
Meta-Evolutionary Algorithms
and Recombination Operators

for Satisfiability Solving in Fuzzy Logics
Tim Brys∗, Madalina M. Drugan∗ and Ann Nowé∗

∗Artificial Intelligence Lab, VUB
Pleinlaan 2, 1050 Brussels, Belgium
{timbrys, mdrugan, anowe} @vub.ac.be

Abstract—In this work, we develop a new paradigm, called
Meta-Evolutionary Algorithms, motivated by the challenging,
continuous problems encountered in the domain of satisfiability
in fuzzy logics (SAT∞). In Meta-Evolutionary Algorithms, the
individuals in a population are optimization algorithms them-
selves. Mutation at the meta-population level is handled by
performing an optimization step in each optimization algorithm,
and recombination at the meta-population level is handled by
exchanging information between different algorithms. We analyse
different recombination operators and empirically show that
simple Meta-Evolutionary Algorithms are able to outperform
CMA-ES on a set of SAT∞ benchmark problems.

I. INTRODUCTION

In previous work [1]–[3], we have investigated optimization
approaches to the problem of solving satisfiability in fuzzy
logics. Although these problems are defined on a continuous
domain, [0, 1]n, they exhibit combinatorial properties like
their propositional counterpart, and specifically the problems
from Łukasiewicz logic are challenging due to the large
number of plateaus contained therein. While the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [4] has been
consistently among the best performing algorithms, we have
shown that it is possible to improve significantly over standard
CMA-ES when applying some of the principles outlined in this
paper [3], i.e. employing multiple parallel populations with
recombination between them.

The concept of running multiple populations or optimization
algorithms in parallel is not new [5]–[10]. Having multiple
algorithms (or multiple instances of the same algorithm)
potentially allows the different algorithms to explore different
parts of the search space, and increases the probability of one
instance starting in the basin of attraction of a good optimum.
This concept is not always useful though, as not all problem
landscapes have many suboptimal attractors, are deceptive,
or possess some other property that can result in premature
convergence.

The two methods that come closest to what is being
proposed in this paper are Meta-ES [7] and the Island Model
in Genetic Algorithms [5], which are both special cases of
the method we propose. In Meta-ES, or nested ES, an outer
ES is built that manages a set of inner ES’. Each of these
inner ES’ is run γ generations independently, after which
selection takes place in the outer ES, new inner ES’ are

produced and this procedure is repeated. This method allows
the outer ES to tune the inner ES’ parameters. In the Island
Model GA framework, different populations are run in parallel.
Individuals are allowed to migrate between populations at
certain intervals, increasing individual populations’ genetic
diversity and reinvigorating their search.

In this work, we generalize these methods to Meta-
Evolutionary Algorithms (MEA), by looking at multiple par-
allel populations and multiple parallel optimization algorithms
(homogeneous or heterogeneous) as individuals of the MEA’s
population. Mutation, recombination and selection are applied
at the meta-algorithm level. The exchange of individuals
between populations, specific to Island Models, is then only
one of many possible meta-recombination operators.

Another way to view MEA is as follows: MEA are a
generalization of EA that apply intermediate steps of local
search to individuals [11]. We generalize the individuals and
local search to possibly any optimization algorithm, although
with a preference for those that perform more local search.
The former is a bottom-up view of MEA, the latter a top-
down view. A last research domain that is related to the
work proposed here is niching in evolutionary algorithms [9],
[12], where multiple sub-populations are run on multimodal
functions to find multiple optima of an objective function.
We propose to implement interactions between these sub-
populations, not to find multiple optima, but to find the best
optimum.

After formalizing the MEA paradigm in the following sec-
tion, we analyse different possible recombination operators in
Section III, and empirically compare various MEA algorithms
to CMA-ES on a benchmark set of SAT∞ problems, see
Section IV.

II. META-EVOLUTIONARY ALGORITHMS

An important problem experienced by many optimization
algorithms, and especially by the ones that search locally,
is a tendency for the algorithms to get stuck in local sub-
optima. Various mechanisms to handle this problem have been
proposed, including random restart strategies, probabilistic
acceptance of worsening steps and multiple parallel algorithm
instances/populations. In this work, we are most interested in



this last strategy, and especially in combination with informa-
tion exchange between algorithm instances running in parallel.
In the MEA framework, we generalize the concepts of parallel
algorithms with information exchange into an Evolutionary
Algorithm (EA) that operates at a hierarchically higher level
than the instances that run in parallel. This MEA considers
each instance as an individual in its meta-population, and ap-
plies the archetypal EA operators of selection, recombination
and mutation at this meta-population level. Pseudo-code for
the Meta-Evolutionary Algorithm1, is given in Figure 1. In
the following sections, we discuss the specifics of MEA.

