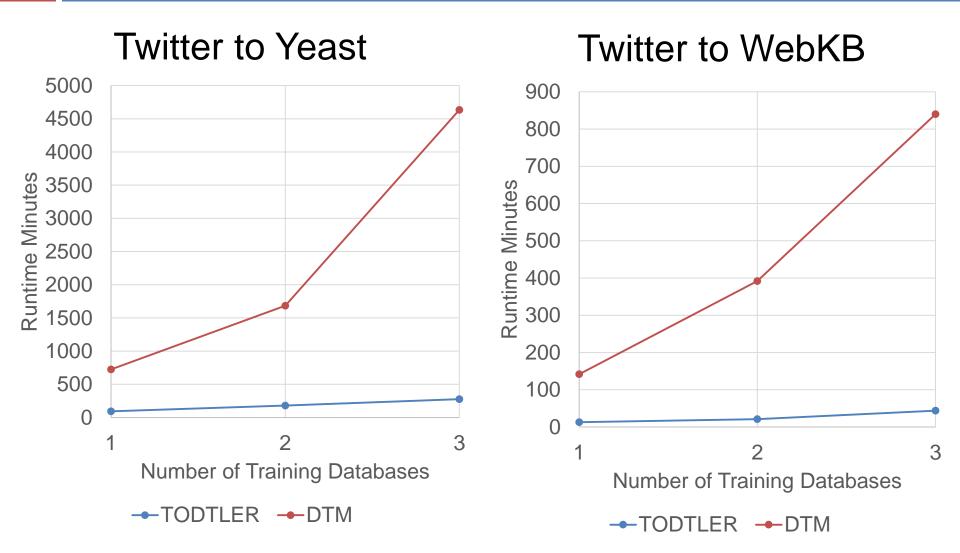
Twitter to WebKB



WebKB to Yeast



Run Time



Templates Ranked in Top 10

	Yeast	WebKB	Twitter
Symmetry:	1 st	1 st	2 nd
$r(x, y) \Rightarrow r(y, x)$			
Homophily	3 rd	8 th	6 th
$s(x, y) \land r(z, y) \Rightarrow s(z, y)$			
Transitivity	6 th	2 nd	-
$r(x, y) \land r(y, z) \Rightarrow r(x, y)$			
Triangle Completion	10 th	-	5 th
$r(x, z) \land r(y, z) \Rightarrow r(x, y)$			
Cycle	-	4 th	-
$r(x, y) \land r(y, z) \Rightarrow r(z, x)$			

Part II: Applications to Sports

Traditional Sports Data: Box Scores

Box Score from 1876

Leonard, 2 b. 6 O'Rourke, 1b 6 Murnan, 1. 1. 6 Schafer, 2d b 6 McGinley, c.f 6 Manning, r.f. 6 Morrill, c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Athletic Runs earned-	Boston, 4; Athletic, 5. Home-run-Hall, 1. 18-Boson, 22; Athletic, 20. First base by Athletic, 5. Umpire, George White of

https://en.wikipedia.org/wiki/Box_score_(baseball)

Box Score from 1962

PHIL	DELPHI	1 (169)	-
Arizin	FG	. FT.	F.	Pts. 16
Meschery Chamberlain	ż	2-2	4	16
Chamberlain	36	28-32	2	100
Rodgers Attles	1	9-12	254	11
Larese	84	1.1	*	17
Conlin	00	0-0	ĩ	9000
Ruklick	00	0-2	2	0
Suckenbilt	-	0-0	2	0
Totals	63	43-52	25	169
New York	26 42	38	41-	147
Phitadelphia Attendance-	42 37	46	44-	169

Box Score from 1908

SCORE FINAL CUI	BS-TIGERS GAME.
CHICAGO. AD R BR TH HR SK SD P A R Basshard, M	DRIROIT. AR R BRITE BRIT
*Overkii hit by batted ball. CHICAGO 1 0 0 DETROIT 0 0 Two base hite-Zvers, Mainty Bireak mas (3), Schaefer (8), Bohmidt (8), Dousven, reidt, Dushla plays-Schmidt Schaefer Behmin Umptres-Eheridan and 0 Der.	O 1 O O O O- O O O O O O O- ent-Ry Overall (18), O'Lasry, Outh, Ras Orswford hy Deservan (8), Rafmas (7), Stat 41) O'Leary-Reseman Comphila, Time-10

https://miscbaseball.wordpress.com/2009/1 0/11/1908-the-cubs-win-the-world-series/

