
Neural Networks





Plan

■ Perceptron 
❑ Linear discriminant 

■ Associative memories 
❑ Hopfield networks 
❑ Chaotic networks 

■ Multilayer perceptron 
❑ Backpropagation



Perceptron

■ Historically, the first neural net 
■ Inspired by human brain 
■ Proposed 

❑ By Rosenblatt  
❑ Between 1957 et 1961 

■ The brain was appearing as the best computer 
■ Goal: associated input patterns to recognition 

outputs 
■ Akin to a linear discriminant



Perceptron

■ Constitution
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Perceptron

■ Constitution
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Perceptron

■ Constitution

aj= ∑i  xiwij
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oj=f(aj)

aj : activation of the j output neuron

xi : activation of the i input neuron

wi,j : connection parameter between input  
        neuron i and output neuron j

oj : decision rule 
 oj = 0 for aj <= θj, 1 for aj > θj



Perceptron

■ Need an associated learning 
❑ Learning is supervised  

■ Based on a couple input pattern and desired output 
❑ If the activation of output neuron is OK => nothing happens 
❑ Otherwise – inspired by neurophysiological data 

■ If it is activated : decrease the value of the connection 
■ If it is unactivated : increase the value of the connection 

❑ Iterated until the output neurons reach the desired value



Perceptron

■ Supervised learning 
❑ How to decrease or increase the connections ? 
❑ Learning rule of Widrow-Hoff 
❑ Closed to Hebbian learning

wi,j
(t+1) = wi,j

(t)+n(tj-oj)xi = wi,j
(t)+∆wi,j

Desired value of output neuron j

Learning rate
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Theory of  linear discriminant

Compute: 
 g(x) = WTx + Wo 

And: 
 Choose: 
  class 1 if g(x) > 0 
  class 2 otherwise 
But how to find W on the basis of the data ?

g(x) > 0

g(x) < 0

g(x) = 0
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Gradient descent:
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In general a sigmoid is used for the statistical interpretation: (0,1)

The error could be least square: (Y – Yd)2

Or maximum likelihood: ∑ −−+− )1log()1(log YYYY dd

But at the end, you got the learning rule: ∑ −=Δ jXYYdW )(η

Easy to derive = Y(1-Y)

Class 1 if Y > 0.5 and 2 otherwise



Perceptron limitations

■ Limitations 
❑ Not always easy to learn  
❑ But above all, cannot separate not linearly separable data 

■ Why so ? 
❑ The XOR kills NN researches     

 for 20 years       
(Minsky and Papert were responsable) 

■ Consequence 
❑ We had to wait for the magical hidden layer 
❑ And for backpropagation

1,0

0,1

0,0

1,1



Associative memories

■ Around 1970 
■ Two types 

❑ Hetero-associative 
❑ And auto-associative 

■ We will treat here only auto-associative 
■ Make an interesting connections between 

neurosciences and physics of complex 
systems 

■ John Hopfield



Auto-associative memories

■ Constitution

Input Fully connected neural networks



Associative memories

Hopfield -> DEMO
  Fully connected graphs
  Input layer = Output layer = Networks
 The connexions have to be symmetric

OUTIN

  It is again an hebbian learning rule



Associative memories

Hopfield
  The newtork becomes a dynamical machine
  It has been shown to converge into a fixed point
  This fixed point is a minimal of a Lyapunov energy

  These fixed point are used for storing «patterns »
  Discrete time and asynchronous updating 
➢ input in {-1,1} 
➢ xi → sign(Σj wijxj)



Mémoires associatives

Hopfield

  The learning is done  
   by Hebbian learning

 Over all patterns to learn: 
 p

j
patterns

p
iij XXW ∑=Δ
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My researches: Chaotic encoding of  memories in 
brain 



Multilayer perceptron

x 
INPUT 

I neurons

h 
HIDDEN 
L neurons

o 
OUTPUT 
J neurons

Connection Matrices

W Z

■ Constitution



Multilayer Perceptron

aj= ∑i  xiwij
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■ Constitution



Error backpropagation

■ Learning algorithm 
■ How it proceeds :  

❑ Inject an input 
❑ Get the output 
❑ Compute the error with respect to the desired 

output 
❑ Propagate this error back from the output layer to 

the input layer of the network 
❑ Just a consequence of the chaining derivative of 

the gradient descent



Backpropagation

■ Select a derivable transfert function 
❑  Classicaly used : The logistics 

❑ And its derivative
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Backpropagation

■ The algorithm
1. Inject an entry



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  hh=f(W*x)



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

o=f(Z*h)

3. Compute the output o

h=f(W*x)



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

δsortie=f’(Zh)*(t - o)
o=f(Z*h)



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

5. Adjust Z on the basis of the  
error

Z(t+1)=Z(t)+n δsortie h = Z(t) + ∆(t)Z

δsortie=f’(Zh)*(t - o)



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

5. Adjust Z on the basis of the  
error

6. Compute the error on the  
hidden layer

δcachée=f’(Wx)*(Z δsortie)

Z(t+1)=Z(t)+n δsortie h = Z(t) + ∆(t)Z



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

5. Adjust Z on the basis of the  
error

6. Compute the error on the  
hidden layer

7. Adjust W on the basis of  
this errorW(t+1)=W(t)+n δcachée x = W(t) + ∆(t)W

δcachée=f’(Wx)*(Z δsortie)



Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

5. Adjust Z on the basis of the  
error

6. Compute the error on the  
hidden layer

7. Adjust W on the basis of  
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Backpropagation

■ Algorithm
1. Inject an entry

2. Compute the intermediate  h

3. Compute the output o

4. Compute the error output

5. Adjust Z on the basis of the  
error

6. Compute the error on the  
hidden layer

7. Adjust W on the basis of  
this error



Neural network

Simple linear discriminant



Neural networks
Few layers – Little learning



Neural networks

More layers – More learning
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Neural networks

Tricks
  Favour simple NN (you can add the structure in 

the error)
  Few layers are enough (theoretically only one)
  Exploit cross validation… 


