
Multi-Objective X -Armed Bandits

Kristof Van Moffaert, Kevin Van Vaerenbergh, Peter Vrancx and Ann Nowé

Abstract— Many of the standard optimization algorithms
focus on optimizing a single, scalar feedback signal. However,
real-life optimization problems often require a simultaneous
optimization of more than one objective. In this paper, we
propose a multi-objective extension to the standard X -armed
bandit problem. As the feedback signal is now vector-valued,
the goal of the agent is to sample actions in the Pareto
dominating area of the objective space. Therefore, we propose
the multi-objective Hierarchical Optimistic Optimization strategy
that discretizes the continuous action space in relation to
the Pareto optimal solutions obtained in the multi-objective
objective space. We experimentally validate the approach on
two well-known multi-objective test functions and a simulation
of a real life application, the filling phase of a wet clutch.
We demonstrate that the strategy allows to identify the Pareto
front after just a few epochs and to sample accordingly. After
learning, several multi-objective quality indicators indicate that
the set of sampled solutions by the algorithm very closely
approximates the Pareto front.

I. INTRODUCTION

Many engineering applications inherently consist of mul-

tiple, possibly conflicting, objectives. Generally, multi-

objective problems are hard because it is not clear how the

objectives influence each other, i.e. what the effect is of

optimizing one objective over the other objectives. Moreover,

often trade-offs between the different objectives must be

made, as it is generally not possible to have optimal strategies

for all objectives at the same time. For example, in waste

water treatment plants contaminated water is purified by a

sequence of electrical aeration pumps. Depending on the

amount of aeration, the water quality reaches a certain level

and sludge is produced. Therefore, the goal of the engineer is

not only to maximize the water quality, but also to minimize

the operational costs of the plant and the amount of sludge

being produced.As these objectives are conflicting, there

usually exists no single optimal solution. In such cases, we

are interested in a set of trade-off solutions between the

objectives. More precisely, we want to obtain the set of

best trade-off solutions, i.e. the set of solutions that Pareto

dominate the other solutions and are incomparable amongst

each other. i.e. a solution x1 is said to strictly dominate

another policy x2, if each objective of x1 is not strictly

less than the value for the corresponding objective of x2

and at least one objective of x1 is strictly greater than the

corresponding objective of x2. The set of non-dominated

policies is also referred to as the Pareto front.

Kristof Van Moffaert, Kevin Van Vaerenbergh, Peter Vrancx and Ann
Nowé are with the Department of Computer Science, Vrije Univer-
siteit Brussel, Brussels, Belgium (email: {kvmoffae, kevvaere, pvrancx,
anowe}@vub.ac.be). The first two authors have equal contribution to this
paper.

In essence, there are two main approaches for dealing with

multi-objective problems. The simplest way is to use a scalar-

ization function to transform the multi-objective problem to a

single-objective problem, which can be solved by traditional

techniques. This approach is called a single-policy mecha-

nism as each run only converges to a single solution. In order

to find a set of trade-off solutions, the approach would have

to be repeated with different scalarization weights without

having any guarantees that this process will result in a good

approximation of the Pareto front. Examples of this class

are the algorithms by [1], [2] and [3] that use scalarization

functions in combination with preference parameters in order

to converge to a single-solution that is optimal with regard

to the desired preference.

Another class of algorithms are multi-policy algorithms.

In contrast to focussing only a single solution at a time,

a multi-policy algorithm searches for a set of solutions at

once. A well-known example of this class of algorithms

are evolutionary multi-objective (EMO) algorithms, such as

SPEA2 [4] and NSGA-II [5], which evolve a population of

multi-objective solutions. These algorithms are amongst the

most powerful algorithms for multi-objective optimization in

static environments where the sampling cost is not one of the

main issues.

In this paper, we focus on bandit problems for multi-

objective environments. In the standard bandit setting, a

gambler is faced with a set of slot machines, i.e. arms, and

he has to decide which lever to pull at each time step [6].

Upon playing a particular arm, a reward is drawn from that

action’s specific distribution and the goal of the gambler is

to maximize his long-term scalar reward. In the case of a

multi-objective bandit, the gambler is provided with a vector

of feedback signals, one for each objective. Hence, the goal

of the gambler is to sample actions that yield rewards located

in the Pareto front. So far, multi-objective bandit problems

have particularly been focussing on a discrete set of arms [7].

In this paper, we tackle the optimization of a multi-objective

X -armed bandit problem, i.e. a bandit with a continuous,

but finite-countable, action space. More precisely, we extend

the respected Hierarchical Optimistic Optimization for multi-

objective optimization.

The outline of the paper is as follows. In Section II we

briefly present single-objective reinforcement learning and

X -armed bandits. Subsequently, in Section III, we present

our novel multi-objective algorithm for multi-objective X -

armed bandit problems and conduct an in-depth discussion.

In Section IV, we empirically evaluate the algorithm on a

series of test functions and real-life application simulating

the filling phase of a wet clutch. Finally, in Section V we

form conclusions and present outlooks for future research.

II. X -ARMED BANDITS

In the classical bandit problem, a gambler wants to max-

imize his reward by selecting the best possible action from

a finite set of arms with unknown reward distributions. The

on-line aspect is very important, i.e. in order to maximize his

gain the gambler needs to find a balance between exploring

uncharted territory and exploiting his current knowledge.

