
Scalarized Multi-Objective Reinforcement Learning:
Novel Design Techniques

Kristof Van Moffaert
Department of Computer Science

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

Email: kvmoffae@vub.ac.be

Madalina M. Drugan
Department of Computer Science

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

Email: mdrugan@vub.ac.be

Ann Nowé
Department of Computer Science

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

Email: anowe@vub.ac.be

Abstract—In multi-objective problems, it is key to find com-
promising solutions that balance different objectives. The linear
scalarization function is often utilized to translate the multi-
objective nature of a problem into a standard, single-objective
problem. Generally, it is noted that such as linear combination
can only find solutions in convex areas of the Pareto front,
therefore making the method inapplicable in situations where
the shape of the front is not known beforehand, as is often
the case. We propose a non-linear scalarization function, called
the Chebyshev scalarization function, as a basis for action
selection strategies in multi-objective reinforcement learning.
The Chebyshev scalarization method overcomes the flaws of the
linear scalarization function as it can (i) discover Pareto optimal
solutions regardless of the shape of the front, i.e. convex as well
as non-convex , (ii) obtain a better spread amongst the set of
Pareto optimal solutions and (iii) is not particularly dependent
on the actual weights used.

I. INTRODUCTION

Many real-life problems involve dealing with multiple ob-
jectives. For example, in network routing the objectives could
consist of energy, latency, and channel capacity. When the
system engineer wants to optimize more than one objective,
it is not always clear which objectives are correlated and
how they influence each other upon initially inspecting the
problem at hand. Also, it is not sufficient to try to optimize
just one objective in the routing problem without considering
the effect that this maximization has on the other objectives in
the system. In such cases, we are dealing with a genuine multi-
objective optimization problem. Formally, multi-objective op-
timization (MOO) is the process of simultaneously optimizing
multiple objectives which can be complementary, conflicting
as well as independent. So deciding a priori on the importance
of the different criteria might be difficult. The goal of MOO
is to search the policy space and eventually find policies that
simultaneously optimize one or more objectives.

A popular approach to solving MOO problems is to trans-
form the multi-objective problem into a single-objective prob-
lem by employing scalarization functions. These functions
provide a single score indicating the quality over a combi-
nation of objectives, which allows a simple and fast ordering
of the candidate solutions. In many cases, a linear combination
of the objectives is utilized, but as noted in [1], this mechanism
only allows Pareto optimal solutions to be found amongst

convex1 areas of the Pareto front.

Main contributions. In our work, we analyze and argue
the limitations of the linear scalarization function on both
convex and non-convex environments. We will show that
the linear scalarization function is unsuitable for action se-
lection purposes in on-line reinforcement learning. Instead,
we propose a novel non-linear scalarization function, i.e. the
weighted Chebyshev scalarization function, that improves the
linear scalarization function on three aspects. We empirically
analyse the non-linear scalarization function and note that it
allows to (i) discover Pareto optimal solutions regardless of
the shape of the front, (ii) obtain a better spread amongst the
set of Pareto optimal solutions and (iii) is less dependent on
the actual weights used, compared to the linear scalarization
function.

Outline. In Sections II and III, we discuss in more detail
previous work on multi-objective optimization and reinforce-
ment learning. Furthermore, we elaborate on our contributions
in Section IV and empirically analyze them in Section VI using
the experimental setting of Section V. In Section VII we draw
conclusions.

II. PRELIMINARIES

A. Multi-Objective Optimization

A multi-objective optimization problem optimizes a vec-
tor function whose elements represent the objectives. A
maximization multi-objective problem is maxF(x) =
max{f1(x), f2(x), ..., fm(x)}, where m is the number of
objectives, and fo is the value for the o-th objective. A
solution x1 is said to Pareto dominate another solution x2,
F(x2) ≺ F(x1), iff for all objectives j, f j(x2) ≤ f j(x1), and
there exists an objective i, for which f i(x2) < f i(x1).

B. Multi-Objective Reinforcement Learning

Reinforcement learning (RL) involves an agent operating in
a certain environment and receiving reward or punishment for
its behaviour. In single-objective learning the goal of the agent
is to find a mapping from states to actions that maximizes

1An object is convex if for every pair of points within the object, every
point on the straight line segment that joins them is also within the object. If
not, the object is non-convex or concave.

the reward received over time. In the following sections, we
give a brief overview of reinforcement learning and how it is
extended to multi-objective environments.

Markov decision process. The principal structure for RL is
a Markov Decision Process (MDP). An MDP can be described
as follows. Let S = {s1, . . . , sN} be the state space of
a finite Markov chain {xl}l≥0 and A = {a1, . . . , ar} the
action set available to the agent. Each combination of starting
state si, action choice ai ∈ Ai and next state sj has an
associated transition probability T (sj |si, ai) and immediate
reward R(si, ai). The goal is to learn a policy π, which maps
each state to an action so that the expected discounted reward
Jπ is maximized:

Jπ ≡ E

[∞∑
t=0

γtR(st, π(st))

]
(1)

where γ ∈ [0, 1) is the discount factor and expectations are
taken over stochastic rewards and transitions. This goal can
also be expressed using Q-values which explicitly store the
expected discounted reward for every state-action pair. The
optimal Q∗-values are defined as follows.

