

Knowledge Representation and Reasoning

Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel

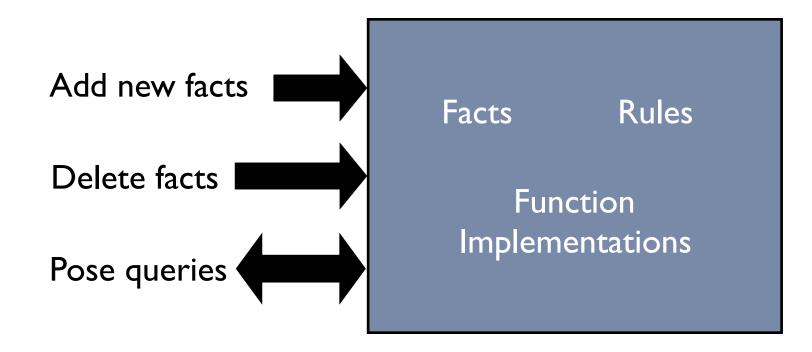
- Knowledge Representation in Logic
 - The Propositional Calculus
 - The First Order Predicate Calculus
- Reasoning
 - Inference Rules to Compute with Calculus Expressions
- Application

Knowledge Engineering

- The role of the Knowledge Engineer is to
 - elicit or otherwise ascertain knowledge
 - represent it in the most appropriate way
 - use it to derive previously unknown facts
 - follow a chain of reasoning from new data to a conclusion (e.g. medical diagnosis)
 - make explicit things that were previously implicit in a system that was too complex for a human to understand all at once
- Examples about VUB site map
 - Building-M-is-a-building
 - Building(M)
 - Grey(M)
 - Colour(M, Grey)

Knowledge Engineering

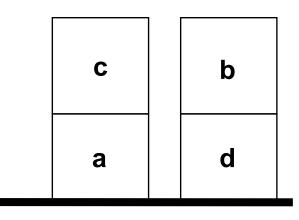
 Often, in one formalism or another, this will involve maintaining a database of facts that are known to be true and rules that can apply to them



- Quite often, problem formulation in real-world situations is very difficult
 - different experts have different opinions
 - the world is continuous and unpredictable
 - clients don't really know what they want from you
- A common approach to understanding the issues involved in KE is to use a highly simplified world, and then to generalise with experience
 - a common simplification is the "blocks" world

Example: The Blocks Wc

- There is/are
 - a table
 - some distinguishable blocks
 - a robot hand/arm
- Problems are specified in terms of
 - actions by the arm
 - with respect to the world
- Predicates
 - On, On-table
 - Clear
 - Empty



cle

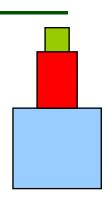
Knowledge Representation and Inference

- KR should allow us, for a given world, to:
 - Express facts or beliefs using a formal language
 - $\ensuremath{^{\odot}}$ expressively and unambiguously
- The inference procedure should allow us to:
 - Determine automatically what follows from these facts

procedure Be able to express formally that:

- $\ensuremath{^{\odot}}$ "The red block is above the blue block"
- "The green block is above the red block"
- Be able to infer:

• "The green block is above the blue block" facts or beliefs sing a



- Given
 - If it is sunny today, then the sun shines on the screen
 - If the sun shines on the screen, then the blinds are drawn
 - The blinds are not down
- Find out
 - Is it sunny today?
- Human reasoning:
 - Blinds up, so sun not shining on screen, so not sunny today
 - We want a computer to do that, reliably and in general

Components of a logical calculus

- A formal language
 - words and syntactic rules that tell us how to build up sentences
 - ${\ensuremath{\, \bullet }}$ so we can build up more complex statements from simple ones
 - semantic mappings that tell us what the words mean
- An *inference procedure* which allows us to compute which sentences are valid *inferences* from other sentences
- Many different logical calculi; here we study
 - The Propositional Calculus
 - The First Order Predicate Calculus

The Propositional Calculus

- Each symbol in the Propositional Calculus is
 - a proposition: a basic, smallest unit of meaning in the calculus
 - e.g."it is raining"
 - a connective: something combines propositions into more complex sentences
- Two reserved, special propositions
 - True and False
- Other propositions usually begun by upper case letters
 - P, Q, Sunny, etc.
- Connectives use special symbols
 - ▶ \land (and) , \lor (or) , \neg (not), \rightarrow (implies), = (is equivalent to)