1: procedure MEA
2: Individuals ← InitializeIndividuals()
3: Fitness ← EvaluateFitness(Individuals)
4: while not stopCriterion() do
5: Meta-Select(Individuals, Fitness)
6: Meta-Recombine(Individuals)
7: Meta-Mutate(Individuals)
8: Fitness ← EvaluateFitness(Individuals)
9: end while

10: end procedure

Fig. 1. Meta-Evolutionary Algorithm Template

A. Individuals

In regular EA, an individual is a candidate solution, i.e. an
assignment to the problem’s variables. In MEA, an individual
represents the state of an optimization algorithm. For example,
in the case of a basic hillclimber, the individual will consist
of a single candidate solution. In the case of a basic GA
with population size µ, the individual is a list of µ candidate
solutions. In the case of CMA-ES, the individual consists of
the mean and covariance matrix of CMA-ES’ multivariate dis-
tribution, the evolution paths, stepsize, etc., i.e. all parameters
representing the state of the algorithm.

The functioning of an EA depends on a fitness evaluation of
individuals, allowing it to decide which individuals are better
than others. In MEA, depending on the formulation of indi-
viduals, different approaches for fitness evaluation strategies
are possible. For the hillclimber, the single candidate solution
is evaluated to represent the fitness of the individual. In the
GA case, the best or average fitness in the list of candidate
solutions (population) can be used. For CMA-ES, the mean
of the distribution’s fitness is representative of the individual’s
fitness.

B. Mutation

In MEA, mutation is performed by executing a single step
in an individual’s optimization algorithm. In the hillclimber
example, the neighbourhood of the current candidate solution
is evaluated, and the candidate solution is replaced with the
most improving neighbour, if any. In the GA example, the

1This concept of meta-evolutionary algorithms must not be confused with
meta-evolutionary programming [13], where a meta-algorithm optimizes the
parameters of an EA during search.

list of candidate solutions will have been updated to the
new generation through the GA’s selection, recombination
and mutation operators. In the CMA-ES example, the mean,
covariance matrix and evolution paths will have been updated
according to CMA-ES’ mechanisms. This implementation of
mutation will alter the individual in a non-random way; MEA
individuals are self-improving.

A core necessity for the successful application of MEA
is that the underlying optimization algorithms should be of
such a nature that they are able to diversify, i.e. that they
are likely to follow different search paths and/or converge
to different solutions. Without this property, running multiple
instances would only add redundant computational cost. In
the simplest case, the individuals are basic hillclimbers that
start from random locations and converge to different local
attractors.

C. Recombination

Recombination is meant to exploit commonalities in the
search space, i.e. to exploit the information contained in
different individuals to construct better ones. In MEA, these
individuals represent the state of specific instances of optimiza-
tion algorithms, and recombination allows us to exchange in-
formation between these instances. This information exchange
can take many forms, and a large part of this paper is dedicated
to the analysis of various meta-recombination operators, see
Section III.

Recombining two hillclimber individuals is straightforward,
as classical EA recombination operators can be applied to
their respective candidate solutions. Recombining two GA
individuals can be handled by exchanging individuals between
their populations, which is the Island Model GA case, or by
calculating a representative candidate solution (e.g. by aver-
aging), and using that candidate solution for recombination
(e.g. crossover) and reconstructing the population from the
child. Recombining two meta-individuals governed by CMA-
ES can be done by exchanging elements from the mean
of their multivariate distributions, and possibly on top of
that exchanging corresponding elements from the covariance
matrix and evolution path.

D. Selection and diversity

Selection is the final EA operator to consider. It acts on
the diversity in the population generated through mutation and
recombination, selecting those individuals from the population
that are allowed to survive, reducing the population’s diversity,
biasing the search towards individuals with higher fitness.

Note that the dynamics of the MEA are not the same as
those of a regular EA. At the meta-level, mutation of indi-
viduals is non-random, as they follow a search path dictated
by the optimization algorithm governing them. Selection is
already present at the individual’s level, and therefore we
believe that little explicit selection at the meta-population level
is necessary. In this paper, selection is only considered in
combination with the recombination operators.