Sports Analytics

"Traditional" approach to evaluating playersScouts evaluate subjectively on gut

NAME	<u>P</u>	HT	WT	SCHOOL CITY STATE	COACH
NAT ARCHIBALD (2/4)	G	5-10	140	DE WITT CLINTONBRONX, N.Y.	RICHARD BUCKNER
Speed		SUMMATION: lightening-quick guard with Globie-dribbling talent lacks strength/size/defensive foundation for top majorsslim southpaw has terrific moves to basket & is blur on break but has limited shooting range & consistency (nice tough 15 feet & in when "on") & must learn moves for outside gameFINE FOR PRESSING/RUNNING LM OUTFITN			

Traditional statistics

PHIL	DELPHI)
Arizin	FG	FT.	F. Pts.
Meschery Chamberlain	÷	2.2	$ \begin{array}{ccc} 0 & 16 \\ 4 & 16 \end{array} $
Chamberlain	36	28-32	2 100
Rodgers Attles	1	9-12	$ \begin{array}{c} 2 & 100 \\ 5 & 11 \\ 4 & 17 \end{array} $
Larese	8 4	11	
Conlin	0	0-0	5 9000 1222
Ruklick Luckenbill	Ö	0-2	2 0
Luckenon	-	0-0	2 0
Totals	63	43-52	25 169
New York Philadelphia	26 42	38	41-147
Attendance-	42 37 - 4124 .	40	44-169

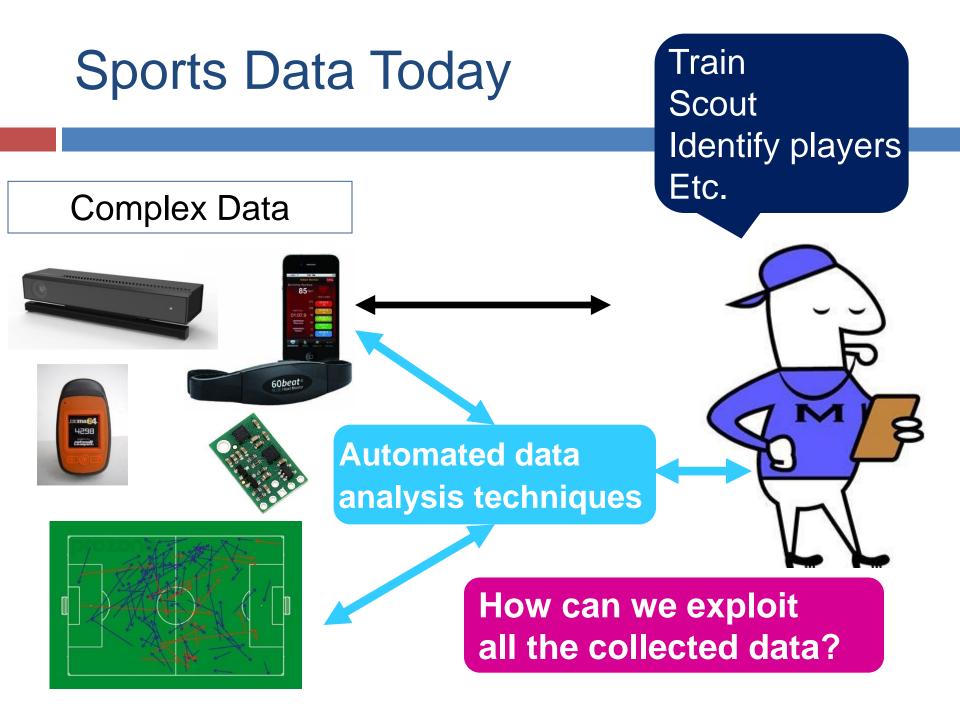
Sabremetrics: A Better Idea

"Bill James...asked the question why" – Paul DePodesta, "Moneyball"

