
JESSE’S RESEARCH

Jesse Davis

jesse.davis@cs.kuleuven.be

https://dtai.cs.kuleuven.be/sports/

Research Program: Jesse Davis

Application Pull: Use machine learning

to address significant problems in

health, sports, and their intersection

Technology Push: Significantly advance

the state of the art in machine learning

Anticipate scientific advances

needed to address applications

Applications drive innovation

in machine learning

ML Group Research Goals:

Desired Solution Characteristics
Is distance between players important?

Tired?

1. Represent discrete and continuous attributes

2. Model uncertainty

3. Capture important relationships

4. Incorporate domain knowledge

5. Produce interpretable output

dist(p1,p2) < 2m ˄ pr(p1=tried) > 0.8
˄ prefRt(p1)  dribbleRt(p1)

Attacker

Location:

(30,100)

Prefers right foot

Part I: Learning Probabilistic

(Relational) Models

Outline

 Learning while accounting for model use

 Learning the structure of propositional

probabilistic graphical models

 Learning the structure of probabilistic relational

models

 Deep transfer: Transferring across entirely

different domains

Outline

 Learning while accounting for model use

 Learning the structure of propositional

probabilistic graphical models

 Learning the structure of probabilistic relational

models

 Deep transfer: Transferring across entirely

different domains

Motivation

DATA

F

W

A
S

CM
P(C | F, M)

P(M | C, W)

…

Learning is hard and requires lots of approximations

Inference is hard and model has big effect on inference

Problem: Learning and inference treated separately, but

really should consider model use at learning stage

Three Directions

 Prediction with learned models that considers

energy constraints [Verachtert et al. IJCAI’16]

 Learning tractable for Markov logic networks

[Van Haaren et al. MLJ’16]

 Expanding the set of queries that can be

answered efficiently [Bekker et al. NIPS’15]

Motivation

 Learned models are increasingly deployed on

portable devices with resource constraints

 Battery

 Memory

 Etc.

 Goal: Prediction with learned models must

account for these constraints

 Focus NOT on training efficiency: Done off line

Prediction with Naïve Bayes

Test

Example

Prediction based

on all attributes

A1 A2 AnA3 …A4 A5 A6 A7 C

Argmaxc log(C=c) + ∑i log P(Ai = ai,j | C=c)

Question: Can we improve prediction efficiency?

Idea 1: Feature Selection

A1 A2 AnA3 …A4 A5 A6 A7 C

Test

Example

A1 A2 AmA3 … C

Question: Can we do better?

Select subset of attributes

Considers fewer attributes,

but prediction involves

all selected attributes

Argmaxc log(C=c) + ∑i log P(Ai = ai,j | C=c)

Our Idea:

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Ai) > 0.85 THEN predict C=1

ELSE IF P(C=1 | A1,…, Ai) < 0.12 THEN predict C=0

ELSE continue observing features until next stop point

Test

Example 1

Stop Point:

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ai) = 0.88 Stop

inference

Stop Point:

0.88, 0.10

Stop Point:

0.91, 0.11

Our Idea:

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Ai) > 0.85 THEN predict C=1

ELSE IF P(C=1 | A1,…, Ai) < 0.12 THEN predict C=0

ELSE continue observing features until next stop point

Test

Example 2

Stop Point:

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ai) = 0.17

Continue

inference

Stop Point:

0.88, 0.10

Stop Point:

0.91, 0.11

Our Idea:

Naïve Bayes with Stop Points

A1 An…Ai Aj C… … …Ak

IF P(C=1 | A1,…, Aj) > 0.88 THEN predict C=1

ELSE IF P(C=1 | A1,…, Aj) < 0.10 THEN predict C=0

ELSE continue observing features until next stop point

Stop Point:

0.85, 0.12

Check prediction

P(C=1 | A1 ,…, Ak) = 0.08

Stop

inference

Stop Point:

0.88, 0.10

Stop Point:

0.91, 0.11

Test

Example 2

Number of observed attributes selected per example

Intuition: Stop if prediction “confident enough”

Adding Stop Points

 Stop point (k, u, l) checks at attribute k if

 P(C=1 | A1 ,…, Ak) > u: stop and predict C=1

 P(C=1 | A1 ,…, Ak) < l: stop and predict C=0

 Order features from most to least informative

 Add a stop point at attribute k if u and l exist:

 S% of examples are stopped

 Accuracy on stopped examples higher than

accuracy on

 Stopped examples if all attributes observed

 All examples if all attributes observed

Empirical Evaluation

 Question: How does our approach compare to

static orderings from standard feature selection?