Random restart strategies are the most commonly used
mechanism to overcome premature convergence to local sub-
optima, and can be present in the optimization algorithms
working at the lower level. Self-restarting individuals will
increase the diversity at the meta-population level, addressing
the problem of premature convergence at that level too.

III. RECOMBINATION OPERATORS

In this section, we propose recombination operators for
MEA, and analyse their impact on search space explo-
ration and optimization performance. Recombination opera-
tors should be tailored to the structure of individuals. For
example, recombination of hillclimbers is straightforward as
classical recombination operators can be directly applied to
the candidate solutions that represent their state. On the other
hand, when not only candidate solution(s), but also other
algorithmic parameters are included in the representation, the
recombination operator should intelligently recombine them,
e.g. the covariance matrices of two CMA-ES instances. The
operators considered in this section are built for recombining
single candidate solutions. In Section IV-D, we discuss how
other algorithm parameters can be recombined, with CMA-ES
as an example.

1: procedure META-RECOMBINE(Individuals)
2: R ← ∅
3: while size(Individuals) ≥ ρ do
4: R ← R ∪ OptimalMixing(Sample(Individuals, ρ))
5: end while
6: Individuals ← R
7: end procedure

Fig. 2. Recombination - For ρ the number of parents necessary for re-
combination, randomly select ρ individuals from the meta-population without
replacement, and apply optimal mixing until less than ρ individuals are left.

A. Optimal mixing

Before considering the actual recombination operators, we
discuss the optimal mixing procedure [14], which is a type
of selection after recombination that guarantees improvement
through recombination. This will ensure that the underlying
optimization algorithms’ search is only changed when it
is beneficial. Figure 2 shows the implementation of meta-
recombination using optimal-mixing. Our implementation of
optimal mixing for two parents is shown in Figure 3 and goes
as follows:
• For a pair of individuals, the set of problem variables is

divided into s disjunct sets of variables, each containing
at least one variable. Variables are randomly assigned to
sets.

• For a single variable set, a recombination operator is
applied to the two parents, recombining the variables in
that set. In the original paper proposing optimal mixing,
simple value exchange was used.

• If at least one of the modified offspring has greater fitness
than their parents, the recombination is accepted. This

1: procedure OPTIMALMIXING(parent1, parent2)
2: variableSets ← DisjunctVariableSets(s)
3: fp1 ← fitness(parent1)
4: fp2 ← fitness(parent2)
5: child1 ← parent1
6: child2 ← parent2
7: for each set ∈ variableSets do
8:
9: //Recombination

10: for each var ∈ set do
11: ROperator(var, child1, child2)
12: end for
13:
14: //Selection
15: fc1 ← fitness(child1); fc2 ← fitness(child2)
16: if acceptRecombination(fp1, fp2, fc1, fc2) then
17: parent1 ← child1; parent2 ← child2
18: fp1 ← fc1; fp2 ← fc2
19: else
20: //Undo recombination
21: for each var ∈ set do
22: child1[var] ← parent1[var]
23: child2[var] ← parent2[var]
24: end for
25: end if
26: end for
27: end procedure

Fig. 3. Optimal Mixing of Two Individuals

ensures global improvement through mixing, avoiding
local oscillations when optimized substructures go back
and forth between algorithms.

• This recombination is performed for each disjunct vari-
able set, each time continuing with the accepted offspring
from the previous step. The children at the end of the
procedure replace the original parents.

The procedure outlined here is optimal mixing with the
marginal product structure (disjunct sets of variables). Ideally,
these sets match the inherent structure of the problem being
solved, if any. In the original work, this structure was learned
using information analysis. Due to the limited number of meta-
individuals practically possible, using information analysis
yields no improvement in this setting. Therefore, the division
of variables into disjunct sets is random.