Thus, by maximizing the cumulative pay-off the total regret

is minimized, i.e the difference between the total cumulative

pay-off of the gambler and the best possible arm of each

round is minimized.

Recently, this problem was generalized to environments

where the action space is continuous but finite-dimensional,

i.e. the gambler is faced with an continuous set of arms.

This problem is called an X -armed bandit [8] problem and

has a strong resemblance to control problems which involve

the tuning of several parameters. More precisely, a stochastic

bandit problem B consists of a pair of B = (X ,M), where

X is a measurable space of arms and M determines the

distribution of rewards associated with each arm [8].

One of the algorithms that effectively solves a X -armed

bandit problem is the Hierarchical Optimistic Optimization

(HOO) strategy [8]. As we are interested in sampling near the

maxima of the pay-off function, the HOO strategy focusses

on estimating this function near its maxima while leaving

the other, less interested parts of the function, less explored.

Internally, the HOO strategy comprises a binary tree that is

incrementally refined. A node n in the tree represents an area

over the action space X and is represented by (h, i), where

i is the index of node n at depth h. Hence, the root node

is represented by (0, 1). Following the terminology of [8],

(h + 1, 2i − 1) and (h + 1, 2i) refer to the child nodes of

the node located at (h, i). Let Ph,i ⊂ X be the area of the

action space corresponding to node (h, i), given these two

conditions:

P0,1 = X (1)

Ph,i = Ph+1,2i−1 ∪ Ph+1,2i, for all h ≥ 0 and 1 ≤ i ≤ 2h

(2)

A node stores an optimistic estimate of the quality of

its subtree, i.e. a U -value. The Uh,i(n)-value is an initial

estimate of the maximum value of the pay-off function in

the corresponding region of the action space X :

Uh,i(n) =

{

µ̂h,i(n) +
√

2 lnn
Th,i(n)

+ ν1ρ
h, if Th,i(n) > 0

+∞, otherwise

When the action was not sampled before, it receives the

highest optimistic value, i.e. +∞. In the other cases, two

terms are added to the mean rewards. The second term is

the standard exploration term, while the third term takes into

consideration the maximum possible variation of the pay-

off function. Given the U -value of a node n, its B-value is

computed by taking into account its own U -value and the

B-values of its two child nodes. The B-value is designed to

put a tighter upper-bound on the best possible value that can

be obtained in that region of X . The B-value estimate is:

Bh,i ← min {Uh,i,max{Bh+1,2i−1,Bh+1,2i}} (3)

Thus, the root node stores an (optimistic) estimate of the

quality of the entire action space, where its left child stores a

more accurate estimate for the interval [inf X , supX
2] of the

action space, i.e. between the infimum of X and half of its

supremum given the divide-and-conquer approach. Similarly,

the right child of the root stores equivalent information for

[supX
2 , supX]. Selecting an action is performed by traversing

the subtree with the largest B-value until a leaf value is

reached. Thereafter the action is sampled and the estimates

of the nodes on the traversed path are updated and refined by

considering the observed reward and the number of times the

subtree was visited in previous plays. Bubeck et al. prove this

algorithm to converge to the mean pay-off function around

its maxima if the function is weakly Lipschitz.

III. MULTI-OBJECTIVE X -ARMED BANDITS

Transforming the single-objective HOO strategy to multi-

objective environments requires several adjustments to the

algorithm’s internal workings. Below, we tackle the required

modifications for constructing the Multi-Objective Hierarchi-

cal Optimistic Optimization (MO-HOO) algorithm:

Sampling purpose. A first crucial aspect of transforming

a single-objective on-line algorithm to a multi-objective

environment is defining its purpose. In the standard problem

the goal of the agent is to maximize the average reward

being received, which is the logical approach as there is a

total order between the scalar rewards. Dealing with multiple

objectives, with the Pareto dominance relationship, there only

is a partial order, i.e. only dominating and dominated vectors

can be compared but for instance two Pareto dominating

vectors are incomparable. As a consequence, if one would

average the reward vectors being obtained by the agent, we

are not guaranteed that the average is an actual attainable

solution for a problem. Take for instance, a very easy multi-

objective problem where the agent can only take two action

a and b where the deterministic rewards are [1, 0] and [0, 1],
respectively. If one would take action a with probability x
and action b with probability (1 − x), the average reward

vector would be [x, 1 − x]. Thus, although there are only

two possible outcomes for the problem, considering average

reward vectors implicates that we are no longer sampling

on the Pareto front but on the convex hull of the Pareto

front . The convex hull is an infinite set of points that can be

expressed as convex combinations of the points in the Pareto

front. Therefore the hull does not represent actual solution

points in the objective space.

In control problems we are not interested the stochastic

mixture policies obtained from the convex hull of the Pareto

front, but rather in sampling a trade-off in every execution

of the policy. This means that we want to identify actually

realizable control policies that lie on the Pareto front and

thereby offer a fixed trade-off between the different control

objectives. However, despite the fact that our main goal is to

identify the Pareto front, we do not want to neglect the sam-

pling efficiency of our method. Our motivating assumption

here is that sampling policies inherently has a certain cost

associated with it, either in time, in resources or both. Often,

these costs are associated with evaluating a control strategy

on a real system. Furthermore, we assume that solutions

which lie far from the Pareto front, are suboptimal in at

least one of the target objectives and thus typically have

higher costs associated with them, e.g. because they are

less efficient, take longer to reach a goal, or might even

violate safety constraints. Therefore, our goal is to develop

an efficient method for identifying the Pareto front, which

minimizes the the amount of sampling done in regions far

from the Pareto front.