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)max
a′

Q∗(s′, a′) (2)

So in order to find the optimal policy, one can learn this Q-
function and then use greedy action selection over these values
in every state. Watkins described an algorithm to iteratively
approximate Q∗. In the Q-learning algorithm [2] a table
consisting of state-action pairs is stored. Each entry contains
the value for Q̂(s, a) which is the learner’s current estimate
about the actual value of Q∗(s, a). The Q̂-values are updated
accordingly to following update rule:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt[r + γmax
a′

Q̂(s′, a′)] (3)

where αt is the learning rate at time step t and r is the reward
received for performing action a in state s. Provided that all
state-action pairs are visited infinitely often and a suitable
evolution for the learning rate is chosen, the estimates, Q̂,
will converge to the optimal values Q∗.

Multi-objective MDPs. In MOO, the principal structures
are multi-objective MDPs or MO-MDPs [3]. These extend
MDPs by replacing the single reward signal by a vector of
reward signals, i.e. ~R(si, ai) = (R1(si, ai), . . . Rm(si, ai)),
where m represents the number of objectives. Since the reward
vector consists of multiple components, each representing
different objectives, it is very likely that conflicts arise when
trying to optimize one or more objectives. In such case, trade-
offs between these objectives have to be learned, resulting in a
set policies. The set of optimal policies for each objective or a
combination of objectives is referred to as the Pareto optimal
set.

III. RELATED WORK

There are several multi-objective reinforcement learning
(MORL) approaches proposed in literature. For instance, [4]
suggests a MORL method that uses a lexicographic ordering
of the objectives and by placing minimal thresholds on certain
objectives, policies are discovered that take into account these
constraints. Furthermore, [5] suggests a batch Convex Hull
Value Iteration algorithm that learns all policies in parallel,
defining the convex hull of the Pareto optimal set. Additionally,
[6] also proposes a batch MORL approach, based on the linear
scalarization function, to identify which actions are favoured
in which parts of the objective space. Notwithstanding their
results, they all consists of off-line algorithms, which involve
sweeps over a set of collected data. Therefore, the aspects of
these algorithms on using and adapting their policy during the
learning process (i.e. on-line learning) were not studied.

IV. CONTRIBUTIONS

In this section, we elaborate on our contributions to the
MORL domain. More precisely, we analyze the drawbacks
of the linear scalarization function as a basis for an action
selection strategy on two benchmarks. To address these short-
comings, we propose the weighted Chebyshev scalarization
function as an alternative mechanism. Later, we further present
a general framework for MORL, based on Q-learning, in
which any scalarization function can be incorporated.

A. The linear scalarization function

In single-objective learning, the agent’s table is used to store
the expected reward for the combination of state s and action
a, i.e. Q̂(s, a). In a multi-objective setting, the Q-table is
extended to incorporate objectives, i.e. Q̂(s, a, o). Thus, the
expected rewards for each state, action and objective can be
stored, retrieved and updated separately.

An important aspect of multi-objective optimization consists
of how the actions are selected, based on different objectives
that can be complementary, conflicting or independent. A
common approach is to employ scalarization functions as
a scoring mechanism for action selection strategies. More
precisely, these functions transform a multi-objective problem
into a single objective problem by performing a function
over the objectives to obtain a combined score for an action
a for different objectives o. This single score can then be
used to evaluate the particular action a. Given these scores,
one can utilize the standard action selection strategies of
single-objective reinforcement learning, such as ε-greedy and
Boltzmann, to decide which action to select. Most scalarization
functions imply that an objective o is associated with a
weighted coefficient, which allows the user some control over
the nature of the policy found by the system, by placing
greater or lesser emphasis on each of the objectives. In a multi-
objective environment, this trade-off is parametrized by wo ∈
[0, 1] for objective o and

∑m
o=1 wo = 1. The most common

function is the linear scalarization function [7] (LS) because
of its simplicity and straightforwardness. More precisely, for a
multi-objective solution x, a weighted-sum is performed over

each objective function (i.e. fo with o = 1 . . .m) and their
corresponding weights to obtain the score of x, i.e.

LS(x) =

m∑
o=1

wo · fo(x) (4)

In the case of multi-objective reinforcement learning, the
objective functions f are considered the Q̂(s, a, o)-values. As
a result of applying the scalarization, scalarized Q-values or
SQ-values are obtained:

SQ(s, a) =

m∑
o=1

wo · Q̂(s, a, o) (5)

The action corresponding to the largest weighted-sum or SQ-
values is considered the greedy action in state s, formulated
in Eq. 6.

greedya′(s) = max
a′

SQ(s, a′) (6)

The linear scalarization function has a fundamental limitation
as it can only find policies that lie in convex regions of the
Pareto optimal set [1]. Taken into account the fact that in most
cases the shape of the optimal set is not known beforehand or
the fact that some convex Pareto optimal sets have local con-
cavities, applying this function for action selection purposes,
would imply that some Pareto dominating actions will not be
discovered.