B. Recombination operators

It is possible to vary on this template by implementing dif-
ferent recombination operators (ROperator in the pseudocode),
and having different numbers of parents for recombination. In
the following paragraphs, we outline four different recombi-
nation operators for continuous spaces that will be analysed
within the MEA framework. For a visual representation of
these operators, see Figure 4. In the equations that illustrate
the operators, we show the modifications executed by the
recombination operator on a single variable var. All other



x

y

a

b

a

b

a

b

c

dd-c

b+(d-c)

a

b

c

(c+b)/2

x

y

a

b

a

b

a

b

c

dd-c

b+(d-c)

a

b

c

(c+b)/2

x

y

a

b

a

b

a

b

c

dd-c

b+(d-c)

a

b

c

(c+b)/2

x

y

a

b

a

b

a

b

c

dd-c

b+(d-c)

a

b

c

(c+b)/2

(a) Exchange (b) Stealing (c) Average (d) Differential
Fig. 4. Example recombinations with different operators in a two-dimensional problem. Only the second, or y-variable is considered for recombination, x
stays fixed. Black arrows and green dots indicate the actual recombination, blue arrows and dots indicate intermediate steps.

variables in childi are set to the values of the corresponding
parenti:

∀var, i : childi[var] = parenti[var]

Exchange. The simplest of recombination operators; the
classical crossover. A two-parent operator, which exchanges
variable values between parents. Recombinations are accepted
if one of the children is better than both parents.

child1[var] = parent2[var]

child2[var] = parent1[var]

Stealing. A two-parent recombination operator, where one
parent ’steals’ variable values from the other. A recombination
is accepted if child1 has improved over parent1.

child1[var] = parent2[var]

Average. A three-parent recombination operator, where one
parent’s variable values are set to the average of those of the
other two parents. A recombination is accepted if child1 has
improved over parent1.

child1[var] =
parent2[var] + parent3[var]

2

Differential. The Differential Evolution operator [15], [16].
A four-parent recombination operator, where one parent’s
variable values are set to the difference between the values
of the second and third parent, added to those of the fourth.
a in the equation controls the stepsize. A recombination is
accepted if child1 has improved over parent1.

child1[var] = parent4[var]

+ a(parent2[var]− parent3[var])

Applying these operators to the state of optimization algo-
rithm instances will allow us to control their search. While
stealing and averaging are expected to intensify the search
in certain promising regions of the search space by bringing
instances closer together, exchange is expected to have a
neutral effect on meta-population diversity. The envisioned
effect of the differential operator on diversity is unclear. The
effect of these operators on search behaviour will be analysed
in the following section, which starts with a description of
SAT∞ problems, which will serve as a benchmark.

IV. EXPERIMENTAL RESULTS

A. SAT∞
In fuzzy logics [17], truth is expressed as a real number

taken from the unit interval [0, 1]. Essentially, there are an
infinite number of truth degrees possible (in boolean logic,
there are only two truth degrees, i.e. 0 and 1). As an example
of a particularly popular fuzzy logic, in Łukasiewicz logic,
negation ¬, conjunction ⊗, disjunction ⊕ and implication →
are interpreted as follows (with [α]I indicating the truth degree
of that formula under variable assignment (interpretation) I.):
• [¬α]I = 1− [α]I
• [α⊗ β]I = max([α]I + [β]I − 1, 0)
• [α⊕ β]I = min(1, [α]I + [β]I)
• [α→ β]I = min(1− [α]I + [β]I , 1)

for formulas α and β.
A formula in a fuzzy logic is said to be satisfied when

its truth degree, given a certain interpretation, lies between
a given lower and upper bound. The upper bound is usually
1 (in boolean SAT, both lower and upper bounds are 1). An
example formula follows:

0.5 ≤ ¬(v1 ⊗ v2 ⊗ ¬v3) ≤ 1 (1)

To solve a SAT∞ instance containing n formulas using an
optimization approach, we define an objective function f(I)
whose global optima correspond to solutions of the SAT∞
instance [1]. I is an assignment to the variables, and αi, li
and ui are the ith formula and its lower and upper bounds
respectively:

f(I) =
∑n
i=1 g(I, αi, li, ui)

n
(2)

and,

g(I, αi, li, ui) =


1 if li ≤ [αi]I ≤ ui
[αi]I
li

if [αi]I < li
1−[αi]I
1−ui

if [αi]I > ui

(3)

g is a trapezoid function, with a plateau of value 1 when for-
mula αi’s degree of satisfaction lies between the given bounds,
and a slope leading to the plateau when the satisfaction lies
outside these bounds. When the global maximum of f has



a function value of 1, the SAT∞ instance is satisfiable, and
every global maximum is then a solution to the problem.