- The Sentence is the syntactic unit to which truth values can be attached
 - Sentences are also called Well-Formed Formulae (WFF)
 - Every propositional symbol is a sentence. E.g.: True, False, P
 - The negation of a sentence is a sentence. E.g.: $\neg P$, \neg False.
 - \blacktriangleright The conjunction (and) of two sentences is a sentence. E.g.: $P \wedge Q$
 - \blacktriangleright The disjunction (or) of two sentences is a sentence. E.g.: $P \lor Q$
 - The implication of one sentence by another is a sentence. E.g.: $P \rightarrow Q$
 - The equivalence of two sentences is a sentence. E.g.: P = R
 - Note that equivalence can also be expressed as P \rightarrow Q \land Q \rightarrow P
 - \odot = is therefore sometimes omitted from the propositional calculus

Semantics (Meaning) in PC

- An interpretation of a set of sentences is the assignment of a truth value, either T or F, to each propositional symbol (and so to each sentence)
 - The proposition True is always assigned truth value T
 - The proposition False is always assigned truth value F
 - ▶ The assignment of negation, ¬P, is F iff the assignment of P is T, and vice versa
 - The assignment of conjunction, $P \land Q$, is T iff the assignment of both P and Q is T; otherwise it is F
 - The assignment of disjunction, P v Q, is F iff the assignment of both P and Q is F; otherwise it is T
 - The assignment of implication, P → Q, is F iff the assignment of P is T and the assignment of Q is F; otherwise it is T
 - The assignment of equivalence, P = Q, is T iff the assignments of both P and Q is the same for all possible interpretations; otherwise it is F.

Some useful laws and equivalences

- excluded middle: $P \lor \neg P$
- $\neg \neg P \equiv P$
- contrapositive: $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
- de Morgan's laws
 - $\bullet \neg (P \lor Q) \equiv \neg P \land \neg Q$
 - $\blacktriangleright \neg (P \land Q) \equiv \neg P \lor \neg Q$

Some useful laws and equivalences

- excluded middle: $P \lor \neg P$
- $\neg \neg P \equiv P$
- contrapositive: $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
- de Morgan's laws
 - $\bullet \neg (P \lor Q) \equiv \neg P \land \neg Q$
 - $\blacktriangleright \neg (P \land Q) \equiv \neg P \lor \neg Q$
- commutativity
 - $\bullet P \lor Q \equiv Q \lor P$
 - $P \land Q \equiv Q \land P$

Some useful laws and equivalences

- associativity
 - $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$
 - ($P \land Q$) $\land R \equiv P \land (Q \land R)$
- distributivity
 - ▶ $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
 - $\bullet P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- Note order of operator precedence
 - ▶ ¬ precedes ∧ precedes ∨
 - \rightarrow are = are complicated: use brackets
 - Compare with arithmetic operators, –, x, +

- A truth table has all sentences along its top, usually in increasing order of syntactic complexity
 - its columns are all the possible interpretations, one row each

Р	Q	٦P	ΡΛQ	P v Q	$\mathbf{P} \rightarrow \mathbf{Q}$
т	Т	F	Т	Г	т
т	F	F	F	Т	F
F	т	т	F	т	т
F	F	Т	F	F	Т

Truth tables

- We can prove things using truth tables
 - $\bullet \neg P \lor Q \equiv P \rightarrow Q$

Р	Q	P	$\neg \mathbf{P} \lor \mathbf{Q}$	P→Q	$\neg \mathbf{P} \lor \mathbf{Q} \equiv \mathbf{P} \rightarrow \mathbf{Q}$
т	т	F	т	т	Т
т	F	F	F	F	Т
F	Т	т	т	Т	Т
F	F	т	т	т	Т

Proofs in propositional calculus

• Problem Description

- If it is sunny today, then the sun shines on the screen.
- $\ensuremath{^{\odot}}$ If the sun shines on the screen, then the blinds are drawn.
- The blinds are not drawn.
- Is it sunny today?

