
Fleet Reinforcement Learning using Dependent
Gaussian Processes

Timothy Verstraeten
Vrije Universiteit Brussel
tiverstr@vub.ac.be

Peter Vrancx
Vrije Universiteit Brussel
pvrancx@vub.ac.be

Ann Nowé
Vrije Universiteit Brussel

anowe@vub.ac.be

Abstract

Physical systems are progressively moving forward from local controllers towards
smarter cloud-based architectures. This allows similar inter-connected reinforce-
ment learning agents to share information in order to obtain a more global perspec-
tive on the control task at hand. However, the local context and inherent properties
of these agents are in practice not identical, making the approach of naively com-
bining gathered information unsuitable. We propose to detect correlations between
the observed dynamics of similar agents through dependent Gaussian processes,
allowing us to effectively share information between these agents. We validate our
approach in a pendulum swing-up and cart-pole setting. Our approach significantly
outperforms the naive method of combining all samples into one model, by quickly
and accurately estimating dependencies. In future work, we expect to improve our
results by measuring correlations between rewards.

1 Introduction

Reinforcement learning (RL) [11] allows goal-oriented agents that are able to sense and act based on
their current state to learn an optimal control policy by interacting with the environment. However,
those interactions are quite expensive in many realistic control systems, such as low cost robot arms
[4] and hard to maintain wind farms [5]. Moreover, the local context and inherent properties (e.g.,
hardware) of a control system causes poor estimations of global events due to noisy measurements.

When a group of similar devices is executing the same control task, aggregating information allows
one to obtain a wider view of the problem, and achieve more effective and robust control. This is
the idea of fleet control. Agents have to collaborate in order to satisfy the control task requirements
and share noisy measurements about events in the environment that are potentially not observable by
other agents. However, naively combining all information is unsuitable when agents are not identical.
For example, due to the aging of wind turbine blades, friction parameters change over time. This
causes discrepancies in the outcome of similar control actions taken by different turbines in the wind
farm. Therefore, there is a need for turbine-specific control policies, even though the underlying
dynamics are identical for each turbine.

As a first step towards a fleet learning framework, similarities between agents have to be inferred in
order to effectively share relevant information. We propose a Bayesian model-based fleet RL method
using dependent Gaussian processes (GP). GPs are well known for their flexibility and are able to
find complex patterns using a limited set of training data. We introduce a correlation parameter for
each pair of agents in the covariance kernel of the processes [2], such that similar agents share an
informative prior over the environment dynamics. We focus on the PILCO method for inferring a
controller from the estimated dynamical GP [3].

Our work is closely related to Bayesian multi-task RL [6, 12]. The authors define a hierarchical
Bayesian model that generates an arbitrary number of informative priors for classes of similar MDPs
or value functions. However, these MDPs and functions must inherently have a low-dimensional

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

parametric form to be clustered effectively and are confined to use the prior associated with their
class. We are able to define informative priors between each pair of agents. Moreover, our approach
fits nicely into the GP framework, requiring no additional model or inference algorithm for clustering.

We give background information on RL and PILCO in respectively Sections 2 and 3. Our dependent
GP RL method is introduced in Section 4. We validated our approach on a pendulum swing-up and
cart-pole setting and explain the results in Section 5. We conclude with discussing future work in
Section 6.

2 Reinforcement Learning

In reinforcement learning, an agent learns a policy that maximizes the cumulative reward for achieving
a certain goal over a sequence of state transitions. The problem is formulated as a Markov decision
process (MDP)M = (S,A, T, γ,R) [8], where S,A are the state and action spaces, T : S×A×S →
R is a probabilistic transition function, γ is the discount factor determining the importance of future
rewards and R : S ×A× S → R is the immediate reward function.

An agent behaves according to a policy π : S → A. Optimizing π using policy iteration consists of
two parts: policy evaluation and policy improvement. The former refers to assessing the quality of a
policy by estimating the expected discounted long-term reward from a given starting state s0:

V π(s) = ET,π

[∞∑
t=0

γtrt+1 | s = s0

]
(1)

where rt+1 is the reward obtained upon taking action at at state st.

Policy improvement refers to choosing a new policy of higher quality. Model-based methods use an
additional model of the environment to perform long-term planning in order to find the best action
[11] and are preferred when real-world experience is costly. However, model bias is a recurring
issue in these methods, as the prediction error grows when simulating one-step state transitions in an
estimated model of the actual environment [1]. A probabilistic dynamics model reduces this bias
immensely, since the uncertainty in the predictions is fully accounted for [10].

