
Knowledge
Representation and
Reasoning

Geraint A. Wiggins
Professor of Computational Creativity
Department of Computer Science
Vrije Universiteit Brussel

Objectives

• Knowledge Representation in Logic

‣ The Propositional Calculus

‣ The First Order Predicate Calculus

• Reasoning

‣ Inference Rules to Compute with Calculus Expressions

• Application

Knowledge Engineering

• The role of the Knowledge Engineer is to

‣ elicit or otherwise ascertain knowledge

‣ represent it in the most appropriate way

‣ use it to derive previously unknown facts
๏ follow a chain of reasoning from new data to a conclusion (e.g. medical diagnosis)

๏ make explicit things that were previously implicit in a system that was too complex for a
human to understand all at once

• Examples about VUB site map

‣ Building-M-is-a-building

‣ Building(M)

‣ Grey(M)

‣ Colour(M, Grey)

Knowledge Engineering

• Often, in one formalism or another, this will involve maintaining a
database of facts that are known to be true and rules that can apply to
them

Facts Rules

Function
Implementations

Add new facts

Delete facts

Pose queries

Knowledge Engineering

• Quite often, problem formulation in real-world situations is very difficult

‣ different experts have different opinions

‣ the world is continuous and unpredictable

‣ clients don’t really know what they want from you

• A common approach to understanding the issues involved in KE is to use
a highly simplified world, and then to generalise with experience

‣ a common simplification is the “blocks” world

Example: The Blocks World

• There is/are

‣ a table

‣ some distinguishable blocks

‣ a robot hand/arm

• Problems are specified in terms of

‣ actions by the arm

‣ with respect to the world

• Predicates

‣ On, On-table

‣ Clear

‣ Empty

Blocks world

on (c,a)

on(b,d)

ontable(a)

ontable(d)ontable(d)

clear(b)

clear(c)clear(c)

hand_empty
c b

a d

43

Knowledge Representation and
Inference

• KR should allow us, for a given world, to:

‣ Express facts or beliefs using a formal language
๏ expressively and unambiguously

• The inference procedure should allow us to:

‣ Determine automatically what follows from these facts
๏ correctly (sound) and completely (and tractably)

• Example:

‣ Be able to express formally that:
๏ “The red block is above the blue block”

๏ “The green block is above the red block”

‣ Be able to infer:
๏ “The green block is above the blue block”

๏ “The blocks form a tower”

Knowledge Representation and Inference
procedureprocedure

KR should allow us, for Example
a given world, to:

• Express the general
facts or beliefs sing a

Be able to express
formally that:

facts or beliefs using a
language

The inference

� “The red block is above
the blue block”

� “The green block is above
the red block”The inference

procedure, should
allow us to:

the red block

Be able to infer:
� “The green block is above

• Determine what else
we should or should
not believe

� The green block is above
the blue block”

� “The blocks form a tower”

4

Example

• Given

‣ If it is sunny today, then the sun shines on the screen

‣ If the sun shines on the screen, then the blinds are drawn

‣ The blinds are not down

• Find out

‣ Is it sunny today?

• Human reasoning:

‣ Blinds up, so sun not shining on screen, so not sunny today
๏ We want a computer to do that, reliably and in general

Components of a logical calculus

• A formal language

‣ words and syntactic rules that tell us how to build up sentences
๏ so we can build up more complex statements from simple ones

‣ semantic mappings that tell us what the words mean

• An inference procedure which allows us to compute which sentences are
valid inferences from other sentences

• Many different logical calculi; here we study
‣ The Propositional Calculus

‣ The First Order Predicate Calculus

The Propositional Calculus

• Each symbol in the Propositional Calculus is

‣ a proposition: a basic, smallest unit of meaning in the calculus
๏ e.g.“it is raining”

‣ a connective: something combines propositions into more complex sentences

• Two reserved, special propositions

‣ True and False
๏ with the obvious meanings!

• Other propositions usually begun by upper case letters

‣ P, Q, Sunny, etc.

• Connectives use special symbols

‣ ∧ (and) , ∨ (or) , ¬ (not),→ (implies), ≡ (is equivalent to)

Sentences in the propositional
calculus

• The Sentence is the syntactic unit to which truth values can be attached
๏ Sentences are also called Well-Formed Formulae (WFF)

‣ Every propositional symbol is a sentence. E.g.: True, False, P

‣ The negation of a sentence is a sentence. E.g.: ¬P, ¬ False.

