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Abstract

Effectively incorporating external advice is an important
problem in reinforcement learning, especially as it moves
into the real world. Potential-based reward shaping is a way
to provide the agent with a specific form of additional re-
ward, with the guarantee of policy invariance. In this work we
give a novel way to incorporate an arbitrary reward function
with the same guarantee, by implicitly translating it into the
specific form of dynamic advice potentials, which are main-
tained as an auxiliary value function learnt at the same time.
We show that advice provided in this way captures the input
reward function in expectation, and demonstrate its efficacy
empirically.

Introduction
The term shaping in experimental psychology (dating at
least as far back as (Skinner 1938)) refers to the idea of
rewarding all behavior leading to the desired behavior, in-
stead of waiting for the subject to exhibit it autonomously
(which, for complex tasks, may take prohibitively long). For
example, Skinner discovered that, in order to train a rat to
push a lever, any movement in the direction of the lever
had to be rewarded. Reinforcement learning (RL) is a frame-
work, where an agent learns from interaction with the en-
vironment, typically in a tabula rasa manner, guaranteed to
learn the desired behavior eventually. As with Skinner’s rat,
the RL agent may take a very long time to stumble upon
the target lever, if the only reinforcement (or reward) it re-
ceives is after that fact, and shaping is used to speed up the
learning process by providing additional rewards. Shaping
in RL has been linked to reward functions from very early
on; Mataric (1994) interpreted shaping as designing a more
complex reward function, Dorigo and Colombetti (1997)
used shaping on a real robot to translate expert instructions
into reward for the agent, as it executed a task, and Randlov
and Alstrom (1998) proposed learning a hierarchy of RL sig-
nals in an attempt to separate the extra reinforcement func-
tion from the base task. It is in the same paper that they un-
cover the issue of modifying the reward signals in an uncon-
strained way: when teaching an agent to ride a bicycle, and
encouraging progress towards the goal, the agent would get
“distracted”, and instead learn to ride in a loop and collect
the positive reward forever. This issue of positive reward cy-
cles is addressed by Ng, Harada, and Russell (1999), where

they devise their potential-based reward shaping (PBRS)
framework, which constrains the shaping reward to have the
form of a difference of a potential function of the transition-
ing states. In fact, they prove a stronger claim that such a
form is necessary1 for leaving the original task unchanged.
This elegant and implementable framework led to an ex-
plosion of reward shaping research and proved to be ex-
tremely effective (Asmuth, Littman, and Zinkov 2008), (De-
vlin, Kudenko, and Grzes 2011), (Brys et al. 2014), (Snel
and Whiteson 2014). Wiewiora, Cottrell, and Elkan (2003)
extended PBRS to state-action advice potentials, and Devlin
and Kudenko (2012) recently generalized PBRS to handle
dynamic potentials, allowing potential functions to change
online whilst the agent is learning.

Additive reward functions from early RS research, while
dangerous to policy preservation, were able to convey be-
havioral knowledge (e.g. expert instructions) directly. Po-
tential functions require an additional abstraction, and re-
strict the form of the additional effective reward, but provide
crucial theoretical guarantees. We seek to bridge this gap be-
tween the available behavioral knowledge and the effective
potential-based rewards.

This paper gives a novel way to specify the effective shap-
ing rewards, directly through an arbitrary reward function,
while implicitly maintaining the grounding in potentials,
necessary for policy invariance. For this, we first extend
Wiewiora’s advice framework to dynamic advice potentials.
We then propose to in parallel learn a secondary value func-
tion w.r.t. to a variant of our arbitrary reward function, and
use its successive estimates as our dynamic advice poten-
tials. We show that the effective shaping rewards then reflect
the input reward function in expectation. Empirically, we
first demonstrate our method to avoid the issue of positive
reward cycles on a grid-world task, when given the same be-
havior knowledge that trapped the bicyclist from (Randlov
and Alstrom 1998). We then show an application, where
our dynamic (PB) value-function advice outperforms other
reward-shaping methods that encode the same knowledge,
as well as a shaping w.r.t. a different popular heuristic.