3 Gaussian Process Dynamics Model

We adopt the model-based method PILCO [3], which models the environment dynamics as a Gaussian
process (GP) [9]. A GP is an infinite collection of random variables, of which each finite subset is
jointly normally distributed. It is defined by a mean function m(x) and covariance kernel k(x, x′).
Intuitively, a process f(x) describes probabilities over a set of functions, where m(x) is the most
likely function of the set and k(x, x′) specifies the covariances between the random function values
on inputs x and x′. This relationship between inputs defines the properties of the functions considered
by the process, such as continuity, periodicity and length scale.

Similar to multi-variate normal distributions, a posterior process f(x) | D given observations D =
(X, y) can be inferred. When used as a regression technique, the mean of the posterior process gives
the best linear regularized predictor on a set of basis functions k(x, xi). Thus, it is equivalent to
solving the following system of N linear equations

yj =

N∑
i=1

wi(k(xj , xi) + σ2
nδ(xj , xi)), 1 ≤ j ≤ N

where {(xj , yj)}Nj=1 is the training data and σ2
n is white Gaussian noise. Note that the complexity

of such a model grows with the number of observed samples, allowing it to capture increasingly
complex nonlinear patterns. Computing the posterior mean of a random variable f∗ at input x∗ is
done as follows:

E [f∗ | x∗,D] = K(x∗, X)(K(X,X)−1 + σ2
nI)−1y

where K(X,X) and K(x∗, X) are the resulting matrices when applying kernel k to the respective
inputs.

2

PILCO uses a zero-mean GP with the squared exponential (SE) kernel kSE to model the random
dynamical process f(s, a) ∼ GP(0, kSE([s, a] , [s′, a′])) The SE kernel is widely used, as it models
continuous, stationary and infinitely differentiable processes. It is defined as follows:

kθSE(x, x′) = α2 exp(−0.5(x− x′)TΛ−1(x− x′))
where α2 is the magnitude of the output and Λ is a diagonal matrix of length scales per input
dimension. We denote the combination of these hyperparameters as θ, which can be optimized by
maximizing the likelihood of the data p(y | X, θ).

Given such a dynamics model, PILCO estimates the expected return V π(s0) for a given policy π by
iteratively propagating Gaussian approximations of state distributions through the dynamics model
until the horizon T is met. This gives an analytic expression for the expected return that can be
derived and optimized w.r.t. the policy parameters using gradient descent techniques.

4 Correlations between Agents

Fleet control deals with the operation of similar inter-connected devices. Our goal is to take advantage
of this fleet aspect by aggregating information over similar agents, such that less real-world experience
is necessary per agent in order to learn a good representative model of its environment.

However, in practice, the underlying properties of each agent are not identical. An agent might
have small technical discrepancies or a limited view on global events due to its location. These
aspects cause the agent to have its own unique view on the environment dynamics. Therefore, naively
combining the samples from all agents into one model might capture an inaccurate representation of
the environment dynamics.

We propose to extend the PILCO method to capture the dynamics observed by multiple agents i as
a set of dependent GPs fi. Each data set is annotated with a label i, referring to the corresponding
process fi. Inter-process covariances are captured by a matrix C, such that entry Ci,i′ specifies the
relationship between agents i and i′. We obtain the following covariance kernel [2]:

kθ([x, i], [x′, i′]) = kθxSE(x, x′)Cθii,i′

where input points x and x′ are respectively observed by agents i and i′. Thus, for similar agents, the
off-diagonal entries in C should be high, such that the posterior process fi | Di,Di′ yields a better
representation of the dynamics than fi | Di. When agents are extremely different, the entries of C
should be close to zero, rendering the processes independent.

It is important that C is positive semi-definite in order to maintain a valid covariance kernel. We use
the spherical parametrization θi of C [7], which allows us to transform any vector of unconstrained
parameters into a unique covariance matrix. We considerC as part of the hyperparameters θ = [θx, θi].
As the spherical transformation is differentiable w.r.t. each parameter, we can use gradient descent
techniques to maximize the likelihood p(y | X, θ) of the data (X, y) w.r.t. each element of θ.

Policy iteration in a fleet setting can be done by learning processes fi and their dependencies through
the proposed covariance kernel k on batches of training data collected for each agent i. Similar to the
PILCO method, we are then able to propagate one-step predictions through a process fi and derive
an expression for the expected return V πi(s0), which can be optimized to improve the policy πi.

5 Experiments

We validate our approach on the continuous pendulum swing-up and cart-pole domains. In the former
domain, the objective is to swing up and balance a pole. A state consists of the angle and angular
velocity of the pole and an action is a force of maximum 2.5N applied to either side of the pole.