The shift from simple on-line optimization of the average

reward to identification of the Pareto front requires some

fundamental adaptations to the HOO approach. Since our

main interest is now the sampling of the Pareto optimal

solutions, rather than from the convex hull of the front, we no

longer consider the U -values in their original form. Recall

that the U -value of a node represents the average quality

for its subtree. Therefore, in the multi-objective case, we

only propagate the U -vector of leaf nodes as they are only

(average) samples that are not averaged out over subtrees.

Knowledge representation. Recall that in the single-

objective HOO strategy, the agent’s goal is to maximize the

scalar reward obtained by sampling close to the optimum of

the pay-off function f . Therefore, the algorithm propagates

an estimate of the maximum of f from leaf nodes to the root

node in terms of B-values. In a multi-objective problem,

however, there usually is no single-optimum but there are

multiple Pareto optimal solutions that are incomparable.

Thus, a scalar estimate or B-value is insufficient to store

the quality of a region of f . The solution we propose is to

consider sets of estimates or B-sets. The elements of the sets

are B-vectors that store an estimate for each objective. The

most optimistic upper bound is now a vector u that is always

a member of the Pareto front without excluding other Pareto

dominating vectors, e.g. u = [−∞,+∞] for an environment

with two objectives.

Information propagation. In Eq. 3, the HOO strategy

performs a backward computation to adjust the estimate

of a node by taking into account its U -value and the B-

value of its two child nodes. To determine the B-value

of a node, the algorithm determines the highest upper

bound of its child nodes by a max operator. In the multi-

objective variant, we replace this operator by the opera-

tor ND(
⋃

B
(Bh+1,2i−1(n),Bh+1,2i(n)) which yields every

non-dominated B-vector of the left and right child of node

n. The min operator in Eq. 3 assures a tighter bound of the

B-value of node n. As we are not focussing on the average

Pareto front or convex hull, we no longer consider the U -

value of non-leaf nodes. Therefore, we omit a min operator

in our MO-HOO implementation. If one would be interested

in the average sampling performance, a multi-objective min
operator should be proposed, which is far from trivial. The

specification of a multi-objective min operator could place a

stricter bound on the B-vectors in order to make them less

optimistic. However, defining such a min operator that would

work in a multi-objective setting with multiple incomparable

solutions is currently an open question.

Pseudo code. An algorithmic outline of the MO-HOO

strategy for an m-objective problem can be found in Al-

gorithm 1.

IV. EXPERIMENTS

The experimental evaluation of the MO-HOO algorithm

is divided into two parts. First, we analyze the strategy on

two common multi-objective test functions which allow us

to compare the obtained solutions to the actual solutions in

the Pareto front. We then gradually increase the difficulty

of the test environments to highlight the properties of the

MO-HOO strategy.

A. Schaffer 1 function

The first test function is the bi-objective Schaffer no 1

function [9] that is defined by

maximize f(x) =

{

f1(x) = −x
2

f2(x) = −(x− 2)2

where x ∈ [−10, 10].1 The function is depicted in Fig. 2 (a)

where the convex Pareto front is indicated by green dots.

In Fig. 2 (b) the sampling performance of the MO-

HOO strategy is compared to a random sampling strategy.

Recall that our goal is to sample as fast as possible as

close as possible on the Pareto front. As the Pareto front

is in this case continuous, we determine whether the vector

valued return of the sampled action is within a distance of

ǫ of a discrete approximation of the true Pareto front 2.

This discrete approximation of the true Pareto front was

obtained by collecting the Pareto optimal outcomes of many

independent random runs of the algorithm. From the figure,

we note that the MO-HOO strategy gradually increases its

performance by sampling closer to the Pareto front as the

learning time increases. After 500 epochs, the probability of

sampling a Pareto optimal action approaches 1.

In Fig. 2 (c) and (d), we plot three visualization graphs

for random and MO-HOO strategy, respectively. In a first

subplot, we denote the sample in the normalized action space.

We clearly see the exploration-exploitation of the MO-HOO

strategy. In a second subplot, we show the depth of the tree in

relation to the action space. Subtrees that are more expanded

have a greater depth and focus on a finer part of the action

space compared to small subtrees. Where we see that the

random strategy expands each subtree uniformly, the MO-

HOO strategy roughly explores some parts of the actions

space, whereafter it focusses on the region corresponding

by the Pareto optimal area in the objective space. The third

1Originally, these test functions were minimization problems but we
negated them to obtain a maximization problem as this is what our
reinforcement learning algorithm assumes.

2In our experiments, ǫ was set to 0.2.

Algorithm 1: The MO-HOO strategy

Parameters: Two real numbers ν1 > 0 and ρ ∈ (0, 1), a sequence (Ph,i)h≥0,1≤i≤2h of subsets of X satisfying the

conditions (1) and (2).

Auxiliary function LEAF(T): outputs a leaf of T .