1Given no knowledge of the MDP dynamics.



Background
We assume the usual reinforcement learning frame-
work (Sutton and Barto 1998), in which the agent interacts
with its Markovian environment at discrete time steps t =
1, 2, . . .. Formally, a Markov decision process (MDP) (Put-
erman 1994) is a tupleM = 〈S,A, γ, T ,R〉, where: S is a
set of states, A is a set of actions, γ ∈ [0, 1] is the discount-
ing factor, T = {Psa(·)|s ∈ S, a ∈ A} are the next state
transition probabilities with Psa(s′) specifying the proba-
bility of state s′ occuring upon taking action a from state
s, R : S × A → R is the expected reward function with
R(s, a) giving the expected (w.r.t. T ) value of the reward
that will be received when a is taken in state s. R(s, a, s′)2

and rt+1 denote the components of R at transition (s, a, s′)
and at time t, respectively.

A (stochastic) Markovian policy π : S×A → R is a prob-
ability distribution over actions at each state, so that π(s, a)
gives the probability of action a being taken from state s
under policy π. We will use π(s, a) = 1 and π(s) = a inter-
changeably. Value-based methods encode policies through
value functions (VF), which denote expected cumulative re-
ward obtained, while following the policy. We focus on
state-action value functions. In a discounted setting:

Qπ(s, a) = ET ,π
[ ∞∑
t=0

γtrt+1|s0 = s
]

(1)

We will omit the subscripts on E from now on, and imply
all expectations to be w.r.t. T , π. A (deterministic) greedy
policy is obtained by picking the action of maximum value
at each state:

π(s) = arg max
a

Q(s, a) (2)

A policy π∗ is optimal if its value is largest:

Q∗(s, a) = sup
π
Qπ(s, a),∀s, a

When the Q-values are accurate for a given policy π, they
satisfy the following recursive relation (Bellman 1957):

Qπ(s, a) = R(s, a) + γE[Qπ(s′, a′)] (3)
The values can be learned incrementally by the following

update:

Qt+1(st, at) = Qt(st, at) + αtδt (4)
where Qt denotes an estimate of Qπ at time t, αt ∈ (0, 1)

is the learning rate at time t, and

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at) (5)
is the temporal-difference (TD) error of the transition, in

which at and at+1 are both chosen according to π. This pro-
cess is shown to converge to the correct value estimates (the
TD-fixpoint) in the limit under standard approximation con-
ditions (Jaakkola, Jordan, and Singh 1994).

2R is a convention from MDP literature. In reinforcement
learning it is more common to stick with R(s, a, s′) for specifi-
cation, but we will refer to the general form in our derivations.

Reward Shaping
The most general form of reward shaping in RL can be given
as modifying the reward function of the underlying MDP:

R′ = R+ F (6)
where R is the expected reward of the base problem, and

F is the shaping reward function, with F (s, a, s′) giving the
additional reward on the transition (s, a, s′), and ft defined
analogously to rt. We will abuse notation slightly allowing
F or R to take fewer or more parameters, as necessary.

PBRS (Ng, Harada, and Russell 1999) maintains a poten-
tial function Φ : S → R, and constrains the shaping reward
function F to the following form:

F (s, s′) = γΦ(s′)− Φ(s) (7)
where γ is the discounting factor of the MDP. Ng et

al (1999) show that this form is both necessary and suffi-
cient for policy invariance.

Wiewiora et al (2003) extend PBRS to advice potential
functions defined over the joint state-action space. Note that
this extension adds a dependency of F on the policy be-
ing followed (in addition to the executed transition). The
authors consider two types of advice: look-ahead and look-
back, providing the theoretical framework for the former:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (8)
Devlin and Kudenko (2012) generalize the form in Eq. (7)

to dynamic potentials, by including a time parameter, and
show that all theoretical properties of PBRS hold.

