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Abstract Quadratic assignment problems (QAPs) is a NP-hard combinatorial optimization
problem. QAPs are often used to compare the performance of meta-heuristics. In this pa-
per, we propose a QAP problem instance generator that can be used for benchmarking for
heuristic algorithms. Our QAP generator combines small size QAPs with known optimum
solution into a larger size QAP instance. We call these instances composite QAPs (cQAPs),
and we show that the cost function of composite QAPs is additively decomposable. We give
mild conditions for which a composite QAP instance has known optimum solution. We gen-
erate cQAP instances using uniform distributions with different bounds for the component
QAPs and for the rest of the cQAP elements. Numerical and analytical techniques that mea-
sure the difficulty of the composite QAP instances in comparison with other QAPs from the
literature are introduced. These methods point out that some cQAP instances are difficult
for local search with many local optimum of various values, low epistasis and non-trivial
asymptotic behaviour.

Keywords Combinatorial optimization, Meta-heuristics, Quadratic assignment problem,
Instance generator, additively decomposable functions, landscape analysis

1 Introduction

The Quadratic assignment problem (QAP) models many real-world problems like computer
aided design in the electronics industry, scheduling, vehicle routing, etc. Therefore, the QAP
instances are often included in the benchmarks for testing meta-heuristics [6, 17, 19, 19].
Recent extensive reviews on QAPs are given in [4, 13]. Intuitively, QAPs can be described
as the (optimal) assignment of a number of facilities to a number of locations. In general,
QAP instances are NP hard problems. There are special cases of QAPs that are easy to solve
[2,4,7,23]. A problem is considered easy if it is solvable in polynomial time. Exact solutions
for hard QAPs are very expensive to obtain even for moderate size QAPs, about 30 facilities.
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Meta-heuristic search algorithms based on local search are especially useful for large size
problems. Measuring their performance on test problems is best done when the optimum
solution for that problem is known.

Let us considerN facilities, a setΠ(N) of all permutations of {1, . . . , N} and theN×N
distance matrix A = (aij), where aij is the distance between location i and location j. We
assume a flow matrix B = (bij) where bij represents the flow from facility i to facility j.
The goal is to minimize the cost function

c(π) =
N∑
i=1

N∑
j=1

aij · bπiπj (1)

where π is a permutation of N facilities and πi is the i-th element of π. It takes quadratic
time to evaluate this function. We consider a QAP as a tuple (A,B, s) where s, if known,
is the optimum solution. If the optimum solution is not known, we denote the QAP simply
with (A,B). Here, we consider QAP instances that were initially used in [21]. We pose three
requirements for the flow and distance matrices. The distance and the flow between the same
facilities is 0, ∀i, aii = 0 and bii = 0. The distance and the flow matrices are symmetrical,
∀i, j, aij = aji and bij = bji. All the elements of the distance and flow matrices are non-
negative, natural numbers within a range, ∀i, j, 0 ≤ aij ∈ IN and 0 ≤ bij ∈ IN .

Related work. There are several QAP instance generator algorithms [3, 16] that gener-
ate hard and large instances of QAPs with a known optimum. They start with an easy QAP
instance and iteratively add modifications to the QAP instance in order to make it harder. In
these methods, solving QAP instances is associated with solving the bi-partitioning prob-
lem. These methods are rather elaborated and restrictive in the type of QAPs generated,
and impose strict conditions on the structure of the underlying graph and on the structure
variations.

Drezner et al. [5] propose instances of QAPs that are difficult to solve with some heuris-
tics, but easy to solve with exact methods. QAP instances proposed in [5] are simplified
versions of instances from [16] where the underlying grid is very sparse and the distribution
that positions facilities on this grid is random. Their goal is to generate difficult QAPs with
sparse flow matrices. The other type of QAP instance generator from [5] splits the facilities
in regions, or clusters. Because of their sparseness, these QAPs are easy to solve with some
exact methods [14], even with about 90 facilities, and difficult for heuristics that use the
common two facilities exchange operator [15].

Taillard [21] analysed the performance of some heuristics on several QAPs from the
literature. He points out that, even though generating uniform randomly distributed values
for distance and flow matrices is a popular choice, the resulting QAPs are not interesting.
Their exact optimum is difficult to find, but the difference between some easy to find local
optima and the global optimum value is small. Moreover, the difference in cost function
between the best and the worst cost values is approaching 0 when the number of facilities
approaches∞. He explained this behaviour by the lack of correlation between local optima.
Taillard created a larger variation between the worst and the best local optimum using non-
uniform random elements for distance and flow matrices. He concluded that large size QAPs
with interesting structure to exploit by heuristic search algorithms are difficult to generate
by a problem generator. For an overview of the recent results and developments in the area
of random QAPs, we refer to Krokhmal and Pardalos [11].

Main contributions. Our goal is to design a QAP instance generator that creates useful
benchmark instances for heuristics like iterated local search which exploit the particularities
of the search space. We consider that a QAP benchmark instance should have the following
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properties: i) large size, ii) difficult and interesting to solve with both heuristics and exact
algorithms, iii) known optimum solution, and iv) not trivial asymptotic behaviour (i.e., the
difference between the lower and the upper cost functions does not go to 0 when the number
of facilities goes to∞).

Our solution is to consider several block flow and distance matrices for QAP instances [6].
We aggregate QAPs with computable optimum solutions, into a larger QAP such that the
optimum of the resulting QAP is known. We call this class of QAPs, the composite QAPs
(cQAPs). There are three optimization problems in cQAPs: i) optimizing the component
QAPs, ii) optimizing the region outside these components, and iii) a global optimization
problem for the entire cQAP. In this way, we will generate multiple local optima considered
challenging for heuristics.

The composite QAP has an additively decomposable cost function that can be expressed
as the sum of component QAP’s cost functions plus two extra terms corresponding to the
overlapping parts of the component QAPs and the region outside these component QAPs.
Problems with additively decomposable functions, are considered useful test benchmark for
meta-heuristic algorithms that explore the structure of the search space [18]. The two extra
terms makes the problem difficult for the heuristics and the exact algorithms (i.e., branch-
and-bound) that explicitly explore the decomposable structure of the generated QAPs. To
hide the block structure of cQAP and its exact solution, we rename the facilities in a random
way in order.

We give mild conditions for which cQAPs have the identity permutation as the global
optimum solution. We split the analysis of cQAP in two based on the relative positioning of
component QAP instances into the component QAP: i) overlapping and ii) non-overlapping.
The analysis considers the cyclic form from the permutation group theory, where a cycle
here corresponds with a component QAP. The result is the upper and lower bounds for the
values in the component and composite QAP instances, but also the relationship between
their distributions such that the identical permutation is the global optimum of a cQAP in-
stance. This approach can be considered an exact algorithm where the goal is to find the
conditions which easily solves cQAP instances. However, the verification if the global op-
timum solution is the identical permutation depends on the number of permutations of the
component QAP instances into the cQAP instance, making the generation of large cQAPs
computationally infeasible. In order to simplify the procedure of generating cQAPs with
known global optima, we consider specific generating distributions (i.e., uniform). The con-
ditions on the upper and lower bounds are now easily verifiable, and practical numerical
values are proposed.

To generate cQAP instances, a number of parameters need to the set, like the number, the
size and the distribution of the component QAPs, and the distributions of the elements in the
outside region of cQAP. We use several measurements from the literature (i.e., epistasis) to
classify the difficulty of cQAPs for local search algorithms. Accordingly to these measures,
cQAP instances are difficult instances for heuristics also when compared with other QAP
instances from literature.

Approximating the number and the size of basins of attraction is a good method for
landscape analysis [8]. The larger the number and the size of local optima, the more probable
it becomes that local search gets stuck before finding the global optimum. We show that
even small size QAPs have a lot of local optima and their number increases with the number
of facilities. Due to the possible huge number of local optima, we propose an alternative
definition and empirical approximation of basins of attraction.

Outline. Section 2 introduces an algorithm that generates composite QAP instances.
Section 3 gives the conditions under which these QAPs have the identity permutation as



4 Mădălina M. Drugan

Algorithm 1: generate cQAP
Require: d component QAP instances {(A1, B1, I), . . . , (Ad, Bd, I)}
Require: d allocation strategies {S1, . . . ,Sd}, where Sk : {1, . . . , nk} → {1, . . . , N}
Require: HA, LA,HB and LB discrete distributions

Calculate N using the allocation strategies
Initialize AC , BC , AO and BO with 0s everywhere
(AC , BC)← assemble({(A1, B1, I), . . . , (Ad, Bd, I)}, {S1, . . . ,Sd})
(AO, BO)← fillingUp(HA,LA,HB ,LB)
A← AC +AO ; B ← BC +BO
return (A,B)

optimum solution and Section 4 gives the bounds of uniform distributions for which these
conditions hold. In Section 5, we compare some properties of cQAP instances with similar
QAP instances from literature. Section 6 uses landscape analysis to show desirable proper-
ties of cQAP instances for heuristics. Section 7 concludes this paper.

2 A composite QAP instances generator

In this section, we design an algorithm that generates composite QAP instances from d

small size QAP matrices with identity permutation I as optimum solution, where ∀i ∈
{1, . . . , N}, Ii = i. A straightforward method to transform a component QAP with an opti-
mum solution s into a QAP with identity permutation as optimum solution is to rename the
facilities. The algorithm generate cQAP has as input d allocation strategies, Si, one for
each component QAP, that allocates facilities from a component QAP, (Ai, Bi, I), to the
composite QAP. The number of facilities N is calculated from the allocation strategies. The
third set of inputs is the set of discrete distributions used to fill up the remaining elements of
the component QAP, whereHA andHB are the high valued distributions and LAand LB are
the low valued distributions for the matrices A and B of the composite QAP, respectively. In
Algorithm 1, the pseudo-code for generating composite QAPs, there are two function calls.

The function assemble aggregates the input component QAPs. The composite mask C
keeps track of positions in the matrices of cQAP assigned by the elements of the component
QAPs. Then, cij = 1 if the aij and bij were assigned in the assemble algorithm. Otherwise,
cij = 0. The elements from A assigned in assemble are denoted with a masked flow
matrix AC , where aij is defined if cij = 1, and aij is undefined otherwise. Similarly, the
elements from B assigned in assemble are denoted with a masked distance matrix BC . The
corresponding pseudo-code is given in Algorithm 2 and it is explained in Section 2.1.