We use the problem benchmark set built in [1], which
consists of 50 problems instances in the Łukasiewicz logic,
with problem bounds from T100 =

{
0, 1

100 ,
2

100 , ..., 1
}

. These
problems were shown to be hard for the state-of-the-art
analytical solver due to the high granularity in the bounds2.

B. (µ, λ)-ES as MEA component

The optimization algorithm we will use in our MEA is
a simple (µ, λ)-Evolution Strategy without self-adaptation.
Specifically, it consists of a multi-variate distribution from
which λ individuals are sampled. The µ best are retained and
used to calculate a new mean for the distribution by averaging
the µ individuals. The next generation of candidate solutions is
sampled from this distribution, and this procedure is repeated.
The algorithm employs an exponentially decreasing schedule
for the stepsize, while the variance is the same in all directions.
This algorithm was shown to perform reasonably well on the
problems considered in this paper [2]. MEA individuals of this
ES are represented by the distribution’s mean.

Figure 5 shows pseudo-code for the specific ES that will be
used in this paper.

Boundary constraints are handled by repairing solutions that
fall outside the [0, 1]n box.

C. Analysis of recombination operators

In this section, we empirically analyse the effect of various
recombination operators on the search behaviour of the ES
outlined in the previous section. We build a MEA with a
population of 10 randomly initialized instances of this ES, and
for each of the 50 problem instances, 50 runs are performed,
with runs limited to 1000 generations (one generation in MEA
means executing one generation in each of its individuals). Pa-
rameters for the ES are µ = 1, λ = 10, and stepsize is decayed
from 2.5 to 0.025 by multiplying with 0.99 each generation. To
get a good comparison of the different operators, we apply all
of them the same number of times. By this we mean that, while
exchange could be applied to 5 pairs of parents in a population
of 10, and differential only to two quadruples, we apply both
operators only twice. Of course, this comparison is still not
perfect, as exchange and stealing then only access 40% of
the information contained in the population (2 recombinations,
each on 2 parents out of 10 potential parents), while average
has access to 60% and differential to 80% (2 recombinations
on 4 parents each). Stepsize a for the differential operator is
set to 0.5. For the number of sets the variables are divided
into for mixing, we propose s = n

logn as a general guideline,
with n the number of dimensions in the problem.

We measure the ratio of accepted versus tried mixings,
which indicates an operator’s ability to propose solutions im-
proving on the parents, see Figure 6(a). In the first generation,
the differential evolution operator can only propose improving
solutions in about 15% of the cases, while the other operators

2These problems can be downloaded here: http://ai.vub.ac.be/members/
tim-brys, along with Java code to interpret them.

1: procedure ES
2: // Initialization
3: mean ← RandomPoint()
4: stepsize ← InitialStepsize()
5: for i ∈ Individuals do
6: Individualsi ← Sample(N (mean, stepsize× I) )
7: end for
8: Fitness ← EvaluateFitness(Individuals)
9:

10: // Main loop
11: while not stopCriterion() do
12: // Selection
13: Individuals ← Sort(Individuals, Fitness)[1..µ]
14:
15: // New Distribution
16: mean ← ~0
17: for i ∈ Individuals do
18: mean ← mean + i
19: end for
20: mean ← mean / nrIndividuals
21: stepsize ← Decay(stepsize)
22:
23: // Restarting
24: if restartCriterion() then
25: mean ← RandomPoint()
26: stepsize ← InitialStepsize()
27: end if
28:
29: // Sampling next generation
30: for i ∈ Individuals do
31: Individualsi ← Sample(N (mean, stepsize× I))
32: end for
33: Fitness ← EvaluateFitness(Individuals)
34: end while
35: end procedure

Fig. 5. Evolutionary Strategy. I is the identity matrix. Mutation in a MEA
individual equals executing one iteration of the main loop.

more than double that figure. All operators converge to almost
no improving recombinations after 100 generations.

If we look at the absolute increase in fitness of the accepted
recombinations, Figure 6(b), all methods behave similarly,
except for the exchange operator which is able to maintain
a relatively high level of fitness increases much longer than
the other three methods.