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (9)

From Reward Functions to Dynamic
Potentials

There are two (inter-related) problems in PBRS: efficacy
and specification. The former has to do with designing the
best potential functions, i.e. those that offer the quickest and
smoothest guidance. The latter refers to capturing the avail-
able domain knowledge into a potential form, in the easiest
and most effective way. This work primarily deals with that
latter question.

Locking knowledge in the form of potentials is a conve-
nient theoretical paradigm, but may be restrictive, when con-
sidering all types of domain knowledge, in particular behav-
ioral knowledge, which is likely to be specified in terms of
actions. Say, for example, an expert wishes to encourage an
action a in states s1 and s2 both. Further assume that (since
the MDP is unknown) she does not know whether there ex-
ists a transition between them. If following the advice frame-
work, she sets Φ(s1, a) = Φ(s2, a) = 1, it is possible that
if Ps1a(s2) > 0 (or vice versa), the effective shaping reward
F (s1, a, s2) = Φ(s2, a) − Φ(s1, a) = 0,3 and the informa-
tion is lost. What she would like to do instead is specify the
desired effective shaping reward F directly, but without sac-
rificing optimality provided by the potential-based frame-
work.

3Assume the example is undiscounted for clarity.



This work formulates a framework to do just that. Given
an arbitrary reward function R†, we wish to achieve F ≈
R†, while maintaining policy invariance. This question is
equivalent to seeking a potential function Φ, based on R†,
s.t. FΦ ≈ R†.

The core idea of our approach is to introduce a secondary
(state-action) value function Φ, which, concurrently with the
main process, learns on the negation of the expert-provided
R†, and use the consecutively updated values of Φt as a dy-
namic potential function, thus making the translation into
potentials implicit. Formally:

RΦ = −R† (10)

Φt+1(s, a) = Φt(s, a) + βtδ
Φ
t (11)

δΦ
t = rΦ

t+1 + γΦt(st+1, at+1)− Φt(st, at) (12)

where βt is the learning rate at time t, and at+1 is chosen
according to the policy π w.r.t. the value function Q of the
main task. The shaping reward is then of the form:

ft+1 = γΦt+1(st+1, at+1)− Φt(st, at) (13)

The intuition of the correspondence between R† and F
lies in the relation between the Bellman equation (for Φ):

Φπ(s, a) = −R†(s, a) + γΦπ(s′, a′) (14)

and shaping rewards from an advice potential function:

F (s, a) = γΦ(s′, a′)− Φ(s, a) = R†(s, a) (15)

This intuition will be made more precise later.

Theory
This section is organized at follows. First we extend the
potential-based advice framework to dynamic potential-
based advice, and ensure that the desired guarantees hold.
(Our dynamic (potential-based) value-function advice is
then an instance of dynamic potential-based advice.) We
then turn to the question of correspondence between R† and
F , showing that F captures R† in expectation. Finally, we
ensure that these expectations are meaningful, by arguing
convergence.

Dynamic Potential-Based Advice
Analogously to (Devlin and Kudenko 2012), we augment
Wiewiora’s look-ahead advice function (Eq. (8)) with a
time parameter to obtain our dynamic potential-based ad-
vice: F (s, a, t, s′, a′, t′) = γΦ(s′, a′, t′)− Φ(s, a, t), where
t/t′ is the time of the agent visiting state s/s′ and taking ac-
tion a/a′. For notational compactness we rewrite the form
as:

F (s, a, s′, a′) = γΦt′(s
′, a′)− Φt(s, a) (16)

where we implicitly associate s with st, s′ with st′ , and
F (s, a, s′, a′) with F (s, a, t, s′, a′, t′). As with Wiewiora’s

framework, F is now not only a function of the transition
(s, a, s′), but also the following action a′, which adds a de-
pendence on the policy the agent is currently evaluating.

We examine the change in the optimal Q-values of the
original MDP, resulting from adding F to the base reward
function R.