‣ The conjunction (and) of two sentences is a sentence. E.g.: P ∧ Q

‣ The disjunction (or) of two sentences is a sentence. E.g.: P ∨ Q

‣ The implication of one sentence by another is a sentence. E.g.: P → Q

‣ The equivalence of two sentences is a sentence. E.g.: P ≡ R

๏ Note that equivalence can also be expressed as P→ Q ∧ Q → P

๏ ≡ is therefore sometimes omitted from the propositional calculus

Semantics (Meaning) in PC

• An interpretation of a set of sentences is the assignment of a truth value,
either T or F, to each propositional symbol (and so to each sentence)

‣ The proposition True is always assigned truth value T

‣ The proposition False is always assigned truth value F

‣ The assignment of negation, ¬P, is F iff the assignment of P is T, and vice versa

‣ The assignment of conjunction, P ∧ Q, is T iff the assignment of both P and Q is
T; otherwise it is F

‣ The assignment of disjunction, P ∨ Q, is F iff the assignment of both P and Q is F;
otherwise it is T

‣ The assignment of implication, P → Q, is F iff the assignment of P is T and the
assignment of Q is F; otherwise it is T

‣ The assignment of equivalence, P ≡ Q, is T iff the assignments of both P and Q is
the same for all possible interpretations; otherwise it is F.

Some useful laws and equivalences

• excluded middle: P ∨ ¬ P

• ¬ ¬ P ≡ P

• contrapositive: P → Q ≡ ¬ Q → ¬ P

• de Morgan’s laws

‣ ¬ (P ∨ Q) ≡ ¬ P ∧ ¬ Q

‣ ¬ (P ∧ Q) ≡ ¬ P ∨ ¬ Q

Some useful laws and equivalences

• excluded middle: P ∨ ¬ P

• ¬ ¬ P ≡ P

• contrapositive: P → Q ≡ ¬ Q → ¬ P

• de Morgan’s laws

‣ ¬ (P ∨ Q) ≡ ¬ P ∧ ¬ Q

‣ ¬ (P ∧ Q) ≡ ¬ P ∨ ¬ Q

• commutativity
‣ P ∨ Q ≡ Q ∨ P

‣ P ∧ Q ≡ Q ∧ P

Some useful laws and equivalences

• associativity

‣ (P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R)

‣ (P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R)

• distributivity
‣ P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

‣ P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

• Note order of operator precedence

‣ ¬ precedes ∧ precedes ∨

‣ → are ≡ are complicated: use brackets

‣ Compare with arithmetic operators, –, x, +

Truth tables

• A truth table has all sentences along its top, usually in increasing order of
syntactic complexity

‣ its columns are all the possible interpretations, one row each

P Q ¬P P ∧ Q P ∨ Q P → Q

T T F T T T

T F F F T F

F T T F T T

F F T F F T

Truth tables

• We can prove things using truth tables

‣ ¬P ∨ Q ≡ P → Q

P Q ¬P ¬P ∨ Q P→Q ¬P ∨ Q ≡ P→Q

T T F T T T

T F F F F T

F T T T T T

F F T T T T

Proofs in propositional calculus

• Problem Description
๏ If it is sunny today, then the sun shines on the screen.

๏ If the sun shines on the screen, then the blinds are drawn.

๏ The blinds are not drawn.

๏ Is it sunny today?

• Propositions
๏ P: It is sunny today.

๏ Q: The sun shines on the screen.

๏ R: The blinds are down.

• Premises
๏ P→Q

๏ Q→R

๏ ¬R

• Question: P? (Given Premises are true, is P true?)

Proof using a truth table

Propositions Premises Trial conclusions

P Q R P→Q Q→R ¬R P ¬P

T T T T T F T F

T T F T F T T F

T F T F T F T F

T F F F T T T F

F T T T T F F T

F T F T F T F T

F F T T T F F T

F F F T T T F T

• When all the premises are true, P is false, so “it is not sunny”

First Order Predicate Calculus

• The Propositional Calculus is not very expressive

‣ can’t make statements about all of a certain thing

‣ or about things that don’t exist

‣ or about whether things exist

‣ and we can’t give propositions whole interpretation depends on which thing they
apply to

• In the “blinds” example, we had to omit the day on which we checked
the premises

• How could we make statements to capture the idea that we’d do this
procedure each day?