The function fillingUp assigns the positions in cQAP’s matrices not assigned with as-
semble. Thus, the elements aij and bij are assigned with fillingUp if and only if cij = 0.
The corresponding pseudo-code is given in Algorithm 3 and it is described in Section 2.2.
For ease of notation, we consider an outside region mask matrixO = ¬C. The elements from
A assigned with fillingUp are denoted with a masked matrix AO , and the elements from B

assigned with fillingUp are denoted with BO . We show a condition between the elements
in this region for which their cost function has the identity permutation as the optimum
solution.

Section 2.3 comments on the interplay between the two regions, the component and the
outside regions. The algorithm generate cQAP returns the distance matrix A← AC +AO
and the flow matrix B ← BC +BO .
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2.1 The allocation strategies

Let Sk be an allocation strategy or function that assigns facilities from each component
QAP, (Ak, Bk, I) to the facilities of composite QAP. We denote with j the facility from
the cQAP that corresponds to the facility i from the component k. Thus, j ← Ski and
Sk : {1, . . . , nk} → {1, . . . , N} where nk the number of facilities in the k-th component
QAP. For each facility from the cQAP, there exists at least one facility of a component
QAP. To each facility i from (Ak, Bk, I), it corresponds a unique facility t from (A,B),
where t ← Ski . The union of all assignment functions is the number of facilities in cQAP,
∪dk=1S

k = {1, . . . , N}.
We classify allocation strategies using two criteria: i) by the number of facilities from

component QAPs that overlap in the composite QAP, ii) adjacent (or not) sequences of facil-
ities assigned from the component QAPs into the cQAP. When there is no overlap between
facilities of the component QAPs, each facility from the cQAP corresponds to exactly one
facility from one component QAP. Then, Sk ∩ Sp = ∅, ∀k 6= p. If two facilities from two
component QAPs are assigned to a single facility in the cQAP, we add their corresponding
values in distance and flow matrices of component QAPs. Then, ∃k, p, Sk ∩ Sp 6= ∅, mean-
ing that the facilities of the component QAPs overlap. To ease the notation, we denote with
Sk,p the intersection between Sk and Sp.

If the facilities of the component QAPs are assigned to non-adjacent facilities in the
composite QAP, then the composite QAP is not diagonal. Assigning the facilities from each
component QAP randomly, without replacement, to facilities of cQAP, is an example of non-
contiguous assignment of facilities. The resulting cQAP can be transformed in a diagonal
QAP by swapping rows and columns.

The choice of allocation strategies is important also in calculatingN . A non-overlapping
strategy implies that the size, or the number of facilities, of the cQAP is the sum of the sizes
of the component QAPs. Then, N =

∑d
k=1 n

k. For overlapping allocation strategies, N is
smaller than the sum of the sizes of component QAPs.

In Algorithm 2, for each pair of facilities (i, j) ∈ Ak from each k-th component QAP,
there assigned a pair of facilities (t, p) in the resulting AC . We update the values atp ∈ AC
and btp ∈ BC with the corresponding values in akij ∈ Ak and bkij ∈ Bk. Then, atp ←
atp + akij and btp ← btp + bkij , respectively. Since AC and BC should be symmetrical, we
also set apt ← atp and bpt ← btp. The mask C is updated to 1 for the pair of indices t and

Algorithm 2: assemble({(Ak, Bk, I) | k ≤ d},{S1, . . . ,Sd})
for k = 1 to d do

for i = 1 to nk do
t← Ski
for j = i+ 1 to nk do
p← Skj
atp ← atp + akij ; apt ← atp

btp ← btp + bkij ; bpt ← btp
ctp ← 1; cpt ← 1

end for
end for

end for
return (AC , BC)



6 Mădălina M. Drugan

Algorithm 3: fillingUp(HA,LA,HB ,LB)
RA ← ∅ andRB ← ∅ two ordered sets
t← 0
for i, j = 1 to N , and cij = 0 do

if α < U(0, 1) then
Generate aij ∝ HA and b′t ∝ LB

else
Generate aij ∝ LA and b′t ∝ HB

end if
RA ←RA ∪ aij andRB ←RB ∪ b′t
t← t+ 1

end for
for r = 1 to |RA| do
r ← rank of aij inRA
bij ← b′t with rank |RA| − r inRB

end for
return (AO, BO)

p, ctp ← 1, and cpt ← 1. The returned, yet incomplete cQAP, is added to the output of
Algorithm 3.

2.2 The outside region

To preserve the identity permutation as the optimum solution for the cQAP, our algorithm
guarantees that the elements in AO and BO obey the rearrangement inequality [22].1 Infor-
mally, the rearrangement inequality states that the values in AO and BO are either larger or
smaller than values in AC and BC , respectively. Thus, the largest values in BO correspond
to the lowest values in AO and the lowest values in BO correspond to the largest values in
AO .

Consider that the distribution LA samples the lowest values of AO , and the distribution
LB samples the lowest values of BO . Consider that the distributionHA samples the highest
values of AO , and the distribution HB samples the highest values of BO . We generate α
values in AO from HA and 1 − α from LA. Because of the rearrangement inequality, α
values in BO are generated from LA and 1− α are generated from HA.

Algorithm 3 presents the pseudo-code for generating the elements in AO and BO . fill-
ingUp has as input parameters the set of distributions for the outside region, HA, LA, HB ,
LB , and the percentage of values generated from HA in AO , α.

LetRA andRB be ordered sets containing all the values fromAO andBO , respectively.
Let r be the rank of aij in RA, where cij = 0. If aij is generated from HA, then bij is
generated from LB such that the rank of bij inRB is |RA|− r. Similarly, if aij is generated
from LA, then bij is generated from HB such that the rank of bij in RB is |RA| − r.

1 Let n variables be generated with any two distributions {x1, . . . , xn} and {y1, . . . , yn} for which x1 ≤
. . . ≤ xn and y1 ≥ . . . ≥ yn. The rearrangement inequality states that

∑n
i=1 xi · yi ≤

∑n
i=1 xi · yπi , for

all permutations π.
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2.3 Outside vs composite regions

Cela [4] showed that QAP instances where all the elements obey the rearrangement inequal-
ity are easy. When the component QAPs are degenerated, n1 = . . . = nd = 1, the cQAP
becomes the ”easy” QAP of Cela [4]. We consider the composite region C to be the difficult
region of the generated cQAP, whereas the outside region O is the easy region of the cQAP.
By design, the outside region and all the component QAPs are optimized by the identity
permutation, but the composite QAP’s optimum solution is not, in general, the identity per-
mutation. In the next section, we give conditions for which the generated composite QAP
instances have the identity permutation as an optimum solution.

Let mA be the smallest element for all the component distance matrices Ak, and let mB

be the smallest element for all the component flow matrix Bk. Then, mA ← mink,i,j{akij}
and mB ← mink,i,j{bkij}. Let MA be the largest element from all the component distance
matrices Ak, and let mB be the largest element for all the component flow matrices Bk.
Then, MA ← maxk,i,j{akij} and MB ← maxk,i,j{bkij}. Let `A and LA be the lowest and
the highest bounds of the distribution LA, and let `B and LB be the lowest and the highest
bounds of the distribution LB . Let hA and HA be the lowest and the highest bounds of the
distributionHA and let hB and HB be the lowest and the highest bounds of the distribution
HB . We take `A < LA < hA < HA and `B < LB < hB < HB .

We consider that all the elements in the outside region are either smaller or larger than
all the elements in the composite region. Then, when elements are exchanged between the
two regions, accordingly to the rearrangement inequality, the cost of the cQAP instance
increases. This means that ∀aij ∈ AC and ∀bij ∈ BC , we have LA ≤ aij ≤ hA, and
LB ≤ bij ≤ hB . If there is not overlap between the component QAP instances, we have
`A ≤ LA < mA < MA < hA < HA and `B ≤ LB < mB < MB < hB < HB . This
condition is used in Section 3 to generate cQAP instances with identity permutation as the
optimum solution.

3 Designing cQAPs with known global optimum solution

In this section, we study the conditions for which a cQAP has the identity permutation as
the optimal solution.

Additively decomposable cost functions of the cQAP instances. Consider the set
Π(N) of all permutations of N facilities in the flow matrix. In the permutation group the-
ory, permutations are often written in cyclic form. If π is a permutation of facilities, we can
write it as π = (π1, . . . , πd), where πk is the k-th cycle containing a set of facilities that
can be swapped with each other. These cycles are disjunct subsets. We consider d cycles,
each cycle contains the facilities of exactly one component QAP. If there are nk facilities in
the k-th component QAP, the corresponding cycle is a nk-cycle. The cycle of a component
QAP k has the cost function

ck(π) =
∑

i,j,πi,πj∈Sk
akij · b

k
πiπkj

(2)

where k ∈ {1, . . . , d}, d is the number of component QAPs and akij is an element of the k-th
component QAP. Similarly, bkπiπj is an element of the k-th component QAP. By design, the
optimal cost for each cycle is ck(I) = minπ c

k(π).
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The cost function of π is now

c(π) =
N∑
i=1

N∑
j=1

aij · bπiπj =
d∑
k=1

ck(π) +RC(π) +RO(π) (3)

where
RO(π) =

∑
i,j∧cij=0∧cπiπj=0

aij · bπiπj (4)

is a residue defined as the sum of costs for the elements in the outside region. In the sequel,
the residue RC(π) is the sum over all overlapping positions of the QAPs and depends on
the overlapping pattern. Thus, the composite QAP instances have additively decomposable
cost functions with two residual terms representing the costs of the overlapping parts and
the outside region, respectively.

3.1 Generating non-overlapping composite QAP instances

In this section, we give mild conditions for which a composite QAP with non-overlapping
component QAPs has a known global optimum. The cost function of any permutation π

from Equation 3 can be formulated as

c(π) =
d∑
k=1

ck(π) +RO(π)

where RO(π) as in Equation 4. Since there is no overlap in the component QAPs, then
RC(π) = 0.