• Propositions

- P: It is sunny today.
- Q: The sun shines on the screen.
- R: The blinds are down.
- Premises
 - P→Q
 - Q→R
 - ¬R
- Question: P? (Given Premises are true, is P true?)

Proof using a truth table

Propositions			Premises			Trial conclusions	
Р	Q	R	P→Q	Q→R	¬R	Р	٦P
Т	Т	Т	Т	Т	F	Т	F
Т	Т	F	Т	F	Т	Т	F
Т	F	Т	F	Т	F	Т	F
Т	F	F	F	Т	т	т	F
F	Т	т	Т	Т	F	F	Т
F	Т	F	Т	F	т	F	Т
F	F	Т	Т	Т	F	F	Т
F	F	F	T		T	F	Т

• When all the premises are true, P is false, so "it is not sunny"

First Order Predicate Calculus

- The Propositional Calculus is not very expressive
 - can't make statements about all of a certain thing
 - or about things that don't exist
 - or about whether things exist
 - and we can't give propositions whole interpretation depends on which thing they apply to
- In the "blinds" example, we had to omit the day on which we checked the premises
- How could we make statements to capture the idea that we'd do this procedure each day?
 - If it is sunny on Monday ...
 - If it is sunny on Tuesday ... etc.

First Order Predicate Calculus

- The First Order Predicate Calculus (FOPC) is a *conservative extension* of the Propositional Calculus (PC)
 - this means that it has all the properties and features of PC
 - and some extra ones
 - objects: things which sentences are about, written like propositions
 - variables: usually written as lower case single letters, ranging over objects
 - predicates: propositions are now predicate symbols which can apply to variables and objects, written like propositions
 - arguments: the variables or objects to which predicates and functions apply
 - functions: mappings between objects objects
 - quantifiers: existential \exists "there exists"; universal \forall "for all"
- In PC, propositions were predicates that had no arguments

Blinds example in FOPC

• Problem description

- If it is sunny [on a particular day], then the sun shines on the PC screen [on that day].
- If the sun shines on the PC screen [on a particular day], the blinds are down [on that day].
- The blinds are not down [today].
- Is it sunny [today]?
- Premises:
 - ♦ d.Sunny (d) → Screen-shines(d)
 - ► $\forall d.Screen-shines(d) \rightarrow Blinds-down(d)$
 - ¬Blinds-down(Thursday)
- Question: Sunny(Thursday)?
- Note that there are various similar notations for quantifiers

Functions in FOPC

- A function maps its arguments to a fixed single value
 - note that functions do not have truth values: they map between objects
 - functions are denoted in the same way as predicates
 - you can tell which is which from where they appear: Predicates are outermost
 - functions have an *arity*: the number of arguments they take
- A person's mother is that person's parent
 - ► $\forall x. Person(x) \rightarrow Parent(Mother-of(x), x)$
 - Note that a person can only have one mother, so using a function like this is OK
- There is at least one person in this class who thinks
 - ► ∃x.Person(x) ∧ Class(x,AlClass) ∧ Thinks(x)
- All computers have a mouse connected by USB
 - ► $\forall x.Computer(x) \rightarrow \exists y.Mouse(y) \land Connected(x, y, Usb)$

Syntax of FOPC

- Terms: corresponding with things in the world
 - Objects
 - e.g., Thursday
 - Variables
 - e.g., x
 - Function expressions
 - ${}^{\odot}$ A function symbol of arity n followed by n terms, enclosed in () and separated by ,
 - e.g., Function(var, AnotherFunction(Thing))
- Sentences: statements that can be true or false
 - Atomic Sentence
 - ${}^{\odot}$ A predicate symbol of arity n followed by n terms, enclosed in () and separated by ,
 - Note that n can be 0, so True and False are atomic sentences
 - The result of applying a connective (as in PC) to one or more sentences
 - The result of applying a quantifier (\forall, \exists) to a sentence

- Let the *domain* D be a nonempty set of constants, variables, predicate symbols, function symbols and their mappings
- An *interpretation* over D is an *assignment* of the entities in D to each of the constant, variable, predicate, and function symbols of a predicate calculus expression
 - Each constant is assigned an element of D
 - Each variable is assigned to a nonempty subset of D (allowable substitutions)
 - Each function of arity m is defined $(D^m \mapsto D)$
 - Each predicate of arity n is defined (Dⁿ to {T,F}).

