
Outline

[read Chapter 2]
[suggested exercises 2.2, 2.3, 2.4, 2.6]

• Learning from examples

• General-to-specific ordering over hypotheses

• Version spaces and candidate elimination algorithm

• Picking new examples

• The need for inductive bias

Note: simple approach assuming no noise, illustrates key concepts
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Training Examples for EnjoySport

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

What is the general concept?
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Representing Hypotheses

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

Many possible representations

Here, h is conjunction of constraints on attributes

Each constraint can be

• a specfic value (e.g., Water = Warm)

• don’t care (e.g., “Water =?”)

• no value allowed (e.g.,“Water=∅”)

For example,
Sky AirTemp Humid Wind Water Forecst
⟨Sunny ? ? Strong ? Same⟩

Classify everything negative
⟨φ,φ,φ,φ,φ,φ⟩

Classify everything positive
⟨?, ?, ?, ?, ?, ?⟩
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Prototypical Concept Learning Task

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

• Given:

– Instances X : Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind,
Water, Forecast

– Target function c: EnjoySport : X → {0, 1}
– Hypotheses H : Conjunctions of literals. E.g.

⟨?, Cold,High, ?, ?, ?⟩.

– Training examples D: Positive and negative examples of the target function

⟨x1, c(x1)⟩, . . . ⟨xm, c(xm)⟩

• Determine: A hypothesis h in H such that h(x) = c(x) for all x in D.
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The inductive learning hypothesis: Any hypothesis found to approximate the target function well
over a sufficiently large set of training examples will also approximate the target function well over
other unobserved examples.
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Instance, Hypotheses, and More-
General-Than

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

h  = <Sunny, ?, ?, Strong, ?, ?>
h  = <Sunny, ?, ?, ?, ?, ?>
h  = <Sunny, ?, ?, ?, Cool, ?>

2h

h 3h

Instances X Hypotheses H

Specific

General

1x

2x

x  = <Sunny, Warm, High, Strong, Cool, Same>
x  = <Sunny, Warm, High, Light, Warm, Same>

1

1

2

1

2
3
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Find-S Algorithm

1. Initialize h to the most specific hypothesis in H

2. For each positive training instance x

• For each attribute constraint ai in h

If the constraint ai in h is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x

3. Output hypothesis h
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Hypothesis Space Search by Find-S

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

Instances X Hypotheses H

Specific

General

1x
2x

x 3

x4

h0
h1

h2,3

h4

+ +

+

x   = <Sunny Warm High Strong Cool Change>, +4

x   = <Sunny Warm Normal Strong Warm Same>, +1
x   = <Sunny Warm High  Strong Warm Same>, +2
x   = <Rainy Cold High Strong Warm Change>, -3

h   = <Sunny Warm Normal Strong Warm Same>1
h   = <Sunny Warm  ?  Strong Warm Same>2

h   = <Sunny Warm  ?  Strong  ?  ? >4 

h   = <Sunny Warm ? Strong Warm Same>3

0h   =                             <∅, ∅, ∅, ∅, ∅, ∅>

 

-

Generalisation only as far as necessary!

IF hypothesis is conjuction of attribute constraints

THEN guarantees most specific hypothesis in H that is consistent with the positive examples

also consistent with the negative examples provided target concept ∈ H, training examples correct
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Complaints about Find-S

• Can’t tell whether it has learned concept

• Can’t tell when training data inconsistent

• Picks a maximally specific h (why?)

• Depending on H , there might be several!
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Version Spaces

A hypothesis h is consistent with a set of training examples D of target concept c if and only
if h(x) = c(x) for each training example ⟨x, c(x)⟩ in D.

Consistent(h,D) ≡ (∀⟨x, c(x)⟩ ∈ D) h(x) = c(x)

The version space, V SH,D, with respect to hypothesis space H and training examples D, is
the subset of hypotheses from H consistent with all training examples in D.