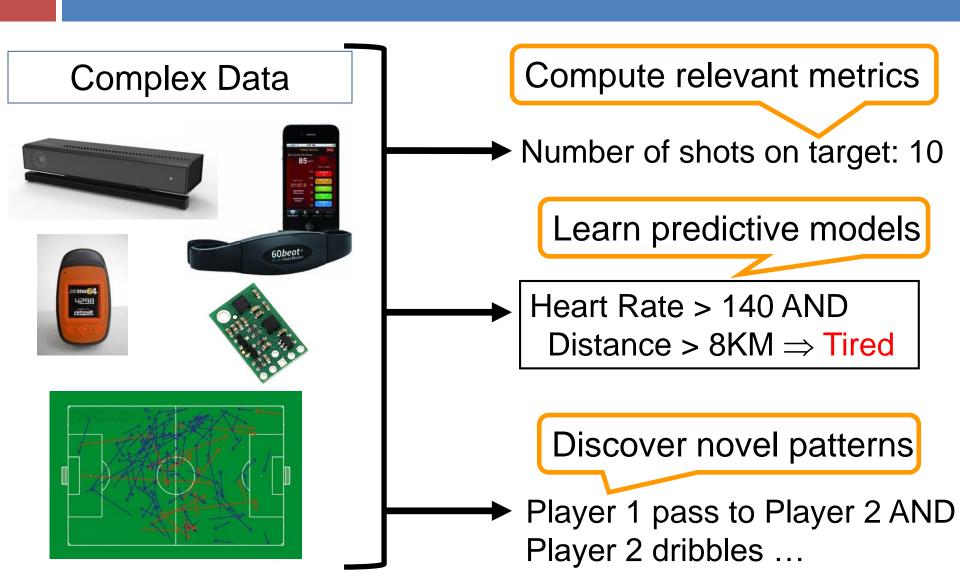
Why are common statistics meaningful?

- Question 1: Which statistics best quantify various aspects of team or player performance?
- Question 2: Can we come up with a single statistic to rank players?
- Question 3: How can we project future team or player performance?

Assumption: Available data is box score like

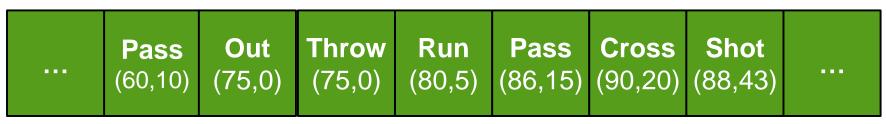


How Can Analytics Help?



Three New Types of Data

Event stream: Events with time and location



 Athlete monitoring: GPS, accelerometer, etc.

Optical tracking:
 X, Y locations of players



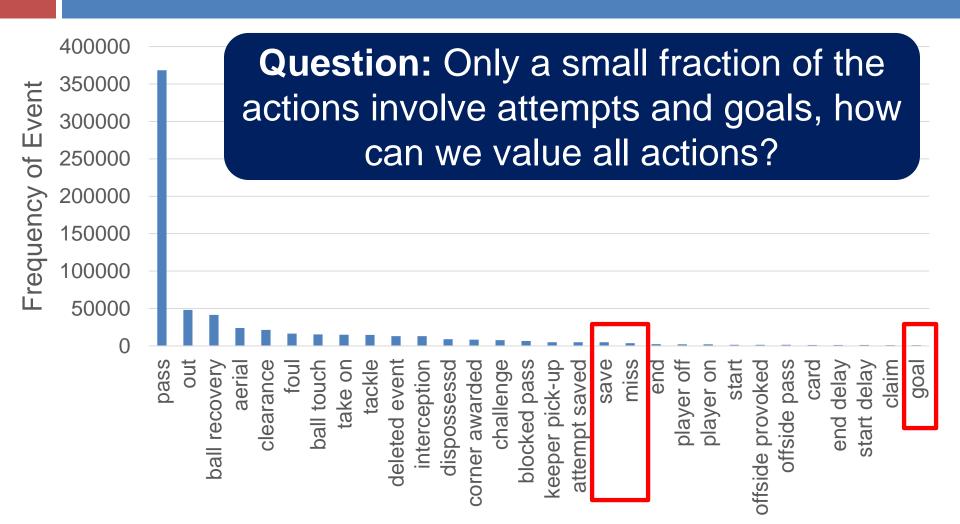
Rating players: Assign a rating to each action a player performs in a match