Computing the truth value of predicate calculus sentences

- Given an expression E and an interpretation I of E over a nonempty domain D, the truth value for E is determined by
 - The value of a constant is the element of D it is assigned to by I
 - The value of a variable is a member of the set of elements of D it is assigned to by I
 - The value of a function expression is the element of D obtained by evaluating the function for the parameter values assigned by the interpretation
 - The value of the predicate "true" is T, and the predicate "false" is F
 - The value of an atomic sentence is either T or F, determined by I
 - The value of a non-atomic (compound) sentence is either T or F, determined by I
 - For a variable x and a sentence S containing x
 - The value of $\forall x.S$ is T if S is T for all assignments to x under I
 - The value of $\exists x.S$ is T if there is an assignment to x under I such that S is T

First, Second and Higher Order PC

- This is First Order Predicate Calculus
 - variables can range only over objects in D
 - John eats everything: $\forall x.Eats(John, x)$
- In Second Order Predicate Calculus
 - variables can range over objects, predicates and functions in D

 ∫ohn has all the features that Jim has: ∀P.P(Jim) → P(John)
- In Higher Order Predicate Calculus
 - variables can range over objects, predicates, functions in D and over sentences
- In this module, we consider only First Order Predicate Calculus

- Every person likes some food
 - ► $\forall x. Person(x) \rightarrow \exists f. Food(f) \land likes(x, f)$
- There is a food that every person likes
 - ► $\exists f. Food(f) \land \forall x. Person(x) \rightarrow Likes(x, f)$
- Whenever anyone eats some spicy food, they are happy
 - ► $\forall x. \exists f. Eats(x, f) \land Spicy(f) \rightarrow Happy(x)$

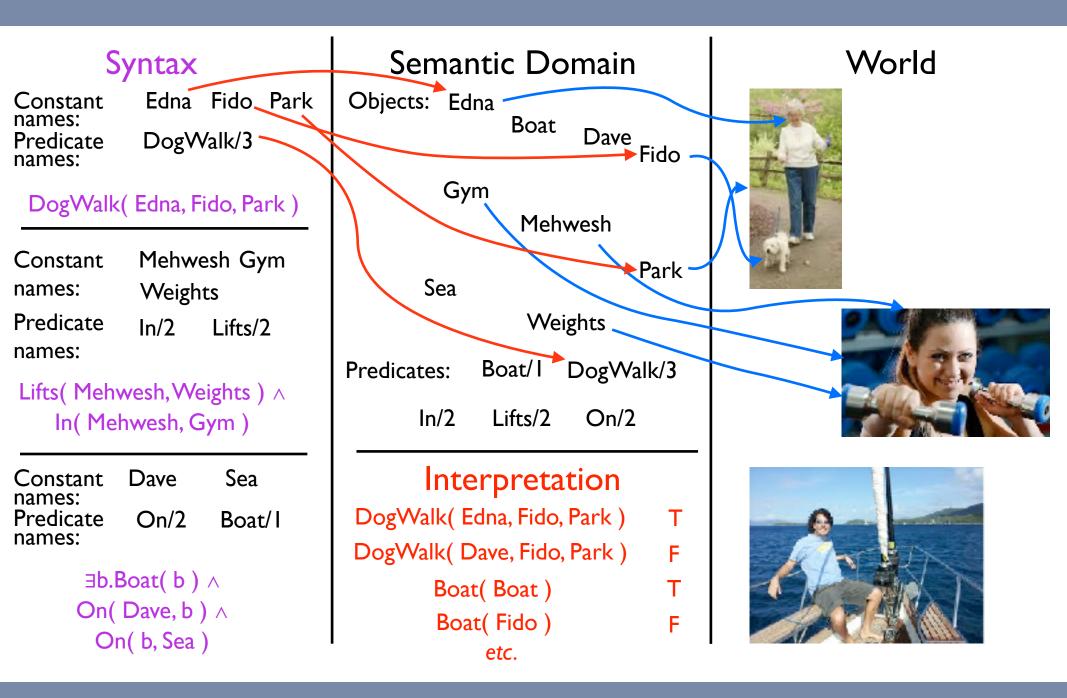
Illowable substitutions for x are people, for f is food