Figure 6(c) shows the direct effect mixing has on the
distance between ES instances, which is a measure of the
diversity in the MEA population. The exchange operator is
neutral in this respect; on average, the distance between
meta-individuals does not change. Differential will slightly
decrease the diversity by bringing individuals closer together,
and stealing and averaging bring them much closer together.
Figure 6(d) shows the evolution of the actual inter-ES distance
over a number of generations. A MEA with independent ES’,
i.e. without recombination, is included in this graph, to isolate



100 101 102 1030

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generation

R
at

io
 o

f a
cc

ep
te

d 
re

co
m

bi
na

tio
ns

 

 
Exchange ES
Stealing ES
Average ES
Differential ES

100 101 102 1030

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Generation

G
ai

n

 

 
Exchange ES
Stealing ES
Average ES
Differential ES

(a) Ratio of accepted recombinations (b) Gain in fitness through mixing

100 101 102 103−6

−5

−4

−3

−2

−1

0

1

Generation

D
is

ta
nc

e 
in

cr
ea

se

 

 

Exchange ES
Stealing ES
Average ES
Differential ES

100 101 102 10350

60

70

80

90

100

110

120

130

140

150

Generation

D
is

ta
nc

e

 

 
Multiple ES
Exchange ES
Stealing ES
Average ES
Differential ES

(c) Increase in meta-population diversity through mixing (d) Average meta-population diversity
Fig. 6. (a) Percentage of accepted recombinations. (b) Increase in fitness through recombination (c) Increase in distance between populations through mixing
(negative values indicate approaching populations) (d) Average distance between populations.

the effect of mutation (optimization at the lower level) on
diversity. The distance between independent ES’ decreases as
some of them converge to similar regions in the search space.
If we consider the addition of recombination operators, we can
see that the direct effect of stealing, average and differential
on diversity (Figure 6(c)) carries over to the actual diversity
evolution over time. They all decrease diversity with the same
relative effect. Only the results for the exchange operator are
noteworthy. Applying the exchange operator, while in itself it
has a neutral effect on diversity, actually maintains diversity
longer than when there is no interaction among the ES. We
believe this follows from the fact that exchange constructs two
new individuals, one containing the best variable assignment
combinations from both parents, while the alternative values
survive in the other child, which is often worse off. This
second ES is then forced to optimize these variable values
himself, resulting in extended exploration of the search space.

Average and stealing clearly intensify the search in promis-
ing regions of the search space. We hypothesize that this
behaviour will lead to faster solving performance. On the
other hand, exchange preserves higher diversity among the
ES’, which should allow them to solve more successfully
hard, deceptive problems by exploring different regions in the
search space. We hypothesize that using exchange will result

in a higher probability of solving an instance in the long
run, although at the cost of slower performance in general.
Differential holds the middle ground when considering ES
diversity, but has a much lower percentage of successful
recombinations, and therefore seems to offer little advantage.
In the next sections, we compare the performance of the
algorithmic variants described before, with CMA-ES and a
MEA using CMA-ES.

D. CMA-ES as MEA component

A CMA-ES meta-individual is represented by the mean of
its distribution, its covariance matrix, and the evolution paths.
The recombination of this representation is less trivial, as it
incorporates more information than a single candidate solution
would.

Consider exchange recombination. Values from the mean
and evolution paths can simply be exchanged, as these are
vectors in which each element describes the current state of
CMA-ES for each variable independently. The recombination
of the covariance matrix is less simple, as it encodes infor-
mation between pairs of variables, which furthermore may or
may not be kept together during recombination. The way the
matrix exchange recombination is implemented is as follows:
if variables i and j stay together, the covariance information
for element (i, j) comes from the corresponding parent. If the



102

103

104

105

106

107

Single ES Multiple ES Exchange ES Stealing ES Average ES Differential ES CMA−ES Multiple CMA−ES M−CMA−ES

Ev
al

ua
tio

ns

Fig. 7. Boxplot of the number of evaluations each algorithm requires to reach a solution on the Łukasiewicz T100 problems.