Initialization: T =
{

(0, 1)
}

and B1,2 = [+∞, . . . ,−∞] and B2,2 = [−∞, . . . ,+∞]. ⊲ Use combination of ∞ to

make incomparable m-dimensional vectors

1: for n = 1, 2, . . . do ⊲ Strategy MO-HOO in round n ≥ 1
2: (h, i)← (0, 1) ⊲ Start at the root

3: P ← {(h, i)} ⊲ P stores the path traversed in the tree

4: while (h, i) ∈ T do ⊲ Search the tree T
5: Brandom ∈ Bh,i ⊲ Select random Pareto dominant B-vector

6: if Brandom ∈ Bh+1,2i−1 then

7: (h, i)← (h+ 1, 2i− 1)
8: else

9: (h, i)← (h+ 1, 2i)
10: end if

11: P ← P ∪ {(h, i)}
12: end while

13: (H, I)← (h, i) ⊲ The selected node

14: Choose arm X in PH,I and play it ⊲ Arbitrary selection of an arm

15: Receive corresponding reward vector Y

16: T ← T ∪ {(H, I)} ⊲ Extend the tree

17: µ̂H,I ←
(

1− 1/TH,I

)

µ̂H,I+Y/TH,I ⊲ Calculate the mean vector µ̂H,I of new added leaf (H, I)
18: for all (h, i) ∈ T do ⊲ Update the statistics U stored in the tree

19: Uh,i ← µ̂h,i +
√

(2 lnn)/Th,i + ν1ρ
h ⊲ Update the U–value set of node (h, i)

20: end for

21: BH+1,2I−1 ← [+∞, . . . ,−∞] ⊲ m-dimensional incomparable B–vectors for the children of the new leaf

22: BH+1,2I ← [−∞, . . . ,+∞]
23: T ′ ← T ⊲ Local copy of the current tree T
24: while T ′ 6=

{

(0, 1)
}

do ⊲ Backward computation of the B–values

25: (h, i)← LEAF(T ′) ⊲ Take any remaining leaf

26: if Bh,i is LEAF then

27: Bh,i ← Uh,i

28: else

29: Bh,i ← ND
⋃

B

(

Bh+1,2i−1,Bh+1,2i

)

⊲ Backward computation of non-dominated B’s of children

30: end if

31: T ′ ← T ′ \
{

(h, i)
}

⊲ Drop updated leaf (h, i)
32: end while

33: end for

Fig. 1. The MO-HOO strategy

subplot depicts the sampled points in the objective space. The

color of the points indicate the epoch number, where red dots

denote points obtained in later epochs. The random strategy

explores the entire objective space where MO-HOO samples

almost exclusively the Pareto front.In Table I, we show the

result for both approaches using two multi-objective quality

indicators.

1) Cardinality This quality indicator filters the set of

obtained solutions Y using the non-dominated (ND)

operator and counts the number of solutions that are

retained, i.e.

Cardinality(Y) = |ND(Y)| (4)

The higher the cardinality, the larger the set of com-

promise solution the user can choose from.

2) Inverted Generational Distance (IGD) [16]. This qual-

ity indicator measures the average Euclidean distance

d from a set of obtained solution vectors Y to the true

Pareto front X:

IGD(X,Y) =
1

|Y |

(

|Y |
∑

i=1

d(yi, X)2
)

(5)

The lower the IGD value, the closer the obtained

elements are to the Pareto front.

Based on the results, we note MO-HOO acquires more than

6 times the amount of Pareto optimal points obtained by the

random method and the total set of sampled points is much

closer to the Pareto front.

Random MO-HOO

Cardinality 69.5 436.2

IGD 0.0012 0.0005

TABLE I

QUALITY INDICATORS ON THE SCHAFFER 1 FUNCTION FOR RANDOM

EXPLORATION AND MO-HOO. THE GOAL IS TO MAXIMIZE THE

NUMBER OF PARETO OPTIMAL POINTS AND TO MINIMIZE THE IG

DISTANCE.

B. Fonseca and Flemming function

The second problem is the Fonseca and Fleming function:

[10].

maximize f(x) =

{

f1(x) = −(1− e
−

∑
n
i=1

(xi−
1

√

n
)2
)

f2(x) = −(1− e
−

∑
n
i=1

(xi+
1

√

n
)2
)

where x is a two-dimensional input vector with xi ∈ [−4, 4]
for objective i. This bi-objective function has an entirely

non-convex and large Pareto front which makes it especially

appealing for multi-objective optimisation algorithms to test

their ability to find a close and uniform approximation of

the Pareto front. The function and its corresponding Pareto

front can be found in Fig. 3 (a). To test the effectiveness

of the MO-HOO strategy on noisy environments, we also

added Normal noise with σ = 0.1 to the values of each of

the objectives.

In Fig. 3 (b) we see that also on the harder Fonseca

and Flemming function the percentage of ǫ-Pareto optimal

actions increases significantly over time. When comparing

the random strategy to MO-HOO in Fig. 3 (c) and Fig. 3

(d), respectively, we see the MO-HOO tree focussing on the

optimal part of the action space and gradually increasing its

sampling accuracy in later learning epochs.

The cardinality and IGD indicators in Table II also denote

MO-HOO’s improved performance on this test function.

C. Wet clutch

Finally, we test the MO-HOO strategy on a motivation

example of a multi-objective control problem. To do this we

use a realistic simulation environment of a wet clutch setup,

i.e. a clutch where the friction plates are immersed in oil, in

order to smooth the transmission and increase the lifetime

of the plates. Wet clutches are typically used in heavy duty

transmission systems, such as those found in off-road vehi-

cles and tractors. Figure 4 offers a schematic representation

Random MO-HOO

Cardinality 8.1 16.22

IGD 0.0056 0.0019

TABLE II

QUALITY INDICATORS ON THE FONSECA AND FLEMMING FUNCTION

FOR RANDOM EXPLORATION AND MO-HOO.