B. The Chebyshev scalarization function

Our novel alternative as a mechanism to evaluate actions
with multiple objectives consists of using Lp metrics [8]. In
detail, Lp metrics measure the distance between a point in the
multi-objective space and a utopian point z∗. In our setting, we
measure this distance to the value of the objective functions
f for each objective o of the multi-objective solution x, i.e.

min
x∈Rn

Lp(x) =
(m∑
o=1

wo|fo(x)− z∗o |p
)1/p

(7)

, where 1 ≤ p ≤ ∞. In the case of p = ∞, the metric is also
called the weighted L∞ or the Chebyshev metric and is of the
form:

min
x∈Rn

L∞(x) = max
o=1...m

wo|fo(x)− z∗o | (8)

In terms of action selection mechanism, the objective func-
tion values f are replaced by Q̂(s, a, o)-values to obtain the
scalarized Q-value or SQ-value, for state s and action a:

SQ(s, a) = max
o=1...m

wo · |Q̂(s, a, o)− z∗o | (9)

Resulting from the formula in Eq. 8, using the Chebyshev
metric, the action corresponding to the minimal SQ-value is
considered the greedy action in state s, i.e. greedya′(s′):

greedya′(s) = min
a′

SQ(s, a′) (10)

The reference point z∗ is a parameter that is being constantly
adjusted during the learning process by recording the best
value so far for each objective o, plus a small constant τ ,
i.e. z∗o = f besto (x) + τ . The Chebyshev method has already

Fig. 1. Scalarized ε-greedy strategy, scal-ε-greedy()
1: SQList← {}
2: for each action ai ∈ A do
3: ~o← {Q̂(s, ai, o1), . . . , Q̂(s, ai, om)}
4: SQ(s, a)← scalarize(~o) . Scalarize Q̂-values
5: Append SQ(s, a) to SQList
6: end for
7: return ε-greedy(SQList)

proven its effectiveness in the evolutionary computation do-
main [8], where it is considered more powerful that the linear
scalarization function, but was, until now, not evaluated in
reinforcement learning.

C. Scalarized MORL framework

In the previous sections, we have presented the linear and
Chebyshev scalarization functions as mechanisms to evalu-
ate actions in multi-objective reinforcement learning environ-
ments. We will now present how every scalarization function
can be incorporated into a general Q-learning algorithm for
multi-objective purposes.

In Fig. 1, we present a general outline for action evaluation
in multi-objective environments using scalarization functions.
At line 3, we retrieve the Q̂-values for each objective o of
action a. Additionally, at line 4, the scalarize function can
be instantiated by any scalarization function (i.e. a linear or
non-linear function) to obtain a single score for the quality
of the combination of state s and action a, i.e. the SQ(s, a)
value. Thus, we transform the multi-objective problem into a
single-objective problem and store the individual evaluations
in SQList. Furthermore, an action selection from single-
objective learning is utilized to decide which action ai to select
in state s, based on the obtained scores. At line 7, we specify
this by adopting the ε-greedy strategy.

The new multi-objective Q-learning algorithm (MO Q-
learning) is presented in Fig. 2. At line 1, the Q̂-values for
each triple of states, actions and objectives are initialized. Each
episode, the agent starts in state s (line 3) and chooses an
action based on the multi-objective action selection strategy
of Fig. 1 at line 5. Upon taking action a, the environment
transitions the agent into the new state s′ and provides the
vector of rewards ~r.

As the Q-table has been extended to incorporate a separate
value for each objective, these values are updated for each
objective individually. The single-objective Q-learning update
rule is extended for a multi-objective environment at line 10 of
Fig. 2, where α represents the learning rate and γ the discount
factor. More precisely, the Q̂-values for each triple of state s,
action a and objective o are updated using the corresponding
reward for each objective, ~r(s, a, o), into the direction of the
Q̂-value of the best scalarized action of the next state s′,
i.e. greedya′(s′). Convergence is guaranteed as long as each
action and state is sufficiently sampled.

Fig. 2. MO Q-learning algorithm
1: Initialize Q̂(s, a, o) arbitrarily
2: for each episode T do
3: Initialize state s
4: repeat
5: Choose action a from s using policy derived from Q̂-values (e.g. scal-ε-greedy)
6: Take action a and observe state s′ ∈ S and reward vector ~r ∈ ~R
7: greedya′(s

′),← Call scal. greedy action selection
8: for each objective o do
9: Q̂(s, a, o)← Q̂(s, a, o) + α[~r(s, a, o) + γQ̂(s′, greedya′(s

′), o)− Q̂(s, a, o)]
10: end for
11:
12: s← s′ . Proceed to next state
13: until s is terminal
14: end for

V. EXPERIMENTAL SETTING

Recently, [9] proposed empirical evaluation techniques for
multi-objective RL, together with a few benchmark instances.
In the following sections, we will perform an empirical analy-
sis on two of these benchmark environments using the multi-
objective Q-learning algorithm, employed with the linear and
Chebyshev functions as scoring mechanisms for the action
selection strategy.

