
Fundamentals of Reinforcement
Learning

December 9, 2013 - Techniques of AI

Yann-Michaël De Hauwere - ydehauwe@vub.ac.be

December 9, 2013 - Techniques of AI

Course material
Slides online

T. Mitchell
Machine Learning, chapter 13
McGraw Hill, 1997

Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An
Introduction
MIT Press, 1998

Available on-line for free!

Reinforcement Learning - 2/33

Why reinforcement learning?

Based on ideas from psychology

I Edward Thorndike’s law of effect
I Satisfaction strengthens behavior,

discomfort weakens it

I B.F. Skinner’s principle of
reinforcement

I Skinner Box: train animals by
providing (positive) feedback

Learning by interacting with the
environment

Reinforcement Learning - 3/33

Why reinforcement learning?

Control learning

I Robot learning to dock on battery charger

I Learning to choose actions to optimize factory output

I Learning to play Backgammon/other games

Reinforcement Learning - 4/33

The RL setting

I Learning from interactions

I Learning what to do - how to map situations to actions -
so as to maximize a numerical reward signal

Reinforcement Learning - 5/33

Key features of RL

I Learner is not told which action to take

I Trial-and-error approach
I Possibility of delayed reward

I Sacrifice short-term gains for greater long-term gains

I Need to balance exploration and exploitation

I Possible that states are only partially observable

I Possible needs to learn multiple tasks with same sensors

I In between supervised and unsupervised learning

Reinforcement Learning - 6/33

The agent-environment interface

Agent interacts at discrete time steps t = 0, 1, 2, . . .

I Observes state st ∈ S
I Selects action at ∈ A(st)

I Obtains immediate reward
rt+1 ∈ R

I Observes resulting state st+1

Agent

Environment

atrt
rt+1

st+1

st

AGENT-ENVIRONMENT INTERFACE

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

14

Reinforcement Learning - 7/33

Elements of RL

I Time steps need not refer to fixed intervals of real time
I Actions can be

I low level (voltage to motors)
I high level (go left, go right)
I ”mental” (shift focus of attention)

I States can be
I low level ”sensations” (temperature, (x, y) coordinates)
I high level abstractions, symbolic
I subjective, internal (”surprised”, ”lost”)

I The environment is not necessarily known to the agent

Reinforcement Learning - 8/33

Elements of RL

I State transitions are
I changes to the internal state of the agent
I changes in the environment as a result of the agent’s action
I can be nondeterministic

I Rewards are
I goals, subgoals
I duration
I ...

Reinforcement Learning - 9/33

Learning how to behave

I The agent’s policy π at time t is
I a mapping from states to action probabilities
I πt(s, a) = P (at = a|st = s)

I Reinforcement learning methods specify how the agent
changes its policy as a result of experience

I Roughly, the agent’s goal is to get as much reward as it can
over the long run

Reinforcement Learning - 10/33

The objective

I Use discounted return instead of total reward

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑
k=0

γkrt+k+1

where γ ∈ [0, 1] is the discount factor such that

shortsighted 0← γ → 1 farsighted

Reinforcement Learning - 11/33

Example: backgammon

I Learn to play backgammon
I Immediate reward:

I +100 if win
I -100 if lose
I 0 for all other states

Trained by playing 1.5 million games against itself
Now approximately equal to best human player.

Reinforcement Learning - 12/33

Example: pole balancing

I A continuing task with discounted
return:

I reward = -1 upon failure
I return = −γk, for k steps before

failure

Return is maximized by avoiding failure for as long as possible

Rt =

∞∑
k=0

γkrt+k+1

Reinforcement Learning - 13/33

Examples: pole balancing (movie)

Reinforcement Learning - 14/33

Markov decision processes

I It is often useful to a assume that all relevant information is
present in the current state: Markov property

P (st+1, rt+1|st, at) = P (st+1, rt+1|st, at, rt, st−1, at−1, . . . , r1, s0, a0)

I If a reinforcement learning task has the Markov property, it is
basically a Markov Decision Process (MDP)

I Assuming finite state and action spaces, it is a finite MDP

Reinforcement Learning - 15/33

Markov decision processes

An MDP is defined by

I State and action sets

I a Transition function

Pass′ = P (st+1 = s′|st = s, at = a)

I a Reward function

Rass′ = E(rt+1|st = s, at = a, st+1 = s′)

AGENT-ENVIRONMENT INTERFACE

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

14

Reinforcement Learning - 16/33

Value functions

I Goal: learn π : S → A, given 〈〈s, a〉, r〉
I When following a fixed policy π we can define the value of a

state s under that policy as

V π(s) = Eπ(Rt|st = s) = Eπ(

∞∑
k=0

γkrt+k+1|st = s)

I Similarly we can define the value of taking action a in state s
as

Qπ(s, a) = Eπ(Rt|st = s, at = a)