Input shaft Output shaft
To valve

Piston

Drum

Friction plates

Return spring

Chamber

Fig. 4. Schematic representation of a wet clutch (from [11]).

of its functioning. Two sets of friction plates are connected to

the input and the output shaft, respectively, such that, when

they are pressed together, the torque generated by the motor,

connected to the input shaft via a set of gears, is transmitted

to the output shaft, which is connected to the wheels of the

vehicle. The two sets of plates are free to translate axially,

and a return spring keeps the clutch open: to close the clutch,

the plates are pressed together by a hydraulic piston, which

can be pushed against the plates by increasing the pressure

of the oil in the clutch chamber. This pressure can in turn

be controlled by the current input of an electromechanical

servo-valve: by opening the valve, the clutch and supply line

are filled up with oil, and the pressure increases until it is

high enough to overcome the return spring force. As a result,

the piston starts to move towards the plates. During this first

part of the engagement, called the filling phase, no torque is

transferred. The transmission only commences as the piston

makes contact with the plates. The clutch then enters the

slip phase, as the slip, defined as the difference in rotational

speeds between the shafts, decreases. When the pressure is

high enough, the output shaft is accelerated until it rotates

synchronously with the input, and the slip reaches zero.

There currently is no reliable model of the whole en-

gagement: an approximate model3 is available for the filling

phase, until the piston touches the plates, but not for the

following slip phase, which would allow to simulate and

optimize the resulting torque loss. However, it has been

observed that the torque loss depends on the speed of the

piston when this reaches the plates: the lower the speed, the

lower the torque loss, and the smoother the engagement. In

other words, there is a trade-off among the two objectives:

on one hand, a very slow piston movement will result in a

smooth engagement, which takes a long time; on the other

hand, a fast piston will engage in a short time, but it will

also cause a jerky engagement, with a large torque dip,

and possibly damage the setup. These two objectives are

conflicting and make a good testbed for our multi-objective

technique.

A parametric form of such a signal has been adopted

in [12], for a genetic-based optimization approach, and it

is displayed in Fig. 5. First, a large current pulse is sent

to the valve, in order to generate a high pressure level in

the oil chamber of the clutch, which will allow the piston

3Model developed in Simulink R© by Julian Stoev, Gregory Pinte (FMTC),
Bert Stallaert and Bruno Depraetere (PMA, Katholieke Universiteit Leuven).

�!"" �#" �$" �%" �&" �'" �(" �)" �*" �!" "
�%"

�&"

�'"

�("

�)"

�*"

�!"

"

+,-./012.3!

+
,
-.
/
01
2
.
3*

45.36/5788.93!38:;/01<;

3

3

6/5788.9!