 IG: Information gain

 ΔCP: Difference in conditional probabilities

 Three others (omitted from graphs for readability)

 Give each approach the same feature budget

 Energy improvement factor

 Speed up as proxy for energy usage

 Weighted accuracy

Data and Methodology

 Evaluation on seven data sets

 Attributes: 1,000 to 139,000

 Examples: 2,500 to 800,000

 10 random splits: 40% train, 20% tune, 40% test

 Energy measurements: Raspberry Pi

 Gives a controlled environment

 Use multimeter to measure energy consumption

for prediction

IMDB.drama: Energy Measurements

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 500 1000

E
n
e
rg

y
 S

a
v
in

g
s
 F

a
c
to

r

Feature Budget

IG ΔCP

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 500 1000
S

p
e
e
d
u
p
 F

a
c
to

r

Feature Budget

IG ΔCP

CPU time is a good proxy for energy usage

RCV: Speedup and Weighted Accuracy

VS. Feature Budget

0.00

1.00

2.00

3.00

4.00

5.00

6.00

S
p
e
e
d
u
p
 F

a
c
to

r

-0.01

0.00

0.01

0.02

0 200 400 600 800 1000

Δ
 W

e
ig

h
te

d
 A

c
c
u
ra

c
y

Feature Budget

IG

ΔCP

Our approach:

4X more predictions

on resource budget

Summary of Results

Performance of best static model vs.

dynamic model with the same feature budget

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 S

p
e
e
d
u
p
 F

a
c
to

r
Chi IG ΔCP Greedy FCBF

-2.0

-1.5

-1.0

-0.5

0.0

0.5

A
v
e
ra

g
e
 Δ

W
e
ig

h
te

d

A
c
c
u
ra

c
y

Chi IG ΔCP Greedy FCBF

Outline

 Learning while accounting for model use

 Learning the structure of propositional

probabilistic graphical models

 Learning the structure of probabilistic relational

models

 Deep transfer: Transferring across entirely

different domains

Problem Definition

Applications: Diagnosis, prediction, recommendations,

and much more!

F W A S C

T T T F F

F F T T F

F T T F F

T F F T T

F F F T T

Training Data

Goal:

Represent probability

distribution over different

configurations the variables

can take on

Problem Definition

Applications: Diagnosis, prediction, recommendations,

and much more!

Smoke

Wheeze Asthma

Cancer

Flu

F W A S C

T T T F F

F F T T F

F T T F F

T F F T T

F F F T T

Training Data Markov Network Structure

P(F,W,A,S,C)

Markov Networks: Representation

(aka Markov random fields, Gibbs distributions, log-linear

models, exponential models, maximum entropy models)

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques: Capture probabilistic

dependencies among variables

Undirected, graphical model that represents a joint distribution

over a set of variables

Markov Networks: Representation

Smoke Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 4.5

True True 2.7

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques have

potentials functions Ф


x c

cc xZ)(

Z is the

normalization constant


c

cc x
Z

xP)(
1

)(

Represents the following

distribution

Markov Networks: Representation

Smoke Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 4.5

True True 2.7

Smoke

Wheeze Asthma

Cancer

Flu

Variables

Cliques have

potentials functions Ф

Convert potentials to features

Smoke  Cancer

FeatureWeight

1.5

Markov Networks:

Log-Linear Representation

Smoke

Wheeze Asthma

Cancer

Flu

Feature iWeight of Feature i

P(x) = exp wi fi(x)
i
(1

Z)

Markov Networks: Learning

Smoke  Cancer

Weight Learning

 Given: Features, Data

 Learn: Weights

Structure Learning

 Given: Data

 Learn: Features, Weights

Two Learning Tasks

Feature iWeight of Feature i

1.5

P(x) = exp wi fi(x)
i
(1

Z)

 )()()(log xnExnxP
w

iwiw

i






Markov Networks: Weight Learning

 Maximum likelihood weights

 Pseudo-likelihood

No. of times feature i is true in data

Expected no. times feature i is true according to model


i

ii xneighborsxPxPL))(|()(

Slow: Requires inference at each step

No inference: More tractable to compute

Why Is Inference Hard?

F W A S C Weight

F F F F F

F F F F T

F F F T F

F F F T T

F F T F F

… … … … … …

T T T T T

P(x) = exp wi fi(x)
i
(1

Z)

Exponentially Many States

Computing Z requires summing

over all possible states!