V SH,D ≡ {h ∈ H |Consistent(h,D)}
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The List-Then-Eliminate Algorithm:

1. V ersionSpace← a list containing every hypothesis in H

2. For each training example, ⟨x, c(x)⟩

remove from V ersionSpace any hypothesis h for which h(x) ̸= c(x)

3. Output the list of hypotheses in V ersionSpace
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Example Version Space

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }
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Concept Learning As Search

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

• # instances

– 3× 2× 2× 2× 2× 2 = 96

• # classifications

– 296

• # syntactically distinct hypotheses

– 5120

• ⟨., .,φ, ., ., .⟩

– represents no instance

• # semantically distinct hypotheses

– 975

When large hypothesis space H (possibly infinite) then efficient search strategies required to find
hypothesis that best fits the data.
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Representing Version Spaces

The General boundary, G, of version space V SH,D is the set of its maximally general members

The Specific boundary, S, of version space V SH,D is the set of its maximally specific members

Every member of the version space lies between these boundaries

V SH,D = {h ∈ H |(∃s ∈ S)(∃g ∈ G)(g ≥ h ≥ s)}

where x ≥ y means x is more general or equal to y
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Candidate Elimination Algorithm

G← maximally general hypotheses in H , ⟨?, ?, ?, ?, ?, ?⟩
S ← maximally specific hypotheses in H , ⟨φ,φ,φ,φ,φ,φ⟩
For each training example d, do

• If d is a positive example

– Remove from G any hypothesis inconsistent with d

– For each hypothesis s in S that is not consistent with d

∗ Remove s from S

∗ Add to S all minimal generalizations h of s such that

1. h is consistent with d, and

2. some member of G is more general than h

∗ Remove from S any hypothesis that is more general than another hypothesis in S

• If d is a negative example

– Remove from S any hypothesis inconsistent with d

– For each hypothesis g in G that is not consistent with d

∗ Remove g from G

∗ Add to G all minimal specializations h of g such that

1. h is consistent with d, and

2. some member of S is more specific than h

∗ Remove from G any hypothesis that is less general than another hypothesis in G
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Example Trace

{<?, ?, ?, ?, ?, ?>}

S0:
{<Ø, Ø, Ø, Ø, Ø, Ø>}

G0
:
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What Next Training Example?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

What query is best, most informative?

A query is satisfied by # / 2 of the hypotheses, and not satisfied by the other half

For example
⟨Sunny,Warm,Normal, Light,Warm, Same⟩

Note: Answer comes from nature or teacher
# experiments: log2 |V S|
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How Should These Be Classified?

S:

<Sunny, Warm, ?, ?, ?, ?><Sunny, ?, ?, Strong, ?, ?> <?, Warm, ?, Strong, ?, ?>

<Sunny, Warm, ?, Strong, ?, ?>{ }

G: <Sunny, ?, ?, ?, ?, ?>, <?, Warm, ?, ?, ?, ?> { }

⟨Sunny Warm Normal Strong Cool Change⟩

⟨Rainy Cool Normal Light Warm Same⟩

⟨Sunny Warm Normal Light Warm Same⟩

⟨Sunny Cold Normal Strong Warm Same⟩
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A Biased Hypothesis Space

Example Sky Temp Humid Wind Water Forecst EnjoySpt
1 Sunny Warm Normal Strong Cool Change Yes
2 Cloudy Warm Normal Strong Cool Change Yes
3 Rainy Warm Normal Strong Cool Change No

S2 : ⟨? Warm Normal Strong Cool Change⟩

19 lecture slides for textbook Machine Learning, c⃝Tom M. Mitchell, McGraw Hill, 1997

What Justifies this Inductive Leap?

+ ⟨Sunny Warm Normal Strong Cool Change⟩

+ ⟨Sunny Warm Normal Light Warm Same⟩

S : ⟨Sunny Warm Normal ? ? ?⟩

Why believe we can classify the unseen

⟨Sunny Warm Normal Strong Warm Same⟩
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An UNBiased Learner

Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)

Consider H ′ = disjunctions, conjunctions, negations over previous H . E.g.,

⟨Sunny Warm Normal ? ? ?⟩ ∨ ¬⟨? ? ? ? ? Change⟩

What are S, G in this case?