A. Benchmark environments

More precisely, [9] proposed the Deep Sea Treasure and
the Multi-Objective Mountain Car benchmark environments
for multi-objective reinforcement learning. Together with the
description of the environments, they provided the Pareto
optimal sets which can be used to evaluate the scalarization
functions in detail.

Deep Sea Treasure world. The Deep Sea Treasure world
concerns an episodic task where an agent controls a submarine,
searching for undersea treasures. The world consists of a 10
x 11 grid where 10 treasures are located, with increasing
values as the distance from the starting location increases. At
each time step, the agent can move into one of the cardinal
directions (up, down, left, right). The two objectives are the
time needed to reach the treasure and the treasure value itself,
which are to be minimized2 and maximized, respectively. This
world is particularly suited for multi-objective reinforcement
learning as the optimal path to each treasure is an element
of the Pareto optimal set. As a result, the shape of the
Pareto optimal set is entirely concave. A visualization of the
environment is depicted in Figure 3.

Multi-Objective Mountain Car. The single-objective
Mountain Car world is a famous benchmark for reinforcement
learning algorithms. In this world, a car is required to escape
a one-dimensional valley. As the car’s engine is less powerful
than gravity, the vehicle must perform a series of acceleration

2Traditionally, single-objective reinforcement learning solves a maximiza-
tion problem. If the problem at hand concerns a minimization of one of the
objectives, negative rewards are used for that objective to transform it also
into a maximization problem.

Fig. 3. A visual representation of the Deep Sea Treasure world. The agent
starts each episode in the top-left position. The treasures are indicated by the
grey cells, while black cells represent the seabed. Figure taken from [9].

and reversal actions to build enough potential energy to escape
the valley. The action space consists of three actions: full
throttle forward, full throttle backward, and zero throttle. The
multi-objective version of this benchmark is challenging as it
consists of three objectives that are to be optimized. The three
objectives are the time required to escape the valley and the
number of acceleration and reversal actions, which are all to
be minimized. The Pareto optimal set contains 470 dominating
policies and the maximum amount of steps allowed to reach
the goal location is 500 steps. It is important to note that the
shape of the Pareto optimal set has a significant portion of
locally convex and non-convex areas.

B. Parameter setting

In the experiments, presented below, we relied on identical
parameter settings for each of the testing environments. We
applied an ε-greedy exploration strategy with ε set to 0.1 and
the Q̂-values were initialized optimistically for each objective.
The learning rate α was set to 0.1 and the discount factor γ
to 0.9. The τ parameter3 of the Chebyshev mechanism was
specified to 4.0 and 1.0 for the Deep Sea Treasure world
and the MO Mountain Car world, respectively. Results are
collected and averaged over 50 trials of each 500 iterations.

3These values were found in a parameter sweep to create the best-
performing algorithm, though the results are not very sensitive to particular
values for τ .

TABLE I
THE WILCOXON RANK TEST DENOTED A SIGNIFICANT DIFFERENCE

BETWEEN THE HYPERVOLUME OF THE OBTAINED POLICIES OF THE TWO
ALGORITHMS ON BOTH BENCHMARK PROBLEMS.

avg. hv linear avg. hv Chebyshev p-value Significant?
DST 762 938.29 4.4306e−19 √

MC 15727946.18 23028392.94 2.6528e−14 √

VI. EXPERIMENTS

In the following experiments, we will analyze the perfor-
mance of both scalarizations in the MO Q-learning framework,
presented in Section IV-C. First, we provide results for both
scalarization functions when weights are varied across the
entire range of [0, 1] in Section VI-A and VI-B. Thus, we
analyze the ability of each algorithm to discover all elements
of the Pareto optimal sets, when the time needed to conduct
the parameter sweep is no issue.

Furthermore, in Section VI-C, we examine the case when
it is not feasible to evaluate the performance of an algorithm
multiple times under different circumstances, one after another.
For example, imagine the case where a robot is operating in a
real-life multi-objective environment. Then, it is not doable to
recompile and test its program with multiple weight settings
before an acceptable set of policies is learned. Moreover, we
determine the ability of both scalarization functions to discover
multiple Pareto optimal solutions when we keep the weight
parameter fixed.

In Section VI-D, we elaborate on the diversity of the policies
that are obtained by both scalarization functions. More diverse
policies imply that the end-user has a larger choice of distinct
possibilities to solve a particular problem.

A. Quality indicator comparison

In multi-objective research, quality indicator studies are a
popular approach for conducting algorithm comparisons. The
performance indicators utilized are the (inverted) generational
distance , the generalized spread indicator, the cardinality and
the hypervolume distance. The first three are to be minimized,
while the last two are to be maximized.