The set Π(N) of all possible permutations is split in three disjunct subsets defined by: i)
products of cycles over the component QAPs, ii) cycles that completely switch their facilities
with other cycles, and iii) the general case where facilities are switched between cycles. We
now express the cost function of a permutation using Equation 3.

i) Swapping facilities in their cycles. When a facility belongs to the k-th component, so
does its permutation. Thus, ∀i, k, we have i ∈ Sk iff πi ∈ Sk. Let π = (π1, π2, . . . , πd) be
a subset of permutations expressed as a product of d cycles, where a k-cycle is defined over
the facilities of the k-th component QAP as in Equation 2.

ii) Swapping cycles. Let π′ = (π′1, . . . , π′d) be a permutation of n-cycles, where the
facilities of component QAPs are swapped entirely. Thus, if the k-th and the p-th cycles are
swapped, then ∀i ∈ Sk and π′i ∈ S

p. The cost function of a cycle is now

ck(π′) =
∑

i,j∈Sk∧π′i,π′j∈Sp
akij · b

p
π′iπ
′
j

(5)

iii) Swapping facilities between cycles. For the rest of the permutations, exchanging
facilities between cycles results also in swapping facilities between component QAPs and
the outside region. This represents the majority of the possible permutations and includes
the other two cases, i.e. i) and ii), as particular cases. When facilities are swapped between
the component QAPs, there are elements swapped between the composite and the outside
region. For example, for such a permutation π′′, if i, j, π′′i ∈ S

k and π′′j ∈ S
p, then akij ∈ AC

and bπ′′i π′′j ∈ BO .
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The cost function when both facilities and their permutation belong to the k-th compo-
nent QAP is

ck(π′′) =
∑

i,j,π′′i ,π
′′
j ∈Sk

akij · b
k
π′′i π

′′
j

+
∑

i,j∈Sk∧π′′i ,π′′j ∈Sp
akij · b

p
π′′i π

′′
j

(6)

The residue for the outside region contains three sum of products of elements in the com-
posite and the outside region

RO(π′′) =
d∑
k=1

d∑
r=1
r 6=k

d∑
p=1
p 6=r,k

∑
i,j∈Sk

π′′i ∈S
r∧π′′j ∈S

p

akij · bπ′′i π′′j + (7)

d∑
k=1

d∑
r=1
r 6=k

d∑
p=1
p 6=r,k

∑
i∈Sr∧j∈Sp
π′′i ,π

′′
j ∈S

k

aij · bkπ′′i π′′j +
d∑
k=1

d∑
r=1
r 6=k

d∑
p=1

d∑
t=1
t 6=p

∑
i∈Sk∧j∈Sr

π′′i ∈S
p∧π′′j ∈S

t

aij · bπ′′i π′′j

In the following proposition, we give mild conditions for which a composite QAP in-
stance with non-overlapping component QAP instances has the identity permutation as op-
timum solution. Intuitively, the proof considers the difference between the identity permu-
tation and another permutation for all three cases presented above.

Proposition 1 Let be {(Ak, Bk, I) | k = 1, . . . , d} a set of equal sized QAP instances
with identity permutation as optimum solution, and Algorithm 1 to generate a composite
QAP from these component QAPs. Let the component QAPs be non-overlapping and let the
following equations hold

`A < LA < mA < MA < hA < HA and `B < LB < mB < MB < hB < HB (8)

min{mA,mB}·(min{hA, hB}+min{`A, `B}) > MA ·MB+min{hA ·LB , LA ·hB} (9)
d∑
k=1

(
ck(I)− ck(π)

)
+

∑
i,j∧cij=0∧cπiπj=0

aij · (bij − bπiπj ) < 0 (10)

where π any permutation. Then, (A,B, I) has the identity permutation as optimum solution.

Proof Let π be a permutation. The difference between the cost function of π and the cost
function of I is

∆(c(I), c(π)) = c(I)− c(π) =
N∑

i,j=1

aij · bij −
N∑

i,j=1

aij · bπiπj =
N∑

i,j=1

aij · (bij − bπiπj )

I is the global optimum solution if ∆(I, π) < 0 for all π.
i) Swapping facilities in their cycles. In this case,∆(c(I), c(π)) < 0 because, by design:

1. for each component QAP, ∀k, the identity permutation is optimal, ck(I)− ck(π) < 0;
2. the elements in the outside region obey the rearrangement inequality∑

cij=0

aij · bij <
∑

i,j∧cij=0∧cπiπj=0

aij · bπiπj
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ii) Swapping cycles. From Equation 5, we deduce that

∆(c(I), c(π′)) =
d∑
k=1

(
ck(I)− ck(π′)

)
+

∑
i,j∧cij=0∧cπ′

i
π′
j
=0

aij · (bij − bπ′iπ′j ) (11)

This difference is smaller than 0 when Inequality 10 holds.
iii) Swapping facilities between cycles. From Equation 6 and 7, the difference in cost

function is

∆(c(I), c(π′′)) =
d∑
k=1

∑
i,j,π′′i ,π

′′
j ∈Sk

akij ·(b
k
ij−b

k
π′′i π

′′
j

)+
d∑
k=1

d∑
p=1
p6=k

∑
i,j∈Sk

π′′i ,π
′′
j ∈S

p

akij ·(b
k
ij−b

p
π′′i π

′′
j

)

+
d∑
k=1

d∑
r=1
r 6=k

d∑
p=1
p 6=r,k

∑
i,j∈Sk∧

π′′i ∈S
r∧π′′j ∈S

p

akij ·(b
k
ij−bπ′′i π′′j )+

d∑
k=1

d∑
r=1
r 6=k

d∑
p=1
p 6=r,k

∑
i∈Sr∧j∈Sp
∧π′′i ,π

′′
j ∈S

k

aij ·(bij−bkπ′′i π′′j )

+
d∑
k=1

d∑
r=1
r 6=k

d∑
p=1

d∑
t=1
t6=p

∑
i∈Sk∧j∈Sr∧
π′′i ∈S

p∧π′′j ∈S
t

aij · (bij − bπ′′i π′′j ) (12)

In the first term of this difference, all facilities are swapped within the same cycle resembling
the sum from Equation 6. Thus, like Equation 6, this sum is negative even when it does not
contain all the facilities of a component QAP because the facilities exchanged with other
cycles are ignored. In the last term from Equation 12, i.e. the fifth term, elements of the
outside region are swapped, and the corresponding cost function is negative accordingly to
the rearrangement inequality.

In the second term of Equation 12, elements of the component QAPs are swapped. The
second and the last terms represent the difference from Equation 11. Although some facil-
ities might be missing from the initial equation, accordingly to Inequality 10, Equation 11
holds for any π′ that swaps only cycles . If the number of swaps between the component
QAPs increases, then the number of products obtained by swapping elements of the com-
posite and outside region, i.e. the third and forth terms in Equation 12, decreases.

We now show that the sum of the third and forth terms from Equation 12 where elements
between the composite and the outside region are swapped has a negative cost. Using the re-
arrangement inequality and Equation 8, we infer that multiplying values from the composite
and outside region has a larger result than multiplying values from the same region. Thus,
the cost of swapping facilities between the composite and outside region is lower bounded
by min{mA,mB} · (min{hA, hB} + min{`A, `B}). In the sequel, the cost of swapping
facilities in the composite region is upper bounded by MA ·MB , and the cost of swapping
facilities in the outside region is upper bounded by min{hA · LB , LA · hB}. Inequality 9
results directly.

This concludes our proof. �

In Proposition 1, Inequality 8 ensures that the rearrangement inequality holds. Inequal-
ity 10 states that if swapping elements in the outside region generates more variance than
swapping cycles then the identity permutation is the global minimum for the subset of per-
mutations where cycles are completely swapped. From Inequality 9 and the rearrangement
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inequality, we have that a permutation where facilities are swapped between the outside and
the composite region has a higher cost than a permutation where solutions are swapped in
the composite or in the outside region. Note that the condition in Inequality 9 can always be
fulfilled by setting the bounds of the distributions HA and HB high enough.

The result from Proposition 1 allows the combination of interesting QAP instances from
QAPLIB. Note that there are needed d! verifications of Inequality 10 in order to decide if the
composite QAP has the identity permutation as global minimum. Thus, this exact approach
is not practical for large number of component QAP instances.

3.2 Generating composite QAPs with overlap

In general, when the component QAPs overlap, the overlapping regions have a different opti-
mum than the identity permutation. In this section, we give mild conditions for the composite
QAP instances to have identity permutation as optimal solution. For ease off the discussion,
we consider a simple pattern for the overlapping component QAPs, where each component
QAP has the same size n and it is overlapping with exactly two other component QAPs.
Each overlap is half of a component QAP’s size, bn/2c. For each facility of the composite
QAP, there are exactly two component QAPs that overlap on. When all d component QAPs
overlap, there are d overlapping regions and the total number of facilities isN = d·n/2. The
flow and distance matrices of all component QAPs are generated with the same distribution
D, where m and M are the lower and upper bounds of D. The elements of AO and BO are
generated with the distributions H and L. The lower bounds of L and H are denoted with
` and h, respectively. We denote with L and H the higher bounds of L and H, respectively.
To make a qualitative distinction between the overlapping and non-overlapping regions, we
consider that all non-overlapping values are lower than all overlapping values, M < 2 ·m.
Then,

` < L < m < M < 2 ·m < 2 ·M < h < H (13)

Now, a (k, k + 1)-cycle is the defined as the overlap between the k-th and the k + 1-th
component QAP instances. We denote with πk,k+1 its permutation. The k-th component
QAP contains two cycles corresponding to the two overlapping areas of the k-th component
QAP, the (k − 1, k)-cycle and the (k, k + 1)-cycle. A permutation of the k-th component is
πk = (πk−1,k, πk,k+1). Like for the non-overlapping cycles, the permutations are split in
three categories based on the distribution of cycles.

i) Swapping facilities in their cycles. Let π = (π1,2, . . . , πd−1,d, πd,1) be a permutation
that can be expressed as d product of cycles. The cost of the (k, k + 1)-cycle is

ck,k+1(π) =
∑

i,j∈Sk,k+1

πi,πj∈Sk,k+1

(akij + ak+1
ij ) · (bkπiπj + bk+1

πiπj )