∀x. Person(x) → ∃f. Food(f) ∧ Spicy(f) ∧ Eats(x, f) → Happy(x)

no need to worry about allowable substitutions

- A very useful extra operator that isn't strictly in FOPC is =
 - that's to say, the TEST for equality, like == in Java, not assignment
- The rule for = is that
 - A = A is true for all constants A in the interpretation
 - otherwise, it is false
- We'll use equality in some of our lab work

Domains



- John's meals are spicy
- Every city has a dogcatcher who has been bitten by every dog in town
 - With domains what are they?

Without domains

- John's meals are spicy
 - $\forall x. Meal-of(John, x) \rightarrow Spicy(x)$
- Every city has a dogcatcher who has been bitten by every dog in town
 - With domains what are they?
 - $\forall c. \exists t. Dogcatcher(c, t) \land \forall d. Lives-in(d, c) \rightarrow Has-bitten(d, t)$
 - Domains: t: people; c: cities; d: dogs
 - Without domains
 - $\forall c.City(c) \rightarrow \exists t.Dogcatcher(c,t) \land \forall d.Dog(d) \land Lives-in(d,c) \rightarrow Has-bitten(d,t)$

- For every set x, there is a set y, such that the cardinality of y is greater than the cardinality of x
 - With domains what are they?

Without domains

- For every set x, there is a set y, such that the cardinality of y is greater than the cardinality of x
 - With domains what are they?
 - $\forall x. \exists y. \forall u. \forall v. Cardinality(x, u) \land Cardinality(y, v) \rightarrow Greater-than(v, u)$
 - $\forall x. \exists y. Greater-than(Cardinality(x), Cardinality(y))$
 - Domains: x, y: sets; u,v: integers
 - Without domains
 - $\forall x.Set(x) \rightarrow \exists y.Set(y) \land \forall u.\forall v.Cardinality(x, u) \land Cardinality(y, v) \rightarrow Greater-than(v, u)$
 - $\forall x.Set(x) \rightarrow \exists y.Set(y) \land Greater-than(Cardinality(x), Cardinality(y))$

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - ▶ I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I
- A sentence is *satisfiable* iff there is at least one interpretation and variable assignment that satisfy it; otherwise it is *unsatisfiable*
- A set of sentences, E, is *satisfiable* iff there is at least one interpretation and variable assignment that satisfies every $S \in E$
 - NB quantification! The same interpretation/variable assignment pair satisfies all S
- A set of sentences is *inconsistent*, iff it is not satisfiable
- A sentence is *valid* iff it is satisfiable for all possible interpretations

- A proof procedure consists of
 - a set of inference rules
 - an algorithm for applying the inference rules to a set of sentences to generate a sequence of set of sentences from or to another set
 - $\ensuremath{^\circ}$ usually, we attempt to start from something we want to prove
 - and then work "backwards" to things we already know, such as axioms and theorems
- Semantics of logical entailment
 - A sentence, S, *logically follows from*, or *is entailed by*, a set, E, of sentences iff every interpretation and variable assignment that satisfies E also satisfies S.

Inference Rules

- Soundness
 - An set of inference rules is sound, iff every sentence it infers from a set, E, of sentences logically follows from E
- Completeness
 - An set of inference rules is *complete*, iff it can infer every expression that logically follows from a set of sentences