The generational distance and the inverted generational
distance were both proposed by [10]. The former measures
how far the elements in the set of Pareto approximations,
learned by the algorithms, are from those in the Pareto optimal
set. The latter calculates how far each element in the Pareto
optimal set is from those in the set of Pareto approximations.
The spread indicator [11] on the other hand is a diversity
metric that measures the extent of spread achieved amongst the
obtained solutions. The cardinality measure simply counts the
number of elements found in the Pareto set. The hypervolume
metric is a commonly accepted quality measure for comparing
approximations of Pareto sets in the field of MOO [12]. In
our case, the elements are policies and denoted by their col-
lected reward for each objective throughout the episode. The
hypervolume metric calculates the volume of the area between
a reference point and the Pareto set obtained by a specific
algorithm. In Fig. 4, a visual representation of the hypervolume

TABLE II
THE REFERENCE POINTS USED TO CALCULATE THE HYPERVOLUME (HV)
INDICATOR AS QUALITY ASSESSMENT TOOL FOR EACH ENVIRONMENT.

Deep Sea Treasure MO-Mountain Car
Reference point (−25, 0) (−350,−250,−500)

measure is provided. For three bi-objective solutions S1, S2

and S3 the area is calculated, given a reference point r.

r

S1

S2

S3

1st objective

2nd
 o

bj
ec

tiv
e

Fig. 4. The grey area represents the hypervolume obtained for the three
solutions in a bi-objective environment, given the reference point r.

Table II presents the reference points for the hypervolume
metric, used to quantify the learned policies in each of the
benchmark environments. These values were determined by
examining the bounds on the reward structure of each testing
environment in a straightforward way. To be more precise,
in case of a maximization problem, one can determine the
minimal values for each objective and subtract a small constant
to determine a suitable reference point. The results on the final

TABLE III
FIVE QUALITY INDICATOR ON THE TWO BENCHMARKS. THE FIRST THREE
INDICATORS ARE TO BE MINIMIZED, WHILE THE LATTER TWO ARE TO BE

MAXIMIZED. THE BEST VALUES ARE DEPICTED IN BOLD FACE.

Linear Chebyshev

Inverted generational distance DST 0.128 0.0342
MC 0.012 0.010

Generalized spread DST 3.14e−16 0.743
MC 0.683 0.808

Generational distance DST 0 0
MC 0.0427 0.013824

Hypervolume DST 762 938.29
MC 15727946 23028392

Cardinality DST 2 8
MC 25 38

policies, i.e. the Pareto approximation set obtained at the end
of the learning phase, are presented in Table III.

Deep Sea Treasure results. On the Deep Sea Treasure
(DST) world, the Chebyshev method learned 8 distinct, op-
timal policies out of 10 optimal policies in the Pareto optimal
set. The linear scalarization function only found two elements
of the Pareto optimal set. The Q-learner with the Chebyshev-
based strategy obtained the best value for the hypervolume

metric. Furthermore, each of the 8 policies were an element
of the Pareto optimal set, so that the generational distance is
0. Given the fact that we ran only 10 distinct weight tuples
or agents, the cardinality and generational distance results
are impressive. Therefore, also the distance from the policies
found to the elements in the Pareto optimal set is minimized,
which is being reflected in the inverted generational distance
values for the Chebyshev scalarization function.

MO Mountain Car results. On the Mountain Car (MC)
world, the Chebyshev method found 38 distinct Pareto dom-
inating policies by only 64 distinct agents. As a result, it
also obtained the best results for the hypervolume metric. The
policies obtained by the Chebyshev method are also close to
the Pareto optimal set, as is shown by both distance indicators.
The linear scalarization function struggled on this complex
environment and learned only 25 non-dominated policies.
Additionally, the results for both distance indicators were also
inferior to the results of the Chebyshev method.

A very important quality indicator, that we did not discus
before, is the generalized spread. In multi-objective optimiza-
tion, the goal of an algorithm is not only to find a certain
amount of (optimal) policies, but also to ensure a significant
spread in the multi-objective space. When the obtained results
are scattered across the objective space, the end-user has a
larger choice amongst very different policies. On the contrary,
when policies are clustered into particular areas, often the
differences between those policies are minimal and they do
not provide the end-user with a diverse set of choices. For this
metric, we note that Q-learner with the linear scalarization
function obtained the best results as depicted by the spread
indicator in Table III. This indicator could provide a distorted
picture to the reader stating that the Chebyshev method is
incapable of obtaining policies with a lot of diversity. The
reason behind this result is the fact that the generalized
spread indicator exclusively takes into account the bounding
solutions of the Pareto optimal set and averages the distance
to every non-dominated policy obtained by the algorithm.
It is important to note that these extreme elements of the
Pareto optimal set are the least interesting for the end-user,
i.e. they maximize only one objective regardless of the values
for the other objectives. What this metric lacks to take into
account are the real multi-objective solutions, i.e. the trade-
off or compromising solutions. Therefore, in Section VI-D, we
conduct additional experiments that focus on the diversity level
of the policies. Moreover, we will see that the linear scalar-
ization function is biased towards these extreme solutions.
Thus minimizing its generalized spread value, but lacking the
ability to learn policies with a large variety in the objective
space. First, we will examine the average performance of both
scalarization functions over a range of weights.