Inference Problem Highlighted

 Example: Smokes(X) ∧ Friends(X,Y) ⇒ Asthma(Y)

 People: 26 (a,…,z)

 Variable: 728

 Real-world data

 People: 1,000

 Variables > 1,000,000

Markov Network Structure Learning

 Goal find the features

 Broadly speaking, two standard approaches:

 Search through space of possible models

(subproblem, search to generate features

 Local models: Use classifiers in a clever way

Search-Based Structure Learning
[Della Pietra et al., 1997]

 Given: Set of variables = {F, W, A, S, C}

 At each step

{F  W, F  A, …, A  C, F  S  C, …, A  S  C}

Current model = {F, W, A, S, C, S  C}

New model = {F, W, A, S, C, S  C, F  W}

Candidate features:

Conjoin variables to features in model

Select best candidate

Iterate until no feature improves score

Local Model Approach Overview

 Step 1: Learn “local models” to predict each

variable given the others

 Step 2: Combine local models into global model

 Step 3: Learn weights

A

B

CB

A B D

D

C

CA B D

+Avoid running weight learning multiple times

DTSL: Decision Tree Structure

Learning [Lowd and Davis, 2014]

 Given: Set of variables= {F, W, A, S, C}

 Do: Learn decision tree to predict each variable

F=?

0.2

0.5 0.7

S=?

P(C|F,S) = P(F|C,S) = …

DTSL: Feature Construction

 Construct one feature for each root-to-leave

path in a tree

 Features include

F=?

0.2

0.5 0.7

S=?

P(C|F,S) = P(F|C,S) = …

F  C

F  ¬C
¬F  S  C

¬F  S  ¬C
¬F  ¬S  C

¬F  ¬S  ¬C

Motivation

 Search-based approaches

 Slow because due to lots of weight learning

 Generate long features in data-driven way

 Local-modal approaches

 Fast because weights learned only once

 Slow if many examples or variables

 Goal: Combine benefits of each approach

GSSL: Generate Select Structure

Learn [Van Haaren & Davis, tbd]

 Two step process

 Step 1: Generate features

 Step 2: Select features

 Benefits include

 Fast, directed approach to feature generation

 Only run weight learning once

Step 1: Initialize by Converting

Examples to Features

F1: F  W  A

F2: F  A  S

F3: W  A

F4: F  S  C

F5: S  C

F W A S C

T T T F F

T F T T F

F T T F F

T F F T T

F F F T T

Step 1: Feature Generation

F1: F  W  A

F2: F  A  S

F3: W  A

F4: F  S  C

F5: S  C

Base Features Generated Features

Repeat:

1) Randomly select feature

2) Drop arbitrary number of variables

3) Add generalized feature to feature set

F  A

S  C

W

F  W

…

C

1

1

2

1

5

4

5

1

…

4

Step 2: Feature Selection

Generated Features

1) Prune features generated fewer times

than a threshold

2) Weight learning with L1 prior to enforce sparsity

F  A

S  C

W

F  W

…

C

5

4

5

1

…

4

Final Model

F  A

S  C

W

…

C

2.3

0.0

-1.1

…

-2.1

Prune

??

??

??

…

??

GSSL Control Structure

Given: Example Set, Integer m, Threshold t

 Let BS = Example Set

 For i = 1 to m

 Randomly pick feature from BS

 Drop arbitrary number of variables, add new

feature to FS

 Prune each feature generated less than t times

 Run L1 weight learning on remaining features

Empirical Evaluation

 Compared the following algorithms

 BLM [Davis and Domingos, 2010]

 L1 [Ravikumar et al., 2009]

 DTSL [Lowd and Davis, 2014]

 GSSL [Van Haaren and Davis, 2012]

 Compared on 20 different real-world domains

 1,600 to 290,000 train examples

 200 to 38,000 tune examples

 300 to 58,000 test examples

 16 and 1,500 variables

Note: Implementations and most datasets available:

http://alchemy.cs.washington.edu/papers/davis10a

http://alchemy.cs.washington.edu/papers/davis10a

Experimental Details

 Optimize pseudo-log-likelihood (PLL)

 Tried variety of parameters for each algorithm

 Use tune set PLL to pick best model

 Evaluation metrics

 Accuracy: Conditional marginal likelihood

 Speed: Run time



CMLL(x,e)  logP(X i  xi | E  e)
i



GSSL vs. L1

L1 better

GSSL wins on 11 out of 20 domains

GSSL Better

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L
1

GSSL

GSSL vs. DTSL

GSSL Better

DTSL

GSSL wins on 15 out of 20 domains

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
T

S
L

GSSL

Run Time Comparison

0

500

1000

1500

2000

2500

3000

3500

4000

A
v
e

ra
g

e
 R

u
n

 T
im

e
 (

S
e

c
s

)