Understand strategy: Discover patterns from player tracking data

Rating players: Assign a rating to each action a player performs in a match

Understand strategy: Discover patterns from player tracking data

Distribution of Some Events

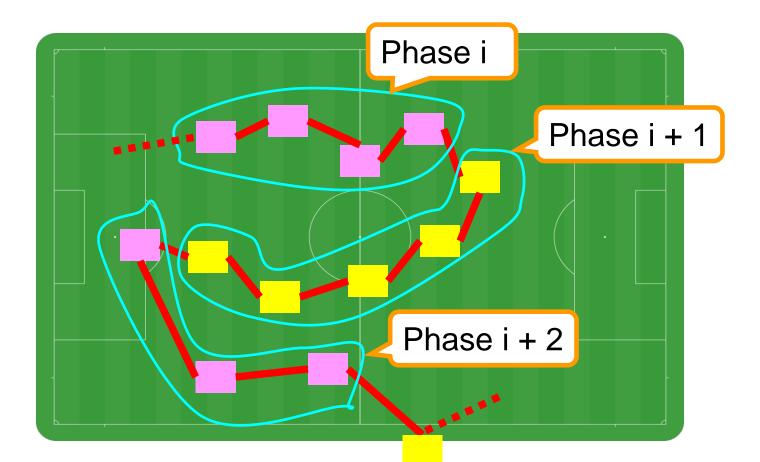


Our Approach: STARSS

Given: Event stream with type and location of all events (e.g., passes and shots)

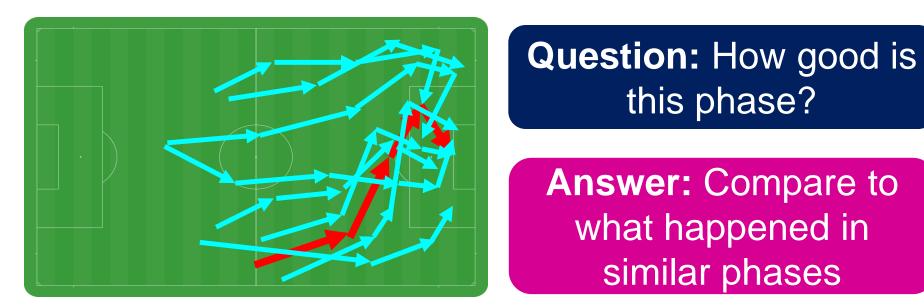
- Do: Assign rating to each action
- Approach
 - 1. Split matches in phases
 - 2. Rate phases
 - 3. Distribute phase rating over individual actions
 - 4. Aggregate players ratings over season