B. Combined performance of weights

An important aspect of a multi-objective learning algorithm
is its average performance for a range of weights. This
experiment denotes the ability of each scalarization function
to discover the entire Pareto front, when combining the results

for a range of weight settings. In Fig. 5 and 6, we present the
learning curve for both scalarization functions on the Deep
Sea Treasure and MO Mountain Car benchmark, respectively.
More precisely, for every iteration, we denote the hypervolume
of the learned policies for each of the 11 and 64 agents in
the environment with two and three objectives, respectively.
In the Deep Sea world (Fig. 5), the Q-learner utilizing the
linear scalarization function stagnates after 100 iterations and
keeps on finding the same policies over each of the 50 trials
(i.e. the standard deviation becomes zero). The algorithm
employing the Chebyshev function learns faster and finds
improved policies than the linear scalarization function. In the

0 50 100 150 200 250 300 350 400 450 5000

200

400

600

800

1000

1200

Iteration

H
yp

er
vo

lu
m

e

Pareto optimal set
Linear scal.
Chebyshev scal.

Fig. 5. The learning curve of the Q-learners using the linear and Chebyshev
scalarization functions as their action evaluation methods on the DST world.
The Pareto optimal set is depicted in black.

0 100 200 300 400 500−0.5

0

0.5

1

1.5

2

2.5

3
x 107

Iteration

H
yp

er
vo

lu
m

e

Chebyshev Q−learning
Linear scal. Q−learning
Pareto front

Fig. 6. The learning curve for both scalarization functions in action selection
strategies on the multi-objective Mountain Car world. The linear scalarization
strategy slowly learns to optimize its policies, with a lot of deviation. The
Chebyshev scalarization mechanism learns faster and more smoothly.

complex three-objective mountain car world, the differences
between the two scalarization methods are even clearer (Fig.
6). The Chebyshev-based Q-learner is learning faster and
smoother than the Q-learner using the linear function. The
learning curve of the Chebyshev function smooths out after
a few hundred iterations, while the algorithm using the linear
scalarization function is still fluctuating a lot. In Table I, we
relied on the Wilcoxon rank [13] test to determine whether
the results between the linear and the Chebyshev scalarization
functions are significant.

We conclude this experiment by stating that the Chebyshev
scalarization function is able to learn a wide variety of Pareto
optimal solutions when providing it with different weights.
Therefore, it approaches the Pareto optimal set much closer
than the linear scalarization function.

C. Individual performance of weights

Combining policies over different weighting tuples, as we
did in the previous experiment, is interesting to draw con-
clusions about an algorithm’s performance when the time
needed to perform the experiments is no issue. In some cases,
however, it might not be possible to run a parameter sweep and
collect the results. For example, for a robot is operating in a
real-life environment, it is not feasible to change its parameters
all the time and let it learn from scratch before a wide set of
(optimal) policies is collected. On the contrary, in a multi-
objective real-life setting, it would be interesting if the agent
could learn a diverse set of policies for fixed parameter values
(i.e. weights on objectives) without any manual intervention.
Once these policies are learned, the agent can then chose from
a set of high-quality, non-dominated policies to perform its
multi-objective task.

In the following experiments, this is exactly what we ana-
lyze, i.e. we show the number of distinct policies learned for
a fixed scalarization weight. The specific weight was chosen
to focus on trade-off solutions in the Deep Sea Treasure world
and was specified to (0.4, 0.6), where the first coordinate
represents the emphasis on the time objective, while the second
coordinate represents the weight on the treasure objective. In
Fig. 7(a), we depict the hypervolume of the ten dominating
policies of the Pareto optimal set in the Deep Sea Treasure
world, represented by points in a bi-objective space. The area
in blue corresponds to the hypervolume of these ten optimal
policies and is the maximal area that can be obtained in the
Deep Sea Treasure world. In Fig. 7(b), the linear scalarization
function always obtained the same solutions, i.e. (−19, 124)
for the fixed weight, resulting in the small red area. Learning
once using the Chebyshev scalarization function obtained, for
the same weighting coefficient, a significantly larger set of
optimal policies (Fig. 7(c)). More precisely, the set consisted
of 6 elements. The green area represents the hypervolume
corresponding to these 6 distinct policies. The green area
of (Fig. 7(c)) is clearly larger than the red volume (Fig.
7(b)), obtained using the linear scalarization function, and
approaches the blue area of the Pareto optimal set (Fig. 7(a)).

We conclude that the Chebyshev scalarization function is
less biased by the particular weight setting, defined a priori. In
contrast to the linear scalarization function, learning once with
the Chebyshev selection method for a fixed weight already
allows to obtain an acceptable spread in the multi-objective
space and thus also much larger set for the robot to select
from.

In Fig. 8, we extend the above experiment and show the
hypervolume obtained for each of the 11 scalarization weights
for both scalarization functions. We clearly note that the
linear scalarization function for weights 1 to 7 and 8 to 11,

(a) (b)

(c)

Fig. 7. An illustrative visualisation of the hypervolume measure on the
Pareto optimal set (Fig. 7(a)). The linear strategy (Fig. 7(b)) found only one
policy for a fixed weight, while the Chebyshev (Fig. 7(c)) function obtained
6 solutions, resulting in a larger hypervolume. Also in this experiment, the
reference point r for the hypervolume calculations was set to (−25, 0).

exclusively finds the same solutions. The Chebyshev function
learns a large collection of policies for each individual weight.
Only for weight 11, a single policy was found. This was the
case when large emphasis was defined to minimize the time
objective and therefore the algorithm opted to always take
the path to the closest (and smallest) treasure value. More
precisely, beginning from the starting position (Fig. 3), the
agent decides to go for the action that takes it one cell down.