GSSL

L1

DTSL

Outline

 Learning while accounting for model use

 Learning the structure of propositional

probabilistic graphical models

 Learning the structure of probabilistic relational

models

 Deep transfer: Transferring across entirely

different domains

Challenge: Complex Data

Drug
PID Date Medication Dose

P1 5/1/02 Warfarin 10mg

P1 2/2/03 Terconazole 10mg

Diseases

P1 2/1/01 Flu

P1 5/2/03 Bleeding

PID Date Diag.

Patient
PID Birthday Gender

P1 2/2/63 M

P2 4/7/55 M

 Data are complexly structured

 Data are highly uncertain

 Etc.

Traditional Solution

Drug
PID Date Medication Dose

P1 5/1/02 Warfarin 10mg

P1 2/2/03 Terconazole 10mg

Diseases

P1 2/1/01 Flu

P1 5/2/03 Bleeding

PID Date Diag.

Patient
PID Birthday Gender

P1 2/2/63 M

P2 4/7/55 M

Statistical Approach

Models uncertainty

Ignores relations

Logical Approach

Models relations

Ignores uncertainty

Statistical Approach Overview

Data representation: i.i.d. vectors

Patient Warfarin Terconazole … Flu ADR

P1 Yes Yes No Yes

P2 No No Yes No

Learn model that maps

features to adverse reaction

FluWarf.

ADR

Logical Approach Overview

Data representation: First-order logic

Learn: Set of first-order logical rules

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

PID Date Medication Dose

P1 5/1/02 Warfarin 10mg

P1 2/2/03 Terconazole 10mg

 Constant: Terconazole

 Variable: p

 Literal: Drug(P1, Terconazole)

Drug

Solution: Statistical Relational Learning

 Combine the statistical and logical approaches

 Intuition: Attach probabilities to first-order rules to

capture uncertainty

 Example: Smoking causes cancer

Smokes(person)  Cancer(person) : 0.15

VISTA: A SRL Framework
[Davis et al., IJCAI’07]

Integrates feature induction and model construction

 If-then rules capture implicit, relational features

 Rules become features in statistical model

Drug(p,Terconazole) ˄ Wt(p, w) ˄ w <120  ADR(p)

Rule MRule 13Rule 1 …

ADR

Rule 5

VISTA: A SRL Framework
[Davis et al., IJCAI’07]

R1 R2 RnR3 …R4 R5Candidate Rules:

Δ Model’s score:

Rule 2

ADR

Rule 5 Rule MRule 13 …

0.02 0.05 -0.01 0.01 0.03 -0.01…

Iteratively add rules until stop criteria is met

Tasks Addressed
[Davis et al., IJCAI’07, ICML’07]

 Given: A set of 3D conformations

of a small molecule

 Predict: Molecule’s binding affinity

to a target protein

 Given: A radiologist’s structured

mammography report

 Predict: Abnormality is malignant

Challenge: Hidden Structure

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Drug Observation
PID Date Medication Dose

P1 5/1/02 Warfarin 10mg

P1 2/2/03 Terconazole 10mg

Diseases

P1 2/1/01 Flu

P1 5/2/03 Bleeding

PID Date Diag. PID Date Weight

P2 2/2/03 120

Data and hence discovered patterns

mention specific drugs or diseases

Regularities may involve drug or disease classes:

Enzyme inducers increase risk of internal bleeding

Solution: Clustering of Objects

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Cluster2(x)  Drug(p, x)  …  …  ADR(p)

Cluster2(x) = {Terconazole,… , Ketoconazole}

During learning, invent a clustering of objects

that can appear in rules

A group of “similar” objects

Motivation for Approach

 Why not use existing hierarchies?

 Why not cluster objects before learning?

 Inventing clusters during learning allows them:

 To be tailored to specific prediction task

 To exploit the context of the rule and the model

LUCID: Algorithmic Overview
[Davis et al., ICML’12]

R1 R2 Rm,c… Rn R1,cCandidate Rules:

Δ Model’s score:

Rule 1

ADR

Rule 5 Rule MRule 13 …

0.02 0.05 … -0.01 0.03 -0.01…

…

Incorporating a Cluster in a Rule

If a candidate rule improves model’s score then

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

Cluster2(d)  Drug(p, d)  Wt(p, w)  w < 120  ADR(p)

1) Conjoin the invented predicate to the rule

2) Replace the object with a variable

Learning the Cluster Definition

 Which objects should be grouped together?