Q∗(s, a) = E
[ ∞∑
t=0

γt(rt+1 + ft+1)|s0 = s
]

(13)
= E

[ ∞∑
t=0

γt(rt+1 + γΦt+1(st+1, at+1)

−Φt(st, at))
]

= E
[ ∞∑
t=0

γtrt+1

]
+ E

[ ∞∑
t=1

γtΦt(st, at)
]

−E
[ ∞∑
t=0

γtΦt(st, at)
]

= E
[ ∞∑
t=0

γtrt+1

]
− Φ0(s, a)

(17)
Thus, once the optimal policy w.r.t. R + F is learnt, to

uncover the optimal policy w.r.t. R, one may use the bi-
ased greedy action-selection (Wiewiora, Cottrell, and Elkan
2003) w.r.t. the initial values of the dynamic advice function.

π(s) = arg max
a

(
Q(s, a) + Φ0(s, a)

)
(18)

Notice that when the advice function is initialized to 0,
the biased greedy action-selection above reduces to the basic
greedy policy (Eq. (2)), allowing one to use dynamic advice
equally seamlessly to simple state potentials.

Shaping in Expectation
Let R† be an arbitrary reward function, and let Φ be the
state-action value function that learns on RΦ = −R†,
while following some fixed policy π. The shaping reward
at timestep t w.r.t. Φ as a dynamic advice function is given
by:

ft+1 = γΦt+1(st+1, at+1)− Φt(st, at)
= γΦt(st+1, at+1)− Φt(st, at)

+γΦt+1(st+1, at+1)− γΦt(st+1, at+1)
(12)
= δΦ

t − rΦ
t+1 + γ∆Φ(st+1, at+1)

= r†t+1 + δΦ
t + γ∆Φ(st+1, at+1)

(19)
Now assume the process has converged to the TD-fixpoint

Φπ . Then:

F (s, a, s′, a′) = γΦπ(s′, a′)− Φπ(s, a)
(3)
= γΦπ(s′, a′)−RΦ(s, a)− γE[Φπ(s′, a′)]

(10)
= R†(s, a) + γ(Φπ(s′, a′)− E[Φπ(s′, a′)])

(20)
Thus, we obtain that the shaping reward F w.r.t. the

converged values Φπ , reflects the expected designer reward
R†(s, a) plus a bias term, which measures how different the
sampled next state-action value is from the expected next



state-action value. This bias will at each transition further
encourage transitions that are “better than expected”, and
vice versa.

To obtain the expected shaping reward F(s, a), we take
the expectation w.r.t. the transition matrix T , and the policy
π with which a′ is chosen.

F(s, a) = E[F (s, a, s′, a′)]
= R†(s, a) + γE[Φπ(s′, a′)− E[Φπ(s′, a′)]]
= R†(s, a)

(21)
Thus, Eq. (19) gives the shaping reward while Φ’s are not

yet converged, (20) gives the component of the shaping re-
ward on a transition after Φπ are correct, and (21) establishes
the equivalence of F andR† in expectation.

Convergence of Φ
If the policy π is fixed, and the Qπ-values are correct, the
expectations in the previous section are well-defined, and Φ
converges to the TD-fixpoint. However, Φ is learnt at the
same time as Q. This process can be shown to converge
by formulating the framework on two timescales (Borkar
1997), and using the ODE method of (Borkar and Meyn
2000). We thus require4 the step size schedules {αt} and
{βt} satisfy the following:

lim
t→∞

αt
βt

= 0 (22)

Q and Φ correspond to the slower and faster timescales,
respectively. Given that step-size schedule difference, we
rewrite the iterations (for Q and Φ) as one iteration, with
a combined parameter vector, and show that the assump-
tions (A1)-(A2) from (Borkar and Meyn 2000) are satisfied,
which allows to apply their Theorem 2.2. This analysis is
analogous to that of convergence of TD with Gradient Cor-
rection (Theorem 2 in (Sutton et al. 2009)), and is left out
for clarity of exposition.

Note that this convergence is needed to assure that Φ in-
deed captures the expert reward function R†. The form of
general dynamic advice from Eq. (16) itself does not pose
any requirements on the convergence properties of Φ to
guarantee policy invariance.