1 2 3 4 5 6 7 8 9 10 110

200

400

600

800

1000

1200

Scalarization weights

H
yp

er
vo

lu
m

e

Pareto front
Linear scal.
Chebyshev

Fig. 8. For each of the 11 weights from 0 to 1, the hypervolume of the learned
policies is depicted. The Chebyshev strategy uses its weight coefficients in a
much better way than the linear scalarization function and found very diverse
policies for almost every weight configuration on the DST world.

Similar to Fig. 8 for the Deep Sea Treasure world, we
examined the performance of both scalarization functions for
the 64 individual agents in the MO Mountain Car benchmark.
In Fig. 9, the hypervolume for the set of obtained policies for
each individual scalarization weight is depicted. Note that only
for a very small set of weights, the learning algorithm utilizing

10 20 30 40 50 600

0.5

1

1.5

2

2.5

3

3.5x 107

Scalarization weights

H
yp

er
vo

lu
m

e

Pareto optimal set
Linear scal.

Fig. 9. The obtained hypervolume corresponding to the policies learned for
each of the 64 weight tuples using the linear linear scalarization. For a large
amount of weights no policies were found on the MC world.

10 20 30 40 50 600

0.5

1

1.5

2

2.5

3

3.5x 107

Scalarization weights

H
yp

er
vo

lu
m

e

Pareto optimal set
Chebyshev scal.

Fig. 10. For a large part of the weight tuples, the Chebyshev scalarization
mechanism obtained good policies. Although, for some weight combinations,
i.e. the gaps in the figure, no policies were learned.

the linear scalarization function was able to learn policies that
led to escaping the valley. In the other cases, the learner did not
succeed to reach the goal location within the restricted time
frame of 500 time steps. The Chebyshev method was much
less affected by the specified weights and was more robust
in escaping the valley in almost every circumstance (Fig. 10).
Although, for a particular number of weights, neither of the
both methods was able to reach the top of the hill in the
constrained time interval. After looking into which particular
set of weights was being used in these cases, we found out
that these results occurred when assigning a low weight (i.e.
< 0.2) to the time objective of the environment. This outcome
is in fact very logical as when allocating a minimal credit for
this objective, the algorithm will pay very little attention to
optimizing the time needed to escape the valley, but will only
focus on minimizing the number of acceleration and reversal
actions. Thus, for these particular sets of weights, the time
constraint of 500 steps to reach the goal will not be satisfied,
resulting in a hypervolume of zero.

D. Spread experiment

In a final experiment, we analyze in depth the ability of
each scalarization function to learn policies for different Pareto
optimal solutions. Recall that in the quality indicator study of

Section VI-A, the linear scalarization function yielded the best
results for the generalized spread indicator. We have noted
that this indicator was however biased to particular areas of
the multi-objective space and therefore does not allow a fair
comparison. In the experiment below, we present alternative
experiments to evaluate each method’s diversity.

In Fig. 11, we collect the learned policies during the entire
learning phase of the experiment in Section VI-B and plot a
frequency distribution over the 10 goals, i.e. treasure locations,
in the Deep Sea Treasure world. It is important to note that
each of the collected policies to these treasures were Pareto
optimal policies. We see that the Chebyshev method is able
to obtain improved performance over the linear scalarization
function in terms of discovering Pareto optimal actions. Out of
the 10 possible treasures, 9 are found on a frequent basis, with
increased frequencies towards the extreme solutions. In case
of the Deep Sea Treasure world, extreme solutions consist
of solutions that either minimize the time or maximize the
treasure value, but not both at the same time. The treasure with
value 24 is the only one that was not frequently discovered
by the algorithm using the Chebyshev scalarization function,
i.e. in only 0.001% of the cases. We believe this is the case
because that particular treasure is located at only one timestep
from the treasure with value 50. The difference in time cost
needed to reach the latter treasure is only 1, where the
advantage in terms of treasure value compared to the former is
(50−24). Therefore, the step size of the corresponding weight
interval, i.e. steps of size 0.1 in [0, 1], did not allow to assign
significant credit to the treasure with value of 24. We also
see that the linear scalarization always forces the algorithm
towards the extreme treasures and no policies towards other
treasures were learned. This finding confirms our interpretation
of the results on the generalized spread indicator of Table III.

1 2 3 5 8 16 24 50 74 1240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Treasure value

Fr
eq

ue
nc

y
pr

ob
ab

ilit
y

Chebyshev Q−learning
Linear scalarized Q−learning

Fig. 11. A plot indicating the sampling frequency of both scalarization
functions on the Deep Sea Treasure world. The x-axis represents the values
of each of the treasures in the environment.