 All constant of same type?

 Slow because thousands of diagnosis and drugs

 Intuitively: Focus on similar constants,

e.g., given Terconazole:

 Which drugs can replace Terconazole?

 Which drugs complement Terconazole?

 Idea: Use constants in “near miss” examples

Finding Relevant Objects:

Near Miss Examples

Wt(p, w)  w < 120  ADR(p)

Drug(p, Terconazole)  Wt(p, w)  w < 120  ADR(p)

1. Find patients that

I. Satisfy the more general rule

II. Do not satisfy the more specific rule

2. Only consider drugs in this example set

Restricts which patients

the rule applies to

Intuition: Context where

Terconazole is prescribed

Evaluating Clusterings

New Rule 5:

Δ score:

Rule 2

ADR

Rule 5

Cluster2(d)  Drug(p, d)  …  ADR(p)

Cluster Definition:

Cluster2(Terconazole)

Cluster2(Rifampicin)

Cluster2(Ketoconazole)

Candidates: Rifampicin Ketocanazole … Alpranolol

Cluster2(Ketoconazole)Cluster2(Alpranolol)

Add objects until none improves the score

0.04 0.02 -0.01…

Tasks and Data

 Tasks considered:

 Myocardial infarction on selective Cox-2 inhibitors

 Internal bleeding with Warfarin

 Angioedema with ACE inhibitors

 Data from Marshfield Clinics

 Diagnoses

 Medications

 Lab tests

 Observations

Data Preparation

First

Prescription
Patient’s

history

Adverse

Reaction?

Positives: Adverse event after prescription

Negatives: Took medicine and no adverse event,

matched on age and gender to positives

Training data Censoring window

Evaluation Metric

FPTP

TP

+
Precision =

Recall =
FNTP

TP

+

AUC

10 fold cross validated area under precision-recall curve

Systems Compared

VISTA

SNE+VISTA

Expert+VISTA

LUCID

Expert+Lucid

Dynamically

Invented

Clusters

Hand-Crafted

Expert

Hierarchy

Precluster

Learned rules can contain

P

P

P

P

P

Results

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Selective Cox-2 Warfarin ACEi

A
v
e
ra

g
e
 A

U
C

P
R

VISTA

SNE+VISTA

Expert+VISTA

LUCID

Expert+LUCID

Outline

 Learning while accounting for model use

 Learning the structure of propositional

probabilistic graphical models

 Learning the structure of probabilistic relational

models

 Deep transfer: Transferring across entirely

different domains

Challenge:

Acquiring Data Can Be Expensive

Costs include:

P
e
rf

o
rm

a
n

c
e

Amount of data

But more data

is better…

Money

Emotional

Time

Inductive Learning Cycle

 Get a task:

 Collect data

Learn

first task

Learn

second task

Forget what

we learned!

P
e
rf

o
rm

a
n
c
e

Amount of data

But more data

is better…

Money

Emotional

Time

Do this again

Problem: One Off Solutions

 Interested in modeling many different domains

 Ideally:

 Problem: New domain looks “different”

Learn

first task

Solution: Inductive transfer

Learn

second task

Acquire

knowledge

Transfer Learning

 Transfer: Makes use of data (or model or

knowledge or …) from auxiliary domain

 Broadly speaking two types of transfer

 Shallow: Same variables, different distributions

 Deep: Different predicates, entities, properties

Inductive Learning

 Given: Target Data

 Learn: Model

Transfer Learning

 Given: Target Data,

Source Data

 Learn: Model

Same Variables,

Different Distribution

First Task Second Task

Location 2

Function 3

Protein 2Protein 1

Location 1

Function 2
Function 1

Interacts

Entirely Different Domains

First Domain

Word 1

Web PageWeb Page

Word 1

Professor

Research

Project

Linked

Word 2

Second Domain

Terminology

 Constants, variables, predicates, functions

E.g.: Anna, x, Friends(x,y), MotherOf(x)

 Grounding: Replace all variables by constants

E.g.: Friends(Anna,Bob)

 Clause:

E.g.: Friends(x,y) ˅ Friends(y,z) ˅ Friends(x,z)

 Predicate variable: Variable instead of

predicate name
r(x,y)  s(x,z)  r(z,y)

Location(x,y)  Interacts(x,z)  Location(z,y)

r → Location, s → Interacts

Markov Logic Networks (MLNs)
[Richardson & Domingos, MLJ’06]

  satisfiesit formulas of weightsexpP(world)