Experiments
We first demonstrate our method correctly solving a grid-
world task, as a simplified instance of the bicycle problem.
We then assess the practical utility of our framework on a
larger cart-pole benchmark, and show that our dynamic (PB)
VF advice approach beats other methods that use the same
domain knowledge, as well as a popular static shaping w.r.t.
a different heuristic.

Grid-World
The problem described is a minimal working example of the
bicycle problem (Randlov and Alstrom 1998), illustrating
the issue of positive reward cycles.

4In addition to the standard stochastic approximation assump-
tions, common to all TD algorithms.

Given a 20 × 20 grid, the goal is located at the bottom
right corner (20, 20). The agent must reach it from its ini-
tial position (0, 0) at the top left corner, upon which event
it will receive a positive reward. The reward on the rest of
the transitions is 0. The actions correspond to the 4 cardinal
directions, and the state is the agent’s position coordinates
(x, y) in the grid. The episode terminates when the goal was
found, or when 10000 steps have elapsed.

Given approximate knowledge of the problem, a natural
heuristic to encourage is transitions that move the agent to
the right, or down, as they are to advance the agent closer to
the goal. A reward function R† encoding this heuristic can
be defined as

R†(s, right) = R†(s, down) = c, c ∈ R+,∀s

When provided naı̈vely (i.e. with F = R†), the agent
is at a risk of getting “distracted”: getting stuck in a pos-
itive reward cycle, and never reaching the goal. We ap-
ply our framework, and learn the corresponding Φ w.r.t.
RΦ = −R†,5 setting F accordingly (Eq. (13)). We compare
that setting with the base learner and with the non-potential-
based naı̈ve learner.6

Learning was done via Sarsa with ε-greedy action selec-
tion, ε = 0.1. The learning parameters were tuned to the
following values: γ = 0.99, c = 1, αt+1 = τ tαt decay-
ing exponentially (so as to satisfy the condition in Eq. (22)),
with α0 = 0.05, τ = 0.999 and βt = 0.1.

We performed 50 independent runs, 100 episodes each
(Fig. 1(a)). Observe that the performance of the (non-PB)
agent learning with F = R† actually got worse with time, as
it discovered a positive reward cycle, and got more and more
disinterested in finding the goal. Our agent, armed with the
same knowledge, used it properly (in a true potential-based
manner) and the learning was accelerated significantly, com-
pared to the base agent.

Cart-Pole
We now evaluate our approach on a more difficult cart-pole
benchmark (Michie and Chambers 1968). The task is to bal-
ance a pole on top a moving cart for as long as possible. The
(continuous) state contains the angle ξ and angular velocity
ξ̇ of the pole, and the position x and velocity ẋ of the cart.
There are two actions: a small positive and a small nega-
tive force applied to the cart. A pole falls if |ξ| > π

4 , which
terminates the episode. The track is bounded within [−4, 4],
but the sides are “soft”; the cart does not crash upon hitting
them. The reward function penalizes a pole drop, and is 0
elsewhere. An episode terminates successfully, if the pole
was balanced for 10000 steps.

5Note that this corresponds to action-only advice.
6To illustrate our point more clearly in the limited space, we

omit the static PB variant with (state-only) potentials Φ(x, y) =
x+y. It depends on a different type of knowledge (about the state),
while in this experiment we are comparing two ways to utilize the
behavioral reward function R†. The static variant does not require
learning, and hence performs better in the beginning.



(a) Grid-world (b) Cart-pole

Figure 1: Mean learning curves. Shaded areas correspond to the 95% confidence intervals. The plot is smoothed by taking a running average
of 10 episodes. (a) The same reward function added directly to the base reward function (non-PB advice) diverges from the optimal policy,
whereas our automatic translation to dynamic-PB advice accelerates learning significantly. (b) Our dynamic (PB) VF advice learns to balance
the pole the soonest, and has the lowest variance.

