Computational Learning Theory

[read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8]

e Computational learning theory

e Setting 1: learner poses queries to teacher

e Setting 2: teacher chooses examples

e Setting 3: randomly generated instances, labeled by
teacher

e Probably approximately correct (PAC) learning

e Vapnik-Chervonenkis Dimension

e Sample Complexity

e Computational Complexity

e Mistake bounds



Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

e Probability of successful learning, §

e Number of training examples, m

e Complexity of hypothesis space, |H|or|VC|

e Accuracy to which target concept is approximated, e

e Manner in which training examples presented at random



Prototypical Concept Learning
Task

e Given:

— Instances X: Possible days, each described by the
attributes Sky, AirTemp, Humidity, Wind, Water,
Forecast

— Target function ¢: EnjoySport : X — {0, 1}
— Hypotheses H: Conjunctions of literals. E.g.
(?,Cold, High,?,7,7).

— Training examples D: Positive and negative
examples of the target function

(x1,c(x1)), .- (Tm, c(xm))

e Determine:

— A hypothesis h in H such that h(z) = c(x) for all
x in trainingdata D?

— A hypothesis h in H such that h(z) = c¢(x) for all
rin X7



Sample Complexity

How many training examples are sufficient to learn the target
concept?

1. If learner proposes instances, as queries to teacher

e Learner proposes instance x, teacher provides

c(z)
2. If teacher (who knows c¢) provides training examples

e teacher provides sequence of examples of form

(z,c(x))
3. If some random process (e.g., nature) proposes instances

e instance x generated randomly, teacher provides

()



Sample Complexity: 1

Learner proposes instance z, teacher provides c(x)
(assume c is in learner's hypothesis space H)
Optimal query strategy: play 20 questions

e pick instance x such that half of hypotheses in V.S
classify x positive, half classify x negative

e When this is possible, need [log, |H|| queries to learn ¢

e when not possible, need even more



Sample Complexity: 2

Teacher (who knows c) provides training examples

(assume c is in learner’'s hypothesis space H)

Optimal teaching strategy: depends on H used by learner

Consider the case H = conjunctions of up to n boolean literals
and their negations

e.gd., (AirTemp = Warm) A (Wind = Strong), where
AwrTemp, Wind, ... each have 2 possible values.

e if n possible boolean attributes in H, n + 1 examples
suffice

e WwWhy?



Sample Complexity: 3

Given:
e sSet of instances X

e set of hypotheses H
e set of possible target concepts C

e training instances generated by a fixed, unknown
probability distribution D over X

Learner observes a sequence D of training examples of form
(z,c(x)), for some target concept c € C

e instances x are drawn from distribution D
e teacher provides target value c(x) for each
Learner must output a hypothesis h estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free classifications



True Error of a Hypothesis

Instance space X

Where o
and f dizagree

Definition: The true error (denoted errorp(h))
of hypothesis h with respect to target concept ¢
and distribution D is the probability that A will
misclassify an instance drawn at random
according to D.

errorp(h) = xF;’D[c(a:) #= h(x)]



Two Notions of Error

Training error of hypothesis h with respect to target concept ¢

How often h(x) # c(x) over training instances

True error of hypothesis h with respect to c

How often h(x) # c(z) over future random instances

Our concern:

Can we bound the true error of h given the training error
of h?

First consider when training error of h is zero (i.e.,
h € VSH,D)

— Consistent Learners



Exhausting the Version Space

Hypothesis space H

. error=.3
error=.1 r=4
. error=.2
error=.3 r=3

r=.

(r = training error, error = true error)

Definition: The version space V Sy p is said to

be e-exhausted with respect to ¢ and D, if every
hypothesis h in V.Sy p has error less than e with

respect to ¢ and D.

(Vh € VSup) errorp(h) < e



How many examples will e-exhaust the VS7?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for any
0 <e< 1, the probability that the version space

with respect to H and D is not e-exhausted
(with respect to c¢) is less than

|H|€—em

Interesting! This bounds the probability that any consistent
learner will output a hypothesis h with error(h) > €

If we want to this probability to be below §

|Hle "™ < §

then

m > (In|H| +In(1/5))



Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with probability at
least (1 — ) that

every h in V.Sy p satisfies errorp(h) < e
Use our theorem:
1
m > =(In|H| + In(1/5))
€

Suppose H contains conjunctions of constraints on up to n
boolean attributes (i.e., n boolean literals). Then |H| = 3"+ 1,
and

m > Z(In(3" + 1) +In(1/6)

or

m > %(nInS +1In(1/4))



Linear in n and %