S ←

G ←
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Inductive Bias

Consider

• concept learning algorithm L

• instances X , target concept c

• training examples Dc = {⟨x, c(x)⟩}

• let L(xi, Dc) denote the classification assigned to the instance xi by L after training on data Dc.

Definition:

The inductive bias of L is any minimal set of assertions B such that for any target concept c
and corresponding training examples Dc

(∀xi ∈ X)[(B ∧Dc ∧ xi) ⊢ L(xi, Dc)]

where A ⊢ B means A logically entails B
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Inductive Systems and Equivalent De-
ductive Systems

Candidate
Elimination
Algorithm

Using Hypothesis
 Space 

Training examples

New instance

Equivalent deductive system

Theorem Prover

Training examples

New instance

Inductive bias
 made explicit

Classification of 
new instance, or
"don’t know"

Classification of 
new instance, or
"don’t know"

Inductive system

H

Assertion "    contains
 the target concept"

H
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Three Learners with Different Biases

1. Rote learner: Store examples, Classify x iff it matches previously observed example.

2. Version space candidate elimination algorithm

3. Find-S
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Summary Points

1. Concept learning as search through H

2. General-to-specific ordering over H

3. Version space candidate elimination algorithm

4. S and G boundaries characterize learner’s uncertainty

5. Learner can generate useful queries

6. Inductive leaps possible only if learner is biased

7. Inductive learners can be modelled by equivalent deductive systems
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Decision Tree Learning

[read Chapter 3]
[recommended exercises 3.1, 3.4]

• Decision tree representation

• ID3 learning algorithm

• Entropy, Information gain

• Overfitting
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Decision Tree for PlayTennis

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

The instance

• Outlook = Sunny

• Temperature = Hot

• Humidity = High

• Wind = Strong

→ No

27 lecture slides for textbook Machine Learning, c⃝Tom M. Mitchell, McGraw Hill, 1997

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .05-
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+ .22-
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
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Decision Trees

Decision tree representation:

• Each internal node tests an attribute

• Each branch corresponds to attribute value

• Each leaf node assigns a classification

How would we represent:

• ∧,∨, XOR

• (A ∧B) ∨ (C ∧ ¬D ∧E)

• M of N
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When to Consider Decision Trees

• Instances describable by attribute–value pairs

• Target function is discrete valued

• Disjunctive hypothesis may be required

• Possibly noisy training data

Examples:

• Equipment or medical diagnosis

• Credit risk analysis

• Modeling calendar scheduling preferences
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Top-Down Induction of Decision
Trees

Main loop:

1. A← the “best” decision attribute for next node

2. Assign A as decision attribute for node

3. For each value of A, create new descendant of node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Entropy

En
tro

py
(S

)

1.0

0.5

0.0 0.5 1.0
p+

• S is a sample of training examples

• p⊕ is the proportion of positive examples in S

• p⊖ is the proportion of negative examples in S

• Entropy measures the impurity of S

Entropy(S) ≡ −p⊕ log2 p⊕ − p⊖ log2 p⊖
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Entropy

Entropy(S) = expected number of bits needed to encode class (⊕ or ⊖) of randomly drawn member of S
(under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns − log2 p bits to message having probability p.

So, expected number of bits to encode ⊕ or ⊖ of random member of S:

p⊕(− log2 p⊕) + p⊖(− log2 p⊖)

Entropy(S) ≡ −p⊕ log2 p⊕ − p⊖ log2 p⊖

with c-wise classification, we get

Entropy(S) =
c
∑

i=1

−pi log2 pi
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Information Gain

Gain(S,A) = expected reduction in entropy due to sorting on A

Gain(S,A) ≡ Entropy(S) −
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

A1=? A2=?

ft ft

[29+,35-] [29+,35-]

[21+,5-] [8+,30-] [18+,33-] [11+,2-]
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Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Selecting the Next Attribute

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:

Gain(s,Outlook) = 0.246

Gain(s, T emperature) = 0.029
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Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}
[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

 

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970
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Hypothesis Space Search by ID3

...