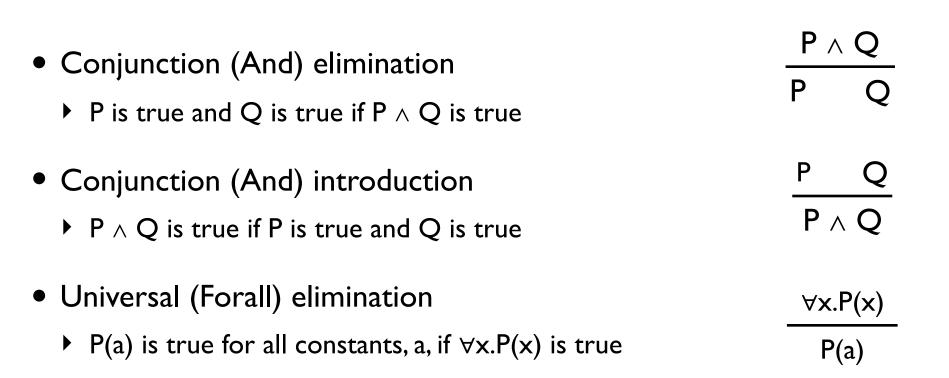
- Modus Ponens (implication elimination)
 - We know that P implies Q, and that P is true, so Q is true
 - $(P \land (P \rightarrow Q)) \rightarrow Q$
- Modus Tollens
 - We know that P implies Q, and that Q is false, so P is false
 - $(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$
- But we need rules to deal with each connective
 - Introduction (adding a connective into a proof sequence)
 - Elimination (removing a connective from a proof sequence)

$$\frac{P \quad P \rightarrow Q}{Q}$$

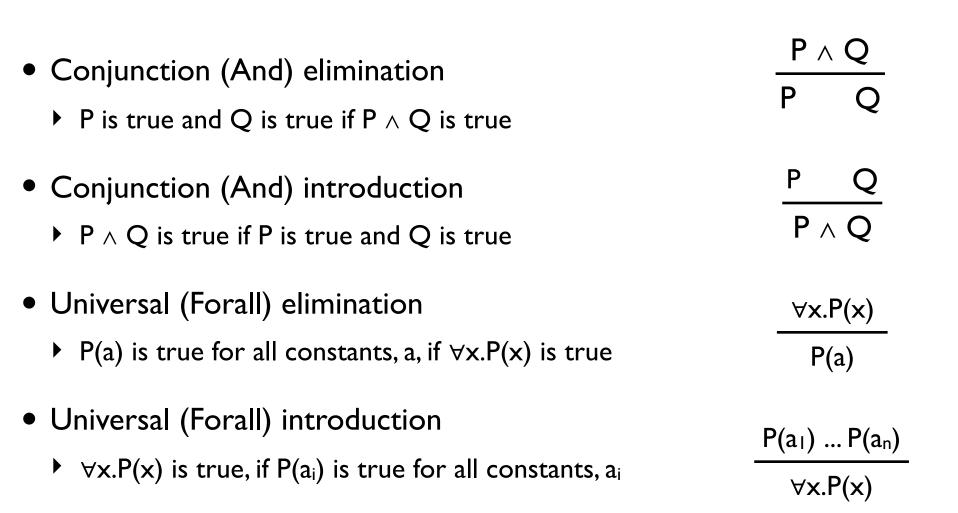
$$\frac{\neg Q \quad P \rightarrow Q}{\neg P}$$

Inference Rules

Inference rules



Inference rules



Blinds example in FOPC revisited

• Problem description

- If it is sunny [on a particular day], then the sun shines on the screen [on that day].
- If the sun shines on the screen [on a particular day], the blinds are down [on that day].
- The blinds are not down [today].
- Is it sunny [today]?
- Premises:
 - ♦ d.Sunny (d) → Screen-shines(d)
 - ► $\forall d.Screen-shines(d) \rightarrow Blinds-down(d)$
 - ¬Blinds-down(Thursday)
- Question: Sunny(Thursday)?

Blinds example in FOPC revisited

	Universal instantiation	∀d.Screen-shines(d)→Blinds-down(d)		
Modus Tollens	¬ Blinds-down(Thu)	Screen-shines(Thu)→Blinds-down(Th		
∀d.Sunny (d)→Screen-shines(d)	Universal instantiation	- Sereen shines/Thu)		
Sunny(Thu)→Screen-shines(Thu)		¬ Screen-shines(Thu)	Modus Tollens	
	¬Sunny(Thu)		_	

- Premises:
 - ► \forall d.Sunny(d) \rightarrow Screen-shines(d)
 - ► $\forall d.Screen-shines(d) \rightarrow Blinds-down(d)$
 - Blinds-down(Thursday)

- However, this is quite complicated, and requires knowledge
- Better to be simpler
 - use Resolution Theorem Proving