The residue cost of the overlapping part from Equation 2 is

RC(π) =
d∑
k=1

ck−1,k(πk,k+1) + ck,k+1(πk−1,k)
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where ck−1,k(πk,k+1) and ck,k+1(πk−1,k) are the cost function of the non-overlapping
parts of the k-th component QAP

ck−1,k(πk,k+1) =
∑

i,j∈Sk−1,k

πi,πj∈Sk,k+1

akij · b
k+1
πiπj

ck,k+1(πk−1,k) =
∑

i,j∈Sk,k+1

πi,πj∈Sk−1,k

ak+1
ij · bkπiπj

The cost ck−1,k of the identity permutation Ik,k+1 is

ck−1,k(Ik,k+1) =
∑

i,j∈Sk−1,k

akij · b
k+1
i+n/2,j+n/2

ii) Swapping cycles. Consider that the facilities between two cycles are entirely swapped.
Let π′ = (π′1,2, . . . , π′d−1,d, π′d,1) be a permutation of the d cycles. When the (k, k + 1)-
th and the (p, p + 1)-th cycles are swapped, if i ∈ Sk,k+1 then πi ∈ πp,p+1, and the cost
function of this cycle is

ck,k+1(π′) =
∑

i,j∈Sk,k+1

πi,πj∈Sp,p+1

(akij + ak+1
ij ) · (bpπiπj + bp+1

πiπj )

iii) Swapping facilities between cycles are the largest number of permutations being the
general case covering the other two previous cases.

The following proposition gives mild conditions to have I as exact solution in overlap-
ping cQAPs. The proof of this proposition is given in Appendix A.

Proposition 2 Let {(Ak, Bk, I) | k = 1, . . . , d} be d equal sized QAP instances with iden-
tity permutations as optimum solutions that are combined into a cQAP using Algorithm 1.
Let Sk,p be an assignment function such that: i) ∀k |Sk,k+1| = bn/2c, and ii) ∀k and
p /∈ {k − 1, k + 1}, Sk,p = ∅. Inequalities 13, 14 and 15 hold

m · (h+ `) > 4 ·M2 + h · L (14)

d∑
k=1

(ck(I)− ck(π)) +
∑

cij=0∧cπiπj=0

aij · (bij − bπiπj )+ (15)

d∑
k=1

(
ck−1,k(Ik,k+1)− ck−1,k(πk,k+1) + ck,k+1(Ik+1,k+2)− ck,k+1(πk+1,k+2)

)
< 0

where ck(π) as in Equation 2.
Then, (A,B, I) has the identity permutation as exact solution.

To decide if a generated cQAP has the identity permutation as optimum solution, we
need d! evaluations of Inequality 15 corresponding to all combinations of the component
QAPs on the diagonal of cQAP.
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4 Generating composite QAP instances using uniform distributions

In this section, we generate cQAP instances such that the conditions from Proposition 1 and
Proposition 2 hold without additional evaluations of the relationships between distributions.
The component QAPs are independently generated with an uniform random distribution, D,
the same for all the components. Let L and H be uniform independent distributions, and let
the values of L andH be uniform randomly located inAO andBO . We give mild conditions
on the upper and lower bounds of the uniform distributions and we exemplify them with
numerical values. Note that even though component QAPs and the elements in the outside
region are generated by uniform random distributions, the values of the corresponding cQAP
instances does not belong to a uniform random distribution.

4.1 Composite QAP instances with non-overlapping component QAPs

We study how the inequalities from Proposition 1 depend on the bounds of the uniform
distributions. To compare cQAP instances with the uniform randomly generated QAPs of
Taillard [21], let the flow and the distance matrices be generated by the same distribution.

Let the two terms from Inequality 10 be denoted as the variance of the composite region
and of the outside region

∆C =
d∑
k=1

ck(I)− ck(π)

∆O = RO(I)−RO(π) =
∑

i,j∧cij=0∧cπiπj=0

aij · (bij − bπiπj )

We explicitly compute the values of ∆C and ∆O in order to calculate the sing of the sum
∆O + ∆C . If ∆O + ∆C is non-negative, the identity permutation is the global optimum
solution.

Consider that there are L− `+ 1 values in L, ` = s0, s1, . . . , sL−` = L, and H − h+ 1
uniformly generated values inH, (h = t0), t1, . . . , (tH−h = H). Let’s assume that L− ` =
H − h. With a perfect random generator, in any row and column of AO and BO values of L
and of H are equally represented.

4.1.1 The variance in the outside region, ∆O

The value of the identity permutation I is the minimum value and does not depend on α,
which represents the distribution of low and high values. Accordingly with the rearrange-
ment inequality, the lowest values are multiplied with the highest values. Assuming that all
the values of the distributions L and H are uniformly distributed in the outside region, the
outside region has the approximative value of

RO(I) =
∑
cij=0

aij · bij ≈
|AO|

H − h+ 1
·

(
L−∑̀
i=0

si · tH−h−i

)
(16)

Let π be a permutation obtained from I by swapping w facilities. As a result, in the
outside region |AO| a non-overlapping pattern for a cQAP instance, there are a p percent
swapped elements, p · |AO| = w · (N − d), where p ∈ [0, 1] and the number of elements in
the outside region in both the flow and distance matrix is |AO| = N2 − d · n2.
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i) α = 0.5. Then, the elements in the flow and distance matrices are equally generated
from low and high distributions, L and H. The swapped elements are randomly distributed
in BO and, thus, the cost of the outside region, RO(π), is upper bounded by

RO(π) ≤ |AO|
L− `+H − h+ 2

·

L−∑̀
i=0

si +
H−h∑
j=0

tj

2

Assuming that (1 − p) · |AO| percent of the outside region is optimized and the remaining
p · |AO| percent of the outside region is uniform randomly positioned in the matrix, the cost
of the outside region is approximated by

RO ≈
(1− p) · |AO|
L− `+ 1

·

(
L−∑̀
i=0

si · tL−`−i

)
+
p · |AO| ·

(∑L−`
i=0 si +

∑H−h
j=0 tj

)2
L− `+H − h+ 2

Given a certain value for p, the variance is the outside region is

∆O ≈
p · |AO|
L− `+ 1

·

(
L−∑̀
i=0

si · tL−`−i

)
−
p · |AO| ·

(∑L−`
i=0 si +

∑H−h
j=0 tj

)2
L− `+H − h+ 2

(17)

ii) α = 1.0. The values in the distance matrix are generated by H and the values in the
flow matrix are generated by L. The cost of the outside region, RO(π) is upper bounded by

RO(π) ≤ |AO|
(L− `+ 1) · (H − h+ 1)

·

(
L−∑̀
i=0

si

)
·

H−h∑
j=0

tj


If we assume that (1− p) · |AO| percent of the outside region is minimized, then the cost of
the outside region is approximated by

RO ≈
(1− p) · |AO|
L− `+ 1

·

(
L−∑̀
i=0

si · tL−`−i

)
+
p · |AO| ·

(∑L−`
i=0 si

)
·
(∑H−h

j=0 tj

)
(H − h+ 1) · (L− `+ 1)

The variance in the outside region is about

∆O ≈
p · |AO|
L− `+ 1

·

(
L−∑̀
i=0

si · tL−`−i

)
−
p · |AO| ·

(∑L−`
i=0 si

)
·
(∑H−h

j=0 tj

)
(H − h+ 1) · (L− `+ 1)

(18)

iii) ζ. To compare our composite QAP instances with Drezner et al. [5]’s instances,
we consider a certain amount of 0’s in the low distribution of the outside region L, where
ζ ∈ {0, 0.5, 1.0}. ζ = 0 means that there are no 0’s in the outside region, and ζ = 1.0 means
that there are only 0’s in L.

Intuitively, the variance of an outside region with lots of 0s is smaller than the variance of
an outside region with no 0s. In both Inequalities 17 and 18, if the amount of 0’s increases,
then ∆O decreases. If all low values in AO are 0’s, i.e. ζ = 1.0, then the variance in the
outside region is also 0.
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4.1.2 The variance in the composite region

The minimum cost of all d component QAPs are approximatively equal because all the
values are generated from the same uniform distribution. These costs could be increased by:
the imperfection of the random generator, the limited size of the component QAP, and the
large number of sampled values. Consider that there are M −m+ 1 values in D, such that
(m = v0), v1 . . . , (vM−m = M). Let |AC | be the number of elements in the composite
region, where in |AC | = d · n · (n− 1) and N = d · n.

Following the same line of reasoning, the maximum variance in these distributions is

∆C <
d∑
k=1

ck(I)− |AC |
(M −m+ 1)2

(
M−m∑
i=0

vi

)2

(19)

The elements of the component matrices are uniform randomly generated and posi-
tioned. Thus, when the component QAPs are optimized and N →∞, we have

|AC |
(M −m+ 1)2

(
M−m∑
i=0

vi

)2

≈
d∑
k=1

ck(I)

and ∆C → 0.

4.1.3 A numerical example

For the previous discussion, we conclude that if N →∞, then ∆C is approaching 0 and ∆O
has a negative value. Furthermore, ∆O is more negative for α = 0.5 than for α = 1.0.

Let’s consider the following numerical values: i) m = 20 and M = 49, ii) h = 80 and
H = 99, and iii) ` = 1 and L = 20. Thus L − ` = H − h = 20. These bounds are chosen
such that they cover a large number of values between 0 and 99, which are also the bounds
of the uniform randomly generated QAPs of Taillard [21].

Let n = 8 be the number of facilities in component QAPs, where d ≥ 2. Further, si = i

and ti = i + 80, where i ∈ {0, . . . , 19}. Consider two values for α ∈ {0.5, 1.0}. Note that
the variance in the outside region is the same for α = 0 and α = 1.0 because both segregate
the high and low distributions in the outside region AO and BO .