An intuitive behavior to encourage is moving the cart to
the right (or left) when the pole is leaning rightward (or left-
ward). Let o : S × A → {0, 1} be the indicator function
denoting such orientation of state s and action a. A reward
function to encompass the rule can then be defined as:

R†(s, a) = o(s, a)× c, c ∈ R+

We compare the performance of our agent to the base
learner and two other reward shaping schemes that reflect
the same knowledge about the desired behavior, and one that
uses different knowledge (about the angle of the pole).7 The
variants are described more specifically below:

1. (Base) The base learner, F1 := 0.
2. (Non-PB advice) Advice is received simply by addingR†

to the main reward function, F2 := R†. This method will
lose some optimal policies.

3. (Myopic PB advice) Potentials are initialized and main-
tained with R†, i.e. F3 := FΦ with Φ = R†. This is
closest to Wiewiora’s look-ahead advice framework.

4. (Static PB shaping with angle) The agent is penalized
proportionally to the angle with which it deviates from
equilibrium. F4 := FΦ with Φ ∼ −|ξ|2.

5. (Dynamic (PB) VF advice) We learn Φ as a value func-
tion w.r.t. RΦ = −R†, and set F5 = FΦ accordingly
(Eq. (13)).

We used tile coding (Sutton and Barto 1998) with 10
tilings of 10×10 to represent the continuous state. Learning

7Note that unlike our behavioral encouragement, the angle
shaping requires precise information about the state, which is more
demanding in a realistic setup, where the advice comes from an
external observer.

was done via Sarsa(λ) with eligibility traces and ε-greedy
action selection, ε = 0.1. The learning parameters were
tuned to the following: λ = 0.9, c = 0.1, αt+1 = τ tαt
decaying exponentially (so as to satisfy the condition in
Eq. (22)), with α0 = 0.05, τ = 0.999, and βt = 0.2. We
found γ to affect the results differently across variants, with
the following best values: γ1 = 0.8, γ2 = γ3 = γ4 = 0.99,
γ5 = 0.4. Mi is then the MDP 〈S,A, γi, T ,R + Fi〉.
Fig. 1(b) gives the comparison across Mi (i.e. the best γ
values for each variant), whereas Table 1 also contains the
comparison w.r.t. the base value γ = γ1.

We performed 50 independent runs of 100 episodes each
(Table 1). Our method beats the alternatives in both fixed and
tuned γ scenarios, converging to the optimal policy reliably
after 30 episodes in the latter (Fig. 1(b)). Paired t-tests on the
sums of steps of all episodes per run for each pair of variants
confirm all variants as significantly different with p < 0.05.
Notice that the non-potential-based variant for this problem
does not perform as poorly as on the grid-world task. The
reason for this is that getting stuck in a positive reward cy-
cle can be good in cart-pole, as the goal is to continue the
episode for as long as possible. However, consider the policy
that achieves keeping the pole at an equilibrium (at ξ = 0).
While clearly optimal in the original task, this policy will
not be optimal inM2, as it will yield 0 additional rewards.

Discussion
Choice of R† The given framework is general enough to
capture any form of the reward function R†. Recall, how-
ever, that F = R† holds after Φ values have converged.
Thus, the simpler the provided reward function R†, the
sooner will the effective shaping reward capture it. In this
work, we have considered reward functions R† of the form
R†(B) = c, c > 0, where B is the set of encouraged be-



Table 1: Cart-pole results. Performance is indicated with standard error. The final performance refers to the last 10% of the run. Dynamic
(PB) VF advice has the highest mean, and lowest variance both in tuned and fixed γ scenarios, and is the most robust, whereas myopic shaping
proved to be especially sensitive to the choice of γ.