The MO Mountain Car world consists of three objectives
that need to be optimized. Therefore a 3D plot is constructed
that presents the Pareto dominating solutions found by the
two learning algorithms and the Pareto optimal set in Fig. 12.
Learning using the linear scalarization function allowed to
obtain only 25 Pareto dominating solutions, where the Cheby-
shev scalarization obtained 38. Note that both algorithms
were run only 64 times (i.e. using 64 weight tuples) and

the number of Pareto dominating solutions found using the
Chebyshev function could be enlarged easily by performing
additional runs. We also notice that the policies obtained by
the linear scalarization method are, as expected, located in
convex areas of the Pareto optimal set, while the Chebyshev
function learned policies that are situated in both convex and
non-convex regions. Fig. 13 is a sliced representation of the
3D plot where we focus on only two objectives. Note that the
Chebyshev method obtains also in this complex world a larger
spread in the multi-objective space, where the results of the
linear scalarization function remain clustered into particular
regions.

−250 −200 −150 −100 −50 0

−100

−50

0
−400

−300

−200

−100

AccelerationsReversals

Ti
m

e

Chebyshev Q−learning
Linear scalarized Q−learning
Pareto front

Fig. 12. A 3D representation of the elements in the Pareto optimal set and
the solutions found by the two learning algorithms.

−90 −80 −70 −60 −50 −40 −30 −20 −10 0−400

−350

−300

−250

−200

−150

−100

Reversals

Ti
m

e

Chebyshev Q−learning
Linear scalarized Q−learning
Pareto front

Fig. 13. A sliced representation of only two objectives of Fig. 12, i.e. the
reversal and the time objective. The Chebyshev scalarization obtains solutions
that are spread in the objective space, while the solutions of the linear method
are clustered together.

VII. CONCLUSIONS

In this paper, we have elaborated on the drawbacks of
the linear scalarization function as a mechanism to evalu-
ate actions in multi-objective environments. Through quality
indicators, we have noted the linear scalarization function
is not suitable as a basis for an exploration strategy as it
is biased towards particular actions, while ignoring other
Pareto dominating actions. We proposed an alternative action
selection strategy, based on the weighted Chebyshev function,

that improves the linear scalarization function on three as-
pects. More precisely, we experimentally demonstrated that
the Chebyshev scalarization method can (i) discover Pareto
optimal solutions regardless of the shape of the front, (ii)
obtain a better spread amongst the set of Pareto optimal
solutions and (iii) is less dependent of the weights used. The
reason behind its superior performance is found by the fact that
it is a non-linear scalarization function, taking into account a
reference point that is gradually adjusted as learning proceeds.

We also generalized scalarized multi-objective RL by in-
troducing a multi-objective Q-learning framework, which can
incorporate any scalarization function, e.g. linear or non-linear.

In future work, we will investigate towards alternative multi-
objective solvers that overcome the drawbacks of scalariza-
tion functions, i.e. defining emphasis a priori in terms of
weights. Therefore, other methods should be analyzed that
search directly into the multi-objective space without applying
scalarizations. A possible solution would be to incorporate the
Pareto dominance rules directly as action selection mechanism.

ACKNOWLEDGEMENT

This research is supported by the IWT-SBO project PER-
PETUAL (grant nr. 110041).

REFERENCES

[1] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing
weighted sums of objectives for pareto set generation in multicriteria
optimization problems,” Structural and Multidisciplinary Optimization,
vol. 14, pp. 63–69, 1997.

[2] C. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation,
University of Cambridge,England, 1989.

[3] M. A. Wiering and E. D. de Jong, “Computing Optimal Stationary
Policies for Multi-Objective Markov Decision Processes,” in 2007 IEEE
International Symposium on Approximate Dynamic Programming and
Reinforcement Learning. IEEE, Apr. 2007, pp. 158–165.

[4] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement
learning,” in ICML, J. W. Shavlik, Ed. Morgan Kaufmann, 1998, pp.
197–205.

[5] L. Barrett and S. Narayanan, “Learning all optimal policies with multiple
criteria,” in Proceedings of the 25th international conference on Machine
learning, ser. ICML ’08. New York, NY, USA: ACM, 2008, pp. 41–47.

[6] D. J. Lizotte, M. Bowling, and S. A. Murphy, “Efficient reinforcement
learning with multiple reward functions for randomized controlled trial
analysis,” in Proceedings of the Twenty-Seventh International Confer-
ence on Machine Learning (ICML), 2010, pp. 695–702.

[7] S. Gass and T. Saaty, “The computational algorithm for the parametric
objective function,” Naval Research Logistics Quarterly, vol. 2, p. 39,
1955.

[8] T. Voß, N. Beume, G. Rudolph, and C. Igel, “Scalarization versus
indicator-based selection in multi-objective cma evolution strategies.”
in IEEE Congress on Evolutionary Computation. IEEE, 2008, pp.
3036–3043.

[9] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,” Machine Learning, vol. 84, no. 1-2, pp. 51–80, 2010.

[10] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm research: A history and analysis,” 1998.

[11] K. D. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm : NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[12] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” IEEE Trans.
Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[13] J. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, ser.
Statistics, Textbooks and monographs. Marcel Dekker, 2003.