In non-overlapping cQAPs, where |AO| = N2 − d · n2 = d · (d− 1) · n2, if n = 8 and
d = 2, 3, . . ., then |AO| = 128, 384, 768, . . .. The cost of the outside region should be well
approximated by Equation 16, RO(I) = |AO| · 1·99+...+20·80

20 = |AO| · 906.5.
If α = 0.5, then using Equation 17 we have that∆O ≈ p·|AO|·906.5−p·|AO|·6703.2 ≈

−p · |AO| · 5807.7. Note that the second term it is negative and dominates ∆O .
If α = 1.0, then using Equation 18 we have that ∆O ≈ p|AO| · 906.5 − p · |AO| ·

156802/40 = −p · |AO| ·6145653.5. Again, the negative term is the largest in the equation.
Thus, ∆O for α = 1.0 is much smaller than for α = 0.5.

For d = 2, 3, . . ., we have |AC | = d · n · (n − 1) = 112, 168, 224, . . .. Then, from
Equation 19 we have that ∆C <

∑d
k=1 c

k(I)− |AC | · 29241.
Thus, if α = 0.5 then∆C+∆O < 0 and the identity permutation is the optimal solution.

Otherwise, we need to explicitly compute the sum ∆C −∆O . We found that the condition
∆C +∆O < 0 is mild because from 100 generated cQAPs with different set of parameters
α and ζ, less than 1% did not fulfil it.
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4.2 Composite QAP intances with overlapping component QAPs

Inequality 15 from Proposition 2, that is checked following the same type of analysis like in
Section 4.1. Using the definition of ∆C and ∆O , we denote with

∆′C = ∆C+
d∑
k=1

ck,k+1(Ik+1,k+2)−ck,k+1(πk+1,k+2)+ck−1,k(Ik,k+1)−ck−1,k(πk,k+1)

∆′O = ∆O

Note that if N →∞, then ∆′C → 0.
Consider L , H and D, as before. The variance in the outside region for overlapping

cQAPs is equal with the variance in the outside region of the non-overlapping cQAPs,∆′O =
∆O . The number of solutions in the outside region for o = n/2 and N = d · n/2, is
|AO| = N2 − 3 · d · n2/4 = d · (d− 3) · n2/4.

Additionally to ∆C , ∆′C contains terms of the overlapping regions. All the elements of
the composite regions are generated uniform randomly. Then,

d∑
k=1

ck−1,k(πk,k+1) ≤ n2

4 · d2 ·

(
d∑
i=1

vi

)2

Let |AC | = d · n · (n− 1) as before. Thus,

∆′C <
d∑
k=1

(
ck(I) + ck−1,k(Ik,k+1) + ck,k+1(Ik+1,k+2)

)
−2 · |AC | − d · n2

2 · d2

(
d∑
i=1

vi

)2

(20)
Again, if ∆′C → O, when N →∞.

4.2.1 A numerical example

Our numerical example considers for the outside region the same parameters as in Sec-
tion 4.1, ` = 1, L = 20, h = 80 and H = 99. For the composite region, let D ∝ [21, 39] the
uniform distribution from which the component QAPs are generated. Thus, 2 · D ∝ [42, 78]
and Inequalities 13, and 14 hold. We have that ∆C is about the same as in Inequation 19,
and ∆O is like in Inequalities 18 and 17. The identity permutation is thus the optimum
solutions for these cQAPs.

In Table 1, we give an example of a composite QAP instance where two component
QAP instances of size n1 = n2 = 8 overlap in 4 facilities. We consider α = 0.5 to have
a maximum variance of the elements in the outside region. To compare our generator with
Drezner et al. [5]’s generator, we also consider a certain amount of 0’s in LA, i.e. ζ, which
also increases the variance of the elements in the outside region. In the example from Table 1,
we take ζ = 0.5 meaning that half of the lower values in AO are 0’s, and half of the lower
values in BO are 0’s.

Note that even though the component QAPs and the outside region are generated with
uniform random distributions, the values in the resulting cQAP are not uniform randomly
distributed.
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The composite distance matrixA
0 45 42 47 21 20 23 22 1 0 0 1 24 21 22 24
45 0 43 41 22 23 24 20 93 0 94 0 22 20 21 22
42 43 0 46 21 24 21 24 7 97 5 98 22 22 20 22
47 41 46 0 22 22 21 21 98 2 6 94 20 22 24 22
21 22 21 22 0 46 42 46 24 22 23 20 96 94 91 9
20 23 24 22 46 0 42 41 20 22 21 22 90 98 1 0
23 24 21 21 42 42 0 43 22 23 21 21 93 1 0 0
22 20 24 21 46 41 43 0 20 23 21 20 97 0 90 8
1 93 7 98 24 20 22 20 0 45 48 45 22 20 23 22
0 0 97 2 22 22 23 23 45 0 42 45 21 22 23 20
0 94 5 6 23 21 21 21 48 42 0 40 22 21 21 21
1 0 98 94 20 22 21 20 45 45 40 0 21 20 24 20
24 22 22 20 96 90 93 97 22 21 22 21 0 42 47 45
21 20 22 22 94 98 1 0 20 22 21 20 42 0 46 42
22 21 20 24 91 1 0 90 23 23 21 24 47 46 0 42
24 22 22 22 9 0 0 8 22 20 21 20 45 42 42 0

The composite flow matrixB
0 91 3 22 40 21 47 90 1 23 24 20 20 23 41 22
91 0 42 22 91 20 97 46 43 22 23 20 24 22 5 22
3 42 0 23 92 24 98 46 44 20 22 23 23 22 97 23
22 22 23 0 23 4 24 23 22 2 8 6 45 44 24 42
40 91 92 23 0 20 43 1 5 20 22 20 24 20 46 20
21 20 24 4 20 0 23 21 21 43 44 47 9 7 22 5
47 97 98 24 43 23 0 95 94 23 21 22 21 23 40 21
90 46 46 23 1 21 95 0 44 22 20 20 23 20 7 22
1 43 44 22 5 21 94 44 0 24 24 21 20 24 97 21
23 22 20 2 20 43 23 22 24 0 42 43 9 8 20 95
24 23 22 8 22 44 21 20 24 42 0 45 97 94 20 1
20 20 23 6 20 47 22 20 21 43 45 0 95 96 20 92
20 24 23 45 24 9 21 23 20 9 97 95 0 46 20 44
23 22 22 44 20 7 23 20 24 8 94 96 46 0 21 42
41 5 97 24 46 22 40 7 97 20 20 20 20 21 0 22
22 22 23 42 20 5 21 22 21 95 1 92 44 42 22 0

Table 1 A composite QAP with N = 16 facilities where the two component QAPs, n1 = n2 = 8, overlap
in 4 facilities. In the composite region, mA = mB = 21 and MA = MB = 39. In the outside region,
`A = `B = 1, LA = LB = 19, hA = hB = 80, HA = HB = 99, α = 0.5 and ζ = 0.5.

5 The difficulty of the QAP instances

Our goal is to design instances of QAPs that are difficult to solve with exact methods and in
the same time have structure to be exploited with heuristics. There are specific measures to
compute the hardness of QAP instances for each of these two techniques.

Empirical difficulty measures. Dominance is a measure of the amplitude of variance of
the flow and distance matrices. High flow dominance means low epistasis [15]. We denote
with dB the dominance for the flow matrix, and with dA the dominance for the distance
matrix.

The ruggedness coefficient [1] is a normalization of the autocorrelation coefficient of the
cost function when QAP is explored with local search. By definition, the auto-correlation
coefficient is ε = 2·(<c2>−<c>2)

<(c(π)−c(π′))2> , where< (c(π)−c(π′))2 > the average value of (c(π)−
c(π′))2 over all neighbourhood permutations, π and π′. The ruggedness coefficient is ϕ =
100 − 400

n−2 · (ε −
n
4 ) with the assumption that ε > n/4. A ϕ close to 0 indicates a flat

landscape suited for local search. A large ϕ, close to 100, indicates a steep landscape with a
lot of local optima suited for heuristics which restart the local search.

A complexity measure for a QAP emerges from the combination of the ruggedness ϕ
and the dominance of a QAP (A,B) defined as a vector (min{dA, dB},max{dA, dB}).
A dominance vector (u, v) is deemed better than another dominance vector (u′, v′) if and
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only if u > u′ and v > v′. Thus, a difficult QAP instance has both large dominance and
ruggedness coefficients.

To investigate the asymptotic behaviour of QAPs, a fourth indicator calculates the differ-
ence between the optimum value (or a known feasible solution) and the value of the solution
generated with the inverse permutation of that solution. Here, we consider the inverse of
the optimum (or, if optimum is unknown, the best known solution) an approximation of the
worst solution of an instance of QAP. Thus, for cQAPs with the optimum solution I, we
assume that the reverse of the identity permutation, I−1, is an approximation of the worst
solution.

Exact methods. We compute the running times of the small size cQAP instances, i.e.,
n ≤ 32, using the exact method branch and bound [13]. The lower bounds are used in exact
algorithms to guarantee the optimum and, in the same time, to avoid the total enumeration
of the solution space. The advantage of the lower bounds is that there are simple to compute
even for large size QAP instances, i.e. n ≤ 250. Their disadvantage is the gap between
the true optimum cost and the approximation given by the lower bound increases with the
number of facilities, making the approximation unreliable.

5.1 The empirical difficulty of cQAP instances

In this section, we study the impact of different parameters on the empirical difficulty of
the cQAP instances. For each parameter setting, 50 cQAP instances were generated. The
significance of the difference between results is computed with Wilcoxon non-parametric
two sample tests. We investigate the difficulty of a cQAP instance given: i) the distribution
of low and high values, ii) the number of facilities in the cQAP instance, iii) the number
of facilities in the component QAPs, and iv) the number of facilities that overlap between
component QAP.

The distribution in the outside regions. Let n = 8, o = 4 and N = {16, . . . , 152}
be the parameters from the example in Section 4.2. In Figure 1, we present on the top, the
ruggedness ϕ and the dominance of the flow and distance matrices for α = 0.5. In the same
figure, on the bottom, the properties of cQAP instances with α = 1.0 are shown. In each
figure, the number of 0’s in L is varied, ζ = {0, 0.5, 1.0}.