6/5788.93!3=79.0<389<;0

✵ ✺✵ ✶✵✵ ✶✺✵ ✷✵✵ ✷✺✵ ✸✵✵ ✸✺✵ ✹✵✵ ✹✺✵ ✺✵✵
✵

✵✁✶

✵✁✷

✵✁✸

✵✁✹

✵✁✺

✵✁✂

✵✁✄

✵✁☎

✵✁✆

✶

❊✝✞✟✠

✪

❡✲
✡
☛
☞✌
✍✎
✎
✏
✍✑
✒
☛
✓
☛
✔
✍✑
✎
✕
✖
✖
☛
✒
✏
✓✌
✗

❖✘✙✚✛✘✜ ✢✙✣✤✥✜✦✞ ✞✝✦✛✧✤✚ ★✤✧✝✚✛✘✩ ✝✜✥✫✞✥✧✤✘✟✜ ✞✘ ✬✟✠✤✫✫✜✥ ✶

❘✤✘✭✞✧

▼❖✮❖❖

(a) The Schaffer 1 objective space (b) Percentage optimal actions

✯ ✰✯ ✱✯✯ ✱✰✯ ✳✯✯ ✳✰✯ ✴✯✯ ✴✰✯ ✻✯✯ ✻✰✯ ✰✯✯
✯

✯✼✰

✱

✽✾✿❀❁

❛
❂❃
❄❅
❆

❙❇❈✾❉✽❋ ✾✿●❍■❏ ●❍ ❇❀■●✿❍ ❏✾❇❀✽

❇❀■●✿❍

✯ ✯✼✱ ✯✼✳ ✯✼✴ ✯✼✻ ✯✼✰ ✯✼❑ ✯✼▲ ✯✼◆ ✯✼P ✱
✯

✰

✱✯

✱✰

◗❚❯❱❲❳ ❨❩◗❚❬

❞
❭
❪ ❃
❫

❴❵✽✽ ❋✽✾■❁

❇❀■●✿❍

❜✱✯✯ ❜P✯ ❜◆✯ ❜▲✯ ❜❑✯ ❜✰✯ ❜✻✯ ❜✴✯ ❜✳✯ ❜✱✯ ✯
❜◆✯

❜❑✯

❜✻✯

❜✳✯

✯

✿♦❝✽❀■●❢✽ ✱

❅
❣
❤❭
❂❃
❄✐
❭
❥

❦♦■❇●❍✽❋ ✾✿●❍■❏ ●❍ ✿♦❝✽❀■●❢✽ ❏✾❇❀✽

❧ ♠❧ ♥❧❧ ♥♠❧ ♣❧❧ ♣♠❧ q❧❧ q♠❧ r❧❧ r♠❧ ♠❧❧
❧

❧s♠

♥

t✉✈✇①

②
③④
⑤⑥
⑦

⑧⑨⑩✉❶t❷ ✉✈❸❹❺❻ ❸❹ ⑨✇❺❸✈❹ ❻✉⑨✇t

⑨✇❺❸✈❹

❧ ❧s♥ ❧s♣ ❧sq ❧sr ❧s♠ ❧s❼ ❧s❽ ❧s❾ ❧s❿ ♥
❧

♠

♥❧

♥♠

♣❧

⑨✇❺❸✈❹ ❻✉⑨✇t

➀
➁
➂
④➃

➄➅tt ❷t✉❺①

⑨✇❺❸✈❹

➆♥❧❧ ➆❿❧ ➆❾❧ ➆❽❧ ➆❼❧ ➆♠❧ ➆r❧ ➆q❧ ➆♣❧ ➆♥❧ ❧
➆❾❧

➆❼❧

➆r❧

➆♣❧

❧

✈➇➈t✇❺❸➉t ♥

⑥➊
➋➁
③④
⑤ ➌
➁
➍

➎➇❺⑨❸❹t❷ ✉✈❸❹❺❻ ❸❹ ✈➇➈t✇❺❸➉t ❻✉⑨✇t

(c) Sampling performance of random selection (d) Sampling performance of MO-HOO

Fig. 2. Schaffer 1 results. Subfigure (a) denotes the objective space of the Schaffer 1 function and its Pareto front. In (b), the sampling performance
MO-HOO is compared to a naive random strategy, while additional information on the size of the three and the sampled points in the action space are
presented in (c) and (d), respectively.

to overcome the resistance of the preloaded return spring,

and accelerate towards the friction plates. After this pulse,

a lower constant current is sent out, in order to decelerate

the piston as it approaches the friction plates: before reaching

this low value, the current decreases shortly to an even lower

value, creating a small dent in the signal, which should act

as a “brake”, limiting the speed of the piston. Finally, the

current signal grows following a ramp with a low slope,

closing the clutch smoothly. The signal is parametrized as

follows: the first parameter (a) controls the duration of

the initial peak, whose amplitude is fixed at the maximum

level, while the last (d) controls the low current level, just

before the engagement begins. The remaining parameters

(b, c) control the shape of the “braking” dent, while the

final slope during the engagement phase is fixed. The above

mentioned parametric input signal is created to be used for

the whole engagement of the clutch. Focussing only on the

first phase of the engagement (filling phase), we simplify

the signal to a 2-dimensional signal were the width of the

first pulse (a-parameter) and the height of the “braking” dent

(c-parameter) are adjustable. The remaining parameters are

respectively set to 0 and the value of the c-parameter.

The results on the wet clutch environment can be found

below. In contrast to the test functions, where the identifica-

Fig. 5. Parametric input signal from [12], with four parameters (a, b, c, d).
In our implementation, all parameter ranges are mapped to the unit interval
[0, 1].

tion of the true Pareto front was relatively easy, this is not the

case for the wet clutch environment. In Fig 6 (a), we denote

the obtained points in the objective space after a parameter

sweep. We normalized the objectives and transformed both

into objectives to be maximized. We note that many of the

parameters lead to policies located in clustered suboptimal

areas of the objective space. The optimal policies, which are

located in the top-right corner of the objective space, are

�! �"#$ �"#% �"#& �"#' �"#(�"#) �"#* �"#+ �"#! "
�!

�"#$

�"#%

�"#&

�"#'

�"#(

�"#)

�"#*

�"#+

�"#!

"

,-./0123/4!