I Optimal π∗ = argmaxπV
π(s)

Reinforcement Learning - 17/33

Reinforcement Learning - 18/33

Value functions

I The value function has a particular recursive relationship,
expressed by the Bellman equation

V π(s) =
∑

a∈A(s)

π(s, a)
∑
s′∈S
Pass′ [Rass′ + γV π(s′)]

I The equation expresses the recursive relation between the
value of a state and its successor states, and averages over all
possibilities, weighting each by its probability of occurring

Reinforcement Learning - 19/33

Learning an optimal policy online

I Often transition and reward functions are unknown
I Using temporal difference (TD) methods is one way of

overcoming this problem
I Learn directly from raw experience
I No model of the environment required (model-free)
I E.g.: Q-learning

I Update predicted state values based on new observations of
immediate rewards and successor states

Reinforcement Learning - 20/33

Q-function

Q(s, a) = r(s, a) + γV ∗(δ(s, a))with st+1 = δ(st, at)

I if we know Q, we do not have to know δ.

π∗(s) = argmaxa[r(s, a) + γV ∗(δ(s, a))]

π∗(s) = argmaxaQ(s, a)

Reinforcement Learning - 21/33

Training rule to learn Q

I Q and V ∗ are closely related:

V ∗(s) = maxa′Q(s, a′)

I which allows us to write Q as:

Q(st, at) = r(st, at) + γV ∗(δ(st, at))

Q(st, at) = r(st, at) + γmaxa′Q(st+1, a
′)

I So if Q̂ represents the learner’s current approximation of Q:

Q̂(s, a)← r + γmaxa′Q̂(s′, a′)

Reinforcement Learning - 22/33

Q-learning

I Q-learning updates state-action values based on the
immediate reward and the optimal expected return

Q(st, at)← Q(st, at)+α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
I Directly learns the optimal value function independent of the

policy being followed

I Proven to converge to the optimal policy given ”sufficient”
updates for each state-action pair, and decreasing learning
rate α [Watkins92,Tsitsiklis94]

Reinforcement Learning - 23/33

Q-learning

Reinforcement Learning - 24/33

Action selection

I How to select an action based on the values of the states or
state-action pairs?

I Success of RL depends on a trade-off
I Exploration
I Exploitation

I Exploration is needed to prevent getting stuck in local optima

I To ensure convergence you need to exploit

Reinforcement Learning - 25/33

Action selection

Two common choices
I ε-greedy

I Choose the best action with probability 1− ε
I Choose a random action with probability ε

I Boltzmann exploration (softmax) uses a temperature
parameter τ to balance exploration and exploitation

πt(s, a) =
eQt(s,a)/τ∑

a′∈A e
Qt(s,a′)/τ

pure exploitation 0← τ →∞ pure exploration

Reinforcement Learning - 26/33

Updating Q: in practice

Reinforcement Learning - 27/33

Convergence of deterministic Q-learning

Q̂ converges to Q when each 〈s, a〉 is visited infinitely often
Proof:

I Let a full interval be an interval during which each 〈s, a〉 is
visited

I Let Q̂n be the Q-table after n-updates

I ∆n is the maximum error in Q̂n:

∆n = maxs,a|Q̂n(s, a)−Q(s, a)|

Reinforcement Learning - 28/33

Convergence of deterministic Q-learning

For any table entry Q̂n(s, a) updated on iteration n+ 1, the error
in the revised estimate is Q̂n+1(s, a)

Q̂n+1(s, a)−Q(s, a)| = |(r + γmaxa′Q̂n(s′, a′))

−(r + γmaxa′Q(s′, a′))|
= |γmaxa′Q̂n(s′, a′))− γmaxa′Q(s′, a′))|
≤ γmaxa′ |Q̂n(s′, a′)−Q(s′, a′))|
≤ γmaxs′′,a′ |Q̂n(s′′, a′)−Q(s′′, a′))|

Q̂n+1(s, a)−Q(s, a)| ≤ γ∆n < ∆n

Reinforcement Learning - 29/33

Extensions
I Multi-step TD

I Instead of observing one immediate reward, use n consecutive
rewards for the value update

I Intuition: your current choice of action may have implications
for the future

I Eligibility traces
I State-action pairs are eligible for future rewards, with more

recent states getting more credit

Reinforcement Learning - 30/33

Extensions

I Reward shaping
I Incorporate domain knowledge to provide additional rewards

during an episode
I Guide the agent to learn faster
I (Optimal) policies preserved given a potential-based shaping

function [Ng99]

I Function approximation
I So far we have used a tabular notation for value functions
I For large state and actions spaces this approach becomes

intractable
I Function approximators can be used to generalize over large or

even continuous state and action spaces

Reinforcement Learning - 31/33

Demo

http://wilma.vub.ac.be:3000

Reinforcement Learning - 32/33

Questions?

Reinforcement Learning - 33/33