Divide Match into Phases

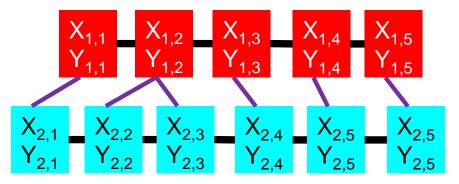


Split event stream based on change of possession

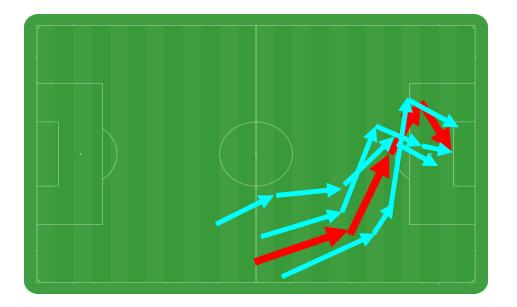
Rating Phases



Similarity metric: Dynamic Time Warping on event positions



Rating Phases

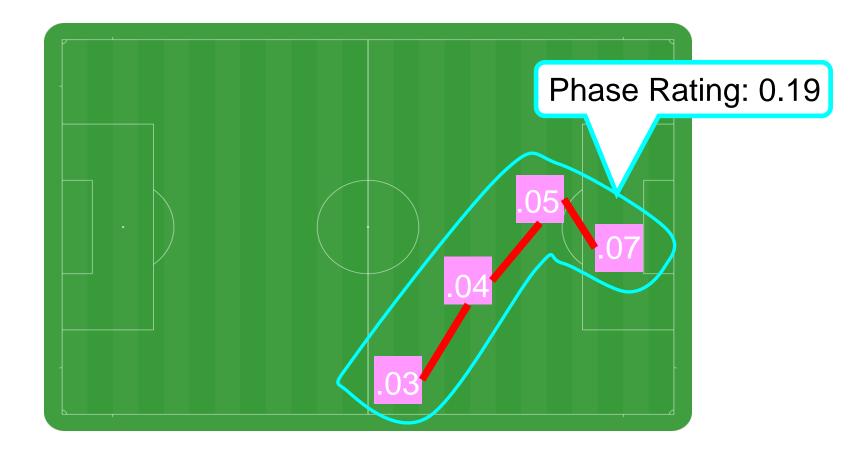


Rating phases:

- 1. Find *k* most similar phases (e.g., 100)
- 2. Of these, count how many result in a goal (e.g., 6)

$$Rating(phase) = \frac{6 \text{ goals}}{100 \text{ similar phases}} = 0.06$$

Distribute Phase Rating Across Its Constituent Actions



Actions at end are more important: Exponential decay

Top 10 Players: EPL 2016-2017

Rank	Team	Player	Rating Per 90		Assists Per 90
1	Arsenal	Alexis Sanchez	0.289	0.478	0.147
2	West Ham	Dimitri Payet	0.279	0.315	0.420
3	West Ham	Mauro Zarate	0.262	0.342	0.000
4	Chelsea	Willian	0.249	0.164	0.196
5	Liverpool	Philippe Coutinho	0.244	0.359	0.225
6	Arsenal	Santi Cazorla	0.240	0.000	0.209
7	Arsenal	Mesut Ozil	0.240	0.177	0.561
8	Sunderland	Wahbi Khazri	0.240	0.167	0.084
9	Aston Villa	Rudy Gestede	0.237	0.272	0.109
10	Man City	Kevin De Bruyne	0.233	0.315	0.404

Rating players: Assign a rating to each action a player performs in a match

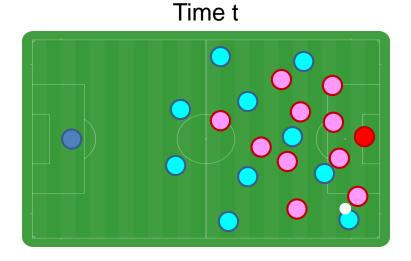
Understand strategy: Discover patterns from player tracking data

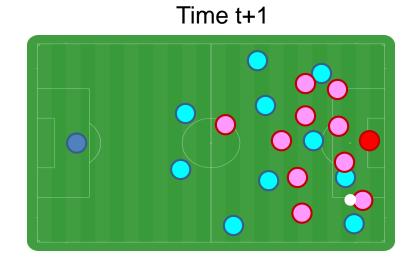
Discover Offensive Strategies in Football Matches

Given:

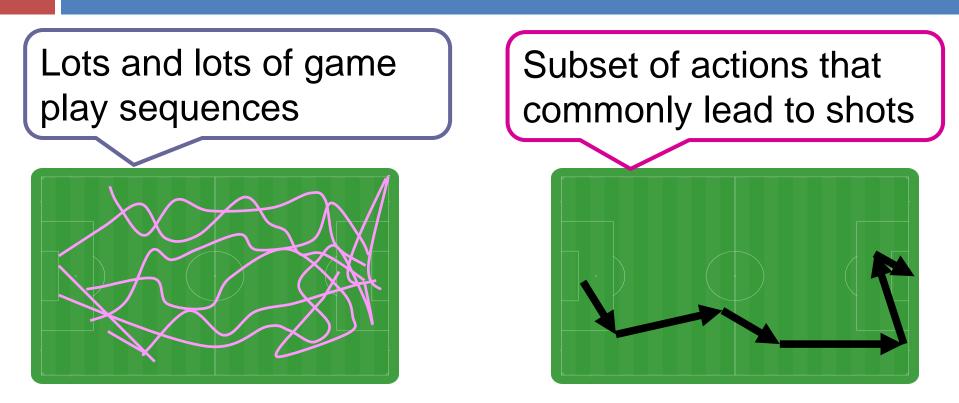
 Event stream with type and location of all events (e.g., passes and shots)

- Locations of all players and the ball (10 hz sample)
- □ **Find:** Typical offensive strategies