In Figure 1 a), the ruggedness is rapidly increasing with N towards its maximum value
1. If N > 80, then the ruggedness values are close to 100, ϕ > 99. In Figure 1 d), when
α = 1.0, the ruggedness is close to 1 for all N ’s, qualifying these cQAP instances as more
difficult than when α = 0.5. But, in Figure 1 c) and f), the dominance of the flow matrices
is lower for α = 1 than for α = 0.5. Note that for α = 0.5 the dominance values in the
two matrices are approximatively equal, and they slightly increase with N . For α = 1.0, the
distance dominance, dA, is constantly increasing, and the flow dominance, dB , is constantly
decreasing. In conclusion, there is no clear classification for these cQAP instances into easy
and hard instances.

Except for Figure 1 e), the number of 0s in the outside regions, ζ, does not have a large
effect on the ruggedness ϕ or the dominance measures. For ζ = 1.0, when N increases, the
variance in the distance dominance dA increases and the variance in dB decreases. Since dB
does not depend on ζ, the values in the flow dominance are all generated from H.

The difference between the identity and the inverse permutation. Figure 2 shows
the cost function for the optimum solution and the difference between this optimum costs
and the costs of the inverse permutation. In Figure 2 c), for α = 1.0, there is a very small
difference between the cost of the identity permutation and its inverse indicating a poor
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Fig. 1 The properties of cQAPs when n = 8, o = bn/2c, ζ ∈ {0, 0.5, 1.0}, and N = {16, . . . , 152}. On
the top, α = 0.5, on the bottom, α = 1.0. We show: a) and d) the ruggedness, b) and e) and the dominance
of the distance matrices, and c) and f) the dominance of the flow matrices.

asymptotic behaviour, N →∞. In Figure 2 a), when α = 0.5, we have ∆(c(I), c(I−1)) >
3e + 6, the maximum value being about 20 times larger than for the cQAP instances with
α = 1.0. Figures 2 b) and d) show that the optimum cost functions for both values α ∈
{0.5, 1.0} are about the same for the same N and ζ = {0, 1.0}.

Note the small standard deviations for all the measures except the ruggedness. We con-
clude that mixing high and low values in the outside regions of A and B does not increase
the ruggedness of cQAP but increases the difference between local and global optimum
solutions of the generated cQAPs. The percentage of 0s has a big impact on the opti-
mum cost c(I). Less 0s means smaller variance in A and B, and thus a small difference
∆(c(I), c(I−1)). A large amount of 0s increases the distance dominance but decreases the
optimum cost. A small ζ decreases dA but increases c(I).

Based on these results, we recommend α = 0.5 and ζ = 0.5.
The overlap. The experiments in Figure 3 considers three values for the overlap o ∈

{0, bn/4c, bn/2c}. In Figure 3, for the top figures a) and b), we show ϕ and c(I) for the non-
overlapping cQAPs, o = 0, with large variance, α = 0.5. For the same number of facilities,
the ruggedness of this non-overlapping cQAPs is slightly, still significantly, smaller than the
ruggedness of overlapping cQAPs. The optimum cost is smaller for non-overlapping cQAPS
as compared with overlapping cQAPs because the values in the overlapping parts are larger
than the values in the non-overlapping regions. In conclusion, we recommend o = bn/2c.

The number of facilities. In Figure 3 bottom figures c) and d), the influence of the size
of component QAPs is studied. When α = 1.0 the outside region has a minimal effect on
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Fig. 2 a) and c) The difference between the optimum solution I and its inverse, and b) and d) the optimum
cost value c(I).

the behaviour of the generated cQAPs and the differences in cost functions are very large.
When α = 0.5, the outside region has a dominating effect on the empirical difficulty of the
cQAP instances that is about the same for different values of n. Of course, the values of n
are rather small in this experiment. For larger n the effect of the composite region in the
difficulty measures could be larger. We recommend n as large as possible, e.g. n = 8.

To conclude, a difficult cQAP has: i) a large number of facilities, ii) large size component
QAPs, iii) a mixed distribution of low and high values in the outside regions. Then, the cQAP
instance has: i) high ruggedness, ii) large variance in the flow and distance matrices, and iii)
large difference between the optimal and the other solutions.

5.2 Comparing the empirical difficulty of QAP instances

For comparison purposes, in Table 2, we show the properties of thirteen symmetrical QAPs,
9 from QAPLIB and 2 QAP instances from [5] and 2 composite QAP instances, cqap24
and cqap56. Accordingly to [1], tai64c and esc32c are the most interesting QAPs because
their high values for ruggedness ϕ, and dominance dA and dB . But, the difference between
the maximum and (an approximation of) the minimum cost is only 30 for esc32c and only
37 times larger than the maximum boundMB for tai64c, indicating many solutions with the
same value. The next two instances, dre24 and dre90, have very high values for ruggedness
ϕ and distance dominance, dA, but low flow dominance, dB ≤ 60. The first four QAPs
are very sparse to obtain large dominance values for the distance matrix. tai25a has high
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Fig. 3 The top figures: a) the ruggedness and b) the optimum cost for cQAPs with non-overlapping compo-
nent QAPs, o = 0, n = 8, and α = 0.5. The bottom figures: c) the distance dominance and d) the difference
in cost functions for cQAPs with variable size component QAPs n ∈ {1, . . . , 8}, where α ∈ {0.5, 1.0},
ζ = 0.5, o = bn/2c and N = 152.

ruggedness values ϕ and low values for dominance dB = 62 and dA = 64. The last six
QAPs have low values for ruggedness ϕ < 90.

As we have remarked in the previous section, an important factor for the ruggedness
coefficient is the distribution of the high and low values in distance and flow matrices. For
example, five of these QAP instances, sko100a, tho30, wil100, kra30b, and ste36b, have
unbalanced large values for either distance or flow matrices. The exception is tai64c that
has very large ruggedness value ϕ > 99, large values for both flow and distance dominance
but also the highest bounds for the flow matrix, which, we think, causes the large flow
dominance. QAPs with low ruggedness values ϕ < 90, have also low distance dominance
values dA < 60. The exception is ste36b that has both high distance and flow dominance
because of its sparseness. Note that the distance between the minimum solution and its
inverse is 0 for sko100a, wil100 and ste36b indicating many solutions with the same value.

It is interesting to note that one of Drezner et al. [5]’s algorithms that generates QAPs
can be thought of cQAPs with o = 0, α = 1.0 and ζ = 1.0 and with very large values for
the flow matrix. We have shown that cQAPs with these parameters for α and ζ and o are
the easiest parameters. This means that these Drezner-like QAPs are easier than the other
cQAPs.

Let’s compare tai25a, Taillard’s uniformly generated QAP, with similar cQAP instances.
The tai25a instance has the same bounds for A and B, since mA = mB = 1 and MA =
MB = 99. For N = 25, tai25a has a larger ruggedness value than the corresponding cQAP
instance cqap24 but the dominance values for tai25a are smaller than for cqap24.
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Properties of some QAP instances from literature
name ϕ dA dB optim/feasib ∆ ∆/sol MA mA MB mB
tai64c 100 482 128 1855928 3700112 1.6 1 0 1e5 3125
esc32g 100 850 69 6 30 5 3 0 4 0
dre90 99.7 554 48 1838 8524 4.6 10 0 10 1
dre24 99.5 303 60 396 1988 5.02 10 0 10 1
tai25a 97.9 64 62 1167256 278028 0.23 99 0 99 0
cqap24 96.3 102 93 304636 488834 1.6 99 0 99 0
cqap56 100 108 93 1189196 4342610 3.65 99 0 99 0

sko100a 89 51 107 152002 0 0 18 1 10 0
tho30 88 59 138 149936 64890 0.43 11 1 247 0
wil100 86 51 65 273038 0 0 18 1 9 0
nug30 84 53 112 6124 1900 0.31 9 1 10 0
kra30b 77 50 150 91420 42760 0.47 415 50 4 0
ste36b 67 101 400 15852 0 0 73 1 316 0

Table 2 Properties of QAP 12 instances sorted by ruggedness values, ϕ, in decreasing order, where MA is
the largest value in A, mA is the lowest value in A, MB is the highest value from B and mB is the lowest
value from B.

For a fair comparison between cQAPs, Drezner’s and Taillard’s QAPs, we limit the size
of cQAPs used to N = {12, . . . , 56}. We conveniently denote these cQAPs with cqapN .
The difficulty of cqap24 and cqap56 are given in Table 2. As a general observation, it is
difficult to rank the different QAPs using only the above properties. In the next section,
we compare the properties of several uniform randomly generated QAPs from Taillard, i.e.
tai25a, and several sparse QAPs from Drezner at al., i.e. dre24, are also included.

5.3 Comparing QAP instances with heuristic and exact methods

In this section, we show that the generated composite QAP instances can be difficult for both
the exact and heuristic methods, even more difficult than the random QAP instances from
Taillard [20]. The difficulty of a QAP instance for the branch and bound algorithm measures
how well the lower bounds techniques approximate the optimum solution. In Table 3, we
compare our composite QAP instances and the random QAP instances, considered difficult
for both exact and heuristics, using two lower bounds and two heuristic methods. There
are 12 random instances with the number of facilities between 12 and 100 and there are
13 composite QAP instances with the number of facilities between 16 and 80. The gap is
calculated as

gap =
feasible solution− best solution

feasible solution
∗ 100%

where the feasible solution is the best solution returned by an algorithm and best solution
is the best solution known so far, or the optimum solution, or a lower bound. The used
software is downloaded from the QAPLIB homepage (a Quadratic Assignment Problem
Library) http://www.seas.upenn.edu/qaplib/.