The cart-pole setting is similar, but requires a pole to be balanced on top of a horizontally moving
cart, while the cart has to stay as close as possible to its starting position, making it a more complex
task to solve. In addition to the state of the pendulum, the position and velocity of the cart are also
observed. An action is a force of maximum 10N applied to either side of the cart.

For both domains, we consider the following reward function:

R(s) = exp(−||s− starget||2/0.52)

3

where starget is the pole at its equilibrium and the cart at its starting position. We start in state s0
in which the pole is downwards, and we maximize the expected undiscounted cumulative reward
V π(s0) over an horizon of 4 seconds. The sampling frequency is 0.1 seconds, giving us 40 samples
per episode.

After each episode, we train a dynamics model using all previous samples, and estimate the policy
parameters θp using line search. A policy πθp is represented by a regularized non-linear RBF network
using 10 Gaussian basis functions

πθp(s) =

10∑
i=1

wi exp(−0.5(s− µi)TΛ−1(s− µi))

where θp = [w, µ,Λ] are the policy parameters.

5.1 Pendulum Swing-Up

We consider two agents learning to swing up and balance their own pendulum by consecutively
modeling the environment dynamics through two dependent processes and deriving their own policy.
Each agent has the same unknown dynamics parameters, except for the pole mass, which we put
to 1.0 kg for the first agent and 1.5 kg for the second. We focus on the former agent and report its
performance.

1 2 3 4 5 6 7
0

5

10

15

20

25

episode

m
ea

n
cu

m
ul

at
iv

e
re

w
ar

d

Upper Bound
Naive Approach
Dependent GPs

Figure 1: The cumulative reward over 7 episodes
when inferring one process for two identical
agents (‘Upper Bound’), one process for two
different agents (‘Naive Approach’) and two
processes for two different agents (‘Dependent
GPs’). The return is averaged over 10 trials and
the 95% confidence interval is given.

0.75

0.8

0.85

0.9

0.95

1

1.00 1.25 1.50 1.75 2.00
pole mass (kg)

co
rr

el
at

io
n

co
ef

fic
ie

nt
s

Figure 2: The correlation coefficients learned in
the covariance matrix C between an agent with a
pole mass of 1 kg and agents with variable pole
masses. The correlations are averaged over 10
trials and both the means and standard deviations
are given.

Figure 1 shows the return, averaged over 10 trials, for the agent with a pole mass of 1.0 kg during 7
episodes, which is enough learning time for PILCO to balance the pole. We define an upper bound
on the performance that we can reach, by inferring a single process for two identical agents. As
expected, the naive approach of maintaining one process for two different agents does not work, as
the agents are incapable of learning a single policy that works for both of them. Our dependent GPs
are able to extract the correlations between the two different dynamics and infer two separate policies,
achieving a significantly better performance than the naive approach.

We noticed in the individual trials that the return is slightly oscillating when the agents are different,
which explains the increase in variance for our approach. This is due to the fact that PILCO notices a
decrease in performance for one agent when optimizing for another. This causes it to switch focus to
the other agent, creating this oscillating effect.

Even though our method significantly outperforms the naive approach, we expected the performance
to be more comparable to upper bound. In order to investigate this, we examine the correlations
inferred during learning (see Figure 2). We keep the pole mass fixed at 1.0 kg for one agent and vary
it for the other.

4

Although the correlation coefficients are decreasing, we notice that the dynamics stay highly corre-
lated. This is expected, as changing the pole mass in the pendulum setting has a fairly linear impact
on the dynamics. However, we speculate that such high correlations do not sufficiently separate the
two processes in order to obtain the two required policies, and we expect that capturing correlations
between received rewards will improve results. Nevertheless, the correlation coefficients are inferred
accurately by the dependent GPs, which allows our agents to only learn from the most similar agents.
We test this setting in the cart-pole domain.

5.2 Cart-Pole

Even though the resulting policies of different agents are still too similar when derived through our
method, the correlations between the dynamics are determined quickly and accurately. Therefore, we
will focus on integrating a new agent into the fleet by allowing it to share samples with only the most
similar agent. We expect that learning correlations is faster than the optimization of the policy itself,
such that using samples from a similar agent increases the learning speed of the target agent.

We test this hypothesis in the more complex cart-pole domain. We assume a group of 4 agents which
already learned a control policy to balance the pole on top of a cart, and a target agent that has to learn
this from scratch. At the start of each episode, the target agent computes the dependent processes
between itself and all other agents in order to obtain the correlations between them. Then it augments
its data set with the samples of the most similar agent at that moment. This means that the resulting
target policy is derived from the dynamical process inferred from both the samples of the target agent
and the most similar agent at that moment. Each agent has a different set of parameters, which are
unknown during learning (see Table 1). Note that agent 1 is similar to our target and thus the best
candidate to share samples with.

agents pole length (m) pole mass (kg) cart mass (kg)
target 0.50 0.50 0.50

1 0.55 0.50 0.50
2 0.70 0.50 0.30
3 0.30 0.30 0.30
4 0.50 0.50 0.80

Table 1: The unknown parameters of the target and each agent in the fleet. The mass and length of
the pole, as well as the mass of the cart vary over all agents. Agent 1 is the most similar to the target.

We compared our method to both the cases in which the target agent learns from everyone and on its
own. We measure the performance of these approaches by averaging the return of our target agent
over 10 trials and plot the return over 7 episodes in Figure 3.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

episode

m
ea

n
cu

m
ul

at
iv

e
re

w
ar

d

Target Only
All Agents
Dependent GPs

Figure 3: The cumulative reward over 7 episodes when inferring a process using the samples of only
the target agent (‘Target Only’), the samples over all agents (‘All Agents’), and the samples of both
the target and the most similar agent (‘Dependent GPs’). The return is averaged over 10 trials and the
95% confidence interval is given.

5

We can see that aggregating the samples obtained by all agents slows down learning immensely
for the target. Moreover, it seems that the target is barely able to lift up the pole. We think this is
caused specifically by incorporating the samples of agent 3 (see Table 1). The target expects to have
a lightweight cart and pole, such that not a lot of force is necessary for a swing-up, while the actual
cart and pole are quite heavy.

Using dependent GPs, the target is able to detect the most similar agent 79% of the time over all
episodes and trials. Sharing samples with only this agent yields a significant improvement in terms
of learning speed, maintaining a final performance comparable to the case in which the target agent
learns independently.

6 Conclusion

We introduced a method to extract correlations between state-transitions observed by different agents
using dependent Gaussian processes. We first evaluated our approach on a pendulum swing-up, show-
ing a significant improvement over the naive approach and the ability to extract correlations between
similar dynamics. However, we expect that better performance can be achieved by investigating the
returns observed by the agents. We also evaluated our method on a cart-pole setting, in which a target
agent had the opportunity to share samples with a single agent from an already existing fleet. Our
approach significantly improved the learning speed, indicating the ability of detecting correlations
between agents quickly and accurately. The tests also show that combining samples over similar, but
nonidentical, agents can drastically decrease the overall performance of all agents.

In future work, we will extend our approach to also find correlations between the rewards and
returns observed by different agents. We expect this will help us identify larger impacts on control
decisions, increasing the performance of our method. Additionally, we will investigate the multi-agent
interactions that arise in more realistic fleet systems.

References
[1] C. G. Atkeson and J. C. Santamaría. A comparison of direct and model-based reinforcement learning. In

Proc. of the IEEE International Conference on Robotics and Automation (ICRA), volume 4, 1997.

[2] E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-Task Gaussian Process Prediction. Advances in
Neural Information Processing Systems, 20:153–160, 2008.

[3] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proc. of the International Conference on Machine Learning. 2011.

[4] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to control a low-cost manipulator using
data-efficient reinforcement learning. In Robotics: Science & Systems, volume 7. 2011.

[5] J. Helsen, G. L. De Sitter, and P. J. Jordaens. Long-term monitoring of wind farms using big data approach.
In Proc. of the 2nd IEEE Big Data Computing Service and Applications conference, pages 265–268. 2016.

[6] A. Lazaric and M. Ghavamzadeh. Bayesian multi-task reinforcement learning. In Proc. of the 27th
International Conference on Machine Learning, pages 599–606. Omnipress, 2010.

[7] J. C. Pinheiro and D. M. Bates. Unconstrained Parameterizations for Variance-Covariance Matrices.
Statistics and Computing, 6:289–296, 1996.

[8] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1st edition, 1994.

[9] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press,
Cambridge, MA, USA, 2006.

[10] J. G. Schneider. Exploiting model uncertainty estimates for safe dynamic control learning. In M. I. Jordan
and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, pages 1047–1053.
MIT Press, 1997.

[11] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press Cambridge, 1998.

[12] A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: A hierarchical bayesian
approach. In Proc. of the 24th International Conference on Machine Learning, pages 1015–1022, 2007.

6

	Introduction
	Reinforcement Learning
	Gaussian Process Dynamics Model
	Correlations between Agents
	Experiments
	Pendulum Swing-Up
	Cart-Pole

	Conclusion