Single ES Ind. ES Exch. ES Steal. ES Avg. ES Diff. ES CMA-ES Ind. CMA-ES M-CMA-ES

Median 44.33× 103 9.71× 103 4.53× 103 2.33× 103 2.29× 103 4.53× 103 3.93× 103 8.16× 103 18.56× 103

Mean 32.44× 104 17.57× 104 3.36× 104 5.54× 104 4.08× 104 4.31× 104 11.45× 104 6.10× 104 5.20× 104

Success 96.64% 96.84% 100% 98.84% 98.32% 99.8%† 98.32% 98.28% 99.96%†

TABLE I
MEDIAN AND MEAN NUMBER OF EVALUATIONS FOR SUCCESSFUL RUNS, AND PERCENTAGE OF SUCCESSFUL RUNS ON THE ŁUKASIEWICZ T100

PROBLEMS. THOSE RESULTS MARKED WITH † ARE NOT SIGNIFICANTLY DIFFERENT FROM THE BEST (WILCOXON SIGNED-RANK TEST, α = 0.05)

variables come from different solutions, the average of the
covariance information from both solutions is calculated and
stored. This covariance matrix recombination can only take
place after every variable set is exchanged, since only then can
we know of all variables whether they stay together or not.
This Meta-EA with CMA-ES and exchange recombination was
proposed in [3] and coined Mixing-CMA-ES (M-CMA-ES).

In previous work, we used a penalty function to handle
the box-constraint in CMA-ES, as this is the method recom-
mended by Hansen [18]. Meanwhile, we have determined that
boundary repair performs much better for CMA-ES on these
problems, even though it violates various assumptions about
the distribution of individuals (results not included). Therefore,
we use boundary repair throughout the experiments in this
paper.

E. Performance results

The actual performance of the ES, five variations of MEA
containing ES (independent, exchange, stealing, average and
differential), CMA-ES, and two variations of MEA containing

CMA-ES (independent and exchange) is shown in Figure 7
and summarized in Table I. 50 runs are performed on each
of the 50 Łukasiewicz problem instances, with a maximum
number of 107 evaluations allowed. We show mean and
median number of evaluations required to solve an instance
in successful runs, as well as the percentage of successful
runs. Note that we do not compare multiple populations with
a single large population, as we have previously determined
that performance decreases with larger populations for these
algorithms solving these problems (given a budget of 107

evaluations) [2]. In this experiment, the number of recombina-
tions is not equalized among the different operators, and thus
exchange and stealing will perform more recombinations than
average, which in turn will perform more than differential.
Other parameters are the same as before, and µ and λ for
CMA-ES are the same as for the simple ES.

While running multiple independent instances of the sim-
ple ES already greatly improves performance over a single
ES, applying recombination operators further improves this.
Averaging and stealing have better median performance, but



also have a heavier tail, as indicated by their mean perfor-
mance and success percentage which are worse than those
for exchange and differential. When not considering median
evaluations to a solution, exchange is the best performing
operator. These results confirm our expectations concerning
stealing and average, which converge faster to solutions, but
trade this off with a lower final success rate. Exchange on
the other hand is slower, but more robust in solving instances.
Surprisingly, the differential operator yields performance very
similar to the exchange operator. With exchange, the ES
perform much better than CMA-ES with exchange (M-CMA-
ES), establishing this Meta-EA as the new state-of-the-art
algorithm for solving satisfiability problems in Łukasiewicz
logic.

A last factor not yet considered is that of implementation
complexity. The covariance matrix adaptation mechanism in
CMA-ES is very powerful, but also very difficult to implement.
On the other hand, the mechanisms proposed in this paper
are relatively straightforward and do not require complex
mathematical operations to achieve similar performance to
CMA-ES (although we must not forget that our basic approach
here is not completely black-box, given the optimized stepsize
decay schedule, while CMA-ES is).

V. CONCLUSIONS

In this paper, we proposed Meta-Evolutionary Algorithms
(MEA), which consist of a set of (possibly interacting) in-
stances of optimization algorithms. Each instance applies its
own search procedure, while information exchange between
instances is possible and can alter the instance’s search pro-
cess. This method is inspired by, and generalizes, Meta-ES,
the Island Model in GA, niching methods in EA, and EA
with intermediate local search steps. It could be called a
parallel portfolio approach with information exchange between
algorithms.

Four meta-level recombination operators were proposed
and their effect on search behaviour analysed. While stealing
and averaging were shown to intensify search in promising
regions of the search space, this is at the cost of long term
solving success. Exchange and differential operators are able
to maintain higher diversity in the meta-population, resulting
in slower convergence to solutions, but better exploration of
the search space, and are therefore more robust to deceptive
features in the landscape. We showed that MEA consisting of
simple ES, using any of these recombination operators, were
able to perform at least as good as standard CMA-ES on a
set of satisfiability instances from Łukasiewicz logic. A great
advantage is the relative simplicity of implementing MEAs,
which exploit the parallel search of different optimization algo-
rithms’ instances to explore the search space more thoroughly
than a single would (depending on how local the algorithm’s
search is).