Big Picture Problem



- □ Film study is time consuming
- Automation can help speed this up
- Computers good at finding patterns in large data sets

Challenges

- Relationships and how they change over time are important
 - Space
 - Interactions between players
- Order of events is important
- May want to generalize over players involved
- Exact same sequence of events unlikely to occur multiple times

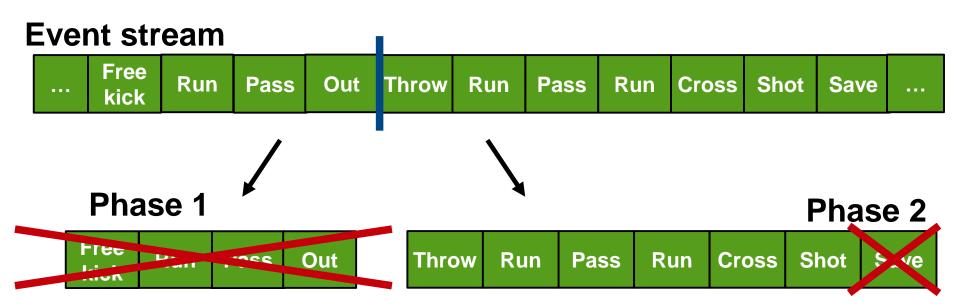
Important Steps

- 1. Data cleaning
- 2. Event stream preprocessing
- 3. Clustering data
- 4. Identifying important strategies

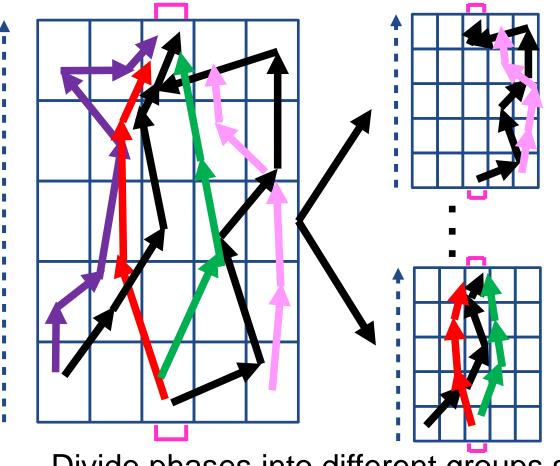
Step 1: Cleaning Data

- Outliers and incorrect values
 - Valid field coordinates
 - Player and ball movements seem "possible"
- Teams switch direction at half time: Normalize data such that team always attacks same goal
- Account for changes in data (e.g., position switches, new players, etc.)

Step 2: Event Stream Preprocessing



Step 3: Clustering



Three Benefits

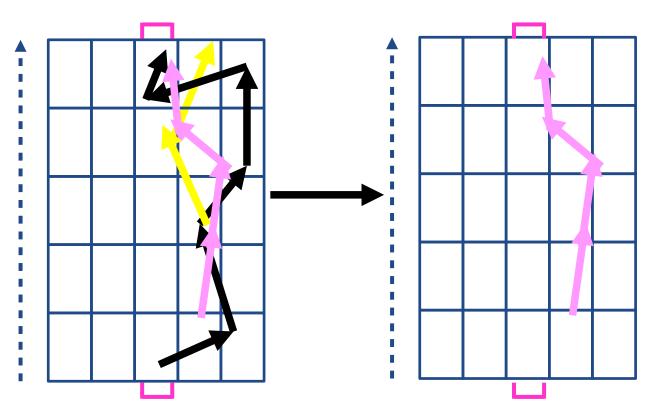
- 1. Teams employ multiple strategies
- 2. Generalize from a specific location
- 3. Subsequent step more computationally efficient

Divide phases into different groups such that the phases in a group are "similar"