 A logical knowledge base is a set of

hard constraints on the set of possible worlds

 Let us make them soft constraints

 Give each formula a weight

 Worlds that violate a formula become less probable

Location(x,y)  Interacts(x,z)  Location(z,y)1.5

MLN to Markov Network

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

∀X Smokes(X) ⇒ Cancer(X)
∀X,Y Friends(X,Y) ⇒ [Smokes(X) ⇔ Smokes(Y)]

Constants: Anna (A), Bob (B)

Smoke(x)  Cancer(x)

Markov Logic Networks: Learning

Structure Learning

 Given: Target Data

 Learn: Formulas, Weights

Formula iWeight of Feature i

0.15

P(x) = exp wi fi(x)
i
(1

Z)

Search through

spaces of clauses

Convex optimization

of pseudolikelihood

Function1

Protein1

Protein2

Interacts

HasFunction

HasFunction

Protein-Protein Interaction Twitter

Challenge: Domains Described by

Different Predicates, Objects, Etc.

Word

User1

User2

Follows

HasWord

HasWord

Function1

Protein1

Protein2

Interacts

HasFunction

HasFunction

Protein-Protein Interaction Twitter

Challenge: Domains Described by

Different Predicates, Objects, Etc.

Word

User1

User2

Follows

HasWord

HasWord

r(x, z) ∧ s(x, y)  r(y, z)

Common templates used to model domains

Use variables and not predicate names

Transfer as Declarative Bias

Search through (Large) Space of Possible Clauses

Intuition: Bias learning toward models that

contain previously useful clauses

Maximum

Length

Hint: Try these

models first

Hint: Try these

models first

Hint: Up weight

these clauses

Short Clauses

Long clauses

General-to-

specific search

Overview of TODTLER
[Van Haaren, Kolobov, & Davis, AAAI’15]

r(x, z) ∧ s(x, y)  r(y, z)
r(x, y)  r(y ,x)
….

Word(a, w) ∧ Follows(a, b)
 Word(b, w)

Follows(a, b)  Follows(b, a)

…

Follows(Jan, Jesse)

Follows(Jesse, Jan)

Word(Jesse, Basketball)

…

Source domain

distribution over

templates

Target domain

distribution over

formulas

Adapted target domain distribution

Combine

Learn distribution over 2nd-

order clause templates in

source and transfer it to target

Learning the Posterior

 Probabilistic inference for a posterior over
2nd-order clauses is hopelessly intractable

 Hence will use a heuristic approach

 Generate second-order templates

 For each template create all its first-order
groundings

 Treat each first-order clause independently and
score its “usefulness” based on pseudolikelihood

 Template score: Aggregation over its first-order
groundings

Constructing Second-Order Clause

Templates

 Generate all second-order clause templates

 Maximum number of predicate variables

 Maximum number of object variables

 Maximum length

 Generate first-order clauses by grounding out

predicate variables with predicate names

 Do this in source and target domain

Score first-order clauses

0.19 Word(a, w) ∧ Follows(a, b)  Word(b, w)

0.13 Type(a, t) ∧ Follows(a, b)  Type(b, t)

…

0.08 Follows(a, b)  Follows(b, a)

…

Source Data

Using the Source Data

0.15 s(x, z) ∧ r(x, y)  s(y, z)

0.08 r(x, y)  r(y, z)

Ranking of Second-Order Templates

Aggregate scores of template’s

first-order instantiations

Improvement in PLL

obtained by adding

clause to empty MLN

Rescale PLLs between

0 and 1 and average

0.13 s(x, z) ∧ r(x, y)  s(y, z)

0.08 r(x, y)  r(y, z)

0.23 Loc(p, l) ∧ Interacts(p, q)  Loc (q, l)

0.14 Interacts(p, q)  Interacts(q, p)

0.12 Func(p, f) ∧ Interacts(p, q)  Func (q, f)

Ranked Templates

0.30 Loc(p, l) ∧ Interacts(p, q)  Loc (q, l)

0.16 Func(p, f) ∧ Interacts(p, q)  Func (q, f)

0.15 Interacts(p, q)  Interacts(q, p)

Learning in Target Domain

Score first-order clauses

Target Data

Combine Scores

Walk down list

Pick clauses

Empirical Evaluation

 Can we successully transfer among different
domains?

 Will transfer outperform learning from scratch?

 Which transfer approach is the best?

 Will we discover and transfer relevant templates?