‣ If it is sunny on Monday ...

‣ If it is sunny on Tuesday ... etc.

First Order Predicate Calculus

• The First Order Predicate Calculus (FOPC) is a conservative extension of
the Propositional Calculus (PC)

‣ this means that it has all the properties and features of PC

‣ and some extra ones
๏ objects: things which sentences are about, written like propositions

๏ variables: usually written as lower case single letters, ranging over objects

๏ predicates: propositions are now predicate symbols which can apply to variables and
objects, written like propositions

๏ arguments: the variables or objects to which predicates and functions apply

๏ functions: mappings between objects objects

๏ quantifiers: existential ∃ - “there exists”; universal ∀ - “for all”

• In PC, propositions were predicates that had no arguments

Blinds example in FOPC

• Problem description
๏ If it is sunny [on a particular day], then the sun shines on the PC screen [on that day].

๏ If the sun shines on the PC screen [on a particular day], the blinds are down [on that day].

๏ The blinds are not down [today].

๏ Is it sunny [today]?

• Premises:

‣ ∀d.Sunny (d)→Screen-shines(d)

‣ ∀d.Screen-shines(d)→Blinds-down(d)

‣ ¬Blinds-down(Thursday)

• Question: Sunny(Thursday)?

• Note that there are various similar notations for quantifiers

Functions in FOPC

• A function maps its arguments to a fixed single value

‣ note that functions do not have truth values: they map between objects

‣ functions are denoted in the same way as predicates
๏ you can tell which is which from where they appear: Predicates are outermost

‣ functions have an arity: the number of arguments they take

• A person’s mother is that person’s parent

‣ ∀x.Person(x) → Parent(Mother-of(x), x)
๏ Note that a person can only have one mother, so using a function like this is OK

• There is at least one person in this class who thinks

‣ ∃x.Person(x) ∧ Class(x,AIClass) ∧Thinks(x)

• All computers have a mouse connected by USB

‣ ∀x.Computer(x) → ∃y.Mouse(y) ∧ Connected(x, y, Usb)

Syntax of FOPC

• Terms: corresponding with things in the world

‣ Objects
๏ e.g.,Thursday

‣ Variables
๏ e.g., x

‣ Function expressions
๏ A function symbol of arity n followed by n terms, enclosed in () and separated by ,

๏ e.g., Function(var, AnotherFunction(Thing))

• Sentences: statements that can be true or false

‣ Atomic Sentence
๏ A predicate symbol of arity n followed by n terms, enclosed in () and separated by ,

๏ Note that n can be 0, so True and False are atomic sentences

‣ The result of applying a connective (as in PC) to one or more sentences

‣ The result of applying a quantifier (∀, ∃) to a sentence

Semantics of FOPC: Interpretation

• Let the domain D be a nonempty set of constants, variables, predicate
symbols, function symbols and their mappings

• An interpretation over D is an assignment of the entities in D to each of
the constant, variable, predicate, and function symbols of a predicate
calculus expression

‣ Each constant is assigned an element of D

‣ Each variable is assigned to a nonempty subset of D (allowable substitutions)

‣ Each function of arity m is defined (Dm ⟼ D)

‣ Each predicate of arity n is defined (Dn to {T,F}).

Computing the truth value of
predicate calculus sentences

• Given an expression E and an interpretation I of E over a nonempty
domain D, the truth value for E is determined by

‣ The value of a constant is the element of D it is assigned to by I

‣ The value of a variable is a member of the set of elements of D it is assigned to
by I

‣ The value of a function expression is the element of D obtained by evaluating the
function for the parameter values assigned by the interpretation

‣ The value of the predicate “true” is T, and the predicate “false” is F

‣ The value of an atomic sentence is either T or F, determined by I

‣ The value of a non-atomic (compound) sentence is either T or F, determined by I

‣ For a variable x and a sentence S containing x
๏ The value of ∀x.S is T if S is T for all assignments to x under I

๏ The value of ∃x.S is T if there is an assignment to x under I such that S is T

First, Second and Higher Order PC

• This is First Order Predicate Calculus

‣ variables can range only over objects in D
๏ John eats everything: ∀x.Eats(John, x)

• In Second Order Predicate Calculus

‣ variables can range over objects, predicates and functions in D
๏ John has all the features that Jim has: ∀P.P(Jim) → P(John)

• In Higher Order Predicate Calculus
‣ variables can range over objects, predicates, functions in D and over sentences