Step 4: Finding Interesting Sequences

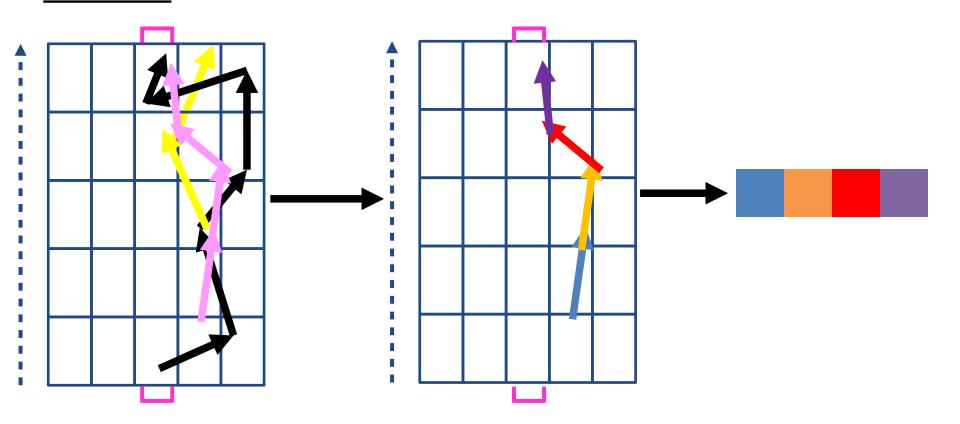
Within each cluster, find frequently occurring subsequences

Cluster 1



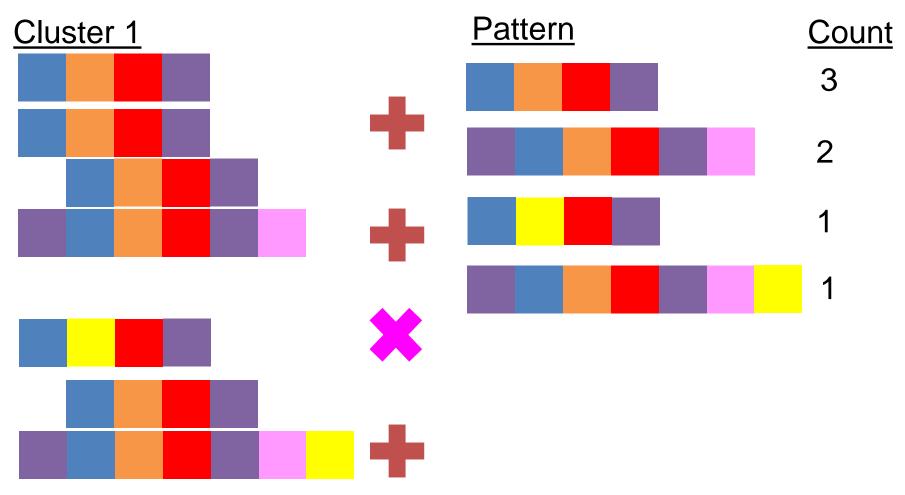
Step 4: Finding Interesting Sequences

Within each cluster, find frequently occurring subsequences <u>Cluster 1</u>

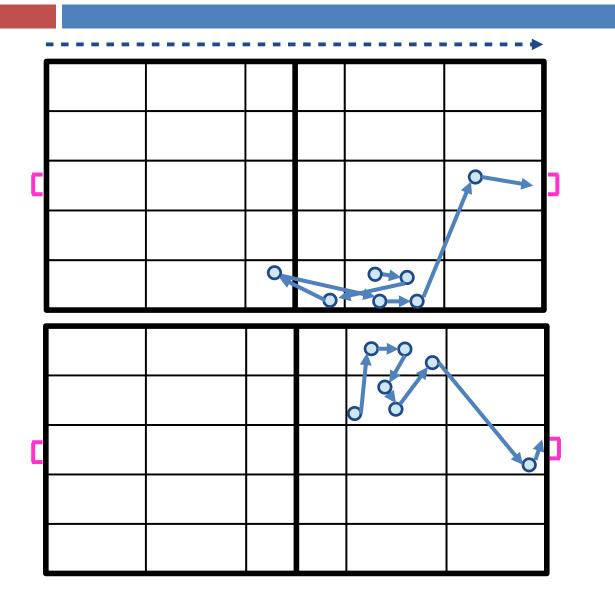


Step 4: Finding Interesting Sequences

Within each cluster, find frequently occurring subsequences



Two Representative Patterns



An attack down the right flank

An attack down the left flank

Summary

- Focus on learning models from data
 - Expand frontiers of what is possible
 - Account for real world problems
 - Modeling structured data
- Applications drive research agenda
 Health: ADRs
 Sports
 - ...

Questions?