In this paper, we have only considered homogeneous MEAs,
with all individuals executing the same randomized search
procedure. In a heterogeneous approach, we could have one
CMA-ES instance, coupled with hundreds of very simple

hillclimbers, combining CMA-ES’ robustness with a fast ex-
ploration of the search space by hillclimbers. In the future,
we will evaluate this MEA framework on more conventional
benchmark problems, with better known properties, includ-
ing propositional SAT and continuous benchmark functions
from the BBOB competition. Preliminary results suggest that
applying MEA with CMA-ES and exchange (M-CMA-ES)
to benchmark functions such as Bohachevsky, Rastrigin and
Schwefel greatly improves performance, as it exploits the
functions’ separability.

ACKNOWLEDGMENT

Tim Brys is funded by a Ph.D grant of the Research
Foundation Flanders (FWO). Madalina M. Drugan performed
this work funded by a Visiting Fellowship of the FWO.

REFERENCES

[1] T. Brys, Y.-M. De Hauwere, M. De Cock, and A. Nowé, “Solving
satisfiability in fuzzy logics with evolution strategies,” in Proceedings of
the 31st Annual North American Fuzzy Information Processing Society
Meeting, 2012.

[2] T. Brys, M. M. Drugan, P. A. N. Bosman, M. D. Cock, and A. Nowé,
“Local search and restart strategies for satisfiability solving in fuzzy
logics,” in Proceedings of the 6th International Workshop on Genetic
and Evolutionary Fuzzy Systems (GEFS), 2013 IEEE Symposium Series
on Computational Intelligence, 2013.

[3] T. Brys, M. M. Drugan, P. A. N. Bosman, M. De Cock, and A. Nowé,
“Solving satisfiability in fuzzy logics by mixing cma-es,” in Proceedings
of the Genetic and Evolutionary Computation Conference, 2013.

[4] N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Ben-
goetxea, Eds. Springer, 2006, pp. 75–102.

[5] P. B. Grosso, “Computer simulations of genetic adaptation: Parallel
subcomponent interaction in a multilocus model.” Dissertation Abstracts
International Part B: Science and Engineering[DISS. ABST. INT. PT. B-
SCI. & ENG.],, vol. 46, no. 7, 1986.

[6] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck, “A multi-population
approach to dynamic optimization problems,” Adaptive computing in
design and manufacturing, vol. 2000, p. 299, 2000.

[7] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehen-
sive introduction,” Natural Computing, vol. 1, pp. 3–52, 2002.

[8] B. Niu, Y. Zhu, and X. He, “Multi-population cooperative particle swarm
optimization,” Advances in Artificial Life, pp. 874–883, 2005.

[9] O. M. Shir and T. Bäck, “Niching with derandomized evolution strate-
gies in artificial and real-world landscapes,” Natural Computing, vol. 8,
no. 1, pp. 171–196, 2009.

[10] P. A. N. Bosman, “On empirical memory design, faster selection
of bayesian factorizations and parameter-free gaussian edas,” in Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary
computation. ACM, 2009, pp. 389–396.

[11] M. W. S. Land, “Evolutionary algorithms with local search for combi-
natorial optimization,” Ph.D. dissertation, Citeseer, 1998.

[12] S. W. Mahfoud, “Niching methods for genetic algorithms,” Urbana,
vol. 51, p. 61801, 1995.

[13] D. B. Fogel, L. J. Fogel, and J. W. Atmar, “Meta-evolutionary program-
ming,” in Conference record of the twenty-fifth asilomar conference on
Signals, systems and computers, 1991. IEEE, 1991, pp. 540–545.

[14] D. Thierens and P. A. N. Bosman, “Optimal mixing evolutionary
algorithms,” in GECCO, N. Krasnogor and P. L. Lanzi, Eds. ACM,
2011, pp. 617–624.

[15] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[16] M. M. Drugan and D. Thierens, “Geometrical recombination operators
for real-coded evolutionary mcmcs,” Evolutionary computation, vol. 18,
no. 2, pp. 157–198, 2010.

[17] P. Hájek, Metamathematics of Fuzzy Logic. Springer, 1998.
[18] N. Hansen, “The CMA Evolution Strategy: A tutorial,” 2011.