+ + +

A1

+ – + –

A2

A3
+

...

+ – + –

A2

A4
–

+ – + –

A2

+ – +

... ...

–

 

ID3 algorithms perform a single to complex hill-climbing searching

The evaluation function = information gain
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Hypothesis Space Search by ID3

• Hypothesis space is complete!

– Target function surely in there...

• Outputs a single hypothesis (which one?)

– Can’t play 20 questions...

• No back tracking

– Local minima...

• Statisically-based search choices

– Robust to noisy data...

• Inductive bias: approx “prefer shortest tree”
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Inductive Bias in ID3

Note H is the power set of instances X

→Unbiased?

Not really...

• Preference for short trees, and for those with high information gain attributes near the root

• Bias is a preference for some hypotheses, rather than a restriction of hypothesis space H

• Occam’s razor: prefer the shortest hypothesis that fits the data
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Occam’s Razor

Why prefer short hypotheses?

Argument in favor:

• Fewer short hyps. than long hyps.

→ a short hyp that fits data unlikely to be coincidence

→ a long hyp that fits data might be coincidence

Argument opposed:

• There are many ways to define small sets of hyps

• e.g., all trees with a prime number of nodes that use attributes beginning with “Z”

• What’s so special about small sets based on size of hypothesis??
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Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, P layT ennis = No

What effect on earlier tree?

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny
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Overfitting

Consider error of hypothesis h over

• training data: errortrain(h)

• entire distribution D of data: errorD(h)

Hypothesis h ∈ H overfits training data if there is an alternative hypothesis h′ ∈ H such that

errortrain(h) < errortrain(h
′)

and
errorD(h) > errorD(h′)
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Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

• stop growing when data split not statistically significant

• grow full tree, then post-prune

How to select “best” tree:

• Measure performance over training data

• Measure performance over separate validation data set

• MDL: minimize size(tree) + size(misclassifications(tree))
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Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible node (plus those below it)

2. Greedily remove the one that most improves validation set accuracy

• produces smallest version of most accurate subtree

• What if data is limited?

46 lecture slides for textbook Machine Learning, c⃝Tom M. Mitchell, McGraw Hill, 1997



Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules

2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)
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Converting A Tree to Rules

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

IF (Outlook = Sunny) ∧ (Humidity = High)
THEN PlayT ennis = No

IF (Outlook = Sunny) ∧ (Humidity = Normal)
THEN PlayT ennis = Y es

. . .

49 lecture slides for textbook Machine Learning, c⃝Tom M. Mitchell, McGraw Hill, 1997

Continuous Valued Attributes

Create a discrete attribute to test continuous

• Temperature = 82.5

• (Temperature > 72.3) = t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No
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Attributes with Many Values

Problem:

• If attribute has many values, Gain will select it

• Imagine using Date = Jun 3 1996 as attribute

One approach: use GainRatio instead

GainRatio(S,A) ≡ Gain(S,A)

SplitInformation(S,A)

SplitInformation(S,A) ≡ −
c
∑

i=1

|Si|
|S|

log2
|Si|
|S|

where Si is subset of S for which A has value vi
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v
-

Attributes with Costs

Consider

• medical diagnosis, BloodTest has cost $150

• robotics, Width from 1ft has cost 23 sec.

How to learn a consistent tree with low expected cost?
One approach: replace gain by

• Tan and Schlimmer (1990)
Gain2(S,A)

Cost(A)
.

• Nunez (1988)
2Gain(S,A) − 1

(Cost(A) + 1)w

where w ∈ [0, 1] determines importance of cost
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Unknown Attribute Values

What if some examples missing values of A?
Use training example anyway, sort through tree

• If node n tests A, assign most common value of A among other examples sorted to node n

• assign most common value of A among other examples with same target value

• assign probability pi to each possible value vi of A

– assign fraction pi of example to each descendant in tree

Classify new examples in same fashion
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