• In this module, we consider only First Order Predicate Calculus

Order and range of quantifiers
matters

• Every person likes some food

‣ ∀x. Person(x) → ∃f.Food(f) ∧ likes(x, f)

• There is a food that every person likes
‣ ∃f. Food(f) ∧ ∀x.Person(x) → Likes(x, f)

• Whenever anyone eats some spicy food, they are happy
‣ ∀x.∃f. Eats(x, f) ∧ Spicy(f) → Happy(x)

๏ allowable substitutions for x are people, for f is food

‣ ∀x. Person(x) → ∃f. Food(f) ∧ Spicy(f) ∧ Eats(x, f) → Happy(x)

๏ no need to worry about allowable substitutions

Equality

• A very useful extra operator that isn’t strictly in FOPC is =

‣ that’s to say, the TEST for equality, like == in Java, not assignment

• The rule for = is that

‣ A = A is true for all constants A in the interpretation

‣ otherwise, it is false

• We’ll use equality in some of our lab work

Domains

WorldSemantic DomainSyntax
Edna Fido

DogWalk/3

ParkConstant
names:
Predicate
names:

DogWalk(Edna, Fido, Park)

Constant
names:
Predicate
names:

Mehwesh Gym
Weights

In/2 Lifts/2

Lifts(Mehwesh, Weights) ∧
In(Mehwesh, Gym)

Constant
names:
Predicate
names:

Dave

Boat/1

Sea

On/2

∃b.Boat(b) ∧
On(Dave, b) ∧

On(b, Sea)

Edna

Fido

DogWalk/3

Park

Objects:

Predicates:

Mehwesh
Gym

Weights

In/2 Lifts/2

Dave

Boat/1

Sea

On/2

Interpretation

Boat

TDogWalk(Edna, Fido, Park)
DogWalk(Dave, Fido, Park) F

Boat(Boat) T
Boat(Fido) F

etc.

Something to try

• John’s meals are spicy
๏ ∀x. Meal-of(John, x) → Spicy(x)

• Every city has a dogcatcher who has been bitten by every dog in town
‣ With domains – what are they?

๏ ∀c.∃t.Dogcatcher(c, t) ∧ ∀d.Lives-in(d, c) → Has-bitten(d, t)

๏ Domains: t: people; c: cities; d: dogs

‣ Without domains
๏ ∀c.City(c) → ∃t.Dogcatcher(c, t) ∧ ∀d.Dog(d) ∧ Lives-in(d, c) → Has-bitten(d, t)

Something to try

• John’s meals are spicy
๏ ∀x. Meal-of(John, x) → Spicy(x)

• Every city has a dogcatcher who has been bitten by every dog in town
‣ With domains – what are they?

๏ ∀c.∃t.Dogcatcher(c, t) ∧ ∀d.Lives-in(d, c) → Has-bitten(d, t)

๏ Domains: t: people; c: cities; d: dogs

‣ Without domains
๏ ∀c.City(c) → ∃t.Dogcatcher(c, t) ∧ ∀d.Dog(d) ∧ Lives-in(d, c) → Has-bitten(d, t)

Something to try

• For every set x, there is a set y, such that the cardinality of y is greater
than the cardinality of x

‣ With domains – what are they?
๏ ∀x.∃y.∀u.∀v.Cardinality(x, u) ∧ Cardinality(y, v) → Greater-than(v, u)

๏ ∀x.∃y. Greater-than(Cardinality(x), Cardinality(y))

๏ Domains: x, y: sets; u,v: integers

‣ Without domains
๏ ∀x.Set(x) → ∃y.Set(y) ∧ ∀u.∀v.Cardinality(x, u) ∧ Cardinality(y, v) → Greater-than(v, u)

๏ ∀x.Set(x) → ∃y.Set(y) ∧ Greater-than(Cardinality(x), Cardinality(y))

Something to try

• For every set x, there is a set y, such that the cardinality of y is greater
than the cardinality of x

‣ With domains – what are they?
๏ ∀x.∃y.∀u.∀v.Cardinality(x, u) ∧ Cardinality(y, v) → Greater-than(v, u)

๏ ∀x.∃y. Greater-than(Cardinality(x), Cardinality(y))

๏ Domains: x, y: sets; u,v: integers

‣ Without domains
๏ ∀x.Set(x) → ∃y.Set(y) ∧ ∀u.∀v.Cardinality(x, u) ∧ Cardinality(y, v) → Greater-than(v, u)