Best γ values Base γ = 0.8
Variant Final Overall Final Overall
Base 5114.7±188.7 3121.8±173.6 5114.7±165.4 3121.8±481.3
Non-PB advice 9511.0±37.2 6820.6±265.3 6357.1±89.1 3405.2±245.2
Myopic PB shaping 8618.4±107.3 3962.5±287.2 80.1±0.3 65.8±0.9
Static PB 9860.0±56.1 8292.3±261.6 3744.6±136.2 2117.5±102.0
Dynamic (PB) VF advice 9982.4±18.4 9180.5±209.8 8662.2±60.9 5228.0±274.0

havior transitions. This follows the convention of shaping in
psychology, where punishment is implicit as absence of pos-
itive encouragement. Due to the expectation terms in F , we
expect such form (of all-positive, or all-negative R†) to be
more robust. Another assumption is that all encouraged be-
haviors are encouraged equally; one may easily extend this
to varying preferences c1 < . . . < ck, and consider a choice
between expressing them within a single reward function, or
learning a separate value function for each signal ci.

Role of discounting Discounting factors γ in RL deter-
mine how heavily the future rewards are discounted, i.e. the
reward horizon. Smaller γ’s (i.e. heavier discounting) yield
quicker convergence, but may be insufficient to convey long-
term goals. In our framework, the value of γ plays two sep-
arate roles in the learning process, as it is shared between Φ
andQ. Firstly, it determines how quickly Φ values converge.
Since we are only interested in the difference of consecu-
tive Φ-values, smaller γ’s provide a more stable estimate,
without losses. On the other hand, if the value is too small,
Q will lose sight of the long-term rewards, which is detri-
mental to performance, if the rewards are for the base task
alone. We, however, are considering the shaped rewards.
Since shaped rewards provide informative immediate feed-
back, it becomes less important to look far ahead into the
future. This notion is formalized by Ng (2003), who proves
(in Theorem 3) that a “good” potential function shortens the
reward horizon of the original problem. Thus γ, in a sense,
balances the stability of learning Φ with the length of the
shaped reward horizon of Q.

Related Work
The correspondence between value and potential functions
has been known since the conceivement of the latter. Ng et
al (1999) point out that the optimal potential function is the
true value function itself (as in that case the problem reduces
to learning the trivial zero value function). With this insight,
there have been attempts to simultaneously learn the base
value function at coarser and finer granularities (of function
approximation), and use the (quicker-to-converge) former as
a potential function for the latter (Grzes and Kudenko 2008).
Our approach is different in that our value functions learn on
different rewards with the same state representation, and it
tackles the question of specification rather than efficacy.

On the other hand, there has been a lot of research
in human-provided advice (Thomaz and Breazeal 2006),

(Knox et al. 2012). This line of research (interactive shap-
ing) typically use the human advice component heuristically
as a (sometimes annealed) additive component in the re-
ward function, which does not follow the potential-based
framework (and thus does not preserve policies). Knox and
Stone (2010) do consider PBRS as one of their methods, but
(a) stay strictly myopic (similar to the third variant in the
cart-pole experiment), and (b) limit to state potentials. Our
approach is different in that it incorporates the external ad-
vice through a value function, and stays entirely sound in the
PBRS framework.

Conclusions and Outlook

In this work, we formulated a framework which allows to
specify the effective shaping reward directly. Given an arbi-
trary reward function, we learned a secondary value func-
tion, w.r.t. to a variant of that reward function, concurrently
to the main task, and used the consecutive estimates of that
value function as dynamic advice potentials. We showed that
the shaping reward resulting from this process captures the
input reward function in expectation. We presented empir-
ical evidence that the method behaves in a true potential-
based manner, and that such encoding of the behavioral
domain knowledge speeds up learning significantly more,
compared to its alternatives. The framework induces little
added complexity: the maintenance of the auxiliary value
function is linear in time and space (Modayil et al. 2012),
and, when initialized to 0, the optimal base value function is
unaffected.

We intend to further consider inconsistent reward func-
tions, with an application to humans directly providing ad-
vice. The challenges are then to analyze the expected effec-
tive rewards, as the convergence of a TD-process w.r.t. in-
consistent rewards is less straightforward. In this work we
identified the secondary discounting factor γΦ with the pri-
mary γ. This need not be the case, in general: γΦ = νγ.
Such modification adds an extra term Φ-term into Eq. (21),
potentially offering gradient guidance, which is useful if the
expert reward is sparse.
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