The gap between the best (known) solution and the Gilmore-Lawyer lower bound [9]
is given in third column, and the gap with the elimination lower bound [10] is given in
the forth column. Note that the gap of the composite QAP instances is higher than for the
random instances indicating that these instances are difficult for branch and bound methods.
The fifth and the sixth columns in Table 3 give the output for the Grasp [12] and the tabu
search [20], respectively. Also for these two heuristics, the gap between the best known
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Exact and heuristic methods for QAP instances
name Opt/ Gap %

feas Gilm Elim GRASP Tabu
tai12a 224416 12.70 13.94 2.04 8.47
tai15a 388214 15.64 16.28 0.20 14.87
tai17a 491812 16.08 16.86 1.94 10.19
tai20a 703482 17.46 18.15 1.54 6.97
tai25a 1167256 17.55 18.04 2.53 4.73
tai30a 1818146 17.24 17.48 1.81 2.82
tai35a 2422002 19.44 19.83 2.60 1.16
tai40a 3139370 20.59 20.86 2.63 0.38
tai50a 4938796 21.96 22.23 3.10 1.47
tai60a 7205962 22.91 23.15 3.23 1.90
tai80a 13499184 23.48 23.63 2.70 2.57

tai100a 21052466 24.83 24.96 2.73 2.81
cqap16 171444 17.86 42.65 5.50 5.79
cqap20 238754 16.76 55.01 13.28 4.58
cqap24 312308 18.65 63.22 31.20 20.29
cqap28 388832 18.98 69.36 41.26 23.89
cqap32 462050 19.76 77.40 48.51 33.32
cqap36 565198 19.60 78.43 53.07 38.39
cqap40 687634 18.83 78.00 55.27 46.52
cqap44 787718 19.67 80.93 58.91 53.24
cqap48 905046 19.83 83.64 61.53 54.55
cqap52 1046514 18.95 83.13 63.82 60.86
cqap60 1337714 17.89 85.50 66.35 63.54
cqap72 1809722 16.89 88.08 70.47 68.55
cqap80 2162198 16.46 89.62 72.34 71.22

Table 3 The performance of exact and heuristics methods on 25 QAP instances measured as the gap between
the given solution (or the proposed lower bound) and the best known solution.

solution and the solution returned by the heuristics is more than 10-20 times higher for
the composite QAP than for the random QAP instances. Furthermore, the gap increases
constantly with the number of facilities for composite QAPs whereas for the random QAPs
the gap is rather constant with N .

We conclude that composite QAP instances are meaningful test benchmark for exact
and heuristics techniques. In the following section, we give more insights on why these
QAP instances are difficult for the heuristic methods.

6 Landscape analysis

We analyse the landscape and properties of QAP instances using multi-restart local search.
Intuitively, local search starts from an initial solution and iteratively generates new solutions
using a neighbourhood strategy. Each step, a solution that improves over the existing best-
so-far solution is chosen. The algorithm stops when there is no improvement possible. Best
improvement explores all the individuals in the neighbourhood of a solution and selects
the best solution that improves over the initial solution and all the other visited solutions.
Because LS can be stuck in local optima, the multi-restart LS (MLS) algorithm restarts LS
multiple times from one uniform randomly chosen initial solution.

QAPs are minimization permutation problems. A suitable neighbourhood operator for
QAPs is the 2-exchange swapping operator that swaps the position of two different facili-
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ties. This operator is attractive because of its linear time to compute the change in the cost
function with the condition that the matrices A and B are symmetrical. The size of the
neighbourhood increases quadratically with the number of facilities. For this experiment,
we restart the local search M = 105 times.

The basin of attraction [8] of a local optimum X is the set of independent identically
uniformly distributed restarting points for the local search for which the optimum is in X.
As performance indicator, we count the number of times the minimum solution is found.
Section 6.1 shows that this definition of basins of attraction is not informative even for
small size QAPs because of the large number of basins of attraction in their landscape.
In Section 6.2, we propose an alternative definition of basins of attraction that reduce the
number of basins of attraction by counting as one the same optimum value. In Section 6.3,
we use empirical measures to approximate the size of indecisive basins of attraction.

We compare the basins of attraction for three QAP generators: i) Taillard [21], ii) Drezner [5]
and iii) the composite QAPs with the parameters recommended in the previous section.
All these three methods generate QAPs of various sizes using uniform randomly generated
numbers distributed with some, simple or rather elaborated, strategy in the flow and dis-
tance matrices. Taillard’s QAPs have matrices with uniform randomly distributed elements.
Drezner’s QAPs represent grids with uniform randomly generated points with a rather small
amount of connections in the grid. The component QAPs and the elements in the outside
region of cQAP are also uniform randomly generated. Therefore, for all these QAPs, we
assume a random configuration for basins of attraction.

6.1 Basins of attraction

To approximate the number of basins of attraction,B, we count the frequency of their occur-
rence, where βj is the number of local optima that are reached exactly j times. Like in [8],
we assume that the distribution of βj follows a family of parametrized distributions Lawγ .
The expected values βj,γ = IEγ [βj ] are computed using

βj,γ = L · Γ (j + γ)

j! · Γ (j + γ)
· Γ (L · γ)

Γ ((L− 1) · γ)
· Γ ((L− 1) · γ +M − j)

Γ (L · γ +M)
· M !

(M − j)!

where L is the number of basins of attraction visited so far, and M is the number of uniform
randomly sampled solutions used to restart LS. To simplify this equation, we assume that γ
is a positive integer. Then, Γ (γ) = γ!. After re-grouping the terms of the above equation,
we have

βj,γ = L ·
(Mj ) · (L1)

(L+M
j+1 )

where (Mj ) = M !
j!·(M−j)! . The values βj,γ are used to calculate B, where βj,γ is the solution

of the equation ∑∞
j=1 βj,γ

M
=

1− (1 + M
γ·B )−γ

γ

Here, γ ∈ {1, 2, 3} is chosen to minimize the difference between βj and βj,γ in the χ2 test,∑
j(βj − βj,γ)2/βj,γ . The probability that at least one point of the searching space lies in a

basin of attraction is
pB,M →L→∞ exp−a−1

where a is the solution for M = [L2 · a].
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Fig. 4 The estimated number of basins of attraction B versus the visited basins of attraction L for M ∈
(0, 105] on three types of QAPs: a) cqapN , whereN = {12, . . . , 56}, b) taiNa, whereN = {12, . . . , 50}
and c) dreN , where N = {15, . . . , 56}. d) The probabilities that all local optima of the search space were
sampled in the standard basins, pB,M .

Some experimental results. In Figure 4 on the top, we compare the number of approx-
imated basins of attraction, B, versus the number of visited basins of attraction, L, for the
three QAPs. We set M = 105 and γ = {1, 2, 3}. For larger N > 20, for all the QAP in-
stances, the values of estimated, B, and visited, L, basins of attractions are about the same
105. The covering probability pB,M for the three QAPs is basically 0.

Thus, even for a small number of facilities, QAP instances are difficult with lots of local
optima, the restarting points almost always is located in an unique basin of attraction. We
conclude that this definition of basin of attraction is not very informative for the prediction
of the size and the number of local optima of QAPs.

6.2 Fitness indecisive basins of attraction

The number of basins of attraction is reduced by observing that LS cannot discriminate be-
tween solutions that have equal fitness values but different representations. These solutions,
with the same value, can belong, or not, to the same plateau and, in general, they are difficult
to explore and to store.

A fitness indecisive set of basin of attraction, in short indecisive basin of attraction, is
the set of points for which the local optimum solutions obtained by restarting LS from these
points have the same cost (or fitness value).
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Fig. 5 The estimated,BI , vs the visited, LI , number of indecisive basins of attraction forM = 105 on three
type of QAPs: a) cqapN , b) taiNa and c) dreN . d) The probabilities that all local optima of the search space
were sampled in the indecisive basins, pBI ,M .

The number and the size of indecisive basins of attraction are computed with the same
algorithm as the regular basins of attraction, with the logical difference that now the equal
local optimum values are counted as the same indecisive basin of attraction. We denote with
BI the number of estimated indecisive basins of attraction, with LI the number of visited
indecisive basins of attraction, and with pBI ,M the coverage probability of BI .

Experimental results. On the bottom of Figure 5 the number of approximated inde-
cisive basins of attraction, BI , versus the number of already visited indecisive basins of
attraction L for the three QAPs are compared. Note that even for the small sized cqap16 and
tai15a, there are lots of indecisive basins of attraction, LI ≈ 104, which is about M/10, the
coverage probability is again about 0. We deduce that M = 105 LS restarts are not enough
for landscape analysis of cqapN and taiNa.

Note that for dre15, the coverage probability pBI ,M = 0.6 is large andBI is close to LI
meaning that M = 105 is a reasonable number of restarts for MLS. Furthermore, dreN has
non-zero coverage probabilities pBI ,M > 0.2 even for medium size QAPs, N ≤ 56, and
the lowest BI . Comparing these results with the results the standard basins of attractions,
i.e. B, L and pB,M , we deduce that Drezner’s QAPs has lots of basins of attraction with the
same value of its local optima, which can be grouped in much fewer indecisive basins of
attraction.

In conclusion, for the same number of facilities N , cqapN and taiNa are more difficult
than dreN .
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Fig. 6 a) The number of calls of the neighbourhood function per local search run. b) The number of solutions
visited during a local search run. c) The number of times a solution with the best value in all runs is found.
Each of the three tests is run on three type of QAPs: cqapN , dreN , and taiN .

6.3 Empirical analysis of basins of attraction

The number of calls of the neighbourhood function in a LS, #N , is an empirical approxi-
mation of the size of basins of attraction. The number of swaps generated in a LS run is the
number of called neighbourhoods multiplied with the number of solutions in a neighbour-
hood, #N · (N2 ). This measure gives an approximation of the time necessary for a LS to
converge to a local optimum.

Figure 6 a) presents the average number of calls of neighbourhoods for the three types
of QAPs with different N . Note that QAPs with the same number of facilities have about
the same number of calls for the neighbourhood function. For the same number of facilities,
the number of visited solutions during a LS run, Figure 6 b), is about the same for all QAPs.
In Figure 6 a), the larger N is, the more times the neighbourhood function is called. This is
reflected also in Figure 6 b) where the number of visited solutions during a LS run increases
when N increases.

The percentage of times LS’s local optimum is equal to the best value found in all runs
from Figure 6 c) is a good indicator of the performance of MLS algorithms. The identity
permutation is a solution for dreN type of QAPs, whereas for Taillard’s QAPs, taiNa the
(near)optimal solutions are known from QAPLIB’s home-page. From M = 105 LS runs, for
N > 12, MLS almost never finds the solutions with best value. Unlike for cqapN and taiNa,
for all the instances dreN , where N ≤ 56, MLS finds an optimal solution within M = 105

LS runs. As expected, the larger the number of facilities in dreN , the lower the number of
times MLS finds the best-so-far solution.