Data and Methodology

 Transfer among three domains:

 Yeast protein: 7 predicates, 1.4M ground atoms
[Davis et al., ECML’05]

 WebKB: 3 predicates, 4.4M ground atoms
[Craven & Slattery, MLJ’01]

 Twitter: 3 predicates, 50K ground atoms

 Evaluation metrics

 Area under the precision recall curve (AUC PR)

 Negative conditional log likelihood (CLL)

 Run time

Twitter to WebKB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 2 3

A
U

C
P

R

Number of Training Databases

TODTLER DTM LSM Random

Twitter to WebKB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 2 3

N
e

g
a

ti
v
e
 C

L
L

Number of Training Databases

TODTLER DTM LSM

WebKB to Yeast

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3

A
U

C
P

R

Number of Training Databases

TODTLER DTM LSM Random

Run Time

0

100

200

300

400

500

600

700

800

900

1 2 3

R
u
n
ti
m

e
 M

in
u
te

s

Number of Training Databases

TODTLER DTM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3

R
u
n
ti
m

e
 M

in
u
te

s

Number of Training Databases

TODTLER DTM

Twitter to Yeast Twitter to WebKB

Templates Ranked in Top 10

Yeast WebKB Twitter

Symmetry:

r(x, y)  r(y, x)

1st 1st 2nd

Homophily

s(x, y) ∧ r(z, y)  s(z, y)

3rd 8th 6th

Transitivity

r(x, y) ∧ r(y, z)  r(x, y)

6th 2nd -

Triangle Completion

r(x, z) ∧ r(y, z)  r(x, y)

10th - 5th

Cycle

r(x, y) ∧ r(y, z)  r(z, x)

- 4th -

Part II: Applications to Sports

Traditional Sports Data: Box Scores

https://en.wikipedia.org/wiki/Box_score_(baseball)

Box Score from 1876 Box Score from 1908

Box Score from 1962

https://miscbaseball.wordpress.com/2009/1

0/11/1908-the-cubs-win-the-world-series/

Sports Analytics

“Traditional” approach to evaluating players

 Scouts evaluate subjectively on gut

 Traditional statistics

98

Sabremetrics: A Better Idea

99

“Bill James…asked the question why”

– Paul DePodesta, “Moneyball”

 Question 1: Which statistics best quantify

various aspects of team or player performance?

 Question 2: Can we come up with a single

statistic to rank players?

 Question 3: How can we project future team or

player performance?

Assumption: Available data is box score like

Why are common statistics meaningful?

Sports Data Today

Complex Data

How can we exploit

all the collected data?

Train

Scout

Identify players

Etc.

Automated data

analysis techniques

How Can Analytics Help?

Number of shots on target: 10

Compute relevant metrics

Learn predictive models

Heart Rate > 140 AND

Distance > 8KM  Tired

Discover novel patterns

Player 1 pass to Player 2 AND

Player 2 dribbles …

Complex Data

Three New Types of Data

 Event stream: Events with time and location

 Athlete monitoring:

GPS, accelerometer, etc.

 Optical tracking:

X, Y locations of players

Pass
(60,10)

Throw

(75,0)

Pass

(86,15)

Cross

(90,20)

Shot

(88,43)
…

Run

(80,5)
…

Out

(75,0)

Outline

 Rating players: Assign a rating to each action a

player performs in a match

 Understand strategy: Discover patterns from

player tracking data

Outline

 Rating players: Assign a rating to each action a

player performs in a match

 Understand strategy: Discover patterns from

player tracking data

Distribution of Some Events

0

50000

100000

150000

200000

250000

300000

350000

400000
p
a
s
s

o
u

t

b
a

ll
re

c
o
v
e
ry

a
e
ri
a

l

c
le

a
ra

n
c
e

fo
u

l

b
a

ll
to

u
c
h

ta
k
e
 o

n

ta
c
k
le

d
e

le
te

d
 e

v
e

n
t

in
te

rc
e
p

ti
o
n

d
is

p
o
s
s
e
s
s
d

c
o
rn

e
r

a
w

a
rd

e
d

c
h
a
lle

n
g
e

b
lo

c
k
e
d

 p
a
s
s

k
e
e
p
e
r

p
ic

k
-u

p

a
tt
e
m

p
t
s
a

v
e
d

s
a
v
e

m
is

s

e
n

d

p
la

y
e
r

o
ff

p
la

y
e
r

o
n

s
ta

rt

o
ff
s
id

e
 p

ro
v
o

k
e
d

o
ff
s
id

e
 p

a
s
s

c
a

rd

e
n
d

 d
e
la

y

s
ta

rt
 d

e
la

y

c
la

im

g
o
a

l

F
re

q
u

e
n

c
y
 o

f
E

v
e

n
t

Question: Only a small fraction of the

actions involve attempts and goals, how

can we value all actions?