,
-
./
0
12
3
/
4+

56/4789:/0;4;9<47=/>>29?4@A901289

4

4

7#4;9<47#4@A901289
7#4;9<47#4B;C/184@C891

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵ ✻✵✵ ✼✵✵ ✽✵✵ ✾✵✵ ✶✵✵✵
✵

✵✁✶

✵✁✷

✵✁✸

✵✁✹

✵✁✺

✵✁✻

✵✁✼

✵✁✽

✵✁✾

✶

❖✂✄☎✆✂✝ ❡✄✲✞✟✝✠✡ ✡☛✠✆☞✞☎ ✌✞☞☛☎✆✂✍ ☛✝✟✎✡✟☞✞✂✏✝ ✡✂ ✑✡✂✌✝✏✞ ✞✂✒ ✑☎✝☞☞✆✂✍

❊☛✡✏✓

✪

✔
✕
✖
✗
✘✙
✚✛
✛
✜
✚✢
✣
✗
✤
✗
✥
✚✢
✛
✦
✧ ▼❖★❖❖

❘✞✂✒✡☞

(a) The Fonseca and Flemming objective space (b) Percentage optimal actions

✩ ✫✩✩ ✬✩✩ ✭✩✩ ✮✩✩ ✯✩✩ ✰✩✩ ✱✩✩ ✳✩✩ ✴✩✩ ✫✩✩✩
✩

✩✿✯

✫

❀❁❂❃❄

❛
❅❆
❇❈
❉

❙❋●❁❍❀■ ❁❂❏❑▲◆ ❏❑ ❋❃▲❏❂❑ ◆❁❋❃❀

❋❃▲❏❂❑
❋❃▲❏❂❑

✩ ✩✿✫ ✩✿✬ ✩✿✭ ✩✿✮ ✩✿✯ ✩✿✰ ✩✿✱ ✩✿✳ ✩✿✴ ✫
✩

✯

✫✩

✫✯

❋❃▲❏❂❑ ◆❁❋❃❀

❞P
◗ ❆
❚

❯❱❀❀ ■❀❁▲❄

❋❃▲❏❂❑
❋❃▲❏❂❑

❲✫✿✮ ❲✫✿✬ ❲✫ ❲✩✿✳ ❲✩✿✰ ❲✩✿✮ ❲✩✿✬ ✩
❲✫✿✯

❲✫

❲✩✿✯

✩

✩✿✯

❂♦❳❀❃▲❏❨❀ ✫

❈❩
❬P
❅❆
❇❭
P
❪

❫♦▲❋❏❑❀■ ❁❂❏❑▲◆ ❏❑ ❂♦❳❀❃▲❏❨❀ ◆❁❋❃❀

❴ ❵❴❴ ❜❴❴ ❝❴❴ ❢❴❴ ❣❴❴ ❤❴❴ ✐❴❴ ❥❴❴ ❦❴❴ ❵❴❴❴
❴

❴❧❣

❵

♠♥♣qr

s
t✉
✈✇
①

②③④♥⑤♠⑥ ♥♣⑦⑧⑨⑩ ⑦⑧ ③q⑨⑦♣⑧ ⑩♥③q♠

③q⑨⑦♣⑧
③q⑨⑦♣⑧

❴ ❴❧❵ ❴❧❜ ❴❧❝ ❴❧❢ ❴❧❣ ❴❧❤ ❴❧✐ ❴❧❥ ❴❧❦ ❵
❴

❵❴

❜❴

❝❴

③q⑨⑦♣⑧ ⑩♥③q♠

❶❷
❸✉
❹

❺❻♠♠ ⑥♠♥⑨r

③q⑨⑦♣⑧
③q⑨⑦♣⑧

❼❵❧❢ ❼❵❧❜ ❼❵ ❼❴❧❥ ❼❴❧❤ ❼❴❧❢ ❼❴❧❜ ❴ ❴❧❜
❼❵❧❣

❼❵

❼❴❧❣

❴

❴❧❣

♣❽❾♠q⑨⑦❿♠ ❵

✇
➀➁
❷t
✉✈➂
❷
➃

➄❽⑨③⑦⑧♠⑥ ♥♣⑦⑧⑨⑩ ⑦⑧ ♣❽❾♠q⑨⑦❿♠ ⑩♥③q♠

(c) Sampling performance of random selection (d) Sampling performance of MO-HOO

Fig. 3. Fonseca and Flemming results. Subfigure (a) denotes the objective space of the Fonseca and Flemming function and its Pareto front. In (b), the
sampling performance MO-HOO is compared to a naive random strategy, while additional information on the size of the three and the sampled points in
the action space are presented in (c) and (d), respectively.

much harder to find as small changes in parameter values

imply big gaps between the policies. As a consequence, our

exhaustive sweep only allowed to obtain 8 Pareto optimal

policies, denoted in blue, of the continuous Pareto front. This

is an indication of the level of difficulty of the problem.

In Fig. 6 (b), we depict the average percentage of ǫ-Pareto

optimal actions selected by both the random and MO-HOO

strategy. On this hard environment, randomly sampling the

action space almost never leads to a Pareto optimal action

where the MO-HOO strategy approaches 55%. As denoted

by Fig. 6 (d), we note that the algorithm is not converged

yet as no clear action emerged after 5000 epochs. In Fig. 4

(c), we see that randomly sampling the action space only

focusses on the dominated part of the objective space while

MO-HOO is able to escape the local optima and approach

the true Pareto front within the limited epochs. Eventually, in

Table III, MO-HOO obtained 222 Pareto optimal solutions

on average.

V. CONCLUSIONS

In this paper, we have argued the need for multi-objective

optimization algorithms for real-life control applications.

Therefore, we have proposed a new problem class, i.e. the

multi-objective X -armed bandit, where an agent is faced with

a continuous finite-dimensional action space where the goal

Random MO-HOO

Cardinality 7.14 222.56

IGD 0.0349 0.0219

TABLE III

QUALITY INDICATORS ON THE WET CLUTCH ENVIRONMENT FOR

RANDOM EXPLORATION AND MO-HOO

of the agent is to sample actions in the Pareto front based

on a vector-valued feedback signal. Our novel algorithm, the

multi-objective hierarchical optimistic optimization strategy

builds an infinite binary tree where each node represents an

optimistic estimate of the corresponding area in the objective

space. More precisely, each node stores a set of optimistic

estimates of the Pareto front attainable from sampling its sub-

tree. Future research will focus on reducing these optimistic

bounds by placing stricter bounds.