๏ ∀x.Set(x) → ∃y.Set(y) ∧ Greater-than(Cardinality(x), Cardinality(y))

Properties of sentences

• For a predicate calculus sentence, S, and an interpretation, I,

‣ I satisfies S, if S has a truth value of T under I and at least one variable assignment

‣ I is a model of S, if I satisfies S for all possible variable assignments in I

• A sentence is satisfiable iff there is at least one interpretation and
variable assignment that satisfy it; otherwise it is unsatisfiable

• A set of sentences, E, is satisfiable iff there is at least one interpretation
and variable assignment that satisfies every S ∈ E

‣ NB quantification! The same interpretation/variable assignment pair satisfies all S

• A set of sentences is inconsistent, iff it is not satisfiable

• A sentence is valid iff it is satisfiable for all possible interpretations

Proof procedures

• A proof procedure consists of

‣ a set of inference rules

‣ an algorithm for applying the inference rules to a set of sentences to generate a
sequence of set of sentences from or to another set
๏ usually, we attempt to start from something we want to prove

๏ and then work “backwards” to things we already know, such as axioms and theorems

• Semantics of logical entailment

‣ A sentence, S, logically follows from, or is entailed by, a set, E, of sentences iff every
interpretation and variable assignment that satisfies E also satisfies S.

Inference Rules

• Soundness

‣ An set of inference rules is sound, iff every sentence it infers from a set, E, of
sentences logically follows from E

• Completeness

‣ An set of inference rules is complete, iff it can infer every expression that logically
follows from a set of sentences

Inference Rules

• Modus Ponens (implication elimination)

‣ We know that P implies Q, and that P is true, so Q is true

‣ (P ∧ (P → Q)) → Q

• Modus Tollens
‣ We know that P implies Q, and that Q is false, so P is false

‣ (¬ Q ∧ (P → Q)) → ¬ P

• But we need rules to deal with each connective

‣ Introduction (adding a connective into a proof sequence)

‣ Elimination (removing a connective from a proof sequence)

P P → Q

Q

¬ Q P → Q

¬ P

Inference rules

• Conjunction (And) elimination

‣ P is true and Q is true if P ∧ Q is true

• Conjunction (And) introduction
‣ P ∧ Q is true if P is true and Q is true

• Universal (Forall) elimination
‣ P(a) is true for all constants, a, if ∀x.P(x) is true

P ∧ Q

P Q

P Q

P ∧ Q

∀x.P(x)

P(a)

Inference rules

• Conjunction (And) elimination

‣ P is true and Q is true if P ∧ Q is true

• Conjunction (And) introduction
‣ P ∧ Q is true if P is true and Q is true

• Universal (Forall) elimination
‣ P(a) is true for all constants, a, if ∀x.P(x) is true

• Universal (Forall) introduction
‣ ∀x.P(x) is true, if P(ai) is true for all constants, ai

P ∧ Q

P Q

P Q

P ∧ Q

P(a1) ... P(an)

∀x.P(x)

∀x.P(x)

P(a)

Blinds example in FOPC revisited

• Problem description
๏ If it is sunny [on a particular day], then the sun shines on the screen [on that day].

๏ If the sun shines on the screen [on a particular day], the blinds are down [on that day].

๏ The blinds are not down [today].

๏ Is it sunny [today]?

• Premises:

‣ ∀d.Sunny (d)→Screen-shines(d)

‣ ∀d.Screen-shines(d)→Blinds-down(d)

‣ ¬Blinds-down(Thursday)

• Question: Sunny(Thursday)?

Blinds example in FOPC revisited

• Premises:

‣ ∀d.Sunny(d)→Screen-shines(d)

‣ ∀d.Screen-shines(d)→Blinds-down(d)

‣ ¬Blinds-down(Thursday)

• However, this is quite
complicated, and requires
knowledge

• Better to be simpler

‣ use Resolution Theorem Proving

Universal instantiation ∀d.Screen-shines(d)→Blinds-down(d)

Modus Tollens ¬ Blinds-down(Thu) Screen-shines(Thu)→Blinds-down(Thu)

∀d.Sunny (d)→Screen-shines(d) Universal instantiation
¬ Screen-shines(Thu)

Sunny(Thu)→Screen-shines(Thu) Modus Tollens

¬Sunny(Thu)