Our Approach: STARSS

 Given: Event stream with type and location of all

events (e.g., passes and shots)

 Do: Assign rating to each action

 Approach

1. Split matches in phases

2. Rate phases

3. Distribute phase rating over individual actions

4. Aggregate players ratings over season

Divide Match into Phases

Phase i

Phase i + 1

Phase i + 2

Split event stream based on change of possession

Rating Phases

X1,1

Y1,1

X1,2

Y1,2

X1,3

Y1,3

X1,4

Y1,4

X1,5

Y1,5

X2,1

Y2,1

X2,2

Y2,2

X2,3

Y2,3

X2,4

Y2,4

X2,5

Y2,5

X2,5

Y2,5

Similarity metric: Dynamic Time Warping on event positions

Question: How good is

this phase?

Answer: Compare to

what happened in

similar phases

Rating Phases

Rating phases:

1. Find k most similar phases (e.g., 100)

2. Of these, count how many result in a goal (e.g., 6)

𝑅𝑎𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 =
6 𝑔𝑜𝑎𝑙𝑠

100 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑝ℎ𝑎𝑠𝑒𝑠
= 0.06

Distribute Phase Rating Across Its

Constituent Actions

Phase Rating: 0.19

.07

.05

.04

.03

Actions at end are more important: Exponential decay

Top 10 Players: EPL 2016-2017

Rank Team Player Rating

Per 90

Goals

Per 90

Assists

Per 90

1 Arsenal Alexis

Sanchez

0.289 0.478 0.147

2 West Ham Dimitri Payet 0.279 0.315 0.420

3 West Ham Mauro Zarate 0.262 0.342 0.000

4 Chelsea Willian 0.249 0.164 0.196

5 Liverpool Philippe

Coutinho

0.244 0.359 0.225

6 Arsenal Santi Cazorla 0.240 0.000 0.209

7 Arsenal Mesut Ozil 0.240 0.177 0.561

8 Sunderland Wahbi Khazri 0.240 0.167 0.084

9 Aston Villa Rudy Gestede 0.237 0.272 0.109

10 Man City Kevin De

Bruyne

0.233 0.315 0.404

Outline

 Rating players: Assign a rating to each action a

player performs in a match

 Understand strategy: Discover patterns from

player tracking data

Discover Offensive Strategies in

Football Matches

 Given:

 Event stream with type and location of all events

(e.g., passes and shots)

 Locations of all players and the ball (10 hz sample)

 Find: Typical offensive strategies

Time t Time t+1

Big Picture Problem

Lots and lots of game

play sequences
Subset of actions that

commonly lead to shots

 Film study is time consuming

 Automation can help speed this up

 Computers good at finding patterns in large data sets

Challenges

 Relationships and how they change over time

are important

 Space

 Interactions between players

 Order of events is important

 May want to generalize over players involved

 Exact same sequence of events unlikely to

occur multiple times

Important Steps

1. Data cleaning

2. Event stream preprocessing

3. Clustering data

4. Identifying important strategies

Step 1: Cleaning Data

 Outliers and incorrect values

 Valid field coordinates

 Player and ball movements seem “possible”

 Teams switch direction at half time: Normalize

data such that team always attacks same goal

 Account for changes in data (e.g., position

switches, new players, etc.)

Step 2: Event Stream Preprocessing

Event stream

Throw Pass Run Cross Shot SaveRun

Phase 2

…
Free

kick
Pass Throw Pass Run Cross Shot SaveRun …Run Out

Phase 1

Free

kick
PassRun Out

Step 3: Clustering

…

Divide phases into different groups such that

the phases in a group are “similar”

Three Benefits

1. Teams employ

multiple strategies

2. Generalize from a

specific location

3. Subsequent step

more computationally

efficient

Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences

Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences

Step 4: Finding Interesting Sequences

Cluster 1

Within each cluster, find frequently occurring subsequences

Pattern Count

3

2

1

1

Two Representative Patterns

An attack down

the right flank

An attack down

the left flank

Summary

 Focus on learning models from data

 Expand frontiers of what is possible

 Account for real world problems

 Modeling structured data

 Applications drive research agenda

 Health: ADRs

 Sports

 …

Questions?