Based on the experimental validation, we have seen that

the MO-HOO strategy obtained satisfying results on both

the deterministic and noisy test functions and the wet clutch

simulation environment. We have seen that after a few

hundred epochs the algorithm already focusses on sampling

the Pareto front while leaving less interested areas of the

objective space untouched. As expected, results indicated

✵�✁ ✵�✂ ✵�✄ ✵�☎ ✵�✆ ✵�✝ ✵�✞ ✵�✟ ✵�✠ ✁
✵�✂

✵�✄

✵�☎

✵�✆

✵�✝

✵�✞

✵�✟

✵�✠

✁

◆✡☛☞✌✍✎✏✑✒ ✓✑✍✡✔✎✕✖ ☛✑✗✌☛✒

✘
✙
✚✛
✜
✢✣
✤
✥
✦
✧✣
✛
✥
✚✥
★
✜
✚✦

❖✩✪✑✔✕✎✓✑ ✫✬✌✔✑ ✡✭ ✗✑✕ ✔✍✮✕✔✯

❉✰✱✲✳✴✶✷✸ ✹✰✲✳✶✺
❉✰✱✲✳✴✶✲✳✻ ✹✰✲✳✶✺

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epoch

%
 ε

−
P

a
re

to
 o

p
ti
m

a
l
a

c
ti
o

n
s

On−line ε−Pareto optimal sampling performance on wet clutch environment

Random
MOHOO

(a) Wet clutch objective space (b) Percentage optimal actions

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

epoch

a
c
ti
o
n

Sampled points in action space

action

action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

action space

d
e
p
th

Tree depth

action

action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

objective 1

o
b
je

c
ti
v
e
 2

Obtained points in objective space

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

epoch

a
c
ti
o
n

Sampled points in action space

action

action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

action space

d
e
p
th

Tree depth

action

action

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

objective 1

o
b
je

c
ti
v
e
 2

Obtained points in objective space

(c) Sampling performance of random selection (d) Sampling performance of MO-HOO

Fig. 6. Wetclutch results. Subfigure (a) denotes the objective space of the Wetclutch simulation environment and its Pareto front. In (b), the sampling
performance MO-HOO is compared to a naive random strategy, while additional information on the size of the three and the sampled points in the action
space are presented in (c) and (d), respectively.

by several multi-objective quality indicators taught us that

the MO-HOO strategy sampled much more Pareto optimal

points than a random strategy and the resulting set of sampled

points were much closer to the true Pareto front. Most

multi-objective techniques work off-line and only identify

the Pareto front or sample the convex hull. Therefore we

would like to extensively compare the MO-HOO strategy

to evolutionary multi-objective approaches such as NSGA-

II and SPEA2. After the promising results on the simulation

model of the filling phase, we will also analyze the behaviour

and the performance of the MO-HOO strategy on the real wet

clutch setup.

ACKNOWLEDGEMENTS

This work has been carried out within the framework of

the Perpetual project (grant nr. 110041) of the Institute for the

Promotion of Innovation through Science and Technology in

Flanders (IWT-Vlaanderen). Together with the Multi-criteria

Reinforcement Learning project (grant G.0878.14N) of the

Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO).

REFERENCES

[1] Z. Gabor, Z. Kalmar, and C. Szepesvari, “Multi-criteria reinforcement
learning,” in International Conference on Machine Learning (ICML-

98), Madison, WI, 1998.

[2] K. Van Moffaert, M. Drugan, and A. Nowé, “Scalarized Multi-
Objective Reinforcement Learning: Novel Design Techniques,” in
2013 IEEE International Symposium on Approximate Dynamic Pro-

gramming and Reinforcement Learning. IEEE, 2013.

[3] S. Mannor and N. Shimkin, “A geometric approach to multi-criterion
reinforcement learning,” Journal of Machine Learning Research,
vol. 5, pp. 325–360, 2004.

[4] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Optimiza-
tion,” in Evolutionary Methods for Design, Optimisation and Control

with Application to Industrial Problems (EUROGEN 2001), K. Gian-
nakoglou et al., Eds. International Center for Numerical Methods in
Engineering (CIMNE), 2002, pp. 95–100.

[5] K. D. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm : NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.
[6] H. Robbins, “Some aspects of the sequential design of experiments,”

Bulletin of the American Mathematical Society, vol. 58, no. 5, pp.
527–535, 952.

[7] M. M. Drugan and A. Nowé, “Designing multi-objective multi-armed
bandits algorithms: A study,” in IJCNN. IEEE, 2013, pp. 1–8.

[8] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits,”
CoRR, vol. abs/1001.4475, 2010.

[9] J. D. Schaffer, “Multiple objective optimization with vector
evaluated genetic algorithms,” in Proceedings of the 1st International

Conference on Genetic Algorithms. Hillsdale, NJ, USA: L.
Erlbaum Associates Inc., 1985, pp. 93–100. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645511.657079

[10] C. M. Fonseca and P. J. Fleming, “Genetic algorithms
for multiobjective optimization: Formulationdiscussion and
generalization,” in Proceedings of the 5th International Conference

on Genetic Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 416–423. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645513.657757

[11] B. Depraetere, G. Pinte, and J. Swevers, “Iterative optimization of the
filling phase of wet clutches,” in The 11th International Workshop on

Advanced Motion Control (AMC 2010). IEEE, 2010, pp. 94–99.
[12] Y. Zhong, B. Wyns, R. D. Keyser, G. Pinte, and J. Stoev, “Imple-

mentation of genetic based learning classifier system on wet clutch
system,” in 30th Benelux Meeting on Systems and Control — Book of

Abstracts. Gent, Belgium: Universiteit Gent, 2011, p. 124.