We conclude that the tested cQAPs are more difficult than Drezner’s QAP instances that
have lots of local optima with the same value. In the following section, we show that cQAPs
are more interesting for heuristics than Taillard’s QAPs that are uniform randomly generated
and have no correlations between the basin of attractions.

7 Conclusions

We propose a QAP instance generator that aggregates small size QAP instances whose exact
solutions can be easily computed into a larger size QAP instance. We show that the resulting
QAP instances, we call them composite QAP instances (cQAPs), have additively decompos-
able cost functions, which are known to be interesting for metaheuristics. The component
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QAPs can overlap in the resulting cQAP. The elements from the composite QAP instance
outside these component QAPs are generated using the rearrangement inequality.

We give some conditions for which a cQAP instance has the identity permutation as
global optimal solution when all the component QAPs have the identity permutation as the
optimal solution and the elements in the outside region have the identity permutation as the
minimal solution. We assume that these optimal solutions are computed in feasible time by
imposing mild conditions on: i) the lower and upper bounds of the generating distributions
for the component and the outside regions, and ii) the relationship between the distribution
of the two regions. We provide concrete numerical values for such bounding uniform distri-
butions. To obtain cQAPs with different permutations as the global solution, we rename the
facilities in a random way.

We analyse the properties of the cQAP instances for various input parameters using dif-
ferent analytical and experimental techniques. The empirical difficulty of QAPs for local
search is measured using: i) the variations in the flow and distance matrices, ii) the auto-
correlation in and in-between the two matrices, and iii) the difference between the cost of
the optimum solution and its inverse permutation. Overall, the generated cQAP instances
are classified as difficult for local search if they have: i) number of facilities, ii) large size
component QAPs, and iii) an outsize region with high variance. Further, it is difficult to rank
the cQAP instances generated with fine tuned parameters. We compare our QAP instance
generator with other QAP instance generators from literature. We show that the composite
QAP instances are also difficult for exact methods.

To measure the difficulty of cQAPs for local search-based heuristics, we approximate
the size and the number of basins of attraction with numerical and empirical techniques.
We analytically show that a conventional definition of basins of attraction is too strict for
practical use because of the large number of basins of even for the QAP instances with small
number of facilities. Assuming that there are many plateaus and/or local optima of the same
value, we propose fitness indecisive basins of attraction that count as one the local optima
with the same value. The empirical approximations of basins of attraction usually use the
indecisive basins of attraction. We show that the cQAP instances have a lot of indecisive
basins of attraction, unlike other QAP instances from literature, classifying these instances
as difficult.

To conclude, the generated cQAP instances are both difficult QAP instances for exact
methods and heuristics and have known global optimum solution, making these instances
attractive to optimize with meta-heuristics.
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A Proof of Proposition 2

Let ∆(c(I), c(π)) be the difference in the cost functions of the identity permutation and of a permutation π,
as before.

i) Swapping facilities in cycles. First, let’s consider the permutations that can be expressed as d product
of (k, k + 1)-cycles. The difference in cost function is

∆(c(I), c(π)) =
d∑
k=1

(
ck(I)− ck(πk)

)
+

∑
i,j∧cij=0∧cπiπj=0

aij · (bij − bπiπj ) (21)

+

d∑
k=1

(
ck,k+1(Ik+1,k+2)− ck,k+1(πk+1,k+2) + ck−1,k(Ik,k+1)− ck−1,k(πk,k+1)

)
The first sum corresponds to swapping facilities within component QAPs, and the second term corresponds
to swapping elements of the outside region. These two sums also encountered when computing the cost of
swapping facilities in the non-overlapping cQAPs in Proposition 1, and thus they are negative. The third sum
comes from swapping facilities between the elements of the same overlapping region. If Inequality 15 holds,
then ∆(c(I), c(π)) < 0.
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ii) Swapping cycles. When cycles are completely switched, in most of the cases, there are also elements
that are switched between the composite and outside region.

Consider facilities exchanged between the overlapping regions of the k-th component QAP: i, πj ∈
Sk−1,k , and j, πi ∈ Sk,k+1. Then, aij ∈ AC , and bπiπj ∈ BC . Let’s consider a facility in the k + 1-th
component QAP such that t ∈ Sk+1,k+2 and πt 6∈ Sk−2,k−1. Then, ajt ∈ AC but bπjπt ∈ BO . If
πt ∈ Sk−2,k−1, then ajt ∈ AC and bπjπt ∈ BC .

Consider facilities exchanged between the overlapping regions that do not belong to the same component
QAP: i, πj ∈ Sk,k+1 and j, πi ∈ Sp,p+1, where k 6= p − 1 and k 6= p + 1. Then, aij ∈ AO , and
bπiπj ∈ BO . Let’s consider a facility in the k + 1-th component QAP such that t ∈ Sk+1,k+2 and
πt 6∈ Sp+1,p+2. Then, ajt ∈ AC but bπjπt ∈ BO . If πt ∈ Sp+1,p+2, then ajt ∈ AC and bπjπt ∈ BC .

Thus, if elements from the k-th component are exchanged with elements from the p-th QAP component,
then there are also elements which are switched between these two QAP components and the outside region,
unless these QAP components are neighbours, this case being discussed previously. For example, consider
that ∃i, πi, j, πj , r, πr , such that i, r ∈ Sk,k+1, j ∈ Sk+1,k+2, πi, πj ∈ Sp,p+1, and πr ∈ St,t+1.
Then aij , air, ajr ∈ AC , bπiπj ∈ BC , but bπiπr , bπjπr ∈ BO .

Accordingly to rearrangement inequality and Inequality 13, swapping elements between the outside and
the composite region is more negative than swapping elements between the non-overlapping and overlapping
regions. We discuss this case more in the next paragraph.

The permutations of cycles for which there is no exchange between the composite and outside region
shifts all the facilities with the same quantity. The difference in cost function is as in Equation 21. If Inequal-
ity 15 holds, then ∆(c(I), c(π)) < 0.

iii) Exchanging facilities between cycles. Unlike in the previous two cases, there are elements swapped
between the composite and the outside region. Thus, we have the following additional sums:

1. Facilities are swapped between the overlapping and the non-overlapping region. Then,

(akij + ak+1
ij ) · (bkij + bk+1

ij − bp+1
πiπj

) =

akij · (bkij − bp+1
πiπj

) + ak+1
ij · (bk+1

ij − bp+1
πiπj

) + akij · b
k+1
ij + ak+1

ij · bkij
and

akij · (bkij − bpπiπj − b
p+1
πiπj

) = akij · (bkij − bpπiπj )− akij · bp+1
πiπj

2. Facilities are swapped between the overlapping and the outside region. Then,

(akij + ak+1
ij ) · (bkij + bk+1

ij − bπiπj ) =

akij · (bkij − bπiπj ) + ak+1
ij · (bk+1

ij − bπiπj ) + akij · b
k+1
ij + ak+1

ij · bkij
and

aij · (bij − bkπiπj − b
k+1
πiπj

) = aij · (bij − bkπiπj )− aij · bk+1
πiπj

The difference in the cost function is now

∆(c(I), c(π)) =

d∑
k=1

∑
i,j,πi,πj∈Sk

akij · (bkij − bkπiπj ) +

d∑
k=1

d∑
r=1
r 6=k

∑
i,πi∈Sk∧
j,πj∈Sr

aij · (bij − bπiπj )

+

d∑
k=1

d∑
r=1

d∑
p=1
p6=r

∑
i,j∈Sk

πi∈Sr∧πj∈Sp

akij · (bkij − bπiπj ) +

d∑
k=1

d∑
r=1

d∑
p=1
p6=r

∑
i∈Sr∧j∈Sp

πi,πj∈Sk

aij · (bij − bkπiπj )

+
d∑
k=1

d∑
p=1
p6=k

∑
i,j∈Sk
πi,πj∈Sp

akij ·(bkij−bpπiπj )+
d∑
k=1

d∑
p=1
p 6=k

∑
i,j∈Lk,k+1∧
πi,πj∈Sp,p+1

(
akij · (b

k+1
ij − bp+1

πiπj
) + ak+1

ij · (bkij − bpπiπj )
)

+

d∑
k=1

∑
i,j∈Sk,k+1

πi,πj∈Sk,k+1

(
akij · b

k+1
ij + ak+1

ij · bkij
)
−

d∑
k=1

∑
i∈Sk−1,k

j∈Sk,k+1

πi,πj∈Sp,p+1

akij · bp+1
πiπj



QAP instances generator with known optimum solution 31

−
d∑
p=1

d∑
r=1
r 6=p

∑
i∈Sp
j∈Sr

πi,πj∈Sp,p+1

aij · bp+1
πiπj

The first five terms of the above equation are common with the cost differences of non-overlapping
cQAPs from Equation 12. The first term is part of ck(I) − ck(π), and in the second term elements in the
outside region are swapped. The third and the fourth terms swap elements between the component QAPs and
the output region. The forth term swaps elements between component QAPs being a part of ck(I)− ck(π′).

The last five terms are specific for the cQAPs with overlapping component QAPs. The sixth and the
seventh terms exchange facilities between different overlapping regions. Let’s now consider the eight and
ninth terms of the difference. The exchanges between the non-overlapping and overlapping regions are by
design positive since the smallest elements from the non-overlapping region are swapped with the largest
elements from the overlapping region. The last term of the difference is negative and it is given by exchanging
elements between the outside and the overlapping region.

To summarize, if elements are switched from the overloading region to the outside region, then there
are also elements switch back from the outside region to the non-overlapping region. Following the same
reasoning as in proving Inequality 9 from Proposition 1, the bounds for these exchanges are m · (h + `) >
4 ·M2 +L ·h, which means that Inequality 14 holds. The difference between the two bounds is only the term
4 ·M2 instead of M2 like in Inequality 9 because we consider the more restrictive case where the lowest
element fromH is exchanged with the lowest element from the composite region or the lowest element from
L, in which case h ·m/2 < aij · bp+1

πiπj < M2.
This concludes our proof. �


