

Mihail "Mike" Mihaylov

Aim?

to give the <u>intuition</u> just how complex decentralized coordination is

to give the <u>tools</u> necessary to address decentralized coordination problems

very complex!

Frameworks:

- Multi-agent systems
- Reinforcement Learning
- Collective Intelligence
- Mechanism Design

Agent

Autonomous

- has control over own actions
- able to act without human intervention

Pro-active

- takes initiative
- is opportunistic

<u>Responsive</u>

- perceives its environment
- responds to changes

"Objects do it for free. Agents do it for money."

Social

- interacts when appropriate
- helps others

Multi-Agent Systems Framework

Agents have:

- incomplete information
- restricted capabilities

Communication is:

- costly
- delayed
- unreliable

System properties:

- decentralized control
- asynchronous computation

Graphical games (Network games)

Normal form

- any agent interacts
 with any other agent
- payoffs depend on actions of all agents
- representation: exponential in the number of players

Graphical form

- only neighbors in the graph can interact
- payoffs depend on actions of neighbors
- representation:

 exponential in size of largest neighborhood

Context

Constraints:

- limited battery
- communication is expensive
- low processing capabilities
- limited knowledge
- decentralized control

Reinforcement learning

Decentralized

- central control is <u>unavailable</u>
 or costly to set up
 (e.g. WSNs, Swarm robotics)
- reduce complexity of centralized problems (e.g. Scheduling, Planning)
- address privacy, self-interest
 (e.g. Smart grids, Transportation logistics)

Coordination

- highly constrained agents
- with limited knowledge
- must work together to solve problems
- learn from repeated interactions
 - 1. meet
 - 2. interact
 - 3. learn

Agents

- inexpensive
- multi-purpose

System

- scalable
- adaptive

Decentralized Coordination in Multi-Agent Systems

Coordination and Anti-Coordination

Coordination and Anti-Coordination in time

Problem:

enable coordination & anti-coordination in time

− highly constrained agents → no complex algorithms

local interactions
 → no centralized control

limited knowledge → no global awareness

− autonomous→ no human guidance

Objective:

implement a coordination mechanism

− adaptive→ perform well in wide

decentralized range of settings

− minimal requirements
 → few parameters, little

minimal overhead
 memory usage

Problem:

Pure coordination

- 1. meet
- 2. interact
- 3. learn

Problem: How to coordinate?

- b/n highly constrained agents
- via local interactions
- with limited knowledge

	Agent 1				
Agent 2	1	0	0		
	0	1	0		
	0	0	1		

Approach: Win-Stay Lose-probabilistic-Shift

Requirements:

- decentralized mechanism

- minimal requirements & overhead
- guaranteed full convergence
- absorbing state

e.g. select the same joint task in robot swarms

Coordination Game:

Conclusions (pure coordination)

Pure coordination → difficult, but always possible

 Convergence time → exponential in number of agents and actions

Denser networks → faster convergence

Anti-coordination

Problem: How to anti-coordinate?

(select an action different than others')

e.g. select different channels for parallel communication in WSNs

Conclusions (anti-coordination)

Pure anti-coordination → easy but not always feasible

- Convergence time → faster with more actions
- WSLpS: applicable in wide range of scenarios

		topology:		ri	ng			gr	rid			fu	ıll	
	${\it algorithm}$	actions:	2	3	4	5	2	3	4	5	20	30	40	50
Ī	WSLpS		√	√	√	\checkmark	√	√	√	√	√	√	√	\checkmark
		renager	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark				
	Freeze \int et	t al. '02									√	\checkmark	\checkmark	\checkmark
	GaT $\}N$	amatame '06	\checkmark				✓							

Coordination and Anti-Coordination

Coordination and Anti-Coordination in time

(Anti-)coordination in time: WSNs

Problem: How to (anti-)coordinate in time?

Challenges in WSNs:

- no central control → decentralized comm. protocol
- only local information \rightarrow learn by local interactions
- expensive communication \rightarrow implicit coordination
- communication interference → anti-coordination
- limited memory & processing → simple algorithm
- no observation of actions of others \rightarrow own actions

(Anti-)coordination in time: WSNs

(Anti-)coordination in time: WSNs

Agents learn by only observing outcome of own actions!

action	outcome	payoff
Transmit	ACK received no ACK received	1 0
Listen	DATA received communication overheard nothing received messages collided	1 0 0 0
Sleep	saved energy	?

DESYDE

- decentralized approach
- minimal requirements
- no communication overhead

Conclusions (WSNs)

Coordination emerges rather than is agreed upon

Clever coordination mechanism is required

Outlook

Covered topics	Other topics	Framework
Common interest game	Conflicting interest game	Cooperative game theory
Fully cooperative agents	Self-interested agents	Mechanism design
Static topology	Dynamic topology	Evolutionary game theory
Wireless sensor networks	Collaborative platforms	Collective intelligence

Collective Intelligence Framework

Components:

- private utility measures
 performance of individual agents
- world utility

 measures

 performance of the entire system

Objective:

 align private utility with world utility

e.g.: optimizing the routing of internet traffic

Challenges:

 compute world utility in a decentralized manner

Mechanism Design Framework

Agents:

- are self-interested
- have private information
- maximize utility functions

Objective:

 implement a protocol that achieves designer's goals, despite agents' self interest

e.g.: designing an electronic auction

Game theory:

— "Given a game, what is a rational strategy for an agent?"

Mechanism design:

— "Given that agents are rational, how should we design the game?"

Synchronization

Desynchronization

Japanese tree frog (Hyla japonica)

Agents are able to observe each other's actions!

Summary

Complex problems	Simple solution: WSLpS
– no central control	 decentralized approach
 explicit coordination is costly 	minimal overhead
 restricted capabilities of agents 	minimal requirements
unknown topology	 wide applicability
expensive learning	fast convergence

meet
 interact
 learn

WSLpS: good starting point to address decentralized coordination problems

Conclusions

Simple learning techniques work surprisingly well.

- + less parameters to tune
- + quite generic, wider application
- lower representational power

<u>Decentralized solutions</u> are a powerful paradigm.

- + lower computational complexity & communication overhead
- + no single-point-of-failure problems
- difficult to organize

Multi-agent systems is a quite useful framework.

- + suitable representation of decentralized problems
- + scalable, fault-tolerant
- easy to overdo